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Preface 

With the recent advancements in artificial intelligence, there is a growing expectation 
that fully autonomous driving vehicles will soon become a reality, leading to signif-
icant societal changes. The core competencies of an autonomous vehicle system 
can be broadly categorized into four main categories: perception, prediction, plan-
ning, and control. The environmental perception system serves as the foundation of 
autonomous vehicles, utilizing cutting-edge computer vision and machine learning 
algorithms to analyze raw sensor data and create a comprehensive understanding of 
the surrounding environment. Similar to the visual cognition and understanding of 
humans, this process allows for a deep and nuanced perception of the world. 

Conventional autonomous driving perception systems are often hindered by sepa-
rate sensing, memory, and processing architectures, which may not meet the demand 
for ultra-high raw sensor data processing rates and ultra-low power consumption. 
In contrast, in-sensor computing technology performs signal processing at the pixel 
level by utilizing the collected analog signals directly, without requiring data to be 
sent to other processors. This enables highly efficient and low-power consumption 
visual signal processing by integrating sensing, storage, and computation onto focal 
planes with innovative circuit designs or new materials. Therefore, the in-sensor 
computing paradigm holds significant potential for autonomous driving. Further-
more, fish-eye cameras have emerged as an essential sensor in the field of autonomous 
driving. Thanks to the unique projection principle of fish-eye cameras, they offer 
a significantly larger field of view (FoV) compared to conventional cameras. This 
distinct characteristic makes fish-eye cameras highly versatile and suitable for a wide 
range of autonomous driving perception applications. In addition, computer stereo 
vision is a cost-effective and efficient method for depth information acquisition, and 
it has found widespread use in 3D environmental perception. Despite the impressive 
results obtained by state-of-the-art (SoTA) stereo vision algorithms that utilize convo-
lutional neural networks, their training typically necessitates a substantial amount 
of accurately labeled disparity ground truth data. Consequently, self-supervised or
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vi Preface

unsupervised deep stereo networks have emerged as the dominant approach in this 
research area. 

Research on semantic segmentation has been ongoing for over a decade. However, 
conventional single-modal networks are unable to fully utilize the spatial informa-
tion provided by range sensors, making them less effective in diverse weather and 
illumination conditions. To address this challenge, data-fusion semantic segmenta-
tion networks have been developed, which employ multiple encoders to extract deep 
features from different visual information sources. These deep features are subse-
quently fused to provide a more comprehensive understanding of the surrounding 
environment. 3D object detection is also a crucial component of autonomous driving 
systems that has made remarkable progress in recent years. Nonetheless, the various 
perceptual sensors used for object detection present their unique challenges. Cameras 
are vulnerable to issues such as foreshortening and flickering effects, over-exposure 
problems, as well as environmental variations like lighting and weather conditions. 
Similarly, LiDARs and RADARs suffer from low-resolution and sparse data repre-
sentations. Furthermore, occlusion presents a significant challenge to object detec-
tion, leading to the partial or complete invisibility of obstructed objects. To address 
these challenges, collaborative 3D object detection has been proposed as an alterna-
tive to conventional approaches. Collaborative object detection facilitates informa-
tion sharing between agents, enabling them to perceive the environments beyond line-
of-sight and FoV. This approach holds great promise in overcoming the limitations 
of individual sensors and achieving more robust and accurate 3D object detection in 
autonomous driving systems. 

The application of the simultaneous localization and mapping (SLAM) tech-
nique to autonomous driving also presents several challenges. Over the past three 
decades, researchers have made significant progress in addressing the probabilistic 
SLAM problem by developing a range of theoretical frameworks, efficient solvers, 
and complete systems. Visual SLAM for texture-less environments is an especially 
challenging task, as multi-view images cannot be effectively linked using reliable 
keypoints. However, researchers continue to develop new techniques and algorithms 
to overcome this limitation. Moreover, the enhancement of SLAM systems is also 
being driven by the emergence of new sensors or sensor combinations, such as 
cameras, LiDARs, IMUs, and other similar technologies. As these sensors become 
more advanced and sophisticated, they offer new opportunities to improve the 
accuracy and reliability of SLAM systems for autonomous driving applications. 

Multi-task learning has become a popular paradigm for simultaneously tack-
ling multiple tasks while using fewer computational resources and reducing the 
inference time. Recently, several self-supervised pre-training methods have been 
proposed, demonstrating impressive performance across a range of computer vision 
tasks. However, the extent to which these methods can generalize to multi-task situ-
ations remains largely unexplored. Additionally, the majority of multi-task algo-
rithms are tailored to specific tasks that are usually unrelated to autonomous driving,
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posing difficulties when attempting to compare state-of-the-art multi-task learning 
approaches in the domain of autonomous driving. 

Bird’s eye view (BEV) perception involves transforming a perspective view into 
a bird’s eye view and performing various perception tasks, such as 3D detection, 
map segmentation, tracking, and motion planning. Thanks to its inherent advantages 
in 3D space representation, multimodal fusion, decision-making, and planning, the 
topic of BEV perception has attracted significant interest among both academic and 
industrial researchers. 

Road environment perception, which includes 3D geometry reconstruction of road 
surfaces and the intelligent detection of road damages, is also critical for ensuring safe 
and comfortable driving. Road surface defects can be extremely hazardous, especially 
when hit at high speeds, as these can not only damage the vehicle’s suspension but 
also cause the driver to lose control of the vehicle. When one of the vehicle’s tyres 
enters a pothole, the weight distribution across all tyres becomes unbalanced, causing 
the vehicle to tilt and shift more towards the tyres that are lower relative to the pothole. 
This uneven weight distribution can produce a considerable and focused force on the 
tyre when it hits the edge of the pothole, resulting in deformation, breakage, or even 
bending of the rim. The damage inflicted on the tyre impacts the driving experience, 
making it challenging to maintain a straight driving trajectory. 

This book provides an in-depth, comprehensive, and SoTA review on a range of 
autonomous driving perception topics, such as stereo matching, semantic segmen-
tation, 3D object detection, simultaneous localization and mapping, and BEV 
perception. The book’s webpage can be accessed at mias.group/ADP2023. 

The intended readership for this book primarily comprises of tertiary students 
who seek a comprehensive and yet an introductory understanding of the fundamental 
concepts and practical applications of machine vision and deep learning techniques. 
It is also directed at professionals and researchers in autonomous driving who are 
seeking an assessment of the current state-of-the-art methods available in existing 
literature, and who aspire to identify potential areas of research for further explo-
ration. The extensive range of topics covered in this book makes it an invaluable 
resource for a variety of university programs that include courses related to machine 
vision, deep learning, and robotics. 

In Chapter 1, the book discusses the use of in-sensor visual devices for autonomous 
driving perception. Chapter 2 provides a thorough and up-to-date review of SoTA 
environmental perception algorithms that are specifically designed for fish-eye 
cameras. In Chapter 3, the theoretical foundations and algorithms of computer 
stereo vision are discussed. Chapter 4 presents a review of SoTA single-modal and 
data-fusion semantic segmentation networks. Chapter 5 reviews 3D object detection 
methods for autonomous driving. Chapter 6 provides an assessment of the current 
SoTA collaborative 3D object detection systems and algorithms. In Chapter 7, sensor-
fusion robust SLAM techniques for mobile robots are introduced. Chapter 8 discusses 
visual SLAM in texture-less environments. Chapter 9 presents a comprehensive

https://mias.group/ADP2023
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survey on multi-task perception frameworks. Chapter 10 specifically covers state-of-
the-art BEV perception algorithms. Finally, Chapter 11 discusses road environment 
perception techniques for safe and comfortable driving. 

Shanghai, P. R. China 
Shanghai, P. R. China 
Bristol, UK 
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Sicen Guo 
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Chapter 1 
In-Sensor Visual Devices for Perception 
and Inference 

Yanan Liu, Hepeng Ni, Chao Yuwen, Xinyu Yang, Yuhang Ming, 
Huixin Zhong, Yao Lu, and Liang Ran 

Abstract The traditional machine vision systems use separate architectures for per-
ception, memory, and processing. This approach may hinder the growing demand 
for high image processing rates and low power consumption. On the other hand, 
in-sensor computing performs signal processing at the pixel level, directly utilizing 
collected analogue signals without sending them to other processors. This means 
that in-sensor computing may offer a solution for achieving highly efficient and low-
power consumption visual signal processing. This can be achieved by integrating 
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sensing, storage, and computation onto focal planes with novel circuit designs or new 
materials. This chapter aims to describe the proposed image processing algorithms 
and neural networks of in-sensor computing, as well as their applications in machine 
vision and robotics. The goal of this chapter is to help developers, researchers, and 
users of unconventional visual sensors understand their functioning and applications, 
especially in the context of autonomous driving. 

1.1 Introduction 

The importance of vision as a means of perception cannot be overstated, as it enables 
efficient collection and interpretation of information [ 1]. To apply this capability to 
fields like machine vision, robotics, Internet of Things (IoT), and artificial intelli-
gence (AI), there is a pressing need to develop visual information processing methods 
and technologies that operate at ultra-high speeds while consuming minimal energy 
[ 2, 3]. The conventional machine vision systems and their associated technologies 
face major constraints in terms of system latency, power consumption, and privacy 
issues [ 2, 3]. Unlike the mammalian retina mechanism that rapidly processes raw 
signals through several layers of cells, the visual signal digitization, storage, and 
transmission processes involved in conventional machine vision systems can intro-
duce significant time latency, which hinders quick responses to dynamic changes and 
results in inefficiencies due to irrelevant data processing [ 2, 3]. Additionally, exter-
nal image processors like CPU/GPU/VPU/DSPs consume high amounts of power, 
which is unfavorable for portable tasks [ 2, 3]. The overwhelming amount of data gen-
erated by ubiquitous sensors may obscure the useful information, thus necessitating 
the extraction of critical information by terminal sensors to reduce data movement 
from the sensing chip to processing units [ 4, 5]. Moreover, privacy-sensitive scenar-
ios may require the extraction of crucial information from raw analog signals rather 
than collected images. 

To address these challenges, a paradigm shift towards in-sensor computing is pro-
posed [ 6]. This approach is inspired by the mammalian retina (Fig. 1.1a) and involves 
the vision sensor not only acquiring visual information but also processing it to pro-
duce highly compressed information instead of video frames (Fig. 1.1c). In-sensor 
computing offers image-free visual signal processing, which ensures data confiden-
tiality. This interdisciplinary field encompasses various technologies, including sen-
sors, analogue signal processing, near-sensor computing, and in-memory computing 
(Fig. 1.3). In-sensor computing devices are sensors that integrate perception, tem-
porary storage, and data processing and analysis with raw analogue signals within 
the sensing chip. While near-sensor computing can reduce the physical distance 
between sensing and computing, data movement from sensors to processors is still 
necessary. In-memory computing uses memristors for both memory and computing 
[ 7], utilizing tunable resistance as the synaptic weights.
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Fig. 1.1 The origin of in-sensor visual computing. a The concept of in-sensor computing is 
bio-inspired by the retina mechanism where visual signals can be generated and pre-processed by 
different types of cells [ 8]. b Conventional machine vision system: light density needs to be read 
out first and converted to digital data which being loaded into memory and then processing units for 
meaningful information extraction. c Visual data can be generated, stored, and processed in sensor 
through the bio-inspired hardware design 

This chapter firstly illustrates the common in-sensor visual computing hardware 
architecture. Then various emerging in-sensor computing visual sensors are intro-
duced in terms of hardware, software, algorithms, and applications within the cate-
gory of in-sensor computing architecture. Finally, a summary and future prospective 
of in-sensor visual computing technology are made in the conclusion.
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1.2 In-Sensor Computing Devices 

1.2.1 Architecture 

In recent years, progress has been made in the development of in-sensor computing 
devices. By far, there are mainly two types of in-sensor computing architectures: 
(1) In-Sensor architecture by integrating sensing, memory, and computing units: 
A Focal-Plane Sensor Processor (FPSP) [ 9] integrates visual sensing, storage and 
computing units on the focal plane under the architecture of cellular neural networks 
(Fig. 1.2a). As for each Processing Element (PE), the generated analogue signals 
from the pixel can be transferred to the temporal memory units through the bus and 
processed using ALU units and registers. Each PE plays a role as a cell interacting 
with its neighbours for signal exchange and processing. Hence, the in-sensor visual 
inference is realised by the hardware cellular neural network and its synaptic weights 
in memory. The representative devices under the FPFS architecture mainly include 
the SCAMP Pixel Processor Array (PPA), Q-Eye [ 10] MIPA4k [  9], Asynchronous-
Synchronous Focal-Plane Sensor-Processor Chip (ASAP) [ 9], KOVA1 [ 11], and Ais-
torm Mantis2 [ 12], where the SCAMP PPA is comparatively mature with continuous 
research and application outputs. 

... 

... 

a 

b 

Photoreceptors Processing elements 

Registor 

Memory ALU 

... 

... 

Ni1 

Multi-layer register network 

y1 

y2 

y3 

yn 

... 
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Wi Wj 

Si 

SiO2 
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W1 
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Wn 
ij 
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... 

P1 
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Fig. 1.2 In-sensor perception and computing architectures and their associated artificial net-
works. a An in-sensor cellular network can be built with an array of PEs which integrates sensing, 
memory, and computing units. b A neural network with detect-and-memorise materials
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Table 1.1 In-sensor computing architecture comparison between FPFS and DAM scheme 

Scheme Maturity 
level 

Speed Application General-
purpose 

Programmable Efficiency 

FPFS 
[ 15, 16] 

Mature High-speed Many Yes Yes High 

DAM 
[ 5, 6, 17– 19] 

Immature Ultra-fast Few No Partial Ultra-high 

Fig. 1.3 The position of 
in-sensor computing in the 
existing knowledge Sensing M

em
or

y 
Computing 

Near-sensor 
computing 

In-sensor 
computing 

In-m
em

ory 

com
puting Mor

ph
olo

gic
al 

co
mpu

tin
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(2) Detect-and-memorise materials for in-sensor computing architectures: 
Material-based detect-and-memorise (DAM) devices (Fig. 1.2b) have recently been 
proposed to mimic the functional mechanism of the photonic synapses to implement 
artificial neural networks [ 5, 13]. Among these emerging materials and devices, the 
memristor is representative as it facilitates sensing, temporal memory, and comput-
ing capability when combined with other photo-sensitive devices [ 14]. Specifically, 
visual signals generated from photoreceptors such as photodiodes can be further pro-
cessed within the artificial networks composed of memristors with tunable resistance 
as the weights. 

Table 1.1 shows the difference between the two rising in-sensor computing archi-
tectures. As can be seen from Table 1.1, the DAM-based in-sensor computing sensors 
are new and immature compared to the scheme by sensor, memory, and computing 
integration. Hence, this chapter mainly reviews devices and algorithms based on the 
first architecture scheme (Fig. 1.3). 

1.2.2 Focal-Plane Sensor Processor (FPFS) 

Conventional sensors mainly play the role of information collectors. In recent years, 
with the development of techniques on integrated circuit design and the growing 
need for low-power and lower-latency edge-computing, a sensor has gradually been
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Table 1.2 List of in-sensor and in-memory processing vision systems 

System names Resolution In-sensor storage Speed (FPS) 

Aistorm Mantis2 96. ×96 Gray-scale image 50 K [ 12] 

Eye-RIS 176. ×144 7 gray + 4 binary 10 K [ 22] 

Photodiode array – – 20 M bins [ 14] 

SCAMP PPA 256. ×256 7 gray + 13 binary 100 K [ 23] 

Kovilta’s KOVA1 96. ×96 – . >1K  [  24] 

MIPA4k 64. ×64 – . >1K  [  25] 

DVS In-senor 
pre-processing 

Binary events . >10 K [ 26] 

integrated with the ability of signal processing independent from general-purpose 
computers. The goal of near-sensor processing is to use a dedicated machine learning 
accelerator chip on the same printed circuit board [ 20], or perhaps 3D-stacked with 
the CMOS image chip [ 21]. Despite the fact that this allows CMOS image chip data 
to be processed closer to the sensor rather than in the cloud, data transport expenses 
between the sensing chip and the processing chip still exist. In contrast, the in-sensor 
computing paradigm aims to embed processing capability for each individual pixel. 
This section introduces classic in-sensor visual computing devices. Table 1.2 lists the 
differences among these above-mentioned in-sensor computing devices. 

1.3 SCAMP-5d Vision System and Pixel Processor Array 

1.3.1 Introduction 

SCAMP vision system is one of the emerging in-sensor visual computing devices. 
Currently, the most up-to-date version of SCAMP series system is the SCAMP-5d 
(Figs. 1.4 and 1.5) which consists of 256. ×256 processing elements (PEs) weighted 
171 g with a normal lens. SCAMP-5d vision system is a general-purpose pro-
grammable massively parallel vision system [ 23] that was invented, designed, and 
developed by University of Manchester. By far, SCAMP-5d enjoys many applica-
tions in the field of robotics [ 27– 30] and computer vision [ 31– 33]. As for the PPA 
shown in Figs. 1.3 and 1.4, the photo-detector converts light into an analogue sig-
nal which can be directly parallelly processed on AREG. Different from the current 
hardware design structure of computer vision systems, the PPA gets rid of the Ana-
logue/Digital Conversion (ADC) after sensing and directly operates on analogue 
electric current using an arithmetic unit, hence accelerating the signal processing 
speed and, in the meantime, avoiding the bottleneck of ADC and data transmission 
process. However, errors can be introduced when performing arithmetic operations 
or temporal information storage on AREG [ 6].
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Fig. 1.4 SCAMP-5d vision system and the pixel processor array (PPA). SCAMP-5d consists of 
PPA with 256. ×256 Processing Elements (PE) and ARM Micro-controller where parallel image 
processing is conducted on PPA by directly operating on analogue signal (electric current from 
PIX, which is proportional to the light intensity) within AREG and bit operation within in DREG. 
Hence, there is no need for time-consuming and energy-inefficient analogue-to-digital conversion. 
Bio-inspired by the efficient information processing of neurons connected by synapses, PPA is 
designed to have highly interconnected PE and registers where information can be shared and 
accessed adjacently enabling efficient parallel machine vision computing. ARM micro-controller 
is in charge of sending instructions to the PPA, receiving the processed information from the PPA, 
and more fully-connected layers for deeper CNN 

In terms of hardware techniques, the PPA integrates information storage on reg-
isters, image processing and analogue information operation (arithmetic operation, 
shifting, etc.), digital/bit operation, and logical operations. As can be seen from 
Fig. 1.4, for each Processing element (PE), there are seven read/write AREG (A to 
F) which can be used for signed value storage and computation with basic arith-
metic operations, such as addition, subtraction, division, etc. In addition, thirteen 
1-bit DREG (R0 to R12) in each PE (256. ×256 in total) can execute the Boolean 
logical operations, such as AND, OR, XNOR, and NOT [ 15] with information after 
binary thresholding on AREG. Each register in PE executes identical instructions 
synchronously under SIMD instructions, hence enabling parallel image processing. 
In addition, the FLAG register can activate different areas of registers given corre-
sponding patterns for more flexible operation. With the neighbour access function 
where each pixel is able to communicate with its four neighbours (north, west, east, 
south), an efficient parallel image shifting can be implemented easily. Instructions for 
the PPA are dispatched by the ARM-based micro-controller with a Cortex M0 running 
at 204 MHz. The analogue operations is executed at 5 MHz and digital at 10 MHz.
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Fig. 1.5 The development process of SCAMP series vision system from the University of Manch-
ester. This review mainly focuses on the SCAMP-3 and SCAMP-5 vision system because their higher 
resolution and performance would enable more research and applications. Source Piotr Dudek’s 
talk in Second International Workshop on Event-based Vision and Smart Cameras (CVPRW) [ 39] 

Other I/O functions, such as USB2.0, GPIO, SPI, and UART, are performed on 
Cortex M4 Core [ 15]. Notice that other names for a similar type of focal-plane sensor 
processor can be seen from [ 9] with names, e.g. ASPA (Asynchronous-synchronous 
Focal Plane Sensor Processor Array), FPSP (Focal-Plane Sensor-Processor). 

The PPA is a hardware implementation of Cellular Neural Network (CeNN) with 
the new optimisation on a mixture of both analogue and digital computing using 
AREGs and DREGs, respectively. The studies based on the PPA reviewed in this 
work utilise the parallel nature of the CeNN architecture for efficient and high-
performance computing, where each “cell” is intricately connected with its four 
neighbours and information can be shared efficiently. Hence, the PPA can be modelled 
as a CeNN architecture for visual information computing. The CeNN processing 
circuit architecture was first proposed by Leon Chua and Lin Yang [ 34], followed 
by the CeNN universal machine [ 35] as a prototype. After that, as an invention 
of new circuit architecture and a parallel computing paradigm, it enjoys widespread 
popularity in academia with a substantial number of research outputs and applications 
in pattern recognition [ 36], image processing [ 37], and biological vision modelling 
[ 38]. With above-mentioned hardware features, the SCAMP PPA mainly consists of 
the following advantages over conventional machine systems. 

Efficiency and Low Latency: It is obvious to see from Fig. 1.1c that in-sensor 
computing gets rid of signal digitisation, transmission, and storage processes onto 
external devices, hence enabling high-speed image processing [ 23] and CNN infer-
ence [ 40] which can be integrated with agile mobile robot platforms [ 27– 30]. In 
addition, the PE distribution and simultaneous instruction execution on PEs allow
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efficient parallel signal processing. Carey et al. [ 23] demonstrate an object detection 
with a frame rate of 100,000 per second using the SCAMP vision system and Liu et 
al. [ 40] propose binary shallow neural network on the PPA with binary classification 
problem at up to 17,000 FPS. These works show the efficiency of image processing 
in a sensor once the parallelism mechanism of the PPA is fully taken advantage of. 

Low power consumption: According to Fig. 1.1c, there are no external process-
ing units or data processing needed, hence the power consumption can be saved to a 
large degree. The maximum power cost of the SCAMP-3 vision system for a complex 
object tracking and counting system is 29 mW [ 41]. And the overall power consump-
tion on image processing and CNN inference tasks within a SCAMP-5 vision system 
is lower than 2 W [ 42]. This feature makes the SCAMP vision system suitable for 
mobile platforms, usually with short battery life. In addition, according to the power 
consumption test from work [ 43], given 8 popular kernel filters, the SCAMP PPA 
generates the same convolution results with much lower power consumption (. >20 
times) at a higher speed (. >100 times) compared to common CPUs and GPUs. 

Data Security and Privacy Protection: An unique but non-negligible feature of 
in-sensor analogue computing with the PPA is its inherent feature of data security 
and privacy protection. Data security is feasible because of the focal-plane analogue 
information processing without ADC, extra data recording, storage, or intermediate 
transmission procedures. Usually, the only output after analogue computing is the 
extracted useful target information without redundant information, which is hardly 
reversible to get the original data for sensitive information or user re-identification 
[ 44]. Data security and privacy protection have become prominent challenges with 
the emergence of the internet of things. Smart devices such as autonomous vehicles, 
domestic robots, and smart household appliances are usually equipped with percep-
tual sensors and collect data pervasively in public and private spaces, threatening 
users’ privacy and data security. Conventional sensors usually directly upload raw 
data to the cloud for data processing [ 45], which can be a fault line of data security. 
When data is processed manually or the network is attacked, crucially sensitive data 
can be directly obtained. The acquired data can then be applied to determine individ-
uals’ habits (e.g., motion sensors) or to conduct surveillance (e.g., facial recognition 
systems), which can cause significant violations of EU GENERAL DATA PROTEC-
TION REGULATION Article 25. 1 In sensor computing first enables only valuable 
information to be extracted as it’s output, without redundant information. Moreover, 
the minimised raw data are further mocked by the analog signals, which leads to 
re-identification almost impossible. Hence, users’ privacy can be strictly protected 
with in-sensor processing mechanisms.

1 https://gdpr-info.eu/art-25-gdpr/. 

https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-25-gdpr/
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1.3.2 Algorithms and Applications 

This section mainly illustrates algorithms and their potential applications (Fig. 1.7) 
based on the SCAMP-5 vision systems (Table 1.3 and Fig. 1.6). 

1.3.2.1 Image Enhancement 

Image enhancement comes along with the imaging process on the PPA compared 
to the conventional image enhancement which only happens after the image data is 
captured. Later, other methods are exploited on different image processing tasks. For 
example, Wang et al. [ 67] proposed a simple coarse grain mapping method to process 
bigger images than the PPA resolution itself by temporarily storing sub-images into 
different registers. 

Table 1.3 List of main studies with the SCAMP PPA 

Image processing methods Applications References 

Background extraction Segmentation [ 46, 47] 

Contour extraction Object detection [ 48– 50] 

Skeleton extraction Shape simplification [ 51– 53] 

HDR Image enhancement [ 31, 48, 54, 55] 

Feature corner/edge extraction Edge/feature-based VO [ 33] 

Target detection/localisation High-speed object tracking [ 23, 56, 57] 

Neural network High-level inference [ 40, 42, 58– 61] 

Depth estimation/visual 
odometry 

Robot navigation [ 29, 30, 32, 60, 62– 65] 

Automatic code generation Neural network inference, face 
detection 

[ 43, 66] 

Fig. 1.6 Examples of two images with(left)/without(right) HDR algorithms towards the same scene 
in an outdoor environment
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2006 

Dudek et.al. 
Real-time 
image 
processing 
(SCAMP-3) 

2008 

Lopez Vilarino 
et. al. 
Moving object 
segmentation 
(SCAMP-3) 

2009 

Lopich et. al. 
Skeletonization 
Algorithm 
(SCAMP-3) 

2013 Carey et. al. 
100,000 fps 
vision sensor 
(SCAMP-5) 

2016 Martel et. al. 
HDR 
(SCAMP-5) 

2017 
Chen et. al. 
feature 
extraction 
(SCAMP-5) 

Greatwood 
et. al. 
Tracking 
(SCAMP-5) 

Bose et. al. Visual Odometry 
(SCAMP-5) 

2018 Chen et. al. 
SCAMP5d 
development 
framework 
(SCAMP-5) 

2019 Bose et. al. 
CNN (Dreg) 
(SCAMP-5) 

Greatwood et. al. 
Drone racing (SCAMP-5) 

2020 
Martel et. al. 
Learning 
Pixel 
Exposures 
(SCAMP-5) 

Bose et. al.CNN (Areg) 
(SCAMP-5) 

Liu et. al. 
High-speed 
CNN 
(SCAMP-5) 

Liu et. al. Agile Navigation (SCAMP-5) 

2021 Castillo et. al. Mapping & Localisation 

Martel et. al. 
Depth 
estimation 
(SCAMP-5) 

Murai et. al. BIT-VO (SCAMP-5) 

Stow et. al. Cain (Automatic Code Generation) (SCAMP-5) 

Liu et. al. sensory-motor (SCAMP-5) 

Debrunner et al. 
(SCAMP-5) 
AUKE (Automatic 
Kernel Code 
Generation) 

2022 

Bose et. al. Gaze estimation 
So et.al. HDR imaging with  
in-pixel irradiance encodingLiu et.al. Model swapping 

Fig. 1.7 Milestones SCAMP PPA-based work and key SCAMP PPA studies and applications 
during last 16 years
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HDR (Fig. 1.6) is a basic low-level image pre-processing method to obtain rich 
image information even facing extreme lighting conditions, such as the mixture of 
dim and strong light intensity. However, conventional image sensors rely on either 
a global or rolling shutter to form an image, which limits the efficiency of HDR 
imaging [ 31, 68]. Back in 2006, Dudek [ 48] proposed sensor-level adaptive sensing 
and image processing with SCAMP-3 [ 41, 69], where different exposure settings 
are combined for an image with a high dynamic range. Martel et al. [ 55] make  
significant contributions in this area using the PPA. The first HDR image generation 
in-sensor is from [ 54] where pixel-wise exposure can be controlled to generate HDR 
images, followed by automotive applications [ 70]. Furthermore, Bose et al. [ 32] take  
advantage of the HDR image to extract edges as the robust input information for visual 
odometry estimation. However, the usage of iterative exposure for different regions 
of the image slows down the image pre-processing. To speed up the HDR imaging, 
Martel et al. [ 31] propose the learning shutter function for PEs to expose each pixel 
independently with an end-to-end training strategy. They obtain an exposure function 
by training a U-Net neural network and compiling these trained functions on the 
sensor for inference. Later, So et al. [ 71] presented in-pixel control for snapshot 
HDR imaging with irradiance encoding. 

1.3.2.2 Contour and Skeleton Extraction 

Contours are important features for objects within an image, which can help to 
identify different entities. Contour extraction algorithms were proposed based on a 
pixel-level snake with very low latency [ 49]. In 2007, Alonso-Montes et al. proposed 
the in-sensor automatic retinal vessel tree extraction based on the Cellular Neural 
Networks [ 50]. The shared key concept for these works [ 48– 50] is to extract contour 
iteratively based on the active contour model and Cellular Neural Networks. In 2008, 
[ 72] proposed an image pre-processing method based on the cellular automata for a 
robotic scenario. The skeleton within a binary image shows the object size, position, 
and simplified shape. Fast image skeletonization [ 51] is implemented by [ 52] based 
on the wave-trigger propagation/collision. Examples of image contour and skeleton 
extraction based on the SCAMP PPA can be seen in Fig. 1.8. 

Fig. 1.8 Examples of image contour and skeleton extraction using SCAMP PPA. Left: Extracted 
Retinal Vascular Tree, Figure from [ 50]. Right: Extracted skeletons, Figure from [ 47]
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Other Feature Extraction Methods: Other image processing methods, such as 
background extraction, is exploited by Wang et al. [ 46, 47]. For higher-level feature 
extraction, the edge feature can be obtained by deploying Sobel kernel filters or 
Laplacian filters, which are used in the later work for focal plane visual odometry 
[ 32] and neural networks [ 60]. As for other features, such as corner points extraction, 
Chen [ 33] utilised the DREG for corner points extraction based on the FAST16 
algorithm, which is used in later work on visual odometry [ 65]. Based on the above-
mentioned low- and mid-level image processing methods, researchers are motivated 
to exploit more general high-level image processing with up-to-date techniques by 
taking advantage of the earlier milestone work and the state-of-art progress, such as 
neural networks which would be illustrated in Sect. 1.3.2.4. 

1.3.2.3 In-Sensor Visual Feature Extraction for Robots 

Two major constraints that preclude mobile robots from long-term and diverse appli-
cations are their short battery life and limited load. Emerging sensors may hold the 
key to solving this challenge due to their unique low-level hardware design. The 
portable SCAMP-5d vision system (171 g including the lens) can perform spatial 
AI processing in-sensor, reducing data transfer pressure between sensing and the 
main processor, hence increasing overall processing efficiency while maintaining 
low power consumption [ 73]. 

(a) SCAMP PPA on a Quadrocopter 
The SCAMP-5d vision system has been integrated into quadrocopter systems for 
target tracking, visual odometry and racing. Greatwood et al. perform various exper-
iments by integrating a SCAMP-5d vision system and a quadrotor [ 28, 29, 74]. 
Figure 1.9 shows a flight control system in terms of hardware integration and control 
block diagram, where a pre-set target can be tracked with extracted useful information 
on sensor even facing short periods of target tracking loss [ 28]. In this application, the 
direct in-sensor target position extraction releases the pressure of image capturing, 
transmission and processing for the whole system. Later, Greatwood et al. proposed 
the in-sensor visual odometry using perspective correction on an agile micro air 

Fig. 1.9 Left: The integration of a quadrotor and SCAMP-5 vision system for object tracking. 
Right: a diagram of system hardware (Figure from [ 28])
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Fig. 1.10 Quadrotor setup for the drone racing with a front-facing SCAMP (Figure from [ 74]) 

vehicle based on a similar hardware platform. After that, a drone racing Fig. 1.10 
within a pre-set environment is demonstrated by taking advantage of the efficient 
image processing ability on the PPA [ 74], where the target position can be estimated 
at around 500 FPS. McConville et al. [ 30] apply the in-sensor visual odometry devel-
oped by Bose et al. [ 32] on an unmanned aerial system for real-time control purposes. 

(b) SCAMP PPA for Mobile Robot Reactive Navigation 
In terms of navigation with a SCAMP PPA, Liu et al. [ 27] proposed reactive agile 
navigation on a non-holonomic ground vehicle using PPA by robustly recognis-
ing pre-set patterns out of complex environment background. Although being very 
efficient and accurate, using a pre-set fixed pattern for target tracking is difficult to 
expand in the generalised environment where there are usually random features. With 
this in mind, Chen et al. [ 60] use in-focal plane feature extraction from the environ-
ment to perform a recurrent neural network on the M4 micro-controller using this 
extracted information to estimate the proximity to the ambient objects for obstacle 
avoidance purposes. A similar pattern of concentric circles was employed in [ 27, 28, 
30] to effectively extract the dot centre in the circles out of the complex environment 
(Fig. 1.11). 

(c) In-Sensor Computing for Mapping and Localisation 
Mapping and localisation are useful techniques for robot navigation. In-sensor map-
ping and localisation are lightweight and low power cost solutions for mobile plat-
forms. Castillo-Elizalde et al. [ 75] for the first time proposed 1-D mapping and 
localisation technique. For this method, features are firstly extracted as the database 
from a sequence of images. Then, the incoming image can be localised by comparing 
with the database and the prior knowledge of the motion model. In their work, two 
methods were utilised to down-sample the original images: direct resizing and local 
binary pattern to apply them to different localisation situations.
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a b  c  

Fig. 1.11 Tracking pattern for the drone and ground vehicle. a Tracking a ground vehicle [ 28], b 
Tracking a moving target while performing a visual odometry [ 30], c Tracking a fixed pattern with 
a mobile ground vehicle [ 27] 

(d) Pose and Depth Estimation 
For decades, egocentric state estimation has been studied using conventional cameras, 
emerging DVS devices, and CPU/GPUs. In recent years, there have been some studies 
utilising SCAMP PPA. For example, Bose et al. [ 32] for the first time, proposed in-
sensor 4 Degree-of-Freedom (DoF) visual odometry wholly on the sensor by mapping 
the real-time input image with the previous keyframe through image scaling, shifting, 
rotation and alignment. They demonstrate the visual odometry estimation at over 
1000 Hz with around 2 W power cost. Debrunner et al. [ 76] use the SCAMP to 
estimate its global motion with the tiling method at 60 FPS with a low power cost of 
100.2 mW. After that, Murai [ 65] proposed 6 DoF visual odometry based on edge 
and corner points extracted on sensor and post-processing on a computer with a 
frame rate of 300 FPS. They take advantage of feature edge, and corner extraction 
methods [ 33] and calculate the visual odometry off sensor using a similar strategy 
with the standard Visual Odometry (VO) systems [ 77]. Although they combine in-
sensor feature extraction and ready-to-use VO computing method off the sensor, it is 
promising to be a direction in the future to combine the efficient image pre-processing 
in-sensor and high-volume post-processing with a powerful CPU/GPU, especially 
when facing storage shortage and general calculation resources for the large-scale 
computing. 

In addition, the SCAMP vision system can also work with other accessories to 
share the computation burden for more applications. For example, Martel et al. [ 62– 
64] mounted a controllable liquid lens to generate a semi-dense map in real-time, 
which is the first work on depth estimation to take advantage of external physical 
accessories. With this focus-tunable lens, a vast amount of computation pressure on 
the sensor is relieved. This in-sensor feature extraction and post-image processing 
on controller scheme are also widely used in many different applications [ 60, 65], 
where the task requirement of storage and computing resources is out of the capacity 
of the PPA.
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1.3.2.4 Research Progress on Neural Networks with a SCAMP PPA 

The algorithms of SCAMP PPA proposed earlier mainly focus on low-level image 
processing and/or machine vision methods to enhance image quality and extract 
basic textures with combinations of inherent built-in functions based on SCAMP-3 
and SCAMP-5 with a PE resolution of 128. ×128 and 256. ×256, respectively. It 
should be noticed that these developed image processing methods are deeply related 
to the hardware design of the SCAMP vision system. For example, common methods 
used in this period are cellular-based algorithms, including cellular neural networks, 
because the SCAMP PPA itself is a cellular processor array. 

Research on neural network inference with the SCAMP PPA has been active in 
recent years. Table 1.4 lists the main research work in the area of neural networks, 
which covers fully convolutional neural networks and binary convolutional neural 
networks using DREG or AREG with various datasets and applications. High-level 
image processing, such as object classification, localisation and segmentation in 
sensor, is achieved with the neural network. The deployment of neural networks 
onto the PPA is a breakthrough since it enables the PPA open to more possibilities 
with universal methods, which is unlike the conventional development methods with 
some combinations of low-level image processing methods for specific tasks. With 
the use of CNN, several types of tasks, such as classification, regression, localisation, 

Table 1.4 Different convolutional neural network implementation with SCAMP and performance 
comparison. 

Network Filter 
number 

Layers 
(Conv+FC) 

Dataset Accuracy Frame rate 
(fps) 

In-sensor/ 
Near-sensor 

Bose [ 42] 16 5. ×5 1 + 1 MNIST . ≈94.2% 210 1Conv/1FC 

Bose [ 58] 16/64 4. ×4 1 + 1 MNIST . ≈93% . >3000 In sensor 

– 16+16 4. ×4 2 + 1 MNIST 92–94% 224 In sensor 

Liu [ 40] 64 4. ×4 1 + 1 8 Plankton 80.5 % 4016 In sensor 

– 16 4. ×4 1 + 2 8 Hand  
gestures 

. <98.7% 2092 1Conv+1FC/1FC 

– 16 4. ×4 1 + 1 Roshambo . <97.73% 8264 In sensor 

– 64 4. ×4 1 + 1 0,1 in 
MNIST 

. <99.1% 17543 In sensor 

Liu FCN 
[ 59] 

16+64 4. ×4 
64 1. ×1 

3 + 0 Simulation – 283 In sensor 

Liu [ 78] 16+64 4. ×4 2 + 2 EMNIST . <86.74% 178 2Conv+1FC/ 

Binarized 
CNN 

1FC 

Chen [ 60] – 0 + N Collected 
indoor 

– – Near sensor 

AnalogNet 
[ 61] 

3 3. ×3 1 + 3 MNIST 96.9% 2260 1Conv/2FC



1 In-Sensor Visual Devices for Perception and Inference 17

and segmentation, can be feasible, hence enabling more applications. Table 1.4 shows 
the neural network-related work based on the SCAMP PPA vision system. 

The research on CNN implementation and inference within PPA is pioneered by 
Bose et al. [ 79] where a CNN with a single convolutional layer performed upon 
the PPA array and a fully-connected layer upon its controller chip (M0). They per-
formed 16-bit image convolution operations using 4. ×4 DREG “Super Pixel” blocks 
and demonstrated live digit classification based on MNIST dataset at around 200 FPS. 
In their work, the ternary {.−1, 0, 1} kernel filters are stored on the flash (M4) of 
the PPA system, and are effectively encoded in the instructions/operation sent to the 
PPA array, performing convolutions sequentially. Furthermore, a mobile car locali-
sation task is then explored using synthetic datasets, where the pre-processed edge 
information is mainly the clues for network inference. Notice that the localisation is 
realised by classifying the car’s position along the. x and. y axis, respectively. To fully 
take advantage of PPA’s parallel computing characteristics and to further improve 
the CNN inference efficiency, Bose et al. [ 58], for the first time, proposed the idea of 
in-pixel weight storage, where the network’s weights are directly stored within the 
registers of the PPA’s PEs. This method enabled both parallel computations of multi-
ple convolutions, and implementation of a fully connected layer upon the PPA array, 
resulting in a . ×22 faster CNN inference (4464 FPS) on the same digit recognition 
task. Based on these two works, [ 40] further proposes a high-speed lightweight neural 
network using BinaryConnect [ 80] with a new method for computing convolutions 
upon the PPA, allowing for varying convolutional strides. This work demonstrated 
four different classification tasks with frame rates ranging from 2,000 to 17,500 per 
second with different stride setups. Later, based on this network, a direct servo con-
trol using CNN results [ 81] and a simulated robot tracking from a drone [ 82] with 
in-sensor CNN computing results are exploited. In addition, the AnalogNet2 [ 61, 83] 
extends the earlier work in [ 84], implementing a CNN which reaches 96.9% accuracy 
on the MNIST dataset at a speed of 2260 fps. However, their method requires all 
fully connected layers to be performed externally to the PPA array with only 3 con-
volutional kernel filters implemented in sequence on the PPA as the first layer. More 
kernel filters would significantly slow down the inference process. Notice that, in our 
work [ 60], a recurrent neural network is implemented on the micro-controller with 
features extracted on a sensor. In this manner, the fully-connected layer of a neural 
network can be deployed similarly with conventional embedded devices. It is notable 
that Martel et al. trained a neural network of exposure time for each individual pixel 
off the sensor for HDR imaging and video compressive sensing [ 31]. 

Furthermore, work [ 78] binarized CNN with batch norm both for classification 
and coarse segmentation. To deal with the classifications application with more labels 
and more segmentation tasks, they propose the idea of dynamic model swapping by 
uploading weights of trained models in sequence or according to the last inference 
result, targeting multiple sub-tasks decomposed from a more sophisticated task. They 
then demonstrate a servo control directly using the CNN inference results [ 81], which 
potentially indicates that motion control platforms, such as a ground vehicle or drones 
can have a light-weight servo control system without using external control units in 
the future.
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Notice that the preceding neural network-related work mainly focuses on clas-
sification or classification-based localisation, both of which require fully connected 
layers. However, the parameters in fully-connected layers are typically substantially 
larger than those in convolutional layers due to the dense connections of each indi-
vidual neuron. Thus, work developed a fully-convolutional neural network (FCN) 
[ 59], not only presenting in-sensor image segmentation and localisation but also 
eliminating dense layers for a smaller memory footprint [ 85]. 

1.3.2.5 In-Sensor Cellular Automata 

The PPA itself is a cellular neural network architecture where each ‘cell’ is closely 
connected with its four neighbours, hence information can be shared efficiently. 
With this in mind, the author is inspired to explore the possibility to perform cellular 
behaviour, such as Conway’s game of life (demonstration shown from 2) and ele-
mentary cellular automata (demonstration Rule 90 seen from 3) based on the theory 
of cellular automata [ 86]. With the rule of the game of life, all ‘cells’ can update 
their states (alive or dead) in-sensor as fast as 53. µs for each iteration based on the 
bit-operation with DREG. As can be seen from Fig. 1.12, a Sierpiński triangle is effi-
ciently generated based on bit operation on the sensor with 730. µs of 255 iterations 
to fill the whole chip. 

(a) Elementary CA 
One-dimensional CA is one of the simple CA algorithms. Some classical updating 
rules, such as Rule 30, Rule 90, and Rule 110, can be implemented by logic bit 

Fig. 1.12 Our demonstration of elementary cellular automata with Rule 90 on the SCAMP PPA. 
This pattern is generated from top to bottom. We have made this project available from https:// 
github.com/yananliusdu/1D_CellularAutomata

2 https://youtu.be/X_t4c3f-T4s. 
3 https://youtu.be/HgPvoK5EJ_s. 

https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://github.com/yananliusdu/1D_CellularAutomata
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/X_t4c3f-T4s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
https://youtu.be/HgPvoK5EJ_s
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operations. Let use L,C,R as the three continuous grids and C1 is the grid that should 
be updated, then rules can be represented as follows: 

R30: C1 = L XOR (C OR R ) 

R90: C1 = XOR(L, R) 

R110: C1 = XOR(OR(R, C), AND(R, C, L)) 

The pseudo codes for R90 can be shown as follows: 

\begin{code}{ElementaryCellularAutomataR90} 

for(int i = 1; i <= iterations; i++) 

{ 

scamp5_kernel_begin(); 

MOV(R5,R6); //R5 = R6 

DNEWS(R0,R6,west); //R0 = shift R6 to right for one step 

DNEWS(R6,R0,west); 

XOR(R7,R5,R6); // R7 = XOR(R5,R6) 

DNEWS(R0,R7,north); 

DNEWS(R6,R0,east); 

OR(R6,R5); R6 = OR(R6,R5) 

scamp5_kernel_end(); 

} 

\end{code} 

Implementation for R30 and R110 can also be done similarly with R90 using 
corresponding unit logic operations. 

(b) In-Sensor Conway’s Game of Life based on the CA 
The rule of Game of Life is a new independent non-linear computing scheme. 

Figure 1.13 shows an updating 3.×3 block to illustrate the rule and implementa-
tion using a cellular neural network.The pseudo code for the Game of Life can be 
represented as follows according to its definition: 

if B0 = 1 & SUM(B1,..,B8) <= 2 

B0 = 0 

If else B0 = 0 &  SUM(B1,..,B8) == 3 

B0 = 1 

else 

B0 = 0 

where .Bi ∈ {0, 1}, i = {0, 1, 2, . . . , 8}. 
This chapter tries to implement and run the Game of Life using the DREG 

of SCAMP-5 vision systems and its parallel nature. We use three DREGs 3-bit
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Fig. 1.13 The update block 
for the Game of Life B1 B2 B3 

B4 B5 

B6 B7 B8 

B0 

.R6, R7, R8 to count the number of ‘1’s around the pivot.B0..R5 is the source binary 
image in this illustration. .R1, R2, R3, R4 and .R9, R10 are DREGs to temporarily 
store intermediate states. 

Neighbour Number Counting 
As the first step of the 2D cellular automata, the number of live neighbours should 
be counted. As shown in Fig. 1.14a, .R5 is the source binary image. .R6, R7, R8 are 
3-bits to represent the number of live neighbours of R5 in the corresponding posi-
tion. For example, if .R5(B0) has 2 live neighbours, then . R6(B0) = 0, R7(B0) =
1, R8(B0) = 0. In conclusion, binary digits.R6, R7, R8 are used to record the num-
ber of live neighbours of corresponding cell. Figure 1.14b shows for each counting 
step (8 in total around a pivot,.R6, R7, R8 are updated according to the states of each 
cell. 

State Update for Cells 
With live neighbour information stored in three DREGs, cells’ state can be updated 
according to the rule of the Game of Life as described in the aforementioned pseudo 
code. We make the codes of Game of Life on the SCAMP-5 vision system avail-
able from https://github.com/yananliusdu/GameofLife. In the future, more image 

Fig. 1.14 Neighbour 
number counting using 
DREGs 

R6 B0 

R8 B0 

R7 B0 

R5 B0 

B0 

(a) (b)

https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
https://github.com/yananliusdu/GameofLife
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processing-related work can be potentially explored as long as proper update rules 
and associated steps are trained with neural network methods [ 37, 87]. 

1.4 Eye-RIS 

1.4.1 Introduction 

Eye-RIS [ 22, 88] commercial vision system on Chip (VSoC) extends CMOS pixel 
functionality with image storage (7 gray-scale images and 4 binary images) and dig-
ital/analogue signal processing ability. Specifically, a 32-bit RISC (Reduced Instruc-
tion Set Computer) is integrated with a vision sensor for image post-processing after 
the parallel in-sensor pre-processing (Fig. 1.15). The resolution of the Eye-RIS vision 
sensor is 176. ×144. Notice that Eye-RIS’s overall functional diagram is similar to 
that in the SCAMP vision system, where the counterpart of RISC is the M0 micro-
controller in the SCAMP PPA [ 89]. The most significant difference, though, is that 
the Eye-RIS has a DICop part, which is a digital image co-processor that handles 
geometric transformations and can send the results back to the pixel level for more 
processing. 

The Eye-RIS Vision System on Chip (VSoC) is an autonomous device combining 
a parallel CMOS image sensor processor with 32-bit RISC microprocessor perform-
ing post-processing and system control tasks, several I/O and high-speed communi-
cation ports that allow the system to communicate and/or to control external systems, 
and on chip memory. The combination of massive parallel image pre-processing in 
the sensor with complex image post-processing in the microprocessor results in ultra 
compact implementation of a vision system able to perform complex machine vision 
algorithms at speeds of several thousands of images per second. The Eye-RIS VSoC 

Image acquisition In-pixel image 
processing A/D 

In-pixel image 
memory 

D/A 

On-chip image 
memory 

Image post-
processing 

On-chip data and 
program memory 

Serial flash 
memory 

External image 
memory 

External program 
and data memory 

I/O and 
communications 

Eye-RIS v2.1 VSoC 

SIS Q-Eye 
Sensor-processor 

Nios II RISC 
Microprocessor 

Eye-RIS v2.1 
Vision system 

Fig. 1.15 Eye-RIS v2.1 VSoC architecture
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features a complete application development software environment allowing easy 
control of the device and is optimized for industrial applications requiring image 
sensing, image processing, and decision making at extreme frame rates. 

1.4.2 Applications 

The applications with Eye-RIS consist of automotive, machine vision, security, 
games and battery powered products. Caballero-Garcia and Jimenez-Marrufo [ 90] 
proposed a series of techniques to deploy image processing algorithms on the Eye-
RIS Vision System on Chip (VSoC) for various applications. One unique character-
istic using the Eye-RIS vision platform compared to conventional visual sensors is 
the simultaneous image acquisition and early processing in the analogue domain. 

Paper [ 91] aims to describe how the AnaFocus’ Eye-RIS family of vision sys-
tems has been successfully embedded within the roving robots developed under the 
framework of SPARK and SPARK II European projects to solve the action-oriented 
perception problem in real time. With the ability of low power cost and efficient par-
allel image processing, Eye-RIS has been equipped to many different mobile robot 
platforms, such as Rover II wheeled robot and Gregor III hexapod robot. Visual 
homing, object tracking, and navigation using landmarks are demonstrated based on 
the robot platforms and in-sensor real-time image processing algorithms (Fig. 1.16). 

Optical flow based on the Lucas and Kanade by Guzman et al. [ 92] (Fig. 1.17) is  
implemented on the Eye-RIS platform taking advantage of both analogue and digital 
signals processing using Q-Eye and Nios II RISC respectively (Fig. 1.15). In the 
experiment, the optical flow estimation reaches over 25 fps which can be used in the 
area of robotics in real time. Specifically, the optical flow constraint equation: 

.uIx + v Iy + It = 0 (1.1) 

Fig. 1.16 Eye-RIS VSoC equipped onto robot platforms. a Rover II wheeled robot, b Gregor III 
hexapod robot (Figure from [ 91])
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Fig. 1.17 Optical flow estimation in traffic sequences using Eye-RIS VSoC architecture (Figure 
from [ 92]) 

where the partial derivatives of . I are denoted by subscripts, which can be obtained 
from the image.. u and. v are the. x and. y components of the optical flow vector, which 
are the optical flow vectors that need to be found out. 

Lucas–Kanade method [ 93] is a classical method to deal with the optical flow 
constraint problem. According to the assumption of Lucas–Kanade method, given a 
small pixel block, 3. ×3 for example, the optical flow remains identical within this 
small block. Then, we can have following equation group: 

.

uIx1 + v Iy1 = −It1
uIx2 + v Iy2 = −It2

. . .

uIxn + v Iyn = −Itn

(1.2) 

Equation 1.2 can then be represented as 

.

⎡
⎢⎢⎣
Ix1 Iy1
Ix2 Iy2
. . .

Ixn Iyn

⎤
⎥⎥⎦

[
u
v

]
=

⎡
⎢⎢⎣

−It1
−It2
. . .

−Itn

⎤
⎥⎥⎦ (1.3) 

we assign Eq. 1.3 as .A
−→
V = −b, here the least squares method can be used to get 

optical flow vector .
−→
V , then .AT A

−→
V = AT (−b), hence, the optical flow vector can 

be obtained through: 

.
−→
V = (AT A)−1AT (−b) (1.4) 

In detail, Eq. 1.4 can be shown as: 

.

[
u
v

]
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[ ∑n
i=1 I

2
xi

∑n
i=1 Ixi Iyi∑n

i=1 Ixi Iyi
∑n

i=1 I
2
yi

]−1 [−∑n
i=1 Ixi Iti−∑n
i=1 Iyi Iti

]
(1.5)
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Shift along x axisA A_x  Ix = A-A_x 

Shift along y axisA A_y Iy = A-A_y 

(a) 

A 
(b) 
A_1 It = A-A_1 

(c) 

Fig. 1.18 The parallel calculation of.Ix , Iy, It in the focal plane using analogue signals 

Through Eq. 1.5, the optical flow vector can be estimated through a sequence of 
images. These intensity derivatives including.Ix , Iy, It can be efficiently obtained by 
shifting and subtracting between frame sequences as illustrated from Fig. 1.18. After  
that, the optical vector can then be calculated using conventional computing units. 
As for the implementation of optical flow using the above-mentioned formulations, 
work [ 22] takes advantage of both in-sensor pre-processing and post-processing with 
computing units achieving up to 28.9 fps. 

In the study of [ 94], authors explored different methods of point tracking on the 
platform of Eye-RIS, which is able to equip Unmanned Arial Vehicles (UAVs) with 
the ability of on-board sensing and computing with low load and power consumption.
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Nicolosi et al. [ 95] applied the Eye-RIS vision platform to control welding process 
by using the cellular neural network based visual algorithms. [96] extended their work 
onto vision based closed loop control for partial penetration welding of overlap joints. 

Work [ 97] proposed algorithms for the cellular neural network to detect rapidly 
approaching object which is bio-inspired by mammalian retina that consists of loom-
ing sensitive circuit based on local interaction of cells. 

1.5 Kovilta’s KOVA1 

1.5.1 Introduction 

The KOvilta Vision Array (KOVA1) (depicted in [ 11]) employs a meticulously 
designed pixel-level processing circuitry that utilizes an efficient combination of 
analogue and digital (mixed-mode) computation techniques to execute a diverse 
range of pre-programmed operations. These operations include automated sensor 
adaption, grayscale filtering, segmentation, and complex object-level visual analy-
sis. The selection of operations to be performed at the pixel-level hardware can be 
customized based on the specific requirements of the application, thereby enhancing 
the overall implementation efficiency. 

The KOVA1 is Kovilta’s inaugural silicon rendition of the KOvilta Vision Array 
structure, and it comprises a 96. ×96 pixel focal-plane processor array fabricated 
using 180 nm CMOS technology. The sensor-processor chip is integrated into a 
miniature smart camera system equipped with FPGA-based control and Ethernet 
I/O. In this focal plane processor architecture, each pixel-cell of the sensor array 
includes a reconfigurable processing element that operates directly on the output of 
the analog photodiode. This allows real-time data compression for capturing images 
with high dynamic ranges without compromising quality. Additionally, processing 
in parallel on the pixel plane enables rapid low-level feature analysis and eliminates 
the need for time and energy-consuming long-distance data transfers from the sensor 
to an external processor. The sensor output may include only the essential feature 
data, such as the presence of an object or a set of object coordinates or features, 
thereby reducing the amount of hardware needed for further external image content 
analysis. 

The KOVA1 camera system employs pixel cells that are connected within their 
immediate neighbourhood, allowing for direct information exchange during image 
analysis activities at the sensor level. Moreover, local memories integrated at the 
pixel level facilitate the storage of multiple full images or intermediate processing 
outcomes on the sensor plane. An FPGA chip is utilized to manage the program 
execution and I/O of the sensor-processor chip in the KOVA1 embedded camera 
system. As the control and I/O structures consume only a small fraction of the 
FPGA’s resources, supplementary visual analysis operations can be implemented 
on the FPGA to enhance the on-chip sensor-level processing. The KEDE software
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environment from Kovilta is used to program and manage the camera, with program-
ming and data I/O facilitated by an Ethernet connection, while direct CMOS-signal 
outputs bypass the network interface. Additionally, the camera’s internal memory 
is capable of storing program code. It can operate autonomously without the need 
for a PC connection and transmit output data to an Ethernet-connected or directly 
controlled device. 

1.5.2 Applications 

Line detection: Santti et al. [ 98] proposed a line detection method by combining 
KOVA1 and FPGA for low-level and mid-level feature extraction respectively. This 
line detection method can be applied for industrial inspection and control applications 
with its performance of high-speed processing and low power consumption. 

Seam and Spatter Tracking: In Lahdenoja et al. [ 24, 99] and Santti et al.’s work 
[100], KOVA1 is utilised for seam tracking for real-time robot path optimisation 
during a high power laser welding process. The reason to use this type of pixel-level 
sensor lies in the ability to control pixel-wise exposure periods facing significant 
intensity differences in a laser welding task. Hence, the effective binary feature 
points can be extracted on the focal plane and then this compressed information is 
sent to the FPGA for laser beam location extraction using Hough transform. With 
a frame rate over 1000 fps, the combination of in-sensor image pre-processing and 
FPGA-based Hough operation enables a real-time optical seam tracking for robot 
control. In addition, spatter can also be tracked in laser and manual arc welding [101] 
in extreme radiated light intensity conditions (Fig. 1.19). 

Fig. 1.19 Straight line extraction process using KOVA1. Left to right: figure captured with KOVA1, 
binary feature extraction using pixel-level process, estimated beam line with binary features using 
FPGA. Figure from [100]
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1.6 Aistorm Mantis2 

Mantis system is based on the event-driven charge domain for analogue signal pro-
cessing without digitisation and provides an “always on” solution for analogue sig-
nal processing. One of the key features claimed by Aistorm is the noise cancelling 
techniques associated with the analogue signals. In addition, artificial intelligence 
can also be integrated into a chip for various applications. A 96. ×96 AI-in-Sensor 
machine learning SoC that is particularly well suited for classification jobs is the 
AIS-C100A Mants. It has a robust post wake-up ML capabilities as well as a con-
figurable “always on” wake-up CNN engine that can be used to activate external 
micro-controllers when an object of interest is recognised. On a single monolithic 
device with the fewest possible external components, all necessary supporting cir-
cuitry is provided, including power management, timing, artificial intelligence, and 
communications in addition to a (up to) 40 mA LED driver enabling both linear 
and PWM control. An SPI port is used for communication. The on-board camera’s 
photos and videos as well as those transferred via the SPI connection can both be 
processed by Mantis. To provide the best contrast for AI calculations, the exposure 
time can be either internally or externally regulated. The AIS-C100A is housed in an 
OLGA package of 6.4. ×6.4 mm. The AI-in-Imager solutions that can directly take 
pixel data in its native charge form are AIStorm’s Mantis Family of AI-in-Imager 
processors. The end result is the only method in the world that can wake up a person, 
face, object, or action based on an image (Fig. 1.20). 

There are several businesses that provide analogue AI solutions, but fundamental 
physical noise and bandwidth constraints prevent these products from being success-
ful. The approach used by AIStorm is charge domain processing. This technology 
uses charge to create AI-in-Sensor processing opportunities for picture or audio 
improvement that simply cannot be realised through any other means. Other ana-
logue methods’ noise and bandwidth restrictions are solved through charge domain 
processing, a revolution in processing. Over both analogue and digital solutions, 
charge domain solutions are preferable because they can immediately take IoT sen-
sor data without the expense, power, or delay of digitization. The major applications 
proposed using the Mantis AI-in-Sensor chip cover motion tracking, gesture clas-

Fig. 1.20 AIS technology 
SKIPS digitization and 
moves directly to processing 

Sensor Shared analog to 
digital converters Machine learning
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sification, smart home, wearable devices (glasses, headsets), household appliances, 
gaming devices, automotive, and voice processes as claimed in their application 
website https://aistorm.ai/applications/. 

1.7 Other In-Sensor Computing Devices 

MIPA4k: MIPA4k [ 25] is an earlier sensory-level image processing sensor with 
similar architecture to KOVA1. A number of algorithms can be carried out based 
on the MIPA4k with the use of mixed signals. These algorithms mainly cover edge 
detection [102], local binary pattern [103], locally adaptive image sensing [104], 
space-dependent binary image processing [105], and object segmentation and track-
ing [106]. Similar early cellular vision chips also include ACE16K [107]. 

Memristor-Based Devices: Yao et al. [108] Memristor-based hardware is a plat-
form to deploy the neural network using the programmable resistance within the 
integrated circuits mimicking the synaptic connections in a human brain [ 17, 108– 
111]. However, it integrates only storage and processing functions, which can be 
regarded as in-memory computing. Hence, signals should be input from sensors or 
other storage devices. They are thus usually integrated with other sensory systems for 
information processing. Lee et al. [ 19] take advantage of photo-diode and memristor 
crossbar for primary visual information process aiming to extract useful information 
from the input images. In-Sensor visual computing with memristor or new materials 
are currently not mature enough to support various practical applications for machine 
vision tasks. By far, the is few practical applications using memristor in-sensor com-
puting devices. 

Dynamic Vision Sensor (DVS): inivation [ 26] DVS produces data in the form 
of sparse contrast-change events that facilitate low-latency visual processing using 
external computational hardware [112–114]. These binary events are generated from 
in-sensor processing according to the brightness changes. Although the pixels in a 
DVS have a primitive in-sensor processing ability by binarising brightness changes, 
it achieves an ultra-high-speed response to the environment when working with 
external hardware computing units, enabling an enormous potential for robotics and 
computer vision in a challenging environment [115]. 

Other Emerging Sensor Devices: Mennel et al. [ 14] use a 2D semiconductor 
(.WSe2) photodiode array as the vision sensor, the photoresponsivity matrix to store 
the connecting weights of the neural network, where both supervised and unsuper-
vised learning for classification are present. However, laser light and a set of optical 
systems are needed to project images onto the chip, which prevents it from having 
practical usage. Song et al. [116] proposed a CMOS-based PIP (Processing-in-Pixel) 
architecture where image convolution (8-bit weight configuration) can be performed 
as the image preprocessing before image data is read out. In addition, Datta et al. 
proposed the Processing-in-Pixel-in-memory paradigm where the first few convolu-
tional layers of a CNN can be processed and the compressed data then sent to other 
near-sensor processors [117].

https://aistorm.ai/applications/
https://aistorm.ai/applications/
https://aistorm.ai/applications/
https://aistorm.ai/applications/
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1.8 Conclusion 

In-sensor visual computing is an emerging technology that enables efficient extrac-
tion of information solely on the sensing chip of the sensory system, facilitating 
signal collection, storage, and processing. Vision is the primary sense for human 
beings, and it accounts for a vast majority of information acquisition worldwide. 
Despite significant advances in computer vision using conventional camera vision 
systems and associated methodologies, various limitations, such as system latency 
and power consumption, persist. Image digitisation, storage, and transmission intro-
duce latency, which is a bottleneck that impedes conventional machine vision sys-
tems from promptly responding to environmental changes. Additionally, traditional 
machine vision systems with loosely integrated sensors and processors have high 
energy costs, weight, and size, making them unsuitable for portable tasks. 

To address the limitations of conventional machine vision systems, this chapter 
explores a new visual information processing scheme using a focal plane sensor 
processor (FPSP) that directly processes signals where they are collected, thereby 
avoiding issues with latency, power consumption, and size. The chapter focuses on 
mobile robotic control systems that utilize in-sensor computed results for multiple 
navigation research, and investigates novel parallel visual inference approaches, par-
ticularly machine learning-based algorithms, to extract higher-level information from 
analogue signals. To achieve this, a lightweight and high-speed binary convolutional 
neural network is proposed to categorize objects using efficient addition/subtraction 
and bit shifting operations. However, implementing neural networks on the focal 
plane is challenging due to hardware resource constraints and analogue noises. There-
fore, this work proposes purely binarised convolutional neural networks with both 
binary weights and activations, trained with batch normalisation and adaptive thresh-
old to binarise activations and alleviate noise. With this approach, only a small amount 
of extracted information is obtained, allowing for more efficient data transmission 
with less bandwidth, and enabling the establishment of an edge computing platform 
based on the neural network and PPA. 

Furthermore, prior research has explored visual sensors for information collection 
but not for signal processing or motion control; however, this chapter investigates the 
direction of image processing on the sensing chip and servo motor control using the 
sensor’s digested data directly. Thus, by merging in-sensor neural network inference 
and direct servo motor control, a sensory-motor system is presented. Moreover, with 
our proposed dynamic model swapping scheme, more sophisticated classification 
tasks than earlier work can be achieved. Lastly, a new in-sensor neural network 
architecture, fully convolutional neural networks, is presented for localisation and 
coarse segmentation tasks without using the fully connected layers. To deploy this 
new architecture of a three-layer neural network on the sensor, group convolution is 
introduced and implemented, with both binary weights and activations, making the 
fully convolutional neural network compact enough to be embedded on the sensor.
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Chapter 2 
Environmental Perception Using 
Fish-Eye Cameras for Autonomous 
Driving 

Yeqiang Qian, Ming Yang, and John M. Dolan 

Abstract The fish-eye camera has become an indispensable sensor in autonomous 
driving. Due to the unique projection principle of the fish-eye camera, it provides a 
large field of view (FoV). Because of this special feature, the fish-eye camera has 
abundant applications in environmental perception and autonomous driving. How-
ever, many challenges still exist in the practical application of fish-eye cameras. In 
this chapter, typical fish-eye datasets, including real data and generated virtual data, 
are introduced. Then, the projection principle of the fish-eye camera and four clas-
sical fish-eye image representation models are given. By sorting and summarizing 
relevant research, we show various applications of fish-eye cameras in environmen-
tal perception, including semantic understanding and target detection. These works 
have designed various strategies to take advantage of fish-eye cameras and prevent 
image distortions, showing the broad application prospects of fish-eye cameras. The 
development trend of fish-eye cameras in autonomous driving is discussed. 

2.1 Introduction 

In the past decade, autonomous driving has rapidly developed. Both academia and 
industry are paying attention to this field. Self-driving cars are equipped with a 
variety of sensors, such as cameras, lidar, and radar. Cameras provide more semantic 
information than other sensors. The fish-eye camera is a unique type of camera that 
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Fig. 2.1 Typical normal and fish-eye images taken in the same location 

provides a larger field of view (FoV), up to 180. ◦, than ordinary cameras. Therefore, 
fewer fish-eye cameras are needed to fully monitor their surroundings. Moreover, 
fish-eye cameras are indispensable sensors in autonomous driving and have a very 
large role in some scenarios. 

Figure 2.1 shows a normal image and fisheye image; both were taken at the same 
location. Intuitively, the images appear quite different. The fish-eye image in Fig. 2.1b 
contains more scenery. In addition, serious distortion occurs in the fish-eye image, 
e.g., the straight street lamp in Fig. 2.1a becomes crooked in the fish-eye image. The 
same object in a normal image contains more pixels than in a fish-eye image, that is, 
fish-eye images lose information as the distance increases. 

In short, fish-eye cameras have three advantages. Similar to fish-eye cameras, lidar 
sensors also have large FoVs [ 1– 4]. However, cameras provide much richer semantic 
information. In addition, cameras have a higher cost performance [ 5], which is crucial 
for the industry. Moreover, these benefits apply to all camera sensors, not just fish-eye 
cameras. 

Fish-eye cameras offer a wide FoV, usually up to 180. ◦, which is crucial in 
autonomous driving as covering more blind spots helps improve safety. 

The use of fish-eye cameras avoids the need for calibration among multiple cam-
eras. To cover more space, ordinary cameras should be grouped. Therefore, for such 
a system, calibration is necessary, and calibration between two different sensors 
is complex. Inaccurate calibration will introduce unexpected noise in the system, 
leading to the failure of subsequent algorithms. 

There are three challenges in applying fish-eye cameras. Deep learning methods 
have substantially become more popular in the field of computer vision, including 
environmental perception, where datasets have become particularly important. The 
use of sample-rich datasets contributes to the better performances of most algorithms. 
In recent years, many datasets for autonomous driving environment awareness, such 
as KITTI [ 6] and Cityscapes [ 7], have been published. However, these datasets con-
tain normal images with a normal FoV. As fish-eye images and normal images appear 
completely different, normal images have difficulty benefitting from fish-eye-based
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Fig. 2.2 False results caused by the distortion of the fish-eye image. The red bounding box rep-
resents false negative detection results, and the area in the red circle represents false positive seg-
mentation results 

algorithms. In conclusion, few significant fish-eye datasets have been formed, which 
severely limits the development of fish-eye-based algorithms. 

This is the most significant problem of fish-eye cameras. In Fig. 2.1, street lights, 
cars and buildings appear in a completely different curved position from the real 
shape. Moreover, these distorted objects cause issues for most detectors as most 
detectors are trained on normal images. Figure 2.2a shows the object detection results 
obtained by using the faster region-based convolutional neural network (Faster R-
CNN) [ 8]. Compared to other normal vehicles, the white vehicles with edges were 
so deformed that they were not accurately detected. Figure 2.2b shows the semantic 
segmentation results generated by the efficient residual-factorized CNN (ERFNet) 
[ 9, 10]. The areas in the red circles are segmentation errors caused by distortion. 

As  shown in Fig.  2.1, it is difficult for fish-eye cameras to clearly observe distant 
targets, which limits their application scenarios, that is fish-eye cameras can only be 
used for low-speed and short-range scenes. In these cases, the perception of distant 
objects is not urgently needed. 

This chapter is organized as follows. The typical fish-eye image datasets are 
presented in Sect. 2.2. Different fish-eye projection models are introduced in Sect. 2.3. 
Various applications of fish-eye cameras in autonomous driving are organized in 
Sects. 2.4 and 2.5. Finally, the development tendency of fish-eye camera applications 
is discussed in Sect. 2.6.



40 Y. Qian and M. Yang

2.2 Fish-Eye Image Datasets 

High-quality, fish-eye datasets provide a comparison platform for various algorithms 
and can be utilized in the training process to improve the performance of the detector. 
Currently, three main methods are used to obtain fish-eye image data. Most works 
use real fish-eye cameras to manually collect real fish-eye datasets. Some works use 
simulators to generate virtual fish-eye images. Other works focus on generating fish-
eye lens images from real perspective images. These real and virtual images promote 
research in this field. 

2.2.1 Real Fish-Eye Datasets 

We sorted the real fish-eye datasets in the field of automatic driving. Details of these 
datasets are shown in Table 2.1. The author uses different fish-eye camera settings to 
customize their fish-eye lens datasets, including different numbers of fish-eye lenses, 
image resolutions, numbers of datasets, and supported tasks. 

Levi et al. [ 11, 12] collected a fish-eye dataset using a vehicle rearview camera to 
evaluate the application of rear-view pedestrian detection. This dataset is named the 
GM-ATCI rearview pedestrian dataset. This dataset contains 15 video sequences, and 
each session is obtained in different scenes on different dates. The dataset contains a 
total of 250 fragments, with a total duration of 76 min, and more than 200 K annotated 
pedestrian bounding boxes. 

