
Chapter 1 
In-Sensor Visual Devices for Perception 
and Inference 

Yanan Liu, Hepeng Ni, Chao Yuwen, Xinyu Yang, Yuhang Ming, 
Huixin Zhong, Yao Lu, and Liang Ran 

Abstract The traditional machine vision systems use separate architectures for per-
ception, memory, and processing. This approach may hinder the growing demand 
for high image processing rates and low power consumption. On the other hand, 
in-sensor computing performs signal processing at the pixel level, directly utilizing 
collected analogue signals without sending them to other processors. This means 
that in-sensor computing may offer a solution for achieving highly efficient and low-
power consumption visual signal processing. This can be achieved by integrating 
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sensing, storage, and computation onto focal planes with novel circuit designs or new 
materials. This chapter aims to describe the proposed image processing algorithms 
and neural networks of in-sensor computing, as well as their applications in machine 
vision and robotics. The goal of this chapter is to help developers, researchers, and 
users of unconventional visual sensors understand their functioning and applications, 
especially in the context of autonomous driving. 

1.1 Introduction 

The importance of vision as a means of perception cannot be overstated, as it enables 
efficient collection and interpretation of information [ 1]. To apply this capability to 
fields like machine vision, robotics, Internet of Things (IoT), and artificial intelli-
gence (AI), there is a pressing need to develop visual information processing methods 
and technologies that operate at ultra-high speeds while consuming minimal energy 
[ 2, 3]. The conventional machine vision systems and their associated technologies 
face major constraints in terms of system latency, power consumption, and privacy 
issues [ 2, 3]. Unlike the mammalian retina mechanism that rapidly processes raw 
signals through several layers of cells, the visual signal digitization, storage, and 
transmission processes involved in conventional machine vision systems can intro-
duce significant time latency, which hinders quick responses to dynamic changes and 
results in inefficiencies due to irrelevant data processing [ 2, 3]. Additionally, exter-
nal image processors like CPU/GPU/VPU/DSPs consume high amounts of power, 
which is unfavorable for portable tasks [ 2, 3]. The overwhelming amount of data gen-
erated by ubiquitous sensors may obscure the useful information, thus necessitating 
the extraction of critical information by terminal sensors to reduce data movement 
from the sensing chip to processing units [ 4, 5]. Moreover, privacy-sensitive scenar-
ios may require the extraction of crucial information from raw analog signals rather 
than collected images. 

To address these challenges, a paradigm shift towards in-sensor computing is pro-
posed [ 6]. This approach is inspired by the mammalian retina (Fig. 1.1a) and involves 
the vision sensor not only acquiring visual information but also processing it to pro-
duce highly compressed information instead of video frames (Fig. 1.1c). In-sensor 
computing offers image-free visual signal processing, which ensures data confiden-
tiality. This interdisciplinary field encompasses various technologies, including sen-
sors, analogue signal processing, near-sensor computing, and in-memory computing 
(Fig. 1.3). In-sensor computing devices are sensors that integrate perception, tem-
porary storage, and data processing and analysis with raw analogue signals within 
the sensing chip. While near-sensor computing can reduce the physical distance 
between sensing and computing, data movement from sensors to processors is still 
necessary. In-memory computing uses memristors for both memory and computing 
[ 7], utilizing tunable resistance as the synaptic weights.
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Fig. 1.1 The origin of in-sensor visual computing. a The concept of in-sensor computing is 
bio-inspired by the retina mechanism where visual signals can be generated and pre-processed by 
different types of cells [ 8]. b Conventional machine vision system: light density needs to be read 
out first and converted to digital data which being loaded into memory and then processing units for 
meaningful information extraction. c Visual data can be generated, stored, and processed in sensor 
through the bio-inspired hardware design 

This chapter firstly illustrates the common in-sensor visual computing hardware 
architecture. Then various emerging in-sensor computing visual sensors are intro-
duced in terms of hardware, software, algorithms, and applications within the cate-
gory of in-sensor computing architecture. Finally, a summary and future prospective 
of in-sensor visual computing technology are made in the conclusion.
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1.2 In-Sensor Computing Devices 

1.2.1 Architecture 

In recent years, progress has been made in the development of in-sensor computing 
devices. By far, there are mainly two types of in-sensor computing architectures: 
(1) In-Sensor architecture by integrating sensing, memory, and computing units: 
A Focal-Plane Sensor Processor (FPSP) [ 9] integrates visual sensing, storage and 
computing units on the focal plane under the architecture of cellular neural networks 
(Fig. 1.2a). As for each Processing Element (PE), the generated analogue signals 
from the pixel can be transferred to the temporal memory units through the bus and 
processed using ALU units and registers. Each PE plays a role as a cell interacting 
with its neighbours for signal exchange and processing. Hence, the in-sensor visual 
inference is realised by the hardware cellular neural network and its synaptic weights 
in memory. The representative devices under the FPFS architecture mainly include 
the SCAMP Pixel Processor Array (PPA), Q-Eye [ 10] MIPA4k [  9], Asynchronous-
Synchronous Focal-Plane Sensor-Processor Chip (ASAP) [ 9], KOVA1 [ 11], and Ais-
torm Mantis2 [ 12], where the SCAMP PPA is comparatively mature with continuous 
research and application outputs. 
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Fig. 1.2 In-sensor perception and computing architectures and their associated artificial net-
works. a An in-sensor cellular network can be built with an array of PEs which integrates sensing, 
memory, and computing units. b A neural network with detect-and-memorise materials
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Table 1.1 In-sensor computing architecture comparison between FPFS and DAM scheme 

Scheme Maturity 
level 

Speed Application General-
purpose 

Programmable Efficiency 

FPFS 
[ 15, 16] 

Mature High-speed Many Yes Yes High 

DAM 
[ 5, 6, 17– 19] 

Immature Ultra-fast Few No Partial Ultra-high 

Fig. 1.3 The position of 
in-sensor computing in the 
existing knowledge Sensing M

em
or

y 
Computing 

Near-sensor 
computing 

In-sensor 
computing 

In-m
em

ory 

com
puting Mor

ph
olo

gic
al 

co
mpu

tin
g 

(2) Detect-and-memorise materials for in-sensor computing architectures: 
Material-based detect-and-memorise (DAM) devices (Fig. 1.2b) have recently been 
proposed to mimic the functional mechanism of the photonic synapses to implement 
artificial neural networks [ 5, 13]. Among these emerging materials and devices, the 
memristor is representative as it facilitates sensing, temporal memory, and comput-
ing capability when combined with other photo-sensitive devices [ 14]. Specifically, 
visual signals generated from photoreceptors such as photodiodes can be further pro-
cessed within the artificial networks composed of memristors with tunable resistance 
as the weights. 

Table 1.1 shows the difference between the two rising in-sensor computing archi-
tectures. As can be seen from Table 1.1, the DAM-based in-sensor computing sensors 
are new and immature compared to the scheme by sensor, memory, and computing 
integration. Hence, this chapter mainly reviews devices and algorithms based on the 
first architecture scheme (Fig. 1.3). 