Oxford RobotCar [ 13], which was proposed by Maddern et al., is a large-scale 
dataset that focuses on the long-term autonomy of autonomous vehicles, mainly 
supporting positioning and mapping tasks. The dataset collects data under various 
weather conditions, including heavy rain, nighttime, direct sunlight, and snowfall, 
and has accumulated more than 1000 km of road data in one year. Due to the long data 
collection time, the appearances of many roads and buildings has changed, which is 
also a feature of this dataset. 

Yogamani et al. [ 14] proposed the first fish-eye image dataset dedicated to intel-
ligent vehicles. This dataset, which is named WoodScape, consists of four cameras 
covering 360. ◦ and a high-definition laser scanner, inertial measurement unit (IMU), 
and global navigation satellite system (GNSS). Annotations can be used for nine 
tasks, especially 3D object detection, depth estimation (superimposed on the front 
camera) and semantic segmentation. The semantic annotation of 40 classes at the 
instance level exceeds 10000 images, and the annotation of other tasks exceeds 
100000 images. Rashed et al. further expanded the dataset in [ 15]. 

Liao et al. proposed the suburban dataset KITTI-360 [ 16]. Compared with the 
classic KITTI [ 6], KITTI-360 has two new fish-eye cameras and a larger amount 
of data. Compared with WoodScape [ 14], KITTI-360 provides temporal, coherent, 
semantic instance annotation and 3D annotation for 3D reasoning.
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2.2.2 Simulator-Based Virtual Fish-Eye Datasets 

In Table 2.1, we sorted the virtual fish-eye dataset generated by a simulator. Zhang et 
al. [ 17] proposed a multifield dataset for fish-eye lens images. The authors propose 
this dataset to analyse the impact of images from different FoVs on visual odometers. 

Sekkat et al. [ 18] proposed a framework for generating omnidirectional images 
using images obtained in virtual environments. This dataset is named OmniScape. 
CARLA and GTAV simulators are utilized in this work. The generated dataset 
includes semantic segmentation data, depth maps, intrinsic camera parameters, and 
dynamic motorcycle parameters. 

Sekkat et al. proposed the SynwoodScapes dataset [19], which was developed from 
Woodscape. As this is a virtual dataset, many of the shortcomings of WoodScape 
are addressed. For example, WoodScape cannot collect pixel-level, optical flow and 
depth or simultaneously annotate all four cameras, which can be easily implemented 
in SynwoodScape. The SynwoodScapes dataset contains 80k annotated images and 
supports many perceptual tasks. 

Table 2.1 Real and virtual datasets of fish-eye images in intelligent vehicles 

Datasets Year Real 
or 
virtual 

Image information Supported tasks 

GM-ATCI [ 11, 12] 2015 Real 56K frames with 
1280. ×800 resolutions 

Pedestrian detection 

Oxford RobotCar 
[ 13] 

2017 Real 20M frames with 
1024. ×1024 resolutions 

IMU & GNSS & lidar 

WoodScape [ 14] 2019 Real 100K frames with 
1280. ×966 resolutions 

2D/3D object detection 
Semantic/instance 
segmentation Motion 
segmentation IMU & GNSS 
& lidar 

KITTI-360 [ 16] 2022 Real 150K frames with 
1400. ×1400 resolutions 

2D/3D object detection 
IMU & GNSS & lidar 

Multi-FoV [ 17] 2016 Virtual 2.7K frames with 
640. ×480 resolutions 

Visual odometry 

OmniScape [ 18] 2020 Virtual 1024. ×1024 resolutions 2D/3D object detection 
Semantic/instance 
segmentation Depth 
estimation Optical flow 
IMU & GNSS & lidar 

SynWoodScape 
[ 19] 

2022 Virtual 80K frames with 
1280. ×966 resolutions 

2D/3D object detection 
Semantic/instance 
segmentation Depth 
estimation Motion 
segmentation Optical flow 
Event camera IMU & 
GNSS & lidar
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2.2.3 Fish-Eye Projection Model-Based Methods 

Some methods use different fish-eye image projection models to generate images, 
as shown in Table 2.2. These methods can save time and avoid domain adaptation 
problems. Most methods use equidistant models to generate fish-eye images as these 
models are widely applied. These methods convert a normal perspective image to a 
fish-eye image according to the equidistant fish-eye projection model. 

Qian et al. [ 20, 21] used a fixed focal length. Their approach can be extended 
to most datasets from a normal perspective. Using this method, enough fish-eye 
images can be generated to train fish-eye-based detectors. Other methods [ 23– 27] 
use variable parameters to optimize the fixed focal length to achieve effective data 
enhancement with different degrees of freedom (DoF). 

2.2.4 Comparison Between Real and Virtual Datasets 

Real datasets have largely driven the development of fish-eye camera-based applica-
tions. Since it is time-consuming to collect and label fish-eye images, various virtual 
fish-eye datasets complement available training data at a low cost. However, model 
transformation-based methods cannot restore the FoV of a fish-eye camera, which is 
disadvantageous in research related to specific tasks. The data generated by a simu-
lator exhibit the domain offset problem. We suggest that fish-eye cameras equipped 
on intelligent vehicles have a large role in low-speed and short-distance scenarios, 
and large-scale datasets are not available for such specific scenarios, e.g., parking 
lots. In addition, the combined dataset of fish-eye cameras and telephoto cameras is 
also expected as such a combination can cover a wider range of perception space. 

Table 2.2 Methods for generating fish-eye images using fish-eye projection models 

Reference Author Year Description Application 

[ 20] Qian et al. 2017 Fixed imaging plane Pedestrian detection 

[ 21] Deng et al. 2017 Two focal lengths Semantic segmentation 

[ 22] Deng et al. 2018 Surround-view images Semantic segmentation 

[ 23] Blott et al. 2018 Six DoFs of data augmentation Semantic segmentation 

[ 24] Sáez et al. 2018 Variable focal length Semantic segmentation 

[ 25] Qian et al. 2019 Three DoFs of data 
augmentation 

Pedestrian detection 

[ 26] Sáez et al. 2019 Variable focal length Semantic segmentation 

[ 27] Ye et al. 2020 Seven DoFs of data 
augmentation 

Semantic segmentation
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2.3 Fish-Eye Camera Projection Principle 

2.3.1 Four Classic Image Representation Models 

A fish-eye camera provides a large FoV because of its unique projection model. 
The lens of a fish-eye camera is usually combined with multiple optical lenses. The 
incident ray passes through various refractions before mapping into the final image 
plane. The refraction of the incident ray enables a limited image plane to contain 
more of the scene of interest. This process contributes to the large FoV of a fish-eye 
camera. 

The lens model of a fish-eye camera is simplified using Fig. 2.3. The projection 
process is divided into two parts. First, any point .P1(xc, yc, zc) in reality is mapped 
into the imaging plane as .P2(xe, ye, ze). . θ is the angle between the incident ray and 
the optical axis. The imaging plane in a fish-eye camera is a hemisphere, whereas it 
is a flat plane in a normal camera. The focal length. f is the radius of the hemisphere. 
Second, .P2 is mapped to .P3(u, v) in the image plane. Different mapping models 
generate different values of. l, which is the distance between.P3 and the image centre. 
. θ ' is the angle between the final imaging point.P3 and the optical axis.. θ ' is calculated 
from. θ by using different projection models. 

Four classical image representation models are available for fish-eye cameras, as 
shown in Fig.  2.4. Different representation models generate different fish-eye images. 

Fig. 2.3 Simplified lens 
model of a fish-eye camera
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Fig. 2.4 Four image representation models of a fish-eye camera: (from left to right) equidistant, 
equisolid angle, erthographic and stereographic 

• Equidistant: 
.l = f θ (2.1) 

The distance . l between .P3 and the image centre is proportional to the angle . θ
between the incident ray and the optical axis. The proportionality coefficient is 
. f , which is the focal length of the fish-eye camera. In this projection model, the 
largest FoV is 360. ◦. This is the simplest projection model for a fish-eye camera. 

• Equisolid angle: 
.l = 2 f sin(θ/2) (2.2) 

Given the same. θ , the equisolid angle model generates a shorter . l than that of the 
equidistant model. The largest FoV of this model is also 360. ◦. 

• Orthographic: 
.l = f sin(θ) (2.3) 

The pixels in the final image become denser as the angle . θ increases. The largest 
FoV of this model is 180. ◦. 

• Stereographic: 
.l = 2 f tan(θ/2) (2.4) 

The stereographic projection model is also referred to as a conformal mapping 
model in geometry. The largest FoV approaches 360. ◦. 

Figure 2.5 shows a comparison of the four above projection models. The .X axis 
is the angle. θ , and the. Y axis is the distance.l/ f . For a better comparison, the. Y axis 
is divided by . f . 

We can also use a unified model [ 28] to approximate the four projection models 
described above: 

. l = f U (θ) = f (k1θ
1 + k2θ

3 + k3θ
5 + k4θ

7 + k5θ
9) (2.5) 

.k1−5 are parameters. Using this unified model as an example, the transformation 
from.P1 in the space to the pixel .P3 in the image is interpreted as:
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Fig. 2.5 Comparison among the four image representation models of fish-eye cameras 

.

P2(xe, ye, ze) = R P1(xc, yc, zc) + T

l2 =
(
xe
ze

)2

+
(
ye
ze

)2

θ = arctan(l)

θ∗ = U (θ)

u = fxθ∗xe
lze

+ cx v = fyθ∗ye
lze

+ cy

(2.6) 

.R and .T are the rotation matrix and translation matrix from the space to the 
imaging plane, respectively. . fx and . fy are the focal lengths in different directions. 
They are also considered the proportionality coefficients. .P3(u, v) is the final pixel 
in the image. Since the origin of an image is not the image centre, .cx and.cy are used 
to translate the coordinates. According to Eqs. 2.5 and 2.6, .P1 is easily mapped to 
.P3. A final fish-eye image is thus generated. 

2.3.2 Other Wide-Angle Camera Projection Principles 

In addition to fish-eye cameras, other cameras, such as omnidirectional and panoramic 
cameras, support large-angle perception. These cameras are briefly introduced in this 
subsection.



46 Y. Qian and M. Yang

The imaging steps of a wide-angle camera are similar to those of an ordinary 
camera. The main difference concerns the part of the lens that condenses light. To 
obtain a larger FoV, a wide-angle camera has three ways of condensing its lens [ 29]. 

The first projection principle is dioptric projection. The camera uses a lens to 
achieve imaging via the refraction of light. A typical camera is the fish-eye camera 
discussed in this chapter. 

The second projection principle is catadioptric projection. The camera uses a 
standard camera and a mirror, which provides a 360-degree FoV in the horizontal 
plane and an FoV greater than 100. ◦ in the elevation direction. A typical camera is 
an omnidirectional camera [ 30]. 

The third projection principle is the polydioptric projection. The camera expands 
the FoV by combining multiple standard cameras. A typical camera is a panoramic 
camera. 

2.4 Semantic Understanding 

2.4.1 Semantic Segmentation in Fish-Eye Images 

Semantic segmentation tasks are common in computer vision and intelligent trans-
portation. Traditional semantic segmentation algorithms usually focus on traditional 
images. Because of the nonlinear distortion in fish-eye images, the traditional seman-
tic segmentation algorithm is not competitive in fish-eye images. Therefore, many 
researchers have conducted corresponding studies, as shown in Table 2.3. 

2.4.1.1 Adaptive Networks 

Hanisch et al. [ 31] attempted to extract the passable region from the fish-eye image. 
The authors employed the mean shift segmentation algorithm to extract the super-
pixels of the original fish-eye image, divided the superpixels into three categories 
(ground, sky, and obstacle), and extracted the passable area from the ground. 

Baek et al. [ 32] proposed a bottom net for detecting drivable areas. The network 
takes each vertical column of a given image as the input and classifies the pixel 
position of the bottom of the obstacle corresponding to that column. The union of 
all columns builds the drivable area or the curb area. 

2.4.1.2 Data Augmentation 

Blott et al.  [  23] tried to achieve an accurate semantic understanding of fish-eye 
images from another research direction. The authors utilized ordinary images to 
generate fish-eye images to expand their fish-eye image training set and achieved
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Table 2.3 Semantic segmentation methods based on fish-eye images. .Ada.Net. represents an 
adaptive network, and.DataAug. represents data augmentation 

Reference Author Year Distortion solution Solution description 

[ 31] Hanisch et al. 2017 Ada. Net. Superpixels 

[ 32] Baek et al. 2018 Ada. Net. Bottom-Net 

[ 23] Blott et al. 2018 Data Aug. Rectilinear-to-fish-eye 
transformations 

[ 33] Zhou et al. 2019 Data Aug. Skewing and gamma 
correction 

[ 27] Ye et al. 2020 Data Aug. Seven-DOF 
augmentation 

[ 21] Deng et al. 2017 Ada. Net.+ Data Aug. Overlapping pyramid 
pooling module + 
zoom augmentation 

[ 24] Saez et al. 2018 Ada. Net.+ Data Aug. ERFNet + random flips 
and translations 

[ 22] Deng et al. 2018 Ada. Net.+ Data Aug. Restricted deformable 
convolution + zoom 
augmentation 

[ 26] Saez et al. 2019 Ada. Net.+ Data Aug. Optimized ERFNet + 
randomly chosen 
distortions 

[ 34] Playout et al. 2021 Ada. Net.+ Data Aug. Adaptable deformable 
convolution + 
BlenDataset 

data-enhanced effects. Their data enhancement approach consists of six distortion 
depth-first searches (DFSs), such as the rotation, pan, and zoom, thus effectively 
extending the fish-eye image training set. From the point of view of data, this method 
achieves good results in the semantic segmentation of fish-eye images. Ye et al. [ 27] 
followed the same idea and extended the data augmentation method to seven DOFs. 

Zhou et al. [ 33] also explored data enhancement techniques, particularly tilt and 
gamma correction, from a real-world perspective to extend existing models. Their 
approach showed remarkable adaptability to changing lighting conditions and camera 
perspectives. 

2.4.1.3 Adaptive Network + Data Augmentation 

Deng et al. [ 21] proposed overlapping pyramid pooling to extract local, global, and 
pyramid context information to solve the complex scenes contained in language 
images. Based on the overlapping pyramid pool module, the researchers proposed 
the OPP-Net network, which achieves high-accuracy semantic segmentation for fish-
eye images. Afterward, the authors proposed the restricted deformable convolution
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network [ 22] to further effectively solve the semantic segmentation problem caused 
by the distortion of fish-eye images. 

Saez et al. [ 24] adapted ERFNet [ 9, 10] to solve the feature distortion problem 
of fish-eye images. They proposed a new fish-eye image dataset for semantic seg-
mentation based on the CityScapes dataset. Based on ERFNet, researchers further 
proposed the ERFNetPSP network [ 26], which replaced the original ERFNet decod-
ing layer with a manually designed pyramid pooling module, thereby improving the 
effect of semantic segmentation. 

Playout et al. [ 34] leveraged the capabilities of deformable convolutional networks 
[ 35] to take into account nonlinear transformations by geometric fish-eye distortions. 
Furthermore, the authors proposed the adaptable deformable convolution, which 
adapts an existing convolution to the extrinsic deformations of a grid while preserving 
the intrinsic properties of the associated objects. 

2.4.2 Semantic Segmentation in Omnidirectional 
or Panoramic Images 

Since omnidirectional images and panoramic images support the understanding of 
360-degree surroundings, their corresponding semantic segmentation methods are 
discussed here. 

2.4.2.1 Adaptive Networks 

Yang et al. [ 36] proposed a panoramic annular semantic segmentation (PASS) frame-
work to perceive the entire surroundings of an image based on a compact panoramic 
annular lens system and an online panorama unfolding process. To consistently 
exploit the rich contextual cues contained in the unfolded panorama, they adapted 
the real-time ERFNetPSP [ 37] to predict semantically meaningful feature maps in 
different segments and fused them to achieve smooth and seamless panoramic scene 
parsing. 

The work has been further advanced in multiple directions. In [ 36, 38] was  
extended with a detailed description of the proposed PASS framework and a PASS 
dataset to benchmark panoramic perception algorithms. In [ 39], the network archi-
tecture was replaced by the attention-connected SwaftNet. Moreover, the authors 
extended the PASS dataset by finely annotating more detail-critical classes, such 
as sidewalks and pedestrians. In [ 40], the authors proposed the omnisupervised, 
omnidirectional, semantic segmentation framework via multisource omnisupervised 
learning. The latest advancements include frameworks that focus on dimensionwise 
positional priors [ 41] and omnirange contextual dependencies [ 42].
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2.4.2.2 Unsupervised Domain Adaptation 

Ma et al. [ 43] used another idea to achieve panoramic semantic segmentation. The 
authors proposed an unsupervised domain adaptation method with an attention-
augmented context exchange. Furthermore, a novel, densely annotated dataset, 
namely, DensePASS, was proposed. Zhang et al. [ 44] further extended this work 
with several domain adaptation modules, a detailed description of the DensePASS 
dataset, and an extended set of experiments and analyses. 

2.4.3 Instance and Panoptic Segmentation 

In addition to semantic segmentation, instance segmentation and panoptic segmen-
tation have also been important image segmentation tasks in recent years. In this 
subsection, we briefly summarize the instance segmentation and panoptic segmen-
tation methods that are applied to wide-angle images. 

Dufour et al. [ 45] proposed a data augmentation method for instance segmentation 
in fish-eye images. Their method is similar to that of [ 21, 23, 24, 27]. The authors 
employed a Mask R-CNN [46] as the baseline and mixed fish-eye images and ordinary 
images for training, obtaining satisfactory segmentation results on both rectilinear 
and fish-eye images. 

Jaus et al. [ 47] proposed a panoptic segmentation method for panoramic images. 
To overcome the lack of annotated panoramic images, the authors proposed a 
panoramic robust feature (PRF) framework that enables model training on stan-
dard pinhole images and transfers the learned features to a different domain. Using 
the proposed method, the authors managed to achieve significant improvements on 
their Wild Panoramic Panoptic Segmentation (WildPPS) dataset. 

Petrovai et al. [ 48] proposed a complete process for developing a 360-degree, 2D, 
semantic environmental perception system using five cameras. The authors proposed 
deep learning-based, semantic virtual cameras that provide pixel-level, semantic, 
instance and panoptic information. The panoptic module yields increased segmen-
tation accuracy and facilitates low-level fusion with 3D point clouds as part of the 
3D perception system. 

2.4.4 Analysis of Semantic Understanding 

As a fine-grained task, image segmentation is more difficult than object detection. 
Thus, almost all the work is based on deep learning techniques. We discover that in 
semantic segmentation research involving fish-eye images, researchers try to develop 
a variety of advanced deep network techniques, which greatly promotes research in 
this field. In future research, it will be an exciting task to establish a unified semantic 
segmentation model for various image representation models.
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2.5 Object Detection 

In this section, methods of target detection and tracking using fish-eye images are 
introduced. This task is the most extensive use of fish-eye cameras. A single fish-eye 
camera can detect targets in a wider FoV, which is important for intelligent vehicle 
applications such as obstacle avoidance and vehicle tracking. However, the effect of 
severe image distortion on the detector is significant, as shown in Fig. 2.2a. Many 
approaches have been proposed to address this problem; they fall into two categories: 
the two-step approach and one-step approach. 

In the two-step method, the input fish-eye image is processed into a general image 
representation model, thus reducing the image distortion to a certain extent. In the 
one-step method, the processing steps are directly performed on the original fish-eye 
image, and the results are directly displayed in the fish-eye image. Since the two-
step method heavily relies on various image representation models, we introduce 
the classical image representation models that are commonly employed to correct 
fish-eye images. 

2.5.1 Different Image Representation Models 

2.5.1.1 Fish-Eye Model 

The fish-eye model, which also known as the spherical model, is the main research 
object of this paper. Fish-eye projection involves four classical image representation 
models, which are discussed in Sect. 2.2. The vertical and horizontal angles of fish-
eye projections are limited to 180. ◦, and the resulting image can be placed in a circle. 
Therefore, the farther the line is from the centre of the image grid, the greater the 
curvature. 

2.5.1.2 Rectilinear Model 

The main advantage of rectilinear projection is that it maps all lines in three-
dimensional space to lines on a two-dimensional grid. The result of a rectilinear 
projection is an image with a normal perspective, as shown in Fig. 2.1b. As rectilin-
ear projection can produce a scene similar to a normal perspective image, it is widely 
utilized to correct fish-eye images. 

The main drawback of rectilinear projection is that the perspective is greatly 
enhanced as the angle of view increases, which causes the objects at the edges of the 
resulting image to tilt. When using linear projection to correct a fish-eye image, the 
information at the edges of the image must be relinquished.
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2.5.1.3 Cylindrical Model 

Cylindrical projection can produce a complete, horizontal FoV of 180. ◦, holding 
more information than linear projection. In addition, as cylindrical projection is more 
accurate than rectilinear projection in maintaining the target size, it is also widely 
employed to correct fish-eye images when a larger horizontal part of the scene needs 
to be maintained. However, cylindrical projection renders straight lines parallel to 
the line of sight of the observer as curves. Moreover, as the target approaches the 
north and south poles, the poles infinitely extend. 

2.5.1.4 Equirectangular Model 

An equirectangular projection is similar to a cylindrical projection. Equirectangular 
projection directly converts the longitude and latitude coordinates of a sphere into 
a grid of horizontal and vertical coordinates. Thus, equirectangular projection can 
achieve a 180-degree FoV for a given scene in the horizontal and vertical directions. 
However, significant distortion occurs in the vertical direction. 

2.5.1.5 Mercator Model 

The Mercator projection is closely related to cylindrical and isorectangular projec-
tions as it is a compromise between them. Compared to a cylindrical projection, the 
Mercator projection produces a minor vertical stretch and a larger available vertical 
angle, but its lines are more curved. This projection is widely applied to generate 
planar graphs. 

2.5.1.6 Other Models 

Several other image representation models, e.g., spherical, cube-map, icosahedron, 
tangent, hexagonal, and longitude-latitude models, are available. The spherical model 
projects 360-degree horizontal and vertical FoVs onto a spherical surface, and the 
fish-eye camera results can be compared to a hemispherical image representation 
[ 49]. The cube-map, icosahedron and tangent models are considered different image 
unfolding methods for spherical images. The cube-map model simplifies a spherical 
image into a cube and unfolds the six faces of this cube to form a 2D view [ 50]. The 
icosahedron model is an approximation of the spherical model that uses twenty equi-
lateral triangles to simplify a sphere. The tangent model is based on the icosahedral 
model and further reduces the distortion induced by the spherical model [ 51]. The 
hexagonal model has advantages over traditional square arrangements in some image 
processing fields [ 52]. The longitude-latitude model is often employed to transform 
spherical images and panoramic images [ 53].
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2.5.2 Two-Step Methods 

In two-step methods, first, fish-eye images are rectified to normal images. Second, 
algorithms are applied to these normal images. Since two steps are involved in these 
algorithms, they are referred to as two-step methods. Two-step methods exhibit better 
scalability than one-step methods; i.e., most algorithms can be directly applied to 
rectified images without any alterations. 

The rectification process is the transformation of different projection models. 
Notably, it is impossible to map a spherical image onto one flat surface without 
any distortion. Therefore, each projection has its own distortion while rectifying 
other distortions. Several commonly employed image representation models have 
been introduced in the previous subsection. The white lines are the longitudinal and 
latitudinal lines of the spherical world. Different image representation models are 
easily distinguished according to the distortion of these lines. 

We organize the rectification methods developed since 2005 for fish-eye images 
in intelligent vehicles in Table 2.4. In most papers, fish-eye images are rectified by 
using the rectilinear model [ 11, 12, 54– 59, 62– 64]. The rectilinear model is exactly 
the normal perspective image model, as shown in Fig. 2.1a. All the straight lines 
remain straight in the rectilinear image, which is the way a human observes things. 
Afterward, normal algorithms are directly applied to the rectified image. 

Some works choose other image representation models to rectify fish-eye images, 
e.g., the cylindrical model [ 60, 61, 65], equirectangular model [ 68], and Mercator 
model [ 67]. The common characteristic of these three projections is that they can 
keep a line straight in the vertical direction. The advantages of these three image 
representation models are described as follows: (1) It is easy to stitch multiple fish-
eye images to form an omnidirectional image since the alignment in the vertical 
direction is accurate. Usually, modern intelligent vehicles are equipped with four 
fish-eye cameras, and the resultant omnidirectional image can be fused using such 
methods. (2) Traffic objects, especially pedestrians, are less distorted in the horizontal 
direction in the corrected image as pedestrians remain upright after rectification, 
making them easier for the detector to identify. 

2.5.3 One-Step Methods 

Some solutions design specialized methods to adapt to the distortion in fish-eye 
images. Since these methods can be directly applied to the original fish-eye images, 
they are referred to as one-step methods in this chapter. One-step methods omit com-
plicated calibrations and rectification processes and can be directly applied to original 
fish-eye images. Moreover, two-step methods inevitably lose information during the 
rectification process, while one-step methods retain all information contained in the 
original fish-eye images.
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Table 2.4 Two-step methods for object detection and tracking 

Reference Author Year Rectification model Rectification method 

[ 54] Bertozzi et al. 2005 Rectilinear model Lookup table 

[ 55] Wybo et al. 2007 Rectilinear model IPM and probabilistic 
reasoning 

[ 56] Yang et al. 2008 Rectilinear model IPM and background 
subtraction 

[ 57] Ma et al. 2009 Rectilinear model Unknown 

[ 58] Lin et al. 2010 Rectilinear model Backward mapping 
algorithm 

[ 59] Zhang et al. 2011 Rectilinear model Unknown 

[ 60] Cheng et al. 2011 Cylindrical model Coordinate 
transformation 

[ 61] Gressmann et 
al. 

2011 Cylindrical model Multicamera fusion 

[ 62] Tsuchiya et 
al. 

2012 Rectilinear model Inverse perspective 
mapping 

[ 63] Balisavira et 
al. 

2012 Rectilinear model Inverse perspective 
mapping 

[ 64] Broggi et al. 2014 Rectilinear model Virtual views 

[ 11] Silberstein et 
al. 

2014 Rectilinear model Caltech Camera 
Calibration Toolbox 

[ 12] Levi et al. 2015 Rectilinear model Unknown 

[ 65] Bertozzi et al. 2015 Cylindrical model Camodocal[ 66] 

[ 67] Suhr et al. 2017 Mercator model Unknown 

[ 68] Deng et al. 2017 Equirectangular model Longitude-latitude 
method 

We organize the one-step methods developed since 2011 for fish-eye images in 
intelligent vehicles in Table 2.5. 

2.5.3.1 Distortion Adaptation 

Bui et al.  [  75, 76] evaluated the effect of the deformable part model (DPM) algorithm 
on fish-eye images. Compared with the entire body, the limbs of the human body 
have less distortion in fish-eye images, and a method based on deformed components 
can adapt well to this characteristic. The researchers further reset the position of 
each component in their entire template, and the algorithm achieved ideal pedestrian 
detection performance. 

Qian et al. [ 20] also made improvements based on the DPM algorithm. The 
researchers set a weight that could be learned for all root templates and component 
templates and that could adaptively learn the human features of the input fish-eye
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Table 2.5 One-step methods for object detection and tracking 

Reference Author Year Distortion solution Solution description 

[ 69] Molineros 
et al. 

2012 Segmented processing Residual flow 

[ 70] Cheng et al. 2012 Segmented processing Parts-based method 

[ 71] Tadjine et al. 2013 Segmented processing Multiple features and 
classifiers 

[ 72] Bui et al. 2013 Segmented processing Histogram of oriented 
gradients (HOG) + 
support vector machine 
(SVM) 

[ 73] Kwon et al. 2014 Distortion adaptation Background 
compensation 

[ 74] Liao et al. 2014 Distortion adaptation Active contour model 

[ 75] Bui et al. 2014 Distortion adaptation Deformable part model 
based pedestrian detector 

[ 76] Bui et al. 2014 Distortion adaptation Deformable part model + 
ROI 

[ 77] Furnari et al. 2014 Segmented processing Affine region detectors 

[ 78] Dooley et al. 2015 Segmented processing Different strategies for 
different distances 

[ 79] Fremont et al. 2016 Data augmentation Deformable part model + 
three-sensor fusion 

[ 20] Qian et al. 2017 Distortion adaptation Adaptive deformable 
part model 

[ 80] Baek et al. 2018 Segmented processing Multiple ROIs 

[ 25] Qian et al. 2019 Distortion adaptation OSTN: oriented spatial 
transformer network 

[ 81] Yahiaoui 
et al. 

2019 Distortion adaptation FisheyeMODNet 

[ 82] Qian et al. 2020 Data augmentation Adversary 
learning-based data 
augmentation 

[ 83] Li et al. 2020 Distortion adaptation FisheyeDet 

[ 84] Wu et al. 2020 Distortion adaptation Post-process of 
SiamRPN++ 

[ 85] Zhao et al. 2021 Data augmentation Transfer learning 
fish-eye images using for 
pedestrian 
re-identification 

[ 15] Rashed et al. 2021 Distortion adaptation FisheyeYOLO 

[ 86] Plaut et al. 2021 Distortion adaptation 3D detection model 
adaptation via 
cylindrical images
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image during the training process. The settings of these learnable weights greatly 
improve the ability of the algorithm to adapt to distorted targets. In addition, Qian 
et al. [ 25] continued to design the oriented spatial transformation network (OSTN), 
which can transform distorted pedestrian features into upright normal pedestrian 
features. This approach has achieved better accuracy in pedestrian detection tasks 
involving fish-eye images. 

Yahiaoui et al. proposed FisheyeMODNet [ 81] to detect moving objects. The 
method is adapted from the ShuffleSeg network [ 87]. Li et al. proposed FisheyeDet 
[ 83] based on a self-study and contour-based object detector. The network adaptively 
extracted distortion features without prior information. Rashed et al. [ 15] adapted 
the You Only Look Once version 3 (YOLOv3) [ 88] model to output different repre-
sentations. As in YOLOv3, object detection is performed at multiple scales. Plaut et 
al. proposed a 3D object detection method for fish-eye images [ 86]. This was the first 
approach to enable the use of existing 3D object detectors. The method was designed 
for perspective images and trained only on datasets containing perspective images. 

2.5.3.2 Segmented Processing 

Dooley et al. [ 78] devised different approaches according to the distance of the 
target vehicle as a vehicle has less distortion at greater distances in a fish-eye image 
and greater distortion up close. At a distance of 10-40 meters, the adaptive boosting 
(AdaBoost) classifier can be directly applied. For short distances, a wheel recognition 
method was proposed. 

Baek et al. [ 80] discovered that the target in a fish-eye image has a larger distortion 
at the edge of the image and a smaller distortion at the centre of the image. Therefore, 
the researchers divided a whole fish-eye image into three ROIs; the middle part was 
directly detected by a traditional CNN because of its small feature distortion. For the 
left and right ROIs, a distorted network model was specifically trained. 

2.5.3.3 Data Augmentation 

Fremont et al. [ 79] divided a fish-eye image into seven regions corresponding to 
four different degrees of target distortion. The authors generated four corresponding 
training samples based on the imaging model of their fish-eye camera. Data augmen-
tation is a very important step in machine algorithms. The training samples generated 
by this method greatly benefit the subsequent pedestrian detector. This approach has 
achieved good results in pedestrian detection based on fish-eye images and has a 
massive role in heavy machinery. 

Qian et al. [ 25] proposed the projective model transformation algorithm, which 
generates fish-eye images from normal perspective images according to the imaging 
principle of the utilized fish-eye camera. This method can be directly applied to most 
normal datasets to generate numerous fish-eye training samples. These numerous 
samples provide ample room for the training of various algorithms based on deep
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learning. The authors further proposed a hard example mining method based on 
adversarial learning [ 82, 89]. Through adversarial training, this method can further 
excavate large distortions and difficult fish-eye images. These images are very sig-
nificant with regards to long-tail scenes and significantly improve the performance 
of deep neural networks. 

2.5.4 Analysis of Object Detection 

In terms of early practical applications, the two-step approach has gained more 
attention because of its convenience. In recent years, with the development of deep 
learning technology, an increasing amount of work has been directly carried out on 
fish-eye images. We suggest that the current approach to fish-eye image detection 
tasks is too customized. Even the detection method based on the deep network has 
difficulty obtaining good results on perspective and fish-eye images. In future work, 
the most advanced deformable convolutional network structures [ 90– 96] and domain 
adaptive methods should be developed in this field. 

2.6 Summary and Prospects 

In this paper, the fish-eye camera and its application in autonomous driving are 
introduced. First, we introduce the projection principle of the fish-eye camera and 
four classic fish-eye image representation models. Second, we present the current 
dataset of real and virtual fish-eye images. Last, we organized various development 
applications for fish-eye cameras in autonomous driving. 

We present the following summary and prospect of the fish-eye camera in 
autonomous driving. 

• Depth perception in fish-eye images is a valuable research task. Due to the matu-
rity of depth reconstruction in normal perspective images, the corresponding tech-
nology can introduce depth perception to fish-eye images. Combined with AVM 
technology, depth perception can greatly help intelligent vehicles, for example, by 
providing collision warnings and automated valet parking. 

• We suggest that the current approach to fish-eye image detection tasks is too 
customized. Even the detection method based on the deep network has difficulty 
obtaining good results on perspective and fish-eye images. In future work, the 
most advanced deformable convolutional network structures and domain adaptive 
methods should be developed in this field. 

• Although researchers try to solve the semantic segmentation task with various new 
depth learning technologies, the unified representation of image features has not 
yet been established. In future research, it will be exciting to establish a unified 
semantic segmentation model for various image representation models.
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• Compared with the common image dataset, the fish-eye image dataset is insuffi-
cient. Even existing fish-eye datasets are often geared towards conventional driving 
scenarios. We suggest that fish-eye cameras are most valuable for low-speed and 
short-range scenarios because of the lack of a scene-specific dataset. 
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Chapter 3 
Stereo Matching: Fundamentals, 
State-of-the-Art, and Existing Challenges 

Chuang-Wei Liu, Hengli Wang, Sicen Guo, Mohammud Junaid Bocus, 
Qijun Chen, and Rui Fan 

Abstract Stereo matching is the process of generating dense correspondences in 
stereo images in order to create a disparity map for depth perception. Stereo match-
ing is different from flow estimation task due to stereo rectification, which ensures 
that correspondences are always co-linear in a pair of stereo images. Stereo vision 
has become increasingly popular in mobile devices, such as autonomous cars and 
unmanned aerial vehicles, thanks to recent advances in full-feature embedded micro-
computers. However, due to limited computing resources, there is a growing need 
for stereo matching algorithms that strike a balance between disparity estimation 
accuracy and efficiency. Challenges in this field include the lack of disparity ground 
truth, domain adaptation, and intractable areas such as occlusions. This chapter covers 
the fundamentals of stereopsis, including the perspective camera model and epipolar 
geometry, and reviews the most advanced stereo matching algorithms. It also explores 
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disparity confidence measures, disparity estimation evaluation metrics, and publicly 
available datasets and benchmarks, before summarizing the outstanding challenges 
in this field. 

3.1 Introduction 

Stereo matching is one of the most important tasks in computer vision, drawing 
the attention of many researchers for its wide range of applications [ 1], including 
autonomous driving [ 2– 4], unmanned aerial vehicles [ 5], road condition assessment 
[ 6– 10], mobile robot navigation [ 11, 12], and remote sensing [ 13]. In addition to 
the rapid development of stereo matching algorithms, there has been a parallel effort 
to create public benchmarks and datasets [ 14– 17] that can serve as baselines for 
researchers to evaluate the effectiveness of their own stereo matching algorithms. 
With the advancement of machine learning techniques, stereo matching algorithms 
have been able to achieve exceptional accuracy on public benchmarks [ 18]. However, 
many challenges remain unresolved, hindering more accurate disparity estimation 
and wider application [ 19]. These challenges include disparity estimation in occluded 
regions [ 20] and unsupervised training [ 21]. 

This chapter aims to offer researchers interested in stereopsis a thorough introduc-
tion to the fundamentals of stereo matching, which includes the perspective camera 
model and the epipolar geometry of a stereo system. Section 3.4 covers a detailed 
discussion of the latest stereo matching algorithms, which are classified into two cat-
egories: explicit programming-based and deep learning-based. Then, in Sect. 3.5, we  
introduce the disparity confidence measure, which is a commonly used auxiliary task 
in stereo matching due to its ability to provide prior knowledge of the degree of diffi-
culty in disparity estimation. In Sect. 3.6, we discuss the metrics used for evaluating 
the accuracy and efficiency of disparity estimation. We also introduce several pub-
licly available stereo matching datasets and commonly-used benchmarks in Sect. 3.7. 
Finally, in Sect. 3.8, we summarize the four main challenges that currently exist in 
the stereo matching task. This chapter provides a comprehensive overview of the 
field of stereo matching and serves as a valuable resource for researchers conducting 
related studies. 

3.2 One Camera 

3.2.1 Perspective Camera Model 

The perspective camera model projects observed points in the world onto its imag-
ing plane through the camera center. As illustrated in Fig. 3.1, .oC denotes the 
camera center; .∏ and .∏̂ represent the imaging plane and the normalized imag-
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Fig. 3.1 Illustration of the 
perspective camera model, in 
which light travels in a 
straight line 

ing plane, respectively; . f represents the camera focal length. The optical axis is 
the ray originating at .oC and passing perpendicularly through . ∏. An observed 3D 
point . pC = [xC, yC, zC]T in the camera coordinate system (CCS) is projected to 
. p̄ = [x, y, f ]T on . ∏. The geometric relationship between . pC and . p̄ is as follows: 

..
xC

x
= yC

y
= zC

f
. (3.1) 

. p̂C = [ xCzC ,
yC

zC , 1]T is the normalized coordinates of . pC on . ∏̂, and thus (3.1) can be 
rewritten as follows [ 22]: 

.. p̄ = f p̂C = f

zC
pC. (3.2) 

3.2.2 Intrinsic Matrix 

In a perspective camera model, the relationship between point. p̄ = [x, y, f ]T on the 
image plane .∏ and its corresponding image pixel . p = [u, v]T is given by [ 23]: 

..u − uo = αx x, v − vo = αy y, (3.3) 

where the optical axis intersects the image plane at the image coordinates .[uo, vo]T; 
.αx and .αy denote the effective size measured horizontally and vertically from the 
imaging plane.∏ to the image (in pixels per millimeter), respectively [ 22]. Plugging 
(3.2) into (3.3) yields: 

..u − uo = αx f
xC

zC
, v − vo = αy f

yC

zC
. (3.4) 

Equation (3.4) can be rewritten as a matrix expression as follows: 

.. p̃ = 1

zC
K pC = 1

zC

⎡
⎣
fx 0 uo
0 fy vo
0 0 1

⎤
⎦

⎡
⎣
xC

yC

zC

⎤
⎦, (3.5)
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where.K denotes the camera intrinsic matrix;. p̃ = [ pT, 1]T = [u, v, 1]T denotes the 
homogeneous coordinates of . p; . fx = αx f and . fy = αy f . Plugging (3.5) into (3.2) 
yields: 

.. p̂C = K−1 p̃ = p̄
f

= pC

zC
. (3.6) 

Therefore, all the 3D points on the ray originating at .oC and passing through . p̄ are 
projected on the image plane at . p̄. 

3.3 Two Cameras 

3.3.1 Geometry of Multiple Images 

3.3.1.1 Epipolar Geometry 

The geometric constraint relationship between two perspective camera models is 
known as epipolar geometry, as illustrated in Fig. 3.2. Given two perspective camera 
models,.∏L and.∏R are the left and right image planes, respectively;.oCL and.oCR are the 
origins of the left camera coordinate system (LCCS) and the right camera coordinate 
system (RCCS) and the optic centers of the two camera models, respectively; . eL
and .eR denote the left and right epipolar line, respectively. For a 3D point . pW in 
the world coordinate system (WCS), its representations in the LCCS and RCCS are 
denoted by . pCL = [xCL , yCL , zCL]T and . pCR = [xCR , yCR , zCR]T, respectively. On the basis 
of 3D coordinate transformation in Appendix A, . pCL can be transformed into . pCR
using the rotation matrix .R ∈ R

3×3 and the translation vector .t ∈ R
3×1 between the 

camera models: 
.. pCR = R pCL + t. (3.7) 

Fig. 3.2 Illustration of the epipolar geometry. The epipolar plane is uniquely defined by .oCL , .o
C
R, 

and. pW
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The projection point of . pW on.∏L and.∏R are . p̄L = [xL, yL, zL] = fL
zCL
pCL and. p̄R =

[xR, yR, zR] = fR
zCR
pCR, respectively; . fL and . fR represent the focal lengths of the left 

and right cameras, respectively; The epipolar plane is defined by the camera centers 
.oCL, .o

C
R and the 3D point . pW; The two epipolar lines represent the intersection of the 

epipolar plane and the two image planes .∏L and .∏R, respectively. Using (3.6), . pCL
and . pCR can be normalized as follows: 

.. p̂CL = pCL
zCL

= K−1
L p̃L, p̂CR = pCR

zCR
= K−1

R p̃R, (3.8) 

where .KL and .KR are the left and right intrinsic matrices, respectively; . p̃L =
[ pT

L , 1]T = [uL, vL, 1]T and . p̃R = [ pT
R , 1] = [uR, vR, 1]T are the homogeneous 

coordinates of the image pixels . pL and . pR, respectively. 
Considering an arbitrary 3D point . pW0 on the ray that emanates from . p̄L and 

passes through . pW, it is always projected on .∏L at . pL as discussed in Sect. 3.2.2. 
Additionally, its projection on .∏R is on the right epipolar line . eR, denoted by right 
image pixel . pR0

= [uR0 , vR0 ]T. In the right image, the right epipolar line .eR can be 
described by a vector .eR = [aR, bR, cR]T, which satisfies the following property: 

.. p̃T
R0
eR = [ pT

R0
, 1]eR = aRuR0 + bRvR0 + cR = 0, (3.9) 

where . p̃R0
= [ pT

R0
, 1]T represents the homogeneous coordinate of the image pixel 

. pR0
. 

3.3.1.2 Fundamental Matrix 

Fundamental matrix. F is a.3 × 3matrix that describes the epipolar geometry between 
stereo images. It corresponds an arbitrary image pixel . pL in one view to a straight 
line in the other view. Multiplying both sides of (3.7) by . pCR

T[t]× yields: 

.. pCR
T[t]× pCR = pCR

T[t]×(R pCL + t), (3.10) 

where.[t]× denotes the skew-symmetric (or antisymmetric) matrix of. t (see Appendix 
B for the definition and properties of a skew-symmetric matrix). According to (B.4), 
(3.10) can be rewritten as follows: 

.. − pCR
T[ pCR]× t = pCR

T[t]×R pCL + pCR
T[t]× t. (3.11) 

Applying (B.3) to (3.11) results in: 

.. pCR
T[t]×R pCL = 0. (3.12)
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Plugging (3.8) into (3.12) yields: 

.. p̃T
R KR

−T[t]×RKL
−1 p̃L = p̃T

R F p̃L = 0, (3.13) 

where the fundamental matrix .F is defined as: 

..F = KR
−T[t]×RKL

−1. (3.14) 

According to (3.9), (3.13) can be rewritten as follows: 

.. p̃T
R0
F p̃L = p̃T

R0
eR = 0, (3.15) 

which indicates that for all points on the ray originating at .oCL and passing through 
. p̄L, their corresponding pixels in the right image plane form the right epipolar line 
. eR. .eR is uniquely defined by . pL as follows: 

..eR = F p̃L. (3.16) 

3.3.1.3 Essential Matrix 

Similar to the fundamental matrix, the essential matrix .E ∈ R
3×3 depicts the point-

line correspondence in the left and right normalized planes. An essential matrix can 
be considered as a special case of a fundamental matrix, that is, the intrinsic matrices 
.KL and.KR of two calibrated left and right cameras are already known. Thus (3.12) 
can be rewritten as follows: 

.. pCR
T[t]×R pCL = pCR

T
E pCL = 0, (3.17) 

where the essential matrix .E is defined as: 

..E = [t]×R. (3.18) 

Applying (3.8) to (3.17) yields: 

.. p̂CR
TE p̂CL = 0. (3.19) 

Similar to (3.16), .E p̂CL denotes the parameters of the corresponding straight line in 
the normalized right image plane of the normalized left point . p̂CL.
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3.3.2 Stereopsis 

3.3.2.1 Stereo Rectification 

A pair of synchronized cameras can be used for 3D scene reconstruction, which 
involves determining the corresponding pixels between the left and right images. 
However, finding the corresponding pixel pairs on a 2D image space (optical flow 
estimation) is extremely time consuming. As discussed in Sect. 3.3.1.1, for a properly 
calibrated stereo vision system, . R, . t , .KL, and .KR are already known, allowing 
the search range to be reduced to 1D along the epipolar line. In general, stereo 
rectification is applied as an image transformation process to align the two epipolar 
lines horizontally when the following relationship is satisfied: 

..R = I, t = [T, 0, 0]. (3.20) 

Plugging (3.20) into (3.18) yields: 

..E = [t]×R = t × R =
⎡
⎣
0 0 0
0 0 −T
0 T 0

⎤
⎦ . (3.21) 

Considering a correspondence of normalized points . p̂CL = [xL, yL, 1] in the LCCS 
and . p̂CR = [yR, yR, 1] in the RCCS, applying (3.21) to (3.19) results in: 

.. p̂CR
TE p̂CL = [xL, yL, 1][0,−T, T × yR]T = T × (yR − yL) = 0, (3.22) 

which indicates that . p̂CL and. p̂CR have the same. y coordinate, that is, the search range 
is further simplified to a horizontal row. The stereo rectification mainly involves the 
following steps [ 24]: 

1. Orient the right camera with respect to the left camera using.R to ensure the right 
image plane is parallel to the left image plane; 

2. Rotate the right camera by .Rrect so that the left epipole is at infinity; 
3. Reapply the same rotation to the right camera to restore the initial epipolar geom-

etry; 
4. Scale the left and right images to ensure an identical equivalent intrinsic matrix 

of the stereo cameras. 

After the stereo rectification, the two image planes become coplanar, and conjugate 
epipolar lines become collinear and parallel to the horizontal image axis [ 22], as 
illustrated in Fig. 3.3, where.∏'

L and.∏'
R denote the rectified image planes. Therefore, 

the process of finding corresponding pairs is further simplified to a 1D horizontal 
search problem.
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Fig. 3.3 Illustration of the stereo rectification. The left and right epipolar lines in a rectified stereo 
vision system are co-linear 

3.3.2.2 Stereo Vision System 

A properly rectified stereo vision system is depicted in Fig. 3.4, where the cameras 
are aligned in a parallel configuration. As a result of this alignment, the left and right 
cameras are considered identical, and their intrinsic matrices .KL and .KR are given 
by: 

..KL = KR =
⎡
⎣
fx 0 u0
0 fy v0
0 0 1

⎤
⎦ . (3.23) 

The length of the baseline of the stereo vision system is . Tc, and the origin .oW of the 
WCS is positioned at the center of the baseline. The x, y and z-axis of the WCS are 
parallel to which of the LCCS and RCCS, and their x-axis are collinear. Hence, the 
rotation matrices between the three coordinate systems are both a third-order identity 
matrix . I , and the translation vectors from the WCS to the LCCS and the RCCS are 
.tL = [−Tc/2, 0, 0]T and.tR = [Tc/2, 0, 0]T, respectively. Plugging (3.7) and (3.23) 
into (3.8) yields the following expressions: 

..

xL = fx
xW + Tc/2

zW
, yL = fy

yW

zW
,

xR = fx
xW − Tc/2

zW
, yR = fy

yW

zW
.

(3.24)
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Fig. 3.4 Basic stereo vision system 

For a 3D world point . pW = [xW, yW, zW]T, its corresponding pixel in the left and 
right images are denoted by . pL and . pR, respectively. Applying (3.24) into (3.3) 
results in the coordinates of . pL and . pR: 

.. pL =
[
uL
vL

]
=

[
fx

xW

zW + uo + fx
Tc
2zW

fy
yW

zW + vo

]
, pR =

[
uR
vR

]
=

[
fx

xW

zW + uo − fx
Tc
2zW

fy
yW

zW + vo

]
,

(3.25) 
which further illustrates that . p̂CL and . p̂CR have the same . y coordinate, as discussed 
in Sect. 3.3.2.1. Therefore, the disparity . d (distance between co-row corresponding 
pixels) and depth .zW can be linked using: 

..d = uL − uR = fx
Tc
zW

, (3.26) 

which indicates that. d is inversely proportional to.zW. That is, when the 3D point. pW

lies away from the stereo vision system along the z-axis, its corresponding disparity 
. d, the distance between .uL and .uR, is small. 

3.4 Stereo Matching 

With a properly rectified stereo vision system, the stereo matching task consists of 
finding the corresponding pairs of points (. pL and . pR), and generating the dense 
disparity maps, as shown in Fig. 3.5. The performance of stereo matching algo-
rithms is typically evaluated based on two main criterias: speed and accuracy. In 
general, there is a trade-off between speed and accuracy in stereo matching algo-
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Fig. 3.5 a Left stereo image; b right stereo image; c left disparity map; d right disparity map 

rithms. Well-designed algorithms tend to require more computations, resulting in a 
slower processing speed. The emphasis on speed or accuracy depends on the specific 
application of the stereo vision system [ 25]. For example, real-time performance is 
crucial for stereo vision systems used in autonomous driving [ 23], while accuracy is 
more important for indoor environment modeling [ 26]. Although advances in hard-
ware are likely to reduce processing time in the future, improvements in algorithms 
and software are still significant. 

Stereo matching algorithms can be divided into two classes: explicit programming-
based and machine learning-based. The former considers disparity estimation as a 
local block matching problem or a global energy minimization problem [ 27], while 
the latter considers disparity estimation as a regression problem [ 28]. 

3.4.1 Explicit Programming-Based Stereo Matching 
Algorithms 

Explicit programming-based stereo matching algorithms can be categorized into 
three types: local, global, and semi-global [ 29]. Local algorithms determine the dis-
parity by finding the lowest cost or highest correlation, using a strategy called winner-
takes-all (WTA). Global stereo matching algorithms formulate the problem of dis-
parity estimation as a global energy minimization problem. This can be solved using 
Markov random fields (MRF)-based optimization algorithms [ 30] such as graph-
cut (GC) [ 31] and dynamic programming (DP) [ 32]. Semi-global matching (SGM) 
[ 33, 34] approximates the MRF inference by performing cost aggregation along all 
directions in the image, which greatly improves the trade-off between the accuracy 
and efficiency of stereo matching [ 35]. Generally, the explicit programming-based 
stereo matching algorithms consist of four main steps: (1) cost computation, (2) cost 
aggregation, (3) disparity optimization and (4) disparity refinement [ 36].
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3.4.1.1 Cost Computation 

For all the pixels in the stereo images, each disparity candidate is associated with 
a matching cost. Generally, cost computation is used for evaluating the similarity 
of correspondence pairs, and a lower cost indicates a higher matching probability. 
Distance formulas including Manhattan distance and Euclidean distance are widely 
applied in cost computation, such as the absolute difference cost.cAD and the squared 
difference cost .cSD, which are defined as follows [ 37]: 

..

cAD(u, v, d) = ||IL(u, v) − IR(u − d, v)
||,

cSD(u, v, d) = (
IL(u, v) − IR(u − d, v)

)2
,

(3.27) 

where . d represents disparity; .IL(u, v), .IR(u − d, v) denote the pixel intensities of 
.(u, v) in the left stereo image and .(u − d, v) in the right stereo image, respectively. 

3.4.1.2 Cost Aggregation 

In regions with weak texture or repetitive patterns, the effectiveness of the WTA 
strategy can be significantly impaired as there may be several correspondence pairs 
with similar costs. In order to avoid incorrect matches, .cagg aggregates matching 
cost by weighing the matching cost of a support region centered around the pixel 
. p = [u, v]T [ 38]: 

..cagg( p, d) = w( p, d) ∗ C( p, d), (3.28) 

where .w denotes the support region kernel; .C refers to the matching costs or cor-
relations of all the pixels within . w. A commonly adopted method for computing 
aggregation cost .cagg is by performing a convolution between .w and . C . 

Primal methods [ 27] use fixed square windows centered at each pixel as support 
regions, and all the elements in. w are 1. In this way, the aggregation process becomes 
a uniform box filtering, and (3.27) can be reformulated as follows: 

..

cSAD(u, v, d) =
∑
q∈Np

||IL(u, v) − IR(u − d, v)
||,

cSSD(u, v, d) =
∑
q∈Np

(
IL(u, v) − IR(u − d, v)

)2
,

(3.29) 

where .Np denotes the square window centered at . p = [u, v]T. Manhattan distance 
is used in SAD and SSD, which makes these methods computationally efficient but 
vulnerable to image intensity noise. In contrast, other more robust approaches such
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as normalized cross-correlation (NCC) have become prevalent in this process. NCC 
can be formulated as follows [ 27]: 

..cNCC( p, d) = 1

nσLσR

∑
q∈Np

(
IL

(
q
) − μL

)(
IR

(
q − d

) − μR

)
, (3.30) 

where 

..σL =
[||√

∑
q∈Np

(
IL(q) − μL

)2
/n, σR =

[||√
∑
q∈Np

(
IR(q − d) − μR

)2
/n; (3.31) 

.d = [d, 0]T;.μL,R and.σL,R represent the average and standard deviation of the square 
windows of the stereo images, respectively;. n is the number of pixels within the square 
window. The resulting.cNCC ∈ [−1, 1] signifies the similarity between the given pair 
of square windows. A higher .cNCC indicates a higher matching similarity. 

In general, using a larger square window can help reduce uncertainty in dispar-
ity estimation, but it also significantly increases computation. The primal methods 
assume that pixels within fixed square windows share similar disparity, which is 
not always the case, particularly in regions with disparity discontinuities. There-
fore, several adaptive cost aggregation strategies have been proposed to optimize 
support region generation and improve performance in these challenging regions. 
Consequently, numerous adaptive cost aggregation strategies have been proposed to 
optimize the support region generation. One such strategy [ 39] assigns weights to the 
pixels in the support region according to the color correlation. Fast bilateral stereo 
(FBS) [ 40] leverages a bilateral filter to aggregate the matching costs adaptively. FBS 
formulates the cost aggregation as follows: 

..cagg( p, d) =
∑

q∈Nq
ωd(q)ωr (q)c(q, d)∑

q∈Nq
ωd(q)ωr (q)

, (3.32) 

where function .ωd is calculated from the spatial distance. Function .ωr reflects the 
color similarity. 

3.4.1.3 Disparity Optimization 

Unlike the WTA strategy in local algorithms, global algorithms determine the dispar-
ity by optimizing a global energy function, which typically has the following form 
[ 41]: 

..E(d) = Edata(d) + Esmooth(d), (3.33) 

where.Edata(d) and.Esmooth(d) represent a data term and a smooth term, respectively. 
The former denotes the global matching cost minimization, and the latter imposes
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Fig. 3.6 An example of the 
MRF model in disparity 
optimization 

ijP 

ij 

constraints to reduce noise and errors in the cost volume, such as enforcing disparity 
smoothness and preserving image discontinuities [ 23]. 

Most global algorithms model the disparity optimization process with a MRF 
model. Figure 3.6 depicts a MRF model .G = (P,E ), where . P = { p11, p12, . . . ,
pmn} denotes the vertices; .E = {( pi j , pst ) | pi j , pst ∈ P} signifies the edges; and 

.Ni j = {q1 pi j
, q2 pi j

, . . . , qk pi j
| q pi j

∈ P} represents a neighborhood system of . pi j . 
Referring to the stereo matching task, all the vertices in.P make up the.m × n pixel 
disparity map. More specifically, . pi j denotes the vertex at .(i, j) with a node value 
.di j representing the disparity. In general, disparity nodes in the MRF model tend to 
have a stronger correlation with their neighboring nodes than other randomly chosen 
vertices. Therefore, (3.33) can be reformulated as follows: 

..
E( p) =

∑
pi j∈P

D( pi j , q pi j ) +
∑

q pi j
∈N i j

V ( pi j , q pi j
),

(3.34) 

where.q pi j represents image intensity differences; .D(·) represents the matching cost 
or correlation and.V (·) denotes the aggregation process inside a neighboring system, 
respectively. 

Although global algorithms can achieve more accurate disparity results in texture-
less areas compared to local algorithms, the minimization of a global energy func-
tion which significantly increases computational requirements. Therefore, SGM [ 33] 
breaks down (3.34) into: 

.. E(D) =
∑
p

(
c( p, d p) +

∑
q∈Np

λ1δ(|d p − dq | = 1) +
∑
q∈Np

λ2δ(|d p − dq | > 1)

)
,

(3.35) 
where.D is the disparity map;. c represents the cost volume;.Np is the neighborhood 
system of pixel . p; .λ1 and .λ2 penalize its vicinities with different scales of disparity
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differences, i.e., one pixel and larger than one pixel, respectively; and .δ(·) takes on 
a value of 1 with a valid argument and 0 otherwise. 

3.4.1.4 Disparity Refinement 

At this point, the obtained disparity map usually has some intensity noise and holes. 
Therefore, post-processing steps are required for refinement. The left-right disparity 
consistency check (LRDCC) [ 27] generates both left and right disparity maps.DL and 
.DR, and removes pixels with inconsistent disparities, which is defined as follows: 

..|DL(u, v) − DR(u − DL(u, v), v)| > σ, (3.36) 

where . σ is a manually set threshold and one pixel is commonly adopted. Subpixel 
enhancement increases the disparity image resolution by inserting a matching cost 
near the initial disparity [ 27]. Afterwards, a median filter [ 42] can be applied to fill the 
pixels that failed to match and the holes generated by LRDCC. Additionally, other 
methods such as robust plane fitting, intensity consistent, and locally consistent 
are also commonly adopted to improve the disparity accuracy. Nevertheless, the 
successive application of these methods is generally contingent upon the specific 
application needs and the stereo matching algorithm employed. 

3.4.2 Machine Learning-Based Stereo Matching Algorithms 

Convolutional neural networks (CNNs) have gained significant attention in the field 
of stereo matching for their ability in performing effective feature extraction and 
information aggregation. Consequently, they have become a popular choice for 
disparity estimation. These algorithms are primarily data-driven, requiring huge 
amounts of data for the CNNs to learn to perform stereo matching. CNN-based 
algorithms can be classified into two types: supervised and unsupervised. Supervised 
methods utilize disparity ground truth to guide the training and optimize CNN param-
eters [ 34, 43, 44], while unsupervised methods use geometric constraints between 
stereo images as supervision during training [ 45– 47]. 

3.4.2.1 Supervised Approaches 

Supervised stereo matching approaches can be broadly categorized into three groups: 
(1) learning better feature correspondences [ 43], (2) learning better regularization 
[ 34], and (3) learning dense disparity estimation in an end-to-end paradigm [ 44]. 

Specifically, the first group adopts the learned representations to calculate match-
ing costs, which are subsequently subjected to cost aggregation and regularization 
methods for disparity estimation. For instance, Žbontar and LeCun [ 43] designed a
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Fig. 3.7 The architecture of the CNN proposed in [ 43] 

CNN to calculate patch-wise similarity scores, as shown in Fig. 3.7. It consists of a 
convolutional layer .L1 with 32 convolution kernels of size 5. ×5. ×1 and seven fully 
connected (FC) layers .L2–.L8 with 200, 300 or 400 neurons. Two 9. ×9 pixel gray-
scale image patches are firstly input into a sequence of .L1, .L2 and .L3, respectively. 
Then, the generated 200-dimensional feature maps are concatenated into a 400-
dimensional feature map, before passing through .L4–.L8. The output of layer .L8 is 
two real numbers, which is then fed into a softmax function to generate a distribution 
over two classes: (1) good match and (2) bad match. Finally, explicit programming-
based cost aggregation and disparity optimization methods are deployed to generate 
the final disparity maps. Although these approaches achieved the state-of-the-art 
(SoTA) accuracy at that time, the employed explicit programming-based cost aggre-
gation methods can produce wrong predictions in occluded or texture-less/reflective 
regions and therefore limit their stereo matching performance [ 48]. 

Therefore, some researchers have focused on the second category of approaches, 
which uses CNN to improve the cost aggregation step. Ǎkihito Seki and Marc Polle-
feys [ 34] proposed SGM-Nets, which uses a .5 × 5-pixel gray-scale image patch as 
input and predicts SGM penalty parameters .λ1 and .λ2 with a CNN, as shown in 
Fig. 3.8. SGM-Nets consists of (1) two convolution layers, each followed by a rec-
tified linear unit (ReLU) layer; (2) a concatenate layer to merge the two types of 
input; (3) two FC layers, followed by a ReLU layer and an exponential linear unit 
(ELU) layer, respectively; and (4) a constant layer for keeping SGM penalty values 
positive. Similar to SGM [ 33], the costs are then accumulated along four directions. 
In general, the outputs of SGM-Nets denote standard parameterization. 

Recently, the third category of methods, i.e., end-to-end deep CNNs, has gained 
popularity because of their impressive performance in stereo matching tasks. For 
instance, GCNet [ 49] incorporated feature extraction (cost computation), cost aggre-
gation and disparity optimization/refinement into a single end-to-end CNN model, as 
shown in Fig. 3.9. The cost volume construction method used in GCNet is different 
from previous methods. GCNet concatenates each feature vector with its correspond-
ing vector extracted from the opposite stereo image across each disparity level, and 
packs these into a 4D volume. This approach allows GCNet to preserve more knowl-
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Fig. 3.8 The architecture of SGM-Nets [ 34] 

Fig. 3.9 The architecture of GCNet [ 49] 

edge of the geometry of stereo vision, unlike previous methods. As a result, GCNet 
uses 3D convolution instead of 2D convolution for the disparity refinement process. 
Later on, Chang et al. [ 44] proposed Pyramid Stereo Matching Network (PSMNet), 
improving the feature extraction process with a spatial pyramid pooling module, 
and the disparity refinement process with a stacked hourglass 3D CNN, as shown 
in Fig. 3.10. The former enlarges the receptive fields and thus can aggregate more 
context information, while the latter regularizes the cost volume and further extends 
the regional support of context information in cost volume. In addition, Guo et al. 
[ 50] proposed group-wise correlation, which first divides the left and right features 
into groups and then computes correlation maps among each group. After that, the 
computed correlation maps are packed together for the following disparity estima-
tion. Compared with previous cost volume construction methods by concatenation, 
group-wise correlation additionally introduces feature correlation into the cost vol-
ume, which avoids using more parameters to learn feature similarity in the disparity 
aggregation process. 

In 2020, Cheng et al. [ 51] adopted neural architecture search techniques to obtain 
an effective network architecture for stereo matching. The stereo images are first 
processed by the Feature Net to generate visual features, which are then processed 
by the Matching Net to generate a 3D cost volume. The disparity map can finally be 
computed from the cost volume via the soft-argmin operation. Since the learnable 
parameters are only located in the Feature Net and the Matching Net. Cheng et al. 
[ 51] used neural architecture search techniques to select the optimal structures for 
them.
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Fig. 3.10 The architecture of PSMNet [ 44] 

Although the aforementioned end-to-end disparity estimation methods have 
achieved impressive results, they usually have a huge number of learnable parame-
ters, resulting in a long inference time. To address this issue, some researchers have 
turned their focuses towards improving the inference speed of end-to-end methods 
for stereo matching. Specifically, Xu et al. [ 52] proposed a sparse point-based inter-
scale cost aggregation module and a cross-scale cost aggregation module for efficient 
stereo matching. These two kinds of modules are lightweight and complementary, 
leading to an efficient and effective architecture for stereo matching. Inspired by 
RAFT [ 53], Wang et al. [ 45] presented OptStereo, which first builds multi-scale 
cost volumes and then iteratively updates disparity estimations at high resolution. 
This novel architecture can achieve a great trade-off between the accuracy and effi-
ciency for stereo matching. The architecture of OptStereo is shown in Fig. 3.11. Later 
on, Lahav et al. proposed RAFT-Stereo [ 54], which inherits the gate recurrent unit 
(GRU) iteration architecture of [ 53], and includes a multilevel GRU to aggregate 

Fig. 3.11 The architecture of OptStereo [ 45]
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feature maps at different resolutions. In 2022, Li et al. presented another recurrent 
structural network, CREStereo [ 55]. In CREStereo, the fixed-shape local search win-
dow used in previous works [ 45, 53, 54] is replaced with a deformable convolution 
operator [ 56] for constructing the cost volumes, which considerably improves the 
disparity estimation accuracy in occluded or texture-less areas. In addition, some 
researchers adopted the popular coarse-to-fine framework to balance the trade-off 
between the accuracy and efficiency for stereo matching [ 57– 60]. 

3.4.2.2 Unsupervised Approaches 

Although supervised approaches have achieved impressive results for disparity esti-
mation, the collection of large amounts of disparity ground truth is time-consuming 
and requires significant labor. To address this issue, many researchers have focused 
on developing unsupervised stereo matching approaches to eliminate the need for 
disparity ground truth. The CNN architectures of unsupervised approaches are sim-
ilar to those of supervised approaches, while the main difference lies in the network 
training process. 

Specifically, Zhong et al. [ 46] proposed SsSMnet, which employs image warping 
error to drive the learning process, as shown in Fig. 3.12. Zhong et al. [ 46] leverages 
the following loss functions: 

..L = ωp
(Ll

u + Lr
u

) + ωs
(Ll

s + Lr
s

) + ωc
(Ll

c + Lr
c

) + ωm
(Ll

m + Lr
m

)
, (3.37) 

where.Ll
u and.Lr

u denote the unary term;.Ll
s and.Lr

s denote the regularization term;. Ll
c

and.Lr
c denote the consistency constraint term;.Ll

m and.Lr
m denote the maximization 

depth heuristic. The unary term is designed to minimize the discrepancy between the 
stereo images based on the disparity estimation, and has the following formulation: 

.. Ll
u

(
IL, I

'
L

) = 1

N

∑
λ1

1 − SSIM
(
IL, I '

L

)
2

+ λ2

||IL − I '
L

|| + λ3

||∇ IL − ∇ I '
L

|| ,
(3.38) 

Fig. 3.12 The architecture of SsSMnet [ 46]



3 Stereo Matching: Fundamentals, State-of-the-Art, and Existing Challenges 81

where .N denotes the total number of pixels and .I '
L denotes the reconstructed left 

image; .SSIM(·) [ 61] measures the similarity between two images; . λ1, .λ2 and.λ3 are 
three weighting parameters for balancing the structural similarity, image appearance 
difference and image gradient difference. The regularization term is designed to make 
the disparity estimation locally smooth and is defined as follows: 

..Ll
s = 1

N

∑ ||∇2
udL

|| e−|∇2
u IL| + ||∇2

vdL
|| e−|∇2

v IL|. (3.39) 

The consistency constraint term is designed based on the concept of left-right con-
sistency check, and has the following formulation: 

..LL
c = ||IL − I ''

L

|| , (3.40) 

where.I ''
L is generated by warping the left image to the right view and warping back to 

the left image coordinate. Finally, the maximum depth heuristic minimizes the sum 
of all the disparities or maximizes the sum of all the depths, and has the following 
formulation: 

..LL
m = 1

N

∑
|dL | . (3.41) 

These four terms work together to supervise the network training without the use of 
disparity ground truth, and are commonly used in subsequent proposed unsupervised 
stereo matching approaches. 

Due to occlusion, certain regions in the left and right images are not commonly 
visible, leading to unreliable constraints for the networks’ disparity estimation. This 
occurs as the unary term and the consistency constraint term cannot provide sufficient 
guidance in such areas. The unsupervised stereo matching approach presented by 
Zhao et al. [ 62] involves an random initialization of the network, followed by iterative 
updates of network parameters using left-right check. More specifically, in each 
iteration, a disparity map is predicted, which is then used to generate a confidence map 
based on left-right check. Pixels with confident disparity will be ignored in the next 
iteration. Li et al. [ 63] incorporated occlusion reasoning to improve the unsupervised 
stereo matching performance. In [ 63], an occlusion mask .O is predicted before the 
disparity regression and is then used to ignore the .Lu and .Lc in the occluded area. 
The network architecture of [ 63] is illustrated in Fig. 3.13. Additionally, to avoid 
predicting an all-one occlusion map, an occlusion regularization loss is introduced, 
which is defined as follows: 

..Lo = 1

N

∑
p

||O( p) − (
1 − e−|dL ( p)−dR(q)|)|| , (3.42) 

where . p and . q represent a pixel in the left disparity map and its corresponding 
pixel in the right disparity map, respectively. Joung et al. [ 64] utilized correspon-
dence consistency between stereo images as a basis constraint for their approach, and
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Fig. 3.13 The architecture of the occlusion-aware stereo matching network [ 63] 

Fig. 3.14 The architecture of CoT-Stereo [ 47] 

additionally developed a positive sample propagation scheme to enhance its stereo 
matching performance. In 2020, Liu et al. proposed Flow2Stereo [ 65], which lever-
ages the geometric constraints presented in stereo videos to estimate disparity and 
optical flow simultaneously in an unsupervised manner. 

However, the aforementioned unsupervised approaches still exhibit unstable per-
formance in challenging areas, especially in regions with occlusions. This can be 
attributed to the sensitivity of a single network to outliers. To address this issue, 
Wang et al. [ 47] presented a co-teaching framework, where two networks teach each 
other about challenging regions in an unsupervised manner, as shown in Fig. 3.14. 
In CoT-Stereo [ 47], the adopted photometric loss .Lph is similar to the unary loss 
in (3.38), and the adopted smoothness loss is similar to the regularization loss in 
(3.39). To further improve the stereo matching accuracy, Wang et al. [ 47] adopted a 
data-augmentation loss, which has the following formulation [ 66]: 

..

Lda =
∑

l
(|||S(~D) − ~D∗|||

)
· S(~O)

∑S(~O)
,

l(x) =
⎧
x − 0.5, x ≥ 1
x2/2, x < 1

,

(3.43)
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where .S(·) denotes the stop-gradient; . ~D, .~D∗
and.~O denote the augmented samples. 

This data-augmentation paradigm can effectively enable the network to better handle 
occlusions. In addition, CoT-Stereo consists of a dynamic threshold selection scheme 
and an occlusion estimation swapping operation. The former ensures that the net-
works do not memorize possible outliers, while the latter enables the two networks 
to adaptively correct the inaccurate occlusion estimation. Inspired by [ 67], Fan et al. 
[ 68] proposed an occlusion-aware stereo matching algorithm based on confidence 
guided raw disparity fusion (CRD-Fusion). In CRD-Fusion, a correlation cost vol-
ume is firstly processed by five 3D convolutions to generate a raw disparity, which is 
then used to generate a raw occlusion map with consistency-based confidence mea-
sures (see Sect. 3.5.3). Afterwards, the raw disparity map and raw occlusion map are 
refined jointly using a hierarchical refinement module. 

Another popular paradigm for unsupervised stereo matching is to generate reliable 
pseudo disparity ground truth for supervision. For example, Wang et al. [45] proposed 
OptStereo, where a pyramid voting module can generate reliable semi-dense disparity 
maps to supervise the CNN training. Despite recent advances in unsupervised stereo 
matching, there remains a significant performance gap between existing supervised 
and unsupervised approaches. As a result, we firmly believe that exploring more 
effective unsupervised training strategies is a promising direction for future research 
in this field. 

3.5 Disparity Confidence Measures 

In parallel with the rapid evolution of stereo matching algorithms, deciding the con-
fidence of estimated disparity has also grown in popularity [ 69]. It is important to 
recognize that estimating the disparity confidence is not intended to predict poten-
tial disparity error margins. Instead, it serves as a metric for the probability that a 
stereo matching algorithm may fail in challenging situations such as occlusions and 
reflections. In other words, the disparity confidence map identifies areas that require 
extra attention for stereo matching. 

Typically, the cost volume serves as the primary source of information for confi-
dence measures. In this chapter, the cost volume is generated with NCC (3.30). For a 
left pixel. p = [x, y]T, its cost curve.c( p) is shown in Fig. 3.15, where.ci ( p) denotes 
the matching cost for disparity candidate . i ; .d1( p), .d2( p) and .d2m( p) represent the 
disparity candidate possessing the minimum, the second minimum and the second 
smallest local minimum matching cost, respectively, and their corresponding match-
ing costs are .cd1( p), .cd2( p) and .cd2m ( p), respectively; . pr = [x − d1( p), y]T repre-
sents the corresponding right pixel of . p. However, most confidence measures only 
require a portion of the information in Fig. 3.15, and thus can be mainly grouped into 
cost-based, disparity-based, consistency-based and image-based. Example images 
are visualized in Fig. 3.16, where the first two columns show the different sources of 
information, and the last three columns present the different confidence measures.
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Fig. 3.15 Example of cost curve and illustrations of terms defined on the cost curve 

Fig. 3.16 Example images of confidence measures. The first two columns provide the sources of 
information, and the last three columns present the confidence measures 

3.5.1 Cost-Based Confidence Measures 

Cost-based confidence measures are obtained from the cost volume, mostly encoded 
by .cd1( p), .cd2( p) and .cd2m ( p). In general, these confidence measures score a pixel 
with high confidence if it has a significantly lower .cd1( p), which indicates a strong 
match to its corresponding pixel in the other image. 

1. The matching score metric (MSM) [ 70] directly uses the minimum cost.cd1( p) as 
a confidence measure, which is defined as follows: 

.. MSM( p) = −cd1( p). (3.44) 

2. Peak ratio (PKR) [ 70] is expressed by the ratio of .cd2m to .cd1 : 

.. PKR( p) = cd2m ( p)
cd1( p)

. (3.45)
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3. The perturbation measure (PM) [ 71] considers the linearity of the cost curve, and 
is formulated as follows: 

.. PM( p) =
∑
i /=d1

e− [cd1 ( p)−ci ( p)]2
s2 , (3.46) 

where . s is a scaling parameter. 
4. The attainable likelihood measure (ALM) [ 72] models the cost curve using a 

Gaussian distribution centered at .cd1( p): 

..

ALM( p) = 1
∑

i∈D e− ci ( p)
2σ( p)

,

σ ( p) =
∑

i∈D(ci ( p) − cd1( p))2

m
,

(3.47) 

where .D represents the set of disparity candidates, and .m denotes the number of 
disparity candidates. 

3.5.2 Disparity-Based Confidence Measures 

Disparity-based confidence measures use the disparity map generated with the WTA 
strategy from the cost volume as the input domain, without any additional cues from 
the cost volume. 

1. The distance from discontinuities (DD) [ 73] metric derives confidence from the 
distance to a disparity discontinuity: 

.. DD( p) = min
q∈d̂

| p − q|, (3.48) 

where. d̂ is obtained by applying a Canny edge detector [ 74] to the disparity map, 
as shown in row 3, column 2 of Fig. 3.16.
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2. Disparity map variance (DMV) [ 71] measures the gradient over the disparity map: 

.. DMV( p) = ||∇d1( p)|| . (3.49) 

3. Difference with median disparity (MED) [ 73] calculates the difference between 
.d1( p) and the median disparity in the.5 × 5windows centered at. p in the disparity 
map. 

3.5.3 Consistency-Based Confidence Measures 

Consistency-based confidence measures evaluate the consistency between corre-
sponding pixels in the stereo images based on epipolar geometry. 

1. Left-right checking (LRC) [ 75] is a method that assumes that the disparity values 
at corresponding pixels in the left and right views should be consistent, except in 
the occluded regions. Therefore, the presence of inconsistent disparities signifies 
the difficulty of stereo matching, particularly in regions with occlusions. LRC is 
defined as follows: 

.. LRC( p) = −|d1( p) − dr1( p
r )|, (3.50) 

where .dr1 represents the right disparity generated with the WTA strategy. 
2. Left-right difference (LRD) [ 76] further measures the consistency of the minimum 

costs across the stereo images: 

.. LRD( p) = cd2( p) − cd1( p)
|cd1( p) − crd1( p

r )| . (3.51) 

3.5.4 Image-Based Confidence Measures 

Image-based confidence measures consider only the stereo images as input. 

1. Distance from border (DB) [ 73] calculates the distance between a pixel and its 
nearest image border, assuming that pixels close to the image border are more 
likely to be occluded or unseen in the other reference view. DB is defined as 
follows: 

.. DB( p) = min(x, y,W − x, H − y), (3.52) 

where .W and .H represent the image width and height, respectively.
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2. Horizontal gradient magnitude (HGM) [ 71] is based on the assumption that a 
higher image gradient indicates a richer texture, and thus a higher matching con-
fidence. Similar to DMV, HGM can be formulated as follows: 

.. HGM( p) = ||∇x IL( p)|| , (3.53) 

where .IL( p) represents the image intensity at pixel . p in the left image. 

3.6 Evaluation Metrics 

The performance evaluation of a given stereo matching algorithm usually involves 
measuring both the accuracy and efficiency of the disparity estimation [ 25]. Com-
monly used metrics to evaluate the accuracy of an estimated disparity map are listed 
below [ 77]: 

1. Root-mean-squared error (RMS), .eRMS is defined as follows [ 78]: 

..eRMS =
[||√ 1

N

∑
p∈P

|DE( p) − DG( p)|2, (3.54) 

where.DE and.DG denote the estimated and ground truth disparity maps, respec-
tively; .P represents the set of disparities used for evaluation, and .N denotes the 
size of .P . 

2. End-point error (EPE),.eEPE, is expressed as the average disparity estimation error 
across all pixels [ 77]: 

..eEPE = 1

N

∑
p∈P

|DE( p) − DG( p)|. (3.55) 

3. Percentage of error pixels (PEP), .ePEP, is given by [ 42]: 

..ePEP = 1

N

∑
p∈P

δ

(
|DE( p) − DG( p)| > δd

)
× 100%, (3.56) 

where .δd represents the disparity evaluation tolerance. 
4. D1-all, .eD1-all takes into consideration the magnitude of disparity ground truth, 

and is expressed as [ 79]: 

.. eD1-all = 1

N

∑
p∈P

δ

(
|DE( p) − DG( p)| > max{0.05 × DG( p), 3}

)
× 100%.

(3.57)
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5. The . η error quantile represents the highest disparity error among the given per-
centage . η of best matched pixels. For example, for .η = 50%, this is the median 
error. 

In terms of evaluating the efficiency of disparity estimation, the most common 
approach is to measure the runtime processing per stereo image of the algorithm 
being evaluated. However, the runtime can vary depending on factors such as image 
resolution and disparity search range. Therefore, a more robust metric for evalu-
ating stereo matching efficiency is .Mde/s, which is given in millions of disparity 
evaluations per second [ 25]: 

..Mde/s = umaxvmaxdmax

t
10−6. (3.58) 

Similarly, time/MP and time/GD measure the runtime in megapixels and giga-
disparities [ 80], respectively. 

3.7 Public Datasets and Benchamarks 

Open-access datasets and benchmarks have been developed in conjunction with the 
measurable progress in stereo matching algorithms. These datasets cover different 
application scenarios, such as driving scenes [ 14, 81], indoor and outdoor scenes [ 16, 
38]. Table 3.1 summarizes the existing datasets, and we provide a detailed explanation 
of some of the most commonly used benchmarks to assist researchers in making their 
choices. 

3.7.1 Middlebury Benchmark 

The Middlebury dataset [ 15, 38, 42, 88] offers high-resolution stereo images of 
static indoor scenes and ground truth disparity maps with high accuracy, as depicted 
in Fig. 3.17. The disparity ground truth is generated using a structured light acquisi-
tion system, and Middlebury 2014 [ 15] attains a disparity accuracy of 0.2 pixels on 
most observed surfaces, including in half-occluded regions. Although only dozens of 
training samples are provided, its highly accurate ground truth disparity and online 
evaluation interface make it one of the most widely used benchmarks in stereo match-
ing. Table 3.2 displays the benchmark results of the above-mentioned stereo matching 
algorithms on the Middlebury 2014 dataset [ 15].



3 Stereo Matching: Fundamentals, State-of-the-Art, and Existing Challenges 89

Ta
bl
e 
3.
1 

C
ri
tic

al
 a
ttr
ib
ut
es
 o
f 
co
m
m
on

ly
 a
do

pt
ed
 p
ub

lic
ly
 a
va
ila

bl
e 
da
ta
se
ts
 

D
at
as
et

Si
ze

R
es
ol
ut
io
n

So
ur
ce

Sc
en
e 

T
ra
in
in
g 
se
t

Te
st
in
g 
se
t 

M
id
dl
eb
ur
y 
20
14

. a
[ 1
5]

23
10

.2
96
4

×
20
00

R
ea
l-
w
or
ld

In
do
or
 

Si
nt
el

. b
[ 8
2]

10
64

56
4

.1
02
4

×
43
6

Sy
nt
he
tic

H
yb
ri
d 

N
Y
U
 V
2
. c
[ 8
3]

14
49

–
.6
40

×
48
0

R
ea
l-
w
or
ld

In
do
or
 

K
IT
T
I 
St
er
eo
 2
01
2
. d

[ 8
1]
 

19
4

19
5

.1
22
6

×
37
9

R
ea
l-
w
or
ld

D
ri
vi
ng
 

K
IT
T
I 
St
er
eo
 2
01
5
. e

[ 1
4]
 

20
0

20
0

.1
24
2

×
37
5

R
ea
l-
w
or
ld

D
ri
vi
ng
 

V
ir
tu
al
 K
IT
T
I.
 f
[ 8
4]

21
26
0

–
.1
24
2

×
37
5

Sy
nt
he
tic

D
ri
vi
ng
 

V
ir
tu
al
 K
IT
T
I 
2
. g
[ 8
5]

21
26
0

–
.1
24
2

×
37
5

Sy
nt
he
tic

D
ri
vi
ng
 

Sc
en
e 
Fl
ow

. h
[ 1
7]

34
80
1

42
48

.9
60

×
54
0

Sy
nt
he
tic

H
yb
ri
d 

E
T
H
3D

. i
[ 1
6]

27
20

.9
40

×
49
0

R
ea
l-
w
or
ld

Sy
nt
he
tic

 

Fa
lli
ng
 T
hi
ng
s.
 j
[ 8
6]

61
50
0

–
.9
60

×
54
0

Sy
nt
he
tic

In
do
or
 

D
ri
vi
ng

 S
te
re
o
. k
[ 8
7]

17
44
37

77
51

.1
76
2

×
80
0

R
ea
l-
w
or
ld

In
do
or
 

. a
ht
tp
s:
//v

is
io
n.
m
id
dl
eb
ur
y.
ed
u/
st
er
eo
/d
at
a/
sc
en
es
20

14
/ 

. b
ht
tp
://
si
nt
el
.is
.tu

e.
m
pg

.d
e/
st
er
eo
 

. c
ht
tp
s:
//c
s.
ny
u.
ed
u/
 s
ilb

er
m
an
/d
at
as
et
s/
ny
u_
de
pt
h_
v2
.h
tm

l 
. d
ht
tp
s:
//w

w
w
.c
vl
ib
s.
ne
t/d

at
as
et
s/
ki
tti
/e
va
l_
st
er
eo
_fl

ow
.p
hp

?b
en
ch
m
ar
k=

st
er
eo
 

. e
ht
tp
s:
//w

w
w
.c
vl
ib
s.
ne
t/d

at
as
et
s/
ki
tti
/e
va
l_
sc
en
e_
flo

w
.p
hp

?b
en
ch
m
ar
k=

st
er
eo
 

. f
ht
tp
s:
//e
ur
op
e.
na
ve
rl
ab
s.
co
m
/r
es
ea
rc
h/
co
m
pu
te
r-
vi
si
on
/p
ro
xy
-v
ir
tu
al
-w

or
ld
s-
vk
itt
i-
1/
 

. g
ht
tp
s:
//e
ur
op
e.
na
ve
rl
ab
s.
co
m
/r
es
ea
rc
h/
co
m
pu
te
r-
vi
si
on
/p
ro
xy
-v
ir
tu
al
-w

or
ld
s-
vk
itt
i-
2/
 

. h
ht
tp
s:
//l
m
b.
in
fo
rm

at
ik
.u
ni
-f
re
ib
ur
g.
de
/r
es
ou

rc
es
/d
at
as
et
s/
Sc

en
eF

lo
w
D
at
as
et
s.
en
.h
tm

l 
. i
ht
tp
s:
//w

w
w
.e
th
3d

.n
et
/lo

w
_r
es
_t
w
o_

vi
ew

 
. j
ht
tp
s:
//r
es
ea
rc
h.
nv
id
ia
.c
om

/p
ub

lic
at
io
n/
20

18
-0
6_

fa
lli
ng

-t
hi
ng

s-
sy
nt
he
tic

-d
at
as
et
-3
d-
ob

je
ct
-d
et
ec
tio

n-
an
d-
po

se
-e
st
im

at
io
n 

. k
ht
tp
s:
//d

ri
vi
ng

st
er
eo
-d
at
as
et
.g
ith

ub
.io

/

https://vision.middlebury.edu/stereo/data/scenes2014/
 16771 63587 a 16771
63587 a
 
https://vision.middlebury.edu/stereo/data/scenes2014/
http://sintel.is.tue.mpg.de/stereo
 16791
64694 a 16791 64694 a
 
http://sintel.is.tue.mpg.de/stereo
https://cs.nyu.edu/protect unhbox voidb@x penalty @M  {}silberman/datasets/nyu_depth_v2.html
 16751 65801 a 16751
65801 a
 
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
 16806 66908 a 16806 66908 a
 
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
 16758 68015 a 16758 68015 a
 
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-1/
 16729 69122 a 16729 69122 a
 
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-1/
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
 16791 70229 a 16791 70229 a
 
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
 16803 71336 a 16803 71336 a
 
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://www.eth3d.net/low_res_two_view
 16636 72443 a 16636
72443 a
 
https://www.eth3d.net/low_res_two_view
https://research.nvidia.com/publication/2018-06_falling-things-synthetic-dataset-3d-object-detection-and-pose-estimation
 16632 73550 a 16632 73550 a
 
https://research.nvidia.com/publication/2018-06_falling-things-synthetic-dataset-3d-object-detection-and-pose-estimation
https://drivingstereo-dataset.github.io/
 16816
74656 a 16816 74656 a
 
https://drivingstereo-dataset.github.io/


90 C.-W. Liu et al.

Fig. 3.17 Example images of middlebury 2014 dataset [ 15]. a Left stereo image; b right stereo 
image; c ground truth disparity map 

Table 3.2 Online evaluation results of noc areas on Middlebury benchmark 

Method PEP (%).↓ EPE (px) 
. ↓

RMS (px) 
. ↓

A50a (px) 
. ↓

Time/MP 
(s). ↓

Time/GD 
(s). ↓

.δd = 1 . δd = 4

PSMNet [ 44] 63.9 23.5 6.68 19.4 1.94 2.62 32.2 

GANet [ 48] 37.8 11.2 12.2 35.4 0.83 6.33 16.4 

AANet [ 52] 25.5 10.8 6.37 23.5 0.56 2.48 7.07 

LEAStereo 
[ 51] 

20.8 2.75 1.43 8.11 0.53 2.53 7.27 

AdaStereo 
[ 89] 

29.5 6.35 2.22 10.2 0.65 0.13 0.38 

HITNet [ 59] 13.3 3.81 1.71 9.97 0.40 0.11 0.29 

RAFT-Stereo 
[ 54] 

9.37 2.75 1.27 8.41 0.26 2.19 5.76 

CREStereo 
[ 55] 

8.25 2.04 1.15 7.70 0.28 0.77 2.22 

. a A50 represents 50% error quantile 

3.7.2 KITTI Benchmark 

The KITTI dataset [ 14, 81] was captured in rural and highway areas of Karlsruhe and 
has been commonly used in a variety of visul tasks [ 90], as illustrated in Fig. 3.18a, 
b. It comprises a rectified stereo vision system with two high-resolution color and 
grayscale video cameras mounted on a wagon, providing stereo images, and a Velo-
dyne laser scanner to offer sparse ground truth disparity, as displayed in Fig. 3.18. 
The KITTI Stereo 2012 dataset [ 81] and KITTI Stereo 2015 dataset [ 14] both con-
tain about 400 image pairs with accurate disparity ground truth. The KITTI dataset 
has been of great interest to a wide range of researchers in the field of autonomous 
driving due to sufficient samples for training CNNs. 

Disparities for pixels that are visible in only one view due to occlusion can-
not be directly obtained from stereo images, but they can be obtained from depth 
information (3.26). Therefore, the KITTI dataset provides both occluded (occ) and
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Fig. 3.18 Example images of KITTI Stereo 2015 dataset [ 14]. a Left stereo image; b right stereo 
image; c ground truth occluded (occ) disparity map; d ground truth non-occluded (noc) disparity 
map 

Table 3.3 Online evaluation results of noc areas on KITTI Stereo 2012 dataset 

Method PEP (%).↓ EPE (px) 
. ↓

Runtime 
(s). ↓

Environment 

.δd = 2 .δd = 3 .δd = 4 . δd = 5

GCnet [ 49] 2.71 1.77 – 1.12 0.6 0.90 Nvidia Titan Xp 

PSMNet [ 44] 2.44 1.49 1.12 0.90 0.5 0.41 Nvidia Titan Xp 

GANet [ 48] 1.89 1.19 0.91 0.76 0.4 1.80 GPU@2.5Ghz 

GWCNet 
[ 50] 

2.12 1.32 0.99 0.80 0.5 0.32 GPU@2.0Ghz 

AANet [ 52] 2.30 1.55 1.20 0.98 0.4 0.06 NVIDIA V100 

HITNet [ 59] 2.00 1.41 1.14 0.96 0.5 0.02 GPU@2.5Ghz 

LEAStereo 
[ 51] 

1.90 1.13 0.83 0.67 0.5 0.30 GPU@2.5Ghz 

OptStereo 
[ 45] 

1.91 1.20 0.92 0.77 0.4 0.10 GPU@2.5Ghz 

SCV-Stereo 
[ 91] 

2.01 1.27 0.97 0.81 0.5 0.08 GPU@2.5Ghz 

CRD-Fusion 
[ 68] 

5.07 3.35 2.66 2.26 0.9 0.02 GPU@2.5Ghz 

CREStereo 
[ 55] 

1.72 1.14 0.90 0.76 0.4 0.40 GPU@3.5Ghz 

non-occluded (noc) ground truth disparity maps. The disparities of occluded areas 
are ignored in the latter, as shown in Fig. 3.18c, d. It is important to note that dis-
parities in reflective areas such as glasses are not included. Generally, machine 
learning-based algorithms, which have greater generalization ability compared to 
explicit programming-based algorithms, are more likely to achieve better perfor-
mance when using the occ ground truth disparity maps. The benchmark results for the
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Table 3.4 Online evaluation results on KITTI Stereo 2015 dataset 

Method D1-all (%).↓ Runtime (s).↓ Environment 

occ areas noc areas 

GCnet [ 49] 2.87 2.61 0.90 Nvidia Titan Xp 

PSMNet [ 44] 2.32 2.14 0.41 Nvidia Titan Xp 

GANet [ 48] 1.81 1.63 1.80 GPU@2.5Ghz 

GWCNet [ 50] 2.11 1.92 0,32 GPU@2.0Ghz 

AANet [ 52] 2.03 1.85 0.06 NVIDIA V100 

HITNet [ 59] 1.98 1.74 0.02 GPU@2.5Ghz 

LEAStereo [ 51] 1.65 1.51 0.30 GPU@2.5Ghz 

OptStereo [ 45] 1.82 1.64 0.10 GPU@2.5Ghz 

SCV-Stereo [ 91] 2.02 1.84 0.08 GPU@2.5Ghz 

CRD-Fusion [ 68] 6.11 5.69 0.02 GPU@2.5Ghz 

CREStereo [ 55] 1.69 1.54 0.41 GPU@3.5Ghz 

Table 3.5 Online evaluation results of noc areas on ETH3D benchmark 

Method PEP (%).↓ EPE (px).↓ RMS (px).↓ A50 (px).↓ Runtime (s) 
. ↓

.δd = 1 . δd = 4

PSMNet 
[ 44] 

5.02 0.41 0.33 0.66 0.21 0.54 

GANet [ 48] 6.22 0.55 0.36 0.75 0.21 1.00 

GWCNet 
[ 50] 

6.42 0.50 0.35 0.69 0.20 0.12 

AANet [ 52] 5.01 0.75 0.31 0.68 0.16 1.26 

AdaStereo 
[ 89] 

3.09 0.20 0.24 0.44 0.15 0.40 

HITNet [ 59] 2.79 0.19 0.20 0.46 0.10 0.02 

RAFT-
Stereo 
[ 54] 

2.44 0.15 0.18 0.36 0.10 0.81 

CREStereo 
[ 55] 

0.98 0.10 0.13 0.28 0.09 – 

KITTI Stereo 2012 dataset and KITTI Stereo 2015 dataset are presented in Tables 3.3 
and 3.4, respectively.
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Fig. 3.19 Example images of eth3d benchmark [ 16]. a Left stereo image; b right stereo image; c 
ground truth disparity map; d noc mask 

3.7.3 ETH3D Benchmark 

The ETH3D benchmark [ 16] comprises grayscale stereo images of both indoor and 
outdoor static scenes, including 27 training image pairs and 20 test image pairs 
as depicted in Fig. 3.19. The high-precision laser scanner is utilized to generate 
the ground truth disparity maps. Furthermore, an occlusion mask is provided for 
its training image pairs, encompassing non-commonly visible areas and intractable 
areas such as glasses in the stereo matching task, as demonstrated in Fig. 3.19d. The 
benchmark results on the ETH3D dataset are presented in Table 3.5. 

3.8 Existing Challenges 

3.8.1 Unsupervised Training 

Earlier research has indicated that CNN-based stereo matching algorithms can effec-
tively solve disparity estimation [ 92]. However, such data-driven algorithms require 
a significant amount of disparity ground truth, which is challenging to obtain in 
real-world scenarios. Due to the absence of large-scale stereo datasets with disparity 
ground truth, it is challenging to generalize supervised stereo matching algorithms 
to novel settings [ 93]. Consequently, many researchers are now focusing on unsuper-
vised stereo matching algorithms that predict depth maps directly from the intensity 
images, as discussed in Sect. 3.4.2.2. Although there have been significant advances 
in unsupervised stereo matching algorithms, there is still a considerable gap in dis-
parity estimation accuracy compared to supervised stereo matching algorithms [ 18]. 

3.8.2 Domain Adaptation 

Another approach to reduce the reliance on disparity ground truth is domain adap-
tation. These algorithms can generalize stereo matching knowledge learned from 
synthetic datasets [ 17, 94, 95] to unseen scenes. DSMNet [ 94] proposed the domain-
invariant normalization (DN) method, which normalizes feature maps along both the
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spatial dimension and the channel axis to enhance the feature maps’ invariance to 
domain differences. DSMNet also proposed a structure-preserving graph-based fil-
ter (SGF) to reduce sensitivity to local textures. Song et al. [ 89] further improved 
domain adaptation by performing image-level alignment, feature-level alignment, 
and output-space alignment using a color transfer method, a cost volume norm 
layer, and an auxiliary occlusion-aware task, respectively. In 2022, Zhang et al. [ 96] 
introduced the stereo selective whitening loss to better preserve feature consistency 
between domains. 

3.8.3 Trade-Off Between Speed and Accuracy 

Recent advances in parallel computing architectures and microcomputers have 
made stereo matching algorithms widely deployable on intelligent devices, such 
as autonomous cars. However, resource-limited hardware requires a balanced trade-
off between speed and accuracy for stereo matching algorithms, which are often in 
opposition to each other [ 25]. Therefore, researchers are actively working on improv-
ing the real-time performance of stereo matching algorithms. For instance, AANet 
[ 52] replaces 3D convolutions commonly used in deep CNN-based algorithms and 
achieves a drastic reduction in the amount of calculation. Furthermore, in the widely 
adopted recurrent networks [ 45, 54, 55], the trade-off between accuracy and effi-
ciency can be easily achieved with early stopping. 

3.8.4 Intractable Areas 

Middlebury 2002 dataset [ 42] has put extra emphasis on the texture-less areas and 
occluded areas for making the process of disparity estimation more difficult. In 
texture-less areas, a lack of visual features can result in pixel mismatches, which is 
typically addressed using the disparity smoothness constraint (3.39) [  97, 98]. On the 
other hand, occluded areas pose a challenge due to the absence of corresponding infor-
mation in the stereo images. To address this, CNN-based approaches and confidence 
measures discussed in Sect. 3.5 can be used to solve an auxiliary occlusion-aware 
task. Looser constraints are given within occluded areas during the training stage of 
stereo matching networks [ 21, 68, 89, 99]. Kim et al. [100] trained a cost aggregation 
network and a confidence estimation network in an adversarial structure to jointly 
learn disparity and confidence estimation. In 2022, [101] associated occlusions with 
disparity discontinuity and generated an occlusion mask from the disparity map using 
Sobel filter [102]. Additionally, [103] introduced an auxiliary semantic segmentation 
task to assist in guiding the network training for handling occlusion boundaries.
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3.9 Summary 

This chapter provided an overview of stereo vision and the stereo matching task. 
We discussed both explicit programming-based and machine learning-based stereo 
matching algorithms, as well as auxiliary disparity confidence measures. We also 
covered the metrics for evaluating disparity estimation and public stereo matching 
benchmarks. Finally, we summarized existing stereo matching challenges, providing 
researchers with valuable starting points for further studies. 
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Appendix 

A Lie  Group  . SO(3)

In the three-dimensional space, the coordinates of a 3D point in two coordinate 
systems are .x1 = [x1, y1, z1]T and .x2 = [x2, y2, z2]T ∈ R

3×1, respectively. .x1 can 
be transformed into .x2 using a rotation matrix .R ∈ R

3×3 and a translation vector 
.t ∈ R

3×1: 
.x2 = Rx1 + t, (A.1) 

where .R satisfies orthogonality: 

.RT = R−1 and |det(R)| = 1, (A.2) 

where.det(R) represents the determinant of. R. The subgroup of orthogonal matrices 
with .det(R) = +1 is referred to as a special orthogonal group and is denoted as 
.SO(3). 

B Skew-Symmetric Matrix 

In linear algebra, a skew-symmetric matrix .A satisfies the following property: 

.A is a skew-symmetrix matrix ⇔ AT = −A. (B.1) 

In 3D computer vision, the skew-symmetric matrix.[a]× of a vector . a = [a1, a2, a3]
is defined as [104]:
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..[a]× =
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ . (B.2) 

The two properties of a skew-symmetric matrix are as follows: 

..aT[a]× = 0T, [a]×a = 0, (B.3) 

where .0 = [0, 0, 0]T is a zero vector. Furthermore, a skew-symmetric matrix can 
also represent cross product as matrix multiplication. Specifically, for two vectors . a
and . b, their cross product can be expressed as [104]: 

..a × b = [a]×b = −[b]×a. (B.4) 
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Chapter 4 
Semantic Segmentation for Autonomous 
Driving 

Jingwei Yang, Sicen Guo, Mohammud Junaid Bocus, Qijun Chen, 
and Rui Fan 

Abstract The task of semantic segmentation involves labeling each pixel in an 
image with its corresponding object class, which is achieved by clustering regions 
belonging to the same category using artificial intelligence. This is an important 
step from image processing to image analysis and has numerous applications in 
areas such as automatic driving, image enhancement, and 3D map reconstruction. 
With the emergence of deep learning, several sophisticated and efficient algorithms 
have been developed for this task. This chapter aims to review these methods, start-
ing with a discussion of state-of-the-art semantic segmentation methods for both 
single modality and data fusion, emphasizing their contributions and significance 
in the field. Additionally, an overview of commonly used datasets is provided to 
assist researchers in selecting the appropriate dataset for their needs and goals. A 
comprehensive summary of evaluation metrics used to assess semantic segmentation 
results, along with corresponding benchmarks for a number of classic datasets, is also 
presented. Finally, practical applications of semantic segmentation in autonomous 
driving are explored, and conclusions are drawn on the current state of the art.
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4.1 Introduction 

Semantic segmentation is a critical task in computer vision that aims to partition an 
image into visually significant regions for further visual comprehension and analysis 
[ 1]. This high-level task is essential for complete scene understanding, as it is used in 
2D images, videos, and even 3D or volumetric data. The importance of scene com-
prehension in computer vision is highlighted by the growing number of applications 
that rely on extracting knowledge from images, such as autonomous driving [ 2, 3], 
precision agriculture [ 4], geological testing [ 5], and medical treatment [ 6]. 

Since the first successful demonstration in the 1980s [ 7], significant progress 
has been made in the field of autonomous driving. This technology has immense 
potential benefits, including reducing traffic congestion and improving driving safety. 
Nevertheless, it is an arduous task to guarantee the reliability of autonomous driving. 
An autonomous car must be able to accurately identify, assess, and make decisions 
about road conditions and plan routes. Even a minor error in any of these steps 
can have serious consequences. To address this challenge, perception systems in 
autonomous driving must be accurate, robust, and capable of real-time processing. 
Accuracy guarantees reliable environmental information, robustness ensures proper 
functioning even in adverse weather conditions or sensor degradation, while real-time 
processing is crucial for high-speed driving. 

Semantic segmentation is a critical technology for autonomous driving, as it 
enables the understanding of driving scenes (as shown in Fig. 4.1). Historically, 
researchers have used a range of traditional computer vision and machine learning 
techniques to address this issue. Semantic segmentation is essential for numerous 
applications, including scene interpretation and robot perception [ 1, 8, 9]. Initially, 
researchers employed random forest and conditional random field (CRF) methods 
to classify various semantic elements. However, the current mainstream techniques 
for semantic segmentation have shifted towards deep learning, resulting in signif-
icant improvements in segmentation performance [ 10– 12]. In this section, we aim 
to provide a comprehensive overview of both single-modal and data fusion-based 
semantic segmentation. 

Significant progress has been made in the field of single-modal image segmen-
tation using deep learning-based semantic segmentation models, with exceptional

Fig. 4.1 Semantic segmentation used for autonomous driving
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accuracy rates on widely used benchmarks. Early fusion involves combining con-
ventional unimodal semantic segmentation networks and reusing existing models. 
For example, Gouprie et al. [ 13] adapted the RGB network in [ 14] to RGB-D seman-
tic segmentation by concatenating input RGB and depth channels. Late fusion, on the 
other hand, aims to fuse multi-level features with different types through different 
streams [ 15– 17]. For instance, [ 16] used two CNN models to extract features from 
RGB and depth images, and SVM classifiers to distinguish different semantic cate-
gories. [ 15] introduced a gated fusion layer that learns the respective contributions of 
high-level modality-specific features to enable more effective combination. Further-
more, hierarchical fusion allows the integration of multimodal features at different 
levels, as demonstrated in the works of [ 18, 19].

This chapter is structured as follows: Sect. 4.2 provides an overview of the lat-
est segmentation algorithms and their characteristics, covering both single-modal 
and data fusion-based semantic segmentation. Section 4.3 provides a summary of 
the datasets and corresponding benchmarks utilized for semantic segmentation. In 
Sect. 4.4, evaluation metrics are discussed. In Sect. 4.5, various applications of seman-
tic segmentation are explored. The chapter concludes with a discussion of current 
challenges in Sect. 4.6 and a summary in Sect. 4.7. 

4.2 State of The Art 

4.2.1 Single-Modal Networks 

Pixel-level single-channel semantic segmentation is more challenging than image-
level image classification and region-level object detection. Semantic segmentation is 
particularly crucial for a large number of real-world applications, such as autonomous 
driving [ 20, 21], surrounding sensing [ 22– 24], and medical diagnosis [ 25, 26]. 

4.2.1.1 Single-Modal Convolutional Neural Networks 

Fully Convolutional Networks 
The introduction of the Fully Convolutional Network (FCN) [ 27] marked a signif-
icant advancement in end-to-end semantic segmentation. It has become the most 
advanced and robust framework for scenario analysis. In traditional Convolutional 
Neural Networks (CNNs), several fully connected layers are added after the final 
convolutional layer, which converts the feature map into a fixed-length feature vec-
tor. However, FCN can process input images of any size and upsample the final 
layer’s feature map using a deconvolution layer. As a result, the output prediction for 
each pixel preserves the spatial information of the original input image, recovering 
its original size. This outperforms initial CNN methods such as R-CNN [ 28] and 
SDS [ 29]. However, the classification of individual pixels does not fully consider the
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Fig. 4.2 PSPNet [ 32] architecture. Given an input image (a), it first uses CNN to get the feature map 
of the last convolutional layer (b), then a pyramid parsing module is applied to harvest different 
sub-region representations, followed by upsampling and concatenation layers to form the final 
feature representation, which carries both local and global context information in (c). Finally, the 
representation is fed into a convolution layer to get the final per-pixel prediction (d) 

relationship between pixels, resulting in a lack of spatial consistency. This approach 
also increases the memory footprint and computational complexity. To address this, 
FastFCN [ 30] formulates the task of extracting high-resolution feature maps into a 
joint upsampling problem, reducing computational complexity by more than three 
times without sacrificing performance. 

Pyramid Models 
Recent semantic segmentation approaches have made significant improvements by 
incorporating pyramid-based multi-resolution representations to increase the recep-
tive fields. However, traditional fully convolutional network (FCN) [ 31] models often 
suffer from misclassification of similar categories due to inadequate utilization of 
global information and contextual relationships across different receptive fields. The 
spatial pyramid pooling (SPP) [ 31] model addresses this limitation by obtaining 
global image-level features to improve the ability of FCN-based models to utilize 
contextual information. Nevertheless, to reduce the loss of contextual information 
within different sub-regions, [ 32] proposes a hierarchical global prior, known as the 
pyramid pooling module (PPM), as illustrated in Fig. 4.2. The PPM module com-
bines the features of four different pyramid scales to capture contextual information 
of varying scales and sub-regions. Finally, the resulting representation is passed 
through a convolutional layer to produce the final per-pixel prediction. 

The DeepLab model also addresses this challenge by using Atrous convolutions 
and Atrous Spatial Pyramid Pooling (ASPP) modules. Compared to traditional con-
volution, dilated convolution can obtain a bigger receptive field without sacrificing 
spatial resolution. This architecture has evolved over several generations: 

DeepLabV1: Uses Atrous Convolution and Fully Connected CRF to control the 
resolution at which image features are computed. 
DeepLabV2: Uses ASPP to consider objects at different scales and segment with 
much improved accuracy. 
DeepLabV3: Apart from using Atrous Convolution, DeepLabV3 uses an improved
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ASPP module with batch normalization and image-level features. Unlike its pre-
decessors, DeepLabV3 does not incorporate the CRF (Conditional Random Field) 
method. The final feature map obtained from the network captures abundant seman-
tic information, however, due to the pooling and convolution operations with striding 
used in the network backbone, it lacks the finer details of object boundaries. 
DeepLabv3+ [ 33]: It improves upon DeepLabv3 by adding a decoder module to 
the architecture. While the encoder module encodes multi-scale contextual infor-
mation using atrous convolution at multiple scales, the decoder module refines the 
segmentation results along object boundaries in a simple yet effective manner. 

Encoder-Decoder Architectures 
UNet [ 34] aims to enhance a standard convolutional network by adding a series of 
layers that gradually upsample the previous layers. This allows for the combination 
of high resolution features from the encoder with upsampled feature maps to fuse 
different levels of information and learn context information. By using a u-shaped 
architecture, the decoder can propagate context information to higher resolution 
layers and allow for better segmentation results. 

The network structure LinkNet [ 35] is based on UNet’s encoder-decoder structure. 
There is also a jump connection between the Encoder and Decoder, which allows the 
network to forget certain information during encoding and revisit it during decoding. 
Because the amount of information required by the network to decode and generate 
the image is relatively low, this reduces the number of parameters required by the 
network. Various operations can be used to implement the jump connection. Another 
advantage of using jump connections is that you can easily implement reverse gra-
dient flow with the same connection. Tiramisu [ 36], another semantic segmentation 
algorithm, connects the two and sends the hidden encoder output to the corresponding 
decoder input. 

The novelty of SegNet [ 37] lies in the way the decoder upsamples its lower-
resolution input feature maps. Specifically, the pooling index computed in the 
maximum pooling step of the corresponding encoder is used by the decoder to per-
form nonlinear upsampling. Inverse pooling upsamples the feature maps, maintaining 
the integrity of high-frequency information while ignoring neighboring information 
for feature maps with lower resolution. 

Unlike SegNet’s symmetric encoder-encoder architecture, the ENet [ 38] architec-
ture consists of a large encoder and a small decoder. ENet believes that the encoder 
should be able to manipulate lower resolution data, allowing it to process informa-
tion and filter ideas. In contrast, the decoder is primarily responsible for sampling 
the output of the encoder and only needs to fine-tune the details. 

High-Resolution Network (HRNet) [ 39] proposes a different approach to previous 
methods where high-resolution feature maps are recovered from low-resolution rep-
resentations. Instead, HRNet suggests keeping high-resolution representations dur-
ing the entire feature extraction and fusion process, avoiding loss of essential shape 
and bounding details that may occur with a high-to-low encoder. HRNet achieves 
high performance by using multi-resolution sub-networks in parallel and progres-
sively and repeatedly fusing multi-scale information.
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Prior approaches such as pooling-based [ 40, 41] and dilated convolution-based 
[ 42, 43] extensions, make non-adaptive use of homogeneous contextual dependen-
cies for all image regions, which overlooks the variations in local representation and 
contextual dependencies for different categories. 

Attention 
Attention mechanism has become a widely used technique in various deep learning 
tasks, including natural language processing and image recognition. It is a crucial 
technique that deserves a thorough understanding in the field of deep learning. The 
inspiration for studying the Attention Mechanism comes from the human brain’s 
ability to selectively focus on a region of interest from a visual signal. Humans 
learn to focus their attention on specific regions of an image, based on previously 
observed information, rather than processing all pixels of the entire image at once 
and adjusting the focus over time. This focus of attention enables humans to quickly 
select relevant information and disregard irrelevant information, similar to how the 
Attention Mechanism works in deep learning. 

CNNs are limited in their ability to understand complex scenes due to the physical 
design of their convolutional kernel, which constrains feature information flow to a 
fixed-size local region. In order to address this limitation, Point-wise Spatial Attention 
Network (PSANet) [ 44] (Fig. 4.3) introduces adaptive attention masks to allow each 
location on the feature map to associate with other locations, thereby moderating 
the local neighborhood constraint. PSANet also employs bidirectional information 
propagation paths, which allow each location to aggregate information from all other 
locations to aid in its own prediction, while simultaneously allowing information 
from each location to be distributed globally to assist in the prediction of all other 
locations. 

With the frequent use of attention mechanism in neural networks, non-local neural 
networks [ 45] obtain the attention mask by calculating the correlation matrix between 
each spatial point in the feature map. Figure 4.4a depicts the Non-Local structure. The 
block first computes the similarity between all positions. When the size of the input 
feature map is .C × H × W , the computational complexity is .O(C × H 2 × W 2). 
Then matrix multiplication is performed to collect the influence of all locations on 
themselves, and the computational complexity of this step is also.O(C × H 2 × W 2). 
The high complexity brought by this matrix multiplication results in prohibitive com-

Fig. 4.3 Architecture of PSANet [ 44], consisting of two parallel branches
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Fig. 4.4 a Architecture of a standard non-local block [ 45]; b the asymmetric non-local block [ 46] 

putational costs and a massive GPU memory occupation. To address this issue, Asym-
metric Non-local Neural Network (ANN) [ 46] selectively samples a small number 
of representative points from feature maps. Figure 4.4b shows the architecture of the 
ANN block, and it can be seen that the output size of the non-local blocks remains 
the same as long as the output of the key and value branches remains the same 
size. Therefore, the ANN block efficiently reduces the computational complexity by 
selecting a small number of representative points from the key and value branches, 
while maintaining comparable performance.

Non-local Net [ 45] computes attention using a whitened pairwise term and a 
unary term, which are tightly coupled, making it difficult to learn them separately. 
To address this limitation, Disentangled non-local block (DNLNet) [ 47] decouples 
these terms to facilitate their independent learning. Another method, Dual Attention 
Network (DANet) [ 48], encodes global context using a self-attention mechanism that 
incorporates both spatial and channel attention. Current methods such as PSANet 
[ 44] and DANet [ 48] use adaptive weights to calculate pair-wise similarity or learn 
pixel-wise attention maps. However, these approaches overlook the importance of 
global guidance from the global information extractor. In contrast to these works, 
Adaptive Pyramid Context Network (APCNet) [ 49] takes global-guided local affinity 
into account to estimate the degree of subregion contribution from local and global 
representations and exploits multi-scale representation with a feature pyramid. 

Despite the superior performance of attention mechanisms over other methods, 
such as ASPP, PPM, large convolutional kernels, and stacked convolutional layers, 
the additional computational and GPU memory usage is often unaffordable. There-
fore, some networks focus on reducing computational effort. Criss-Cross Network 
(CCNet) [ 50] aims to reduce the large computation budget introduced by full spatial 
attention. Another method, Interlaced Sparse Self-Attention Network (ISANet) [ 51], 
factors the dense affinity matrix as the product of two sparse affinity matrices, signif-
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icantly reducing computation and memory complexity, particularly when processing 
high-resolution feature maps. 

The attention-based methods have high computational complexity and require a 
large amount of GPU memory due to the generation of a large attention map. The 
generation and use of the attention map are computed with respect to all positions, 
which is a bottleneck. To address these issues, Expectation Maximization Atten-
tion (EMA) [ 52] proposes a novel attention-based method that uses the expectation 
maximization (EM) algorithm [ 53] to find a more compact basis set, significantly 
reducing computational complexity. Unlike previous methods that treat all pixels as 
reconstruction bases [ 44, 45], EMA finds a more efficient solution. EncNet (Context 
Encoding Module) [ 54] adds a class-dependent feature map to provide prior informa-
tion about the scene, which “simplifies” the problem for the network. This approach 
differs from the standard attention mechanism. 

Transformer Models 
Transformers [ 56] rely on self-attention mechanisms and capture long-range depen-
dencies among tokens in a sentence. In addition, transformers are highly paralleliz-
able and suitable for training on large datasets, which has led to their success in natural 
language processing (NLP). This success has inspired the development of several 
computer vision methods that combine CNNs with self-attention mechanisms to 
tackle semantic segmentation problems [ 55]. 

The transformer-based OCR [ 57] approach uses the representation of the cor-
responding object class to characterize a pixel, which strengthens the pixel repre-
sentation. Swin transformer [ 58] uses a variant of ViT [ 59], and proposes a hier-
archical transformer whose representation is computed with shifted window. This 
hierarchical architecture has the flexibility to model at various scales and has dif-
ferent linear computational complexity with regard to image size. Segmenter [ 55] 
(Fig. 4.5) is also a transformer encoder-decoder architecture for semantic image seg-
mentation. It relies on a ViT backbone and introduces a masked decoder inspired by

Fig. 4.5 Segmenter model [ 55]. The encoder module receives image patches, and the decoder 
module takes the input to a mask transformer to generate segmentation masks
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DEtection TRansformer (DETR) [ 60]. Its architecture does not use convolutions but 
captures global context at every layer of the model during the encoding and decod-
ing stages. SegFormer [ 61], a simple, efficient yet powerful semantic segmenta-
tion framework, unifies Transformers with lightweight multilayer perceptron (MLP) 
decoders. Twins [ 62] presents two powerful vision transformer backbones and dub 
them twin transformers: Twins-PCPVT and Twins-SVT. They find that interleaving 
local and global attention can produce impressive results, yet it comes with higher 
throughputs. ResNeSt [ 63] combines channel-wise attention with multi-path repre-
sentation into a single unified Split-Attention block, which improves learned feature 
representations widely.

4.2.2 Data-Fusion Networks 

Semantic segmentation is a popular computer vision task that involves partitioning 
an image into semantically meaningful regions. Typically, photometric data such 
as RGB is used for this task. However, structural information refers to the spatial 
relationships and arrangements of objects in the image, and it can enhance the perfor-
mance and robustness of the segmentation algorithm due to its geometric property. 
To make the most of structural information in semantic segmentation tasks, data-
fusion networks can combine different input visual information to create a richer 
representation of the image. 

4.2.2.1 Structured Visual Information 

• For humans to achieve stereo vision, perceiving depth information is crucial. In 
computer vision, images are acquired through cameras. However, in our everyday 
life, objects have three dimensions, whereas camera-captured images only contain 
two dimensions, resulting in the loss of one-dimensional information, which rep-
resents the relative distance of objects in space. Depth information in computer 
vision usually refers to the distance of each point in space relative to the camera, 
and the relative distance between the points can be easily calculated once the depth 
information is known. 

• Transformed disparity information is utilized to differentiate potholes in the road. 
To accomplish this, a disparity map is subjected to a transformation process, 
whereby an energy function is minimized with respect to both the camera roll 
angle and the road disparity projection model [ 64]. 

• Thermal information is a visual representation that records the heat or temperature 
radiated by the object itself or its surroundings. An infrared (IR) camera is utilized 
to capture this data by using an infrared detector and an optical imaging lens to 
collect the infrared radiation energy distribution of the object in question. The 
resulting thermal image is then projected onto the photosensitive element of the 
IR detector, providing a detailed portrayal of the object’s thermal profile.
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Fig. 4.6 Examples of structured visual information: a depth images, b surface normal images, 
(i)–(iii) in row c show depth image, HHA image, and height image, respectively. (i)–(iii) in row d 
show RGB image, surface normal angle image, and horizontal disparity image, respectively 

• HHA information representation uses three parameters to capture depth images, 
namely the difference in horizontal position, the height above ground of each 
pixel, and the angle between the local surface normal and the estimated gravity 
direction. However, the HHA encoding method has limitations since it mainly 
emphasizes the interdependence between these parameters, while neglecting the 
unique contribution of each parameter to the overall representation (Fig. 4.6c, d). 

• Surface normal information is a 3D spatial representation that represents the vector 
perpendicular to the given object. It is an important visual feature and is used in 
many computer vision applications [ 65, 66] (Fig. 4.6b). 

4.2.2.2 RGB+X Data Fusion 

Existing fusion methods fuse the structural visual information described in 
Sect. 4.2.2.1 with RGB information. Structural visual information captures geometric 
details such as distance, shape, and structure, which are not present in RGB images. 
These details provide a more precise understanding of the location and boundary of 
objects, aiding in semantic segmentation. 

Recently, the combination of RGB images with depth information has been highly 
successful in the field of semantic segmentation, and FuseNet [ 18] is a typical exam-
ple of an encoder-decoder architecture that fuses these inputs (as shown in Fig. 4.7). 
It uses two encoders, each with a VGG-16 [ 67] backbone, to extract features from the 
RGB and depth images separately. As the network delves deeper, the depth encoder’s 
feature maps become incorporated into the RGB encoder. RedNet [ 68] takes this con-
cept a step further by integrating multi-level features even more extensively along 
the top-down pathway. 

RFNet [ 69] follows a similar approach to FuseNet by using two separate branches 
to extract features from RGB and depth images. The RGB branch is considered the 
primary branch in RFNet, while the depth branch is treated as a secondary branch. The 
two branches are combined using the attention feature complementary (AFC) module 
(as shown in Fig. 4.8). Furthermore, a spatial pyramid pooling module is implemented
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Fig. 4.7 Architecture of FuseNet [ 18], containing two branches to extract RGB and depth features, 
respectively 

Fig. 4.8 Data fusion method in RFNet [ 69] 

to aggregate the merged RGB-D features and produce feature maps incorporating 
information at multiple scales. The inclusion of a squeeze-and-excitation block in 
the AFC module, as proposed in [ 70], facilitates the acquisition of global knowledge 
to highlight significant channels and suppress less relevant ones. As a result, the AFC 
module can efficiently leverage informative features from both branches. 

RFBNet [ 71] adds a novel stream to RGB and depth streams. These three 
streams are combined using approaches such as summation, concatenation, and self-
supervised model adaptation (SSMA) block [ 72]. The resulting features are then 
passed through a decoder to generate the final predictions (as shown in Fig. 4.9). 
Specifically, RFBs are utilized in the upper layers to adeptly capture the interplay 
between the three streams. SSMA suggests a fusion approach that merges streams 
and multi-level features specific to different modalities. 

Depth-aware CNN [ 73] utilizes depth-aware convolution and depth-aware average 
pooling, which can be integrated into the traditional segmentation framework to make 
full use of the depth information at low cost. Furthermore, in both the encoder and
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Fig. 4.9 Architecture of RFBNet [ 71]. Three streams: RGB stream (green), depth stream (blue), 
and interaction stream (yellow).. F denotes the fused method 

decoder, RGB and spectral image feature maps are processed separately by the depth-
aware CNNs. 

In addition to depth information, significant efforts have been directed towards 
integrating thermal and RGB images. The two types of visual information comple-
ment each other, as thermal images are proficient at representing diverse environ-
ments with varying illumination and encoding the structural details of the scene [ 74, 
75]. The majority of previous research has split the encoder component of the seman-
tic segmentation model into two branches of networks, extracting features from both 
RGB and thermal images, and then progressively merging the thermal characteristics 
with the RGB features based on the number of layers in the network. The following 
describes the current studies on fusion of RGB and thermal images. 

MFNet [ 76] is an encoder-decoder structure data fusion network, featuring two 
encoders for extracting features from both RGB and thermal images (as shown in 
Fig. 4.10). To incorporate contextual information and extract features from each 
encoder, mini-inception modules utilize parallel convolutional and hole convolu-
tional layers. In the fusion stage, the short-cut module concatenates the RGB and 
thermal features from each encoder at every scale before they are added to the output 
of the previous decoder layer, yielding the ultimate fused result. MFNet maximizes 
the complementarity between thermal image and RGB information for enhanced 
semantic segmentation in autonomous driving scenarios during the night. 

RTFNet [ 77] is composed of three main components: an RGB encoder, a thermal 
encoder, and a decoder (as shown in Fig. 4.11). To extract the necessary features from 
the RGB and thermal images, the ResNet model is utilized as a feature extractor. The 
fusion process involves adding the extracted RGB and thermal features on a per-pixel 
basis to obtain the fused output. This fused output is then fed into the decoder to 
recover the feature map resolution and ultimately obtain the semantic segmentation 
result. 

FuseSeg [ 78] (as shown in Fig.  4.12) also consists of two encoders and a decoder. 
The two encoders use DenseNet [ 79] to extract RGB and thermal features respec-
tively. The RGB encoder incorporates the corresponding thermal features with the 
RGB features using element summation. These fused feature maps are then further
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Encoder (RGB) Decoder Encoder (IR) 

Input (RGB) Input (Thermal)Output 

Convolution layer 

Pooling layer 
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Data flow 
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Fig. 4.10 Architecture of MFNet [ 76]. The output of RGB and IR encoders are fused to feed into 
the decoder 

Fig. 4.11 Architecture of RTFNet [ 77], consisting of an RGB encoder, a thermal encoder (blue) 
and a decoder (orange) 

combined with the decoder’s corresponding feature maps using the tensor cascade 
method. Additionally, the bottom feature maps are directly copied to the decoder. 

FEANet [ 80] comprises two components and aims to improve the comprehension 
of spatial information (as shown in Fig. 4.13). The first component of the network uti-
lizes two encoders to extract RGB and thermal features separately. The output from 
each encoder layer is then fed into the feature-enhanced attention module (FEAM), 
which blends and refines the two features through weightage and fusion. This process 
enhances the features, allowing for effective capture and utilization of the comple-
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Fig. 4.12 Architecture of FuseSeg [ 78], consisting of an RGB encoder, a thermal encoder, and a 
decoder. It uses DenseNet as the backbone of the encoders 

Fig. 4.13 Architecture of FEANet [ 80], consisting of a thermal stream, an RGB stream, and an 
output stream 

mentary relationship between the two distinct features. The second component of 
the network uses a decoder to recover the resolution, which takes the enhanced fused 
features as input. 

MFFENet [ 81] consists of two encoders, a feature fusion layer, and a multi-
label supervision layer. It concatenates the multi-scale features with the features that
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contain global semantic information. To extract features, two parallel encoders based 
on DenseNet are situated in the top section. Feature fusion employs elementwise 
summation, with features at various levels being combined at the encoders’ peak. The 
spatial attention mechanism module is used to improve fused features by focusing on 
foreground objects. The upgraded features are supplied to a multi-label supervision 
layer, which is responsible for semantic segmentation. 

GMNet [ 82] classifies the extracted features into three groups that correspond to 
specific aspects of the visual content: fine-grained visual details, semantic informa-
tion, and intermediate-level features. During the fusion process, GMNet integrates the 
low-level and high-level features separately. Specifically, for the low-level features, 
GMNet employs spatial and channel attention mechanisms to combine information 
across different feature maps. As for the high-level features, GMNet leverages multi-
scale null convolution to capture fine-grained details while preserving the semantic 
richness of the information. 

ABMDRNet [ 83] considers the differences between two types of visual infor-
mation by mitigating their differences before fusing. Specifically, a bidirectional 
translation technique is employed to reduce feature differences between the images, 
followed by a weighting scheme to dynamically select the discriminative features 
for semantic segmentation. 

CCAFFMNet [ 84] consists of two encoders and a decoder. The chief function 
of these encoders is to extract features from both RGB and thermal images, respec-
tively. An innovative channel-coordinate attention feature-fusion module (CCAFFM) 
is deployed within the encoder to effectuate this. Specifically, the aforementioned 
module is responsible for extracting the RGB features and subsequently gauging the 
spatial correlation between each RGB and thermal feature. It then proceeds to fuse 
the feature maps, thereby generating fused features which are ultimately fed into the 
fusion layer of the RGB encoder. Finally, the fused features produced by each fusion 
layer are input into the decoder to enable the recovery of the resolution. 

SNE-RoadSeg [ 86] proposed a data-fusion CNN architecture RoadSeg, which 
can extract and fuse features from both RGB images and the inferred surface nor-
mal information for accurate freespace detection. Based on it, SNE-RoadSeg+ [ 85] 
(Fig. 4.14) consists of SNE+ module for more accurate surface normal estimation, 
and a data-fusion DCNN (RoadSeg+) that can greatly minimize the trade-off between 
accuracy and efficiency with the use of deep supervision. 

RDFNet [ 87] presents a fusion network that receives RGB and HHA [ 88] infor-
mation as inputs and enhances the diverse visual information as well as the features 
across various levels. The HHA information is obtained via depth map coding. 

These methods of fusing RGB and other visual information (Table 4.1) can com-
bine the spatial structure features in the scene, thus boosting the performance of 
semantic segmentation. However, in the majority of the aforementioned approaches, 
the RGB and other visual features are first extracted separately before being fused, 
thereby limiting their ability to distinguish the differences and complementarities 
between different types of visual information.
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Fig. 4.14 Architecture of SNE-RoadSeg+ [ 85]. It consists of SNE+ (a module for achieving surface 
normal information), and RoadSeg+ (a data-fusion network) 

Table 4.1 The results of semantic segmentation methods based on data fusion 

Method Year Visual 
information 

Dataset 

FuseNet [ 18] 2017 RGB+Depth SUNRGBD [ 89] 

RedNet [ 68] 2018 RGB+Depth SUNRGBD [ 89] 

RFNet [ 69] 2020 RGB+Depth Cityscapes [ 90], Lost and found [ 91] 

RFBNet [ 71] 2019 RGB+Depth ScanNet [ 92], Cityscapes [ 90] 

Depth-aware 
CNN [ 73] 

2018 RGB+Depth NYU V2 [ 93], SUNRGBD [ 89], 
SID [ 94] 

MFNet [ 76] 2017 RGB+Thermal MFNet [ 76] 

RTFNet [ 77] 2019 RGB+Thermal MFNet [ 76] 

FuseSeg [ 78] 2020 RGB+Thermal MFNet [ 76] 

FEANet [ 80] 2021 RGB+Thermal MFNet [ 76] 

MFFENet [ 81] 2021 RGB+Thermal PST900 [ 95], MFNet [ 76] 

GMNet [ 82] 2021 RGB+Thermal PST900 [ 95], MFNet [ 76] 

ABMDRNet [ 83] 2021 RGB+Thermal MFNet [ 76] 

CCAFFMNet [ 84] 2022 RGB+Thermal RoadScene [ 96], MFNet [ 76], 

SNE-RoadSeg [ 86] 2020 RGB+Surface 
normal 

R2D Road [ 86], KITTI [ 97], SYNTHIA 
[ 98] 

SNE-RoadSeg+ [ 85] 2021 RGB+Surface 
normal 

KITTI [ 97], R2D road [ 86] 

RDFNet [ 87] 2017 RGB+HHA NYU V2 [ 93], SUNRGBD [ 89]
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4.3 Public Datasets and Benchmarks 

4.3.1 Public Datasets 

In this section, we provide a summary of the datasets that have been used for training 
and testing in the context of semantic segmentation tasks. The datasets can be divided 
into two categories based on their data types: 2D datasets and 2.5/3D datasets. At 
the same time, for autonomous driving applications, models are often trained using 
synthetic data. Therefore, we also count the scenario types of the dataset in this 
section, including real scenarios and synthetic scenarios. Table 4.2 includes some 
classical datasets for semantic segmentation tasks. 

4.3.1.1 2D Dataset 

PASCAl VOC 1 [ 99] is a dataset for generic scenarios in semantic segmentation, 
consisting of 17125 images with a total of 20 categories (excluding background). 
For the semantic segmentation task, it provides 2913 images, of which 1464 were 
used for training with 3507 objects and 1449 were used for validation with 3422 
objects. The test dataset is not publicly available. 

PASCAL Context 2 [100] adds new annotated categories to PASCAL VOC 2010, 
increasing the number of categories to 540, with 59 commonly used categories and 
the others being re-labeled as background. The dataset includes 10103 images for 
training. 

PASCAL Part 3 [101] provides additional annotations in PASCAL VOC 2010, and 
the components in each object are also annotated. This dataset includes the training 
dataset and validation dataset from PASCAL VOC, as well as 9637 labels for testing. 

Stanford background dataset 4 [102] includes 715 images selected from the public 
datasets LabelMe [103], MSRC [104], PASCAL VOC 2007 [105], and Geometric 
Context [106]. The dataset is primarily targeted at outdoor scenarios with an image 
size of 320. ×240 pixels and includes at least one foreground object. The semantic and 
geometric labels were obtained through Amazon’s Mechanical Turk (AMT) [107]. 

Semantic Boundaries Dataset (SBD) 5 [108] is a semantic boundary dataset that 
aggregates unannotated images from PASCAL VOC 2011 [109] and annotates 11355 
images for semantic segmentation, 8498 of which were used for training and 2857 
for testing. These annotations include the boundaries of each category and are based 
on category-level as well as instance-level information.

1 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/. 
2 https://cs.stanford.edu/~roozbeh/pascal-context/. 
3 http://roozbehm.info/pascal-parts/pascal-parts.html. 
4 http://dags.stanford.edu/projects/scenedataset.html. 
5 http://home.bharathh.info/pubs/codes/SBD/download.html. 
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Table 4.2 Classic datasets for semantic segmentation tasks 

Dataset Year Classes Synthetic/Real Data Samples scenario 

Stanford 
background 
[102] 

2009 8 R 2D 715 Outdoor 

SBD [108] 2011 21 R 2D 11355 Generic 

PASCAL VOC 
[ 99] 

2012 20 R 2D . ≈3k Generic 

PASCAL 
Context [100] 

2014 540 R 2D . ≈20 k Generic 

PASCAL Part 
[101] 

2014 20 R 2D . ≈20 k Body part 

COCO [110] 2014 . ≥ 80 R 2D 204721 Generic 

NYU Depth V2 
[ 93] 

2012 894 R 2.5D . ≈1.5 k Indoor 

SUN3D [127] 2013 – R 2.5D 19640 Indoor 

SUNRGBD 
[ 89] 

2015 37 R 2.5D 10335 Indoor 

ScanNet [ 92] 2017 21 R 2.5D/3D 1513 Generic 

CamVid [111] 2008 32 R 2D 701 Driving 

KITTI (road) 
[ 97] 

2013 10 R 2D 579 Driving 

KITTI 
(semantics) 
[114] 

2018 11 R 2D 400 Driving 

Virtual KITTI 
[115] 

2016 – S 2D 17 k Driving 

SYNTHIA [ 98] 2016 11 S 2D 13407 Driving 

Cityscapes [ 90] 2016 33 R 2D 25 k City 

ADE20K [116, 
117] 

2017 150 R 2D . ≥25 k Generic 

MVD [120] 2017 66 R 2D 25 k City 

ApolloScape 
[121] 

2018 25 R 2D 140 k Driving 

Highway 
driving [122] 

2019 10 R 2D 1200 Driving 

WoodScape 
[123] 

2019 40 R 2D 10 k Driving 

IDD [124] 2019 34 R 2D 10003 Driving 

A2D2 [125] 2020 38 R 2D . ≈41 k Driving 

IDDA [126] 2020 – S 2D 1000 k Driving
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Microsoft Common Objects in Context (COCO) 6 [110] is a dataset built by 
Microsoft that includes tasks such as detection, key points, and segmentation. The 
dataset for the segmentation task is currently the largest semantic segmentation 
dataset in computer vision, containing over 80 objects, and consists of two sepa-
rate releases in 2014, with 82783 training images, 40504 validation images, and 
40775 test images. In the 2015 version, there are 165482 training images, 81208 
validation images, and 81434 test images. 

The Cambridge-driving Labeled Video Dataset (CamVid) 7 [111] is a semantic 
segmentation dataset for driving scenarios, which consists of urban road scenarios, 
including videos of five driving scenarios. There are more than 700 annotated images 
with a resolution of 960. ×720 and 32 objects. The dataset includes 368 images for 
training, 100 for validation, and 233 for testing. 

KITTI 8 [112, 113] is a dataset for the evaluation of various computer vision tasks 
in autonomous driving scenarios, including real-world scenarios such as urban, rural, 
and highway. Semantic segmentation and instance segmentation tasks [114] consists 
of 200 training images with semantic segmentation annotations and 200 test images 
corresponding to stereo2015 and flow2015. Road semantic segmentation task [ 97] 
includes 289 images for training and 290 images for testing. 

Virtual KITTI 9 [115] uses real-to-virtual world cloning to create a synthetic video 
dataset consisting of five videos obtained from KITTI clones. It comprises a total 
of 21260 high-resolution frames, and they are generated from five different virtual 
worlds of urban scenarios under different imaging and weather conditions. Virtual 
KITTI2 adds a stereo camera that makes the scenarios more realistic. 

SYNTHetic Collection of Imagery and Annotations (SYNTHIA) 10 [ 98] is used  
to address the problem of semantic segmentation for scene understanding in driving 
scenarios and consists of a photorealistic framework of virtual cities rendered out. It 
includes town, city, and highway scenarios in different seasons and weather with 11 
pixel-level labeling categories (road, sidewalk, void, sky, building, fence, car, sign, 
vegetation, pole, pedestrian, and cyclist). 13407 images are extracted from the video 
sequences for training. 

Cityscapes 11 [ 90] is a dataset for pixel-level and instance-level semantic segmen-
tation, captured from 50 city streets and includes scenarios from the spring, summer, 
and autumn seasons. It uses a stereo camera to acquire stereo visual video sequences, 
of which 5000 images are annotated with high-quality pixel-level annotations, and 
20000 images are coarsely annotated. The scenarios in this dataset are more complex 
than previous datasets.

6 https://cocodataset.org/#home. 
7 http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/. 
8 https://www.cvlibs.net/datasets/kitti/. 
9 https://europe.naverlabs.com/research/computer-vision. 
10 https://synthia-dataset.net/downloads/. 
11 https://www.cityscapes-dataset.com/. 
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ADE20K 12 [116, 117] consists of 27000 images with 3688 objects from the 
dataset SUN [118] and Places [119], all images are anonymized. 25574 images are 
labeled for training and 2000 images for validation. 

The Mapillary Vistas (MVD) 13 [120] is a large-scene streetscape dataset consist-
ing of 25000 high-resolution images with 66 objects, of which 18000 are used for 
training, 2000 for validation, and 5000 for testing. The images in the dataset are 
taken in different weather, season, and daytime conditions. 

ApolloScapes 14 [121] publishes over 140000 frames of pixel-level semantically 
annotated images, with each image semantically annotated for each pixel. It captures 
hundreds of moving objects for scenarios in various traffic conditions, providing 
8900 instance-level annotations for moving objects. Meanwhile, pose information is 
also annotated with centimeter-level accuracy. The annotation accuracy and richness 
of this dataset are much higher than those of KITTI and Cityscapes. 

Highway Driving 15 [122] is a densely annotated dataset with ten objects for the 
semantic video segmentation task, which takes into account the relationship between 
neighbouring frames for each frame annotation. It consists of 20 sequences of 60 
frames at a frame rate of 30Hz, 15 of which are for training and five for testing. 

WoodScape 16 [123] is the first publicly available fisheye dataset for autonomous 
driving, with image acquisition by the four fisheye cameras on the vehicle. The 
dataset includes a total of 10000 images with semantic annotations for 40 categories 
and over 100000 annotated images for other tasks. 

IDD 17 [124] is a new dataset for understanding road scenes in unstructured envi-
ronments. The images in the dataset are collected by front-facing cameras in cars, 
it includes 10003 images labeled with 34 categories and 182 driving sequences on 
Indian roads. The images are mostly in 1080p resolution, with some images in 720p 
and other resolutions. The categories annotated add unique categories such as ani-
mals and autorickshaws compared to other datasets. Conditions such as weather and 
lighting are highly variable in this dataset. 

Audi Autonomous Driving (A2D2) 18 [125] is a large autonomous driving dataset 
released by Audi, which contains RGB images and corresponding 3D point cloud 
data. The dataset uses six cameras and five LiDAR sensors to capture the surrounding 
environment of vehicles, collecting scenarios from highways, rural roads, and cities in 
southern Germany under different weather conditions. The dataset is annotated with 
41227 frames of non-sequential data, all of which include semantic segmentation 
annotations and point cloud annotations, including 12497 frames of 3D bounding 
box annotations for objects in the field of view of the front camera. In addition, 
392556 consecutive frames of unannotated sensor data are included.

12 https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html. 
13 https://research.mapillary.com/publication/iccv17a/. 
14 http://apolloscape.auto. 
15 https://sites.google.com/site/highwaydrivingdataset/. 
16 https://drive.google.com/drive/folders/1X5JOMEfVlaXfdNy24P8VA-jMs0yzf_HR. 
17 http://idd.insaan.iiit.ac.in/accounts/login/?next=/dataset/download/. 
18 https://www.a2d2.audi/a2d2/en.html. 
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ItalDesign Dataset (IDDA) 19 [126] is a large-scale synthetic dataset for semantic 
segmentation, consisting of over 100 different source visual domains. The dataset 
is used to solve the problem of domain transfer between training, and test data in 
various weather and viewpoint conditions in seven different types of cities. 

4.3.1.2 2.5D/3D Dataset 

NYU Depth V2 20 [ 93] consists of video sequences of indoor scenarios captured by 
RGB and depth cameras and includes 464 scenarios from three cities. In total, there 
are 1449 annotated RGB images and depth images containing 26 scenario categories. 
In addition, 407024 images are not annotated. 

SUN3D 21 [127] is similar to NYU Depth V2 in that it consists of large-size 
RGB-D video data with eight annotated sequences, with scenarios in the dataset 
captured at different times of the day. Each frame in the sequence is accompanied 
by a semantic annotation and camera pose information. The dataset consists of 415 
video sequences, captured in 41 different buildings in 254 different scenarios. 

SUNRGBD 22 [ 89] is a collection of 10000 images from four RGB-D sensors, 
including images from NYU depth v2, Berkeley B3DO [128], and SUN3D. The 
dataset is densely annotated, including 146617 2D polygons and 58657 3D bounding 
boxes with accurate object orientations, as well as 3D room layouts and categories 
of the scenario. 

ScanNet 23 [ 92] is an RGB-D video dataset containing 2.5 million views in more 
than 1.5 k scans. It annotates with 3D camera poses, surface reconstructions, and 
instance-level semantic segmentations. It consists of a total of 1513 images with 21 
categories of objects, of which 1201 scenes are used for training and 312 scenes for 
testing. 

4.3.2 Online Benchmarks 

In this section, we list the benchmark results corresponding to two classical datasets 
for the semantic segmentation task. The evaluation metrics for semantic segmen-
tation are based on the generic IoU (as shown in Sect. 4.4) and give four related 
metrics: IoU class, iIoU class, IoU category, and iIoU category. IoU class considers 
the accuracy of the segmentation results for the global scenario and evaluates the 
segmentation accuracy for the whole scenario. However, the global IoU measure is 
biased towards object instances covering large areas of the image and is not appli-

19 https://idda-dataset.github.io/home/. 
20 https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html. 
21 http://sun3d.cs.princeton.edu/. 
22 http://rgbd.cs.princeton.edu/challenge.html. 
23 https://github.com/ScanNet/ScanNet. 
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cable to scenarios with strong scale variation. Therefore, iIoU class builds on the 
IoU class by segmenting the image scenario at the instance level and predicting the 
result. This metric focuses more on the segmentation accuracy of the algorithm across 
instances, with each instance in the scenario being segmented. Different instances in 
the same category are evaluated separately to obtain the final result. IoU is divided 
into ‘Class’ and ‘Category’ according to the granularity of the segmentation, with 
the subdivision class being divided into the coarse category for coarse granularity. 
The IoU category and iIoU category are evaluated according to the granularity of the 
segmentation. 