1.2.2 Focal-Plane Sensor Processor (FPFS) 

Conventional sensors mainly play the role of information collectors. In recent years, 
with the development of techniques on integrated circuit design and the growing 
need for low-power and lower-latency edge-computing, a sensor has gradually been
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Table 1.2 List of in-sensor and in-memory processing vision systems 

System names Resolution In-sensor storage Speed (FPS) 

Aistorm Mantis2 96. ×96 Gray-scale image 50 K [ 12] 

Eye-RIS 176. ×144 7 gray + 4 binary 10 K [ 22] 

Photodiode array – – 20 M bins [ 14] 

SCAMP PPA 256. ×256 7 gray + 13 binary 100 K [ 23] 

Kovilta’s KOVA1 96. ×96 – . >1K  [  24] 

MIPA4k 64. ×64 – . >1K  [  25] 

DVS In-senor 
pre-processing 

Binary events . >10 K [ 26] 

integrated with the ability of signal processing independent from general-purpose 
computers. The goal of near-sensor processing is to use a dedicated machine learning 
accelerator chip on the same printed circuit board [ 20], or perhaps 3D-stacked with 
the CMOS image chip [ 21]. Despite the fact that this allows CMOS image chip data 
to be processed closer to the sensor rather than in the cloud, data transport expenses 
between the sensing chip and the processing chip still exist. In contrast, the in-sensor 
computing paradigm aims to embed processing capability for each individual pixel. 
This section introduces classic in-sensor visual computing devices. Table 1.2 lists the 
differences among these above-mentioned in-sensor computing devices. 

1.3 SCAMP-5d Vision System and Pixel Processor Array 

1.3.1 Introduction 

SCAMP vision system is one of the emerging in-sensor visual computing devices. 
Currently, the most up-to-date version of SCAMP series system is the SCAMP-5d 
(Figs. 1.4 and 1.5) which consists of 256. ×256 processing elements (PEs) weighted 
171 g with a normal lens. SCAMP-5d vision system is a general-purpose pro-
grammable massively parallel vision system [ 23] that was invented, designed, and 
developed by University of Manchester. By far, SCAMP-5d enjoys many applica-
tions in the field of robotics [ 27– 30] and computer vision [ 31– 33]. As for the PPA 
shown in Figs. 1.3 and 1.4, the photo-detector converts light into an analogue sig-
nal which can be directly parallelly processed on AREG. Different from the current 
hardware design structure of computer vision systems, the PPA gets rid of the Ana-
logue/Digital Conversion (ADC) after sensing and directly operates on analogue 
electric current using an arithmetic unit, hence accelerating the signal processing 
speed and, in the meantime, avoiding the bottleneck of ADC and data transmission 
process. However, errors can be introduced when performing arithmetic operations 
or temporal information storage on AREG [ 6].
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Fig. 1.4 SCAMP-5d vision system and the pixel processor array (PPA). SCAMP-5d consists of 
PPA with 256. ×256 Processing Elements (PE) and ARM Micro-controller where parallel image 
processing is conducted on PPA by directly operating on analogue signal (electric current from 
PIX, which is proportional to the light intensity) within AREG and bit operation within in DREG. 
Hence, there is no need for time-consuming and energy-inefficient analogue-to-digital conversion. 
Bio-inspired by the efficient information processing of neurons connected by synapses, PPA is 
designed to have highly interconnected PE and registers where information can be shared and 
accessed adjacently enabling efficient parallel machine vision computing. ARM micro-controller 
is in charge of sending instructions to the PPA, receiving the processed information from the PPA, 
and more fully-connected layers for deeper CNN 

In terms of hardware techniques, the PPA integrates information storage on reg-
isters, image processing and analogue information operation (arithmetic operation, 
shifting, etc.), digital/bit operation, and logical operations. As can be seen from 
Fig. 1.4, for each Processing element (PE), there are seven read/write AREG (A to 
F) which can be used for signed value storage and computation with basic arith-
metic operations, such as addition, subtraction, division, etc. In addition, thirteen 
1-bit DREG (R0 to R12) in each PE (256. ×256 in total) can execute the Boolean 
logical operations, such as AND, OR, XNOR, and NOT [ 15] with information after 
binary thresholding on AREG. Each register in PE executes identical instructions 
synchronously under SIMD instructions, hence enabling parallel image processing. 
In addition, the FLAG register can activate different areas of registers given corre-
sponding patterns for more flexible operation. With the neighbour access function 
where each pixel is able to communicate with its four neighbours (north, west, east, 
south), an efficient parallel image shifting can be implemented easily. Instructions for 
the PPA are dispatched by the ARM-based micro-controller with a Cortex M0 running 
at 204 MHz. The analogue operations is executed at 5 MHz and digital at 10 MHz.
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Fig. 1.5 The development process of SCAMP series vision system from the University of Manch-
ester. This review mainly focuses on the SCAMP-3 and SCAMP-5 vision system because their higher 
resolution and performance would enable more research and applications. Source Piotr Dudek’s 
talk in Second International Workshop on Event-based Vision and Smart Cameras (CVPRW) [ 39] 

Other I/O functions, such as USB2.0, GPIO, SPI, and UART, are performed on 
Cortex M4 Core [ 15]. Notice that other names for a similar type of focal-plane sensor 
processor can be seen from [ 9] with names, e.g. ASPA (Asynchronous-synchronous 
Focal Plane Sensor Processor Array), FPSP (Focal-Plane Sensor-Processor). 

The PPA is a hardware implementation of Cellular Neural Network (CeNN) with 
the new optimisation on a mixture of both analogue and digital computing using 
AREGs and DREGs, respectively. The studies based on the PPA reviewed in this 
work utilise the parallel nature of the CeNN architecture for efficient and high-
performance computing, where each “cell” is intricately connected with its four 
neighbours and information can be shared efficiently. Hence, the PPA can be modelled 
as a CeNN architecture for visual information computing. The CeNN processing 
circuit architecture was first proposed by Leon Chua and Lin Yang [ 34], followed 
by the CeNN universal machine [ 35] as a prototype. After that, as an invention 
of new circuit architecture and a parallel computing paradigm, it enjoys widespread 
popularity in academia with a substantial number of research outputs and applications 
in pattern recognition [ 36], image processing [ 37], and biological vision modelling 
[ 38]. With above-mentioned hardware features, the SCAMP PPA mainly consists of 
the following advantages over conventional machine systems. 

Efficiency and Low Latency: It is obvious to see from Fig. 1.1c that in-sensor 
computing gets rid of signal digitisation, transmission, and storage processes onto 
external devices, hence enabling high-speed image processing [ 23] and CNN infer-
ence [ 40] which can be integrated with agile mobile robot platforms [ 27– 30]. In 
addition, the PE distribution and simultaneous instruction execution on PEs allow
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efficient parallel signal processing. Carey et al. [ 23] demonstrate an object detection 
with a frame rate of 100,000 per second using the SCAMP vision system and Liu et 
al. [ 40] propose binary shallow neural network on the PPA with binary classification 
problem at up to 17,000 FPS. These works show the efficiency of image processing 
in a sensor once the parallelism mechanism of the PPA is fully taken advantage of. 