4.3.2.1 Cityscapes 

Table 4.3 shows semantic segmentation results in Cityscapes benchmark. This task 
involves predicting a per-pixel semantic labeling of the image without considering 
higher-level object instance or boundary information. It introduces a loss term that is 
aware of the boundaries for semantic segmentation, using an inverse-transformation 
network that effectively learns the extent of parametric transformations between 
predicted and target boundaries [ 90]. It achieves the highest IoU class, iIoU class, 
and iIoU category, while HMS Attention [129] method achieves the highest IoU 
category. 

Table 4.3 Semantic segmentation results in Cityscapes benchmark, where the best results are in 
bold type 

Method IoU class (%) iIoU class (%) IoU category (%) iIoU category (%) 

InverseFormNet 
[130] 

85.8 72 93.1 85.6 

HMS Attention 
[129] 

85.4 70.4 93.2 85.4 

Naive-Student 
[131] 

85.2 68.8 92.9 82.0 

ViT-Adapter 
[132] 

85.2 68.3 92.8 83.4 

Wide-ResNets 
[133] 

85.1 71.2 93.0 85.1 

OCR-Seg [134] 84.5 65.9 92.7 83.9 

Panoptic-
DeepLab 
[135] 

84.5 68.7 92.9 82.8 

DCNAS [136] 84.3 68.5 92.7 84.6 

EfficientPS [137] 84.2 65.2 92.5 83.5 

Axial-DeepLab 
[138] 

84.1 66.0 92.6 79.7
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Table 4.4 Semantic segmentation results in KITTI benchmark, where the best results are in bold 
type 

Method IoU class (%) iIoU class (%) IoU category (%) iIoU category (%) 

WRP [139] 76.44 50.92 89.63 73.69 

UJS_model [140] 75.11 47.71 89.53 75.75 

VideoProp [141] 72.82 48.68 88.99 75.26 

SN_DN161 [142] 68.89 40.45 87.06 67.93 

MSeg1080_RVC 
[143] 

62.64 31.62 86.59 68.05 

Chroma UDA 
[144] 

60.36 31.70 80.73 61.91 

IfN-DomAdap 
[145] 

59.50 30.28 81.57 61.91 

SegStereo [146] 59.10 28.00 81.31 60.26 

SGDepth [147] 53.04 24.36 78.65 55.95 

SDNet [148] 51.14 17.74 79.62 50.45 

APMoE_ROB 
[149] 

47.96 17.86 78.11 49.17 

4.3.2.2 KITTI 

Table 4.4 shows the KITTI semantic segmentation benchmark. It consists of 200 
semantically annotated trains as well as 200 test images corresponding to the KITTI 
Stereo and Flow Benchmark 2015. WRP [139] method learns to refine geometrically-
warped labels and infuse them with learned semantic priors in a semi-supervised 
setting by leveraging cycle-consistency across time. It achieves the highest IoU class, 
iIoU class, and IoU category, while UJS_model [140] method achieves the highest 
iIoU category. 

4.4 Evaluation Metrics 

To ensure the usefulness and significance of semantic segmentation in this field, strict 
performance evaluation is necessary. Moreover, it is imperative that the evaluation 
of a system is carried out using established and widely recognized metrics that 
ensure equitable comparisons with existing methods. Moreover, various aspects of 
the system must be scrutinized to establish its soundness and usefulness, including 
execution time, memory usage, and accuracy. Depending on the system’s purpose 
or context, certain metrics may carry greater significance than others; for instance, 
in a real-time application, execution speed may take precedence over accuracy to a 
certain extent. However, in the interest of scientific rigor, it is crucial to provide a 
comprehensive set of metrics for any proposed method.



124 J. Yang et al.

Many evaluation criteria have been proposed and are frequently used to assess 
the accuracy of any kind of technique for semantic segmentation. The essence of 
semantic segmentation is the classification of pixels, the evaluation metrics of classi-
fication methods include confusion matrix, accuracy, precision, recall, and F1-score. 
The confusion matrix is composed of .nTP (true positive), .nFP (false positive), . nFN
(false negative), and .nTN (true negative). The evaluation of semantic segmentation 
performance involves computing metrics such as pixel accuracy and Intersection 
over Union (IoU). We remark on the following notation details. 

We denote the total number of all classes as . m, where . i represents the . i th class. 

• Pixel Accuracy (PA). PA is used to evaluate the percentage of correctly classified 
pixels. It is a simple metric that computes the ratio between the number of properly 
classified pixels and the total number of pixels. The formula for calculating PA is: 

.PA = nTP + nTN
nTP + nFP + nFN + nTN

. (4.1) 

• Class Pixel Accuracy (CPA). CPA represents the percentage of pixels that are 
actually classified as category . i among all pixels predicted as category . i : 

.CPA = nTP
nTP + nFP

. (4.2) 

• Mean Pixel Accuracy (MPA). MPA is calculated by dividing the sum of the cor-
rectly predicted pixels for each class by the sum of the total predicted pixels for 
that class. It is an improvement over PA and takes into account the accuracy for 
each individual class rather than just the overall accuracy. The formula for MPA 
is: 

.MPA =
∑m

i=1 CPAi

m
. (4.3) 

• Intersection over Union (IoU). IoU is a standard metric used to measure the degree 
of coincidence between pixel predictions and the ground truth, and to determine 
whether the pixel prediction is a positive or negative sample by comparing it 
with a threshold. It calculates the ratio between the intersection and the union 
of two sets, namely the ground truth and the predicted segmentation. This ratio 
can be expressed as the number of true positives (intersection) over the sum of 
true positives, false negatives, and false positives (union). IoU is calculated on a 
per-class basis: 

.IoU = nTP
nTP + nFP + nFN

(4.4) 

• Mean intersection over Union (MIoU). MIoU is a commonly used evaluation 
metric in semantic segmentation. It measures the average intersection over union 
(IoU) for all classes in a dataset. It is calculated by first computing IoU for each 
class and then taking the mean of all class IoUs. The formula for MIoU is as 
follows:
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.MIoU =
∑m

i=1 IoUi

m
. (4.5) 

• Frequency Weighted Intersection over Union (FWIoU). It is an improved version 
of MIoU, which takes into account the class imbalance issue that often occurs in 
semantic segmentation datasets. It assigns different weights to each class based 
on its appearance frequency, so that the evaluation metric is not dominated by the 
performance of the majority classes. FWIoU is calculated as follows: 

.FWIoU = nTP + nFN
nTP + nFP + nTN + nFN

× nTP
nTP + nFP + nFN

. (4.6) 

• F1 score (also known as the Dice score). It is a metric used to evaluate the accuracy 
of binary classification models. It is calculated by balancing the precision and recall 
of the test sample, and is given by the following formula: 

.Fβ = n2TP(1 + β2)

(1 + β2)n2TP + nTP(β2nFN + nFP)
(4.7) 

Generally, recall is considered as important as precision, so F1 score sets . β to 1: 

.F1 = 2nTP
2nTP + nFP + nFN

. (4.8) 

4.5 Specific Autonomous Driving Tasks 

Semantic segmentation is utilized as a valuable tool for accomplishing specific tasks 
related to autonomous driving. 

4.5.1 Freespace Detection 

Freespace detection plays a crucial role in the visual perception of autonomous driv-
ing [150, 151]. It is essential to determine the drivable area for a vehicle to move 
safely. Freespace detection provides vital information for subsequent path planning, 
mainly to achieve road path planning and obstacle avoidance. However, environmen-
tal factors such as light conditions and extreme weather can affect the accuracy of 
freespace detection results obtained from cameras, LiDAR, and other sensors. Addi-
tionally, in congested road sections, surrounding vehicles may obstruct the view and 
affect the accuracy of freespace detection. Freespace detection is essentially a seman-
tic segmentation problem that can be addressed through data fusion of different visual 
inputs. Figure 4.15 [ 86] shows the results of freespace detection.
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Fig. 4.15 Examples on the KITTI road benchmark, where rows a–f show the freespace detection 
results obtained by RBNet [152], TVFNet [153], LC-CRF [154], LidCamNet [155], RBANet [156] 
and SNE-RoadSeg, respectively. The true positive, false negative and false positive pixels are shown 
in green, red and blue, respectively 

4.5.2 Road Defect Detection 

Road pothole detection systems have become critical not only for smart urban road 
maintenance but also for autonomous driving [ 64, 157–160], with the rapid devel-
opment of computers. While today’s autonomous vehicles primarily focus on large 
target information such as pedestrians, traffic signs, and other vehicles, road defects 
also play a crucial role in ensuring ride quality, vehicle handling, fuel consumption, 
and tire wear. Sensing information about the size and shape of potholes can help 
self-driving cars drive smoothly, thereby improving driving comfort while protect-
ing the vehicle [161, 162]. In recent years, semantic segmentation has been widely 
used for road defect detection [163]. Figure 4.16 [164] shows the results of semantic 
segmentation applications. 

4.5.3 Road Anomaly Detection 

The ability to detect road anomalies is crucial for ensuring the safety of autonomous 
vehicles [170]. Road anomalies refer to areas where there is a height difference from 
the surrounding freespace area, and detecting them allows the vehicle to make timely 
adjustments and avoid potential risks. Recent advances in deep learning technology 
have led to the development of several semantic segmentation methods that have 
proven effective in detecting road anomalies. Figure 4.17 [171] shows the results of 
semantic segmentation based on data fusion applied in road anomaly detection.
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Fig. 4.16 Examples of the experimental results of SoTA CNNs: a FCN [ 27]; b U-Net [ 34]; c 
DenseASPP [165]; d DUpsampling [166]; e GSCNN [167]; f SegNet [ 37]; g DeepLabv3+ [ 33]; h 
PAN [168]; i ESPNet [169]; j GAL-DeepLabv3+ [164], where the true-positive, false-positive, and 
false-negative pixels are shown in green, blue and red, respectively 

4.6 Existing Challenges 

Multi-visual information fusion is particularly challenging for semantic segmen-
tation tasks in autonomous driving because of its high requirements for accuracy, 
robustness, and real-time performance. Efficient processing of input information is a 
prerequisite for accurate perception of complex environments by driverless vehicles. 
In Sect. 4.2, we summarized the multi-visual information fusion network for semantic
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Fig. 4.17 Example of the experimental results on the KITTI semantic segmentation dataset. 
FuseNet [ 18], MFNet [ 76], Depth-aware CNN [ 73], RTFNet [ 77], and DFM-RTFNet [171] are  
all data-fusion networks. Significantly improved regions are marked with green dashed boxes 

segmentation. Existing data fusion methods commonly combine RGB images with 
either thermal or depth images. Thermal images are particularly useful for detecting 
high-temperature regions, contours of targets, points or lines of sudden temperature 
changes, trends in temperature, and other related features. On the other hand, depth 
images are effective in capturing the physical structure of each object in the scene. 
However, these types of visual information are applicable only to specific scenes and 
scenarios. Currently, the fusion of RGB images with other visual information has 
received limited research attention. Therefore, selecting and acquiring the appropriate 
visual information based on the characteristics of the scenario remains a challenge. 
Due to its unique characteristics, such as color and texture, RGB data requires dif-
ferent network architectures and fusion methods compared to other types of visual 
information. While most existing fusion methods for RGB images involve overlay-
ing and stitching, these approaches often fail to account for the spatial and temporal 
relationships between different types of visual information. As a result, fusing RGB 
images with other visual information is a significant challenge that requires the devel-
opment of novel fusion methods. Furthermore, the computational costs and memory 
requirements associated with these fusion methods must be carefully considered to 
ensure that they are suitable for use in real-world applications. 

4.7 Conclusion 

In this chapter, we extensively explored semantic segmentation techniques for 
autonomous driving, covering both single-modal and data fusion approaches. We 
began by providing a comprehensive overview of semantic segmentation methods 
and then delved into the latest techniques for both scenarios, highlighting their sig-
nificance and contributions to the field. We also presented common datasets that 
researchers can use to achieve their objectives and satisfy their requirements, along 
with evaluation metrics for assessing semantic segmentation performance and cor-
responding benchmarks for several classic datasets. Finally, we discussed various 
applications of autonomous driving and shared our perspective on the current state-
of-the-art of semantic segmentation.
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Chapter 5 
3D Object Detection in Autonomous 
Driving 

Peng Yun, Yuxuan Liu, Xiaoyang Yan, Jiahang Li, Jiachen Wang, Lei Tai, 
Na Jin, Rui Fan, and Ming Liu 

Abstract 3D object detection is an important perception module in autonomous 
driving systems. It recognizes sensor observations and predicts locations, sizes and 
orientations of key objects, which provides both semantic and spatial information 
for high-level decision making. In this chapter, we first introduce and analyze the 
properties of commonly used perceptual sensors in autonomous vehicles: cameras, 
LiDARs and RADARs. Then we define the research problem, detail the assumptions 
and introduce evaluation metrics of 3D object detection in the context of autonomous
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driving. The main body reviews the state-of-the-art techniques and categorize them 
into camera-based, LiDAR-based, RADAR-based and multi-sensor fusion methods. 
For each method, we point out the main problems and their existing solutions. By 
analyzing the limitations of existing methods, we propose promising directions and 
open problems for future research. 

5.1 Introduction 

Perception is the primary component in an autonomous driving system. It takes 
charge of encoding the sensor readings to understand its surroundings. Accurate 
perception results act as the foundation of decision making. Object detection is 
one of the important problems in the perception of autonomous driving (Fig. 5.1). It 
allows vehicles to recognize and locate the key objects they are concerned about (like 
cars, pedestrians, and cyclists) in the 3D space from the sensor readings. Previously, 
object detection in autonomous driving was mostly implemented based on the images 
captured by vehicle-mounted cameras, called image-based object detection [ 1– 4]. 
Compared to image-based object detection, 3D object detection is a more challenging 
problem. It is implemented based on various sensors, including cameras, LiDARs 
and RADARs. Its searching space is larger than image-based object detection due 
to the extra z-axis and the continuous coordinates. It requires more variables to 
estimate, including the z-axis position, height as well as the heading orientations. 
The extra estimation results of 3D object detection provide more information for 
decision-making in autonomous vehicles. 

One challenge for 3D object detection arises from sensor limitations. Cameras 
suffer from foreshortening, flickering effects, and over-exposure problems; LiDARs 
and RADARs suffer from low-resolution and sparse data representations. Another 
challenge arises from environmental variations such as lighting and weather condi-
tions. These factors significantly influence camera-based 3D object detection since 
the appearance information captured by cameras could be much different in various 
conditions. The density of the point clouds captured by LiDARs will be reduced by 
half on rainy days [ 5]. Besides, occlusion causes performance degradation of object

Fig. 5.1 3D object detection with various sensors. (The red dots in the RADAR-based 3D object 
detection sub-figure denote RADAR observations)
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detection. When one object blocks the view of another, it results in partial or complete 
invisibility of the object.

There have been some survey papers published on 3D object detection in 
autonomous driving and its related fields [ 6– 8]. However, they mainly focused on 
the camera- and the LiDAR-based methods and did not review the RADAR-based 
work. Recently, many state-of-the-art methods have emerged but none are covered 
in existing surveys. In this chapter, we consider the vehicle-mounted perceptual sen-
sors: cameras, LiDARs, and RADARs, and discuss detection approaches based on 
uni-modal as well as multi-modal sensor observations. We also provide a more fine-
grade classification framework for this problem, and point out crucial problems in 
each category to help researchers in this field. We claim the following contributions: 

• This chapter provides a fine-grade classification framework for current 3D object 
detection methods in autonomous driving. It generally classifies the existing meth-
ods according to the data modal. Besides, it defines the crucial problems for each 
subcategory and further classifies the methods according to the solution they used. 

• Compared to the earlier surveys, this chapter covers the most recent and advanced 
work. It provides the readers with an in-depth review of the state-of-the-art meth-
ods. 

• This chapter proposes promising research directions in this field. 

In this survey, we first introduce the background concepts and terminology of 
3D object detection in Sect. 5.2. We classify the existing research work into camera-
based methods, LiDAR-based methods, RADAR-based methods, and multi-sensor 
fusion methods according to the sensor modality in Sects. 5.3–5.6. We then propose 
promising research directions for 3D object detection in Sect. 5.7 and concludes this 
chapter in Sect. 5.8. 

5.2 Background Concepts 

In this section, we will first introduce the problem definition and assumptions of 3D 
object detection. Then we describe commonly used perceptual sensors, datasets as 
well as evaluation metrics. 

5.2.1 Problem Definition and Assumptions 

We define 3D object detection as a pattern recognition problem. The context of 
autonomous driving provides this problem with some assumptions which make it 
different from indoor or aerial applications. We denote .x ∈ X as an input, which 
can be a dense representation with shape .[W, H,C] like images, or a sparse repre-
sentation with shape .[N ,C]. Let  .y ∈ Y be a target, which is a set of 3D bounding
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boxes .{Bi
3D = [cls, xc, yc, zc, l, w, h, θ ]|i = 1, ..., n}, where .cls is the class of the 

bounding box, .[xc, yc, zc]T is the box center, .w, h, l denote the box sizes along the 
x,y,z-axes respectively (x and y axes define the ground plane in the right-handed 
coordinate system), and . θ denotes the box rotation angle along the z-axis in range 
of .[0, π). 

We denote .L as a loss function, and .R[ f ] as the expected risk, i.e. . R[ f ] =
Ex,y∼P(X,Y )[L( f (x), y)], where .P(X, Y ) is the true data distribution. We denote 
. f A(S) : X → Y as a model learned by a learning algorithm. A using a training dataset 
.S := Sm := {(xi , yi )}mi=1 of size . m. We adopt .RS[ f ] as the empirical risk of . f as 
.RS[ f ] = 1

m

∑m
i=1 L( f (xi , yi )) with .S = {(xi , yi )}mi=1. The goal of 3D object detec-

tion is defined as the minimization of the expected risk .R[ f A(S)]. We typically min-
imize the non-computable expected risk .R[ f A(S)] by minimizing the computable 
empirical risk .RS[ f A(S)]. 

The context of autonomous driving implies multiple assumptions for 3D object 
detection. Firstly, the semantic categories should be frequent and meaningful on the 
road, like vehicles, pedestrians, cyclists, barriers, etc. The objects like tables and 
books are ignored. Secondly, the scenes of interest are large-scale outdoor driving 
scenes across hundreds of meters. The indoor scenes are not considered. Thus it 
suffers less from stacking problems, like a pile of books stacked on a table. Thirdly, 
only the rotation along the z-axis is considered. It is a reasonable assumption since 
most objects on the road we are concerned about (like vehicles, pedestrians, and 
cyclists) have only yaw heading angles. Some works [ 9– 11] also include ground 
assumptions whereby key objects are located on the same ground as the ego vehicle 
to simplify this problem. 

5.2.2 Sensors 

The commonly used perceptual sensors in autonomous driving include cameras, 
LiDARs and RADARs. In this section, we will discuss both advantages and limita-
tions of each sensor in 3D object detection. 

5.2.2.1 Cameras 

Cameras are commonly used in our daily life. They are passive sensors similar to 
human vision and provide appearance information of their perception regions. An 
image captured from a camera is digitally represented in a dense array . I having a 
dimension of .[H,W, 3], where .H and .W denote the height and width of the image. 
Each entry of . I is an integer ranging from 0 to 255, representing the pixel intensity. 
The properties of cameras are listed in the following paragraphs. 

Rich textures: Textures refer to information about the spatial arrangement of color 
or intensities in an image, such as edges, lines, and color patches. Images provide 
rich texture information of the surrounding environments.
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Implicit geometrical shape information: Geometrical shape information is helpful 
for object detection, and such information is implicitly embedded inside the images 
and can be extracted by analyzing the contours of the patches or the relationship to 
their neighborhoods. 

No depth information: RGB cameras provide no depth information. Even though 
stereo camera setups can recover the depth information under geometrical constraints, 
the extra computation for depth recovery is costly [ 13]. With the booming of deep 
learning, the depth information can be estimated in a relatively accurate and fast 
manner with GPU acceleration [ 14, 15]. However, deep neural networks suffer from 
bad generalization ability and require fine-tuning if the data distributions are changed. 
Current RGB-D cameras can provide depth information, but they have short detection 
range (less than 10 m), and most of them cannot be used in outdoor scenes due to the 
sunlight effects, which make them unsuitable for autonomous driving applications. 

Long detection Range: A common RGB camera can capture the appearance of 
key objects like cars and pedestrians 200 m away. 

The sensor limitations of cameras are derived from the above-mentioned prop-
erties. On one hand, cameras suffer from a lack of depth information. 3D object 
detection requires estimating the accurate locations, scales, and orientations in a 3D 
coordinate system. The depth information can be used to directly project each pixel 
on the image plane to the 3D space. Given the 3D coordinates of each pixel, the 
location of the key objects is much easier to estimate [ 16, 17]. On the other hand, 
rich texture information brings both benefits and limitations. They help distinguish 
key objects but make the captured image significantly different in various lighting 
or weather conditions. 

5.2.2.2 LiDARs 

LiDARs are active sensors and provide the position as well as the reflection intensity 
of each detected point. A point cloud retrieved from a LiDAR is commonly rep-
resented as a point list .P = {pi |i = 1, ..., n} (Fig. 5.2b), where each .pi is a vector 
representing its coordinates in the continuous 3D space and its reflection intensity. 
The properties of LiDARs are listed in the following paragraphs. 

Fig. 5.2 A visualization of sensor data. a camera data; b LiDAR data; c RADAR data rendered 
from the nuScenes dataset [ 12]
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Available spatial information: Each point is associated with its coordinates in the 
LiDAR frame, which helps estimate object size (dimension) and the six-degree-of-
freedom (DoF) pose accurately. 

Explicit structure and shape information: The points are naturally clustered and 
separated in a point cloud (Fig. 5.2b). The distribution of points in a local region 
preserves the structure and shape information. 

Sparsity: There is a mass of no-point regions in the point cloud as shown in 
Fig. 5.2b. The points are distributed loosely in 3D space and are not arranged tightly 
side-by-side in a grid. 

Unordered point list: A point cloud is represented as an unordered point list. 
The order of the points does not distinguish point clouds. For instance, if . P1 =
[pa, pb, pc], P2 = [pb, pc, pa], we still have .P1 = P2. 

Limited detection range: The detection range of LiDARs is always limited to 
under 100 m. The distant objects can only be detected with a few points. 

The sensor limitations of LiDARs are derived from the above-mentioned prop-
erties. Firstly, it lacks appearance information and can only use geometrical infor-
mation to recognize key objects. However, it is hard to recognize their semantic 
classes for those distant objects detected with only few points. Secondly, the spar-
sity and the unordered point list representation in the continuous space make point 
clouds unsuitable for convolution operations. The translation invariance of convolu-
tion operations has helped achieve state-of-the-art performance on image recognition 
tasks. Researchers have to convert the point clouds into a convolutional-friendly rep-
resentation if they want to adopt convolution neural networks (CNNs) as feature 
extractors. Otherwise, new feature extractors need to be designed considering the 
properties above. Thirdly, the density of the point clouds captured by LiDARs might 
be reduced by half on rainy or snowy days, which may cause false negatives in 
extreme weather [ 5]. 

5.2.2.3 RADARs 

In this chapter, we focus on automotive RADARs. The physical mechanisms of 
RADARs are similar to LiDARs, but they are implemented with microwaves instead 
of light waves. The on-chip processors of RADARs process the raw data, and finally, a 
point cloud can be retrieved from RADARs. Different from the point clouds obtained 
from LiDARs, they are in the 2D space and much sparser (Fig. 5.2c). Besides, the 
velocity of each point can be measured by RADARs through the Doppler effect. The 
properties of RADARs are similar to LiDARs except for the following points. 

Low resolution: Because of the longer wavelength, the resolution of RADARs is 
lower than LiDARs. As a result, the point clouds of RADARs are much sparser than 
LiDARs’ and are less precise in terms of localization. 

Moderate detection range: The detection range of RADARs is longer than the 
LiDAR range but shorter than that of cameras. There are different types of RADARs 
suitable for different ranges: short-range RADARs (less than 30 m), moderate-range 
RADARs (less than 100 m), and long-range RADARs (less than 250 m).
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Robust in extreme weathers: The point clouds of RADARs are much more robust 
in harsh environments (poor lighting and weather conditions, as well as extreme 
temperatures) than LiDARs [ 12], which allows it to be commonly used in blind-spot 
detection and collision avoidance. 

The low resolution is one of the major limitations of RADARs in 3D object 
detection. It provides 2D locations of each point only (the 2D space defined by the 
x-axis and y-axis), which limits the possibility of height estimation. Besides, even 
though its detection range can be as high as 250 m, the automotive RADARs become 
unreliable at 10–15m when working in real-world scenes due to reflections from 
other objects [ 18]. The points of a RADAR projected onto a car 50m away can be 
less than 10 points [ 12]. Whether RADARs can accurately capture an object largely 
depends on its reflection strength. The reflections of radar signals from cars are 
always strong, while pedestrians and cyclists are smaller in size and have relatively 
few hard or metallic surfaces to reflect radar signals. For instance, a child standing 
next to a vehicle can be overlooked by a RADAR system. These are the reasons why 
3D object detection algorithms based on automotive RADARs are uncommon. 

5.2.2.4 Summary 

The comparison between the properties of cameras, LiDARs, and RADARs are 
shown in Table 5.1. Due to the rich appearance or spatial information, cameras and 
LiDARs can be used independently for 3D object detection. There are numerous 
successful implementations solely based on camera or LiDAR data. In contrast, 
there are few 3D object detector based on automotive RADAR data only, since its 
data is too sparse and insufficient to estimate semantic classes. 

Since different types of sensors have their pros and cons in different conditions, 
joint treatment of sensor data is essential for 3D object detection [ 12]. Multi-sensor 
fusion is a popular research direction in 3D object detection, which provides not 
only complementary but also redundancy in the face of sabotage, failures, adverse 
conditions and blind spots [ 19] (Fig. 5.3). 

Table 5.1 Comparison between different types of sensors 

Cameras LiDARs RADARs 

Information for object 
detection 

Appearance Spatial Spatial & velocity 

Data representations Dense array Unordered point list Unordered point list 

Robustness to extreme 
conditions 

* ** *** 

Detection range .≥250m .≤100m . ≤250m

The number of ‘*’s represents its robustness level
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Fig. 5.3 Visualization rendered from the KITTI 3D object detection dataset [ 20]. The bottom row 
contains the BEV images of the two scenes in the upper rows 

5.2.3 Public Datasets 

Data is indispensable to supervised learning algorithms. In this section, we will 
introduce three representative 3D object detection datasets: KITTI [ 20], nuScenes 
[ 12] and Waymo [ 21] datasets. 

5.2.3.1 KITTI Dataset 

KITTI dataset is one of the most commonly used datasets in autonomous driving [20]. 
Its recording platform is a standard station wagon with two color and two grayscale 
PointGrey Flea2 video cameras, a Velodyne HDL-64E 3D laser scanner, a GPS/IMU 
localization unit with RTK correction signals [ 20]. All these cameras were recti-
fied and well-calibrated with LiDAR and the GPS/IMU unit. The data collection 
scenes include well-structured highways, complex urban areas, and narrow country-
side roads. 

3D object detection is one of the benchmarks provided in the KITTI challenges. 
The dataset includes 7,481 training frames and 7,518 test frames, all of which come
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with sensor calibration information and annotated 3D boxes surrounding objects of 
interest. Along with the sensor data from LiDARs and cameras, a 3D object detection 
benchmark is provided for researchers to test their detection methods. Annotations are 
classified into three categories, namely easy, moderate, and hard cases, based on the 
size of objects, the degree of occlusion, and the level of truncation. The metrics that the 
KITTI dataset adopts consist of .AP2D , .AP3D , and .APBEV for precision evaluation, 
and .AOS for orientation evaluation, which will be discussed in Sect. 5.2.4. 

Even though the KITTI dataset is well-known and popular, some limitations still 
exist. Firstly, all the measurements of KITTI were collected during the daytime and 
mostly under sunny conditions. It is hard to conduct research on the generalization 
ability and robustness against extreme conditions on the KITTI dataset. Secondly, 
RADARs were not considered in the KITTI recording platform, which limits the 
research output on RADAR-based 3D object detections. In addition, the class fre-
quency is highly unbalanced: 75% car, 4% cyclist, and 15% pedestrian [ 22]. As a 
result, some 3D object detection algorithms were only tested on the car class due to 
insufficient samples of cyclists and pedestrians. Moreover, the majority of objects 
tend to have a dominant orientation, with their front facing towards the ego-vehicle. 

5.2.3.2 NuScenes Dataset 

The nuScenes dataset was specifically collected for object detection and tracking [12]. 
This dataset is designed for the driving context and contains sensory data from a 
fully autonomous vehicle, including 6 cameras, 5 RADARs, and 1 LiDAR, all with a 
complete 360-degree field of view. All the sensors are well-calibrated. They collected 
data using two Renault Zoe supermini electric cars equipped with an identical sensor 
layout, and the cars were driven in Boston and Singapore allowing researchers to 
evaluate their work across different geographic locations. 

There are 40K frames annotated with 3D bounding boxes of 23 categories, includ-
ing car, adult, child, barrier, and animal, which are in finer grain degrees compared 
to the KITTI dataset. On average, the nuScenes dataset has seven pedestrians and 
twenty vehicles per frame. Besides, they considered the effects of extreme condi-
tions (nighttime and rainy days). The rainy and night frames account for 11.6% and 
19.4% in the full 40k annotated frames. To evaluate the generalization capability 
of algorithms on such a dataset, they also collected data from different scene loca-
tions: Boston: 55%, Singapore-OneNorth: 21.5%, Singapore-Queenstown: 13.5%, 
Singapore-HollandVillage: 10%. They adopted.APBEV and nuScenes detection score 
(.NDS) as evaluation metrics. .NDS is a new metric they proposed for evaluating 
the results on the nuScenes dataset. Half of the NDS is based on . APBEV

1 while 
the remaining half of the measurements evaluates the accuracy of the detections 
based on box location, size, orientation, attributes, and velocity, calculated using 
their corresponding distances [ 12].

1 It is noted that, different from the method calculating with intersection over union in the KITTI 
dataset, nuScenes calculate the.APBEV with the 2D center distance on the ground plane. 
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Fig. 5.4 Visualization rendered from Waymo Open Dataset [ 21]. The upper row is for object 
detection and tracking, while the lower row is for semantic segmentation 

Compared to the KITTI dataset, the nuScenes dataset provides more data anno-
tations covering more driving conditions. The available RADAR data will motivate 
researchers to contribute more on RADAR-based 3D object detection algorithms. 
The possible improvement from dataset aspects is two-fold. Firstly, more extreme 
conditions should be considered. There are some omitted conditions like snowy 
and stormy days. The ice layer formed on RADAR sensors may cause performance 
degradation, and the strong wind may cause physical vibration of sensors. Secondly, 
multi-LiDAR settings are also one type of common setups in autonomous vehicles, 
which is not considered in the current datasets (Fig. 5.4). 

5.2.3.3 Waymo Open Dataset 

Waymo dataset [ 21] is collected by the following sensors: 1 mid-range LiDAR, 
four short-range LiDARs, and five cameras (front and sides). The data is collected 
from various places, including Los Angeles, Detroit, Mountain View, San Francisco, 
Seattle, and Phoenix. This dataset also includes various environments, objects, and 
weather conditions. 

The Waymo Open Dataset provides object detection and tracking capabilities with 
a collection of 12.6 million 3D bounding box labels, each with tracking IDs, for four 
object categories, namely vehicles, pedestrians, cyclists, and signs, on LiDAR data. 
Additionally, the dataset also contains 11.8 million 2D bounding box labels, also
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Table 5.2 Comparison between KITTI [ 20], nuScenes [ 12], and Waymo [ 21] datasets 

Dataset # ann. 
frames 

# 3D boxes Night Rain Snow Locations 

KITTI 15k 200k No No No Karlsruhe 

nuScenes 40k 1.4M Yes Yes No Boston, SG 

Waymo 39k 12.6M Yes Yes No LA, Detroit, 
MV, SFO, 
Seattle, 
Phoenix 

with tracking IDs, on camera data. These LiDAR labels are 3D 7-DoF bounding 
boxes with globally unique tracking IDs. The metrics used by Waymo Open Dataset 
include .AP2D , .AP3D , and .APH for precision evaluation. 

Being the most recent among these well-known open-source datasets, the Waymo 
dataset uses better sensors for data acquisition, resulting in denser LiDAR point 
clouds, better image data quality, and more objects in each frame. However, this is 
also a challenge for developers because larger data volumes bring more computational 
and reasoning pressure on processors. 

5.2.3.4 Summary 

The comparison between representative datasets is shown in Table 5.2. In summary, 
current datasets are sufficient to support the development of 3D object detection 
algorithms [ 11, 23– 25] for basic classes (car, pedestrian, cyclist) in common scenes 
(sunny structured scenes). In the future, it is an urgent need to collect data in more 
challenging conditions, like snowy days, animal-on-the-road scenes. 

5.2.4 Evaluation Metrics 

In this section, we will discuss the metrics for 3D object detection evaluation. The 
evaluation metrics mainly contain two aspects: the precision metrics for localization 
and bounding box size evaluation (average precision), as well as the rotation similarity 
metrics for orientation evaluation (average orientation similarity). 

5.2.4.1 Average Precision 

For detection and classification tasks that output a probability .yi of the sample . xi
belonging to positive samples in the given ground truth, recall rate is defined as the 
ratio of all positive samples ranked above a certain threshold. t to the total number of 
positive samples:
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.r(t) = P(yi ≥ t |xi ∈ C), (5.1) 

where .C consists of all positive samples that exist in the ground truth. Precision is 
calculated as the ratio of all samples above the threshold . t in the given ground truth 
to the total number of samples predicted above that threshold. 

.p(t) = P(xi ∈ C |yi ≥ t). (5.2) 

By setting . t , we can get a recall and precision rate accordingly, so that a precision-
recall curve can be drawn by setting different .t ∈ [0, 1]. The average precision (AP) 
is the area of the region below the precision-recall curve, which can be approximately 
computed as 

.AP = 1

11

∑

r∈{0,0.1,...,1}
pinterp(r), (5.3) 

where . r denotes the recall rate, and .pinterp(r) = maxr̂ :r̂≥r p(r̂) is an interpolated 
alternative of the precision for a recall . r . 

At the very beginning, researchers adopted a similar AP in image detection, called 
.AP2D . For .AP2D , samples were considered as true positives, if the intersection over 
unions (IoUs) of the estimated and ground-truth 2D boxes on the image plane exceeds 
a specific value. It was recommended to combine .AP2D and AOS (which will be 
detailed in the next section) to evaluate the 3D object detection results in both loca-
tions, box size, and orientation. However, the effects of localization and bounding 
box size estimation cannot be decoupled by these two metrics [ 26]. 

.AP2D also suffers from the foreshortening effects that two objects with different 
sizes may project to the same 2D bounding box on the image plane. To solve this 
problem, some researchers computed the IoU between the bird’s-eye-view (BEV) 
projection of the estimated and the ground-truth 3D boxes on the BEV image plane 
and proposed.APBEV . The drawback of.APBEV is that height error is not considered 
in the evaluation. Therefore, researchers computed .AP3D with the IoU computed 
between the estimated and ground-truth 3D boxes in the 3D space. Specifically, the 
IoU thresholds are 0.5 for pedestrians and cyclists and 0.7 for cars in the KITTI 3D 
object detection Benchmark [ 20]. 

In the nuScenes benchmark [ 12], the AP is specially computed according to the 
2D center distance on the ground plane instead of IoUs. They claimed it decoupled 
the metric AP from object size and orientation and suited well to the evaluation of 
small objects like pedestrians. To decouple all the locations, scale, and orientation 
evaluations, they proposed average translation error, average scale error, and average 
orientation error [ 12]. They used a linear combination of AP and the average errors 
to indicate the thorough performance of the 3D detectors. They called this metric 
as called nuScenes detection score (NDS). In contrast, Waymo benchmark [ 21] pro-
posed to weigh the true positives by their heading accuracy [ 21]. The weight scalar 
is defined as .min(|θ̃ − θ |, 2π − |θ̃ − θ |)/π , and this weighted average precision is 
called APH.
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5.2.4.2 Average Orientation Similarity (AOS) 

Similar to the definition of AP, average orientation similarity (AOS) is defined as 

.AOS = 1

11

∑

r∈{0,0.1,...,1}
max
r̂ :r̂≥r

s(r̂), (5.4) 

where the orientation similarity .s ∈ [0, 1] at recall . r is a normalized variant of the 
cosine similarity defined as 

.s(r) = 1

|D(r)|
∑

i∈D(r)

1 + cos(Δ(i)
θ )

2
δi (5.5) 

where.D(r) refers to all object detections at a given recall rate. r , while.Δ(i)
θ represents 

the difference in angle between the estimated and ground truth orientation of detection 
. i [ 20]. In order to penalize the cases where multiple detections correspond to a single 
object,. δi is set to 1 if detection. i overlaps with a ground truth bounding box by at least 
50% in 2D, indicating that it has been assigned to that object. If the detection does not 
overlap sufficiently with any ground truth bounding boxes, .δi is set to 0 to indicate 
that it has not been assigned. Through a similar exploration as AP, some researchers 
modified AOS by replacing the IoU computation method. Instead of computing IoUs 
on the image plane, they computed it in 3D space, resulting in a metric the metric 
called average heading similarity (AHS) [ 11]. 

5.2.4.3 Summary 

Table 5.3 shows that .AP2D + AOS and.AP3D are good choices for generally evalu-
ating a 3D object detector. In practice,.AP3D is a harsher metric than.AP2D + AOS, 
since the methods perform lower than.10% in.AP3D even if they get more than. 90%
in .AP2D + AOS [ 9, 10, 27]. 

Even though.AP3D can be used as a good metric for evaluating the general perfor-
mance of a 3D object detector, it fails to decouple the effects of localization, scale, and 
orientation estimation. As a result, it is hard for researchers to analyze and trace back

Table 5.3 Comparison among different metrics for 3D object detection 

Metrics Loc. (x,y) Loc. (z) Scale (x,y) Scale (z) Orientation 

.AP2D Yes Yes Yes Yes No 

.AP2D + AOS Yes Yes Yes Yes Yes 

.APBEV Yes No Yes No Yes 

.AP3D Yes Yes Yes Yes Yes
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the reasons for the bad performance of their detectors. Promising solutions include 
the metrics such as NDS and the set of average errors we mentioned in Sect. 5.2.4.1. 
Both of them not only consider general performance but also decoupled performance 
in each aspect.

5.3 Camera-Based Methods 

Images captured by cameras can be used for 3D object detection due to their rich tex-
tures, but camera-based object detection suffers from the lack of depth information 
which is greatly helpful for accurate spatial information estimation, including loca-
tions, scales, and orientations of 3D boxes. Therefore, one major riddle for camera-
based methods is: how to project 2D input to 3D and learn depth information 
from object supervision? 

We observe that the final feature representation significantly affects the archi-
tecture, training process, and computation complexity in camera-based methods. 
Depending on the output feature representation, we divide camera-based methods 
into (1) result-lifting and (2) feature-lifting methods. 

5.3.1 Result-Lifting Methods 

Result-lifting methods refer to models that are based on 2D features. These methods 
first make predictions on the image plane using the 2D features, then estimate depth 
information, and finally lift the 2D detections into the 3D space. A typical example 
is shown in Fig. 5.5. Depending on the method of obtaining depth information, we 
further group these methods into three categories: direct depth prediction, depth from 
keypoints, and depth from priors. 

Direct Depth Prediction: The network structure for direct depth prediction is con-
cise and straightforward. Thus, there exist numerous works have emerged to follow 
in this direction. In MonoPair [ 29], object locations and spatial constraints between 
matched object pairs are computed together using uncertainty-aware spatial con-
straints to optimize the predicted 3D locations of the objects. It utilizes the pair-wise 
spatial constraint to model the relationship between two neighboring objects. Dur-
ing the prediction, it imposes aleatoric uncertainty on the detector, formulates the 
predicted 3D locations and their pair-wise spatial information into a nonlinear least 
squares problem, and finally predicts the 3D results. On the other hand, Transformer 
[ 30] has shown great potential in computer vision, and researchers recently tried 
to apply it to 3D detection. However, it is challenging to apply the learned object 
query [ 31] to fully represent the object property in the image-based 3D detection 
task. The reason is that the size of objects at far and close distance fluctuates signifi-
cantly due to the perspective projection. As a solution, MonoDTR [ 32] proposed the 
first transformer-based fusion module, which globally merges the image and depth
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Fig. 5.5 YoloStereo3D architecture [ 28]. Backbones and multi-scale features both process features 
in 2D. 3D results are assembled from dense 2D predictions 

information. The model employs a depth-aware feature enhancement (DFE) mod-
ule that seeks to depth-aware features through implicit auxiliary supervision. These 
depth-aware features nicely assist the monocular 3D object detector, while prevent-
ing introducing high computational cost and inaccurate depth priors from using the 
off-the-shelf depth estimator. 

In monocular 3D object detection tasks, getting an accurate depth estimate is 
always an ill-posed problem. To address the issue of inaccurate depth prior, the 
Depth-conditioned Dynamic Message Propagation (DDMP [ 33]) network presents 
a new method that utilizes a graph-based approach. This method utilizes contextual 
nodes in the image context, and predicts hybrid filter weights as well as affinities 
using aligned multi-scale depth features to propagate messages. In contrast, DD3D 
[ 34] proposes to use a wider range of data sources to address the problem of depth 
inaccuracy. The pseudo-lidar methods[ 35], have good scalability, while end-to-end 
detection networks [ 29] with simple structures and better generalization benefit less 
from large-scale depth data. DD3D aims to get the best of both worlds. It introduces 
a new 3D detection architecture that is fully convolutional and single-stage and 
effectively uses monocular depth estimation for pre-training. It leverages a large 
amount of unlabeled raw data, and its depth perception module benefits from pre-
training on large labeled 2D detection datasets. 

Depth from Keypoints: Keypoint-based methods usually make use of geometric 
constraints in the image for prediction. Stereo R-CNN [ 17] adopts the region-based 
framework and introduces another image to provide the spatial cues. Specifically, 
it simultaneously detects and associates objects from stereo pairs, uses the Stereo 
RPN module to produce left and right RoI proposals, then concatenates left-right RoI 
features to classify object categories and regress accurate 2D stereo boxes. Sparse 
constraints for 3D box estimation are developed using the results and keypoints. 3D 
box predictions are then developed based on projection relations between 3D box
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corners and 2D left-right boxes and keypoints. KM3D [ 36] predicts the projection of 
9 keypoints for each object in the image using the center-net baseline, and it predicts 
depth purely from the minimization of the projection error between keypoint predic-
tions and instance predictions. MonoFlex [ 37] focuses on using only the 3D height 
and the visual height of the object to predict depth, fully utilizing the knowledge of 
autonomous driving scenes. 

Depth from Priors: As mentioned before, monocular methods highly dependent 
on depth estimation due to the lack of depth perception. Researchers have attempted 
to improve the accuracy of depth prediction by mining the information implied in 
images through various methods. Geometry projection is a technique that can be 
used to detect 3D objects from 2D images. This method estimates depth by using the 
object’s height, which is a mathematical prior that can be incorporated into a deep 
learning model. M3D-RPN [ 38], GAC [ 39], and YoloStereo3D [ 28] collect depth 
priors from the training dataset to help define each anchor. However, the process of 
projection can result in the amplification of errors, causing the estimated height to be 
inaccurately reflected at the output depth. This amplification of error can lead to chal-
lenges in controlling depth inferences and can negatively impact training efficiency. 
To solve this problem, GUPNet [ 40] introduces a geometric uncertainty projection 
approach. It proposes a GUP module to obtain the geometry-guided uncertainty of 
the inferred depth, and adopts uncertainty theory to model the projection process 
under the probability framework. 

5.3.2 Feature-Lifting Methods 

Feature-lifting methods transform intermediate features into world coordinates and 
produce final predictions in BEV or 3D volumes. We further categorize these methods 
into pseudo-lidar methods and feature mapping methods. 

Pseudo-Lidar Methods: Pseudo LiDAR methods, stemmed from [ 35], correspond 
to a framework that explicitly produces point cloud from images and applies LiDAR-
based 3D detection methods to produce the detection output. Pseudo-LiDAR++ [ 41] 
uses sparse LiDAR signals to optimize the point cloud from the depth estimation 
network locally. Refined-MPL [ 42] demonstrates that point cloud generation quality 
does matter in 3D object detection performance. We point out that the above meth-
ods usually contain two separate modules trained independently. As a result, depth 
prediction networks cannot receive supervision signals from object-level supervi-
sion. To solve this problem, Pseudo-LiDAR E2E [ 43] develops a differentiable vox-
elization module and makes the entire network pipeline end-to-end trainable. Such 
methods are generally robust to camera parameter changes because they decouple 
depth prediction from 3D detection. However, the explicit point cloud prediction 
ignores the uncertainty and errors in depth prediction, and only the expectation of 
the predicted depth distribution is mapped to the downstream 3D detection part, 
making the pipeline sub-optimal. Further, CG-Stereo[ 44] incorporates uncertainty 
and confidence maps into 3D detection and achieves better detection accuracy.
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Feature-Mapping Methods: Feature-mapping methods learn a mapping between 
2D image features and 3D volume features. They learn a depth distribution for each 
image pixel and project the entire 3D volume in camera coordinates to the world 
coordinates [ 45– 49]. Lift-Splat-Shoot [ 45] shows that mapping 2D features into 3D 
makes it easier to form a unified representation for surround-view cameras and other 
sensors. CaDNN [ 49] learns a depth distribution for each image pixel and lifts the 
features as a camera frustum. The frustum in camera coordinates is sampled into a 
feature volume in the world coordinates. LIGAStereo [ 48] benefits from sharing a 
similar feature space with LiDAR detection and applies LiDAR distillation to the 3D 
volume produced by the stereo network. BEVFusion[ 50] introduces a BEV Pooling 
module specifically designed for a parallel acceleration of the sampling process under 
the condition that the cameras have stable parameters. A common properties of these 
methods is that their feature mapping is driven by geometric constraints. 

In contrast, some recent works adopt semantic-driven feature mapping, where 
semantics in the images will also affect the mapping between two features [ 51– 53]. 
They achieve this with the cross-attention mechanism. PETR[ 51] directly uses trans-
formers with carefully-designed positional embedding to achieve 2D-3D mapping. 
Furthermore, BEVFormer[ 52] applies deformable attention modules [ 53], where the 
reference points are geometrically determined, while the offsets are semantically 
determined, and takes advantage of both streams of methods. 

5.3.3 Summary 

Table 5.4 shows the state-of-the-art results for camera-based methods in the KITTI 
dataset. Both result-lifting methods and feature-lifting methods remain popular in 
academics and the industry. Recent result-lifting methods are fast and easy to deploy 
because of simple operators, and many of them are robust to changes in camera 
parameters or scenes. Feature-lifting methods are also popular because it is found 
that 3D features are easier to merge with multi-camera features, LiDAR features, 
and temporal features. The future developments of camera-based methods of both 
types are drawing growing interest for computer vision researchers and autonomous 
driving engineers. 

5.4 LiDAR-Based Methods 

The geometry information captured by LiDARs can be used for perception, and accu-
rate spatial information is helpful for precise 3D object location. However, LiDARs 
suffer from sparsity and CNN-incompatible representations. Researchers who intend 
to percept key objects from LiDAR scans have to deal with the problem: How to 
extract features from point clouds?
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Table 5.4 Comparison among the performances of camera-based methods based on the KITTI 
benchmark (test set) 

Modality Category Implementation Car (.AP3D) Time(s) 

Easy Mod Hard 

Stereo Cameras Result-Lifting 3DOP [ 9] 6.6 5.1 4.1 3 

Stereo RCNN 
[ 17] 

47.6 30.2 23.7 0.3 

YoloStereo3D 
[ 28] 

65.8 40.7 30.0 0.08 

Feature-Lifting Pseudo-LiDAR 
[ 35] 

54.5 34.1 28.3 0.4 

Pseudo-
LiDAR++ 
[ 41] 

61.1 42.4 37.0 0.4 

Pseudo-LiDAR 
E2E [ 41] 

64.8 43.9 39.0 0.4 

DSGN [ 47] 73.5 52.2 45.1 0.67 

LIGAStereo [ 48] 81.4 64.7 57.2 0.4 

Mono Camera Result-Lifting Deep3D Box [ 27] 5.9 4.1 3.8 – 

MonoPair [ 29] 13.0 10.0 8.7 0.06 

M3DRPN [ 38] 14.8 9.7 7.4 0.16 

KM3D [ 36] 16.7 11.5 9.9 0.04 

DDMP [ 33] 19.7 12.8 9.8 0.18 

GAC [ 39] 21.6 13.2 9.9 0.05 

MonoDTR [ 32] 22.0 15.4 12.7 0.04 

GUPNet [ 40] 22.3 15.0 13.1 – 

DD3D [ 34] 23.2 16.3 14.2 – 

Feature-Lifting Pseudo-
LiDAR[ 35] 
[ 10] 

10.8 7.5 6.1 0.1 

AM3D [ 54] 16.5 10.7 9.5 0.4 

RefinedMPL [ 42] 18.1 11.1 8.9 0.15 

CaDDN[ 49] 19.2 13.4 11.5 0.64 

5.4.1 Quantization+CNN-Based Methods 

One solution is to convert the input point clouds into convolutional-friendly repre-
sentations and then apply CNNs to extract features. The conversion process is called 
quantization. Common quantization processes include projecting the point cloud into 
bird’s-eye-view images [ 22, 55– 57] or voxelizing the point cloud into a grid [ 23, 58– 
63]. The 3D spatial information is encoded into the grids by hand-crafted features, 
like point density, distance, occupancy, etc. After quantization, high-level features
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Fig. 5.6 VoxelNet architecture [ 23]. It consists of three main parts: FeatureNet (point-wise and 
voxel-wise feature transformation), MiddleLayer (3D dense convolution), and RPN (2D dense 
convolution) 
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Fig. 5.7 VFELayer of VoxelNet [  23]. The input is K voxels, within which there are T points with 
m feature channels. An MLP transforms the inputs into the feature space, and a max-pooling layer 
aggregates point-wise features into a global feature 

can be extracted from the grid with CNNs and further used for classification and 
regression tasks. 

However, the hand-crafted features in quantization are always sub-optimal to the 
visual tasks [ 56, 64]. Zhou et. al. proposed an end-to-end network for 3D object 
detection, called VoxelNet, where the voxel-wise features were learned from raw 
point clouds instead of hand-crafted by researchers [ 23]. The network architecture 
is shown in Fig. 5.6. To learn the voxel-wise features from point clouds, they first 
grouped the points according to their corresponding position in the grid. Then they 
applied a bunch of novel voxel feature encoding (VFE) layers to extract point-wise 
features from the points inside each voxel. The VFELayer contains multi-layer per-
ceptrons (MLPs) and a max-pooling layer sequentially, as shown in Fig. 5.7. Finally, 
the point-wise features inside each voxel were aggregated into a voxel-wise feature 
with a max-pooling layer. 

The MiddleLayer limited the running-time performance of VoxelNet and 
accounted for 50% computation of the whole network due to the 3D dense con-
volution operation. The grid and dense convolution in 3D are inefficient from both 
memory and computation aspects. Due to the sparsity of point clouds, the non-
empty voxels only occupy .≤1% of the grid. 2 For dense 3D convolution, each voxel 
will incur addition-multiplication operations no matter if it is zero or not. Yan et 
al. adopted the spatially sparse convolution [ 65] to deal with the sparsity of point 
clouds [ 59]. As a result, the running-time performance of VoxelNet was improved by 
.4× (230 ms to 50 ms per frame). 

One benefit of Quantization+CNN methods is that the success of vision tasks 
can be easily extended to LiDAR-based 3D object detection. Yin et al. claims

2 If a point cloud is partitioned into a [10,400,352] dense grid, only around 5300 voxels are 
non-empty. 
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previous anchor-based detection unnecessarily increases the computational burden 
and tends to induce a huge number of false positives [ 60]. They extended the Center-
Net [ 66, 67] from image-based 2D detection to LiDAR-based detection and proposed 
a center-based two-stage framework for 3D object detection. Compared to anchor-
based parameterization, the center-based method reduces the search space since 
centers do not have an orientation dimension. Adopting auxiliary tasks to improve 
performance has achieved great success in vision tasks [ 1, 68, 69]. He et al. adopted 
the same idea and proposed to add auxiliary networks for estimating foreground 
points and centers to learn structure information [ 61]. Similarly, Ye et al. demon-
strated that multi-task learning of segmentation and detection improves the overall 
performance of all these tasks [ 63]. 

Occlusion is a problem hindering both image- and LiDAR-based detection tasks. 
Xu et al. [ 70] explored the occlusion problem in 3D object detection and discussed 
three causes of occlusion and signal miss in LiDAR point clouds: external occlusion, 
signal miss, and self-occlusion. By considering these occlusion causes, they proposed 
BTCNet, which first estimates the occupancy of complete object shapes in the region 
affected by occlusion and signal miss, then applies a two-stage detector to integrate 
the occupancy information in generating proposals and finally refine the results. The 
limitation of their work is that it requires an additional occupancy map estimation 
network, and the computational effectiveness requires improvement. 

The Quantization+CNN methods share two limitations. Firstly, information loss is 
induced in the stage of quantization. The accuracy highly depends on the quantization 
resolution. As resolution increases, information loss decreases, and positive samples 
are more distinguishable from negative ones. However, the improvement in accuracy 
is obtained at the cost of real-time performance. Secondly, the computational cost is 
not polynomial to the input size (i.e., the number of points in the point cloud). It is 
polynomial to the grid size determined by the size of RoI and the resolution. 

5.4.2 Point-Based Methods 

Quantization induces information loss, and results in unnecessarily voluminous data, 
and causes high computational costs when applied to large-scale scenes. To avoid 
quantization artifacts, some researchers designed special network structures to learn 
features from the input point clouds directly [ 24, 71– 74]. 

Qi et al. [ 71] proposed PointNet for end-to-end learning representations directly 
from point clouds. They endowed PointNet with order invariance by applying a 
symmetric function. A symmetric function is a function that takes. n vectors as input 
and produces a new vector that is invariant to the order of the input. Examples of 
symmetric functions include the. + and. × operators. On account of the transformation 
invariance, they proposed T-Net, which was intended to align all input point clouds 
to a canonical space. A T-Net consists of MLPs and a max-pooling layer at the end 
and regresses the affine transformation.3 × 3matrix. To force the estimated vector by
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T-Net to coincide with an affine transformation matrix, they added a regularization 
term in their loss function: 

.Lreg = ||I − AAT ||2, (5.6) 

where . A is the matrix estimated by the T-Net, and . I denotes the identity matrix. 
Exploiting local structures has proven to be important for the success of con-

volutional architecture in visual tasks. PointNet can extract point-wise and global 
features, but the local features are hard to capture. In their following work [ 72], they 
proposed set-abstraction blocks based on PointNet to capture the local features of the 
point clouds, where each set-abstraction block sequentially samples center points, 
groups neighbor points and extracts features. Wang et al. [ 74] extended the spirit of 
graph neural networks to 3D point clouds to learn the local features from the point 
clouds which was based on the graph dynamically built with k-nearest neighbors 
(KNN). Li et al. [ 73] proposed a more efficient method to catch up with the local 
feature of point clouds. Instead of grouping the points with ball query methods and 
KNN methods like [ 72, 74], they learned the spatial distribution of the input point 
clouds with the self-organizing map in an unsupervised manner, so that the training 
time was largely reduced. 

Shi et al. [ 75] extended PointNet architecture to 3D object detection and proposed 
PointRCNN. They adopted the PointNet++ network to implement foreground seg-
mentation and point-wise bounding box regression. The estimated bounding boxes 
of the predicted foreground points were filtered out as 3D proposals, and the points 
inside each proposal were further used to refine the 3D bounding box. PointRCNN 
achieves better accuracy on the KITTI benchmark than VoxelNet on car class, which 
proves that the point-cloud-based learning representations can solve the information 
loss induced by quantization. Further, Qi et al. [ 76] adopted both PointNet architec-
ture and hough voting to frame an end-to-end 3D object detection pipeline, called 
VoteNet. It estimates vote centers with the PointNet++ network and then clusters 
them into .K groups. The .K groups vote centers are further used for 3D bounding 
boxes regression. The above Point-based methods all consist of two stages, which 
have common limitations due to their slow inference time. Recently, Zhang et al. [ 77] 
proposed a one-stage point-based 3D object detector, and it runs at more than 80 FPS 
on the KITTI dataset. They claimed the bottleneck of point-based detectors is sam-
pling resolution and proposed two learning-based instance-aware down-sampling 
strategies. With these two down-sampling strategies, their proposed approach largely 
improves the real-time performance of LiDAR-based object detectors with state-of-
the-art accuracy. 

5.4.3 Point-Voxel-Based Methods 

To complement the shortcomings of Quantization+CNN and Point-based methods, 
some works combine them to balance accuracy and speed [ 78– 80]. Yang et al. [ 79]
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proposed a two-stage voxel-point-based 3D object detector. They discussed the prob-
lem where the classification score does not match the precision of location estimation, 
and proposed estimating IoU as an alternative to alleviate this problem. Another rep-
resentative Point-Voxel-based method is HVPR [ 80], which is a one-stage detector 
and uses a memory module to augment point-based features, maintaining the effi-
ciency of a single-stage method. 

5.4.4 Summary 

The performance of the methods mentioned above is compared in Table 5.5. The  
results are evaluated on the KITTI test set. It demonstrates that the 3D detection of 
small objects, like pedestrians and cyclists, is still an open problem. It is more chal-
lenging than vehicle detection because only few points are detected on these small 
objects, especially when they are far away. One possible solution is to utilize the 
help of other sensors like multi-LiDAR setups or LiDAR-camera setups. Besides, 
the research around Point-based 3D object detection is insufficient compared to quan-
tization+CNN methods. It is a promising direction due to its excellent improvement 
in accuracy and there is substantial room for speed improvement. 

5.5 RADAR-Based Methods 

Similar to LiDARs, RADARs also provide spatial information on their perception 
fields. RADARs have already been widely used in automotive applications, such 
as collision avoidance and blind-spot detection, due to their robust performance in 
various weather and lighting conditions. 

However, research of RADAR-based methods in 3D object detection is barely 
available. The reasons are: (1) the RADAR data is quite sparse due to the low res-
olution; (2) the automotive RADAR becomes unreliable at 10–15m when working 
in real-world scenes due to reflections from other objects; (3) the RADAR data is 
commonly in the 2D form, and height information is not available for 3D bounding 
box estimation. Due to the limited research work, we generally classified existing 
RADAR-based methods into Spectrum-Image as Input and Point-Cloud as Input 
methods. 

Spectrum-Image as Input: The raw radar data contains the information of each 
location along a specific angle, which can be represented as a spectrum image. It 
is a dense representation similar to RGB images but contains spatial and reflection 
information. In the last decade, Bartsch et al. proposed a knowledge-based recogni-
tion system to detect pedestrians from the RADAR spectrum images [ 82]. They first 
segmented the spectrum images and handcrafted features from the patches. Then 
they classified the patches with a predefined empirical deterministic function. They 
claimed that it is hard to recognize pedestrians from solely RADAR data, especially
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in partial-vision or occluded conditions. In recent years, deep learning models have 
been used as powerful feature extractors and classifiers for perceptual tasks. Kanil 
et al. first generated proposals from the spectrum images and classified them with a 
CNN model [ 83]. Their work can be further improved if it is solved with the help of 
R-CNN framework [ 2] or one-stage detection framework [ 3].

Point-Cloud as Input: As mentioned in Sect. 5.2.2.3, point clouds can be obtained 
from RADAR raw data with clustering preprocessing. Scheiner et al. [ 84] proposed 
a straightforward solution that separates the input RADAR point clouds into multi-
ple clusters with DBSCAN and further classifies them with LSTMs. Schumann et 
al. [ 85] went further in this direction and extracted features from static and dynamic 
RADAR points with CNNs and memory-aware PointNets, respectively. Danzer et 
al. proposed to estimate rotated 2D bounding boxes (no height) from RADAR point 
clouds [ 86]. They treated the RADAR data similarly to the LiDAR’s and adopted the 
PoineNet architectures [ 71, 72] to extract features and regress 2D bounding boxes. 
Similar to LiDAR-based object detection in Sect. 5.4, RADAR point clouds can be 
quantified into 2D images and CNN can be adopted to extract features and detect 
objects [ 85, 87]. In [ 88], they proposed a RADAR-based detection benchmark and 
compared YOLOv3 [ 4], PointPillars [ 57], PointNet++ [ 72] as well as their variances. 
Their comparison shows YOLOv3 and PointNet++ perform better than PointPillars 
variances. 

Section Summary: Compared to camera-based and LiDAR-based object detection, 
RADAR-based object detection is underexplored due to its sparse data observation. 
In Sect. 5.6, we will introduce some RADAR-based object detectors which utilize 
RADAR data to improve LiDAR/camera-based detector performance. 

5.6 Multi-sensor-fusion Methods 

Multi-sensor fusion is a popular research direction in 3D object detection, which 
provides not only complementary but also redundancy in the face of sabotage, fail-
ures, adverse conditions and blind spots [ 19]. However, different sensors provide 
different data representations from which features are extracted with different mod-
els. Therefore, one important problem for multi-sensor-fusion methods is: How to 
fuse multi-sensor data for perception? 

5.6.1 Feature Fusion 

The feature vectors extracted from different types of sensors can be fused using con-
catenation or addition (Fig. 5.8 top). Chen et al. [ 89] proposed a two-stage network, 
called MV3D, to combine the camera and LiDAR data. With a Quantization+CNN 
pipeline, they quantized the point cloud into a BEV image and a front-view image, 
and extracted features with CNNs from both. In the first stage, they generated 3D
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proposals from the BEV image based on an RPN. In the second stage, they adopted 
multi-view ROI pooling to align the features from the BEV, front view, and RGB 
images. The features from different sensors were fused by concatenation and finally 
used to refine the proposal. A similar idea of fusing features on the image plane 
was also adopted by [ 11, 89] for camera-LiDAR fusion and adopted by [ 90] for  
camera-RADAR fusion. 

In contrast to fusing pixel-wise features on the image plane, Sindaigi et al. [ 91] 
explored the performance of point-wise feature fusion in the 3D space and voxel-wise 
feature fusion in the grid space based on VoxelNet [ 23]. BEVFusion [ 50] uses two  
different pipelines to extract camera and LiDAR features, respectively. They intro-
duce a BEV encoder to fuse the concatenated features. CenterFusion[ 92] proposed 
a frustum-based approach to complete representation fusion by projecting radar fea-
tures onto the image plane. Objects in RADAR feature maps are associated by using 
information from the primary image bounding box. Then, they are projected into 
the image feature space and fused with the image feature. Decoder takes the extra 
velocity and depth information from the RADAR to generate prediction results. 

5.6.2 Transformer Interaction Fusion 

Vision transformer achieved good performance in 2D and 3D object detection in 
recent years. The architecture of transformer interaction fusion methods is shown 
in the middle row of Fig. 5.8. DeepFusion [ 93] uses the visual transformer to fuse 
features. PointPillars [ 57] is used as the feature extractor to obtain LiDAR features. 
The camera image serves as input to a 2D image feature extractor (such as ResNet) 
to obtain camera features. Then, the image feature is used as the key and value of the 
transformer decoder, and LiDAR feature is used to generate the query. The output 
of the decoder is concatenated with the LiDAR feature to complete feature fusion. 
Finally, it uses the voxel-based detection head to process the feature fusion to output 
the detection results. 

LiDAR is hard to deal with object which is tiny and far away because of its low 
resolution compared to the camera. To address this problem, TransFusion [ 94] uses  
a dual transformer decoder. The first layer of the decoder generates initial prediction 
results by using the sparse 3D feature of point cloud queries. The query of the 
second layer fuses the initial result of the first layer to predict the final result on the 
image feature. Similar to TransFusion, DeepInteraction [ 95] introduces transformer 
encoders based on different modalities. In particular, the multi-modal predictive 
interaction layers take the image or the LiDAR representation as the input, the odd 
layer takes the camera representation, and even for LiDAR. Each layer boosts the 
perception strength of the corresponding modality. 

A benefit of the unified representation is that there is no need to design a block 
for transforming feature space. MVDNet [ 96] can directly generate 2D proposals for 
both RADAR and LiDAR. The representations of the two modalities are then fused 
using the cross attention module. Transforming different modalities into a unified
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representation space is also a solution. UVTR [ 97] unifies feature representation in 
voxel space. They exploit image features to generate voxel-space representations of 
image features through simple convolutional layers. The modalities are then fused 
using knowledge transfer learning. Finally, transformer decoder is used to predict 
the result. 

5.6.3 Cascade Pipeline 

Cascade pipeline means that the results of one detector act as the inputs to the next 
detector, as shown in the bottom part of Fig. 5.8. Qi  et al. [ 24] proposed Frustum-
PointNet to fuse camera and LiDAR data for 3D object detection. They first generated 
2D bounding boxes from only RGB images with an off-the-shelf image-based object 
detector. The results were projected into 3D space as frustums, the points inside 
which were used to refine 3D bounding boxes by PointNet architectures [ 71, 72] 
in the second stage. Some researches focus on camera-LiDAR fusion algorithms 
mainly using enhancement point cloud to do detection tasks using the image feature 
information. PointPainting and CenterPointV2 [60, 98] are classical examples of such 
algorithms. They all fuse the segmentation information to the LiDAR points. They 
use semantic segmentation to get objects. According to the segmentation results, 
the corresponding point clouds are classified, and a point cloud-based 3D object 
detection framework is applied to predict the results. For the latter, they use voxel-
based method to process the LiDAR points. In the cascade pipeline, the features of 
different detectors can also be fused by concatenation or addition [ 99]. 

Even though these cascade methods achieve state-of-the-art performances on the 
KITTI benchmark [ 20], they suffer from the following limitations: 1) The accuracy 
is upper bounded by the early-level detectors. The false negatives will never be 
recovered if they are missed in the early stages. 2) If the early stage is an image-based 
detector, the detections will be vulnerable to appearance changes even if LiDAR data 
is included. 3) The long detection range of cameras is limited by LiDARs if there is 
no point detected by the LiDAR in the camera-detected region. 

5.6.4 Section Summary 

The methods mentioned above are evaluated on the KITTI test dataset and demon-
strated in Table  5.6. One common drawback of the fusion methods above is that the 
fusion pipelines are fixed for a specific setup (.1× camera +.1× LiDAR or.1× camera 
.+1× RADAR). They can hardly be adapted to other settings. Due to various sen-
sor setups on autonomous vehicles, one promising direction is to design a general 
multi-sensor fusion framework for 3D object detection so that it can flexibly scale 
up or down according to the sensor settings. It should be more accurate when more 
sensors are considered.
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Fig. 5.8 Architectures of different multi-sensor-fusion-based methods. The top, middle, and bottom 
rows denote feature-fusion, transformer-based, and cascade architectures 

5.7 Promising Directions 

Besides continuously improving the accuracy and real-time performance, we have 
already introduced two open problems: RADAR-based 3D object detection methods 
in Sect. 5.5 and a flexible framework for multi-sensor-fusion 3D object detection in 
Sect. 5.6. In this section, we will introduce more interesting open problems in 3D 
object detection.
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Table 5.6 Comparison between the performances of multi-sensor fusion methods. C, R, and L are 
short for camera, RADAR, and LiDAR, respectively 

Solution Implementation Modality KITTI (.APCar,3D) nuScenes Time(s) 

Easy Mod Hard NDS mAP 

Feat. MV3D [ 89] C.+ L 71.2 62.6 56.5 – – 0.4 

Feat. AVOD [ 11] C.+ L 81.9 71.8 66.3 – – 0.1 

Feat. MVX-Net [ 91] C.+ L 83.2 72.7 65.2 – - 0.06 

Feat. BEVFusion [ 50] C.+ L – – – 72.9 70.2 0.119 

Feat. CenterFusion [ 92] R.+ L – – - 44.9 32.6 – 

Tran. TransFusion [ 94] C.+ L – – – 71.7 68.9 0.266 

Tran. DeepInteraction [ 95] C.+ L – – – 76.3 75.6 0.204 

Tran. UVTR [ 97] C.+ L – – – 71.1 67.1 – 

Cascade F-PointNet [ 24] C.+ L 81.2 70.4 62.2 – – 0.2 

Cascade PointPainting [ 98] C.+ L 92.4 88.1 83.3 46.4 33.9 0.016 

Cascade CenterPoint [ 60] C.+ L – – – 65.5 58.0 0.089 

5.7.1 Extreme Conditions 

The edge cases caused by extreme conditions are one of the major challenges in 
autonomous driving. As we claimed in Sect. 5.2.2, cameras and LiDARs are not 
robust to bad lighting conditions or extreme weather. The different appearance infor-
mation in extreme weather and bad lighting conditions may cause a different data 
distribution from the training dataset for camera-based methods. Extreme weather, 
like rainy or snowy days, may worsen the quality of the point clouds of LiDAR scans. 

One possible solution is to consider the data in extreme conditions when collect-
ing the training data so that the data distribution will be similar when the 3D object 
detector is deployed in the real world. It can improve the performance of networks, 
but it is not the best option, since it is hard to enumerate all the extreme conditions in 
the real world. The unexpected conditions will put the passengers in a dangerous situ-
ation. Another solution is to adopt the multi-sensor setups since different sensor types 
have different failure modes during different conditions [ 12]. Especially, RADARs 
are famous for their robustness towards extreme conditions. Current multi-sensor 
fusion methods focus more on accuracy improvement than robustness improvement 
in extreme conditions, which needs more effort in the future. In addition, generative 
adversarial networks (GANs) [100], which have shown powerful ability, especially 
in domain adaptation in recent years, can be used to alleviate the difference between 
extreme conditions and normal conditions. For instance, the night-time image can be 
translated by GANs to daytime for 3D object detection. Similar works have gained 
attention in some visual tasks like place recognition [101, 102].



5 3D Object Detection in Autonomous Driving 167

5.7.2 Uncertainty 

Uncertainty is a natural part of any perception system’s output. Knowing the confi-
dence with which we can trust the 3D object detection output is crucial for decision 
making. To model the uncertainty of a perception output, a natural idea is to use the 
softmax output as the uncertainty. The higher output represents lower uncertainty. 

Recently, some researchers modeled the perceptual uncertainty of a deep learning 
network output in a more detailed manner [103–105]. They classified the uncertainty 
into epistemic uncertainty which is caused by insufficient data, and aleatoric uncer-
tainty which is caused by noisy annotation and model properties. In their work, they 
claimed that not only uncertainty was well modelled but also the accuracy of semantic 
segmentation networks was improved due to their consideration of uncertainty. 

5.7.3 Summary 

According to our discussion in this chapter, 3D object detection contains the follow-
ing open problems: 

How to improve the accuracy of 3D object detection, especially the objects in 
small sizes? For LiDAR- and RADAR-based methods, the cause of the bad accuracy 
when detecting small objects is due to the fact that there are few points detected by 
the perceptual sensors. One possible solution is to adopt more than one perceptual 
sensor, which provides ont only redundancy but also robustness. It could be the fusion 
of multiple LiDARs or RADARs, which naturally improve the number of points 
detected on the small objects. Besides, it could also be the fusion of different types 
of sensors, as we mentioned before, which also provides complimentary information 
in extreme cases. 

How to implement 3D object detection based on RADAR data? As we mentioned 
in Sect. 5.5, current research of RADAR-related 3D object detection can be classified 
as point-cloud-based methods and spectral-image-based methods. However, all of 
them cannot estimate the properties of objects in the z-axis. It is limited by the sensor 
property, for instance, most of the current RADARs are 2D sensors. In the future, 
RADAR systems should be improved to provide 3D information as well. 

How to design a flexible framework for multi-sensor fusion? As we mentioned in 
Sect. 5.6, current multi-sensor fusion methods are fixed and pre-designed for a spe-
cific sensor setup. The generalization to another setup is costly. A flexible framework 
of multi-sensor fusion 3D object detection is a promising research direction. One pos-
sible solution could be that all the sensors or groups of sensors can independently 
detect objects, and their results are fused by optimizing an objective function. More 
sensors provide more constraints and hence the results should be more accurate. 

How to measure the robustness of 3D object detectors against extreme condi-
tions? How to improve their robustness? A direct solution is to measure the dif-
ference in performance under common conditions and extreme conditions, like
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.APextreme/APcommon , where .APextreme and .APcommon denote the average precision 
in the extreme and the common conditions. When the number of evaluation data is 
large enough, such a metric can measure the robustness of the algorithm in extreme 
conditions. One of the significant reasons for the bad performance under extreme 
conditions is sensor limitation. Therefore, the multi-sensor fusion methods could 
be a promising solution due to the availability of complementary information under 
different conditions. 

How to model the uncertainty of 3D object detection? How to utilize the uncertain 
samples to enhance the performance of the detectors? As we mentioned in Sect. 5.7.2, 
the epistemic and aleatoric of [103, 104] can be extended to 3D object detection for 
measuring the uncertainty. One possible way to utilize the uncertain samples could 
include providing more weights to the uncertain samples in the training phase by 
adding a dynamic term in the loss function as demonstrated in [ 64, 106]. 

5.8 Conclusion 

In this chapter, we reviewed the state-of-the-art 3D object detection methods in 
autonomous driving. We introduced the properties of three perceptual sensors in 
autonomous driving: cameras, LiDARs and RADARs, and analyzed their pros and 
cons for 3D object detection. 

We reviewed the state-of-the-art 3D object detection methods in autonomous 
driving from the aspects of loss functions and architectures, and categorized them 
into camera-based, LiDAR-based, RADAR-based, and multi-sensor fusion methods. 
We introduced the problem definition, assumption, and evaluation metrics of 3D 
object detection in autonomous driving. The representative datasets were discussed, 
and their limitations were analyzed for future research. We pointed out the main 
problems and the existing solutions for each method. By analyzing the limitations 
of current solutions, we proposed some promising research directions and open 
problems. Quantitative results from the KITTI benchmark showed that 3D object 
detection is worth more effort, especially in small-size objects. Our analysis around 
autonomous driving system requirements showed that the robustness against extreme 
conditions, flexible multi-sensor fusion framework, and uncertainties in a perceptual 
system were all open problems in this field. 
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Chapter 6 
Collaborative 3D Object Detection 

Siheng Chen and Yue Hu 

Abstract 3D object detection is one of the most fundamental tasks of an autonomous 
system, which has made great progress recently. However, limited ability of indi-
vidual vehicles results in the bottleneck of improvement of the 3D detection perfor-
mance. To break through the limits of individual detection, collaborative 3D object 
detection has been proposed which enables agents to share information to perceive the 
environments beyond line-of-sight and field-of-view. Here, we provide an overview 
of the promising collaborative 3D object detection technology, including introduc-
ing the basic concepts and key challenges. We then focus on a fundamental tradeoff 
between communication cost and detection performance, and introduce the latest 
communication efficient collaborative 3D object detection method. 

6.1 Introduction 

When observing the world, each individual has a certain bias due to the limited 
field of view. The observation would be more holistic and robust when a group 
of individuals could collaborate and share information. In the parable of the blind 
men and an elephant, each blind man only feels a part of the elephant’s body and 
perceives the elephant based on their limited observation. If they can fully collaborate 
with each other, they might be able to come closer to the truth. With decades of 
efforts on machine learning and computer vision, single-agent perception has made 
remarkable success in 2D/3D object detection, tracking and segmentation; however, 
it still suffers from a number of inevitable limitations due to an individual perspective, 
such as occlusion and long-range issues. Fortunately, with the fast development of
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communication technologies, agents are able to share more information with each 
other, leading to an emerging field of collaborative perception.

Collaborative perception enables multiple agents to share complementary percep-
tual information with each other, promoting more holistic perception. It provides a 
new direction to fundamentally overcome a number of inevitable limitations of single-
agent perception, such as occlusion and long-range issues. Related methods and sys-
tems are desperately needed in a broad range of real-world applications, such as 
vehicle-to-everything-communication-aided autonomous driving [ 1– 3], multi-robot 
warehouse automation system [ 4, 5] and multi-UAVs (unmanned aerial vehicles) for 
search and rescue [ 6– 8]. To realize collaborative perception, recent works have con-
tributed high-quality datasets [ 9– 11] and effective collaboration methods [ 2, 12– 19]. 

Among many perception tasks, 3D object detection aims to determine the 3D 
location and the category of each foreground object in a given scene, which is fun-
damental for exploring the physical space [ 20– 23]. 3D object detection has become 
one of the cornerstone techniques in most autonomous driving, robotics and video 
surveillance systems. Here we specifically consider collaborative 3D object detec-
tion for two reasons. First, most agents move and observe in the 3D space, and 
naturally, they should be able to understand 3D information and share them with 
each other. This is nontrivial because the 3D physical space is the foundation for 
multiple agents to collaborate. Essentially, occlusion and long-range issues do not 
occur without being aware of the 3D space. What an agent needs to understand is 
the physical space, instead of its own measurement. Second, the field of 3D object 
detection needs new directions. Current techniques based on an individual agent has 
become relatively mature. Most current progresses requires a huge amount of data 
and computational resources, instead of scientific thinking. Collaborative 3D object 
detection provides an orthogonal approach for exploring. 

6.1.1 Significance 

Scientific merits. Collaborative 3D object detection is not a simple extension of 
ordinary 3D object detection. In principle, collaborative 3D object detection can eas-
ily achieve what ordinary 3D object detection can never do, such as seeing through 
occlusion. This new task sits at the crux of communication, machine learning, com-
puter vision, and robotics, and brings a series of new and challenging scientific 
questions: Given limited time and resources, who should an agent collaborate with? 
What information should an agent share to optimize the collaboration benefits? How 
to fuse heterogeneous information from multiple agents to improve the detection 
robustness? We might need to develop new information theories to seriously answer 
those questions. Researchers from different communities could ask a lot of diverse 
questions. 

Engineering impacts. It is not difficult to connect collaborative 3D object detec-
tion to many ambitious engineering projects, such as autonomous driving, drone 
swarm and metaverse. Let us take autonomous driving as an example. Benefiting from
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the better building of communication infrastructure and developing communication 
technology such as V2X (Vehicle-to-Everything) communication, vehicles could 
exchange their messages in reliable manners, which enables the collaboration among 
them. Recent works [ 24, 25] have demonstrated that collaboration among vehicles 
could improve the accuracy of environmental perception as well as robustness and 
safety of transportation systems. In addition, collaborative 3D object detection can 
achieve what ordinary 3D object detection can do at a much lower cost. Autonomous 
driving vehicles are usually equipped with high-fidelity sensors to achieve reliable 
perception, which causes expensive cost. Is it a waste for a single vehicle to collect 
so much data all the time? Collaborative 3D detection can relax the harsh demand 
of perception equipments of individual vehicles. 

6.1.2 Relations to Related Topics 

The idea of collaborative 3D object detection is deeply rooted in collective intelli-
gence, which is sometimes used synonymously with the wisdom of crowds. Tech-
nically, collaborative 3D object detection is new and related to multiple well estab-
lished fields, especially multi-agent reinforcement learning. Multi-agent reinforce-
ment learning is a sub-field of reinforcement learning and studies optimizing the 
decision-making process of multiple agents that coexist in a shared environment via 
reinforcement learning techniques [ 26– 28]. Both multi-agent reinforcement learning 
and collaborative 3D object detection leverages collaboration or information sharing 
to improve the system performance. However, there are two distinct differences. First, 
multi-agent reinforcement learning emphasizes reinforcement learning techniques, 
while collaborative 3D object detection focuses on the task of 3D object detection. 
Second, multi-agent reinforcement learning considers information sharing at a level 
of decision making, where the perception needs are either trivial or secondary. In 
comparison, collaborative 3D object detection focuses on solving real-world per-
ception issues. Intuitively, better perception enables better performances on all the 
subsequent tasks, including decision making. In future, it would be interesting to 
combine multi-agent reinforcement learning and collaborative 3D object detection 
to develop a multi-agent system with more comprehensive collaboration ability. 

6.1.3 Category of Collaborative 3D Object Detection 

The pipeline of 3D object detection is that raw data collected by an agent is firstly 
fed into encoder, and then the intermediate features output by encoder are decoded 
to output the final perception results. Depending on when the collaboration occurs 
in the pipeline, we can categorize the collaboration mode into four types, includ-
ing early collaboration, intermediate collaboration, late collaboration and hybrid 
collaboration.
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Fig. 6.1 Three types of collaboration 

Early collaboration. Early collaboration conducts the collaboration in the input 
space, which shares raw sensory data between agents. It aggregates raw measure-
ments from all the agents to promote a holistic perspective. Therefore, each agent 
could conduct following processing and finish detection based on the holistic per-
spective, see Fig. 6.1a, which can fundamentally solve the occlusion and long-range 
issues occurring in the single-agent 3D detection. References [ 29, 30] have adopted 
early collaboration mode and demonstrated its effectiveness with the help of rich 
information. However, sharing raw sensory data requires a lot of communication and 
easily congest the communication network with heavy data loads, which impedes its 
practical usage in most cases. 

Late collaboration. Late collaboration conducts the collaboration in the output 
space, which promotes the fusion of the detection result output by each individual 
agent to achieve an refinement, see Fig. 6.1c. Reference [ 31] adopted late collabo-
ration to develop a perception and localization system and dealt with latency and 
dropout of the communication link between the two agents. Reference [ 32] studied 
temporal and spatial alignment of the shared detected objects and proposed to use 
non-predicted sender state for the transformation and therefore to neglect the sender 
motion compensation. Although late collaboration is bandwidth-economic, it is very 
sensitive to the positioning error of the agents and suffers from high estimation errors 
and noise because of incomplete local observation. 

Intermediate collaboration. Intermediate collaboration conducts the collabora-
tion in the intermediate feature space. It enables the transmission of the intermediate 
features generated by each individual agent’s prediction model. After fusion of these 
features, each agent decodes the fused features and produce the perception results, see 
Fig. 6.1b. Conceptually, we can squeeze representative information to those features, 
leading to economic communication bandwidth compared to early collaboration as 
well as upgraded perception ability compared to late collaboration. A lot of work [ 1, 
33– 36] agree with this idea and adopt intermediate collaboration and feature sharing.
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In practice, the design of this collaboration strategy is algorithmically challenging 
from two aspects: (i) how to select the most beneficial and compact features from 
the raw measurements for transmission; and (ii) how to maximally fuse the other 
agents’ features to enhance each agent’s perception ability. 

Hybrid collaboration. As mentioned above, each collaboration mode has its own 
advantages and disadvantages. Therefore, some work adopted hybrid collaboration 
which combines two or more collaboration modes to optimize the collaboration 
strategy. Reference [ 30] proposed to share high level information (late collabora-
tion) where the sensor has high visibility and share low level information (early 
collaboration) where the visibility is poor. Their method is based on the observa-
tion that objects close to a sensor will have a high density of points and thus are 
more likely to be detected using a single sensor’s observation. DiscoNet [ 2] lever-
aged a teacher model employing early collaboration to guide the training of student 
model employing intermediate collaboration. In reference stage, the communication 
bandwidth-consuming teacher model is discarded so that student model can keep 
superior performance with low communication bandwidth because it has learned the 
knowledge from the teacher model at the training stage. 

6.2 Key Challenges 

In this section, we consider two representative challenges in practical collaborative 
3D object detection, including communication constraints and pose errors. 

6.2.1 Communication Constraints 

Collaborative 3D object detection requires a communication system to share informa-
tion between agents. Vehicle-to-vehicle (V2V) communication can be implemented 
by two communication solutions, either IEEE 802.11p protocol or cellular network 
standards [ 37]. In IEEE 802.11p protocol, stations do not need to join a BSS (Basic 
Service Set) by operating in WAVE (Wireless Access in Vehicular Environment) 
mode, which reduces the connection setup overhead and suits vehicular safety appli-
cations well [ 38]. On the other hand, the fourth-generation cellular networks support 
LTE V2V standard development, supporting vehicular user equipments (VUEs) with 
low latency and highly reliable data transmission [ 39]. Compared to the 802.11p 
based V2V communication, it avoids channel congestion and collision induced by 
CSMA mechanism [ 40]. Though communication technology keeps developing for 
lower latency and better reliability, real-world communication systems are still far 
from ideal. They are always constrained by limited communication bandwidths, 
latency constraints or package dropout issues. 

Intuitively, when more information are allowed to share between agents, each 
agent would collect more perceptual information and achieve better detection
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performances. However, bandwidth resources are always limited. Especially, when 
more agents are participated in the collaboration, available communication band-
width for each agent is more limited. Thus, there is a fundamental tradeoff between 
the gain of detection ability and the expensive of communication bandwidth. This 
requires a collaboration strategy to select compact and critical messages for sharing, 
which cost less communication bandwidth, yet convey significant detection infor-
mation [ 2, 41]. Currently, this fundamental tradeoff is one of the biggest challenges 
in collaborative 3D object detection. 

Communication latency is another fundamental issue. All the communication sys-
tems are designed to promote less latency, however, in practice, latency is inevitable 
and can cause huge troubles. In a real-time LTE-V2X communication system, the 
latency time is up to an average of (498 communication periods) .+ 131.30 ms. 
Besides, the varying latency times of various communication channels would cause 
severe time asynchronous issues. Experimentally, latency issue severely damages the 
collaborative 3D object detection system, resulting in even worse performance than 
single-agent 3D detection [ 16]. From Fig. 6.2, we see that: (i) the detected vehicles 
in the purple box in (a) with collaboration is missed in the (b); (ii) the correctly 
detected vehicles in the blue box in (c) are incorrect in (b). The reason is that the 
received collaborative data with latency represents the situation 1s ago, it misleads 
the detector to output boxes with significant deviation. This motivates us to consider 
a collaborative perception system robust to the inevitable communication latency. 

Similarly, communication interruption also effects the robustness of a collabora-
tive 3D object detection system. Random temporary interruption is one of the com-
mon communication problems caused by numerous environmental factors, including 
unstable communication channels and equipment failure. In this case, the commu-
nication link between each pair of two agents might be interrupted with a certain 
probability at each moment. This results in a dynamic, incomplete communication 
graph, which would severely degrade the collaboration performance and further 
affect the downstream tasks, such as tracking and trajectory prediction, causing a 
cascading failure; see Fig. 6.3. Figure 6.3a shows that the green vehicle can expand

Fig. 6.2 Collaborative 3D detection. Red: Detected, green: Ground truth. Collaboration without 
considering latency could be even worse than no collaboration
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Fig. 6.3 Communication interruption issue and its affect 

(a) Misaligned boxes (b) Aligned boxes 

Fig. 6.4 Pose errors could cause misaligned boxes after collaboration

its perception range to overcome occlusion and long-range issues and detect more 
objects by leveraging the supportive message sent by the yellow vehicle. However, 
when the communication between two vehicles is stochastically interrupted, the per-
formance of collaborative perception becomes unstable: the detected objects some-
times appear, sometimes are missing, causing noisy inputs for the downstream tasks, 
such as tracking and trajectory prediction. Figure 6.3b shows the empirical perfor-
mances of collaborative perception methods as a function of interruption probability 
on the V2X-Sim [ 2] dataset. We see that the performance are seriously degraded due 
to communication interruption. Fortunately, the proposed interruption aware col-
laborative perception framework (red curve) effectively alleviates the degradation 
(Fig. 6.4).
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A diverse of practical communication constraints severely effect the overall per-
formance of a collaborative 3D object detection system. However, related research 
works are clearly underexplored. The future development might require the knowl-
edge and expertise from both communication and machine learning communities. 

6.2.2 Pose Errors 

In an autonomous system, the localization module is designed to find the ego posi-
tion relative to the reference position. It consumes the real-time measurements from 
multiple sensors, such as LiDAR, IMU, GPS, odometer, cameras, as well as some 
geometric prior, such as maps. Because of running in the 3D space, the ego position of 
an agent is a 6DOF pose (translation and rotation). Precise localization of each agent 
is a foundation of multi-agent collaboration [ 42– 46]. To share valid information with 
each other, multiple agents need precise poses to synchronize their individual data in 
a consistent spatial coordinate system. However, the 6 DoF pose estimated by each 
agent’s localization module is not perfect in practice, causing annoying relative pose 
errors. Inaccurate poses would cause misalignment and inconsistency in collabora-
tion, resulting in worse perception performance than single-agent perception [ 47]. 

To gain resistance to localization errors, previous works consider two main 
approaches: supervised training or robust network design. The first approach intro-
duces additional supervision to empower the network being aware of the pose errors. 
For example, V2VNet (robust) [ 42] designs pose regression, global consistency and 
attention aggregation module to correct relative poses and concentrate on neighbor 
with less pose error; MASH [ 43] builds a similarity volume and explicitly learns 
the pixel to pixel correspondence to avoid using noisy pose in inference. The sec-
ond approach focuses on designing robust frameworks or network architectures. For 
example, V2X-ViT [ 44] uses multi-scale window attention to capture features in 
various ranges; and FPV-RCNN [ 45] infers the semantic label of keypoints and finds 
correspondences between agents to correct relative poses. 

6.3 Communication-Efficient Collaborative 3D Object 
Detection 

In this section, we focus on studying the fundamental trade-off between detection per-
formance and communication bandwidth. We introduce a communication-efficient 
collaborative 3D object detection method named Where2comm, which significantly 
reduces the communication cost without losing detection performance.
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6.3.1 Problem Formulation 

Consider.N agents in the scene. Let.Xi and.Yi be the observation and the perception 
supervision of the . i th agent, respectively. The objective of collaborative perception 
is to achieve the maximized perception performance of all agents as a function of 
the total communication budge . B and communication round . K ; that is, 

.ξϕ(B, K ) = argmaxθ,P
N∑

i=1

g
(
ϕθ

(
Xi , {P(K )

i→ j }Nj=1

)
,Yi

)
, (6.1) 

subject to 
K∑ 

k=1 

N∑ 

i=1 

|P(k) 
i→ j | ≤  B, 

where .g(·, ·) is the perception evaluation metric, .ϕ is the perception network with 
trainable parameter. θ , and.P(k)

i→ j is the message transmitted from the. i th agent to the 
. j th agent at the . kth communication round. Note that (i) when .B = K = 0, there is 
no collaboration and .ξϕ(0, 0) reflects the single-agent perception performance; (ii) 
through optimizing the communication strategy and the network parameter, collabo-
rative perception should perform well consistently at any communication bandwidth 
or round; and (iii) we consider multi-round communication, where each agent serves 
as both a supporter (offering message to help others) and a requester (requesting 
messages from others). 

To achieve a better balance between detection performance and communication 
bandwidth (6.1), previous works put forth solutions from several perspectives. For 
example, When2com [ 12] considers a handshake mechanism which selects the most 
relevant collaborators; V2VNet [ 1] considers end-to-end-learning-based source cod-
ing; and DiscoNet [ 2] uses 1D convolution to compress message. However, all pre-
vious works make a plausible assumption: once two agents collaborate, they are 
obligated to share perceptual information of all spatial areas equally. This unnec-
essary assumption can hugely waste the bandwidth as a large proportion of spatial 
areas may contain irrelevant information for perception task. Figure 6.5 illustrates 
such a spatial heterogeneity of perceptual information. Consider this safety-critical 
scenario, where the white car and the red car may collide due to occlusion. This col-
lision could be avoided when the blue car can simply share a message about the red 
car’s position to the white car. This idea brings a new dimension, which enables each 
agent to explore its spatial dimension and select spatially sparse, yet perceptually 
critical messages. 

Figure 6.6 presents the comparisons on the communication graph with previ-
ous works. Fully connected versus agent-level partially connected versus ours 
spatial-decouple partially connected communication. Fully connected communi-
cation results in a large amount of bandwidth usage, growing on the order of.O(N 2), 
where.N is the number of agents in a network. Agent-level partially connected com-
munication prune irrelevant connections between agents while may erroneously sever 
the information connection. Spatial-decouple partially connected communication
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Fig. 6.5 Considering the precious communication bandwidth, each agent needs to speak to the 
point! 

Fig. 6.6 Spatial confidence-aware communication graph construction module. We spatially decou-
ple the full feature map, and could flexibly involve the informative spatial areas in the commu-
nication. This spatial-decouple partially connected communication could further flexibly prune 
irrelevant connections per-location and is more bandwidth-efficient 

could further flexibly prune irrelevant connections per-location and can substantially 
reduce the overall network complexity. Here we introduce Where2comm, which 
implements the spatial-decouple partially connected communication and adaptively 
selects where to communicate. 

6.3.2 Mathematical Intuition 

We now introduce Where2comm from a perspective of mathematical optimization. 
Mathematically, it is hard to obtain the global optimum of (6.1) due to hard constrains 
and non-differentialability of binary variables. Therefore, we introduce an auxiliary 
variable and decomposes the original problem into two sub-optimization problems, 
each one of which is easy to solve. To understand the details, let us consider a setting 
of fixed communication bandwidth and communication round, .K = 1, B = [B1]. 
Then, the optimization is
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. maxθ,P
N∑

i=1

g
(
ϕθ

(Xi , {Pi→ j }Nj=1

)
,Yi

)
, (6.2) 

subject to 
N∑ 

i, j=1 

|Pi→ j | ≤  B1. 

Let the message sent from the . i th agent to the . j th agent be .Pi→ j = Mi→ j ʘ Fi , 
where .Mi→ j ∈ {0, 1}H×W is a binary selection mask and .Fi ∈ R

H×W×D is the . i th 
agent’s feature map. Note that .Mi→ j determines the message’s spatial sparsity; that 
is, where to communicate. Then, the original optimization is equivalent to 

. maxθ,M

N∑

i=1

g
(
ϕθ

(Xi , {Mi→ j }Nj=1

)
,Yi

)
, (6.3) 

subject to 
N∑ 

i=1 

N∑ 

j=1, j /=i 

|Mi→ j | ≤  b1, Mi→ j ∈ {0, 1}H×W , 

where .Fi can attribute to the network .ϕθ(·) and input data .Xi and .b1 = B1/D with 
.D the channel number of. Fi . Due to the binary constrains, it is hard to optimize (6.3) 
directly. Instead, we decompose (6.3) into two sub-optimization problems and opti-
mize the binary selection matrix.Mi→ j and the network parameters. θ once at a time: 
(i) obtain a feasible binary selection matrix.Mi→ j by optimizing a proxy constrained 
problem; (ii) given the feasible binary selection matrix .Mi→ j , optimize the percep-
tion network parameter . θ . The constraint is satisfied in (i) and the perception goal is 
achieved in (ii). Specifically, two sub-optimization problems are 

. • Obtain a feasible binary selection matrix .Mi→ j . This essentially optimizes 
where to allocate the communication bandwidth. Intuitively, the spatial confidence 
reflects the perceptually critical level, so that those spatial regions with higher spatial 
confidence will provide more critical information to help the partners and should have 
a higher priority be selected. 

Following this spirit, we consider a proxy constrained problem as follows, 

. maxM

N∑

i=1

N∑

j=1, j /=i

Mi→ j ʘ Ci , s.t.
N∑

i=1

N∑

j=1, j /=i

|Mi→ j | ≤ b1,Mi→ j ∈ {0, 1}H×W ,

(6.4) 
where .Ci is the spatial confidence map. Note that (i) even this optimization prob-
lem has hard constraints and non-differentialability of binary variables, it has an 
analytical solution that naturally satisfies all the constraints in (6.3); and (ii) even 
we cannot solve the original objective, this proxy objective still carries the similar 
idea to promote better, yet more compact perception. This solution is obtained by 
selecting those spatial regions whose corresponding elements in.M rank top-. b1. The  
detailed steps of selection function are: (i) arrange the elements in the input matrix 
in descending order; (ii) given the communication budget constrain, decide the total
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number (. b1) of communication regions; (iii) set the spatial regions of . M, where 
elements rank in top-.b1 as the . 1 and . 0 verses. 

. •Given the feasible binary selection matrix, optimize the network parameter 
. θ . This essentially optimizes the perception performance. The sub-problem is 

.max
θ

N∑

i=1

g
(
ϕθ

(Xi , {Mi→ j }Nj=1

)
,Yi

)
. (6.5) 

This can be solved by standard supervised learning. For example, the perception 
evaluation metric .g(·) can be evaluated by the detection loss calculated between 
detections and the ground-truth and the detection loss is optimized with an Adam 
optimizer. We thus get the optimized perception network parameter. θ . Note that this 
sub-problem does not involve any constraints and is thus easy to optimize. 

6.3.3 System Design 

We now present the architecture implementation of Where2comm. Figure 6.7 
demonstrates the overall system, including an observation encoder, a spatial con-
fidence generator, the spatial confidence-aware communication module, the spatial 
confidence-aware message fusion module and a detection decoder. Among five mod-
ules, the proposed spatial confidence generator generates the spatial confidence map. 
Based on this spatial confidence map, the proposed spatial confidence-aware commu-
nication generates compact messages and sparse communication graphs to save com-
munication bandwidth; and the proposed spatial confidence-aware message fusion 
module leverages informative spatial confidence priors to achieve better aggregation. 

Observation encoder. The observation encoder extracts feature maps from the 
sensor data. Where2comm accepts single/multi-modality inputs, such as RGB

Fig. 6.7 System overview. In Where2comm, spatial confidence generator enables the awareness of 
spatial heterogeneous of perceptual information, spatial confidence-aware communication enables 
efficient communication, and spatial confidence-aware message fusion boosts the performance
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images and 3D point clouds. This work adopts the feature representations in bird’s 
eye view (BEV), where all agents project their individual perceptual information 
to the same global coordinate system, avoiding complex coordinate transformations 
and supporting better shared cross-agent collaboration. For the . i th agent, given its 
input .Xi , the feature map is

. F (0)
i = ϕenc(Xi ) ∈ R

H×W×D,

where .ϕenc(·) is the encoder, the superscript . 0 reflects that the feature is obtained 
before communication and .H,W, D are its height, weight and channel. All agents 
share the same BEV coordinate system. For the image input,.ϕenc(·) is followed by a 
warping function that transforms the extracted feature from front-view to BEV. For 
3D point cloud input, we discretize 3D points as a BEV map and.ϕenc(·) extracts fea-
tures in BEV. The extracted feature map is output to the spatial confidence generator 
and the message fusion module. 

When the input sensor is a monocular camera, the depth is unknown and esti-
mated. Instead of directly projecting 2D features to flat ground space, we consider 
lifting those features to 3D voxel space and then collapse them to the BEV. This 
design considers all the possible depths/altitudes, introducing flexibility in the pro-
jection, and mitigating the distortion effect caused by information loss in imaging. 
The detailed steps are: (1) Categorical Depth Distribution Network (CaDDN [ 22]), 
which is a recent and effective method to warp image feature to BEV feature, is 
applied to estimate the depth distribution for each image feature point. (2) Each fea-
ture point is wrapped from the 2D image space to the 3D physic space according to the 
known camera parameters. (3) The 3D voxel features are flattened to BEV features. 
Briefly, the warping function is unfolded as follows: for each image feature point 
locates at .(u, v), given the estimated categorical depth . di , and the known camera 
projection matrix .P ∈ R

3×4, 3D physical space coordinates .[x, y, z]T is calculated 
conditioned on the image feature coordinates .[u, v, di ]T based on the projection 
function: .[u, v, di ]T = P · [x, y, z, 1]T . 

Spatial confidence generator. The spatial confidence generator generates a spa-
tial confidence map from the feature map of each agent. The spatial confidence map 
reflects the perceptually critical level of various spatial areas. Intuitively, for object 
detection task, the areas that contain objects are more critical than background areas. 
During collaboration, areas with objects could help recover the miss-detected objects 
due to the limited view; and background areas could be omitted to save the precious 
bandwidth. So we represent the spatial confidence map with the detection confidence 
map, where the area with high perceptually critical level is the area that contains an 
object with a high confidence score. 

To implement, we use a detection decoder structure to produce the detection 
confidence map. Given the feature map at the . kth communication round, .F (k)

i , the  
corresponding spatial confidence map is 

.C(k)
i = ϕgenerator(F (k)

i ) ∈ [0, 1]H×W , (6.6)
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where the generator .ϕgenerator(·) follows a detection decoder. Since we consider 
multi-round collaboration, Where2comm iteratively updates the feature map by 
aggregating information from other agents. Once.F (k)

i is obtained, (6.6) is triggered 
to reflect the perceptually critical level at each spatial location. The proposed spatial 
confidence map answers a crucial question that was ignored by previous works: 
for each agent, information at which spatial area is worth sharing with others. By 
answering this, it provides a solid base for efficient communication and effective 
message fusion. 

Spatial confidence-aware communication. With the guidance of spatial con-
fidence maps, the proposed communication module packs compact messages with 
spatially sparse feature maps and transmits messages through a sparsely-connected 
communication graph. Most existing collaboration perception systems [ 1, 2, 48] con-
siders full feature maps in the messages and fully-connected communication graphs. 
To reduce the communication bandwidth without affecting perception, we leverage 
the spatial confidence map to select the most informative spatial areas in the feature 
map (where to communicate) and decide the most beneficial collaboration partners 
(who to communicate). 

Message packing determines what information should be included in the to-be-
sent message. The proposed message includes: (i) a request map that indicates at 
which spatial areas the agent needs to know more; and (ii) a spatially sparse, yet 
perceptually critical feature map. 

The request map of the . i th agent is .R(k)
i = 1 − C(k)

i ∈ R
H×W , negatively cor-

related with the spatial confidence map. The intuition is, for the locations with low 
confidence score, an agent is hard to tell if there is really no objects or it is just caused 
by the limited information (e.g. occlusion). Thus, the low confidence score indicates 
there could be missing information at that location. Requesting information at these 
locations from other agents could improve the current agent’s detection accuracy. 

The spatially sparse feature map are selected based on each agent’s spatial confi-
dence map and the received request maps from others. Specifically, a binary selection 
matrix is used to represent each location is selected or not, where. 1 denotes selected, 
and . 0 elsewhere. For the message sent from the . i th agent to the . j th agent at the . kth 
communication round, the binary selection matrix is 

.M(k)
i→ j =

{
ϕselect(C

(k)
i ) ∈ {0, 1}H×W , k = 0;

ϕselect(C
(k)
i ʘ R(k−1)

j ),∈ {0, 1}H×W , k > 0; (6.7) 

where .ʘ is the element-wise multiplication, .R(k−1)
j is the request map from the . j th 

agent received at the previous round,.ϕselect(·) is the selection function which targets 
to select the most critical areas conditioned on the input matrix, which represents 
the critical level at the certain spatial location. We implement .ϕselect(·) by selecting 
the locations where the largest elements at in the given input matrix conditioned on 
the bandwidth limit; optionally, a Gaussian filter could be applied to filter out the 
outliers and introduce some context. In the initial communication round, each agent 
selects the most critical areas from its own perspective as the request maps from
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Fig. 6.8 Spatial confidence-aware message packing module..ʘ denotes point-wise multiplication, 
.Θ denotes point-wise minus by a matrix with the same shape as the input and filled with . 1. Best  
viewed in color. Grey denotes the location being filled with zeros for the binary selection matrix 
.M(k)

i→ j and the feature map. Z(k)
i→ j

other agents are not available yet; in the subsequent rounds, each agent also takes 
the partner’s request into account, enabling more targeted communication. Then, 
the selected feature map is obtained as .Z(k)

i→ j = M(k)
i→ j ʘ F (k)

i ∈ R
H×W×D, which 

provides spatially sparse, yet perceptually critical information. 
Figure 6.8 presents the detail about the spatial confidence-aware message packing 

module. For the message from agent . i to agent . j at . kth communication round, the 
module takes the spatial confidence map .C(k)

i of agent . i and the request map . R(k−1)
j

of agent. j as input, and outputs the message.P(k)
i→ j including the masked feature map 

.Z(k)
i→ j and the request map of agent . i . 
Overall, the message sent from the . i th agent to the . j th agent at the . kth commu-

nication round is .P(k)
i→ j = (R(k)

i ,Z(k)
i→ j ). Note that (i) .R

(k)
i provides spatial priors to 

request complementary information for the . i th agent’s need in the next round; the 
feature map .Z(k)

i→ j provides supportive information for the . i th agent’s need in the 

this round. They together enable mutually beneficial collaboration; (ii) since . Z(k)
i→ j

is sparse, we only transmit non-zero features and corresponding indices, leading to 
low communication cost; and (iii) the sparsity of .Z(k)

i→ j is determined by the binary 
selection matrix, which dynamically allocates the communication budget at various 
spatial areas based on their perceptual critical level, adapting to various communi-
cation conditions. 

Communication graph construction targets to identify when and who to communi-
cate to avoid unnecessary communication that wastes the bandwidth. Most previous 
works [ 1, 2, 10] consider fully-connected communication graphs. When2com [ 12] 
proposes a handshake mechanism, which uses similar global features to match part-
ners. This is hard to interpret because two agents, which have similar global features, 
do not necessarily need information from each other. Different from all previous 
works, we provide an explicit design rationale: the necessity of communication 
between the . i th and the . j th agents is simply measured by the overlap between the
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information that the. i th agent has and the information that the. j th agent needs. With 
the help of the spatial confidence map and the request map, we construct a more 
interpretable communication graph. 

For the initial communication round, every agent in the system is not aware of 
other agents yet. To activate the collaboration, we construct a fully-connected com-
munication graph. Every agent will broadcast its message to the rest of the system. For 
the subsequent communication rounds, we examine if the communication between 
agent. i and agent. j is necessary based on the maximum value of the binary selection 
matrix.M(k)

i→ j , i.e. if there is at least one patch is activated, then we regard the connec-
tion is necessary. Formally, let .A(k) be the adjacency matrix of the communication 
graph at the . kth communication round, whose .(i, j)th element is 

.A(k)
i, j =

{
1, k = 0;
maxh∈{0,1,..,H−1},w∈{0,1,...,W−1}

(
M(k)

i→ j

)

h,w
∈ {0, 1}, k > 0; (6.8) 

where.h, w index the spatial area, reflecting message passing from the. i th agent to the 
. j th agent. Given this sparse communication graph, agents can exchange messages 
with selected partners. 

Spatial Confidence-Aware Message Fusion. Spatial confidence-aware message 
fusion targets to augment the feature of each agent by aggregating the received 
messages from the other agents. To achieve this, we adopt a transformer architec-
ture, which leverages multi-head attention to fuse the corresponding features from 
multiple agents at each individual spatial location. The key technical design is to 
include the spatial confidence maps of all the agents to promote cross-agent atten-
tion learning. The intuition is that, the spatial confidence map could explicitly reflect 
the perceptually critical level, providing a useful prior for attention learning. 

Specifically, for the . i th agent, after receiving the . j th agent’s message .P(k)
j→i , it  

could unpack to retrieve the feature map.Z(k)
j→i and the spatial confidence map. C(k)

j =
1 − R(k)

j . We also include the ego feature map in fusion and denote .Z(k)
i→i = F (k)

i to 

make the formulation simple and consistent, where.Z(k)
i→i might not be sparse. To fuse 

the features from the. j th agent at the. kth communication round, the cross-agent/ego 
attention weight for the . i th agent is 

.W(k)
j→i = MHAW

(
F (k)
i ,Z(k)

j→i ,Z(k)
j→i

)
ʘ C(k)

j ∈ R
H×W , (6.9) 

where.MHAW(·) is a multi-head attention applied at each individual spatial location, 
which outputs the scaled dot-product attention weight. Note that (i) the proposed spa-
tial confidence maps contributes to the attention weight, as the features with higher 
perceptually critical level are more preferred in the feature aggregation; (ii) the cross-
agent attention weight models the collaboration strength with a .H × W spatial res-
olution, leading to more flexible information fusion at various spatial regions. Then, 
the feature map of the . i th agent after fusing the messages in the . kth communication 
round is
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Fig. 6.9 Spatial 
confidence-aware message 
fusion module. Each agent 
attentively augments the 
features with the received 
messages at each location. 
And the per-location 
multi-head attention are 
separately operated at each 
location in parallel, it takes 
the features and the 
corresponding confidence 
scores as input, and outputs 
the augmented features 

.F (k+1)
i = FFN

⎛

⎝
∑

j∈Ni
∪{i}

W(k)
j→i ʘ Z(k)

j→i

⎞

⎠ ∈ R
H×W×D, (6.10) 

where .FFN(·) is the feed-forward network and .Ni is the neighbors of the . i th agent 
defined in the communication graph .A(k). The fused feature .F (k+1)

i would serve as 
the. i th agent’s feature in the.(k + 1)th round. In the final round, we output.F (k+1)

i to 
the detection decoder to generate detections. 

Figure 6.9 presents the detail about the spatial confidence-aware message fusion 
module. Given the received messages .{P(k)

j→i , j ∈ Ni }, each agent . i attentively aug-
ments the features with the received messages at each location. And the request 
map.R(k)

j in the received message is firstly decoded to the confidence map.C(k)
j via a 

point-wise minus. Then the per-location multi-head attention are separately operated 
at each location in parallel, it takes the features and the corresponding confidence 
scores as input, and outputs the augmented features. 

Sensor positional encoding represents the physical distance between each agent’s 
sensor and its observation. Sensor positional encoding is conditioned on the physi-
cal distance between the known sensor coordinates and each BEV gird’s coordinate 
in the 3D physical space. It is introduced to provide spatial prior, as the smaller the 
sensing distance is, the clear the observation would be. Mathematically, similar to the 
position encoding in [ 49], our sensor positional encoding is given by . SPE(dis,2p) =
sin(dis/100002p/D), SPE(dis,2p+1) = cos(dis/100002p/D) where.dis is the physi-
cal distance,. p is the dimension,.D is the total channel dimension of the BEV feature 
map,.sin and.cos denote the sine and cosine functions. The features are then summed 
up with the positional encoding of each location before inputting to the transformer. 

Compared to existing fusion modules that do not use attention mechanism [ 1] or  
only use agent-level attentions [ 12], the per-location attention mechanism adopted by 
the proposed fusion emphasizes the location-specific feature interactions. It makes
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the feature fusion more targeted. Compared to the methods that also use the per-
location attention-based fusion module [ 2, 10, 48], the proposed fusion module 
leverages multi-head attention with two extra priors, including spatial confidence 
map and sensing distances. Both assist attention learning to prefer high quality and 
critical features. 

Detection decoder. The detection decoder decodes features into objects, including 
class and regression output. Given the feature map at the . kth communication round 
.F (k)

i , the detection decoder .ϕdec(·) generate the detections of . i th agent by 

.  ̂O(k)
i = ϕdec(F (k)

i ) ∈ R
H×W×7,

where each location of . ̂O(k)
i represents a rotated box with class . (c, x, y, h, w, cos α,

sin α), denoting class confidence, position, size and angle. The objects are the final 
output of the proposed collaborative perception system. Note that . ̂O(0)

i denotes the 
detections without collaboration. 

Training Details and Loss Functions. Algorithm 1 presents the pipeline of our 
multi-round spatial confidence-aware collaborative perception system. To train the 
overall system, we supervise two tasks: spatial confidence generation and object 
detection at each round. As mentioned before, the functionality of the spatial confi-
dence generator is the same as the classification in the detection decoder. To promote 
parameter efficiency, our spatial confidence generator reuses the parameters of the 
detection decoder. For the multi-round settings, each round is supervised with one 

detection loss, the overall loss is.L = ∑K
k=0

∑N
i Ldet

(
 ̂O(k)

i ,Oi

)
,where.Oi is the. i th 

agent’s ground-truth objects, .Ldet is the detection loss [ 50]. 
To adapt to multi-round communication and dynamic bandwidth, we train the 

model under various communication settings with curriculum learning strategy [ 51]. 
We first gradually increase the communication bandwidth and round; and then, ran-
domly sample bandwidth and round to promote robustness. Through this training 
strategy, a single model can perform well at various communication conditions. 

6.3.4 Experimental Results 

Datasets. Our experiments covers four datasets, both real-world and simulation sce-
narios, two types of agents (cars and drones) and two types of sensors (LiDAR and 
cameras). Specifically, we conduct camera-only 3D object detection in the setting 
of V2X-communication aided autonomous driving on OPV2V dataset [ 10], camera-
only 3D object detection in the setting of drone swarm on the proposed CoPerception-
UAVs dataset, and LiDAR-based 3D object detection on DAIR-V2X dataset [ 11] and 
V2X-Sim dataset [ 9]. 

OPV2V. OPV2V [ 10] is a vehicle-to-vehicle collaborative perception dataset, co-
simulated by OpenCDA [ 10] and Carla [ 52]. It includes .12K frames of 3D point 
clouds and RGB images with .230K annotated 3D boxes. The perception range is
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Algorithm 1 Multi-round spatial confidence-aware collaborative perception system 
1: Define N as the number of agents , K as communication round 
2: # Initialization 
3: for i = 1, 2, . . . ,  N , do 
4: F (0) 

i = ϕenc(Xi ) ∈ RH×W ×D ▷ Extract intermediate feature 
5: end for 
6: for k = 0, 1, . . . ,  K − 1, do 
7: for i = 1, 2, . . . ,  N , do # Each agent is computing individually 
8: C(k) 

i = ϕgenerator(F (k) 
i ) ∈ RH×W ▷ Generate spatial confidence map 

9: for j = 1, 2, . . . ,  N , do 
10: # Message packing 
11: R(k) 

i = 1 − C(k) 
i ∈ RH×W ▷ Pack request map 

12: if k = 0 then 
13: M(k) 

i→ j = ϕselect(C
(k) 
i ) ∈ {0, 1}H×W ▷ Select critical areas 

14: else 
15: M(k) 

i→ j = ϕselect(C
(k) 
i ʘ R(k−1) 

j ) ∈ {0, 1}H×W ▷ Select requested areas 
16: end if 
17: Z(k) 

i→ j = M(k) 
i→ j ʘ F (k) 

i ∈ RH×W×D ▷ Pack spatially sparse features 
18: # Communication graph learning 
19: if k = 0 then 
20: A(k) 

i→ j = 1 ▷ Broadcast critical features and request 
21: else 
22: A(k) 

i→ j = maxh,w 
( 
M(k) 

i→ j 

) 

h,w 
∈ {0, 1} ▷  Communicate only when necessary 

23: end if 
24: end for 
25: # Communication 
26: Send Pi→ j = 

( 
Z(k) 

i→ j , R
(k) 
i 

) 
to other agents 

27: Receive {P j→i = 
( 
Z(k) 

j→i , R
(k) 
j 

) 
, j /= i} from other agents 

28: # Message fusion 

29: F (k+1) 
i = ffuse 

( 
F (k) 
i , {(Z(k) 

j→i , R
(k) 
j ), j = 1, 2, ..., N } 

) 
∈ RH×W ×D 

30: end for 
31: Store F (k+1) 

i and {R(k) 
j , j /= i} for the next round 

32: end for 
33: O(K ) 

i = ϕdec(F (K ) 
i ) ▷ Output the final detections 

40 m. ×40 m. For camera-only 3D object detection task on OPV2V, we implement 
the detector following CADDN [ 22]. The input front-view image size is .(416, 160). 
The front-view input feature map is transformed to BEV with resolution.0.5m/pixel. 

V2X-Sim. V2X-Sim [ 9] is a vehicle-to-everything collaborative perception 
dataset, co-simulated by SUMO [ 53] and Carla, including 10K frames of 3D LiDAR 
point clouds and 501K 3D boxes. The perception range is 64 m. ×64 m. For LiDAR-
based 3D object detection task, our detector follows MotionNet [ 54]. We discretize 
3D points into a BEV map with size .(256, 256, 13) and the resolution is .0.4m/pixel 
in length and width, .0.25m in height. 

CoPerception-UAVs. To enrich the collaborative perception datasets, we con-
sider the swarm of unmanned aerial vehicles (UAV) and propose a UAV-swarm-
based collaborative perception dataset: CoPerception-UAVs, co-simulated by
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AirSim [ 55] and Carla [ 52], including 131.9K aerial images and 1.94M 3D boxes. 
The perception range is 200 m. ×350m. For the camera-only 3D object detection task 
on CoPerception-UAVs, our detector follows DVDET [ 8]. The input aerial image 
size is.(800, 450). The aerial-view input feature map is transformed to BEV with the 
resolution of .0.25m/pixel, and the size is .(192, 352); see more details in Appendix. 

DAIR-V2X. DAIR-V2X [ 11] is the only public real-world collaborative per-
ception dataset. Each sample contains two agents: a vehicle and an infrastructure, 
with 3D annotations. The perception range is 201.6 m. ×80 m. Originally DAIR-V2X 
does not label objects outside the camera’s view, we relabel all objects to cover 360-
degree detection range. We complement several intermediate fusion-based baselines 
on DAIR-V2X to comprehensively validate our method on real data. For LiDAR-
based 3D object detection task, our detector follows PointPillar [ 21]. We represent 
the field of view into a BEV map with size .(200, 504, 64) and the resolution is 
.0.4m/pixel in length and width. 

Evaluation metrics. The detection results are evaluated by Average Precision 
(AP) at Intersection-over-Union (IoU) threshold of .0.50 and .0.70. The communi-
cation results count the message size by byte in log scale with base . 2. To com-
pare communication results straightforward and fair, we do not consider any extra 
data/feature/model compression. Mathematically for the selected sparse feature map 
.Z(k)

i→ j = M(k)
i→ j ʘ F (k)

i ∈ R
H×W×D , the communication volume is 

.log2
(
|M(k)

i→ j | × D × 32/8
)

, (6.11) 

where.| · | denotes the L0 norm counting the non-zero elements in the binary selection 
matrix, this is, the total spatial girds need to be transmitted, and for each feature point 
.D denotes the channel dimension, .32 is multiplied as float32 data type is used to 
represent each number, . 8 is divided as the metric byte is used. 

Benchmark comparison. Figure 6.10 compares the proposed Where2comm 
with the previous methods in terms of the trade-off between detection perfor-
mance (AP@IoU=0.50) and communication bandwidth; also see exact values in 
Table 3 of Appendix. We consider single-agent detection without collaboration (. ̂O(0)

i ), 
When2com [ 12], V2VNet [ 1], DiscoNet [ 2], V2X-ViT [ 48] and late fusion, where 
agents directly exchange the detected 3D boxes. The red curve comes from a sin-
gle Where2commmodel evaluated at varying bandwidths. We see that the proposed 
Where2comm: (i) achieves a far-more superior perception-communication trade-off 
across all the communication bandwidth choices and various collaborative perception 
tasks, including camera-only 3D object detection from aerial view and car front view, 
and LiDAR-based 3D object detection; (ii) achieves significant improvements over 
previous state-of-the-arts on both real-world (DAIR-V2X) and simulation scenarios, 
improves the SOTA performance by 7.7% on DAIR-V2X, 6.62% on CoPerception-
UAVs, 25.81% on OPV2V, 1.9% on V2X-Sim; (iii) achieves the same detection 
performance of previous state-of-the-arts with extremely less communication vol-
ume: 5128 times less on CoPerception-UAVs, more than 100K times less on OPV2V, 
55 times less on V2X-Sim, 105 times less on DAIR-V2X.
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(a) CoPerception-UAVs (b) OPV2V

(c) V2X-Sim (d) DAIR-V2X

Fig. 6.10 Where2comm achieves consistently superior performance-bandwidth trade-off on all 
the three collaborative perception datasets, e.g., Where2comm achieves 5,000 times less commu-
nication volume and still outperforms When2com on CoPerception-UAVs dataset. The entire red 
curve comes from a single Where2comm model evaluated at varying bandwidths 

Table 6.1 presents the overall performance on the four datasets, CoPerception-
UAVs, OPV2V [ 10], V2X-Sim1.0 [ 2] and DAIR-V2X [ 11]. For this LiDAR-
based 3D object detection task, our detector follows PointPillar [ 21]. We see that 
where2comm consistently achieves significant improvements over previous meth-
ods on all the benchmarks. 

Multi-round evaluation. Figure 6.11 presents the performances of 
Where2comm at communication rounds ranging from 1 to 3. Each curve comes 
from a single Where2comm model with a certain communication round evalu-
ated at varying bandwidths. Results show that 1 communication round is good, 
more rounds are even better. Multi-round communication steadily improves the 
performance-bandwidth trade-off across all three datasets, reflecting its effectiveness 
and robustness. This encourages the agents to actively collaborate without worrying 
the performance degradation. This also validates that Where2comm can well work 
at various communication bandwidths and rounds. 

Robustness to localization noise. We follow the localization noise setting in 
V2VNet and V2X-ViT (Gaussian noise with a mean of 0m and a standard devia-
tion of 0m-0.6m) and conduct experiments on all the three datasets to validate the 
robustness against realistic localization noise. Where2comm is more robust to the
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(a) CoPerception-UAVs (b) OPV2V (c) V2X-Sim 

Fig. 6.11 More communication rounds continuously improve performance-bandwidth trade-off 

(a) CoPerception-UAVs (b) OPV2V (c) V2X-Sim 

Fig. 6.12 Robustness to localization error. Gaussian noise with zero mean and varying std is 
introduced. Where2comm consistently outperforms previous SOTAs and No Collaboration 

localization noise than previous SOTAs. Figure 6.12 shows the detection perfor-
mances as a function of localization noise level in CoPerception-UAVs, OPV2V 
and V2X-Sim datasets, respectively We see: (i) overall the collaborative perception 
performance degrades with the increasing localization noise, while where2comm 
outperforms previous SOTAs (When2com, V2VNet,DiscoNet) under all the local-
ization noise. (ii) where2comm keeps being superior to No Collaboration while 
V2VNet fails when noise is over 0.4 m and DiscoNet fails when noise is over 0.5m 
on CoPerception-UAVs. The reasons are: (i) the powerful transformer architecture in 
fusion module attentively select the most suitable collaborative feature; (ii) the spa-
tial confidence map helps filter out noisy features, these two designs work together 
to mitigate noise localization distortion effects.

Visualization of spatial confidence map. Figure 6.13 illustrates how 
Where2comm is empowered by the proposed spatial confidence map. In the scene, 
Drone 1’s view is occluded by a tall building. With Drone 2’s help, Drone 1 is able 
to detect through occlusion. Figure 6.13a–d shows Drone 1’s observation, spatial 
confidence map (6.6), binary selection matrix (6.7), and ego attention weight (6.9). 
Figure 6.13f–h shows Drone 2’s observation and message sent to Drone 1, including 
the request map (opposite of confidence map) and the sparse feature map, achiev-
ing efficient communication. Figure 6.13 (i) shows the attention weight for Drone 1 
to fuse Drone 2’s messages, which is sparse, yet highlights the objects’ positions. 
Figure 6.13e, j compares the detection results before and after the collaboration with
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Fig. 6.13 Visualization of collaboration between Drone 1 and Drone 2 on CoPerception-UAVs 
dataset, including spatial confidence map (.C(0)

1 ), selection matrix (.M(0)
1→2), message (.{R(0)

2 ,Z(0)
2→1}) 

in the communication module, attention weight in the fusion module (.W(0)
1→1,.W

(0)
2→1), and Drone 1’s 

detection results before (. ̂O(0)
1 ) and after (. ̂O(1)

1 ) collaboration. Green and red boxes denote ground-
truth and detection, respectively. The objects occluded by a tall building can be detected through 
transmitting spatially sparse, yet perceptually critical message 

Fig. 6.14 Where2comm qualitatively outperforms When2com and DiscoNet in DAIR-V2X 
dataset. Green and red boxes denote ground-truth and detection, respectively. Yellow and blue 
denote the point clouds collected from vehicle and infrastructure, respectively 

Drone 2. We see that the proposed spatial confidence map contributes to spatially 
sparse, yet perceptually critical message, which effectively helps Drone 1 detect 
occluded objects. 

Visualization of detection results. Figure 6.14 shows that compared to No Col-
laboration, When2com and DiscoNet, Where2comm is able to achieves more com-
plete and accurate detection results. The reason is that When2com employs a scalar 
to denote the agent-to-agent attention, which cannot distinguish which spatial area 
is more informative; DiscoNet employs a MLP-based fusion weight learning, which 
cannot well capture the complex collaboration attention; while Where2comm can 
zoom in to critical spatial areas in a cell-level resolution and leverage the spatial con-
fidence map and sensing distances as priors to achieve more comprehensive fusion. 

Visualization of collaboration in OPV2V and V2X-Sim. Figures 6.15 and 6.16 
illustrates how Where2comm is empowered by the proposed spatial confidence map 
on OPV2V and V2X-Sim dataset. In the scene, with Vehicle 2’s help, Vehicle 1 is
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Fig. 6.15 Visualization of collaboration between Vehicle 1 and Vehicle 2 on OPV2V dataset, 
including spatial confidence map (.C(0)

1 ), selection matrix (.M(0)
1→2), message (.{R(0)

2 ,Z(0)
2→1}) in the  

communication module, attention weight in the fusion module (.W(0)
1→1,.W

(0)
2→1), and Vehicle 1’s 

detection results before (. ̂O(0)
1 ) and  after (. ̂O(1)

1 ) collaboration. Green and red boxes denote ground-
truth and detection, respectively. The objects occluded can be detected through transmitting spatially 
sparse, yet perceptually critical message 

Fig. 6.16 Visualization of collaboration between Vehicle 1 and Vehicle 2 on V2X-Sim dataset, 
including spatial confidence map (.C(0)

1 ), selection matrix (.M(0)
1→2), message (.{R(0)

2 ,Z(0)
2→1}) in the  

communication module, attention weight in the fusion module (.W(0)
1→1,.W

(0)
2→1), and Drone 1’s 

detection results before (. ̂O(0)
1 ) and  after (. ̂O(1)

1 ) collaboration. Green and red boxes denote ground-
truth and detection, respectively. The objects occluded by a tall building can be detected through 
transmitting spatially sparse, yet perceptually critical message
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able to detect the missed objects in the single view. Figure 6.15a–d shows Vehicle 1’s 
spatial confidence map, binary selection matrix, ego attention weight, and the detec-
tion results by its own observation. Figure 6.15e–f shows Vehicle 2’s message sent 
to Drone 1, including the request map (opposite of confidence map) and the sparse 
feature map, achieving efficient communication. Figure 6.15g shows the attention 
weight for Vehicle 1 to fuse Vehicle 2’s messages, which is sparse, yet highlights the 
objects’ positions. Figure 6.15d, h compares the detection results before and after 
the collaboration with Vehicle 2. We see that the proposed spatial confidence map 
contributes to spatially sparse, yet perceptually critical message, which effectively 
helps Vehicle 1 detect occluded objects.

6.3.5 Ablation Studies 

Effect of Gaussian filter in perceptually critical area selection. Figure 6.17 com-
pares two versions of the selection matrix (6.7) with and without Gaussian filter. We 
see that applying Gaussian filter improves the overall performance. The reason is 
that: (i) Gaussian filter could help filter out the outliers in the input map, selecting 
more robust critical regions; (ii) it considers the context, benefiting the independent 
feature selection at each certain location by providing more information. 

Effect of components in spatial confidence-aware message fusion. Table 6.2 
assesses the effectiveness of the proposed fusion with two priors. We see that: (i) per-
location multi-head attention (MHA) outperforms the vanilla attention by 10.84% 
on OPV2V on AP@0.50, because MHA leverages information from multiple heads, 
better capturing cross-agent attention; and (ii) As two informative priors, both sensing 
position encoding (SPE) and spatial confidence map (SCM) can consistently improve 
the performance. Especially, the version with all three designs improves the detection 
performance by 22.06% on OPV2V on AP@0.50. 

Fig. 6.17 Applying 
Gaussian filter improves 
performance
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Table 6.2 Fusion component ablation study. Multi-head attention (MHA), sensor positional encod-
ing (SPE) and spatial confidence map (SCM) all improves the performances. Results are reported 
in AP@0.50/AP@0.70 

MHA SPE SCM OPV2V CoPerception-UAVs V2X-Sim 

34.96/13.92 63.48/44.23 51.2/45.7 

. 38.75/13.28 63.99/44.46 57.3/50.8 

. . 39.82/16.43 64.34/46.86 59.1/52.0 

. . . 47.30/19.30 64.83/47.62 59.1/52.2 

6.3.6 Further Thoughts on Communication Efficiency 

In the above context, we have demonstrated the effectiveness of Where2comm in 
balancing communication cost and detection ability. The key of Where2comm is to 
explore the sparsity in the spatial dimension. In future, we can further explore the 
sparsity along the feature dimension and the temporal dimension. From the feature 
aspect, many feature channels could be redundant and can be significantly com-
pressed. From the temporal aspect, it is probably unnecessary to communicate all 
the time because perceptual information in consecutive time stamps are too similar 
to bring news. Therefore, it could be interesting to determine critical time stamps, 
which would further significantly reduces the communication cost. 

6.4 Chapter at a Glance 

This chapter introduces an emerging field of collaborative 3D object detection. It 
enables multiple agents to share complementary detection information with each 
other and provides a new direction to fundamentally overcome occlusion and long-
range issues in single-agent 3D detection. We then highlight several key challenges in 
collaborative 3D object detection, including communication constraints, pose errors, 
heterogeneous devices and security issues. We next focus on a fundamental trade-off 
between detection performance and communication bandwidth and introduce a latest 
communication-efficient collaborative 3D detection method. 
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Chapter 7 
Enabling Robust SLAM for Mobile 
Robots with Sensor Fusion 

Jianhao Jiao, Xiangcheng Hu, Xupeng Xie, Jin Wu, Hexiang Wei, Lu Fan, 
and Ming Liu

Abstract Simultaneous Localization and Mapping (SLAM) is a fundamental prob-
lem in robotics. Over the past three decades, researchers have made significant 
progress in solving the probabilistic SLAM problem by presenting various theo-
retical frameworks, efficient solvers, and complete systems. As the development of 
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autonomous robots (i.e., self-driving cars, legged robots) continues, SLAM systems 
have become increasingly popular for large-scale real-world applications. The evo-
lution of SLAM is also often propelled by the emergence of new sensors or sensor 
combinations. This chapter provides an introduction to the commonly used sensors 
in mobile robots, followed by a comprehensive review of several classic SLAM sys-
tems from a modern perspective. Additionally, this chapter presents a real-world case 
of constructing a multi-sensor system and a challenging SLAM dataset, offering a 
valuable tutorial for researchers in developing their research platforms. Overall, this 
chapter aims to provide readers with a comprehensive guide to learn sensor fusion 
from theory to practice completely.

7.1 Introduction 

7.1.1 Background 

Benefitting from the progress in mechatronics, sensory technology, and artificial 
intelligence (AI), the evolution of autonomous robots in recent years is surprising. 
Many types of mobile robots, including service robots, drones, and self-driving cars, 
have moved beyond the environments of warehouses and manufacture plants into 
widespread deployment in industry and society, gradually changing our way of liv-
ing or working. Quadrupedal robots such as the SpotMini 1 developed by Boston 
Dynamics have been used for surveillance, releasing laborers from repeated and 
dangerous works. Drones have been applied in racing [ 22], cinematography [ 43], 
and rescue [128] tasks, which highly differs from their initial stage [ 53]. The rapid 
development of self-driving cars [ 4, 39, 65, 100] is also amazing. These autonomous 
vehicles have been widely used in robotaxi, logistics, and environmental inspection. 
Figure 7.1 show some robots in our daily life. 

It is important to acknowledge that the development of highly autonomous robots 
is a complex and challenging endeavor. There are numerous technical, ethical, and 
regulatory challenges that need to be addressed before we can fully realize the poten-

(a) (b) (c) (d) 

Fig. 7.1 Examples of robot including a the quadrupedal robot, b the drone, c the mobile robot, and 
d the autonomous vehicle for the last-mile delivery [ 65]

1 https://www.bostondynamics.com/spot. 

https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
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Environment 

Sensor Perception Prediction Planning Control 

Fig. 7.2 Framework of a typical robotic system [ 97]. Modules marked in green (sensor and per-
ception) are focused in this chapter 

tial of this technology. Therefore, it is clear that there are still many works to be 
done in order to achieve highly autonomous robots. The current technologies have 
shown that navigation in a 2D indoor environment with a robot equipped with wheel 
encoders and a laser scanner has been addressed well, enabling the wide application 
of home cleaning robots. However, it is still challenging for robots to perform tasks 
without human intervention given higher performance requirements. For example, 
existing robots cannot conduct repeated inspection missions stably in environments 
where several dynamic agents such as a human crowd are present. This application 
case arises at least two issues, while existing technologies do not have clear solu-
tions: (1) Dynamic environments tend to validate the general assumptions of existing 
localization and mapping systems which utilize static landmarks to estimate the ego-
motion. (2) The pre-planned trajectory may be occluded by new-placed objects or 
moving agents. Robots should be capable of real-time recognizing and predicting 
agents’ motion as well as generating a new path to avoid collision.

Sensing and Understanding the world of robots is very complex, with challenges 
spanning from calibration and simultaneous localization and mapping (SLAM) to 
scene understanding. A typical robotic system, as shown in Fig. 7.2, consists of 
multiple modules, with the Sensor and Perception modules addressing many of the 
problems related to “sensing” and “understanding”. These modules play a funda-
mental role in higher-level navigation tasks such as decision-making [ 90] and path 
planning [ 19, 21, 98]. 

7.1.2 Summary of this Chapter 

The field of sensor fusion is a rapidly evolving area, due to the significant progress of 
mobile robots and the commercial availability of sensors. Therefore, there is always 
a lack of literature to introduce the latest sensors and practical application examples 
from the implementation perspective. 

In this chapter, we provide a broad overview of sensors and discuss the necessity 
of sensor fusion to enable robust perception in challenging environments. This part 
also reviews related works of modern SLAM systems. To enrich the content and make 
the chapter more interesting, we also introduce a detailed application of building a 
multi-senosr research platform and a challenging SLAM dataset.
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7.1.3 Organization 

The rest of this chapter is organized into the following sections: 

• Section 7.2: We broadly summarize features of major sensors that are commonly 
used in mobile robots. 

• Section 7.3: We introduce related works of SLAM systems ranging from LiDAR-
based and vision-based approaches. 

• Section 7.4: We provide a practical example of multi-sensor SLAM dataset, in 
which many implementation details are included. 

7.2 Sensors 

All sensors have a limited precision and probabilities to fail in some scenarios. 
Therefore, multi-sensor fusion is the key to robust perception. Different sensors can 
complement each other, and thus the system’s perception capability is enhanced with 
sensor fusion. Regarding sensors’ characteristics, it is useful to put sensors into two 
categories: interoceptive and exteroceptive sensors [ 3]. Their definitions are given 
as follow: 

• Interoceptive: being stimuli arising within the body. 
• Exteroceptive: being activated by stimuli received by an organism from outside. 

Typical interoceptive sensors are the accelerometer (measures translational accel-
eration), gyroscope (measures angular rate), and rotary encoder (measures angular 
rate). Typical exteroceptive sensors are camera and time-of-flight transmitter/receiver 
(e.g., RGB-D camera, Radio Detection And Ranging (RaDAR), Light Detection 
And Ranging (LiDAR), and Global Navigation Satellite System (GNSS) transmit-
ter/receiver). We briefly review the main features and related works of these sensors 
in the following sections. 

7.2.1 Interoceptive Sensors 

7.2.1.1 IMU 

An Inertial Measurement Unit (IMU) is an electronic device that is composed of 
accelerometers, gyroscopes, and sometimes magnetometers to measure a body’s 
acceleration and angular rate (see Fig. 7.3). IMUs are typically used to maneu-
ver aircraft (an attitude and heading reference system), including unmanned aerial 
vehicles (UAVs), among many others, and spacecraft, including satellites and lan-
ders. The key advantage is that IMUs are seldom affected by external environments.
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Fig. 7.3 a The principle of IMU. b An IMU product: Xsens IMU [113] 

Fig. 7.4 An example of 
VINS-Mono’s results [ 78]: 
(blue) trajectory; (red) 3D 
landmarks 

The commonly used IMUs on robots are the microelectromechanical (MEMS) IMUs, 
which are both cheap and tiny while keeping with promising performance. 

A major disadvantage of using IMUs is that they typically suffer from accumulated 
error. The navigation system is continually integrating accelerometer data twice to 
compute the position, and gyroscope data once to track the orientation. The output 
high-frequency gyroscope and accelerometer measurements suffer from a Gaussian 
noise and bias [ 26]. Any errors, however small, are accumulated, yielding drift over 
time. Small errors in measuring acceleration and angular velocity may be integrated 
into large errors in position or orientation, existing as systematic errors [131]. Thus, 
the position needs to be periodically corrected with the input of another navigation 
system. Consequently, inertial sensors are inaccurate and unsuitable for positioning 
applications over an extended period of time and are usually utilized to supplement 
other navigation systems. 

As emphasized by Barfoot [ 3], “In most cases, the best state estimation concepts 
make use of both interoceptive and exteroceptive measurements.” IMUs are often 
fused with cameras [ 78] and LiDARs [113] in the Extended Kalman Filter (EKF) or 
optimization framework. The VINS-Mono [ 78] is one of the most popular visual-
inertial solutions, and an example result is shown in Fig. 7.4. Besides pose estimation 
and localization, IMU-centric sensor systems have been demonstrated with several 
novel applications, including object tracking [ 23, 81], semantic mapping [ 87], and 
temporal calibration [ 82].
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7.2.1.2 GNSS 

The Global Navigation Satellite System (GNSS) refers to a constellation of satellites 
providing space signals transmitting positioning and timing data to GNSS receivers. 
The receivers then use this data to determine location. By definition, GNSS pro-
vides global coverage. Through the receiver, any device can use the GNSS to locate 
its global position. Existing GNSS includes the China’s BeiDou navigation satel-
lite system (BeiDou), European Union’s Galileo positioning system (GALILEO), 
the USA’s NAVSTAR global positioning system (GPS), Russia’s global navigation 
satellite system (GLONASS), and India’s NavIC and Japan’s Quasi-Zenith regional 
satellite system (QZSS) [ 25]. 

Like the IMU, tiny GNSS devices have been widely embedded into consumer-
level devices such as phones and electronic wristbands. But the GNSS has several 
limitations: (1) hard to initialize (needs enough satellites to be found); (2) noisy and 
inaccurate measurements (.≥10cm); and (3) low frequency (typically .1 − 100Hz). 
This is because, in practical applications, the GNSS commonly suffers from multiple 
sources of errors and influences, including the message transmission delay through 
the atmospheric lay, the reflection of signals on multiple surfaces (e.g., localization 
among buildings), ephemeris errors, and the uncertainties on the satellite’s position 
[105]. Therefore, the ideal case is to use the GNSS in outdoor open-field environ-
ments. In recent years, differential GNSS (DGPS) and real-time kinematic GNSS 
(RTK-GNSS) were also developed to enhance the GNSS’s accuracy and allow for 
localization within the order of decimeters or even centimeters in well-conditioned 
environments. Figure 7.5 illustrates the principle of GNSS, multilateration measure-
ment of GNSS, and a RTK-GNSS product. 

Fusing GNSS signals with IMU measurements via. the EKF is a popular solution, 
and therefore becomes the Inertial Navigation System (INS). Robotic researchers 
also explored the potential of the GNSS on camera- or LiDAR-based systems and 
thus achieved the hybrid indoor-outdoor navigation systems [ 16, 120]. The global 
position provided by the GNSS is important to correct accumulative drift. 

Fig. 7.5 Measurement system: a Principle of GNSS, b multilateration measurement, and 
c A RTK-GNSS product
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Fig. 7.6 a The absolute encoder. b The incremental encoder. c The wheel odometry. d The leg 
odometry 

7.2.1.3 Rotary Encoder 

The rotary encoder measures the absolute angular position (e.g., joints for legged 
robots) or relative angular position (e.g., wheels for ground vehicles) of robots’ shaft. 
The output of encoder is continually processed into odometry, such as leg odometry 
for quadrupedal robots [112] and wheel odometry for ground vehicles [ 55, 108], as 
shown in Fig. 7.6. 

Regarding SLAM, the integrated odometry provides a lower bound of error to a 
state estimator in degenerate environments, such as long tunnels and open space. Sev-
eral teams in the DARPA subterranean challenge have verified the effectiveness of 
using encoders: the stability and robustness of a SLAM framework have been signifi-
cantly improved in challenging scenarios [ 49, 52, 86]. Rotary encoders are also used 
to enforce the robustness of zero velocity update (ZUPT) [ 50, 107]. Furthermore, the 
encoders offer scale information, which is desirable for the monocular camera. An 
existing work has shown that encoder data is incorporated with a monocular visual 
odometry [108] on a ground vehicle. 