Low power consumption: According to Fig. 1.1c, there are no external process-
ing units or data processing needed, hence the power consumption can be saved to a 
large degree. The maximum power cost of the SCAMP-3 vision system for a complex 
object tracking and counting system is 29 mW [ 41]. And the overall power consump-
tion on image processing and CNN inference tasks within a SCAMP-5 vision system 
is lower than 2 W [ 42]. This feature makes the SCAMP vision system suitable for 
mobile platforms, usually with short battery life. In addition, according to the power 
consumption test from work [ 43], given 8 popular kernel filters, the SCAMP PPA 
generates the same convolution results with much lower power consumption (. >20 
times) at a higher speed (. >100 times) compared to common CPUs and GPUs. 

Data Security and Privacy Protection: An unique but non-negligible feature of 
in-sensor analogue computing with the PPA is its inherent feature of data security 
and privacy protection. Data security is feasible because of the focal-plane analogue 
information processing without ADC, extra data recording, storage, or intermediate 
transmission procedures. Usually, the only output after analogue computing is the 
extracted useful target information without redundant information, which is hardly 
reversible to get the original data for sensitive information or user re-identification 
[ 44]. Data security and privacy protection have become prominent challenges with 
the emergence of the internet of things. Smart devices such as autonomous vehicles, 
domestic robots, and smart household appliances are usually equipped with percep-
tual sensors and collect data pervasively in public and private spaces, threatening 
users’ privacy and data security. Conventional sensors usually directly upload raw 
data to the cloud for data processing [ 45], which can be a fault line of data security. 
When data is processed manually or the network is attacked, crucially sensitive data 
can be directly obtained. The acquired data can then be applied to determine individ-
uals’ habits (e.g., motion sensors) or to conduct surveillance (e.g., facial recognition 
systems), which can cause significant violations of EU GENERAL DATA PROTEC-
TION REGULATION Article 25. 1 In sensor computing first enables only valuable 
information to be extracted as it’s output, without redundant information. Moreover, 
the minimised raw data are further mocked by the analog signals, which leads to 
re-identification almost impossible. Hence, users’ privacy can be strictly protected 
with in-sensor processing mechanisms.

1 https://gdpr-info.eu/art-25-gdpr/. 

https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
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1.3.2 Algorithms and Applications 

This section mainly illustrates algorithms and their potential applications (Fig. 1.7) 
based on the SCAMP-5 vision systems (Table 1.3 and Fig. 1.6). 

1.3.2.1 Image Enhancement 

Image enhancement comes along with the imaging process on the PPA compared 
to the conventional image enhancement which only happens after the image data is 
captured. Later, other methods are exploited on different image processing tasks. For 
example, Wang et al. [ 67] proposed a simple coarse grain mapping method to process 
bigger images than the PPA resolution itself by temporarily storing sub-images into 
different registers. 

Table 1.3 List of main studies with the SCAMP PPA 

Image processing methods Applications References 

Background extraction Segmentation [ 46, 47] 

Contour extraction Object detection [ 48– 50] 

Skeleton extraction Shape simplification [ 51– 53] 

HDR Image enhancement [ 31, 48, 54, 55] 

Feature corner/edge extraction Edge/feature-based VO [ 33] 

Target detection/localisation High-speed object tracking [ 23, 56, 57] 

Neural network High-level inference [ 40, 42, 58– 61] 

Depth estimation/visual 
odometry 

Robot navigation [ 29, 30, 32, 60, 62– 65] 

Automatic code generation Neural network inference, face 
detection 

[ 43, 66] 

Fig. 1.6 Examples of two images with(left)/without(right) HDR algorithms towards the same scene 
in an outdoor environment



1 In-Sensor Visual Devices for Perception and Inference 11

2006 

Dudek et.al. 
Real-time 
image 
processing 
(SCAMP-3) 

2008 

Lopez Vilarino 
et. al. 
Moving object 
segmentation 
(SCAMP-3) 

2009 

Lopich et. al. 
Skeletonization 
Algorithm 
(SCAMP-3) 

2013 Carey et. al. 
100,000 fps 
vision sensor 
(SCAMP-5) 

2016 Martel et. al. 
HDR 
(SCAMP-5) 

2017 
Chen et. al. 
feature 
extraction 
(SCAMP-5) 

Greatwood 
et. al. 
Tracking 
(SCAMP-5) 

Bose et. al. Visual Odometry 
(SCAMP-5) 

2018 Chen et. al. 
SCAMP5d 
development 
framework 
(SCAMP-5) 

2019 Bose et. al. 
CNN (Dreg) 
(SCAMP-5) 

Greatwood et. al. 
Drone racing (SCAMP-5) 

2020 
Martel et. al. 
Learning 
Pixel 
Exposures 
(SCAMP-5) 

Bose et. al.CNN (Areg) 
(SCAMP-5) 

Liu et. al. 
High-speed 
CNN 
(SCAMP-5) 

Liu et. al. Agile Navigation (SCAMP-5) 

2021 Castillo et. al. Mapping & Localisation 

Martel et. al. 
Depth 
estimation 
(SCAMP-5) 

Murai et. al. BIT-VO (SCAMP-5) 

Stow et. al. Cain (Automatic Code Generation) (SCAMP-5) 

Liu et. al. sensory-motor (SCAMP-5) 

Debrunner et al. 
(SCAMP-5) 
AUKE (Automatic 
Kernel Code 
Generation) 

2022 

Bose et. al. Gaze estimation 
So et.al. HDR imaging with  
in-pixel irradiance encodingLiu et.al. Model swapping 

Fig. 1.7 Milestones SCAMP PPA-based work and key SCAMP PPA studies and applications 
during last 16 years
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HDR (Fig. 1.6) is a basic low-level image pre-processing method to obtain rich 
image information even facing extreme lighting conditions, such as the mixture of 
dim and strong light intensity. However, conventional image sensors rely on either 
a global or rolling shutter to form an image, which limits the efficiency of HDR 
imaging [ 31, 68]. Back in 2006, Dudek [ 48] proposed sensor-level adaptive sensing 
and image processing with SCAMP-3 [ 41, 69], where different exposure settings 
are combined for an image with a high dynamic range. Martel et al. [ 55] make  
significant contributions in this area using the PPA. The first HDR image generation 
in-sensor is from [ 54] where pixel-wise exposure can be controlled to generate HDR 
images, followed by automotive applications [ 70]. Furthermore, Bose et al. [ 32] take  
advantage of the HDR image to extract edges as the robust input information for visual 
odometry estimation. However, the usage of iterative exposure for different regions 
of the image slows down the image pre-processing. To speed up the HDR imaging, 
Martel et al. [ 31] propose the learning shutter function for PEs to expose each pixel 
independently with an end-to-end training strategy. They obtain an exposure function 
by training a U-Net neural network and compiling these trained functions on the 
sensor for inference. Later, So et al. [ 71] presented in-pixel control for snapshot 
HDR imaging with irradiance encoding. 

1.3.2.2 Contour and Skeleton Extraction 

Contours are important features for objects within an image, which can help to 
identify different entities. Contour extraction algorithms were proposed based on a 
pixel-level snake with very low latency [ 49]. In 2007, Alonso-Montes et al. proposed 
the in-sensor automatic retinal vessel tree extraction based on the Cellular Neural 
Networks [ 50]. The shared key concept for these works [ 48– 50] is to extract contour 
iteratively based on the active contour model and Cellular Neural Networks. In 2008, 
[ 72] proposed an image pre-processing method based on the cellular automata for a 
robotic scenario. The skeleton within a binary image shows the object size, position, 
and simplified shape. Fast image skeletonization [ 51] is implemented by [ 52] based 
on the wave-trigger propagation/collision. Examples of image contour and skeleton 
extraction based on the SCAMP PPA can be seen in Fig. 1.8. 

Fig. 1.8 Examples of image contour and skeleton extraction using SCAMP PPA. Left: Extracted 
Retinal Vascular Tree, Figure from [ 50]. Right: Extracted skeletons, Figure from [ 47]
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Other Feature Extraction Methods: Other image processing methods, such as 
background extraction, is exploited by Wang et al. [ 46, 47]. For higher-level feature 
extraction, the edge feature can be obtained by deploying Sobel kernel filters or 
Laplacian filters, which are used in the later work for focal plane visual odometry 
[ 32] and neural networks [ 60]. As for other features, such as corner points extraction, 
Chen [ 33] utilised the DREG for corner points extraction based on the FAST16 
algorithm, which is used in later work on visual odometry [ 65]. Based on the above-
mentioned low- and mid-level image processing methods, researchers are motivated 
to exploit more general high-level image processing with up-to-date techniques by 
taking advantage of the earlier milestone work and the state-of-art progress, such as 
neural networks which would be illustrated in Sect. 1.3.2.4. 

1.3.2.3 In-Sensor Visual Feature Extraction for Robots 

Two major constraints that preclude mobile robots from long-term and diverse appli-
cations are their short battery life and limited load. Emerging sensors may hold the 
key to solving this challenge due to their unique low-level hardware design. The 
portable SCAMP-5d vision system (171 g including the lens) can perform spatial 
AI processing in-sensor, reducing data transfer pressure between sensing and the 
main processor, hence increasing overall processing efficiency while maintaining 
low power consumption [ 73]. 

(a) SCAMP PPA on a Quadrocopter 
The SCAMP-5d vision system has been integrated into quadrocopter systems for 
target tracking, visual odometry and racing. Greatwood et al. perform various exper-
iments by integrating a SCAMP-5d vision system and a quadrotor [ 28, 29, 74]. 
Figure 1.9 shows a flight control system in terms of hardware integration and control 
block diagram, where a pre-set target can be tracked with extracted useful information 
on sensor even facing short periods of target tracking loss [ 28]. In this application, the 
direct in-sensor target position extraction releases the pressure of image capturing, 
transmission and processing for the whole system. Later, Greatwood et al. proposed 
the in-sensor visual odometry using perspective correction on an agile micro air 

Fig. 1.9 Left: The integration of a quadrotor and SCAMP-5 vision system for object tracking. 
Right: a diagram of system hardware (Figure from [ 28])
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Fig. 1.10 Quadrotor setup for the drone racing with a front-facing SCAMP (Figure from [ 74]) 

vehicle based on a similar hardware platform. After that, a drone racing Fig. 1.10 
within a pre-set environment is demonstrated by taking advantage of the efficient 
image processing ability on the PPA [ 74], where the target position can be estimated 
at around 500 FPS. McConville et al. [ 30] apply the in-sensor visual odometry devel-
oped by Bose et al. [ 32] on an unmanned aerial system for real-time control purposes. 

(b) SCAMP PPA for Mobile Robot Reactive Navigation 
In terms of navigation with a SCAMP PPA, Liu et al. [ 27] proposed reactive agile 
navigation on a non-holonomic ground vehicle using PPA by robustly recognis-
ing pre-set patterns out of complex environment background. Although being very 
efficient and accurate, using a pre-set fixed pattern for target tracking is difficult to 
expand in the generalised environment where there are usually random features. With 
this in mind, Chen et al. [ 60] use in-focal plane feature extraction from the environ-
ment to perform a recurrent neural network on the M4 micro-controller using this 
extracted information to estimate the proximity to the ambient objects for obstacle 
avoidance purposes. A similar pattern of concentric circles was employed in [ 27, 28, 
30] to effectively extract the dot centre in the circles out of the complex environment 
(Fig. 1.11). 

(c) In-Sensor Computing for Mapping and Localisation 
Mapping and localisation are useful techniques for robot navigation. In-sensor map-
ping and localisation are lightweight and low power cost solutions for mobile plat-
forms. Castillo-Elizalde et al. [ 75] for the first time proposed 1-D mapping and 
localisation technique. For this method, features are firstly extracted as the database 
from a sequence of images. Then, the incoming image can be localised by comparing 
with the database and the prior knowledge of the motion model. In their work, two 
methods were utilised to down-sample the original images: direct resizing and local 
binary pattern to apply them to different localisation situations.
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a b  c  

Fig. 1.11 Tracking pattern for the drone and ground vehicle. a Tracking a ground vehicle [ 28], b 
Tracking a moving target while performing a visual odometry [ 30], c Tracking a fixed pattern with 
a mobile ground vehicle [ 27] 

(d) Pose and Depth Estimation 
For decades, egocentric state estimation has been studied using conventional cameras, 
emerging DVS devices, and CPU/GPUs. In recent years, there have been some studies 
utilising SCAMP PPA. For example, Bose et al. [ 32] for the first time, proposed in-
sensor 4 Degree-of-Freedom (DoF) visual odometry wholly on the sensor by mapping 
the real-time input image with the previous keyframe through image scaling, shifting, 
rotation and alignment. They demonstrate the visual odometry estimation at over 
1000 Hz with around 2 W power cost. Debrunner et al. [ 76] use the SCAMP to 
estimate its global motion with the tiling method at 60 FPS with a low power cost of 
100.2 mW. After that, Murai [ 65] proposed 6 DoF visual odometry based on edge 
and corner points extracted on sensor and post-processing on a computer with a 
frame rate of 300 FPS. They take advantage of feature edge, and corner extraction 
methods [ 33] and calculate the visual odometry off sensor using a similar strategy 
with the standard Visual Odometry (VO) systems [ 77]. Although they combine in-
sensor feature extraction and ready-to-use VO computing method off the sensor, it is 
promising to be a direction in the future to combine the efficient image pre-processing 
in-sensor and high-volume post-processing with a powerful CPU/GPU, especially 
when facing storage shortage and general calculation resources for the large-scale 
computing. 

In addition, the SCAMP vision system can also work with other accessories to 
share the computation burden for more applications. For example, Martel et al. [ 62– 
64] mounted a controllable liquid lens to generate a semi-dense map in real-time, 
which is the first work on depth estimation to take advantage of external physical 
accessories. With this focus-tunable lens, a vast amount of computation pressure on 
the sensor is relieved. This in-sensor feature extraction and post-image processing 
on controller scheme are also widely used in many different applications [ 60, 65], 
where the task requirement of storage and computing resources is out of the capacity 
of the PPA.
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1.3.2.4 Research Progress on Neural Networks with a SCAMP PPA 

The algorithms of SCAMP PPA proposed earlier mainly focus on low-level image 
processing and/or machine vision methods to enhance image quality and extract 
basic textures with combinations of inherent built-in functions based on SCAMP-3 
and SCAMP-5 with a PE resolution of 128. ×128 and 256. ×256, respectively. It 
should be noticed that these developed image processing methods are deeply related 
to the hardware design of the SCAMP vision system. For example, common methods 
used in this period are cellular-based algorithms, including cellular neural networks, 
because the SCAMP PPA itself is a cellular processor array. 