However, rotary encoders including the leg odometer and wheel odometer suffer 
from accumulated drifts with the existence of contact points slippage which needs 
to be modeled. Another error source arises from intrinsics (such as the leg length 
and wheel radius) that change over time due to factors such as the increasing robot 
payload and non-rigid deformation. Recent research has shown that online kinematic 
calibration can significantly improve the accuracy of SLAM in online applications 
[ 55, 112]. 

7.2.2 Exteroceptive Sensors 

7.2.2.1 Camera 

Cameras are designed to imitate the output of the human visual system. The front-end 
optics capture light emitted or reflected by an object in the 3D world through the 
optical center and project it onto the camera’s 2D imaging plane. The intensities of 
light are linearly transformed and restored as an image, with each element referred
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to as a pixel. These images are incredibly rich in texture and provide both spatial 
and qualitative information, which has captured the attention of researchers studying 
computer vision problems [ 1, 29]. 

For robots to interact with the world effectively, they often require 3D perception 
capabilities. Camera calibration is the first challenge that needs to be addressed, and 
its objective is to estimate the geometric model that describes the camera projection 
process. Intrinsic calibration estimates the focal length, pixel origin, and distortion 
parameters of a camera, while extrinsic calibration computes the relative rotation 
and translation among multiple cameras. In practical applications, both intrinsics 
and extrinsics are pre-computed using marker-based methods [121]—by moving a 
checkerboard with sufficient motion in front of the cameras—and sometimes are 
optimized online (known as online calibration). 

Visual odometry (VO) or visual SLAM (VSLAM) algorithms are categorized 
based on how they process images. There are three categories: feature-based (indirect) 
methods, direct methods, and hybrid methods. 

• Typical feature-based SLAM frameworks are the ORB-SLAM series [ 15, 71, 72], 
which utilize ORB features [ 88] with robust descriptors to improve short and 
mid-term data associations. They also construct a covisibility graph to manage 
keyframes, and performs loop closure and relocalization with the DBoW2 library 
[ 37]. Example of ORB-SLAM’s results are shown in Fig. 7.7a. 

• One typical direct method for visual odometry is the Direct Sparse Odometry 
(DSO) [ 24]. DSO directly processes raw sensor measurements to estimate the 
geometry. It minimizes the photometric error that computes the intensity differ-
ence between corresponding pixels, instead of the reprojection error in feature-
based methods. The direct method skips the keypoint extraction and matching 
step, which saves a high constant cost per frame. However, it may fail in large 
viewpoint changes, and optimizing the photometric residual easily gets stuck in a 
local minimum. Example of DSO’s results are shown in Fig. 7.7b. 

• Semidirect VO (SVO) [ 28] belongs to the hybrid domain, which sparse image 
alignment (direct manner) to estimate frame-to-frame motion and bundle adjust-
ment (indirect manner) to refine the geometry and camera poses. Examples of 
SVO’s results are shown in Fig. 7.7c. 

Learning-based approaches open up a new door for designing novel visual systems 
in recent years [ 9, 69, 130]. For example, semantics from images [ 10] can provide 
object types and properties, which offer depth prior and strong association cues. 

The minimum setup of VSLAM is using a monocular camera, but the absolute 
scale is missing. An initialization phase based on physical-based prior is required 
to establish a map with sufficient points. In practice, since epipolar constraints can 
acquire the depth information [ 1], stereo or multi-camera solutions are more popular. 
Furthermore, RGB-D cameras that exploit the time-of-flight technique to obtain 
depth offer another option directly, as demonstrated in applications [ 73, 99]. 

But traditional cameras are easily affected in situations of high dynamics, low 
texture or structure distinctiveness, and challenging illumination conditions (see 
Fig. 7.8). Novel solutions are proposed:
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Fig. 7.7 Results of classical 
VSLAM systems 

(a) ORB-SLAM [38] 

(b) DSO [39] 

(c) SVO [40] 

• One direction is to fuse cameras with the IMU, leading to the visual-inertial system 
that the IMU helps to resolve the high dynamics and textureless issues [ 15, 57, 78, 
87]. Alternatively, cameras can be fused with the LiDAR, in which the absolute 
depth information eliminates the scale ambiguity problem [114, 125, 132]. 

• Another direction is to develop novel cameras that capture images with differ-
ent techniques, such as the bio-inspired event cameras. Different from traditional 
frame cameras which capture intensity images at a fixed rate, event cameras asyn-
chronously capture the per-pixel intensity changes and output a stream of events. 
Each event is encoded with information, including the triggered time, pixel local-
ization, and the sign of the intensity change. As summarized in [ 35], event cameras 
have high temporal resolution (Âµs-level), high dynamic range (140 dB vs. 60 dB 
of frame cameras), and low power consumption. These characteristics enable vent 
cameras to have great potential for several computer vision and robotic tasks, e.g., 
high-speed motion estimation [ 12, 34, 46], feature tracking [ 54], and high dynamic
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(a) Motion blur (b) High illumination 

Fig. 7.8 Open challenges in traditional computer vision [123]: a motion blur and b high illumination 

range perception [ 75, 84], which are commonly difficult to frame cameras. How-
ever, research on common vision problems with event cameras is preliminary. 
This is because event cameras work in a fundamentally different way from frame 
cameras. Existing vision-based solutions still lack a good way to handle events. 
Novel event-based algorithms must be investigated. 

7.2.2.2 RaDAR 

RaDAR sensors emit and receive radio waves to determine objects’ distance, angle, 
and velocity. The important advantage of the RaDAR is its reliability against extreme 
conditions such as rain, snow, dust, fog, or direct sunlight. Since the technology 
is rapidly becoming affordable and efficient, RaDARs are currently accessible to 
modern self-driving cars. 

We take the Frequency-Modulated Continuous-Wave (FMCW) RaDAR 2 as an 
example. The FMCW RaDAR is a special RaDAR that provides a .360◦-view of the 
scenes with several desirable features: high reliability, high resolution, and long-
range. The RaDAR data can be viewed as a 2D image that can be processed with 
vision-based techniques, as shown in Fig. 7.9. Research on FMCW RaDARs has 
been active in recent years [ 44]. Cen et al. [ 17, 18] present a RaDAR-only odometry 
pipeline with efficient keypoint extraction and graph-based matching. The graph 
matching approach is robust to false-positive key points. Hong et al. [ 42] propose the 
complete graph-based RaDAR SLAM system: RaDAR-SLAM that online manages 
the map points, detects loop candidates, and optimizes pose graphs to correct drift. 
Burnett et al. [ 13] provide solutions to compensate the motion distortion and Doppler 
effect in radar odometry, while this was often neglected by previous research. Directly 
aligning two consecutive RaDAR frames offer another option to solve the odometry

2 https://navtechradar.com/explore/fmcw-radar. 

https://navtechradar.com/explore/fmcw-radar
https://navtechradar.com/explore/fmcw-radar
https://navtechradar.com/explore/fmcw-radar
https://navtechradar.com/explore/fmcw-radar
https://navtechradar.com/explore/fmcw-radar
https://navtechradar.com/explore/fmcw-radar
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Fig. 7.9 a Bird-eye view of a FMCW scanning radar [ 17]. b Example sensor data from the Navtech 
CTS350-X radar [ 4] 

problem. An example is demonstrated in [ 76] which exploits the phase correlation. 
Regarding the object detection and place recognition tasks, FMCW RaDARs are also 
feasible, as presented in [ 11, 32, 101, 103, 116]. Available open datasets aush as 
Oxford RaDAR RobotCar dataset [ 4] and MulRan dataset [ 51] further spur research 
in this area. 

RaDARs and LiDARs have similar working principles, but each uses different 
wavelengths of light. The longer wavelength used by RaDAR does not allow the 
detection of small objects. It is also challenging to determine the object’s category 
(e.g., pedestrian or cars) from RaDARs. A complete navigation system should make 
the complementary strengths of RaDARs and LiDARs, as shown in [ 41]. 

7.2.2.3 LiDAR 

LiDAR sensors emit and receive lasers (an amplified light with a short wavelength) 
to determine the distance of an object. The intensity of the laser partially reflects 
the surface materials of the targeted object. This property can be used to recognize 
special targets such as the road border. Figure 7.10a illustrates the working principle 
of LiDARs. Traditional mechanical scanning LiDARs (e.g., Velodyne HDL-64E) 
commonly align multiple lasers vertically and physically rotate them at a high rate 
(around .3600◦–.7200◦ per second) to obtain a .360◦ horizontal field of view. This 
can significantly enhance the perceptual view compared with single-beam LiDARs. 
Due to their active nature in measuring distance, LiDARs are robust to external 
weather and light conditions and very reliable in terms of measurement accuracy. As 
a drawback, these sensors contain large moving parts (like the rotating emitter), which 
leaves room for mechanical errors. Moreover, some inaccuracies can also exist due 
to the collision materials. For example, black objects can absorb much of the emitted 
light may be generating no-measurements, and windows or translucent materials 
may produce several reflections. Figure 7.10a illustrates the working principle of a 
classical mechanical LiDAR. 

The application of autonomous driving accelerates the development of LiDAR 
technology. A pivotal occurrence should be the success of Stanley [102] that is
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(a) Working principle (b) Stanley

Fig. 7.10 a The working principle of a traditional mechanical LiDAR. b The Stanley autonomous 
vehicle is equipped with multiple LiDARs [102] 

(a) Velodyne (b) Ouster (c) Livox (d) Mid-360 

Fig. 7.11 Four types of commonly used LiDARs 

the first autonomous vehicle completed the DARPA Grand Challenge in .2005 (see 
Fig. 7.10b). Stanley replied on LiDARs in 3D mapping and obstacle detection. This 
event has motivated researchers and engineers to improve both hardware and algo-
rithms of LiDARs. In the past ten years, the complexity and cost of producing a 
LiDAR quadratically increased along with the number of used lasers. However, now, 
it is no longer an issue. More and more companies, such as Velodyne, Ouster, Lumi-
nar, Robosense, Livox, have joined the LiDAR market in recent years (see Fig. 7.11). 
Some of them resort to the solid-state design to eliminate the moving mechanical 
parts. The decreasing weight, size, and price make LiDARs gradually available in 
robotic platforms. Most of self-driving cars adopt LiDARs as their standard setup. 
LiDARs are also popular to mobile robots [ 61] and quadrupedal robots [ 56]. 

7.3 SLAM 

SLAM has been at the core of research in the field of robot navigation for more 
than 30 years since it was proposed. Currently, SLAM has been widely used in many 
applications such as service robots, autonomous driving, virtual/augmented reality. 
The goal of SLAM is to estimate a robot’s states while simultaneously construct-
ing a model (also called map) of the world from sensory data [ 14]. A robot state 
consists of quantities, such as the pose (position and orientation) that describe the 
robot’s motion over time. A state also includes the robot’s velocity, sensor biases,
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Fig. 7.12 Examples of SLAM outputs. Robot’s trajectories are shown as red or green lines in a and 
c. Maps are represented in different formats: a an aggregation of 3D LiDAR points [ 48], b dense 
semantic mesh map, c elevation map [111], and d Euclidean Signed Distance Field (ESDF) which 
is used for path planning (yellow and red lines) [ 40] 

kinematics, and calibration parameters, depending on the problems’ complexity. A 
map is a representation of the environment in which the robot operates. It can be 
expressed in numerous formats, e.g., landmarks’ positions, object bounding boxes, 
grid maps, which is application-dependent. Figure 7.12 shows some examples of 
SLAM’s results, including estimated trajectories and maps. 

7.3.1 Architecture of SLAM 

A pictorial representation of a typical SLAM system is given in Fig. 7.13. The archi-
tecture of a SLAM system includes two main components: the front end and back 
end. The front end abstracts features from sensor data that are amenable for estima-
tion. For instance, in some VSLAM systems, the front end extracts the pixel location 
of key points from images which are easy to model with the back end. The front 
end is also in charge of associating each measurement to a specific landmark in the 
environment. This process is also called data association. The front end might also 
provide an initial guess for the variables in optimization (e.g., initialize landmarks’ 
position from multiple views). In contrast, the back end performs state estimation

Fig. 7.13 Front end and back end in a typical SLAM system
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Fig. 7.14 Summary of related work of modern SLAM systems 

on the abstracted data produced by the front end. There are several classical state 
estimation methods [ 3]: Maximum A Posteriori (MAP) estimation, Gaussian Filters 
(e.g., the Kalman Filter), and Non-parametric Filters (e.g., Particle Filter).

The data stream management is also important for SLAM. The data association 
module needs frequent operations of data, which becomes one of the bottlenecks of 
SLAM. For short-term data association, we need to retrieve and associate correspond-
ing features between current frames and recently consecutive frames. For long-term 
data association, we need to associate new measurements to older landmarks. Fea-
tures or landmarks can be stored and managed with the tree-based structure (e.g., 
the KDTree [ 6] and its incremental version [110]), hash map, covisibility graph, to 
support efficient data query, addition, and removal. 

7.3.2 Challenges of SLAM 

The major challenges faced by modern SLAM algorithms are summarized as follows: 

• Degeneracy: Various scenarios might degrade sensor measurements. For instance, 
scenes such as tunnels and corridors cannot constrain the LiDAR’s motion in 
several degree of freedom (DoF). Scenes such as low light and intense motion are 
detrimental to the quality of images. Thus, SLAM methods based on multi-sensor 
fusion are becoming more and more important. 

• Changing Scenes: In dynamic environments, several elements are moving during 
the repeated traverse of a robot. The more time of the traverse, the more deformed 
the elements will be (e.g., pedestrians, cars, roads under construction). This defor-
mation will lead to wrong data associations, making SLAM accuracy drop or even 
fail. 

• Scalability: Applications including exploration for environmental monitoring or 
large-scale precision agriculture, SLAM may encounter issues of significant grow-
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ing of computational time and memory footprint. Due to limited resources of a 
robot, the computational and memory complexity should be bouned for large-scale 
SLAM. 

7.3.3 Modern SLAM Systems 

There are extensive SLAM systems (Fig. 7.14). Here we focus on modern SLAM 
systems which are commonly used in mobile robots. 

7.3.3.1 LiDAR-Based SLAM 

Since the DRAPA Challenge in 2006, 3D LiDAR has been widely used in autonomous 
driving. The LiDAR has become the prevalent choice for deploying robot mapping 
and positioning algorithms due to its good stable performance under extreme lighting 
conditions. 

LiDAR-Only Systems 
Early 3D LiDAR SLAM algorithms often use the iterative closest point (ICP) algo-
rithm [ 2] to estimate relative transformation between consecutive frames. ICP vari-
ants including the point-to-plane ICP and point-to-line ICP have been proposed to 
improve the original cost function and accelerate the computation. 

Segal et al. put forward the [ 91] that combines point-to-point and point-to-plane 
metrics. It uses plane normal vectors to assign weights to each error point of the 
objective function of the optimization problem model to reduce the influence of 
outliers and initial values. Serafin et al. proposed the NICP [ 92] that eliminates false 
matches based on distance, curvature, and normal vectors, and optimizes the normal 
vectors when optimizing transformations. Magnusson et al. proposed a probabilistic 
matching algorithm based on the normal distribution assumption, namely the NDT 
(normal distribution transformation) algorithm [ 68]. It formulates the cost function 
from the probabilistic perspective instead of the metric distance, by assuming that 
the point cloud falls in each grid conforms to a normal distribution, so as to construct 
the probability distribution function of each grid. 

In recent years, Yokozuka et al. presented the LiTAMIN [117] that adopts the F-
norm and regularized covariance matrix to normalize the loss function. They further 
proposed the LiTAMIN2 [118] that computes the symmetric KL-Divergence. The 
formulated cost function includes not only the distance between points but also the 
difference between the shape of the distribution. Jiao et al. proposed the first multi-
LiDAR SLAM system (called M-LOAM) [ 48]. The increasing LiDARs significantly 
enlarge the robot’s field of view. 

Maintaining the global consistency of a LiDAR SLAM system is an important 
problem. Liu et al. presented the BALM [ 64] algorithm to introduce idea of bundle
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Fig. 7.15 Comparison of BA formulations: a visual BA constrains feature points from locating at 
the same point; b LiDAR BA [ 64] constrains feature points from lie on the same edge or plane 

adjustment (BA) into LiDAR SLAM, as shown in Fig. 7.15. With the closed-form 
representation of planar features, BALM optimizes poses and feature variables simul-
taneously, so as to reducing the accumulative drift of the map. They further proposed 
the BALM 2.0 [ 66] to encode all raw point clouds associated with the corresponding 
feature through a compact set of parameters and derive the second-order closed-form 
derivative of BA. Also focusing on the multi-view registration problem, Huang et al. 
proposed a different objective function and designed a set of voxel-based multi-view 
registration pipelines to achieve better precision than BALM. 

There are also LiDAR-only systems that contribute to novel representations of 
point clouds and maps. SuMa [ 5] was presented to project the 3D laser point cloud 
into a 2D depth map, which calculates the normal vector of points in parallel with a 
GPU. It also represents the point cloud with a set of surfels that are associated with 
normal vectors and uncertainties. Park et al. [ 77] also utilized the probabilistic surfel 
fusion to address the LiDAR mapping problem. By considering the measurement 
noise caused by the beam direction and distance, the uncertainty of the position and 
normal of each surfel is modeled. Yuan et al. proposed the VoxelMap [119], which 
expresses the map with a grid of adaptive size, models the uncertainty caused by 
pose error and plane point measurement noise, deduces its propagation process in 
the system, and finally achieves a higher map consistency. 

LiDAR SLAM is also driven by new types of LiDARs that have different scanning 
patterns from mechanical LiDARs. Livox-LOAM [ 62] explicitly designed feature 
extraction and continuous point cloud correction for the Livox solid-state LiDAR. 
LILI-OM [ 59] integrated the Livox LiDAR with IMU measurements, which presents 
a sliding-window state estimator based on hierarchical keyframes. 

Combining point clouds with semantics to enhance the accuracy and robustness of 
SLAM is becoming a popular solution. Chen et al. proposed the SuMa++ [ 20] where 
the semantics-aware ICP was presented. The semantic feature provides higher-level 
information such as the types of objects and is beneficial to inlier matching (e.g., 
removing dynamic objects).
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IMU- and GNSS-Aid LiDAR-Based SLAM 

In 2014, Zhang et al. proposed the LiDAR Odometry and Mapping (LOAM) [124] 
system, which defined the characteristics of the curvature of a point, and extracted 
plane points, and edge points through the curvature distinction. It uses these asso-
ciated features to estimate the scan-to-scan and scan-to-map transform. LOAM can 
be optionally coupled with high-frequency IMU measurements to help predict the 
pose of the next frame. This type of fused method is also regarded as a loosely 
coupled approach. Due its great performance in both indoor and outdoor scenarios, 
the improved algorithms based on LOAM have gradually become mainstream in 
following years. 

Shan et al. proposed the LEGO-LOAM [ 93] to explicitly utilize ground points 
in optimization. IMU measurements are fused in a similar manner to LOAM. Ye et 
al. proposed the first open-source tightly-coupled LiDAR-inertial odometry (LIO): 
LIO-Mapping [113]. LIO-Mapping jointly optimizes the LiDAR and IMU biases 
within a sliding window. On the basis of LEGO-LOAM, the improved LIO-SAM 
[ 95] introduces pre-integration constraints into the factor graph formulation. Besides 
the MAP estimation, Kalman Filters are also widely used in several LIO systems. Qin 
et al. [ 80] proposed a tightly-coupled LIO system based on the error state Kalman 
Filter, named LINS, which has achieved high operating efficiency and accuracy 
in scenes such as ports and wharves. Xu et al. proposed the FAST-LIO [109] and 
FAST-LIO2 [110]. Two contributions are presented. First, they designed an iKD-Tree 
data structure to support online data addition and deletion. Second, they advanced a 
manifold iterative error Kalman filter, which greatly reduce the data dimension. In 
most scenarios, FAST-LIO2’s accuracy, robustness, and efficiency have reached the 
state-of-the-art level. 

Several LiDAR-based SLAM systems are aimed at outdoor scenes and combined 
with GNSS to eliminate the accumulative drift. LIO-SAM introduces the GPS factor 
into the backend in a loosely coupled form to achieve large-scale low-drift map-
ping, as shown in Fig. 7.16. Another algorithm [ 7] designs a novel factor graph and 
introduce carrier phase and pseudo-range factors to eliminate the mapping drift. 

7.3.3.2 Vision-Based SLAM 

The camera is another popular senosr for mobile robots, and thus the vision-based 
SLAM is very active in the SLAM research field. But the pure visual odometry (VO) 
is hard to achieve stable positioning and mapping due to factors such as lighting and 
motion blur. Generally, it can be used in combination with a high-frequency IMU to 
significantly improve these problems. Compared with the pure VO, VIO allows the 
state estimation under intense motion and texture-less environments. 

Existing VIO systems are mainly divided into two categories: Kalman filter-
based and MAP-based approaches. Algorithms based on the Kalman filter include 
MSCKF [ 58], ROVIO [ 8], Open-VINS [ 38], while OKVIS [ 57], VINS-Mono [ 78], 
and Kimera-VIO [ 87] are MAP-based methods. ROVIO combines with IMU mea-
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Fig. 7.16 The point cloud map is constructed by the LIO-SAM integrated with GNSS measure-
ments, which is aligned on the google map 

surements to track the optical flow of the pixels in the image block near the feature 
points, and minimize the photometric error. It can stably estimate the robot’s position 
even when there are few feature points. On the other hand, VINS-Mono combines 
all IMU and image measurements within a fixed-size sliding window to optimize the 
camera pose. VINS-Mono also includes a bag-of-words loop closure detection mod-
ule, which can perform 4-DOF loop optimization. ORB-SLAM [ 71], a representative 
of the feature-based method, is based on ORB features [ 88]. Its enhanced version: 
ORB-SLAM3 [ 15] has features including supporting more camera modalities: stereo 
and fisheye cameras, tightly coupled VIO, and multi-map. 

As mentioned in Sect. 7.2.2.1, event cameras indicate a new research direction. 
Regarding the event-based VO/SLAM, recent works can be categorized according to 
three complexity axes: (1) problem dimensionality: from handling the localization 
subproblem [ 33] to solving the complete tracking-and-mapping problem with the 
need to estimate depth [ 83]; (2) type of motion: from constrained motions such as 
pure rotation or planar motion [ 36] to arbitrary 6-DoF motions [ 46, 127]; (3) type 
of scenes: from artificial patterns [ 70] to natural scenes [ 85]. 

7.3.3.3 LiDAR-Visual-IMU-Based SLAM 

Another interesting series of SLAM systems should be based on the combination 
of LiDAR, visual, and inertial measurements. Such systems are called LVI systems. 
Current LVI systems mainly focuses on two issues: (1) Robustness: vision-based 
constraints can helps LIO to avoid degeneration, while LIO can significantly enlarge 
VO’s scalability. (2) Data enhancement: LiDAR measurements offer sparse depth 
values of visual features, while images can be used to colorize point clouds.



7 Enabling Robust SLAM for Mobile Robots with Sensor Fusion 223

Fig. 7.17 R3LIVE’s results: estimated trajectory (white) and colorized point cloud 

V-LOAM [122] associates the visual features with the LiDAR measurements. The 
visual pose serves as the prior the LOAM algorithm. LVI-SAM [ 96] combines VINS-
Mono [ 78] and LIO-SAM [ 95] as well as adds a scene degradation detection module 
on the basis of VLOAM, realizing seamless switching between the LIO and VIO 
system. LIC-Fusion [132] is an MSCKF-based solution that combines IMU, camera, 
and LiDAR measurements in a sliding window to optimize the robot pose. R2LIVE 
[ 60] is based on the ESIKF (error-state iterated Kalman Filter) method, which extracts 
sparse visual features and points cloud features. It minimizes the reprojection error 
within the sliding window. Its follow-up work: R3LIVE [ 63] followed the semi-dense 
framework and formulates the photometric error in VIO. R3LIVE also proposed to 
colorize the map gathered by LiDAR point clouds and updated points’ color with the 
Bayesian filter. An example of R3LIVE’s results is shown in Fig. 7.17. In contrast, 
FAST-LIVO [126] does not extract visual features, while directly using image blocks 
of map-associated points to minimize photometric errors. 

7.4 Application 

This section introduces a practical example of creating a multi-sensor SLAM dataset. 
Details including sensor specifications, calibration techniques, data collection, and 
evaluation of some SLAM systems are presented. We believe that these content can 
benefit to readers by providing sufficient implementation details.
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7.4.1 Motivation 

The high-quality open dataset, which is the collection of multi-sensor data and pro-
vide a suite of benchmark tools, significantly contributes to current progress of multi-
sensor SLAM. On one hand, these datasets can waive inhibitive requirements on 
budget and manpower, such as system integration calibration, and field operations. 
On the other hand, they investigate advantages and limitations of current SLAM solu-
tions, and elaboratedly design practical but challenging sequences [104]. Benefiting 
from these efforts, researchers can easily develop, validate, and rank their algo-
rithms with others, thus acclerating the breakthroughs. However, existing datasets 
were mostly collected with a single data collection platform or simplified sensor 
configuration. Researchers may only utilize limited sensors to develop algorithms to 
bet fit the datasets, but cannot generalize it well to other scenarios. We consider that 
a desirable dataset should fullfill the following four requirements. 

1. Various sensors are required in the dataset, encouraging researchers to explore 
novel approaches to use them. 

2. Algorithm evaluation should be fairly conducted on various mobile robots. These 
robots perform different motion patterns that may challenge several SLAM algo-
rithms’ assumptions. 

3. Sequences have to cover from room-scale (meter-level) to large-scale (kilometer-
level) environments to evaluate algorithms’ scalability. Large-scale sequences 
might exist several environmental changes, e.g., moving objects and structural 
changes. 

4. Ground-truth trajectories and 3D maps are required to evaluate algorithms’ local-
ization and surface reconstruction accuracy, respectively. 

We are motivated to propose the FusionPortable Benchmark, 3 a novel multi-
sensor dataset with a set of sequences from diverse environments [ 47]. Compared 
with previous datasets [ 4, 89, 106, 115, 129], three new features are emphasized. 

First, we advance a portable and versatile multi-sensor device that is elaborately 
manufactured. Two RGB frame cameras are mounted on the left and right side. Two 
event cameras are also similarly mounted. One .128-beam mechanical LiDAR is 
installed at the middle of the device. One high-frequency and high-precision IMU is 
mounted below the LiDAR, while one RTK-GPS is installed on the top of the LiDAR. 
All these sensors are mounted on the same rigid aluminum-alloy-based parts. The 
complete device has its own clock synchronization unit, processor, and battery, thus 
self-contained. Since its size, weight, and extensibility are satisfying, we advance 
that it would be a plug-and-play support to various mobile robots. 

Second, we install the sensor rig on various platforms ranging from the handheld 
mode with a gimbal stabilizer, a quadruped robot, and an autonomous vehicle in 
performing distinguishable motion for the dataset construction. Various structured 
or semi-structured environments on the campus, including the lab, garden, canteen,

3 https://ram-lab.com/file/site/fusionportable/dataset/fusionportable. 

https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
https://ram-lab.com/file/site/fusionportable/dataset/fusionportable
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Fig. 7.18 The multi-sensor device and data collection platform 

corridor, escalator, and outdoor road, are examined. The collected sequences might 
present several environmental changes caused by external light, moving objects, and 
scene texture. These issues are challenging to SLAM algorithms. 

Third, besides ground-truth poses, we also provide ground-truth maps of most 
indoor sequences. We benchmarked several state-of-the-art (SOTA) SLAM systems, 
including two vision-based methods and four LiDAR-based approaches. 

7.4.2 System Overview 

Here, we introduce sensor specifications and how to calibrate the presented multi-
sensor device. Figure 7.18 shows how the handheld device is mounted on three data 
collection platforms. 

7.4.2.1 Sensor Configuration 

Sensors’ characteristics can be found in Table 7.1. Asynchronous events are assem-
bled into individual packages and published at a fixed rate. We provide both the ROS 
bag format and raw data format for researchers. We use the Intel NUC to run sensor 
drivers, attach timestamps of sensor messages, and record messages into ROS bags 
on  the Ubuntu system. The PC uses an i. 7 processor, . 1TB solid-state drive (SSD), 
and . 64GB DDR4 memory. 

7.4.2.2 3D LiDARs 

We configure the OS. 1–. 1284 with a .45◦ FOV as the LiDAR to provide accurate 
measurements of surrounding environments (around.2.62million points per second). 
This LiDAR enjoys three advantages that attract us to select. First, it has an internal

4 https://ouster.com/zh-cn/products/scanning-lidar/os1-sensor. 
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Table 7.1 Sensors and characteristics 

Sensor Characteristics 

3D LiDAR OS. 1–.128,.120m range@.10Hz; FOV:.45◦vert., .360◦horiz 
Image:.1028 × 128@.10Hz 
IMU: ICM.20948@.100Hz,.9-axis MEMS, intrinsic calibrated 

Frame Camera Stereo color cameras:. 2 FILR BFS-U.3-. 31S. 4C 
Resolution:.1024 × 768, global shutter@.20Hz; FOV:.66.5◦vert., 
.82.9◦horiz 

Event Camera Stereo color event cameras:. 2 DAVIS346 
Resolution:.346 × 240; FOV:.67◦vert., .83◦horiz 
IMU: MPU.6150@.1000Hz,.6-axis MEMS, intrinsic calibrated 

IMU STIM.300@.200Hz, Bias Instability.0.3◦/h, Allan Var. @. 25◦C
GPS ZED-F9P RTK-GPS@.10Hz,. 4 concurrent GNSS, L1/L2/L5 RTK 

synchronized IMU that outputs 100 Hz linear accelerations and angular velocities. 
Second, it provides additional properties that are encoded into depth images, signal 
images, and ambient images of surroundings. These images are perfectly correlated 
with point clouds. Especially, the ambient images resemble visible light images of the 
same scenes, which open opportunities of applying image-based methods to process 
range data efficiently, as demonstrated in [ 94]. Third, its size, weight, and affordable 
price are encouraging to different types of mobile robot [ 74, 107]. 

7.4.2.3 Stereo Frame Cameras 

Two FILR BFS-U3-31S4C global-shutter color cameras 5 are mounted at two sides on 
the system, facing directly forward. They are synchronized by an external trigger and 
capture high-resolution images at .20 fps. Their exposure time is set as fixed values 
to minimize the relative latency. Our experiments show that the average difference 
in timestamps of these images is below.1ms. 

7.4.2.4 Stereo Event Cameras 

We configure two event cameras which have a .346 × 260 resolution and an internal 
high-rate IMU output. With known extrinsics, the stereo event camera offers spatio-
temporal constraints for semi-dense mapping. Event cameras are synchronized using 
the trigger signal generated from the left camera (master) to deliver sync pulses to the 
right (slave) through an external wire. 6 But there is no way to synchronize the image 
acquisition (.≈ 15ms offset). To suppress the LiDAR’s laser light, both cameras are

5 https://www.flir.eu/products/blackfly-s-usb3. 
6 https://inivation.gitlab.io/dv/dv-docs/docs/external-camera-sync. 
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equipped with additional infrared filters. For indoor sequences, we manually set and 
fix the APS exposures, which helps to minimize the latency between cameras. 

7.4.2.5 Inertial Measurement Unit 

A tactical-grade STIM.300 IMU that is rigidly mounted below the LiDAR is employed 
as the main inertial sensor of the system. It features a high update rate (.200Hz) but 
noisy and drifting measurements. 

7.4.2.6 Global Positioning System 

We additionally install a ZED-F9P RTK-GPS device on the top of the LiDAR. In 
outdoor scenes, the GPS is activated and provides accurate latitude, longitude, and 
altitude readings. But it may sometimes become unstable due to buildings’ occlusion. 

7.4.3 Sensor Calibration 

We should carefully calibrate intrinsics of individual sensors, extrinsics, and over-
all time latency between sensors in advance. We set the coordinate system of the 
STIM.300 IMU as the body frame, and use the estimated spatio-temporal parameters 
to fuse with other sensors. 

7.4.3.1 Clock Synchronization 

We use an Field Programmable Gate Array (FPGA) to generate an external signal 
trigger to synchronize clocks of all sensors. This can guarantee data collection across 
multiple sensors with minimum latency. In GPS-enabled environments, the FPGA 
receives a pulse-per-second (PPS) signal from the GPS and outputs .200, .20, .10Hz 
signal to the IMU, cameras, and LiDAR respectively. To enable that the time syn-
chronization still works in GPS-denied scenes, the FPGA switches to use its internal 
clock. 

7.4.3.2 Stereo Camera Calibration 

Intrinsics and extrinsics of our stereo frame and event cameras are estimated using 
the off-the-shelf Matlab calibration toolbox. 7 We move the sensor suite before a 
checkerboard to collect a sequence of images. To avoid motion blur and ensure

7 https://www.mathworks.com/help/vision/camera-calibration.html. 
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sufficient constraints, the motion is slow and contains significant transformation. We 
evenly sample images as the calibration data, and manually remove outliers if their 
reprojection errors are high. According to lens used on cameras, we use the pinhole 
camera and radial-tangential distortion model. The Kalibr [ 30] also offers toolkits 
for camera calibration. But Kalibr’s results have higher reprojection errors than those 
of Matlab, and thus are not adopted. 

7.4.3.3 Camera-IMU Extrinsic Calibration 

The intrinsics of IMUs can be calibrated using the open source Allen derivation tool 
that estimates the noisy density and random walk for gyroscope and accelerometer 
measurements. After that, the spatial and temporal parameters of a camera w.r.t. an 
IMU can be obtained by the Kalibr that estimates in a full batch optimization using 
splines to model poses of the system. Our system consists of . 4 IMUs: STIM.300, 
ICM.20948 in the OS. 1 LiDAR, and two MPU.6050 in the DAVIS.346 event cameras. 
Thus, we calibrate intrinsics of all these IMUs, and estimate extrinsics of these sen-
sor pairs: . <STIM.300, frame cameras. >, . <STIM.300, event cameras. >, . <left MPU.6050, 
left DAVIS346. >, and . <right MPU.6050, right DAVIS346. >. The extrinsics from the 
ICM20948 to the LiDAR are provided by the manufacturer. 

7.4.3.4 Camera-LiDAR Extrinsic Calibration 

Based on initial extrinsics provided by the CAD model, we further refine the relative 
transformation from the left frame/event camera to the LiDAR. The checkerboard is 
utilized as the calibration target that provides distinctive corners and boundaries for 
data association. We proposed the LCE-Calib [45] to address the calibration problem. 
We extract outer corners of the board from point clouds and images. The extrinsics 
are optimized by minimizing distance of all corresponding corners. 

7.4.3.5 Remark 

Life-long sensor calibration is always a challenging problem [ 67]. We provide the 
best estimates of parameters using the above methods, but we cannot guarantee that 
they are accurate for a specific traversal. We try our best to solidify the mechanical 
structure and external perturbation. We encourage readers to make our estimates as 
initial values and investigate novel calibration approaches for long-term extrinsics 
estimation.
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7.4.4 Dataset Description 

7.4.4.1 Sequences 

The collected sequences should cover various environments, lighting conditions, 
motion patterns, dynamic objects, etc. Figure 7.19 illustrates sample sensor data. We 
categorize major characteristics of our collected sequences as follows: 

1. Location: Environmental locations are divided into indoors and outdoors. GPS 
signal is available but sometimes unstable in outdoor environments. 

2. Structure: Structured environments can mainly be explained using geometric 
primitives (e.g., offices or buildings), while semi-structured environments have 
both geometric and complex elements like trees and sundries. Scenarios like 
narrow corridors are structured but may cause state estimators. 

3. Lighting Condition: Frame cameras are sensitive to external lighting conditions. 
Both weak and strong light may raise challenges to visual processing algorithms. 

4. Appearance: Texture-rich scenes facilitate visual algorithms to extract stable 
features (e.g., points and lines), while textureless may negatively affect the per-
formance. Also, many events are triggered in texture-rich scenes.

(a) Canteen (b) Escalator (c) Corridor (d) Road 

(e) MCR (f) Building (g) Road 

(h) Canteen (i) Road 

Fig. 7.19 Sample sensor measurements. a–d Images captured by the frame camera. e–f Images 
augmented by positive events (red) and negative events (blue). h–i 3D point clouds of the LiDAR
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5. Motion Pattern: Slow, normal, and fast motion may be performed. Regarding 
mounted platforms, the handheld device performs arbitrary 6-DoF and jerky 
motions, the device installed on a gimbal stabilizer conducts 6-DoF but stable 
motions, the quadruped robot mostly performs planar but jerky motions. In con-
trast, the vehicle performs planar movements at a constant speed.

7.4.4.2 Groundtruth Generation 

Most sequences provide ground-truth poses for algorithm evaluation. In several 
indoor scenes, we also provide ground-truth maps of surrounding environments. 
The ground truth generation is detailed as follows: 

• Ground-truth maps: In small- or middle-scale environments, we use the Leica 
BLK360 laser scanner 8 to record the structure’s high-resolution colorized 3D dense 
map with millimeter accuracy from multiple locations. This map can evaluate the 
surface reconstruction accuracy. Figure 7.20 visualizes three examples. 

• Ground-truth poses: In the motion capture room, we use the OptiTrack 9 to mea-
sure the pose of the center of reflective balls at .120Hz with millimeter accuracy. 
The OptiTrack is directly connected with the same PC to record poses to minimize

(a) Motion Capture Room (b) Corridor 

(c) Inside the Building (d) Outside the Building 

Fig. 7.20 Ground-truth point cloud in color of the motion capture room, corridor, and building 
scenario. Point cloud data was recorded by the Leica BLK.360 laser scanner. They are used to 
generate trajectory groundtruth and evaluate algorithms’ reconstruction accuracy

8 https://leica-geosystems.com/products/laser-scanners/scanners/blk360. 
9 https://optitrack.com. 

https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://optitrack.com
https://optitrack.com
https://optitrack.com


7 Enabling Robust SLAM for Mobile Robots with Sensor Fusion 231

the time latency. The extrinsics from the balls’ center to the body frame of the 
sensor rig are solved by the hand-eye calibration approach [ 31]. In middle-scale 
environments that are covered by the ground-truth maps, we register the current 
frame with the map to estimate LiDAR’s poses as the ground-truth trajectory. 
The initial pose for the registration is obtained with a LIO algorithm. In outdoor 
environments, we fuse the RTK GPS signal with LiDAR-inertial measurements to 
obtain accuracy trajectories based on the LIO-SAM [ 95].

7.4.5 Evaluation 

We use this dataset to benchmark some state-of-the-art (SOTA) SLAM systems. 
Here, we evaluate several open-source systems with different sensor combinations 
and methodologies: VINS-Fusion (IMU+stereo frame cameras) [ 79], ESVO (stereo 
event cameras) [127], A-LOAM (LiDAR-only) [124], LIO-Mapping (IMU+LiDAR) 
[113], LIO-SAM (IMU+LiDAR) [ 95], and FAST-LIO2 (IMU+LiDAR) [110]. We 
calculate the mean absolute trajectory error (ATE) of estimated trajectories w.r.t. the 
ground truth [123]. For LiDAR-based systems, we also report the mapping accuracy 
on two sequences by calculating the mean point-to-point error of algorithms’ maps 
w.r.t. the ground-truth maps. 10. 

The quantitative localization results are reported in Table 7.2. “LC” indicates 
that the loop closure module is used. “. ×” means that algorithms fail to finish the 
sequence. ESVO’s results are not shown here since it cannot finish all sequences. It 
requires events to be continuously triggered to generate reliable time surface maps for 
camera tracking. But all these sequences contain textureless scenarios or static 
motion. In general, LiDAR-based methods outperform vision-based methods, espe-
cially on middle- or large-scale sequences. VINS-Fusion and FAST-LIO2 fail in some 
cases since they cannot initialize well at the beginning of the sequence. Without the 
aid of the IMU, A-LOAM cannot handle jerky and rapid motion and thus performs 
poorly on two MCR sequences and all sequences on the quadruped robot. Although 
FAST-LIO2 has a superior real-time performance based on the Kalman filter, it some-
times has unstable results on several sequences. escalator_day and MCR_fast_01. 
Surprisingly, LIO-SAM performs well on all quadruped robot-based sequences, even 
at fast and jerky motion with large rotation. But two sequences are still challenging 
to all vision- and LiDAR-methods: corridor day and stair day, where environments 
are commonly texture-less and structureless. Moreover, we also evaluate the map-
ping quality of A-LOAM and LIO-SAM on the corridor_day and garden_day 
sequences. Trajectory results on two sequences are visualized in Fig. 7.21. The dis-
tance map is in Fig. 7.22. Especially for the corridor mapping, A-LOAM’s map has 
a large drift on the .z-axis.

10 https://github.com/mp3guy/SurfReg. 
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Table 7.2 Localization accuracy 

Platform Sequence VINS-
Fusion 
(LC) 

A-LOAM LIO-
Mapping 

LIO-
SAM 

FAST-
LIO2 

Handheld canteen_night .0.409 .0.067 .0.097 .0.063 . 0.071

canteen_day .0.691 .0.057 .0.088 .0.053 . 0.057

garden_night .0.328 .0.567 .0.242 .0.254 . 0.205
garden_day .0.518 .0.528 .0.097 .0.069 . 0.068
corridor_day .1.807 .0.416 .1.755 .0.594 . 1.563

escalator_day .2.127 .0.981 .0.346 .0.207 . 4.193

building_day .12.861 .1.580 .0.916 .0.222 . 0.146
MCR_slow .× .0.087 .0.042 .0.063 . 0.114

MCR_normal .0.168 .0.328 .0.052 .0.082 . 0.121

MCR_fast .× .0.416 .0.099 .0.117 . ×
Quad. 
Robot 

MCR_slow_.00 .0.096 .0.120 .0.032 .0.023 . 0.047

MCR_slow_.01 .0.081 .0.054 .0.030 .0.030 . 0.051

MCR_normal_.00 .0.094 .0.492 .0.093 .0.042 . 0.127

MCR_normal_.01 .0.086 .0.635 .0.390 .0.040 . 0.068

MCR_fast_.00 .0.264 .4.601 .2.405 .0.052 . 0.408

MCR_fast_.01 .0.130 .8.264 .2.210 .0.066 . 1.495

Apollo campus_road_day .77.528 .5.707 .4.122 .7.364 . 4.080
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Fig. 7.21 Trajectories of the algorithms on two sequences: campus_road_day and escalator_day 
w.r.t. the ground truth
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(a) Corridor day (b) Garden day 

Fig. 7.22 Evaluation of a A-LOAM’s and b LIO-SAM’s mapping accuracy 

7.5 Conclusion 

In conclusion, this chapter provides a comprehensive overview of the sensors com-
monly used in mobile robots, as well as the related works of modern SLAM systems. 
The chapter begins with an introduction to the preliminaries of sensors and then 
delves into key methodologies, major challenges, and LiDAR-based and vision-based 
approaches in SLAM. Furthermore, the chapter provides detailed steps for creating a 
multi-sensor open dataset, including practical considerations and techniques. Over-
all, this chapter serves as a valuable resource for those seeking to understand the 
fundamentals of sensors and SLAM, as well as for those looking to build their own 
multi-sensor open dataset. 
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Chapter 8 
Visual SLAM for Texture-Less 
Environment 

Yanchao Dong, Yuhao Liu, and Sixiong Xu 

Abstract Recent researches on vision-based self-localization have catalyzed versa-
tile and reliable real-time Visual Simultaneous Localization and Mapping (VSLAM) 
systems. However, retrieving ground truth, estimating calibration parameters and 
annotating useful labels all require cumbersome human labor. Moreover, there are 
lots of object instances in the environments while traditional mapping modules can 
only estimate 3D information of isolated sparse or semi-dense feature points. To 
meet the gap between the above requirements, we present a VSLAM method based 
on a synthetic dataset which can effectively utilize texture-less object instances. 
We also propose several new evaluation criteria that can fully take advantage of 
ground truth and annotations from synthetic datasets. The proposed Visual SLAM 
method includes newly designed feature extraction, matching, localization and map-
ping modules, which jointly use object features and point features to estimate camera 
6-Degrees Of Freedom (6-DOF) poses and do richer map construction. Experiments 
are conducted using the proposed datasets and criteria with several state-of-the-art 
VSLAM methods to demonstrate the functionality of our datasets. Owing to the 
object feature fusion in the co-visibility graph, it can conducts scale aware bundle 
adjustments to reduce accumulated errors. The advantages of proposed Visual SLAM 
method are demonstrated through experiments conducted both on synthetic datasets 
and real-world datasets. 

Keywords Synthetic dataset · Visual SLAM · Evaluation criteria · Localization ·
Mapping · Object pose 
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8.1 Introduction 

With the rapid development of computer vision and the low cost of visual sen-
sors, Visual Simultaneous Localization and Mapping (VSLAM) methods have been 
paid special attention for localization and navigation applications such as unmanned 
cars in intelligent transportation industry and automated guided vehicles (AGV) in 
logistics industry, and have developed into a relatively well-established theoretical 
system. 

VSLAM system only uses image sensors (cameras) for map construction and 
self-positioning. According to the number and type of image sensors, VSLAM can 
be divided into monocular camera SLAM, binocular (stereo) camera SLAM, RGBD 
camera SLAM, multi-camera system SLAM, etc; According to the density of image 
features used in low-level processing, it can be divided into sparse SLAM, semi-dense 
SLAM and dense SLAM systems, which are shown in Fig. 8.1. 

The chapter is organized as follows. Section 8.2 details current state-of-the-art 
VSLAM algorithms using lines, planes and objects as features. Section 8.3 shows the 
VSLAM datasets which include real-world recorded datasets and computer graphic 
based methods. Section 8.4 illustrates the details of the implementation and design 
of this dataset, and provides the theoretical basis for the subsequent experiments. 
Moreover, this section details our VSLAM pipeline from the perspective of modules 
in the proposed VSLAM pipeline and proposes our parameterization pipeline on 
keyobjects extracted from actual images. Section 8.5 proposes a renovated VSLAM 
testing pipeline and the corresponding test results and presents experiments on local-
ization accuracy and map construction performance. Sections 8.6 and 8.7 conclude 
this chapter and discusses future developments of the proposed VSLAM methods. 

(a) Dense VSLAM system 
map 

(b) Map created by VSLAM 
system using plane and sur-
face features 

(c) Map created by VSLAM 
system using feature markers 

Fig. 8.1 Typical dense maps. a Dense map of staircase room obtained from dense point cloud data 
after fusion, rendering and artistic processing. b Dense interior map based on plane and surface 
panel. c Dense conference room map built with feature markers
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8.2 State-of-the-Art Visual Simultaneous Localization 
and Mapping Algorithms 

Most modern simultaneous localization and mapping (SLAM) methods aim to 
recover camera trajectory and 3D reconstruction of surroundings from a sequence of 
images in real-time. Various research fields including autonomous driving, robotics 
and augmented reality use SLAM as their base infrastructure in navigation and guid-
ance. In the vast variety of SLAM methods, methods that use one or several image 
sensors (i.e.Visual SLAM (VSLAM)) have been paid special attention; in recent 
years, researchers have proposed several reliable, versatile and accurate VSLAM 
systems [ 1– 4]. These modern VSLAM methods mostly consist by three modules: 

1. Feature extraction module generates and manages a group of image features 
from the image; 

2. Localization (i.e.camera tracking) module estimates camera poses from a group 
of images by feature matching; 

3. Mapping (i.e.map construction) module builds up, manages and adjusts an orga-
nized form of local or global 3D map in various ways, including loop correction. 

The feature extraction module is the key functionality that VSLAM can accommo-
date to environmental preconditions. Typical VSLAM methods exploit point features 
in this module since they are easy to describe and manage; there also exist works 
that use alternative features, mostly because these features are better at describing 
that particular kind of environment. For instance, in texture-less environments like 
building hallways, the quantity of available feature points may be insufficient and the 
repeatability of image features may downgrade the match quality, which influences 
the overall localization accuracy of the VSLAM system. However, these texture-less 
environments are widely distributed in GPS-denied areas where VSLAM methods 
are most needed, which poses challenges for VSLAM systems. Features suitable for 
texture-less environments should be able to preserve as much structural information 
as possible with limited quantity. Three kinds of features are relatively common: 
lines (edges), planes and objects. 

8.2.1 Lines and Planes 

Lines and planes are welcoming VSLAM features as man-made structures satisfying 
Manhattan world assumption, which helps simplify both the feature sampling process 
and feature optimization process. The enhanced description of structural information 
embedded in line and plane features allow these systems achieve better mapping and 
localization accuracy in texture-less environments. 

Works like REBVO [ 5] use direct methods on edge pixels to achieve edge-mapping 
in real time. Similar methods are used in works [ 6, 7]. Those two works both use
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the combination of image intensity and one other image description technique in 
direct image alignment: the former work uses the combination of image intensity 
and geometry error between pixels and edges, and the latter work uses weighted sum 
of image intensity error and image distance field error. PL-SVO [ 8] uses sparse image 
alignment both between point and line features to retrieve camera poses which is an 
extension of the famous SVO [ 2]. Some works [ 9, 10] use a different approach: the 
extracted lines (edges) are matched like point features using specific line matcher, 
which allows authors to perform mature techniques like bundle adjustment from 
point-feature VSLAM on line features. Besides the above works that try to adopt lines 
as VSLAM features, we’ve also seen works [ 11, 12] that estimate camera poses using 
Manhattan World Assumption which fully take advantage of special characters of 
man-made environments. Usually these methods achieve better localization accuracy 
as compared to non-constrained methods. 

Typical plane-based VSLAM systems [ 13, 14] use planes sampled from point 
clouds of RGBD camera as features for tracking or mapping. These methods either 
utilize local or global depth regularization like work [ 15] by Salas-Moreno et al. or 
use direct methods like CPA-SLAM [ 13], or the combination of direct methods with 
geometric optimization of 3D planes like works [ 14, 16]. Liwicki et al. provides a 
method [ 17] that uses monocular image without depth sensors to detect and formulate 
planes on keyframe. The method can operate in large-scale as compared to those 
small-scale VSLAM systems mentioned above. Experiments proposed in this work 
show that it has better robustness than LSD-SLAM, but with higher local depth noise 
and it can only operate in environments in which most of the surfaces are planar. 

As we have discussed above, these methods have advantages both on camera local-
ization and map construction, but some of the existing methods treat lines and planes 
as special features extraction tools useful in man-made environments, which cannot 
fully utilize the structural and semantic information processed in these features. Some 
methods can use the structural information embedded in certain environments, but 
they only focus on achieving accurate localization in low-speed small-scale environ-
ments. Besides, the robustness and performance of the state-of-the-art line feature 
detectors and feature descriptors cannot match the performance of point feature 
detectors and feature descriptors, which will influence the overall performance of 
VSLAM system. 

8.2.2 Objects 

VSLAM methods that use objects as features are often referred as object-oriented 
VSLAM or object-level VSLAM [ 18– 20]. One of the earliest works that focuses on 
object-level mapping is SLAM++ [ 21], this method uses the reconstruction mech-
anism of the famous KinectFusion to establish models of objects, and proposes a 
complete framework for model-based object matching, important object insertion, 
pose estimation and object-level graph optimization. Several methods share similar 
topology, for instance, work [ 22] also uses pre-integrated or pre-defined models for
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object tracking; this work aims for establishing a point cloud map of camera’s sur-
roundings with labeled object identity. To achieve this, this work combines output 
of two different CNNs to jointly detect objects and estimate object poses, where the 
pre-integrated object model is used. Another approach is using special representation 
or parameterization of objects, normally using output results from state-of-the-art 
object detector. A series of works about QuadricSLAM [ 18, 19] represent objects 
in 9-DOF quadric form; similar methods have been found in works [ 23, 24] from  
Hosseinzadeh et al. which have extended quadric representation of objects onto a uni-
fied representation that contains objects, planes and 3D points, and have introduced 
joint optimization method that operates on local structural information and semantic 
information at the same time. CubeSLAM [ 25] from Yang and Scherer proposes a 
method to actively match 9-DOF quadric represented objects with possible poses 
from a limited range. 

Current works on object-level VSLAM mostly focus on parameterization of 
important objects using various kinds of techniques; these methods either rely on 
the outputs of object detection networks or using reconstructed object models, thus 
they are better in describing common objects in ordinary environments. We haven’t 
discovered works that pay special attention to those texture-less, yet very organized 
objects, which are very important landmarks in driving scenarios. 

A wide group of reliable and versatile VSLAM 1 methods that use one or several 
image sensors [ 1, 2, 26, 27] or use the fusion of cameras and other sensors [ 28– 31] 
have been widely studied and applied. There are several kinds of information needed 
in the development of VSLAM systems which should be contained in that dataset: 
camera poses, calibration parameters, annotations, images, distortion simulation. 

In recent years, using special software [ 32] to simulate various aspects of vehi-
cles has already been a common practice both in academic research and modern 
automobile industry. By taking advantage of the flourishing computer graphic indus-
try, we can generate large amount of photorealistic synthetic images, accompanied 
by enough information for wide-ranged evaluation and validation tasks in VSLAM 
systems. 

8.3 The VSLAM Dataset 

This section illustrates the VSLAM datasets, and justifies the need for scientific 
research and the feasibility of the proposed solution.

1 Many works that claim themselves as “Visual Odometry” possess many features similar to SLAM 
system; therefore we refer both VO and Visual SLAM as “VSLAM” in the following paper. 
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8.3.1 Real-World Recorded Datasets 

Nowadays, images from most publicly available datasets for use in Computer Vision 
topics are retrieved by camera recording in real world. The ground truths are captured 
and synchronized with the camera by other instruments. For VSLAM datasets or 
benchmark systems, the four kinds of most widely used information are camera 
images, IMU data, camera poses and frame depth maps. The first two are often used 
as VSLAM input, while the last two are often used as ground truth. 

8.3.1.1 Images and IMU Data 

Numerous VSLAM datasets supply stereo camera image data [ 33– 35] synchronized 
with external sensors; there also exist datasets that only provide monocular data [ 36]. 
Some works [ 37, 38] provide fisheye camera image data or omnidirectional camera 
image data, but only work [ 33] provides fisheye stereo pairs. For retrieving IMU data, 
most existing methods either utilize IMU modules [ 34, 39, 40] or use bundled IMU 
in smart phones or tablets [ 41] or the combination of both [ 38].The IMU  data frames  
are recorded at higher rate as compared to camera images, and the state-of-the-art 
synchronization techniques that can sync the timestamp of camera frames and IMU 
frames can be found in [ 38]. 

8.3.1.2 Camera Positions 

State-of-the-art SLAM datasets use devices like GNSS positioning systems [ 34, 35, 
40, 42] or industrial motion capture systems [ 33, 37, 43] to retrieve ground truth 
camera 6-DOF poses. Using IMU integration results modified by exterior position 
fixes [ 41] is also a widely-used approach. 

8.3.1.3 Frame Depth Maps 

Retrieving accurate 3D information of pixels on the frame from real-world scenes is 
a difficult task and only a few existing works carry such information. Typical works 
like [ 34, 40, 42] use laser scanner (or LIDAR) to retrieve 3D information of camera’s 
surroundings; there also exists another way that uses a multi-station [43] to get camera 
position and point cloud at the same time. However, these two approaches share the 
same drawback that the instruments are expensive and the application scopes are 
limited. 

As we analyzed above, typical real-world scene datasets require much labor 
to retrieve data, and the amount of available information is limited. Also, even if 
researchers find a way to retrieve enough information using different instruments 
with neglectable measurement errors (in VSLAM research), errors will still be intro-
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duced during alignment and calibration parameter estimation. A detailed comparison 
regarding the information provided by some publicly available datasets can be found 
in Table 8.1. 

8.3.2 Computer Graphic Based Methods 

8.3.2.1 Rendered Datasets 

Rendering photorealistic images based on virtually established real-world scenes for 
training and testing various computer vision algorithms like semantic segmentation, 
has proved to be an ideal way both for accuracy and efficiency [ 45]. Recent advances 
in generative adversarial network on traffic vision research suggest that using artifi-
cial scenes to train neural network helps enhance accuracy on object detection and 
semantic segmentation [ 46]. 

8.3.2.2 Simulators 

Using powerful computer graphic engines such as Unreal Engine 2 or Unity3D, 3

researchers can build up simulators that simulate how objects move and react with 
certain scenes. Typical open-source works like AirSim [ 47] and UnrealCV [ 48] can 
simulate different scenarios with high definition images and multiple sensor outputs; 
besides, it can simulate how objects react when you enter control commands, thus 
enabling researchers to test a large robot control system consisting of localization, 
route planning and motion control at the same time. 

Compared to all the present works mentioned above, our proposed work focuses 
more on providing essential environmental factors that effect how VSLAM oper-
ates. Detailed comparison of data entries provided between different datasets and 
simulators is illustrated in Table 8.1. 

Based on the techniques mentioned above, we introduce “Tongji Computer 
Graphic” (TCG) dataset, a synthetic dataset for VSLAM evaluation. This dataset 
contains multiple sequences in different indoor environments with more than 15k 
images in total and the render pipeline is shown in Fig. 8.2. 

Using the data mentioned above, we also propose an evaluation framework for 
testing the performance of VSLAM systems. For researchers and developers, except 
for trivial usages like using special data from TCG dataset on various computer 
vision research topics or using the framework to evaluate VSLAM algorithms, the 
TCG dataset can be particularly suitable for two kinds of tasks in the development 
of a versatile and robust VSLAM system:

2 https://www.unrealengine.com/. 
3 https://unity3d.com/. 

https://www.unrealengine.com/
https://www.unrealengine.com/
https://www.unrealengine.com/
https://www.unrealengine.com/
https://unity3d.com/
https://unity3d.com/
https://unity3d.com/
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Fig. 8.2 Pipeline of proposed work. a We establish 3D model of underground garage as our 
environment. b We configure moving patterns of moving vehicles and challenging high beam light 
from vehicles on the scene. c We render several elements and retrieve information in the box below 
using mechanism in 3DS-MAX and V-Ray. d Examples for all supported ground truth data in our 
dataset 

1. Algorithm validation. For instance, researchers can use this dataset to validate 
VSLAM algorithms in special environments or under special preconditions. By 
taking advantage of the vast variety of resources from the 3ds-max community, 
researchers can retrieve images and ground truth in some special environments 
without much human labor. Also, when trying to determine the superiorities and 
inferiorities of feature selection techniques. 

2. Debugging VSLAM algorithms. As modern VSLAM systems are often com-
posed of several modules with different functionality, and one module may mal-
function by interacting with other modules, and this is difficult to discover. By 
substituting information estimated by VSLAM system into ground truth data from 
the dataset (e.g.using ground truth optical flow to replace 2D feature matching 
results), we can eliminate the effect of interaction among different modules, which 
helps us debug this algorithm. 

Moreover, we propose in this work a monocular object-oriented VSLAM method 
that focuses mainly on utilizing texture-less object instances such as traffic signs to 
accurately localize camera itself and reconstruct camera’s surroundings. By matching 
the projection of rasterized CAD model on the image to the image’s distance field, we 
estimate the transformation that maps raster points from object coordinate system to 
frame coordinate system. Utilizing these geometric information, the VSLAM system 
builds and maintains a global VSLAM map which contains both point features and 
object features, which allows the system to establish point-object joint covisibility
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(a) One selected frame showing matched 

mapobjects in purple and matched mappoints 

in cyan 

(b) Drawing of reconstructed point-object joint 

map 

Fig. 8.3 Demonstration of the proposed VSLAM system. a One frame from the VSLAM system. 
The image used in evaluating this VSLAM system is rendered using Computer Graphics (CG) 
model of an underground garage. The lines with different colors are image projection of rasterized 
object models. We use purple to represent traffic signs, green to represent recognizable pillars and 
blue to represent arrows. b The 3D view of the reconstructed map in VSLAM system. The colors 
of objects on the scene are identical to colors from a. We use green lines between keyframes (boxes 
in cyan) to represent point covisibilities, orange lines to represent object covisibilities 

graph containing keyframe associations established by both the common keypoints 
and keyobjects. We also conduct experiments that compare the localization accuracy 
and map construction performance of the proposed method with state-of-the-art 
VSLAM methods both on synthetic datasets (for analytical performance evaluation) 
and real-world datasets (for functionality validation). The effects of the proposed 
VSLAM method running on one exampled photorealistic synthetic dataset can be 
found in Fig. 8.3, and the effects of the proposed VSLAM method on one exampled 
real-world dataset can be found in Fig. 8.18. 

The pipeline of the proposed VSLAM method is shown in Fig. 8.4. The main  
contributions of this work are listed as follows: 

1. A large and rich large-scale dataset with enough information for validating, eval-
uating and debugging VSLAM systems, especially large amount of data in chal-
lenging low texture environments. 

2. A new VSLAM evaluation method with detailed rating criteria for mapping block 
of VSLAM. The criteria are listed below: 

a. Reconstruction Error (RE) is the average error of world positions of 3D 
features on keyframes across entire global map; 

b. Reconstruction Error Standard Deviation (RE_STD) is the average stan-
dard deviation of Reconstruction Error (RE) across entire global map; 

c. Cruciality of Features (CF) measures the percentage of features lying on 
static area of the surroundings;
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Fig. 8.4 Pipeline of proposed work. We mark components related to point features in green, com-
ponents related to object features in orange, and components that need information from both in 
blue

d. Significance of Features (SF) measures how well features sampled by 
VSLAM describe general shape of the objects and structures in the surround-
ings. 

e. Outlier Removal Capability (ORC) measures VSLAM’s capability to remove 
outliers sampled from moving objects. 

3. Tests of current state-of-the-art VSLAM systems with different topology on cam-
era tracking and mapping based on proposed dataset and rating criteria, which 
validate both the usability and functionality of the proposed rating criteria and 
the proposed datasets. 

4. We propose in this paper an object-oriented VSLAM method which consists of 
several modules: 

a. Feature extraction module which detects and describes point and object fea-
tures; 

b. Camera localization module which jointly uses point and object features to 
estimate camera 6-DOF pose; 

c. Map construction module which is able to construct and maintain a point-
object joint covisibility map. 

5. Traditional way of establishing covisibility map consists of associating two 
keyframes with common image features. The proposed method can associate 
two keyframes with shared object observations, which extends the capability of 
connecting two keyframes to being able to associate two distant keyframes that do 
not share common image features. Using the extra constraints provided by these 
associations, the proposed system can conduct scale aware bundle adjustments to 
revise the accumulated error. 

6. We provide details on how we convert CAD models of keyobjects on the image 
into the form recognizable by VSLAM system, how to detect keyobjects and
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describe their image appearance, how we estimate object poses and match related 
objects under this particular form.

8.4 Pipeline of the VSLAM Algorithms 

8.4.1 Details of Datasets 

The proposed pipeline in Fig. 8.2 illustrates how we build models and retrieve useful 
ground truth. We further detail how we implement this pipeline in the following parts 
of this section. 

8.4.1.1 Data Specification 

As we have stated in Sect. 8.2, all sequences in our dataset are obtained based on 
simulated motion of a vehicle moving in a large virtual underground garage model. 
We focus on using garage models to render sequences in this dataset for three reasons: 

1. Videos or image sequences recorded in garages often contain the following dis-
tinguishable features that usual environments cannot provide: 

a. Large number of texture-less images. 
b. Large number of straight lines and planes. 
c. The image appearance and image features are often repetitive: two very dif-

ferent places may actually have the same image appearance. 

2. Driving a vehicle into one parking lot often needs continuously rotative motion, 
which is challenging for monocular VSLAM system. 

3. So far we have not discovered datasets that contain images recorded (rendered) 
in garages or in environments with similar distinguishable features like garages. 

We use 3DS-Max plugin MadCar 4 to offer animations of virtual wheeled vehicles. 
We also use this software to simulate motion of moving vehicle set as obstacles in 
the scene. In Fig. 8.5, we demonstrate paths of camera of four example sequences 
from the proposed dataset. All the scene models used for rendering the sequences are 
built in Autodesk 3DS-MAX 5 and images are rendered by V-Ray 6 industrial off-line 
renderer. V-ray uses path-tracing techniques to simulate realistic global illumination 
in order to render high-quality photorealistic images. All sequences are rendered 
based on simulated motion of a virtual car exploring the scene, on which head a 
front-looking camera with viewing angle of approximately 90 degrees is attached.

4 https://rendering.ru/madcar.html. 
5 https://www.autodesk.com/products/3ds-max/overview. 
6 https://www.chaosgroup.com/vray/3ds-max. 

https://rendering.ru/madcar.html
https://rendering.ru/madcar.html
https://rendering.ru/madcar.html
https://rendering.ru/madcar.html
https://rendering.ru/madcar.html
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.autodesk.com/products/3ds-max/overview
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max
https://www.chaosgroup.com/vray/3ds-max


8 Visual SLAM for Texture-Less Environment 253

Fig. 8.5 a–d are top view of routes from four selected sequences from the proposed dataset. a, d 
The two sequences are pure static environments. b This sequence contains several high-beam lights 
but no moving vehicle. c This sequence contains one moving vehicle and several high-beam lights 

Considering the render pipeline shown in Fig. 8.4, each sequence possesses the fol-
lowing contents: 

1. Camera 6-DOF pose for each frame in world coordinate system. 
2. Already undistorted wide-angle images and fisheye images. 
3. Bounding boxes for significant objects on each frame, and these objects’ relative 

transformation in camera coordinate system. 
4. Depth for each pixel in each frame. 
5. Semantic/instance segmentation for each frame. 
6. Edge map of object borders for each frame. 
7. Optical flow from frame .FN to the next frame .FN+1. 
8. Camera intrinsic parameters both for pinhole camera model and fisheye camera 

model. 
9. Stereo image pairs both for wide-angle images and fisheye images. 

10. Images with motion blur effect and depth-of-field effect. 

8.4.1.2 Semantic Segmentation and Depth Maps 

The ground truth edge maps, semantic segmentation results and depth maps are 
rendered at the same time with the image, yielding accurate annotations per-pixel. 
We also generate noisy depth by simulating a real Kinect mechanism using the
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method from work [ 49]. By using these accurate annotations along with camera 6-
DOF poses, we can generate accurate scene flow between two successive frames. F1

and .F2 using relative pose between two frames: 

.p2 = π(R, t,π−1(p1, d1)), (8.1) 

where .p2 is the corresponding pixel position of pixel .p1 from .F1 in .F2, .d1 is the 
depth of pixel in that frame,. R, . t denote relative transformation between two frames, 
and .π() denotes the projection function for this particular camera model. However, 
motions of the camera will introduce changes on relative viewing position between 
objects, which make the visibility of a particular pixel not only determined by field-
of-view of the camera, but also by possible shading from other pixels. To resolve 
this issue, we check if the depth of pixel .p2 rendered in .F2 is smaller than the depth 
estimated by relative motion; smaller depth means the pixel .p2 is shaded by pixels 
from another object. 

For simulated fisheye camera images, we use spherical camera model [ 50] to  
calculate 3D information of pixels with theoretically calculated camera intrinsic 
parameters; we also provide rendered images with pre-integrated checkerboards, 
allowing camera calibration using other techniques or camera models. 

8.4.1.3 Rendering Sequences 

The luminance of the virtual scene is controlled by pre-integrated lights, and the 
light in the environments of every datasets has even distribution. To simulate high-
beam light of the vehicle, we insert lights with high luminance and parallel beams 
on corresponding places of vehicle headlights. 

The four sequences shown in Fig. 8.5 contain about 16k images with total length 
of about 1km. All images have a resolution of .1280 × 960 and horizontal field of 
view of roughly 89.4 degrees. Detailed statistics of the four datasets can be found 
in Table 8.2. The main differences between the four sequences (besides the trivial 
differences like image number) are: 

1. In sequence A, the floor of underground garage will reflect light, and no moving 
vehicle exists. 

2. In sequence B, there are several high-beam lights and large variation in brightness 
of global illumination. 

3. In sequence C, there are moving vehicles and several high-beam lights. 
4. In sequence D, there are no high-beam lights brightness and there are no light 

reflections. 

All sequences are rendered on 3 workstations equipped with 16-core AMD Ryzen 
Threadripper 1950.× Processor and 64 GB RAM in parallel. For fast validation of 
algorithms, we suggest using lower subdivision number: the image quality can still 
be preserved for overall impression but the rendering time for each image can be
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Table 8.2 Statistics of the four sequences. The A. ∼D here corresponds to the A. ∼D from Fig. 8.5 

Dataset A B C D 

Length of 
vehicle route 

501 m 163 m 252 m 101 m 

Number of images 6000 4000 4600 1300 

Number of 
labeled vehicles 

4 18 16 12 

Number of labeled 
moving vehicles 

.× .× 2 . ×

Number of labeled 
traffic signs 

18 74 30 13 

Number of labeled 
pillar or structure 

19 23 50 25 

Number of labeled 
special characters 

51 .× .× . ×

Number of labeled 
speed bumps 

.× .× 7 5 

shortened to less than 60 s, which enables us to render a test sequence containing 
about 1500 images on the workstation mentioned above in roughly 1 day. 

8.4.1.4 Key Objects 

Our virtual garage models include the most important environmental elements in 
garages, such as a large variety of different pavements, lane markings, piping and 
tubing, different kinds of lights, traffic signs, parking lots, moving and static vehicles 
and speed bumps that force the car to slow down. The property that the virtual models 
are scalable means we can insert any wanted high-precision models into the model 
and generate useful poses, labels and annotations without extra effort. These specially 
inserted models are referred to as keyobjects. We divide important keyobjects on 
the scene into two categories: signs and subjects. Signs are noticeable marks or 
symbols in the scene. All signs will stay reasonably still for a relatively long time, 
which indicates they are static objects for mapping mechanism on VSLAM methods. 
Subjects are objects that are noticeable but cannot stay still for a long time. They 
might move after the camera has left the scene, thus introduce semi-static scenes 
when the VSLAM system try to use stored map of previously visited area to locate 
itself; or they are moving when the camera sees the object. Vehicles and human 
beings in most cases are subjects. Our dataset stores object information for each 
keyobject seen in each frame including instance segmentation results that indicate 
the class of the object, 3D bounding boxes for the object, precise object CAD model 
and whether the object is static or not. A vivid description of how keyobjects are 
labeled can be found in Fig. 8.6.
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(a) Labeled keyobjects in one frame (b) Top view of the labeled objects 

(c) Coordinates of objects’ center. The coordinate system are shown in (a) 

Fig. 8.6 We use red bounding boxes to label static cars and cyan bounding boxes to label moving 
cars, which are subjects; purple bounding boxes to label traffic signs (arrows in this frame) and 
yellow bounding boxes to label pillars and special objects, which are signs. The numbers on a, b 
are indexes for subjects and signs and are used in c 

8.4.2 Visual SLAM Based on Keyobjects 

We build our pipeline of object-oriented VSLAM based on previous work 
ORB_SLAM2 [ 3]. Similar to ORB_SLAM2, we divide our VSLAM system into 
several individual parts running in parallel threads: localization module for camera 
6-DOF pose estimation, map construction module for establishing and managing an 
organized map representation, loop closing module for correcting loop, and several 
other blocks for error recovery and visualization. We further detail our VSLAM 
architecture in the following chapter. 