Research on neural network inference with the SCAMP PPA has been active in 
recent years. Table 1.4 lists the main research work in the area of neural networks, 
which covers fully convolutional neural networks and binary convolutional neural 
networks using DREG or AREG with various datasets and applications. High-level 
image processing, such as object classification, localisation and segmentation in 
sensor, is achieved with the neural network. The deployment of neural networks 
onto the PPA is a breakthrough since it enables the PPA open to more possibilities 
with universal methods, which is unlike the conventional development methods with 
some combinations of low-level image processing methods for specific tasks. With 
the use of CNN, several types of tasks, such as classification, regression, localisation, 

Table 1.4 Different convolutional neural network implementation with SCAMP and performance 
comparison. 

Network Filter 
number 

Layers 
(Conv+FC) 

Dataset Accuracy Frame rate 
(fps) 

In-sensor/ 
Near-sensor 

Bose [ 42] 16 5. ×5 1 + 1 MNIST . ≈94.2% 210 1Conv/1FC 

Bose [ 58] 16/64 4. ×4 1 + 1 MNIST . ≈93% . >3000 In sensor 

– 16+16 4. ×4 2 + 1 MNIST 92–94% 224 In sensor 

Liu [ 40] 64 4. ×4 1 + 1 8 Plankton 80.5 % 4016 In sensor 

– 16 4. ×4 1 + 2 8 Hand  
gestures 

. <98.7% 2092 1Conv+1FC/1FC 

– 16 4. ×4 1 + 1 Roshambo . <97.73% 8264 In sensor 

– 64 4. ×4 1 + 1 0,1 in 
MNIST 

. <99.1% 17543 In sensor 

Liu FCN 
[ 59] 

16+64 4. ×4 
64 1. ×1 

3 + 0 Simulation – 283 In sensor 

Liu [ 78] 16+64 4. ×4 2 + 2 EMNIST . <86.74% 178 2Conv+1FC/ 

Binarized 
CNN 

1FC 

Chen [ 60] – 0 + N Collected 
indoor 

– – Near sensor 

AnalogNet 
[ 61] 

3 3. ×3 1 + 3 MNIST 96.9% 2260 1Conv/2FC
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and segmentation, can be feasible, hence enabling more applications. Table 1.4 shows 
the neural network-related work based on the SCAMP PPA vision system. 

The research on CNN implementation and inference within PPA is pioneered by 
Bose et al. [ 79] where a CNN with a single convolutional layer performed upon 
the PPA array and a fully-connected layer upon its controller chip (M0). They per-
formed 16-bit image convolution operations using 4. ×4 DREG “Super Pixel” blocks 
and demonstrated live digit classification based on MNIST dataset at around 200 FPS. 
In their work, the ternary {.−1, 0, 1} kernel filters are stored on the flash (M4) of 
the PPA system, and are effectively encoded in the instructions/operation sent to the 
PPA array, performing convolutions sequentially. Furthermore, a mobile car locali-
sation task is then explored using synthetic datasets, where the pre-processed edge 
information is mainly the clues for network inference. Notice that the localisation is 
realised by classifying the car’s position along the. x and. y axis, respectively. To fully 
take advantage of PPA’s parallel computing characteristics and to further improve 
the CNN inference efficiency, Bose et al. [ 58], for the first time, proposed the idea of 
in-pixel weight storage, where the network’s weights are directly stored within the 
registers of the PPA’s PEs. This method enabled both parallel computations of multi-
ple convolutions, and implementation of a fully connected layer upon the PPA array, 
resulting in a . ×22 faster CNN inference (4464 FPS) on the same digit recognition 
task. Based on these two works, [ 40] further proposes a high-speed lightweight neural 
network using BinaryConnect [ 80] with a new method for computing convolutions 
upon the PPA, allowing for varying convolutional strides. This work demonstrated 
four different classification tasks with frame rates ranging from 2,000 to 17,500 per 
second with different stride setups. Later, based on this network, a direct servo con-
trol using CNN results [ 81] and a simulated robot tracking from a drone [ 82] with 
in-sensor CNN computing results are exploited. In addition, the AnalogNet2 [ 61, 83] 
extends the earlier work in [ 84], implementing a CNN which reaches 96.9% accuracy 
on the MNIST dataset at a speed of 2260 fps. However, their method requires all 
fully connected layers to be performed externally to the PPA array with only 3 con-
volutional kernel filters implemented in sequence on the PPA as the first layer. More 
kernel filters would significantly slow down the inference process. Notice that, in our 
work [ 60], a recurrent neural network is implemented on the micro-controller with 
features extracted on a sensor. In this manner, the fully-connected layer of a neural 
network can be deployed similarly with conventional embedded devices. It is notable 
that Martel et al. trained a neural network of exposure time for each individual pixel 
off the sensor for HDR imaging and video compressive sensing [ 31]. 

Furthermore, work [ 78] binarized CNN with batch norm both for classification 
and coarse segmentation. To deal with the classifications application with more labels 
and more segmentation tasks, they propose the idea of dynamic model swapping by 
uploading weights of trained models in sequence or according to the last inference 
result, targeting multiple sub-tasks decomposed from a more sophisticated task. They 
then demonstrate a servo control directly using the CNN inference results [ 81], which 
potentially indicates that motion control platforms, such as a ground vehicle or drones 
can have a light-weight servo control system without using external control units in 
the future.
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Notice that the preceding neural network-related work mainly focuses on clas-
sification or classification-based localisation, both of which require fully connected 
layers. However, the parameters in fully-connected layers are typically substantially 
larger than those in convolutional layers due to the dense connections of each indi-
vidual neuron. Thus, work developed a fully-convolutional neural network (FCN) 
[ 59], not only presenting in-sensor image segmentation and localisation but also 
eliminating dense layers for a smaller memory footprint [ 85]. 

1.3.2.5 In-Sensor Cellular Automata 

The PPA itself is a cellular neural network architecture where each ‘cell’ is closely 
connected with its four neighbours, hence information can be shared efficiently. 
With this in mind, the author is inspired to explore the possibility to perform cellular 
behaviour, such as Conway’s game of life (demonstration shown from 2) and ele-
mentary cellular automata (demonstration Rule 90 seen from 3) based on the theory 
of cellular automata [ 86]. With the rule of the game of life, all ‘cells’ can update 
their states (alive or dead) in-sensor as fast as 53. µs for each iteration based on the 
bit-operation with DREG. As can be seen from Fig. 1.12, a Sierpiński triangle is effi-
ciently generated based on bit operation on the sensor with 730. µs of 255 iterations 
to fill the whole chip. 

(a) Elementary CA 
One-dimensional CA is one of the simple CA algorithms. Some classical updating 
rules, such as Rule 30, Rule 90, and Rule 110, can be implemented by logic bit 

Fig. 1.12 Our demonstration of elementary cellular automata with Rule 90 on the SCAMP PPA. 
This pattern is generated from top to bottom. We have made this project available from https:// 
github.com/yananliusdu/1D_CellularAutomata

2 https://youtu.be/X_t4c3f-T4s. 
3 https://youtu.be/HgPvoK5EJ_s. 

https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
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operations. Let use L,C,R as the three continuous grids and C1 is the grid that should 
be updated, then rules can be represented as follows: 

R30: C1 = L XOR (C OR R ) 

R90: C1 = XOR(L, R) 

R110: C1 = XOR(OR(R, C), AND(R, C, L)) 

The pseudo codes for R90 can be shown as follows: 

\begin{code}{ElementaryCellularAutomataR90} 

for(int i = 1; i <= iterations; i++) 

{ 

scamp5_kernel_begin(); 

MOV(R5,R6); //R5 = R6 

DNEWS(R0,R6,west); //R0 = shift R6 to right for one step 

DNEWS(R6,R0,west); 

XOR(R7,R5,R6); // R7 = XOR(R5,R6) 

DNEWS(R0,R7,north); 

DNEWS(R6,R0,east); 

OR(R6,R5); R6 = OR(R6,R5) 

scamp5_kernel_end(); 

} 

\end{code} 

Implementation for R30 and R110 can also be done similarly with R90 using 
corresponding unit logic operations. 

(b) In-Sensor Conway’s Game of Life based on the CA 
The rule of Game of Life is a new independent non-linear computing scheme. 

Figure 1.13 shows an updating 3.×3 block to illustrate the rule and implementa-
tion using a cellular neural network.The pseudo code for the Game of Life can be 
represented as follows according to its definition: 

if B0 = 1 & SUM(B1,..,B8) <= 2 

B0 = 0 

If else B0 = 0 &  SUM(B1,..,B8) == 3 

B0 = 1 

else 

B0 = 0 

where .Bi ∈ {0, 1}, i = {0, 1, 2, . . . , 8}. 
This chapter tries to implement and run the Game of Life using the DREG 

of SCAMP-5 vision systems and its parallel nature. We use three DREGs 3-bit
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Fig. 1.13 The update block 
for the Game of Life B1 B2 B3 

B4 B5 

B6 B7 B8 

B0 

.R6, R7, R8 to count the number of ‘1’s around the pivot.B0..R5 is the source binary 
image in this illustration. .R1, R2, R3, R4 and .R9, R10 are DREGs to temporarily 
store intermediate states. 

Neighbour Number Counting 
As the first step of the 2D cellular automata, the number of live neighbours should 
be counted. As shown in Fig. 1.14a, .R5 is the source binary image. .R6, R7, R8 are 
3-bits to represent the number of live neighbours of R5 in the corresponding posi-
tion. For example, if .R5(B0) has 2 live neighbours, then . R6(B0) = 0, R7(B0) =
1, R8(B0) = 0. In conclusion, binary digits.R6, R7, R8 are used to record the num-
ber of live neighbours of corresponding cell. Figure 1.14b shows for each counting 
step (8 in total around a pivot,.R6, R7, R8 are updated according to the states of each 
cell. 

State Update for Cells 
With live neighbour information stored in three DREGs, cells’ state can be updated 
according to the rule of the Game of Life as described in the aforementioned pseudo 
code. We make the codes of Game of Life on the SCAMP-5 vision system avail-
able from https://github.com/yananliusdu/GameofLife. In the future, more image 

Fig. 1.14 Neighbour 
number counting using 
DREGs 

R6 B0 

R8 B0 

R7 B0 

R5 B0 

B0 

(a) (b)

https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
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processing-related work can be potentially explored as long as proper update rules 
and associated steps are trained with neural network methods [ 37, 87]. 

1.4 Eye-RIS 

1.4.1 Introduction 

Eye-RIS [ 22, 88] commercial vision system on Chip (VSoC) extends CMOS pixel 
functionality with image storage (7 gray-scale images and 4 binary images) and dig-
ital/analogue signal processing ability. Specifically, a 32-bit RISC (Reduced Instruc-
tion Set Computer) is integrated with a vision sensor for image post-processing after 
the parallel in-sensor pre-processing (Fig. 1.15). The resolution of the Eye-RIS vision 
sensor is 176. ×144. Notice that Eye-RIS’s overall functional diagram is similar to 
that in the SCAMP vision system, where the counterpart of RISC is the M0 micro-
controller in the SCAMP PPA [ 89]. The most significant difference, though, is that 
the Eye-RIS has a DICop part, which is a digital image co-processor that handles 
geometric transformations and can send the results back to the pixel level for more 
processing. 

The Eye-RIS Vision System on Chip (VSoC) is an autonomous device combining 
a parallel CMOS image sensor processor with 32-bit RISC microprocessor perform-
ing post-processing and system control tasks, several I/O and high-speed communi-
cation ports that allow the system to communicate and/or to control external systems, 
and on chip memory. The combination of massive parallel image pre-processing in 
the sensor with complex image post-processing in the microprocessor results in ultra 
compact implementation of a vision system able to perform complex machine vision 
algorithms at speeds of several thousands of images per second. The Eye-RIS VSoC 

Image acquisition In-pixel image 
processing A/D 

In-pixel image 
memory 

D/A 

On-chip image 
memory 

Image post-
processing 

On-chip data and 
program memory 

Serial flash 
memory 

External image 
memory 

External program 
and data memory 

I/O and 
communications 

Eye-RIS v2.1 VSoC 

SIS Q-Eye 
Sensor-processor 

Nios II RISC 
Microprocessor 

Eye-RIS v2.1 
Vision system 

Fig. 1.15 Eye-RIS v2.1 VSoC architecture
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features a complete application development software environment allowing easy 
control of the device and is optimized for industrial applications requiring image 
sensing, image processing, and decision making at extreme frame rates. 

1.4.2 Applications 

The applications with Eye-RIS consist of automotive, machine vision, security, 
games and battery powered products. Caballero-Garcia and Jimenez-Marrufo [ 90] 
proposed a series of techniques to deploy image processing algorithms on the Eye-
RIS Vision System on Chip (VSoC) for various applications. One unique character-
istic using the Eye-RIS vision platform compared to conventional visual sensors is 
the simultaneous image acquisition and early processing in the analogue domain. 

Paper [ 91] aims to describe how the AnaFocus’ Eye-RIS family of vision sys-
tems has been successfully embedded within the roving robots developed under the 
framework of SPARK and SPARK II European projects to solve the action-oriented 
perception problem in real time. With the ability of low power cost and efficient par-
allel image processing, Eye-RIS has been equipped to many different mobile robot 
platforms, such as Rover II wheeled robot and Gregor III hexapod robot. Visual 
homing, object tracking, and navigation using landmarks are demonstrated based on 
the robot platforms and in-sensor real-time image processing algorithms (Fig. 1.16). 

Optical flow based on the Lucas and Kanade by Guzman et al. [ 92] (Fig. 1.17) is  
implemented on the Eye-RIS platform taking advantage of both analogue and digital 
signals processing using Q-Eye and Nios II RISC respectively (Fig. 1.15). In the 
experiment, the optical flow estimation reaches over 25 fps which can be used in the 
area of robotics in real time. Specifically, the optical flow constraint equation: 

.uIx + v Iy + It = 0 (1.1) 

Fig. 1.16 Eye-RIS VSoC equipped onto robot platforms. a Rover II wheeled robot, b Gregor III 
hexapod robot (Figure from [ 91])
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Fig. 1.17 Optical flow estimation in traffic sequences using Eye-RIS VSoC architecture (Figure 
from [ 92]) 

where the partial derivatives of . I are denoted by subscripts, which can be obtained 
from the image.. u and. v are the. x and. y components of the optical flow vector, which 
are the optical flow vectors that need to be found out. 