8.4.2.1 Feature Extraction 

Point features are detected using Features from Accelerated Segment Test(FAST) and 
described using ORB; object features are detected using random forest classification 
techniques [ 51]. We use rasterized model to describe keyobjects in VSLAM system 
which can be easily retrieved from object CAD model, and we sample raster points 
from these lines to finalize the parameterization process: the rasterized model consists 
of a group of discrete 3D points. We also borrow the idea of mappoints from [ 3] 
and establish point-object image links between mapobjects and mappoints: if image 
position of the observed mappoint is located on one mapobject’s visible edges, the 
mappoint is considered linked to the mapobject. A vivid description of how features 
distribute on one typical frame can be found in Fig. 8.3; demonstration for linked
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(a) Examples of how linked mappoints distribute on image 

(b) Examples of projected objects using rasterized model 

Fig. 8.7 a We use gray points to represent linked points and small blue dots to represent unlinked 
mappoints, the purple lines represent outline of the pillar in the image. b Demonstration of two 
objects: a traffic sign on the left and a guiding arrow on the right. Note that we have enlarged 
and rotated the two objects to achieve better viewing impression. Blue dots represent visible raster 
points 

mappoints on the mapobject can be found in Fig. 8.7; demonstration of the rasterized 
objects can be found in Fig. 8.7. 

8.4.2.2 Localization 

Suppose that we already have a group of.no keyobjects.Oi .∈ θ matched with a group 
of mapobjects .OM

i .∈ θ and a group of .np keypoints .pmi .∈ υ matched with a group 
of mappoints .PM

i .∈ ϒ on one frame, we can estimate the camera’s 6-DOF pose . νrc

and . s at this frame by minimizing a sum of weighted reprojection error across all 
matched features: 

.νrc, s = argmin

⎛
⎝

np∑
i=1

(
ep,i

) + μ ∗
no∑
j=1

(eo,j)

⎞
⎠ , (8.2) 

. μ represents weight of object reprojection error and will be estimated using object 
pose score. We define .νrc here as transformation that maps feature 3D position in 
world coordinate system to camera coordinate system. 

In Eq. 1.2, error term.ep,i represents the error of mappoint reprojection, whereby 
we use same definition from ORB_SLAM2, and error term .eo,j represents the error 
of reprojecting one raster point from the object to the frame. We assume there exist
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.nr raster points from one object, therefore by using wrap function.p = ω(P, νrc) that 
maps 3D raster points to actual image plane, we get the disclosed form of object 
reprojection error as the sum of .nr raster points’ reprojection error: 

.eo =
nr∑
k=1

(ω(s ∗ Pk , νrc ∗ ξw) − pk), (8.3) 

where .Pk is the 3D raster point from mapobject, .pk is the matched raster projection 
position on the image, .ξw is the object pose that transforms raster point position 
from object coordinate system to world coordinate system, namely object-to-world 
transformation. This transformation can be calculated by combining the object-to-
frame transformation and corresponding camera pose, and will be further optimized 
in the mapping module. Using the visibility buffer, we can get common visible 
points between two objects, which can be viewed as matched raster points between 
two objects. 

8.4.2.3 Map Construction and Bundle Adjustment 

Map construction module inserts new keyframes and new landmarks (mapobjects 
and mappoints in this work) into the map, possesses these keyframes and landmarks 
by constraints introduced by covisibility map, and performs bundle adjustments to 
revise errors in map. We mainly follow the keyframe and landmark insertion pol-
icy introduced in ORB_SLAM2 that inserts keyframes and features frequently and 
culls redundant ones. The organized map after culling are represented as a point-
object joint covisibility map. Each node in this map is a regular keyframe, and an 
edge (i.e.association) between two keyframes exists if they observe enough com-
mon mappoints or share common mapobject observation. The mappoint associa-
tions link keyframes using both geometric and appearance-based constraints, while 
the mapobject associations link keyframes with geometric similarity and instance 
semantic information. The mapobject associations overcome the drawback that map-
point associations are influenced by image appearance; as soon as the detection and 
classification of landmarks are stable, we can build associations between keyframes 
that share the same mapobject observation but with different image appearance, 
which is demonstrated in Fig. 8.8. 

After the above optimization, we will conduct a full bundle adjustment within 
extended sub-map to further adjust mappoints in these keyframes. Note that the 
optimization process mentioned above is limited within the extended sub-map, as 
we believe constraints calculated by object sub-map cannot truly influence the entire 
map; the full map optimization should be done by loop closure module.
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Fig. 8.8 Factor graph created by the proposed system running on one sequence in our synthetic 
dataset. We use orange lines to represent keyframe covisible associations created by object feature 
matching, and green lines to represent keyframe covisible associations created by point feature 
matching. The cyan squares are keyframes, the black and red dots are point features and the arrows 
and markers are object features 

8.4.3 Keyobject Parameterization 

As it has been stated in Sect. 8.4.1, the rasterized model of objects uses a group 
of organized lines exported from object CAD model to reveal actual object model, 
which perfectly suits our need as we are mostly dealing with texture-less objects. 
Besides, since most traffic signs are standardized and dimension-constrained, we 
can generate accurate line models using these fixed dimensional numbers, which can 
also be used for keyobject parameterization. One typical example of how rasterized 
object are represented on an actual image can be found in Fig. 8.7. We further detail 
how the proposed VSLAM system parameterizes raster models, and how to use this 
model to estimate object poses and match object instances, in the following sections. 

8.4.3.1 Object Rasterization 

The lines from CAD models will be sampled into raster points; curved edges will 
be divided into continuous small line segments and dealt with similar methods. For 
one straight line edge, starting from the start point .Pstart (i.e..P0), the current raster 
point .Pi+1 is calculated using its predecessor .Pi (. i starts from 0) using the following 
equation: 

.Pi+1 = Pi + τ (Pi) ∗ dP (8.4) 

.τ (Pi) is the tangential direction vector of the edge starting from .Pstart and ending 
at .Pend , and .dP is the “basic” sampling step which is defined as 1mm. During the 
tracking and map optimization process, we randomly take one point from three raster 
points to reduce reductant computation cost. We also calculate a visibility buffer that 
indicates which sampled raster points are visible under current object pose using the 
method from work [ 52].
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8.4.3.2 Object Pose Estimation 

The purpose of object pose estimation is estimating object pose by building object’s 
CAD model and only one frame (with object fully or partly projected on that frame). In 
this work, we propose a light-weighted pipeline for estimating object pose (i.e.object-
to-frame transformation). The pipeline for object pose estimation is demonstrated 
in Fig. 8.9. As shown in the figure, after we have determined existence of the object 
using classification tree technique [ 51], we first estimate an initial guess of the object 
pose with relatively large error; then we use the re-weighted distance transform 
based technique from the previous work D2CO [ 53] to refine the initial guess and 
retrieve precise object poses. The pipeline requires only rasterized object model and 
one single calibrated image, thus providing object pose estimation for each frame 
individually. 

After finishing pose refinement, we calculate score of object pose using the average 
weight from last iteration of optimization process of all visible pixels, which will be 
used to calculate the weight . μ as shown in Eq. (8.2). 

Fig. 8.9 Pipeline of object pose estimation
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8.4.3.3 Object Pose Estimation 

For one keyobject .O with know object pose . ξ in .F1 and a group of . n projected 
raster points .pi .∈ ψ, the purpose of object matching is to find matched object from a 
group of keyobject (or mapobject) candidates . θ located in .F2. However, texture-less 
objects (e.g.traffic signs) are often repetitive on image appearance, thus we cannot use 
unique descriptors to distinguish each individual object, and the range of searching 
for match among a group of candidates must be limited. To use this matching method, 
we assume here that objects are mostly individual instances with no overlap in 3D 
space. The proposed matching algorithm takes parts of strategy from semi-dense 
matching algorithms [ 1, 4]. The steps are as follows: 

1. We downsample the point group . ψ to form a new raster point group .q .∈ χ, by  
default we randomly take one point from three raster points. Then we calculate 
epipolar line .Lepi of the selected raster point . q in .F2. 

2. Every object candidate .Ocan that .Lepi cut across is examined using the following 
three criteria: 

a. Whether the candidate and . O have same object type; 
b. Whether the cross points fall on same edge; 
c. Whether the pixel intensity SSD error [ 4] between. q and the cross points group 

.ψcross falls within certain range. 

The number of matched points from. q that satisfy all the three criteria is individ-
ually counted for each object candidate .Ocan. The candidate that possesses more 
than .70% of the raster points from. χ is the matched object of . O. 

Comparing with the previous matching methods which mostly rely on image 
appearance or object feature descriptors, our method provides invariance on image 
appearance repetitiveness and do not rely on neural networks which are not com-
putational cost-effective for objects. We demonstrate the object matching process 
between two distant frames with different image features but sharing same object 
observation in Fig. 8.10. Examples of how this method performs in real-world envi-
ronments can also be found in Fig. 8.17. 

8.5 Experimental Results 

8.5.1 Evaluation of VSLAM Algorithms 

The property that the proposed dataset contains photorealistic images and zero-
error ground truth, makes the dataset a suitable platform for testing various SLAM 
algorithms. By fully taking advantage of the variety of generated data, we propose 
here a renovated VSLAM testing pipeline and the corresponding test results.
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Fig. 8.10 Demonstration of object matching process. We use blue in a to represent projection of 
raster points from one mapobject from . θ on one previous keyframe and purple in c to represent 
projection of raster points from one keyobject observed on current frame. Green in b are raster 
points projected from mapobject in the map to this frame; we use these projections in helping us 
to link the mapobject in a with the keyobject in c. Demonstration for the relative position between 
previous keyframe and current frame can be found in d. Note that the purple line in d are camera 
route simplified for demonstration 

8.5.1.1 Evaluation Metrics 

Current VSLAM evaluation frameworks mostly focus on camera localization error 
evaluation. For state-of-the-art VSLAM systems, the local map consists of a group 
of connected keyframes and the corresponding 3D features on these keyframes. 
Nevertheless, most VSLAM systems treat the mapping module as the auxiliary of 
camera localization, and the typical VSLAM map carries several flaws compared to 
state-of-the-art 3D reconstruction methods. We introduce several evaluation metrics 
in the following parts of this section that focus on evaluating how well VSLAM 
systems reconstruct their surroundings. 
A. Localization Error 
We use the Absolute Position Error (APE) and Relative Position Error (RPE) to 
describe localization error of camera positions. The APE is defined as: 

.EAPE = 1

m

m∑
j=0

(∥ (Pct − Δ ∗ Pc) ∥), (8.5) 

where .m is the total number of keyframes generated by the VSLAM system, .Pc is 
the world position of camera center, .Pct is the ground truth world position of camera 
center. .Δ is the rigid body transformation that map features from image coordinate 
system to real-world coordinate system estimated by methods in [ 54]. 

The RPE is defined as:
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.ERPE = 1

m

m∑
j=0

(∥ (Tct − Δ ∗ Tc) ∥). (8.6) 

We define the .Tc as the relative position change between the two successive frames 
.F1 and.F2, and.Tct as the ground truth relative position. As the camera goes 6-DOF in 
the coordinate system, the change of RPE may not strictly follow the same varying 
pattern with APE; there is a possibility that the overall average RPE will be relatively 
low, but the accumulation of small errors and drifts on one dimension will lead to 
relatively large overall APE. 

B. Reconstruction Error 
We define errors of VSLAM depth map using average error across entire map: 

.Ere = 1

m

m∑
j=0

(
1

nj

nj∑
i=0

(derror,i,j)), (8.7) 

where . m is the total number of keyframes generated by the SLAM system, .nj is the 
total number of 3D features observed in keyframe . j. The  .Ere can thus be defined 
as Reconstruction Error (RE). Utilizing same rigid body transformation .Δ the error 
term.derror,i,j is defined as: 

.derror = ∥ (Pt − Δ ∗ P) ∥
∥ Pt ∥ , (8.8) 

where . P is the world position of one 3D feature estimated by Visual SLAM system, 
.Pt is the ground truth world position. To measure the amount of variation in depth 
map, we calculate the average standard deviation .Sre_std across entire map utilizing 
error term defined in Eq. 8.8 using the following equation: 

.Sre_std = 1

m

m∑
j=0

(derror,j). (8.9) 

C. Cruciality of Features 
Most VSLAM systems can only use static features to build up local 3D map, since 
features sampled from moving objects or semi-static objects will affect the tracking 
accuracy. To best describe how feature distribution affects the operation of VSLAM 
systems, we further divide the cruciality of camera’s surroundings into five grades: 

1. Static structures are the fixed signs and structures, faculties or establishments 
that will not change in reasonably long time. 

2. Appearance variable structures are structures or establishments that stay still 
in general, but the shape or features will change due to exterior forces. 

3. Semi-static objects will stay reasonably still for some time, but will disappear or 
change their positions after they disappear from camera’s field of view.
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(a) Labeled different level of feature cruciality (b) Illustration of different features wit 

different significance and different cruciality 

Fig. 8.11 a Unmarked area: static structure. Purple: appearance variable structure. Lights will 
change its illuminance unexpectedly, the feature distribution will change, but the general position 
of the lights remains the same all the time. Yellow: semi-static objects. These objects will stay 
reasonably still for some time, but its future moving pattern is unpredictable. Gray: moving objects. 
We use a moving vehicle as example for moving objects here. b Red markers are features with 
high significance; green marks are features with low significance. Marks “. ×” are features lying on 
moving objects; marks “. •” are features lying on static structures and variable structures; marks “. ▲” 
are features lying on variable still objects 

4. Moving objects are objects moving right now. The difference between moving 
objects and semi-static objects is that the moving objects move within camera’s 
field of view, while the semi-static objects will not move when seen by the camera. 

5. Irrelevant objects are objects which are faraway from the camera, thus will stay 
still on the image even when the camera is moving, like clouds in the sky or 
faraway large buildings. 

We define the cruciality of features in VSLAM map using the average weighted 
grade cross the entire map: 

.Sce = 1

m

m∑
i=0

(3 ∗ P1i + 2 ∗ P2i + 1 ∗ P3i + 0 ∗ (P4i + P5i)), (8.10) 

where .m is the total number of keyframes generated by the SLAM system, .P1, .P2, 
.P3, .P4 and .P5 represent percentage of features falling within static structure area, 
variable structure area, variable still object area, movable object area and irrelevant 
object area in this keyframe respectively. We believe features on “static structure” 
are the best since both their 3D positions and image features will stay unchanged. 
A vivid illustration for features with different level of cruciality can be found in 
Fig. 8.11. 

D. Significance of Features 
For VSLAM methods that use any kinds of image features, simply using every sam-
pled features is obviously infeasible. Many VSLAM systems use different methods 
to choose suitable feature for camera tracking and local mapping.
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Table 8.3 Online camera pose error results. The error is calculated by comparing between ground 
truth and camera 6-DOF poses retrieved directly from real-time SLAM operation. We use “ORB” 
to represent ORB-SLAM2 

Dataset Error type DSO ORB SVO2.0 DeepTAM 

.TCG1 APE (mm) 428.5 586.3 2030.0 1021.5 

RPE (mm) 3.751 9.429 17.55 4.356 

.TCG2 APE (mm) 1216.0 117.4 4560.4 3035.6 

RPE (mm) 3.657 4.601 44.06 7.056 

.TCG3 APE (mm) 1578.0 656.8 2650.0 2970.0 

RPE (mm) 7.174 11.19 32.20 9.511 

.TCG4 APE (mm) 5021.0 381.5 3630.2 2137.0 

RPE (mm) 25.40 4.995 34.53 15.66 

.TCG5 APE (mm) 175.1 354.7 6946.1 4048.0 

RPE (mm) 1.363 9.793 25.57 10.46 

.TCG6 APE (mm) 113.8 934.9 13389 7601.0 

RPE (mm) 1.159 3.740 60.28 16.11 

.TCG7 APE (mm) 5286.0 6416.0 14549 196478 

RPE (mm) 10.48 26.46 64.11 41.41 

To make the most of the power of the local map in describing surroundings, 
features that best describe the general shape of the surroundings are obviously the 
best. Thus, we define the “significance” of features in VSLAM map to describe how 
many features lie on borders of different objects. The “significance” can be defined 
as: 

.Sse = 1

m

m∑
i=0

Bi

Ni
, (8.11) 

where .m is the total number of keyframes generated by the SLAM system, .Ni is 
the total number of observed features in current keyframe, .Bi is number of features 
lying on “borders”. The “borders” are defined as organized high-gradient area on the 
image (i.e.edges formulated by changes in texture, color, surface normal, etc). We 
define features whose image distance to nearest borders is lower than 3px as pixels on 
“borders”. A vivid description of how feature distribution affects their significance is 
illustrated in Fig. 8.11; note that all the “borders” are drawn in black lines in Fig. 8.11. 

E. Outlier Removal Capability 
Features lying on moving objects are treated as outliers for VSLAM systems and 
must be removed. Most VSLAM methods use methods utilizing feature reprojection 
error to classify outliers; work [ 55] uses a combination of geometry methods and 
CNN classification methods to remove outliers on moving objects.
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As the capability to remove outlier is crucial, we use labeled area of moving 
objects (i.e.vehicles, pedestrians, etc) in our dataset to test how well the outliers can 
be removed. We define the following equation to rate this capability: 

.Sorc = 1

m

m∑
i=0

(1 − Oi

Ni
), (8.12) 

where .m is the total number of keyframes generated by the SLAM system, .Ni is 
the total number of observed features on moving objects in one keyframe, .Oi is the 
number of features remaining in final map. The definition indicates that the higher 
the .Sorc is, the better is the VSLAM’s ability to remove outliers. 

8.5.1.2 Evaluation Results 

We test four selected state-of-the-art VSLAM methods in this category following the 
scheme: the ORB_SLAM2 [ 3], the DSO [ 1], the DeepTAM [ 56] and the SVO [ 2]. 
Note that DeepTAM needs depth image as input, therefore we use the simulated 
Kinect noise as shown in Fig. 8.2. 

A. Localization 
We test accuracy of localization using 7 rendered sequences, denoted by . TCG1

to .TCG7 respectively. The results for camera tracking are shown in Table 8.3; the  
comparison of camera absolute positions estimated by VSLAM systems on sequence 
.TCG1 is  shown in Fig.  8.12; we also compare the APE and ratio of APE to camera’s 
travelling distance in Fig. 8.13. 

As demonstrated in the results, the DSO carries lowest error on sequence .TCG1, 
.TCG5, .TCG6 and .TCG7, but its unstable initialization methods will also lead to 
relatively large overall errors on.TCG4. Note that the above results are retrieved under 
certain preconditions provided by TCG dataset; thus the results are complementary 
for test results under other preconditions or with datasets recorded with different 
technologies. 

B. Mapping 
We test the feature distribution and reconstruction error of ORB_SLAM2, DSO and 
SVO using error terms. The results are shown in Table 8.4. Note that as the deep 
learning based methods often do not have entities that are considered as “features” 
in those traditional methods, we do not test any deep learning based methods in this 
part. 

The three systems can sample most of their features on static structures; however, 
the DSO can sample more features on significant edges and borders, since the system 
uses image gradient as the main standard for sampling features. The ORB_SLAM2 
and SVO sample features evenly on the scene, thus a large portion of the features 
lies on roads but not significant borders, objects or signs. All the three methods 
have relatively large depth reconstruction errors, but DSO has lowest depth map 
derivation, suggesting that the depth map generated by DSO has less “peak error
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Fig. 8.12 Demonstration of camera absolute position estimated by VSLAM using.TCG1 dataset. 
The SVO and DeepTAM fail to finish exploring the entire sequence, therefore this figure only 
demonstrate part of the track calculated by the two systems 

Table 8.4 Online local depth map error results. The error is calculated by comparing between 
ground truth and keyframe 3D features retrieved directly from real-time SLAM operation 

Dataset .TCG1 . TCG5

Error RE (%) RE_STD CF SF (%) RE (%) RE_STD CF SF (%) ORC 

DSO 22.01 0.3869 2.835 74.15 20.86 0.3828 2.565 76.31 0.7358 

ORB 20.27 0.5608 2.724 69.72 19.77 0.5506 2.427 70.03 0.9354 

SVO2.0 16.78 0.5305 2.756 71.30 19.68 0.5597 2.387 71.03 0.7227 

value”. This is probably achieved by the joint optimization mechanism in DSO that 
uses a sliding window to optimize depth and camera pose jointly. The ORB_SLAM2 
has best capability of removing outliers, thanks to its advanced local map bundle 
adjustment methods. 

8.5.2 Experiments on Synthetic and Real-World Datasets 

We test the proposed VSLAM system on a workstation equipped with overclocked 
Core I7 CPU and 32GB memory. Section 8.5.2.1 presents tests and experiments 
on synthetic datasets; Sect. 8.5.2.2 presents tests on real-world datasets. Synthetic 
datasets can provide high-quality photorealistic images and accurate ground truth 
for end-to-end VSLAM evaluation, and we use these datasets to analyse in detail 
how the proposed VSLAM system performs; we cannot construct real-world dataset 
with accurate ground truth, therefore we only use real-world datasets for validating
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Fig. 8.13 Demonstration of comparison of localization errors on.TCG1 and.TCG2. We demonstrate 
figure of APE and ratio of APE to camera’s travelling distance. Note that SVO cannot finish exploring 
the two sequences and DeepTAM cannot finish exploring .TCG1, therefore we only demonstrate 
part of the results 

the functionalities of the proposed VSLAM system, especially validate how the joint 
point-object covisibility map performs on these real-world sequences. 

8.5.2.1 Evaluation Results on Synthetic Datasets 

In this section we demonstrate evaluation results on synthetic datasets. 
We set the vehicle to explore in a virtual large-scale building model with camera 

mounted on the vehicle’s front. The test set used in this work contains 7 different 
test sequences with different environmental preconditions and different routes. An 
example of our synthetic dataset can be found in Fig. 8.14. 

The results of camera localization accuracy experiments in pure static environ-
ments (i.e..SYN 1 ∼ SYN 5) are shown in Table 8.5, the results of camera localization
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(a) Image (b) Depth image (c) Semantic segmentation 

(d) Camera route from topview of the virtual model 

Fig. 8.14 Examples of the synthetic dataset. a, b, c Examples of three kinds of information that 
can be automatically generated when rendering the synthetic dataset. d Topview of our virtual 
underground garage model in 3DS-MAX software. The blue line represents camera trajectory from 
one of our test sequences; the white car on the blue line is the vehicle where the camera is mounted 

Table 8.5 Localization accuracy comparison in purely static environments. Note that we cannot 
guarantee that the three systems can be initialized at the same frame, thus we select common frames 
that all the three systems can stably work. To reduce the influence of the inevitable random factors, 
for instance, the DSO’s initialization process may fail when testing.SYN 2, we use the average result 
for each sequence from more than five successful runs 

Dataset Error Type DSO ORB [ 3] Proposed 

.SYN 1 APE (mm) 1152.51 1231.25 863.37 
RED (%) 8.03 3.77 3.84 

.SYN 2 APE (mm) 1363.96 1325.54 1211.04 
RED (%) 8.34 6.59 5.51 

.SYN 3 APE (mm) 255.02 695.13 436.05 

RED (%) 2.63 3.03 1.38 

.SYN 4 APE (mm) 426.86 440.92 494.98 

RED (%) 3.12 2.54 2.49 

.SYN 5 APE (mm) 405.88 2000.98 199.18 
RED (%) 1.46 9.35 1.46
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Table 8.6 Localization accuracy comparison on sequences with moving objects. Note that similar 
to Table 8.5, we select common frames that all the three systems can stably work, and use the 
average result for each sequence from more than five successful runs 

Dataset Error type DSO ORB [ 3] Proposed 

.SYN 6 APE (mm) 3913.82 1263.96 934.9 
RED (%) 11.34 6.96 5.51 

.SYN 7 APE (mm) 11344.8 97.37 98.04 

RED (%) 35.64 2.41 2.19 

Table 8.7 Results comparing connection rate.RCON of the proposed work (“This”) with work [ 3] 
(“ORB”). Similar to results from Table 8.5, we use the average results from several runs, and use 
common parts from the sequence in which both ORB and our proposed system stably work 

Dataset .SYN 1 (%) .SYN 2 (%) .SYN 3 (%) .SYN 4 (%) .SYN 5 (%) 

This 49.81 85.46 83.26 55.40 51.84 

ORB 37.12 52.61 74.71 51.18 38.50 

accuracy experiments in environments with moving objects (i.e..SYN 6 ∼ SYN 7) are  
shown in Table 8.6, and the comparison of APE and RED relative to frame number 
and travelling distance are shown in Fig. 8.15.

The proposed system has better absolute tracking accuracy in 3 out of 5 cases 
compared to DSO and ORB_SLAM2, but as can be observed from from Fig. 8.15c 
and e, the proposed system and ORB_SLAM2 clearly show larger variation in APE. 
The DSO owns a unique architecture in which a large sliding window is used to 
optimize all active keyframes; the positioning error of 3D features that are most 
concerned with the tracking process is averaged and accumulated, given DSO’s better 
error consistence in every one of the first five sequences. The average magnitude 
of RED could characterize the accumulation of scale drift, and it’s clear that the 
proposed system has better scale drift resilience than the other, thanks to the sub-
map’s constraints which are used to actively rectify scale drifts. 

The localization accuracy for DSO in sequence .SYN 6 and .SYN 7, as shown  in  
Table 8.6, is much worse than the other two systems. The two sequences are specially 
designed to test the outlier removal functionality of the VSLAM system; in the two 
sequences, there will always be one large moving vehicle, which may occupy about 
.30% of the actual image. For DSO, we have noticed that a large portion of the outliers 
are still preserved in the system, which becomes false 3D mappoints in the map, 
and in return influences the accuracy of camera localization. The proposed system 
and ORB_SLAM2 share the same outlier removal mechanism and can withstand 
detrimental moving objects on image; besides, if there are not enough static feature 
points available on the frame, the proposed system can still localize itself using at 
least one mapobject on the scene, which extends its functionality in scenes with 
moving objects. 

The proposed system features a novel map construction mechanism, which can 
associate two keyframes which observe the same mapobjects even when the two
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(a) 1 APE to number of frame (b) 1 RED to travelling distance 

(c) 2 APE to number of frame (d) 2 RED to travelling distance 

(e) 3 APE to number of frame (f) 3 RED to travelling distance 

(g) 4 APE to number of frame (h) 4 RED to travelling distance 

(i) 5 APE to number of frame (j) 5 RED to travelling distance 

Fig. 8.15 Error charts comparing three VSLAM systems using .SYN 1 ∼ SYN 5. We use ORB to 
represent work [ 3]. Note that ORB_SLAM2 cannot finish exploring.SYN 1, therefore we only demon-
strate parts on which ORB_SLAM2 can stably work 

frames do not share the same image features. The results comparing the proposed 
method with ORB_SLAM2 on connection rate are shown in Table 8.7. We also  
demonstrate the factor graph of the proposed system and ORB_SLAM2 running 
on sequence .SYN 2 in Fig. 8.16. Parts of the factor graph from Fig. 8.16 are slightly 
enlarged to demonstrate how well the factor graph built by the two systems “cover” 
the theoretical associations. 

The proposed method clearly performs better in establishing covisible associa-
tions when compared with ORB_SLAM2: At the start of the sequence, frames share 
the same image appearance will also share the same object observation, thus the cov-
isibility map built by point features and the covisibility map built by object features 
largely coincide, making the superiority of the proposed system insignificant. In the 
middle of the sequence, the ORB_SLAM2 could only establish associations between 
keyframe.KF and its “vertical frames”, the horizontal frames will not be included, as
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(a) 2 map construction ratio demonstration for 

ORB SLAM2 

(b) 2 map construction ratio demonstration for 

the proposed system 

Fig. 8.16 Map construction results comparison on.SYN 2 between ORB_SLAM2 and the proposed 
system. a, b The upper figure is the actual map construction results in VSLAM system. The orange 
lines represent associations established by matching object instances in factor graph, and the green 
lines are associations introduced by matching image feature. We slightly enlarged the part of map 
in purple box to provide better view of how the connections are distributed, and the enlarged results 
are shown in the lower figure. In the lower figure, the lines are theoretical associations (the two 
frames view common image parts) calculated when rendering the synthetic dataset. Fuchsia lines 
are associations that have been “activated” by VSLAM system, while blue lines are associations 
that have not been “activated”. Note that we cannot guarantee that the two systems will select same 
keyframes, therefore the theoretical connections are calculated individually for the two systems, 
which means the theoretical connections of the two VSLAM systems will not be the same 

there exists a large variation between actual image features of .KF and its horizontal 
frames (the “vertical” and “horizontal” is relative to the camera’s moving direction). 
For the proposed system, the enhanced mapping module can build associations both 
between horizontal frames and vertical frames, which makes the connection ratio of 
this system obviously better than ORB_SLAM2. Besides, the APE and RED of the 
sequence are lower when comparing with DSO and ORB_SLAM2 (see Table 8.5), 
owing to the scale aware bundle adjustments based on the extra associations. Note that 
Fig. 8.8 also provides an example regarding the capability of our system to establish 
covisibility map, Fig. 8.10 provides a demonstration of the object matching process. 

8.5.2.2 Evaluation Results on Real-World Datasets 

We test the proposed VSLAM system on two real-world sequences: the sequence 
used in Fig. 8.17 is recorded in a large underground garage; the sequence used in 
Fig. 8.18 is recorded on real-world road. Both the Figs. 8.17 and 8.18 illustrate the 
joint covisibility graph constructed by 3D point features and rasterized object models 
features, which implies the feature extraction, tracking and mapping modules can
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work effectively in real-world environments. The point-object joint covisibility map 
can establish connections between frames without enough common point features, 
and is the key functionality that helps the proposed method reduce accumulated error. 
Part (D) of Fig. 8.17 is the actual trajectory of the camera, and the red circle is used 
to show that the camera moves to the same place when going back; part (B) and 
part (C) of Fig. 8.17 are camera trajectories recovered by the proposed method and 
ORB_SLAM2 respectively. The result of ORB_SLAM2 obviously contains larger 
accumulated error than that of the proposed method. The orange lines in part (B) 
of Fig. 8.17 are object connections between keyframes observing the same object; 
while the result of ORB_SLAM2 does not contain such connections between these 
keyframes, as shown in part (C) of Fig. 8.17. Figure 8.18 is another experiment of the 
proposed method running on actual outdoor environments; Fig. 8.18 illustrates that 
both the traffic sign objects and the point features can be effectively extracted under 
various environmental preconditions and be utilized to construct the joint covisibility 
map in the proposed VSLAM system. 

8.6 Conclusion 

In this chapter, we present a fully synthetic dataset “TCG” and the evaluation frame-
work that uses rendered photorealistic images from “TCG” to evaluate VSLAM sys-
tem. We use models in 3DS-Max and several supplementary software tools to setup 
and render a large database of sequences. By fully taking advantage of the render 
elements in V-Ray software, we can generate large amount of information regard-
ing the rating and debugging of a VSLAM system. Our dataset can provide many 
kinds of information when compared with other state-of-the-art VSLAM datasets, 
as shown in Table 8.1. We also propose several new criteria for rating performance 
of VSLAM based on environmental information, which extends VSLAM evalua-
tion framework from only testing camera positions to evaluating camera tracking 
and mapping jointly. Based on these high-accuracy zero-error ground truth, we test 
four popular VSLAM systems on our dataset to demonstrate the functionality of the 
framework and the dataset. 

Although techniques and methods proposed in this chapter are useful, we still 
believe that both the proposed dataset and evaluation framework need improvement. 
There are mainly two future topics for extending and perfecting the proposed work: 

1. We will add more sequences in different environments. In this work we focus on 
sequences in underground garages; however, the framework proposed for VSLAM 
evaluation are not limited to sequences in underground garages. We will update 
two kinds of sequences in the future: 

a. Sequences in outdoor environments that include climate change, luminance 
variation and simulated traffic actions; 

b. Sequences that are not based on planar vehicle motion.
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Fig. 8.17 Map reconstruction results of the proposed method in real-world underground garage 
sequences. We demonstrate the joint covisibility map constructed by the proposed method in a. We  
also slightly enlarge one part of the covisibility map in b, where orange lines are object connections 
constructed by the proposed method; blue lines are the actual path of the camera’s motion. Frames 
that observe the same mapobject are marked with same color of that mapobject: red keyframes 
observe object1 and green keyframes observe object2. We select two keyframes that observe object1 
and two keyframes that observe object2 as an example of how objects are distributed on the image. 
c is the map reconstruction results of the original version of ORB_SLAM2. We also present the 
actual path of the camera’s motion in d. The red circle marks the terminating location of the camera 
when it moves either forward or backward. Note that all the paths in this figure are not precise and 
can only be treated as a brief impression of how the camera moves 

2. Using information provided by the dataset, we will continue to study how different 
environmental factors influence the performance of VSLAM systems. We will not 
only focus on the trivial factors such as texture of objects or global luminance, 
but also on structures and layouts that influence the distribution and organization 
of 3D features. 

The method of using computer graphic methods to generate VSLAM data has 
encountered huge development in recent years, thanks to the development of realis-
tic rendering technology. Although CG-based methods have the natural superiority 
that it can generate zero-error ground truth and labels, the fact that it needs human 
intervention means we cannot simulate every possible contingency in real world. 
Thus, the key factor on generating realistic data for VSLAM evaluation is simulating 
object behavior precisely. To solve this problem, we believe there are mainly two 
ways:
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Fig. 8.18 Demonstration of results of the proposed method running on sequences retrieved from 
real-world roads. Points and objects are expressed using the same manner as in Fig. 8.17. Four 
keyframes are selected from corresponding parts marked on the map for demonstration 

1. Establish a large database that contains large number of possible behaviors of 
different objects (e.g.pedestrians, vehicles, animals, etc) on the scene. 

2. Developing methods that can extract object behaviors from videos and pictures 
on the internet. 

Using the above two approaches, researchers can generate a wide variety of dif-
ferent datasets for different computer vision research areas. In recent years we have 
seen works like [ 57] that can generate labeled synthetic datasets automatically, but 
it cannot always resolve occlusions or intersections correctly, and thus still needs to 
be improved. 

8.7 Discussion 

This chapter proposed a method on how to apply texture-less objects with known 
CAD model (e.g.traffic signs) in VSLAM architecture. Our method mainly consists 
of two parts: the particular VSLAM architecture using objects as landmarks and the 
parameterization process that characterize mapobjects suitable for VSLAM opera-
tion. The object-oriented VSLAM extends the classical architecture of ORB_SLAM2 
to include object features based camera tracking and local mapping module. The 
object based local mapping module allows us to enhance the map build functional-
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ity and retrieve covisibility associations based on common structural information. 
We further deploy this enhanced covisibility graph to enable several unique bundle 
adjustment methods which will help reduce accumulated tracking error. The work 
also presents a complete pipeline on: (A) generating rasterized model based on CAD 
model; (B) keyobject pose estimation by matching object model to image distance 
field; (C) keyobject matching mechanism that can compute object matching without 
the usage of any CNN outputs. In the experiments that follow, we evaluate the local-
ization performance and mapping performance of the proposed system; we prove 
that the proposed VSLAM architecture can provide comparable localization perfor-
mance with state-of-the-art VSLAM algorithms with lower accumulated scale drift; 
we have also proved that by extending the architecture of ORB_SLAM2, we can 
build up better factor graph in helping operation of other modules in VSLAM. 

While we have proved that the proposed system can achieve better overall per-
formance than state-of-the-art VSLAM methods on our synthetic dataset, there are 
still several areas that can be improved to perfect the proposed work. 

1. Currently both the object detection method and object initial pose estimation 
method utilize classification tree (or regression tree) method, whose robustness 
and accuracy are not as good as state-of-the-art deep learning based methods. 
Future implementation of this method will fuse better detection and initial pose 
estimation methods. 

2. The proposed method focuses on using the keyobjects as landmarks for precise 
camera localization and pay little attention to enhance the accuracy of 3D posi-
tions of landmarks. While the accuracy of mapobject poses can be guaranteed 
by the object pose estimation process, the accuracy of mappoints is similar to 
ORB_SLAM2. The objects on the scene have provided geometric constraints to 
these mappoints, utilizing these constraints to enhance the accuracy of 3D posi-
tions of sparse feature points will be one of the topics of our future work. 

3. While most researchers focus on creating vision-based self-localization methods 
that are better at exploring an unknown scene, the actual industrial applications 
have proposed demands on using existed map in localization. These pre-built 
maps do not only contain 3D information like point cloud but also process rich 
semantic information like keyobjects (signs, markers etc, with labels, poses and 
3D information) and structural information (annotated 3D lines and planes, lane 
lines, structural lines). To fully take advantage of these annotated information, 
our system needs to be extended in a future work. 
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Chapter 9 
Multi-task Perception for Autonomous 
Driving 

Xiaodan Liang, Xiwen Liang, and Hang Xu 

Abstract Multi-task learning has become a popular paradigm to tackle multiple 
tasks simultaneously with less inference time and computation resources. Recently, 
many self-supervised pre-training methods have been proposed and they have 
achieved impressive performance on a range of computer vision tasks. However, 
their generalization ability to multi-task scenarios is yet to be explored. Besides, most 
multi-task algorithms are designed for specific tasks usually not within the scope of 
autonomous driving, which makes it difficult to compare state-of-the-art multi-task 
learning methods in autonomous driving. In this chapter, we divide the multi-task 
perception into 2D perception and 3D perception in autonomous driving. For 2D 
perception, we extensively investigate the transfer ability of various self-supervised 
methods and reproduce multiple popular multi-task methods. Then we introduce a 
simple and effective pretrain-adapt-finetune paradigm for multi-task learning and a 
novel adapter named LV-Adapter which reuses powerful knowledge from the Con-
trastive Language-Image Pre-training (CLIP) model pre-trained on image-text pairs. 
We further present an effective multi-task framework for autonomous driving, GT-
Prompt, which learns general prompts and generates task-specific prompts to guide 
the model to capture task-invariant and task-specific information. For 3D perception, 
we investigate both multi-modality fusion and multi-task learning, and introduce an 
effective multi-level gradient calibration learning framework across tasks and modal-
ities during optimization. 
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9.1 Introduction 

Multi-task learning is a challenging problem in computer vision and has become 
an effective and low-resource paradigm in autonomous driving [ 49, 50, 113]. It is 
imperative for an autonomous vehicle to understand and solve multiple perception 
tasks, e.g., detecting surrounding cars and pedestrians, predicting road affordability 
for driving, and locating the lanes to perform suitable driving actions. Solving multi-
ple tasks jointly can reduce the training and inference time to a great extent, and also 
enforces the model to learn more generalizable representations [ 17, 50]. In spite of 
efficiency, a unified architecture should enhance the robustness of the autonomous 
driving system by learning the relationships between multiple heterogeneous tasks 
[ 50, 93, 105]. 

Some recent works have attempted to apply unified training on multiple tasks in 
autonomous training. [ 46] trains per-pixel depth prediction, semantic segmentation, 
and instance segmentation in a single model. [ 42] introduces an extra traffic light 
classifier to learn different traffic patterns following traffic light changes. [ 12] learns 
object detection and depth prediction together to identify dangerous traffic scenes. 
However, these works differ in task types, evaluation matrix, and dataset, making it 
hard to compare their performances. For example, most of them are developed based 
on dense prediction [ 4, 112] and natural language understanding [16, 99], rather than 
being tailored for more common perception tasks for autonomous driving, thus these 
methods may produce poor results when applied to a self-driving system. Therefore, 
there is an increasing demand for a thorough evaluation of existing multi-task learning 
methods covering common tasks in autonomous driving. 

In this chapter, we divide multi-task perception into 2D perception and 3D per-
ception. For 2D perception, we investigate effective adaption for multi-task learning, 
and further propose general and task-specific prompts. For 3D perception, we unify 
multiple modalities to perform multi-task learning. 

9.1.1 2D Perception 

It is crucial for multi-task learning models to obtain universal features transferred 
from existing state-of-the-art off-the-shelf pre-trained models. Recently, many latest 
self-supervised pre-training methods have achieved great potential when transferred 
to various types of vision tasks [102, 108, 110] under the pretrain-finetune paradigm. 
Despite the impressive performance, their transferability to multi-task learning sce-
narios is yet to be explored. We argue that the joint learning of multiple heterogeneous 
tasks will introduce a multitude of challenges to train a unified model and it is often not 
the case that multi-task learning is of universal benefit. Firstly, the popular pretrain-
finetune paradigm may result in worse performance in multi-task learning due to 
the misalignment of objectives between pre-training and fine-tuning [ 29, 35] since 
most supervised and self-supervised pre-training methods are designed for specific
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objectives or tasks [ 9, 10, 108, 110]. Secondly, the performance of multi-task learn-
ing relies on many non-trivial factors, e.g., model architectures, data augmentations, 
hyperparameters, and convergence properties [ 90, 92]. The specialized techniques 
catered for a specific type of architecture or task cannot be readily applied to a univer-
sal architecture since they are prone to fail during generalization. Moreover, due to 
the labor-intensive process of data annotation, it is hard to collect complete annota-
tions of different granularities for all tasks, which further complicates the situation. 
We focus on heterogeneous multi-task learning on partially labeled data (HMPL) 
under the realistic scenarios of autonomous driving. 

9.1.1.1 Effective Adaptation for Multi-task Learning 

We first delve into the representation learning stage of HMPL to reveal the per-
formance degradation of different pre-training methods. We thoroughly examine a 
wide range of pre-training methods including supervised pre-training (pretrained on 
ImageNet [ 88]), classification-oriented methods (e.g., SimCLR [ 9], MoCo [ 34]), 
detection-oriented methods (e.g., DetCo [108]), segmentation-oriented methods 
(e.g., DenseCL [102]), and vision-language pre-training methods (e.g., CLIP [ 82]) 
on three fine-grained tasks on the large-scale driving dataset BDD100K [118], i.e., 
object detection, semantic segmentation, and drivable area segmentation. Surpris-
ingly, the performance of these methods varies greatly under the same training pro-
tocol, especially on the dense prediction task, which suggests that the misalignment 
in the pretrain-finetune paradigm can lead to prominent performance degradation 
and there exists much room for improvement. 

Given that ‘universal’ pre-training is still unsolved and redesigning the resource-
intensive pre-training scheme comes with great computation overhead, LV-Adapter 
[ 61] develops a general approach that can fully harness the knowledge from the 
off-the-shelf pretrained models and make them amenable to multi-task scenarios via 
efficient adaptation. The inspiration of LV-Adapter comes from the recent progress 
of prompt-based learning in Natural Language Processing (NLP) [ 26, 67, 82, 123], 
where the language model pretrained on massive amounts of raw text can be adapted 
to new scenarios with high efficiency by introducing hand-crafted or learnable 
prompts. Following this philosophy, LV-Adapter first introduces a simple but yet 
very effective pretrain-adapt-finetune paradigm for multi-task transfer learning as a 
substitute for the dominating pretrain-finetune paradigm in computer vision. Con-
cretely, during the adapt stage, learnable multi-scale adapters with a small amount of 
parameters are tuned with frozen random initialized task-specific heads to dynami-
cally adapt the knowledge from the pretrained models under the multi-task objectives. 
Results show that the adapt stage mitigates the gap between pre-training and fine-
tuning and significantly improves the overall performance across different pretrained 
models while being very effective and introducing no extra training overhead. 

Apart from the supervised and self-supervised pre-training, Contrastive Language-
Image Pre-training (CLIP) [ 82] manages to learn high-quality visual representation 
from an enormous amount of noisy image-text pairs. CLIP achieves breakthrough
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performance in zero-shot image recognition, which indicates that it has great poten-
tial for improving the generalization capability and robustness of multi-task learning. 
To this end, LV-Adapter further excavates the linguistic knowledge from CLIP and 
enhances the visual representations in the multi-task scenarios. To maximize the cor-
respondence between the dense features and the class-specific concepts, LV-Adapter 
first learns task-specific prompts in an end-to-end manner. Then LV-Adapter models 
the language-to-vision adaptation function based on the cross-attention mechanism 
[ 97] to incorporate language priors in visual features. 

The pretrain-adapt-finetune paradigm significantly improves the overall perfor-
mance of different off-the-shelf pre-training methods. Furthermore, LV-Adapter can 
serve as an effective complementary approach for multi-task learning, which brings 
consistent performance gains on three heterogeneous tasks simultaneously. 

9.1.1.2 General and Task-Specific Prompts for Multi-task Learning 

We provide a systematic study of present Multi-Task Learning (MTL) methods on 
large-scale driving dataset BDD100K [118]. Specifically, we find that task scheduling 
[ 62] is better than zeroing loss [106], but worse than pseudo labeling [ 29] on most  
tasks. Interestingly, in task-balancing methods, uncertainty [ 46] produces satisfactory 
results on most tasks, while MGDA [ 89] only performs well on lane detection. This 
indicates that negative transfer [ 17], which is a phenomenon whereby increasing the 
performance of a model on one task will hurt the performance on another task with 
different needs, is common among these approaches. 

To mitigate the negative transfer problem, we introduce the general visual prompts 
and task-specific prompts (henceforth referred to as GT-Prompt) based on the fol-
lowing motivations: (1) Since the model has to solve multiple tasks simultaneously, 
we construct lightweight prompt blocks to learn more general and transferable repre-
sentation. Blending the learned task-invariant knowledge can enhance the effective-
ness of the multi-task model; (2) Given the visual clues of each task, the model can 
extract task-related information from the pre-trained model. Inspired by prompting 
in natural language processing [ 55, 71, 121], we leverage exemplars to generate 
task-specific prompts by considering that the visual clues should represent the spe-
cific task to some extent, and give hints for learning task-specific information; (3) 
Since different tasks may require different receptive fields during training, we intro-
duce multi-scale window attention [ 85] for the task-specific fusion module which 
integrates the task-specific prompt and visual representation, further enhancing the 
multi-task model on most tasks. Extensive experiments show that models equipped 
with GT-Prompt improve their counterparts and surpass single-task baselines by a 
large margin (e.g., . +3.6% mAP, . +2.8% mIoU, . +2.1% mIoU, . +0.7% IoU in object 
detection, semantic segmentation, drivable area segmentation, and lane detection, 
respectively, under the disjoint-balance data split setting.).
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9.1.2 3D Perception 

3D perception task plays an important role in autonomous driving. Previous works 
mostly focus on single modality [ 24, 46, 56, 57, 72, 73, 81, 109, 115, 116] and 
different perception tasks are separated into individual models [ 2, 11, 52, 54, 117]. 
It is desirable to leverage complementary modalities to produce robust predictions 
and integrate multiple tasks within a model for the sake of computation budget. For 
instance, with the development of hardware, it is affordable to deploy both LiDAR and 
camera on a car, which are responsible to provide spatial information and semantic 
information. Integrating semantic-complementary vision tasks within a framework 
would greatly facilitate the deployment of real-world applications [ 5]. 

Recent advances have stayed tuned for multi-modality fusion [ 59, 75] and multi-
task learning [ 57, 119] in the applications of 3D autonomous driving scenarios. 
Meanwhile, it is of great interest to unify multi-modality fusion and multi-task learn-
ing within a framework. However, we cannot expect that dumping all the individual 
components into one framework will function smoothly. Thus, we build up a com-
petitive baseline based on BEVFusion [ 75], which takes as input both the point cloud 
and image, serving two complementary vision tasks: 3D detection (foreground) and 
map segmentation (background). However, we observe the severe issues of modality 
bias and task conflict: (a) different tasks prefer specific modality, e.g., 3D detection 
relies on spatial information provided by LiDAR sensor while segmentation task 
relies more on image inputs. (b) adding a new task will degrade the performance of 
both tasks. 

From the perspective of optimization, we investigate the potential gradient imbal-
ance that occurs during end-to-end training in a hierarchical view. First, we study 
the gradients which are produced by different task heads and are applied to update 
the parameters of the shared backbone. We observe that simply summing up these 
raw gradients to update the shared backbone would damage the performance of both 
tasks, suggesting an imbalance between them. Empirical findings prove that there 
is a great discrepancy between the gradient magnitudes w.r.t. the task objectives. 
Second, we inspect the gradients produced in the intra-gradient layer, which is to be 
separated into successive modality branches. Given a trained baseline, we visualize 
the gradient distributions of different modality branches and find great imbalance 
in their magnitudes. We further calculate the task accuracy by dropping one of the 
modalities to measure the modality bias. Our findings align with the theoretical anal-
ysis of [101], which suggests that the point cloud and image branches are suffering 
from the imbalanced convergence rate w.r.t. the downstream tasks. 

By taking into account the findings discussed above, we propose a model to unify 
multi-modality multi-task 3D perception via multi-level gradient calibration, dubbed 
as Fuller. Specifically, we devise the multi-level gradient calibration, comprised of 
inter-gradient and intra-gradient calibration, to address the associated issues. In terms 
of the task conflict, we find that the task with lower gradient magnitude would be 
overwhelmed by another task with higher gradient magnitude. Thus, we propose to 
calibrate the gradients of different task losses at the backbone. Since the gradient
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would be manipulated at the layer level, this technique is referred to as inter-gradient 
calibration. Regarding modality bias, we expect the different modalities to update and 
converge at the same pace. Hence, before the gradients are separated into the modality 
branches, we calibrate their magnitudes to the same level, which is performed in the 
intra-gradient layer internally and thus called intra-gradient calibration. 

On top of the gradient calibration, we introduce two lightweight heads for our 
tasks. These two heads are both transformer-based query heads. With our specially 
designed initialization methods, they can generate fine-grained results with just one 
decoder layer and thus can save much more parameters than dense heads. 

9.2 Related Work 

9.2.1 Visual Perception for Autonomous Driving 

Autonomous driving relies on a perception system to gather information and under-
stand the environment. Visual perception, as the most similar sensing modality to 
humans, provides high-resolution images that satisfy almost all tasks required for 
autonomous driving. Some of the tasks have long been studied beyond autonomous 
driving scenarios. Chen et al. [ 8] predict 2D object detection from images while 
Semantic FPN [ 48] performs semantic segmentation and Lanenet [103] implements 
lane detection respectively using visual inputs. Though these models are designed for 
different tasks, they all adopt the backbone-header architecture, some of which even 
share the same backbone structure like ResNet [ 37] or transformer [ 22]. Running 
independent models for perception tasks separately is a waste of time and computa-
tion resources, thus calling for the development of a unified perception system. 

LiDAR and image are the two most powerful and widely used modalities in the 
area of autonomous driving. Multimodal fusion has been well-studied to boost the 
performance of 3D object detection tasks [ 2, 11, 59, 98, 117]. Multi-task networks of 
3D perception also arouse significant interest in the autonomous driving community. 
These multi-task studies are limited to uni-modal network architectures, either with 
a LiDAR backbone [ 24, 46, 115] or an image backbone [ 57, 72, 73, 81, 109]. 
MMF [ 58] works on depth completion and object detection with both camera and 
LiDAR inputs, but depth estimation only works as an auxiliary head and only object 
detection was evaluated. BEVFusion [ 75] is the first multimodal network to perform 
object detection and map segmentation simultaneously. However, BEVFusion [ 75] 
focuses on single task and network acceleration, and only provides two pieces of joint 
training results. Our proposed method is the first multimodal multitask network, and 
we evaluate each task and analyze them from multi-modality and multi-task learning 
perspectives.
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9.2.2 Multi-task Learning 

Multi-task methods are mainly divided into two categories [ 96], network architecture 
improvement [ 33, 76, 87, 111] and optimization methods [ 13, 66, 69]. Multi-task 
learning jointly trains shared parameters on multiple tasks, mining latent information 
among them to improve efficiency and accuracy. Famous multi-task learning models 
include Mask R-CNN [ 36], which applies Faster R-CNN [ 86] as the backbone and 
conducts instance segmentation and object detection at the same time. Other methods 
like Eigen et al. [ 23] address depth prediction, surface normal estimation, semantic 
labeling tasks, and MultiNet [ 94] provide prediction on classification, detection, 
and semantic segmentation tasks within a single model. YOLOP [105] leverages 
CSPDarknet as the backbone, which branches out three task-specific heads for object 
detection, drivable area segmentation, and lane detection prediction. Standley et al. 
[ 90] and Christopher et al. [ 25] improve the previous multi-task training schema by 
grouping proper tasks together rather than naively training all tasks together. 

The goal of multi-task optimization methods is to balance the loss weights of 
different tasks to prevent one task from overwhelming another during training. DWA 
[ 69] adjusts the loss weights based on the rate at which the task-specific losses 
change, but it requires that the loss magnitudes are balanced beforehand. Gradnorm 
[ 13] balances the loss weights automatically by stimulating the task-specific gradients 
to be of similar magnitude. IMTL [66] optimizes the training process by guaranteeing 
the aggregated gradient has equal projections onto individual tasks. Yet they have 
not been studied in the domain of multi-modality multi-task learning. In this chapter, 
we focus on developing general and effective approaches for multi-task learning in 
autonomous driving scenarios. 

9.2.3 Multimodal Learning 

Multimodal learning is increasingly used to improve the performance of certain tasks, 
such as action recognition [ 27, 43, 45], visual question answering [ 1, 41], and percep-
tion tasks in autonomous driving [ 2, 59, 75]. Most multi-modality research focuses 
on the network structure, such as concatenation, convolution or gated fusion in the 
middle, or later part of the network [ 40, 47, 79]. Few studies [ 80, 100] concentrate 
on multimodal optimization methods during the training process. [100] proposes the 
overfitting-to-generalization ratio (OGR) to quantize the significance of overfitting 
and try to solve it with Gradient Blending. It designs modal heads for each task and 
it is thus difficult to expand to a multi-task network. OGM-GE [ 80] try to solve the 
optimization imbalance problem by dynamically adjusting the gradients of different 
modalities. Since it separates parameters of different modalities in the linear clas-
sification head, it is hard to generalize to other complicated task heads. Differently, 
our method can be used in networks with any task head as long as the network has 
modal-specific parameters.
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9.2.4 Pre-training Methods 

A dominating paradigm in computer vision is to pretrain on a large scale of data, 
e.g., ImageNet [ 88], then finetune on target tasks with usually less training data. 
Recently, researchers are interested in learning visual representations without human 
supervision. We roughly divide them into three categories, namely, classification-
oriented, detection-oriented, and segmentation-oriented methods. Classification-
oriented methods typically rely on contrastive learning and online clustering, e.g., 
SimCLR [ 9], MoCo [ 10, 34], and BYOL [ 32]. Detection-oriented methods like 
DetCo [108] are specially designed for object detection by conducting contrastive 
learning between the global image and local patches. Segmentation-oriented meth-
ods like PixPro [110] further work on pixel-level correspondence to benefit dense 
prediction downstream tasks. We show that these methods are sub-optimal for multi-
task learning, and we focus on improving the performance of these off-the-shelf 
methods instead of redesigning the computation-intensive pre-training stage. 

9.2.5 Prompt-Based Learning 

Prompt-based learning [ 38, 68, 104] is put forward to bridge the gap between pre-
training and model tuning in the field of natural language processing. GPT-3 [ 3] first 
designs various text prompts according to the property of tasks and treats the down-
stream task as a masked language modeling problem. Meanwhile, other approaches 
like [ 55, 71, 121] train learnable continuous prompts in the embedding space of 
the model and achieve competitive performance compared to finetuning. Recently, 
CLIP [ 82], which is trained on multi-modality vision-language pairs data, achieved 
impressive performance on zero-shot image classification by injecting visual cat-
egories into the text input as a prompt. Subsequent works [ 26, 114, 123] further 
tunes CLIP with learnable soft prompts by few-shot supervisions. In the field of 
computer vision, prompt tuning is introduced by injecting learnable vectors in the 
input space [ 44] or inserting lightweight blocks to learn prompts [ 77]. However, 
these approaches are tailored for solving downstream tasks independently, and are 
inapplicable to heterogeneous multi-task learning. In this work, we design general 
and task-specific prompts to learn task-invariant and task-specific knowledge for 
heterogeneous multi-task learning.
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9.3 2D Perception 

9.3.1 Empirical Study 

9.3.1.1 Preliminaries on Multi-task Learning 

Multi-task Architectures 

Multi-task learning (MTL) architectures apply parameter sharing to learn shared 
information between different tasks. MTL architectures can be divided into encoder-
focused architectures [ 28, 69, 76, 87] and decoder-focused ones [ 95, 111, 120] 
according to parameter sharing scope. Encoder-focused architectures can be fur-
ther categorized into hard and soft parameter sharing. In this chapter, we select the 
hard parameter-sharing structure as our backbone due to its simplicity and stability. 
Parameters are only shared in the encoder part of the model followed by task-specific 
heads. As Fig. 9.1 shows, the image inputs first go through the shared encoder, and 
then the feature map is fed into different heads to produce corresponding predictions. 
The multi-task methods can be divided into three types as in [ 60]. 

Task Scheduling 

Task scheduling is the process of choosing which task or tasks to train on at each train-
ing step. Some scheduling methods arrange the task orders during the training process 
in a fixed order like Round-Robin [118], while others may sample tasks following 
specific distributions [ 63], like Uniform sampler and Weighted sampler. Specifically, 
Uniform sampler samples tasks from a uniform distribution and Weighted sampler 
samples tasks with weight proportional to the number of training epochs of each task. 
We test the above three task scheduling methods in our investigation and compare 
their performances. 

Shared 
Encoder 

Head A 

Head B 

Head C 

Multi-task Architecture 
Multi-task Settings 

Head D 

Data Split Task Scheduling Task Balancing 

Disjoint-normal 

Disjoint-balance 

Full 

Uniform sampler 

Weighted sampler 

Round-robin 

Fixed 

Uncertainty 

GradNorm 

MGDA 

Partial-label 
Learning 

Zeroing loss 

Pseudo labeling 

Fig. 9.1 The multi-task architecture and settings in our investigation. We follow the common multi-
task architecture where each task shares the same encoder and has its specific head. The multi-task 
settings focus on three types of task scheduling, four task balancing methods, and two partial-label 
learning techniques and cover three common data split settings
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Task Balancing 

Task balancing is designed to deal with the gradients between tasks for the shared 
parameters in the network. When dealing with multiple tasks, the shared parameters 
are likely to be dominated by the one with a large gradient magnitude or confused by 
conflicting gradients. It is intuitive to apply weights over these gradients to balance 
among tasks, and several methods have been proposed, including (1) Fixed weight-
ing, which fixes all loss weights during training; (2) Uncertainty weighting [ 46], 
introducing the task-dependent Homoscedastic uncertainty as the basis for weighting 
losses by maximizing the Gaussian likelihood of the uncertainty; (3) GradNorm [ 13], 
calculating the product of .L2 norm of task gradient and the relative inverse learn-
ing rate as the indicator of the task learning pace, and then setting task weights to 
minimize the learning pace difference among tasks to balance the training process; 
(4) MGDA [ 89], treating the Multi-Task Learning problem as a multi-objective opti-
mization problem by using multiple gradient descent algorithm [ 18]; (5) ParetoMTL 
[ 65], which finds a solution called Pareto optimal solution where all tasks losses can 
decrease without increasing the loss on other tasks. 

Learning on Partial Labels 

Image segmentation task requires annotations of labels to every pixel of the image, 
which is time-consuming and it is thus hard to get enough annotations. To deal with 
the missing annotation problem, two different methods are introduced, including 
Zeroing loss [ 51, 107] and Pseudo labeling [ 29]. Zeroing loss [ 51, 107] simply  
zero losses for a particular task if the input image does not have the corresponding 
annotation. Pseudo labeling [ 29] first trains a teacher model on fully labeled data. 
Then the teacher model is used to label the missing annotations to create a multitask 
pseudo-labeled dataset. 

9.3.1.2 Multi-task Setup 

We focus on four major tasks in autonomous driving, i.e., object detection, seman-
tic segmentation, drivable area segmentation, and lane detection. We choose the 
large-scale BDD100K [118] dataset as the main dataset, which contains diverse 
heterogeneous tasks. Examples of each task are shown in Fig. 9.1. We choose the 
hard-parameter sharing structure for efficiency and select the state-of-the-art detector 
and segmentation head to build up our model. 

Encoder 

The encoder consists of a backbone network and a neck network. We choose the Swin 
transformer [ 74] as the backbone to extract features of the input image. The output
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of the backbone is denoted as .{C2,C3,C4,C5}. Then we adopt Feature Pyramid 
Network (FPN) [ 64] module for the neck network to fuse features generated by the 
backbone. The output of the neck is denoted as .{P2, P3, P4, P5}. 

Detection Head 

For the detection task, we choose Sparse R-CNN [ 91] as the detection head. Sparse 
R-CNN directly generates .Ndetect of candidates from the output of the last layer 
of the Feature Pyramid Network. According to the object number distribution in 
the BDD100k dataset, we decide to set the candidate number .Ndetect = 300. Set 
prediction loss is applied to find the optimal bipartite matching between predictions 
and ground truth objects. 

Segmentation Head 

For segmentation-based tasks, we choose state-of-the-art segmentors, e.g., Mask-
Former [ 14] and Semantic FPN [ 48], as the segmentation head. MaskFormer or 
Semantic FPN takes in multi-layer output from Feature Pyramid Network . {P2, P3,
P4, P5}. Features from each layer are up-sampled to.1/4 scale and summed element-
wise. Then this merged feature map is again upsampled by a factor of 4, followed by 
softmax to produce the classification score for every pixel at the original resolution. 

Optimization 

Our multi-task loss contains specific parts for different task heads. For object detec-
tion, we adopt the same objective as in Sparse R-CNN [ 91]. For segmentation-based 
tasks, i.e., semantic segmentation, drivable area segmentation, and lane detection, 
we employ the same loss as in MaskFormer [ 14] or Semantic FPN [ 48]. Therefore, 
the total loss for the multi-task model is formulated as follows: 

.Ltotal = λ1Ldet + λ2Lsem + λ3Ldriv + λ4Llane, (9.1) 

where .Ldet, .Lsem, .Ldriv, .Llane represent objectives for object detection, semantic 
segmentation, drivable area segmentation, and lane detection, respectively..λ1, λ2, λ3, 
and .λ4 stand for weighting factors for different parts. 

9.3.2 Dataset 

In BDD100K [118], 70k training images are labeled for object detection, lane detec-
tion, and drivable area segmentation, and only 7k training images are labeled for
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semantic segmentation. These two sets are not disjoint and about 3k images have 
complete annotations for all three tasks. As is described in [29], data annotation is one 
of the biggest challenges for training a multi-task model. In real-world scenarios, it 
is unrealistic to obtain complete types of annotations for all input images, especially 
in the traffic scene where fine-grained understanding is required. In this chapter, we 
are interested in the performance of multi-task learning with different quantities of 
annotations. Thus, we mainly consider the following scenarios that correspond to 
three different levels of annotation scarcity. 

9.3.2.1 Disjoint-Normal Setting 

Under the same annotation effort or budget, the quantity of labels decreases with 
the increase in complexity of labeling a task. Hence, in this setting, we consider a 
realistic scenario where each input image is labelled to only one task, namely, the 
annotations of each task are disjoint, and the number of labelled images for each task 
is in decreasing order as follows: drivable area segmentation (20k), object detection 
(10k), semantic segmentation (7k), lane detection (20k). 

9.3.2.2 Disjoint-Balance Setting 

We further consider a more difficult setting with the lowest quantity of annotations 
that corresponds to the scenarios of scarce annotations. There are 21k images in this 
setting and each task has 7k labeled images that are not overlapped with other tasks. 

9.3.2.3 Full Setting 

Full setting refers to experimenting on all available annotations on . ∼74k images in 
BDD100K and can be used to analyse the upper bound of different methods. 

9.3.3 Pretrain-Finetune for Multi-task Learning 

In this section, we extensively investigate the performance of different types of pre-
training methods when transferring to multi-task scenarios, including supervised 
pre-training, classification/detection/segmentation-oriented methods, and vision-
language pre-training methods.
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9.3.3.1 Revisiting Pre-training Methods 

Supervised Pre-training 

We select the weights pretrained on the ImageNet, which is the most widely adopted 
pretrained model in the past decade. 

Classification-Oriented Methods 

Currently, the state-of-the-art classification-oriented pre-training methods are mainly 
based on contrastive learning and online clustering. During the pre-training phase, 
they produce image-level prediction using global features and minimize the distance 
between positive pairs while pushing the representations of negative pairs apart. This 
eliminates the need for computation-intensive generation steps in previous generative 
methods [ 20, 21]. However, they may lack spatial sensitivity for fine-grained tasks 
since the spatial details are not considered in their formulation. We select MoCo-v1 
[ 34], MoCo-v2 [ 34], SimCLR [ 9], SwAV [ 7], BYOL [ 32] for comparison. 

Detection-Oriented Methods 

DetCo [108] is specially designed for object detection by enforcing contrastive learn-
ing between global images and local patches with multi-level supervision. It achieves 
good performance on object detection while maintaining competitive classification 
accuracy. 

Segmentation-Oriented Methods 

Different from the aforementioned ones, this type of methods pursue pixel-level 
self-supervised learning for learning dense feature representations. For example, 
PixPro [110] proposes a pixel-to-propagation consistency task, where two asymmet-
ric pipelines are utilized to obtain positive pixel pairs. We select DenseCL [102] 
for comparison. We download self-supervised pretrained models from MMSelfSup 
repository. 1

9.3.3.2 Comparisons of Pre-training Methods 

We report the performance of the aforementioned methods in Table 9.1, and come 
to the following observations: 

• Many methods encounter substantial degradation on pixel-level segmentation 
tasks. For semantic segmentation, MoCo-v1/v2 and DenseCL achieve the worst 
mIoU. For drivable area segmentation, MoCo-v1/v2, DenseCL, and CLIP have

1 https://github.com/open-mmlab/mmselfsup. 

https://github.com/open-mmlab/mmselfsup
https://github.com/open-mmlab/mmselfsup
https://github.com/open-mmlab/mmselfsup
https://github.com/open-mmlab/mmselfsup
https://github.com/open-mmlab/mmselfsup
https://github.com/open-mmlab/mmselfsup
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Table 9.1 Comparisons of different paradigms under the Disjoint-normal setting with ResNet-50 
backbone. Orange color indicates the results of the novel pretrain-adapt-finetune paradigm, while 
others are results of conventional pretrain-finetune paradigm 

Semantic Seg. Drivable Seg. Object Detection 

Type Model mIoU pACC mIoU pACC mAP AP50 AP75 

Classification-oriented 

MoCo-v1 [34] 
17.8 48.6 70.8 92.0 25.8 49.5 23.1 
59.2 93.2 83.6 96.9 25.9 50.0 23.0 

MoCo-v2 [10] 
10.3 19.8 73.4 93.5 26.0 50.1 23.2 
61.2 93.4 83.8 96.9 26.1 50.4 23.4 

SimCLR [9] 
60.3 93.3 83.5 96.8 25.4 48.9 22.5 
60.1 93.2 83.5 96.8 25.2 48.9 22.3 

SwAV [7] 
45.9 71.1 82.0 96.5 25.6 49.1 23.0 
61.1 93.3 83.1 96.7 25.6 49.3 23.1 

BYOL [32] 
59.2 90.2 75.6 93.9 25.9 49.8 23.4 
61.7 93.4 83.5 96.8 25.7 49.4 23.1 

Detection-oriented DetCo [108] 
38.1 58.5 83.2 96.7 25.9 49.7 22.9 
61.0 93.4 83.7 96.9 26.2 50.3 23.3 

Segmentation-oriented DenseCL [102] 
20.0 40.0 73.7 93.7 26.1 50.3 23.5 
60.7 93.3 83.9 96.9 26.3 50.3 23.7 

Vision-language CLIP [82] 
54.5 91.1 74.1 93.1 26.5 50.7 23.8 
61.0 93.2 83.4 96.8 26.3 50.5 23.5 

the worst performance. We hypothesize that the architecture of task-specific heads 
and the domain gap cause between pretraining and finetuning degradation. 

• Only SimCLR achieves decent performance on all three tasks. 
• The pre-training paradigm does not seem to have an explicit correlation with 
the downstream performance, and even the task-oriented design in pre-training 
does not guarantee the transfer performance on the corresponding task type. For 
example, the segmentation oriented DenseCL achieves sub-optimal performance 
on two segmentation tasks. 

9.3.4 Effective Adaptation for Multi-task Learning 

9.3.4.1 Pretrain, Adapt, Then Finetune 

The state-of-the-art pre-training methods mentioned above perform well when trans-
ferred to a single task such as image classification and object detection. However, 
most of them cannot achieve good performance simultaneously in multi-task learn-
ing, which is referred to as degraded transferring performance. We attribute the 



9 Multi-task Perception for Autonomous Driving 295 

Finetune stage Adapt stage 

Image 
EncoderImage 

Supervised Pretrain 

Label 

Image 
EncoderImage 

Head #1 

Head #2 

Head #3 

Multi-task Finetune 

Image 
Encoder 

Image 
Contrastive 

Loss 
Image 

Encoder 

Self-supervised Pretrain 

Image 
EncoderImage Adapter 

Head #1 

Head #2 

Head #3 

Multi-task Adapt-Finetune 

Image 
Encoder 

Image 
Contrastive 

Loss 
Text 

Encoder 

Vision-Language Pretrain 

Text 

Image 
Encoder 

Image Adapter 

Head #1 

Head #2 

Head #3 

Language-Guided Adapt-Finetune 

Text Text 
Encoder 

(a) Pretrain-Finetune (b) Pretrain-Adapt-Finetune (c) Language-Guided Pretrain-Adapt-Finetune 

Frozen parameters 

Adapter 

Fig. 9.2 Comparisons of the conventional pretrain-finetune paradigm and the novel pretrain-adapt-
finetune paradigm. The language-guided pretrain-adapt-finetune paradigm further incorporates lan-
guage priors into multiple downstream tasks 

degraded transferring performance of the state-of-the-art pre-training methods to 
two critical factors, i.e., optimization gap and architectural gap. Firstly, the high spe-
cialization of the pre-training methods and the heterogeneity of downstream tasks 
result in the optimization gap in the classic pretrain-finetune paradigm. To be spe-
cific, the objective for pre-training is usually a type of constastive loss (e.g., InfoNCE 
[ 78]) while the fine-tuning stage is supervised by a weighted sum of several task-
specific losses. Secondly, we notice that many models in Table 9.1 are pretrained in 
a model with convolutional head, e.g., Fast R-CNN detector [ 30] and convolution-
based projection head. In contrast, we adopt the transformer-based MaskFormer head 
for segmentation tasks. The distinctions between convolution and transformer lied 
in the inductive bias (local v.s. global) and the internal representation structure [ 83] 
and we conjecture this plays a non-negligible role in transferring pre-trained models. 