Lucas–Kanade method [ 93] is a classical method to deal with the optical flow 
constraint problem. According to the assumption of Lucas–Kanade method, given a 
small pixel block, 3. ×3 for example, the optical flow remains identical within this 
small block. Then, we can have following equation group: 

.

uIx1 + v Iy1 = −It1
uIx2 + v Iy2 = −It2

. . .

uIxn + v Iyn = −Itn

(1.2) 

Equation 1.2 can then be represented as 

.

⎡
⎢⎢⎣
Ix1 Iy1
Ix2 Iy2
. . .

Ixn Iyn

⎤
⎥⎥⎦

[
u
v

]
=

⎡
⎢⎢⎣

−It1
−It2
. . .

−Itn

⎤
⎥⎥⎦ (1.3) 

we assign Eq. 1.3 as .A
−→
V = −b, here the least squares method can be used to get 

optical flow vector .
−→
V , then .AT A

−→
V = AT (−b), hence, the optical flow vector can 

be obtained through: 

.
−→
V = (AT A)−1AT (−b) (1.4) 

In detail, Eq. 1.4 can be shown as: 

.

[
u
v

]
=

[ ∑n
i=1 I

2
xi

∑n
i=1 Ixi Iyi∑n

i=1 Ixi Iyi
∑n

i=1 I
2
yi

]−1 [−∑n
i=1 Ixi Iti−∑n
i=1 Iyi Iti

]
(1.5)
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Shift along x axisA A_x  Ix = A-A_x 

Shift along y axisA A_y Iy = A-A_y 

(a) 

A 
(b) 
A_1 It = A-A_1 

(c) 

Fig. 1.18 The parallel calculation of.Ix , Iy, It in the focal plane using analogue signals 

Through Eq. 1.5, the optical flow vector can be estimated through a sequence of 
images. These intensity derivatives including.Ix , Iy, It can be efficiently obtained by 
shifting and subtracting between frame sequences as illustrated from Fig. 1.18. After  
that, the optical vector can then be calculated using conventional computing units. 
As for the implementation of optical flow using the above-mentioned formulations, 
work [ 22] takes advantage of both in-sensor pre-processing and post-processing with 
computing units achieving up to 28.9 fps. 

In the study of [ 94], authors explored different methods of point tracking on the 
platform of Eye-RIS, which is able to equip Unmanned Arial Vehicles (UAVs) with 
the ability of on-board sensing and computing with low load and power consumption.
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Nicolosi et al. [ 95] applied the Eye-RIS vision platform to control welding process 
by using the cellular neural network based visual algorithms. [96] extended their work 
onto vision based closed loop control for partial penetration welding of overlap joints. 

Work [ 97] proposed algorithms for the cellular neural network to detect rapidly 
approaching object which is bio-inspired by mammalian retina that consists of loom-
ing sensitive circuit based on local interaction of cells. 

1.5 Kovilta’s KOVA1 

1.5.1 Introduction 

The KOvilta Vision Array (KOVA1) (depicted in [ 11]) employs a meticulously 
designed pixel-level processing circuitry that utilizes an efficient combination of 
analogue and digital (mixed-mode) computation techniques to execute a diverse 
range of pre-programmed operations. These operations include automated sensor 
adaption, grayscale filtering, segmentation, and complex object-level visual analy-
sis. The selection of operations to be performed at the pixel-level hardware can be 
customized based on the specific requirements of the application, thereby enhancing 
the overall implementation efficiency. 

The KOVA1 is Kovilta’s inaugural silicon rendition of the KOvilta Vision Array 
structure, and it comprises a 96. ×96 pixel focal-plane processor array fabricated 
using 180 nm CMOS technology. The sensor-processor chip is integrated into a 
miniature smart camera system equipped with FPGA-based control and Ethernet 
I/O. In this focal plane processor architecture, each pixel-cell of the sensor array 
includes a reconfigurable processing element that operates directly on the output of 
the analog photodiode. This allows real-time data compression for capturing images 
with high dynamic ranges without compromising quality. Additionally, processing 
in parallel on the pixel plane enables rapid low-level feature analysis and eliminates 
the need for time and energy-consuming long-distance data transfers from the sensor 
to an external processor. The sensor output may include only the essential feature 
data, such as the presence of an object or a set of object coordinates or features, 
thereby reducing the amount of hardware needed for further external image content 
analysis. 

The KOVA1 camera system employs pixel cells that are connected within their 
immediate neighbourhood, allowing for direct information exchange during image 
analysis activities at the sensor level. Moreover, local memories integrated at the 
pixel level facilitate the storage of multiple full images or intermediate processing 
outcomes on the sensor plane. An FPGA chip is utilized to manage the program 
execution and I/O of the sensor-processor chip in the KOVA1 embedded camera 
system. As the control and I/O structures consume only a small fraction of the 
FPGA’s resources, supplementary visual analysis operations can be implemented 
on the FPGA to enhance the on-chip sensor-level processing. The KEDE software
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environment from Kovilta is used to program and manage the camera, with program-
ming and data I/O facilitated by an Ethernet connection, while direct CMOS-signal 
outputs bypass the network interface. Additionally, the camera’s internal memory 
is capable of storing program code. It can operate autonomously without the need 
for a PC connection and transmit output data to an Ethernet-connected or directly 
controlled device. 

1.5.2 Applications 

Line detection: Santti et al. [ 98] proposed a line detection method by combining 
KOVA1 and FPGA for low-level and mid-level feature extraction respectively. This 
line detection method can be applied for industrial inspection and control applications 
with its performance of high-speed processing and low power consumption. 

Seam and Spatter Tracking: In Lahdenoja et al. [ 24, 99] and Santti et al.’s work 
[100], KOVA1 is utilised for seam tracking for real-time robot path optimisation 
during a high power laser welding process. The reason to use this type of pixel-level 
sensor lies in the ability to control pixel-wise exposure periods facing significant 
intensity differences in a laser welding task. Hence, the effective binary feature 
points can be extracted on the focal plane and then this compressed information is 
sent to the FPGA for laser beam location extraction using Hough transform. With 
a frame rate over 1000 fps, the combination of in-sensor image pre-processing and 
FPGA-based Hough operation enables a real-time optical seam tracking for robot 
control. In addition, spatter can also be tracked in laser and manual arc welding [101] 
in extreme radiated light intensity conditions (Fig. 1.19). 

Fig. 1.19 Straight line extraction process using KOVA1. Left to right: figure captured with KOVA1, 
binary feature extraction using pixel-level process, estimated beam line with binary features using 
FPGA. Figure from [100]
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1.6 Aistorm Mantis2 

Mantis system is based on the event-driven charge domain for analogue signal pro-
cessing without digitisation and provides an “always on” solution for analogue sig-
nal processing. One of the key features claimed by Aistorm is the noise cancelling 
techniques associated with the analogue signals. In addition, artificial intelligence 
can also be integrated into a chip for various applications. A 96. ×96 AI-in-Sensor 
machine learning SoC that is particularly well suited for classification jobs is the 
AIS-C100A Mants. It has a robust post wake-up ML capabilities as well as a con-
figurable “always on” wake-up CNN engine that can be used to activate external 
micro-controllers when an object of interest is recognised. On a single monolithic 
device with the fewest possible external components, all necessary supporting cir-
cuitry is provided, including power management, timing, artificial intelligence, and 
communications in addition to a (up to) 40 mA LED driver enabling both linear 
and PWM control. An SPI port is used for communication. The on-board camera’s 
photos and videos as well as those transferred via the SPI connection can both be 
processed by Mantis. To provide the best contrast for AI calculations, the exposure 
time can be either internally or externally regulated. The AIS-C100A is housed in an 
OLGA package of 6.4. ×6.4 mm. The AI-in-Imager solutions that can directly take 
pixel data in its native charge form are AIStorm’s Mantis Family of AI-in-Imager 
processors. The end result is the only method in the world that can wake up a person, 
face, object, or action based on an image (Fig. 1.20). 

There are several businesses that provide analogue AI solutions, but fundamental 
physical noise and bandwidth constraints prevent these products from being success-
ful. The approach used by AIStorm is charge domain processing. This technology 
uses charge to create AI-in-Sensor processing opportunities for picture or audio 
improvement that simply cannot be realised through any other means. Other ana-
logue methods’ noise and bandwidth restrictions are solved through charge domain 
processing, a revolution in processing. Over both analogue and digital solutions, 
charge domain solutions are preferable because they can immediately take IoT sen-
sor data without the expense, power, or delay of digitization. The major applications 
proposed using the Mantis AI-in-Sensor chip cover motion tracking, gesture clas-

Fig. 1.20 AIS technology 
SKIPS digitization and 
moves directly to processing 

Sensor Shared analog to 
digital converters Machine learning
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sification, smart home, wearable devices (glasses, headsets), household appliances, 
gaming devices, automotive, and voice processes as claimed in their application 
website https://aistorm.ai/applications/. 

1.7 Other In-Sensor Computing Devices 

MIPA4k: MIPA4k [ 25] is an earlier sensory-level image processing sensor with 
similar architecture to KOVA1. A number of algorithms can be carried out based 
on the MIPA4k with the use of mixed signals. These algorithms mainly cover edge 
detection [102], local binary pattern [103], locally adaptive image sensing [104], 
space-dependent binary image processing [105], and object segmentation and track-
ing [106]. Similar early cellular vision chips also include ACE16K [107]. 

Memristor-Based Devices: Yao et al. [108] Memristor-based hardware is a plat-
form to deploy the neural network using the programmable resistance within the 
integrated circuits mimicking the synaptic connections in a human brain [ 17, 108– 
111]. However, it integrates only storage and processing functions, which can be 
regarded as in-memory computing. Hence, signals should be input from sensors or 
other storage devices. They are thus usually integrated with other sensory systems for 
information processing. Lee et al. [ 19] take advantage of photo-diode and memristor 
crossbar for primary visual information process aiming to extract useful information 
from the input images. In-Sensor visual computing with memristor or new materials 
are currently not mature enough to support various practical applications for machine 
vision tasks. By far, the is few practical applications using memristor in-sensor com-
puting devices. 

Dynamic Vision Sensor (DVS): inivation [ 26] DVS produces data in the form 
of sparse contrast-change events that facilitate low-latency visual processing using 
external computational hardware [112–114]. These binary events are generated from 
in-sensor processing according to the brightness changes. Although the pixels in a 
DVS have a primitive in-sensor processing ability by binarising brightness changes, 
it achieves an ultra-high-speed response to the environment when working with 
external hardware computing units, enabling an enormous potential for robotics and 
computer vision in a challenging environment [115]. 

Other Emerging Sensor Devices: Mennel et al. [ 14] use a 2D semiconductor 
(.WSe2) photodiode array as the vision sensor, the photoresponsivity matrix to store 
the connecting weights of the neural network, where both supervised and unsuper-
vised learning for classification are present. However, laser light and a set of optical 
systems are needed to project images onto the chip, which prevents it from having 
practical usage. Song et al. [116] proposed a CMOS-based PIP (Processing-in-Pixel) 
architecture where image convolution (8-bit weight configuration) can be performed 
as the image preprocessing before image data is read out. In addition, Datta et al. 
proposed the Processing-in-Pixel-in-memory paradigm where the first few convolu-
tional layers of a CNN can be processed and the compressed data then sent to other 
near-sensor processors [117].

https://aistorm.ai/applications/
https://aistorm.ai/applications/
https://aistorm.ai/applications/
https://aistorm.ai/applications/
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1.8 Conclusion 

In-sensor visual computing is an emerging technology that enables efficient extrac-
tion of information solely on the sensing chip of the sensory system, facilitating 
signal collection, storage, and processing. Vision is the primary sense for human 
beings, and it accounts for a vast majority of information acquisition worldwide. 
Despite significant advances in computer vision using conventional camera vision 
systems and associated methodologies, various limitations, such as system latency 
and power consumption, persist. Image digitisation, storage, and transmission intro-
duce latency, which is a bottleneck that impedes conventional machine vision sys-
tems from promptly responding to environmental changes. Additionally, traditional 
machine vision systems with loosely integrated sensors and processors have high 
energy costs, weight, and size, making them unsuitable for portable tasks. 

To address the limitations of conventional machine vision systems, this chapter 
explores a new visual information processing scheme using a focal plane sensor 
processor (FPSP) that directly processes signals where they are collected, thereby 
avoiding issues with latency, power consumption, and size. The chapter focuses on 
mobile robotic control systems that utilize in-sensor computed results for multiple 
navigation research, and investigates novel parallel visual inference approaches, par-
ticularly machine learning-based algorithms, to extract higher-level information from 
analogue signals. To achieve this, a lightweight and high-speed binary convolutional 
neural network is proposed to categorize objects using efficient addition/subtraction 
and bit shifting operations. However, implementing neural networks on the focal 
plane is challenging due to hardware resource constraints and analogue noises. There-
fore, this work proposes purely binarised convolutional neural networks with both 
binary weights and activations, trained with batch normalisation and adaptive thresh-
old to binarise activations and alleviate noise. With this approach, only a small amount 
of extracted information is obtained, allowing for more efficient data transmission 
with less bandwidth, and enabling the establishment of an edge computing platform 
based on the neural network and PPA. 

Furthermore, prior research has explored visual sensors for information collection 
but not for signal processing or motion control; however, this chapter investigates the 
direction of image processing on the sensing chip and servo motor control using the 
sensor’s digested data directly. Thus, by merging in-sensor neural network inference 
and direct servo motor control, a sensory-motor system is presented. Moreover, with 
our proposed dynamic model swapping scheme, more sophisticated classification 
tasks than earlier work can be achieved. Lastly, a new in-sensor neural network 
architecture, fully convolutional neural networks, is presented for localisation and 
coarse segmentation tasks without using the fully connected layers. To deploy this 
new architecture of a three-layer neural network on the sensor, group convolution is 
introduced and implemented, with both binary weights and activations, making the 
fully convolutional neural network compact enough to be embedded on the sensor.
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