We draw inspiration from the recent progress of prompt-based learning, where 
prompt tuning has emerged as a new alternative to fine-tuning. For example, P-Tuning 
v2 [ 70] matches the fine-tuning performance by only tuning learnable prompts while 
freezing the large-scale language model. Following this philosophy, we propose a 
simple but yet effective pretrain-adapt-finetune paradigm for the effective adaptation 
of those off-the-shelf pretrained models without redesigning the resource-intensive 
pre-training stage. 

During the adaptation stage, we are given the pretrained model weights (e.g., 
ResNet-50) inherited from the pre-training stage. We aim to transform the model 
via a small amount of learnable parameters to adapt the knowledge of the pretrained 
weights towards multi-task scenarios. To this end, we freeze the random initialized 
task-specific heads and the backbone, while tuning the parameters of FPN (feature 
pyramid network) supervised by the multi-task loss function in Eq. 9.1. We compare 
different schemes for multi-task learning in Fig. 9.2. This  adaptation stage character-
izes a few critical design choices: (1) This stage bridges the gap between pre-training 
and fine-tuning by including the pretrained weights and multi-task objectives simulta-
neously and the frozen backbone prevents the pretrained weights from being spoiled 
before the finetune stage. (2) As opposed to the single-layer prompt/adapter in P-
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Fig. 9.3 An overview of LV-Adapter. We first train three specialized teacher on labeled data to 
generate pseudo labels for each task. The multi-task model is then trained on both ground-truth and 
pseudo labels under the language-guided pretrain-adapt-finetune paradigm 

Tuning [ 53] and CLIP-Adapter [ 26], the FPN acts as a multi-scale adapter that are 
endowed with greater capacity and provides semantically stronger features for fine-
grained downstream tasks. We have experimented with more sophisticated adapters 
(e.g., scale-aware adapters, lightweight transformer) and observed marginally better 
results. Hence, we opt for the original architecture above. We experimentally verify 
that our pretrain-adapt-finetune paradigm significantly improves the performance 
and stability of different kinds of pre-training methods without increasing the total 
training costs. 

9.3.4.2 Language-to-Vision Adapter 

From the perspective of transfer learning, CLIP can serve as a complementary scheme 
to enhance the pretrain-adapt-finetune paradigm, since it can comprehend the con-
cepts in natural language as well as the correspondence between visual and linguistic 
features. We note that the result of CLIP in Table 9.1 only reuses the weights of its 
image encoder and discards the text encoder. Therefore, we take a step further to 
explicitly exploit the knowledge in the full CLIP model. 

Basically, the CLIP model excels in aligning the visual and language embeddings 
and some works [ 84, 122] claim that the textual features generated by CLIP have 
meaningful correspondence to the semantic regions in an image. Therefore, we pur-
sue underpinning the compatibility between the semantic concepts of each task and 
the image features in order to generate semantically stronger context for downstream 
tasks. We outline the resulting model, named LV-Adapter, in Fig. 9.3, and elaborate 
on each component in what follows. 
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Pixel-Class Correspondence 

The CLIP model adopts ResNet [ 37] and BERT [ 19] as the encoders for image 
and text, respectively. Formally, we denote the last output feature maps from ResNet 
stages.{Ci }5 i=2 as.{xi }5 i=2. In the CLIP model, attentional pooling and.L2 normalization 
are applied to .x5 ∈ RH5W5×C5 to produce the global image feature .Îe ∈ R1×C5 for 
zero-shot inference, which can be formulated as follows: 

.[Îe, x̂5] =  L2_NORM(MHSA(GAP(x5) ⊕ x5)), (9.2) 

where .GAP(·) denotes global average pooling, .MHSA(·) denotes multi-head self-
attention [ 97], and.⊕ denotes concatenation operation. To extract textual features of 
each class, class-specific prompts are constructed via a prompt-generating function 
and fed into a text encoder and we denote the normalized output features for . N 
classes as .T̂e ∈ RN×C , which can be formulated as follows: 

.T̂e = L2_NORM(TE(Gen({ni }N i=1))), (9.3) 

where.Gen(·) is the generator function for class-specific prompts,.TE is text encoder, 
and .{ni }N i=1 is the embeddings of class names. Though .T̂e and .Îe are well aligned 
in the image-text contrastive pre-training, they do not preserve any spatial details 
and are not readily applicable for downstream fine-grained tasks. In contrast, the 
multi-level features output by FPN are semantically rich in the spatial dimension, 
but are not directly aligned in the pre-training stage. Therefore, we pursue to learn 
task-specific prompts and propose a language-to-vision adapter to enhance the pixel-
class correspondence. 

Learning Task-Specific Prompts 

In the original implementation of CLIP, the prompt-generating function.Gen(·) out-
puts hand-crafted prompts using the predefined template, e.g., “a photo of a 
[CLS].” However, the performance is highly sensitive to the form of the template 
[ 82, 123], which may be sub-optimal when transferring to heterogeneous downstream 
tasks. Hence, we follow CoOp [123] to use learnable textual contexts in prompting 
for each task. In spite of the inconsistent output formats of three tasks (4-D box v.s. 
dense output), they both need to determine the category of boxes or pixels, and we 
incorporate the class names of each task in prompting. The task-specific prompting 
can be formulated as follows: 

. ˆTe,i = L2_NORM(TE(Gen(vi ⊕ ni ))), (9.4) 

where .ni refers to the embedding of class name belonging to a specific task, and . vi 
is the learnable contexts. 
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Learning Language-to-Vision Adapter 

To align the textural features and the dense FPN features, we propose a Language-to-
Vision Adapter to incorporate the language priors into the visual features. Formally, 
we denote the last feature map of.P5 as.z5 ∈ RH5W5×C , and we aim to learn an adapter 
function.AL→V to generate language-aware context for downstream tasks. We utilize 
the cross-attention mechanism in Transformer decoder [ 97] for Language-to-Vision 
adaptation: 

.AL→V ( T̂e, z5) = TransDecoder(q = z5, k&v = T̂e), (9.5) 

where the .q, k, v  stands for query, key, and value, respectively. A single linear fully 
connected layer is used to adjust the channel number of . T̂e and we omit it in Eq. 9.5 
for simplicity. We denote the output of Equation 9.5 as. z̃5 ∈ RH5W5×C and we simply 
substitute .z5 with . z̃5 and leave the task-specific head design unchanged. 

9.3.5 GT-Prompt 

The key to multi-task learning is to learn general and explicit representations among 
tasks, and establish relationships between them. Therefore, a good multi-task learn-
ing framework should take full advantage of task-agnostic and task-specific knowl-
edge, and guide the model to learn better representations. To this end, we introduce 
our proposed GT-Prompt, which consists of three components: (1) general prompts 
(G-Prompt) generated by lightweight prompt blocks to learn task-invariant knowl-
edge; (2) task-specific prompts (T-Prompt) produced by pre-trained image encoder 
to encode task-specific information; (3) a task-specific fusion module to integrate 
the visual representation and task-specific prompts. 

9.3.5.1 General Prompt 

The general prompt is learnable task-invariant knowledge for all tasks. To sufficiently 
exploit semantic information from the pre-trained backbone, we construct multiple 
layer-wise prompt blocks (denoted as G-Prompt blocks), which are plugged into the 
backbone and they extract task-agnostic information. The illustration of G-Prompt 
is shown in the bottom left of Fig. 9.4. 

Specifically, layer-wise G-Prompt blocks are inserted into each layer of the 
transformer backbone. Given an input image, the backbone produces interme-
diate layer-wise feature maps after self-attention modules, which are defined as 
.{Attn1, Attn2, ..., Attni }. Layer-wise G-Prompt blocks are represented as . {G1, 
G2, ..., Gi }. We suppose that the input feature maps for each transformer layer are 
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Fig. 9.4 The architecture of the proposed GT-Prompt consists of (1) G-Prompt generated by 
lightweight prompt blocks to learn task-invariant knowledge; (2) T-Prompt produced by a pre-
trained image encoder to encode task-specific information; and (3) a task-specific fusion module to 
integrate the visual representation and task-specific prompts 

.{x1, x2, ..., xi }, then the feature maps output from the attention layer can be formu-
lated as: 

.yi = Attni (xi ), (9.6) 

in which.yi represents intermediate feature maps after the attention layer. G-Prompt 
blocks further generate G-Prompt: 

.gi = Gi (yi ), (9.7) 

where .gi represents layer-wise general prompt, which is blended with the interme-
diate feature maps . yi : 

.xi+1 = xi + ML  P(yi + βgi ) (9.8) 

where . β denotes a learnable parameter to balance two terms, and MLP is a neural 
network with two hidden layers and a GELU nonlinearity [ 39]. For efficiency and 
effectiveness, the G-Prompt block is built with two .3 × 3 depthwise convolutional 
layers [ 15]. 

9.3.5.2 Task-Specific Prompt 

The overview of our task-specific prompts is shown in Fig. 9.5. Task-specific prompts 
should encode task-specific information which helps the model understand tasks 
better, thus we leverage exemplars to generate T-Prompt. 

Here we adopt an image encoder pre-trained on ImageNet classification to gen-
erate task-specific prompts. For visual perception, the ground-truth annotations pro-
vide hints of shapes and sizes of different objects, motivating the model to choose the 
best window size and mix multi-scale information specifically. For object detection, 
given an image. I and its annotated bounding boxes.R = {v1, v2, ..., vn}, task-specific 
prompt aims to mark the image regions with class-specific markers. Here we use the 
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Fig. 9.5 Details of 
task-specific prompts. For 
the box-wise task, we 
leverage exemplars with 
colored bounding boxes to 
generate the task-specific 
prompt. For pixel-wise tasks, 
we adopt selected annotated 
masks to produce prompts 

Pre-trained 
Image

 Encoder 

Box-wise Task 

Pixel-wise 
Task 

GAP 

GAP 

colored bounding boxes to mark all objects uniquely as in visualization. We choose 
the image encoder whose architecture is the same as the backbone and denote the last 
output feature map from the image encoder.C5 as. x5. After selecting the visualization 
map, we pass it into .C5 and apply a Global Average Pooling (GAP) on it to get the 
task-specific prompt: 

.p = GAP(x5) ∈ R1×1×D . (9.9) 

For pixel-wise tasks (i.e., semantic segmentation, drivable area segmentation, and 
lane detection), we extract features of corresponding ground-truth masks of exem-
plars by Eq. 9.9. In this way, we get task prompts .pdet, .psem, .pdriv, .plane for object 
detection, semantic segmentation, drivable area segmentation and lane detection, 
respectively. 

9.3.5.3 Task-Specific Fusion 

The key idea of our task-specific fusion module is to prepend the related task-specific 
prompt to the key and the value of the window multi-head attention at each trans-
former layer. Since the fixed window size in the multi-head attention cannot capture 
diverse multi-scale information for different tasks, we introduce multi-scale windows 
to perform multi-scale window multi-head attention as in Fig. 9.4. 

Here we suppose that the task-specific fusion module contains . h heads and . nwin  

scales of windows. We first evenly divide the input feature maps. x̂ into.nwin  groups: 

.{ŷi } =  Split( ̂x) ∈ R 
h 

nwin  
×H×W × D h , i = 1, ..., nwin, (9.10) 

where .ŷi indicates intermediate feature maps. Then we apply multi-head attention 
layers with different window sizes to different groups. Specifically, given a group 
of input feature maps . ŷi , the query .Qi , key  .Ki , and value .Vi are learned by linear 
projections: 

. 

Qi = ŷi Wq , 
Ki = ŷi Wk, 
Vi = ŷi Wv, 

(9.11) 



9 Multi-task Perception for Autonomous Driving 301 

where .Wq , .Wk , and .Wv indicate learnable parameters for query, key, and value, 
respectively. To learn task-specific information for different tasks, we prepend spe-
cific T-Prompt . p to key and value respectively, and obtain a new key or value: 

. 
K '

i = p ⊕ Ki , 
V '
i = p ⊕ Vi , 

(9.12) 

where .K '
i and .V

'
i represent new key and value, and .⊕ is concatenation. Then we 

apply window multi-head attention with multi-scale windows to get task-specific 
information: 

.Oi = MLP(Wi -Attention(Qi , K '
i , V

'
i )), (9.13) 

where .Oi denotes the output feature, and W.i -Attention represents window multi-
head attention [ 74]. We concatenate multi-scale output feature maps and get the 
task-specific feature .O as follows: 

.O = O1 ⊕ O2 ⊕ ... ⊕ Oi , i = 1, ..., nwin, (9.14) 

In this way, we get task-specific features.Odet,.Osem,.Odriv,.Olane for object detection, 
semantic segmentation, drivable area segmentation and lane detection, respectively. 
These features are then processed by subsequent FPN neck and task-specific heads, 
which predict results for different tasks. 

9.4 3D Perception 

9.4.1 Dataset 

nuScenes [ 5] is a multi-sensor datasets with diverse annotations to support multiple 
tasks such as detection, tracking and especially BEV map segmentation which is 
usually absent in other datasets. There are 28,130 training samples and 6,019 valida-
tion samples, each comprising one 32-beam LiDAR scan and 6 multi-view images. 
Regarding 3D detection, there are 10 foreground categories, and the mean Average 
Precision (mAP) and nuScenes Detection Score (NDS) are used to evaluate the per-
formance. As for map segmentation, the model is required to segment 6 background 
categories in BEV view, which is measured by the mean Intersection over Union 
(mIoU). 
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9.4.2 Fuller 

In this section, we introduce the Fuller, a framework that unifies the multi-modality 
multi-task 3D perception in autonomous driving scenarios. Fuller aims to mitigate 
the problem of modality bias and task conflict during the end-to-end training, which 
is accomplished by gradient calibration in a hierarchical way. Regarding the network 
architecture, we introduce a light-weight design for the task heads, named Fuller-det 
and Fuller-seg. 

9.4.2.1 Network Architecture 

As shown in Fig. 9.6, our proposed Fuller extracts features from both LiDAR point 
cloud and images, then transforms them into a unified bird’s-eye view (BEV) repre-
sentation. It relies on VoxelNet [124] as LiDAR backbone and Swin-T [ 74] as image 
backbone. As for image features from multi-view cameras, we adopt same strategy 
as LSS [ 81] to project them onto BEV. We adopt the modality fusion strategy where 
the features of two branches, . f img  and . f lid , are first concatenated and then fed into 
the fusion block: 

. f f use  = conv( f lid  ⊕ f img  ), (9.15) 

where .conv is the modal fusion block and .⊕ is concatenation. . f f use  is then con-
nected to task-specific heads. 

The detection head Fuller-det is in DETR [ 6] style with object queries. Given 
the fusion feature. f f use, Fuller-det initializes the queries using an auxiliary heatmap 
head according to TransFusion [ 2]. Specifically, we sort out the top-. k candidates 

Fig. 9.6 Framework of the Fuller. Generally, Fuller takes as input the LiDAR scan and multi-view 
images and predicts two tasks: 3D detection and map segmentation. Fuller introduces multi-level 
gradient calibration to deal with the problems of task conflict and modality bias during optimiza-
tion: (i) The gradients, produced by the task heads and applied on the shared backbone, will be 
calibrated on the last layer of the backbone before it is further back-propagated, namely, inter-
gradient calibration (pink dashed line). (ii) When it comes to the subsequent modality branches of 
the shared backbone, the gradient magnitudes will be calibrated again to the same level within the 
intra-gradient layer, referred to as intra-gradient calibration (blue dashed line) 
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from the local maxima positions of heatmaps as object queries ranked by confidence 
scores. 

Fuller-seg is also a query based semantic segmentation head with segmen-
tation queries. We firstly transform BEV feature . f f use  to output shape feature 
.F ∈ RH×W ×C . Query feature is produced by projecting the one-hot category vector. 
Then the transformer decoder layer use initialized queries and transformed BEV 
feature .F to get mask embeddings .M ∈ RN×C . Finally, binary mask prediction 
.S ∈ RN×H×W is obtained via a dot product between.M and. F , followed by a sigmoid 
activation. 

Both Fuller-det and Fuller-seg have only one transformer decoder layer and can 
achieve comparable results as the state-of-the-art methods. Since the task heads are 
computationally effective, we focus on the optimization of the shared backbone. 

9.4.2.2 Multi-level Gradient Calibration 

We now introduce the multi-level gradient calibration. First, it will calibrate the 
gradient between tasks via inter-gradient calibration. When it comes to the subsequent 
modality branches of the backbone, the gradient will be calibrated again by intra-
gradient calibration. 

Inter-gradient Calibration for Task Conflict 

By definition, the gradients will be propagated from the task heads to the shared 
backbone. Without any regularization, multi-task learning would simply sum up the 
individual gradients for backbone update. Since the gradients of the downstream tasks 
usually exhibit great distinction, this naive manner will inevitably result in task con-
flict. For example, an objective with low gradient magnitude would be overwhelmed 
by another one with high gradient magnitude. Therefore, existing works [ 13, 66, 69, 
96] propose to manipulate the gradients to interfere with the optimization process. 

Following this philosophy, we visualize the gradient distribution of the two tasks 
to inspect the inferior performance. Specifically, we compute the ratio of .L2 norm 
between the gradients computed by raw individual losses: 

.γtask = 
||∇shared_LLDet|| 
||∇shared_LLSeg|| , (9.16) 

where. ∇ denotes gradient computation operator, .LDet and.LSeg are the output losses 
for 3D detection and map segmentation, respectively. Usually, the shared backbone 
gradients computed by different task losses will be used to measure task character-
istics. To save computation time, we chose the last layer of shared backbone as the 
.shared_L. Thus, .γtask is a metric that reflects the gradient discrepancy. 

As we might notice in Fig. 9.7, the.γtask between the two tasks is very large. Given 
this finding, we infer that the emergence of task conflict is probably because the 
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Fig. 9.7 We visualize the .γtask (9.16) in the first layer of the modality-fusion block. The gradient 
tensors are unfolded along the first axis. It is easy to observe that the gradient magnitude of seg 
loss dramatically lags behind that of the det loss. We apply the proposed Fuller and compare it 
with GradNorm [ 13]. We find that our method is able to balance the gradients from two tasks. 
Importantly, our method yields a more stable and lower. γtask 

gradients of segmentation task are overwhelmed by those of detection task. Inspired 
by the loss weighting methods [ 13, 66, 69, 96], we balance the gradients of different 
tasks by balancing their loss weights. At each iteration, we obtain the gradients 
corresponding to individual loss on the last layer of the shared backbone. These 
gradients are utilized to derive the new loss weights. Then the aggregated loss is 
applied to calibrate the whole network gradients. We evaluate existing literature 
and choose the IMTL_G [ 66] as the technique for this purpose given its superior 
performance. 

Intra-Gradient Calibration for Modality Bias 

We have analyzed the impact of different task objectives on the backbone holistically. 
Another complicated situation arises when optimizing modality branches. During 
experiments, we notice the issue of modality bias which undermines the assumption 
that multiple modalities can collaboratively support the downstream tasks. This phe-
nomenon is also known as semantic inconsistency [31] and modality imbalance [101]. 

The first layer of modality fusion block is denoted as intra-gradient layer, param-
eterized by .θ F . It comprises of two parts .θ F lid  and.θ F img , which respectively represent 
the parameters directly connected with LiDAR and image backbones during back 
propagation. Let .H denote the modality branches, where .θ H lid  and .θ H img  represent the 
parameters of the LiDAR and image branches, respectively. According to the chain 
rule, the gradient for a certain modality branch is defined as: 
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Fig. 9.8 Compared with baseline, Fuller has a lower .γmodal (9.18), meaning that two modalities 
can be learned in a balanced manner 

.Gmod = ∂L 
∂θ H mod 

= ∂L 
∂θ F mod 

· ∂θ F mod 

∂θ H mod 

, (9.17) 

where .mod =.{lid, img}, and .Glid and.Gimg  denote the gradients of the two modal-
ity branches. According to Eq. (9.17), .∇θ F lid  = ∂L 

∂θ F lid  
would carry out the updating 

message from the task heads to the LiDAR branch. The same applies for the image 
branch. image branch. 

Regarding the term .∇θ FL, this gradient corresponds to the optimization process 
whereby the intra-gradient layer coordinately fuses the two modalities to adapt the 
downstream tasks. Therefore, we use.∇θ F lid  and.∇θ F img  within the intra-gradient layer 
to establish the connection between two modality branches. As they are to be sepa-
rated into different branches, we consider their relative magnitude during end-to-end 
training: 

.γmodal = 
||∇θ F lid || 
||∇θ F img||

. (9.18) 

The result in Fig. 9.8 shows that in most of the time, .||∇θ F lid || would surpass 
.||∇θ F img||, which means the LiDAR and image branches receive uneven attention 
from the downstream tasks. 

To solve this problem, we propose to calibrate the gradients between two branches, 
i.e.,.Glid and.Gimg . In practice, we gate the one with greater magnitude to slow down 
its pace, making the tasks pay balanced attention to both modalities. At . t step, we 
obtain the gating factors as follows: 

. 

wt 
lid  = σ(||∇θ F lid  

t ||, ||∇θ F img  
t ||) ∈ (0, 1], 

wt 
img  = σ(||∇θ F img  

t ||, ||∇θ F lid  
t ||) ∈ (0, 1], 

(9.19) 

.σ(x, y) = 1 x 
y >1(1 − tanh(α · x 

y 
)) + 1 x 

y <=1, (9.20) 



306 X. Liang et al. 

where .σ(·, ·) is a composition function conditioned by the indicator function and 
it is used to measure a paired input. . α is a weighting factor. The gating factors in 
Eq. (9.19) are further smoothed by momentum update with coefficient. m to stabilize 
the training. Then the calibrated gradient will be backpropagated to the associated 
branch: 

. wt 
mod = m · wt−1 

mod + (1 − m) · wt 
mod , (9.21) 

.Gt 
mod = wt 

mod · Gt 
mod . (9.22) 

We refer to this technique as intra-gradient calibration which is performed between 
modalities. 

9.4.2.3 Fuller: The Blueprint 

We have presented the inter-gradient and intra-gradient calibration in the hierarchical 
view. They are proposed to optimize the whole backbone and the associated modality 
branches, respectively. At each updating step, we first calculate the gradients w.r.t. 
the two objectives in the last layer of the shared backbone. The two gradients are 
calibrated to alleviate the problem of task conflict, where a pair of weights are derived. 
After applying the weights on the raw losses, we obtain the calibrated gradient of 
the total loss on the intra-gradient layer, .∇θ F lid  and .∇θ F img . To mitigate the issue of 
modality bias, we utilize them to calibrate the gradients of corresponding branches. 

9.5 Experiments 

9.5.1 2D Perception 

9.5.1.1 LV-Adapter 

Experiment Settings 

We focus on three tasks, i.e., object detection, semantic segmentation, and drivable 
area segmentation, on the driving dataset BDD100K. The default parameters are as 
follows: The epoch is fixed as 36, syncBN is on, learning rate is set to .2.5 × 10−5, 
and weight decay is .1 × 10−4. The image scale is 1280. ×(720, 600). No other data 
augmentation is adopted. We adopt the AdamW optimizer with a warmup iteration 
of 1000 and the warmup factor is 0.01. For CLIP adaptation, the continuous prompts 
are prepended to the class, and the length of prompts is 16. During the adapt stage, 
backbone and heads are frozen, and the learning rate is set to.2.5 × 10−4. The number 
of layers of transformer in language-to-vision adaptation is 3. 
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Pretrain-adapt-finetune Paradigm 

We conduct experiments on popular self-supervised pretrained models. As shown 
in Table 9.1, when training with the conventional pretrain-finetune paradigm, the 
performances of state-of-the-art self-supervised methods are unstable, especially in 
semantic segmentation and drivable area segmentation. For example, MoCo-v2 only 
achieves 10.3 mIoU on semantic segmentation. In contrast, equipped with pretrain-
adapt-finetune paradigm, MoCo-v2’s performance is improved by a large margin 
in semantic segmentation (. +50.9 in mIoU). MoCo-v1’s performance is improved 
on drivable area segmentation by 12.8 mIoU. However, performances of pretrain-
adapt-finetune paradigm are lower in the multi-task tuned pretrained type. We argue 
that these models are trained on more data and similar tasks, hence only finetuning 
them can yield good results. Most experiments show that the pretrain-adapt-finetune 
paradigm can better utilize knowledge from pretrained models. 

Comparison with Baselines 

We present results of single-task baselines and multi-task models under three settings 
in Table 9.2. The results show that our methods perform better on all metrics. In object 
detection and semantic segmentation, our method improves single-task baselines 
by 5. ∼6 in mAP or mIoU, and further surpasses pseudo labeling greatly by 1. ∼2 
mAP or mIoU. Therefore, we conclude that language-guided pretrain-adapt-finetune 
paradigm can reduce the gap between the pretraining and downstream tasks and better 
utilize vision-language knowledge to solve multi-task problems. 

9.5.1.2 Multi-task Methods on BDD100K 

We study performances of popular existing multi-task methods under three settings 
on BDD100K, and we consider four heterogeneous tasks, namely, object detection, 
semantic segmentation, drivable area segmentation, and lane detection. 

Partial-label Learning 

As shown in Table 9.3, pseudo labeling [ 29] can improve performances especially 
in object detection and semantic segmentation compared with zeroing loss [106]. 
However, the improvement in drivable area segmentation and lane detection is not 
obvious, since some noisy pseudo labels may hamper the training process. 
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Table 9.2 Results of single-task baselines and multi-task models with ResNet-50 backbone. SS and 
DA respectively correspond to semantic segmentation and drivable area segmentation. – indicates 
inapplicable 

Setting Method mIoU 
(SS) 

mIoU 
(DA) 

mAP AP50 AP75 

Full MaskFormer 
[ 14] 

57.1 – – – – 

MaskFormer 
[ 14] 

– 83.9 – – – 

Sparse R-CNN 
[ 91] 

– – 29.4 55.8 26.4 

Self-training 
[ 29] 

61.8 84.4 30.1 56.6 27.6 

LV-Adapter 
(Ours) 

63.1 84.9 31.1 58.2 28.4 

Disjoint-
balance 

MaskFormer 
[ 14] 

57.1 – – – – 

MaskFormer 
[ 14] 

– 78.1 – – – 

Sparse R-CNN 
[ 91] 

– – 18.6 37.8 15.6 

Self-training 
[ 29] 

59.4 80.3 22.4 44.1 19.6 

LV-Adapter 
(Ours) 

61.8 80.6 24.6 47.4 21.9 

Disjoint-
normal 

MaskFormer 
[ 14] 

57.1 – – – – 

MaskFormer 
[ 14] 

– 82.0 – – – 

Sparse R-CNN 
[ 91] 

– – 20.9 41.9 17.8 

Self-training 
[ 29] 

60.3 83.1 24.9 48.1 22.2 

LV-Adapter 
(Ours) 

62.2 83.7 26.4 50.5 23.7 

Task Scheduling 

Here we compare task scheduling methods on disjoint-normal settings. As shown 
in Table 9.3, three task sampling methods (i.e., Uniform sampler [ 62], Weighted 
sampler [ 62] and Round-robin [ 62]) perform better than Zeroing loss [106] by a  
large margin on segmentation-based tasks, but get worse in object detection. We 
hypothesize that training one task per step may lead to forgetting to some extent. 
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Table 9.3 Comparisons of popular task scheduling strategies and partial-label learning methods 
under the disjoint-normal setting 

Methods mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) 

Zeroing loss 
[106] 

31.1 54.3 30.2 55.7 88.0 22.2 

Uniform 
sampler [ 62] 

30.1 52.8 29.0 60.6 88.6 23.4 

Weighted 
sampler [ 62] 

29.3 51.9 28.7 58.5 88.9 23.8 

Round-robin 
[ 62] 

30.2 53.1 29.7 61.0 88.7 23.5 

Pseudo 
labeling [ 29] 

32.6 54.6 32.3 59.7 88.2 23.0 

Task Balancing 

We choose pseudo labeling as the baseline since task balancing methods are more suit-
able in settings with complete labels. Fixed [ 29] denotes fixed loss weights for all tasks 
during training. As shown in Table 9.4, Uncertainty performs better than Fixed on 
semantic segmentation and drivable area segmentation under the disjoint-normal set-
tings, while performances of other approaches (i.e., GradNorm and MGDA) degrade 
significantly. Especially, GradNorm uses the last shared layer of weights to compute 
gradient norm, thus we adopt the last layer of .P5 in the neck. Interestingly, MGDA 
achieves the best result on lane detection, indicating that it suffers from the heavy 
negative transfer. 

For efficiency and effectiveness, we choose pseudo labeling with fixed loss 
weights as our baseline, which achieves competitive performance compared with 
other complicated multi-task methods, to verify the effectiveness of GT-Prompt. 

Table 9.4 Comparisons of popular task balancing strategies with pseudo labels under the disjoint-
normal setting 

Methods mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) 

Fixed [ 29] 32.6 54.6 32.3 59.7 88.2 23.0 

Uncertainty 
[ 46] 

32.2 54.1 31.5 59.8 88.6 23.8 

GradNorm 
[ 13] 

25.9 43.2 26.1 39.2 39.6 3.7 

MGDA [ 89] 25.9 44.6 26.0 50.1 85.4 25.2 
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9.5.1.3 GT-Prompt 

Main Results 

As shown in Table 9.5, our GT-Prompt surpasses the baseline consistently on almost 
all metrics in all three settings. We conclude that GT-Prompt can learn task-invariant 
and task-specific knowledge during training, and further improve performance. We 
also adopt the trained GT-Prompt model as the pre-trained model and finetune on 
a single task to test the generalization of GT-Prompt. During finetuning, we only 
use the pre-trained model to initialize the backbone and remove pre-trained heads. 
Note that we do not use pseudo labels during finetuning. As shown in Table 9.5, 
GT-Prompt (FT) performs better than GT-Prompt on all segmentation-based tasks 
by a large margin in all settings, validating the excellent generalization capability of 
GT-Prompt. 

Ablation Study 

We conduct all ablation studies under the disjoint-balance setting for efficiency. 

Module Components 

We present detailed comparisons on each module to validate our GT-Prompt, as in 
Table 9.6. Equipped with G-Prompt, the model achieves better results on all tasks 
(#1 vs. #2), confirming that G-Prompt can learn general information which is use-
ful for all tasks. When we introduce the task-specific fusion module to integrate 
T-Prompt and the visual representation, the performance is improved on both seman-
tic segmentation and lane detection. After combining all components (#3), the model 
shows a superior performance overall. FT indicates further finetuning pre-trained GT-
Prompt’s backbone on single tasks, and this achieves the best results on all tasks. 

G-Promt Block 

We further investigate different designs for the G-Prompt block. For efficiency, we 
choose lightweight modules, i.e., MLP [ 39], SE [ 40], and depthwise convolution 
[ 15], to construct G-Prompt block. As shown in Table 9.7, depthwise convolution 
achieves superior performance. Note that these experiments were conducted without 
T-Prompt. 

Task-Specific Fusion 

We conduct an ablation study to verify the effectiveness of multi-scale window size 
in the task-specific fusion module as in Table 9.8. We can observe that when the 
task-specific fusion module is equipped with multi-scale windows, it can learn more 
effective multi-scale task-specific information. 
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Table 9.5 Comparison with single-task and multi-task learning baselines under different settings 

Setting Methods mAP AP50 AP75 mIoU 
(SS) 

mIoU 
(DA) 

IoU (LD) 

Full Sparse R-CNN 
[ 91] 

36.5 61.5 36.1 – – – 

Semantic FPN 
[ 48] 

– – – 59.8 – – 

Semantic FPN 
[ 48] 

– – – – 89.1 – 

Semantic FPN 
[ 48] 

– – – – – 25.9 

Pseudo labeling 
[ 29] 

36.3 61.6 36.1 60.9 89.3 23.8 

GT-Prompt 36.5 62.0 36.2 61.7 89.3 23.9 

GT-Prompt (FT) 36.3 61.5 35.9 63.5 89.4 26.0 

Disjoint-
normal 

Sparse R-CNN 
[ 91] 

28.8 50.4 28.0 – – – 

Semantic FPN 
[ 48] 

– – – 59.8 – – 

Semantic FPN 
[ 48] 

– – – – 87.8 – 

Semantic FPN 
[ 48] 

– – – – – 25.2 

Pseudo labeling 
[ 29] 

32.6 54.6 32.3 59.7 88.2 23.0 

GT-Prompt 32.7 54.7 32.3 60.8 88.2 23.3 

GT-Prompt (FT) 31.8 55.1 31.4 62.6 88.7 25.7 

Disjoint-
balance 

Sparse R-CNN 
[ 91] 

28.1 49.2 26.7 – – – 

Semantic FPN 
[ 48] 

– – – 59.8 – – 

Semantic FPN 
[ 48] 

– – – – 85.5 – 

Semantic FPN 
[ 48] 

– – – – – 23.7 

Pseudo labeling 
[ 29] 

31.3 52.8 30.8 60.2 87.0 22.2 

GT-Prompt 31.7 53.6 31.3 60.8 87.0 22.4 

GT-Prompt (FT) 30.9 53.7 30.1 62.6 87.6 24.4 
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Table 9.6 Ablation study of our proposed GT-Prompt under the disjoint-balance setting. Fusion 
denotes the task-specific fusion module with task-specific prompts 

Table 9.7 Comparisons of multi-task models equipped with different designs of G-Prompt blocks 

Design mIoU (SS) mIoU (DA) IoU (LD) 

MLP 59.8 86.7 21.9 

SE 59.9 87.0 22.3 

Depthwise conv 60.3 87.2 22.3 

Table 9.8 Comparison of fixed and multi-scale window size in the task-specific fusion module 

Window mAP mIoU (SS) mIoU (DA) IoU (LD) 

Fixed 31.1 60.3 86.4 22.3 

Multi-scale 31.7 60.8 87.0 22.4 

Table 9.9 Comparison of fixed and trainable T-Prompt under the disjoint-balance setting 

Task-Specific Prompt 

Since we obtain task-specific prompts from the pre-trained image encoder, there are 
two ways to treat them during training: fixed prompts or trainable ones. As shown 
in Table 9.9, trainable task prompts boost the performance by a margin, indicating 
that trainable prompts motivate the model to learn effective task-specific information 
based on training samples. 
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9.5.2 3D Perception 

9.5.2.1 Fuller 

We compare the Fuller with current state-of-the-art methods and report the result 
on nuScenes validation set in Table 9.10. We list each model’s modality and group 
them by task setting. We adopt the competitive baseline (i.e., penultimate row) based 
on BEVFusion [ 75]. Given hardware capacity of V100 GPU, the voxel size is set to 
0.1m for multi-task learning. For fair comparison, the single-task models Fuller-det 
and Fuller-seg using voxel size of 0.1m are set as the upper bounds for 3D detection 
and map segmentation. 

As shown in Table 9.10, the performance of multi-task baseline drops by a large 
margin compared to the upper bounds. Particularly, the mIoU of segmentation task 
drops drastically from 62.3% to 44.0%, which discourages the multi-task applications 
in autonomous driving scenario. The degradation mainly comes from task conflict, 
which is resulted from the notorious negative transfer. In theory, each objective has 

Table 9.10 Comparison with benchmark. The upper two sub-tables are single task results while 
the bottom one is multi-task result. ‘L’ and ‘C’ represent LiDAR and Camera, respectively. We treat 
single task result as our upper bound because multi-task will generally decrease the performance. 
Baseline means Fuller is naively trained where detection loss and segmentation loss are set to 1:1. ‘–’ 
means inapplicable. . † means the multi-task result in BEVFusion [ 75]. . ‡ means re-implementation 
result in BEVFusion [ 75]. ‘share’ means multi-task heads share one BEV encoder to process the 
fused multimodal feature. ‘sep’ means task heads have separate encoders 

Modality VoxelSize LiDAR Image mAP 
(%). ↑ 

NDS.↑ mIoU 
(%). ↑ 

3D detection 

BEVFormer [ 57] C – – ResNet101 [ 37] 41.6 51.7 – 

CenterPoint [116] L 0.075 VoxelNet – 59.6 66.8 – 

MVP. ‡ [117] C+L 0.075 VoxelNet DLA-34 66.1 70.0 – 

TransFusion [ 2] C+L 0.075 VoxelNet DLA-34 67.5 71.3 – 

BEVFusion [ 75] C+L 0.075 VoxelNet Swin-T 68.5 71.4 – 

Fuller-det C+L 0.075 VoxelNet Swin-T 67.6 71.3 – 

Fuller-det (upper bound) C+L 0.1 VoxelNet Swin-T 62.1 66.6 – 

BEV map segmentation 

LSS. ‡ [ 81] C – – EfficientNet-B0 – – 44.4 

CenterPoint. ‡ [116] L 0.1 VoxelNet – – – 48.6 

BEVFusion [ 75] C+L 0.1 VoxelNet Swin-T – – 62.7 

Fuller-seg (upper bound) C+L 0.1 VoxelNet Swin-T – – 62.3 

3D detection + BEV map segmentation 

BEVFusion. † [ 75] (share) C+L 0.1 VoxelNet Swin-T – 69.7 54.0 

BEVFusion. † [ 75] (sep) C+L 0.1 VoxelNet Swin-T – 69.9 58.4 

Baseline(share) C+L 0.1 VoxelNet Swin-T 59.1 65.0 44.0 

Fuller(share) C+L 0.1 VoxelNet Swin-T 60.5 65.3 58.4 
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its own local minima given a parameter space. The conflict arises when jointly opti-
mizing multiple objectives without regularization. On the other hand, the proposed 
model Fuller can bridge the gap between the single-task model and the multi-task 
variant, as it improves mIoU from 44.0% to 58.4% in map segmentation and increases 
the mAP from 59.1% to 60.5% in 3D detection. 

9.6 Conclusion 

In this chapter, we thoroughly investigate the multi-task learning in both 2D percep-
tion and 3D perception for autonomous driving. 

9.6.1 2D Perception 

9.6.1.1 LV-Adapter 

We first reveal the unsuitability of state-of-the-art self-supervised models under the 
multi-task setting. To reduce the gap between the pre-training and fine-tuning stage, 
we propose a simple but yet highly efficient pretrain-adapt-finetune paradigm, which 
boosts the performances of most self-supervised pretrained models by a large margin. 
We further excavate the complementarity of vision-language pre-training in multi-
task learning. We introduce the LV-Adapter [ 61], which incorporates language priors 
via learning task-specific prompts and excavating corresponding visual information. 
We further conduct extensive experiments to demonstrate the effectiveness of our 
proposed method. 

9.6.1.2 GT-Prompt 

We first provide an in-depth analysis of popular multi-task learning methods under 
the realistic scenarios of self-driving, which covers four common perception tasks, 
namely, object detection, semantic segmentation, drivable area segmentation, and 
lane detection. We find that existing methods cannot solve all tasks satisfactorily 
due to the negative transfer. To mitigate the negative transfer issue, we propose the 
general and task-specific prompt (GT-Prompt), which decouples task-invariant and 
task-specific knowledge. We further introduce multi-scale window attention to blend 
task-specific prompts and learn task-specific information effectively. Experimental 
results show that GT-Prompt can improve both single-task and multi-task baselines 
on the large-scale driving dataset BDD100K. 
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9.6.2 3D Perception 

9.6.2.1 Fuller 

We introduce the Fuller model, which unifies multi-modality multi-task learning 
for 3D perception tasks, and we point out the major problems such as modality 
bias and task conflict. To cope with the problems, we propose multi-level gradient 
calibration to guide the learning process of the model. Specifically, the inter-gradient 
calibration will balance the gradients w.r.t. downstream tasks on the last layer of 
the shared backbone. Before being separated into different branches, the magnitude 
of these gradients will be calibrated again within the intra-gradient layer. Through 
comprehensive experiments, we demonstrate the effectiveness of our Fuller model. 
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Chapter 10 
Bird’s Eye View Perception 
for Autonomous Driving 

Jiayuan Du, Shuai Su, Rui Fan, and Qijun Chen 

Abstract Bird’s eye view (BEV) perception refers to transforming a perspective 
view into a bird’s eye view and performing perception tasks such as 3D detection, map 
segmentation, and motion prediction. Due to its inherent advantages in representing 
3D space, fusing multi-modal data, facilitating decision making, and aiding in path 
planning, BEV perception has garnered significant attention from both academia 
and industry. In this chapter, we present an overview of BEV perception, covering its 
definition, categorization, benefits, and mathematical foundations. We then provide 
a comprehensive review of the current state-of-the-art research, datasets, evaluation 
metrics, and industrial applications. In the end, we outline several existing challenges 
and present our own conclusions regarding BEV perception. 

10.1 Introduction 

Bird’s eye view (BEV) perception involves learning representations in the bird’s 
eye view space and performing perception tasks, such as 3D detection [ 1], map 
segmentation [ 2], and motion prediction [ 3]. With the sensor settings of autonomous 
vehicles becoming increasingly diverse and complex, there is a great demand for a 
unified representation. Thanks to its inherent advantages in 3D space representation, 
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Fig. 10.1 Taxonomy of BEV perception methods 

multi-modal fusion, decision making, and path planning, BEV perception has been 
attracting more and more attention from both academia and industry. 

According to the different modalities of input data, a taxonomy of BEV perception 
methods can be yielded as illustrated in Fig. 10.1: LiDAR-based methods, camera-
based methods, and fusion-based methods. Conventional LiDAR-based methods 
with their BEV-like point clouds have shown great success in 3D detection and 
semantic segmentation tasks [ 4]. However, perception using only perspective view 
or multi-view (vision-centric methods) remains a significant challenge. 

In modern autonomous driving, decision-making and motion planning modules 
depend on multiple perception and prediction modules to gather sufficient environ-
mental information. The perception task not only detects dynamic objects but also 
identifies static elements such as road boundaries, crosswalks, lane lines, and road 
signs. Meanwhile, the prediction task requires the system to deduce the motion trend 
of other dynamic objects, providing a basis for decision-making and path planning 
to avoid collisions. 

Currently, in the industry, research on perception and prediction algorithms based 
solely on vision typically only focuses on a single sub-problem in the overall process. 
For example, researchers may focus on 3D object detection, map segmentation, 
object tracking, or motion prediction, and then fuse the perception results of different 
networks through pre-fusion or post-fusion methods. While this approach enables 
problem decomposition and facilitates independent academic research, it results in 
multiple submodules stacked in a linear structure when building the overall system. 
However, this serial architecture has several significant drawbacks: 

1. The errors of upstream modules are continuously transmitted downstream, which 
can significantly affect the performance of downstream tasks when sub-problems
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are studied independently. In these cases, the ground truth is typically used as 
input, which can result in cumulative errors impacting downstream performance. 

2. In a serial architecture, repeated operations such as feature extraction and dimen-
sion conversion in Convolution Neural Networks (CNNs) can lead to redundant 
calculations, which are not conducive to improving the overall efficiency of the 
system. 

3. The temporal information cannot be fully utilized. On the one hand, the temporal 
information can be leveraged as a supplement to the spatial information to better 
detect the blocked object at the current moment and provide more reference infor-
mation for the location of the object. On the other hand, temporal information can 
help judge the motion state of the object. In the absence of temporal information, 
the method based on pure vision can hardly effectively judge the motion speed 
of the object. 

Different from traditional serial architecture, the BEV scheme utilizes multiple 
sensors (such as camera, LiDAR, RADAR, IMU, GPS) and convert multi-modal 
information to a unified BEV space for various downstream perception tasks. Such 
a scheme can provide a unified representation space for autonomous driving percep-
tion [ 5] and can accomplish multiple perception tasks in parallel. Specifically, the 
advantages of BEV perception are reflected in the following aspects: 

1. Intuitive and friendly for subsequent modules. BEV perception provides a holistic 
view of the surrounding environment, enabling the system to detect obstacles and 
road elements that might not be visible from the vehicle’s current position, which 
is beneficial to downstream prediction and planning modules. 

2. Fusion-friendly. 

a. BEV perception provides a consistent coordinate system for all sensors, sim-
plifying the fusion of data from multiple sources and enabling better object 
association and tracking. 

b. Temporal fusion is easier to realize. In the BEV space, temporal information 
can be easily fused via ego-motion of the autonomous vehicle. 

3. Easier end-to-end optimization. In traditional perception tasks, recognition, track-
ing, and prediction operate more like a “serial system”, where errors in the 
upstream of the system are propagated downstream, resulting in error accumu-
lation. However, in the BEV space, perception and prediction occur in a unified 
space, allowing for direct end-to-end optimization through neural networks and 
generating “parallel” results, thereby avoiding error accumulation. Additionally, 
this approach can significantly reduce the impact of algorithm logic, enabling the 
perceptual network to learn from data in a self-driven manner and achieve better 
functional iterations. 

This chapter is organized as follows: Sect. 10.1 is an overall introduction of 
BEV perception, including conception, taxonomy and advantages. Section 10.2 intro-
duces mathematical fundamentals of inverse perspective mapping, which is of vital 
importance in BEV perception. Sections 10.3, 10.4 and 10.5 introduces LiDAR-
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based, camera-based and fusion-based methodologies of BEV perception, respec-
tively. Section 10.8 shows nowadays industrial applications of BEV perception. In 
Sects. 10.9 and 10.10 we discuss the existing challenges and Future Development of 
BEV perception. 

10.2 BEV Fundamentals 

Generally, cameras mounted on a vehicle suffer from a significant perspective effect 
[ 6– 8], as illustrated in Fig. 10.2a. This perspective effect can result in the driver’s 
inability to accurately perceive distance, making advanced image processing or anal-
ysis challenging. As a result, it is necessary to generate a bird’s eye view using 
perspective transformation., as shown in Fig. 10.2 [ 9]. 

Perspective mapping can transform points in 3D space to the image space, while 
the inverse problem of projecting image pixels back to 3D space is considered an 
ill-posed problem. To address this challenge, the pioneer work of Inverse Perspective 
Mapping (IPM) [ 10] introduced a constraint that the inversely mapped points should 
lie on the ground plane. This constraint allows the mapping to be described via a 
homography matrix, enabling the solution of the ill-posed problem. The geometry 
of perspective mapping and inverse transformation is shown in Fig. 10.3. Mathemat-
ically, IPM is a linear mapping in homogeneous coordinates. 

10.2.1 Perspective Mapping 

For an ideal pinhole camera model, we state two definitions for camera coordinate 
system .C = {xC, yC, zC} and an image plane .I = {u, v} at distance . f (focal length) 
from the origin parallel to .xC and .yC. A perspective mapping is described by . PB :
R

3 |→ R
2: 

.p |→ p, =
[
u
v

]
= −f

(p · zC)
·
[
(p · xC)

(p · yC)

]
, (10.1) 

Fig. 10.2 Illustration of perspective transformation in a parking lot scene [ 9]
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Fig. 10.3 Geometry of inverse perspective mapping [ 10]. Nodal point. O is the center of projection 
and the common origin of the camera frame and the world frame. Solid black arrow.zC,.yC axes of 
the camera coordinate system, and the Z-axis is in the same direction as the camera.. h is the height 
of the nodal point. O and. f is the focal length of the camera. Dotted blue arrow.yW, .zW axes of the 
world coordinate system, the Y-axis is in the same direction as the vehicle. The horizontal axes. xC
and.xW are perpendicular to the paper plane.. p is a point in 3D space;. p,

I,.p
,
H denote its projections 

into the image and the horizontal plane;. p̃ means homogeneous representation of. p,

where.(·) denotes the inner product. All 3D points on the ray projected to. p, = [u, v]T
is given by . p̃: 

.p, |→ p̃ =
⎡
⎣ λu

λv
−λf

⎤
⎦ , for λ ∈ R, (10.2) 

where. p̃ is the homogeneous representation of. p, in the coordinate frame. C. Substitute 
(10.2) into (10.1), we have .P (p̃) = p, for all .λ /= 0. 

10.2.2 Inverse Perspective Mapping 

Denote a world coordinate system as .W = {xW, yW, zW}. The horizontal plane is 
spanned by .xW and .yW and the upward direction ia pointed by .zW. Suppose there 
is a center of projection .O at height . h from the horizontal plane and its focal length 
is . f from the image plane. By assuming camera frame and world frame share the 
common origin . O, then the coordinate transformation from the camera to the world 
is described by an orthogonal matrix . Q. In  (10.3), .Q is represented by the column 
vectors . x,, .y, and . z,, the matrix . Q is also known as the extrinsic matrix. 

Under the assumption that the back-projected points fall on the ground, IPM is 
actually finding the correspondence between a point.p,

I in the image plane and a point 
.p,

H in the horizontal plane. Here, the horizontal ground plane is spanned by .xW, . yW
in the world frame. In homogeneous coordinates, this is a linear mapping of a point 
.p̃I to a point .p̃H, characterized by the orthogonal matrix .Q ∈ R

3×3:
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.

Q̃ : R3 |→ R
3; p̃H = Q · p̃I⎡

⎣ μX
μY
−μh

⎤
⎦ =

⎡
⎣x,

1 y
,
1 z

,
1

x,
2 y

,
2 z

,
2

x,
3 y

,
3 z

,
3

⎤
⎦ ·

⎡
⎣ λu

λv
−λf

⎤
⎦. (10.3) 

Here, the expression of camera frame axes .xC, yC, zC in the world frame is denoted 
by the matrix . Q, which is composed out of .x,

1, ..., z
,
3. Then it projects .p̃H onto the 

horizontal plane using (10.1) and yields the inverse perspective mapping . Q: 

.

Q : R2 |→ R
2; p,

H = Q (pI)[
X
Y

]
= −h

x,
3u + y,

3v − z,
3f

·
[
x,
1u + y,

1v − z,
1f

x,
2u + y,

2v − z,
2f

]
. (10.4) 

10.3 LiDAR-Based BEV Perception 

LiDAR sensors provide depth information, which can lead to better object recognition 
performance compared to visual-based sensors. However, LiDAR lacks semantic 
information such as texture or color, and the point clouds may be sparse in distant 
areas where information is missing. The general pipeline of LiDAR-based BEV 
perception is illustrated in Fig. 10.4. It takes point cloud as input and performs 
feature extraction and view transformation to construct BEV feature maps. Common 
detection heads are used to generate 3D prediction results. LiDAR-based methods 
can be classified into pre-BEV methods and post-BEV methods based on the order 
of feature extraction and BEV transformation, as shown in Fig. 10.4. 

10.3.1 Pre-BEV Methods 

Pre-BEV methods extract features before the BEV transformation using either point 
or voxel representations. Point-based methods process the raw LiDAR point cloud, 
which has significant consumption of computing and storage resources. In contrast, 
voxel-based methods voxelize the point cloud into discrete grids by discretizing 
the continuous 3D coordinate, providing a more efficient representation. To extract 

Fig. 10.4 General pipeline of LiDAR-based BEV perception [ 11]
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Fig. 10.5 Feature extraction of VoxelNet architecture [ 14] 

point cloud features from the voxel, 3D convolution or 3D sparse convolution [12, 13] 
are commonly utilized. The majority of cutting-edge techniques typically undertake 
feature extraction using 3D sparse convolution. The height axis is then densified and 
compressed to form at the 3D voxel characteristics as a 2D tensor in BEV space. 

As shown in Fig. 10.5. VoxelNet [ 14] firstly partitions the 3D space into voxels, 
generates voxel-wise features by maxpooling of all point-wise features, and repre-
sents the space as a sparse 4D tensor. Then, a 3D convolution is applied to aggregate 
spatial context in the tensor. Finally, it transforms the tensor into BEV implicitly, and 
generates the 3D bounding boxes with a region proposal network (RPN). SECOND 
[ 15] introduces sparse convolution in the processing of voxel representation, which 
greatly accelerate the training and inference. 

Comparing with anchor-based bounding box, center-based representation has sev-
eral advantages: 

• Points have no intrinsic direction. Therefore, the search space of the target detector 
is reduced, which allowing backbone to learn the rotation invariance of objects 
and their variance with respect to rotation. 

• It is also helpful to simplify downstream tasks such as tracking.A point object’s 
trajectory is its path across space and time. The network can then integrate the 
continuous frames and forecast the relative offset between them with ease. 

• Point-based feature extraction facilitates researchers to design a faster and more 
effective two-stage refinement module. 

As the representative work, CenterPoint [ 16] becomes a baseline method for 3D 
detection due to its excellent design of two-stage center-based detector (Fig. 10.6). 

To learn more discriminative features from LiDAR point cloud, PV-RCNN [ 17] 
combines voxel and point branches to generate 3D proposals and refinement respec-
tively. To help the backbone network learn structure-aware features, SA-SSD [ 18] 
designs an auxiliary network that combines the foreground segmentation and center 
estimation tasks. Voxel Region of Interest (RoI) Pooling is adopted by Voxel R-CNN 
[ 19] to aggregate construction data from voxel-wise features, and it achieves compa-
rable accuracy to point-based approaches. With the concept of dynamic graph, Object 
DGCNN [ 20] remodels the detection problem as information transmission process 
in the BEV space. To aggregate large 3D context, VoTr [ 21] introduces an attention
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Fig. 10.6 Overview of CenterPoint framework [ 16] 

mechanism on numerous voxels. SST [ 22] follows the idea of shifting windows in 
Swin Transformer [ 23], and divides the voxelized point cloud space into windows. 
It applies sparse regional attention and window shifting to avoid information loss by 
downsampling. AFDetV2 [ 24] introduces a keypoint supervision as auxiliary task 
and adopts a multi-task head to build a single-stage anchor-free network. 

10.3.2 Post-BEV Methods 

Another technical route of LiDAR-based BEV perception is to transform the LiDAR 
point cloud into BEV space first, and then carry out 2D feature extraction. 

In order to fuse the front image with LiDAR point cloud and its front view, MV3D 
[ 25] first transforms LiDAR point cloud into BEV space (Fig. 10.7). It generates 3D 
object proposals in BEV space then project them back to three views. For each view, 

Fig. 10.7 Multi-view 3D object detection network (MV3D) [ 25]
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Fig. 10.8 PointPillar overview [ 32] 

ROI pooling is used to extract region-wise features and these features are fused by A 
deep fusion network. The fused features are then used to predict 3D bounding boxes 
and object class jointly. The BEV representation of LiDAR point cloud is widely 
adopted in other works [ 26– 31] as well. The term “pillar” refers to a unique kind of 
voxel with limitless height, which is first introduced in PointPillars [ 32]. To learn 
a representation of points in pillars, PointPillars utilizes a condense version of the 
PointNet [ 33]. Following that, standard 2D convolutional networks and detection 
heads are applied to process the encoded features. Although the PointPillar does 
not perform as well as other state-of-the-art (SOTA) methods, it and its variants are 
highly efficient, making them appropriate for industrial applications (Fig. 10.8). 

10.4 Camera-Based BEV Perception 

Comparing with LiDAR point clouds, 2D images do not naturally preserve accu-
rate range information. Hence the core issue of camera-based BEV perception is to 
learn the depth from images explicitly or implicitly. According to the methods for 
transformation from a perspective view (PV) into a BEV, the camera-based BEV 
perception can be classified into two categories: 2D-3D methods and 3D-2D meth-
ods. The former “lifts” 2D features to 3D space via reconstructing depth information 
from 2D features, and the latter utilizes 3D-2D projection mapping to encode 2D 
features with 3D information (Fig. 10.9). 

Fig. 10.9 General pipeline of camera-based BEV perception
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10.4.1 2D-3D Methods 

Since depth information is inaccessible for monocular cameras, 2D-3D methods 
construct the view transformation by predicting the depth. Currently, there are two 
sets of mainstream methods. One set is the “pseudo-LiDAR” method, which predicts 
a dense depth map, and is represented by the Pseudo-LiDAR family [ 34, 35]. The 
other set is the “lift” method, which predicts depth distribution and is represented by 
LSS (Lift, Splat, Shoot) [ 36] and its variants. 

10.4.1.1 “Pseudo-LiDAR” Methods 

As the name implies, Pseudo-LiDAR [ 34] estimates pixel-wise depth maps from 
stereo or monocular images and converts depth maps into pseudo-LiDAR point 
clouds, which can be direct input for 3D detectors designed for LiDARs. The pipeline 
of Pseudo-LiDAR is shown in Fig. 10.10, which is a straightforward way that can eas-
ily integrates mature experience of SOTA monocular depth estimation and LiDAR-
based 3D detection methods. The accuracy of monocular depth estimation network 
is insufficient, while stereo network can provide better depth estimation and already 
has excellent performance in perception for autonomous driving. Therefore, Pseudo-
LiDAR++ [ 35] improves the accuracy of depth estimation of faraway objects by 
adopting the stereo network. In AM3D [ 37], the pseudo-LiDAR point clouds is 
enhanced by corresponding RGB features. PatchNet [ 38] owes the effectiveness of 
the “pseudo-LiDAR” method to the coordinate system transformation rather than 
the data representation itself. However, the “Pseudo-LiDAR” methods have several 
problems. The performance of detection is heavily rely on the accuracy of depth 
estimation [ 39]. And the pixel-wise ground truth in outside scenes are difficult to 
obtain. Moreover, such methods suffer from data leakage and generalization prob-
lems. Researches show that the data leakage of KITTI depth benchmark causes the 
performance gap between validation and testing sets [ 34, 40]. To allow the pipeline 
can be trained in an end-to-end manner, E2E Pseudo-LiDAR [ 41], as illustrated in 
Fig. 10.11, introduces a Change-of-Representation module. The module improves 
generalization performance by alleviating the gradient cut-off between 3D object 
detection stage and depth estimation stage. 

Fig. 10.10 Pipeline of Pseudo-LiDAR [ 34]
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Fig. 10.11 The architecture of E2E Pseudo-LiDAR [ 41] 

10.4.1.2 “Lift” Methods 

Rather than predicting dense depth map, “Lift” paradigm predicts the depth distribu-
tion instead. LSS [ 36] is representative of this approach (Fig. 10.12). For each pixel, it 
predicts a context vector.c ∈ R

C and a categorical distribution over depth.α ∈ ΔD−1, 
and the corresponding 3D feature is determined by their outer product.α · c. In other 
words, the 2D features are “lifted” via depth distribution to 3D space, then the down-
stream perception task can be performed following SOTA LiDAR-based approaches. 
However, there are several drawbacks of such methods: (1) the depth distribution esti-
mated is discrete and sparse; (2) the boundaries of objects are difficult to handle. A 
lot of works [ 42– 47] follow this LSS paradigm as well. To improve the accuracy 
of depth distribution, CaDDN [ 42] uses depth ground truth derived from LiDAR 
point cloud as supervision (Fig. 10.13). BEVDepth [ 47] also uses LiDAR points 
as depth supervision. In addition, the intrinsic and extrinsic parameters of camera 
are introduced as the depth estimation prior, and the input features are adjusted in a 
SE-like manner. In BEVDepth, the predictions of depth and context are separated, 
and additional Resnet blocks are used to increase discrimination. FIERY [ 43] using  
EfficientNet [ 48] to extract features and predict depth distribution in the same way 
with LSS [ 36]. BEVFusion [ 46] adds LiDAR branch (VoxelNet [ 14]) onto LSS, and 
fuses camera features and LiDAR features in BEV space following Transfusion [ 49] 
paradigm. BEVDet [ 44] and its temporal enhenced version [ 45] follow the similar 
paradigm to learn an implicit view transformation (Figs. 10.14 and 10.15).
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Fig. 10.12 The “lift” step of LSS [ 36] 

Fig. 10.13 Construction of frustum features in CaDDN [ 42] 

Fig. 10.14 Framework of BEVDepth [ 47]
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Fig. 10.15 The framework of the BEVDet [ 44] paradigm 

10.4.2 3D-2D Methods 

For 3D-2D methods, the 3D information is reconstructed by encoding 2D features 
to 3D space via 3D prior such as 3D-2D projection mapping. Geometry-based meth-
ods are introduced by Inverse Perspective Mapping. For pure network-based meth-
ods, MLP and transformer are two main branches, Some works index local features 
according to 3D-2D projection such as explicit BEV feature modeling [ 50, 51], or 
DETR3D [ 1] and its derivants [ 52]. Other methods utilize implicit 3D positional 
encoding [ 53] to avoid direct detph estimation. 

10.4.2.1 IPM-Based Methods 

Inverse Perspective Mapping (IPM) is the pioneer work of 3D-2D methods. Due to 
the lack of depth information caused by perspective mapping, projecting the pixels 
on image back to 3D space is ill-posed. Mallot et al. present IPM [ 10] to solve this 
ill-posed problem by adding constraint that the inversely mapped points lie on the 
ground plane, which means that the mapping can be described via a homography 
matrix. The detailed foundation of mathematics is introduced in Sect. 10.2. In prac-
tical applications, the homography matrix can be mathematically derived from the 
calibration parameters of camera settings, such as intrinsic and extrinsic matrices. 

Abbas and Zisserman [ 54] use CNNs to extract 2D features and estimate the 
vertical vanishing points and horizontal vanishing lines to determine the homogra-
phy matrix. After the PV-BEV transformation by IPM, many downstream perception 
tasks can be done in the BEV space, such as optical flow estimation, object detection, 
map segmentation, object tracking, path planning, etc. VPOE [ 55] adopts YOLOv3 
[ 56] as the detection head to estimate the object pose on BEV. Palazzi et al. [ 57] 
maps detections from PV to BEV occupancy grid map based on synthetic dataset. 
In practice, the intrinsic and extrinsic parameters generally unknown or the extrinsic
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parameters may change due to the bumpy road. To overcome this issue, TrafCam3D 
[ 58] introduces a dual-view network architecture to perform a more robust homog-
raphy mapping. 

IPM-based methods have good interpretability of the PV-BEV transformation. 
However, there are distorted areas where the objects are above the ground plane. To 
reduce the distortion, a series of subsequent works [ 50, 58– 66] explore the semantic 
information or aid the domain gap between PV and BEV using GANs [ 67]. 

10.4.2.2 MLP-Based Methods 

IPM-based methods are explicitly based on physical reality and strong mathematical 
assumptions. On the contrary, MLP-based methods leverage the geometry of cam-
era. In MLP-based methods, the multilayer perceptron (MLP) constructs a universal 
approximate mapping function of view transformation in a data-driven manner. 

Adopting MLP to perform 3D-2D feature projection is initially introduced by OFT 
[ 68], which projects 2D features to 3D voxel space (Fig. 10.16). Rather than predict 
the depth distribution, OFT scatters the same image feature along the ray from nodal 
point to a specific 3D point, in other word, it assumes that the depth distribution is 
uniform. Such assumption works in flat roads but fails in undulating roads. VED [ 69] 
introduces a variational encoder-decoder (VED) architecture with an MLP bottleneck 
to convert PV image to semantic BEV occupancy grid map end-to-end. VPN [ 70] 
utilizes a two-layer MLP to perform the view transformation. FishingNet [ 71] follows 
the same pattern with VPN and fuses LiDAR and RADAR data in a late fusion manner 
for downstream tasks. To overcome the difficulties including occlusion, lack of depth 
information and small objects, STA-ST [ 72] and PON [ 73] make use of Feature 
Pyramid Networks (FPNs) [ 74] to extract multi-scale image features, and compress 
the features along height axis and expand along dpeth aixs to leverage the vertical 
context, as shown in Fig. 10.17. Leveraging the vertical context via column-wise 
compression makes the network model more robust to occlusion and inaccessible 

Fig. 10.16 Orthographic Feature Transform (OFT) [ 68]. Orthographic features are generated by 
feature accumulation and compression
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Fig. 10.17 PON [ 73]: features extracted by FPN are collapsed along height axis and expanded 
along depth axis 

Fig. 10.18 An overview architecture of HFT [ 77] 

depth information. It is also widely adopted and promoted in the transformer-based 
methods, which is discussed in Sect. 10.4.2.3. 

To improve the accuracy of vectorized HD map, HDMapNet [ 75] uses an extra 
MLP to build bidirectional projection between PV and BEV to check whether the 
features are correctly mapped. Inspired by the back projection, PYVA [ 76] puts 
forward a bidirectional self-supervision scheme with stronger attention-based BEV 
feature. HFT [ 77] combines a camera model-based branch with a camera model-free 
branch via a hybrid feature transformation to utilize geometric prior and capture 
global context respectively (Fig. 10.18). 

10.4.2.3 Transformer-Based Methods 

With the development of attention mechanism and vision transformer (ViT), a lot 
of BEV perception works utilize transformer architecture to model the 3D-2D view 
transformation in an implicit way. On the strength of the cross attention, transformer 
is more data-dependent, thus has more powerful spatio-temporal representation but
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Fig. 10.19 Chronological overview of transformer-based methods [ 78] 

Fig. 10.20 Overview of DETR3D [ 1] 

is difficult to train. Designing effective positional encoding and constructing appro-
priate queries are still challenging. 

Based on the granularity of learnable queries in the transformer decoder, the 
transformer-based methods can be divided into three categories: sparse query-
based, dense query-based and hybrid query-based [ 78]. A chronological overview 
of transformer-based methods is illustrated in Fig. 10.19. In terms of specific BEV 
perception downstream tasks, sparse queries are commonly used for detection tasks 
and dense queries are commonly used for segmentation tasks. 

Sparse query-based methods are represented by the “DETR” family [ 1, 41, 53, 
79– 84]. As shown in Fig. 10.20, DETR3D [ 1] takes multi-view images as input and 
adopts ResNet and FPN to extract 2D features. After defining a set of sparse object 
queries, each one is translated into a 3D reference point. By reprojecting the 3D ref-
erence point into the image space, 2D features are sampled in the meantime to refine 
the object queries. In the end, it employs a set-to-set loss and produces predictions 
for each query. In order for sparse queries to interact with 2D features directly in 
the vanill cross attention, PETR [ 53] encodes 3D positional embedding derived from 
camera settings into 2D multi-view features, which considerably streamlines the fea-
ture sampling procedure in DETR3D (Fig. 10.21). The follow-up study PETRv2 [ 81] 
makes use of the temporal information by extending the 3D positional embedding 
from spatial domain to temporal domain. Graph-DETR3D [ 82] makes use of graph
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Fig. 10.21 The architecture of the proposed PETR paradigm [ 53] 

structure learning, which enhances the inadequate feature aggregation of DETR3D 
and improves the performance in the overlap regions. ORA3D [ 83] utilizes stereo 
disparity supervision and adversarial training. PolarDETR [ 84] reformulates the 3D 
detection task in the polar coordinate system, which takes full advantage of the sym-
metry of multiple views. SRCN3D [ 85] designs the first two-stage 3D-2D surround-
view camera 3D detection approach in a fully-convolutional architecture based on 
SparseRCNN [ 86]. It replaces global attention with local dynamic instance interac-
tion head to get lower computation cost. 

Dense queries are pre-allocated with corresponding positions in 3D space or 
BEV space for dense query-based approaches. The quantity of dense queries (spatial 
resolution) is typically larger than the quantity of sparse queries in sparse query-
based algorithms. For a variety of downstream tasks, including 3D detection, motion 
prediction and map segmentation, the interaction between image features and dense 
queries can lead to the dense BEV representation. 

Tesla [ 87] takes advantage of positional encoding and context summary to gen-
erate dense queries in the BEV space, and performs the view transformation using 
the vanilla cross attention between image features in multiple views and dense BEV 
queries, without considering the camera parameters. CVT [ 2] constructs a camera-
aware positional embedding derived from calibrated parameters of surround-view 
cameras. Then through a succession of cross attention layers, it learns a BEV posi-
tional embedding that aggregate cross-view information (Fig. 10.22). 

To balance the memory consumption and model scalability, Persformer [ 51] and 
BEVSegFormer [ 88] adopt deformable attention [ 89] in the view transformation 
module for 3D lane detection and BEV segmentation, respectively. BEVFormer [ 5] 
takes advantage of the deformable attention to interact dense BEV queries with multi-
view features. Current queries and history queries are also interacted via deformable 
attention to leverage temporal information. Inspired by the ray tracing perspective, 
Ego3RT [ 90], as shown in Fig. 10.23, learns ego 3D representation from 2D image 
features making use of deformable attention and executes multiple downstream tasks.
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Fig. 10.22 The pipeline of CVT [ 2] 

Fig. 10.23 Ego3RT pipeline [ 90] 

CoBEVT [ 91] introduces fused axial attention (FAX), a novel attention variant, which 
can effectively aggregate features in both local and global agent or camera views. 

The geometric priors are used by GKT [93] to guide the transformer to concentrate 
on discriminative regions and unfolds kernel features to produce BEV representation. 
TIIM [ 92] treats 1–1 correspondence between each image column and BEV polar 
ray as a sequence-to-sequence translation, as shown in Fig. 10.24. Such geometric 
constraint avoids the dense cross attention between 2D image features and BEV 
queries, and makes it more suitable for the transformer-style architecture. GitNet 
[ 94] obtains coarse pre-aligned BEV features by a geometry-guided pre-alignment 
module and refines the features via a ray-based transformer like TIIM. PolarFormer 
[ 95] extends such ray-based or column-wise transformer from a single camera to 
multiple surrounding cameras. Instead of learning a quadratic “all-to-all” correspon-
dence between features in multi-camera space and BEV space, LaRa [ 96] uses a  
moderately fixed size latent space to control computation and memory consumption 
of the view transformation.
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Fig. 10.24 Architecture of TIIM framework [ 92]. a Construct spatial representations in the image-
plane. b Transform image-plane representations to BEV. c Construct spatiotemporal representation 
in BEV-plane (optional) . d Semantically segmentation BEV representation 

10.5 Fusion-Based BEV Perception 

Sensor fusion in autonomous driving is mainly about the fusion of images and point 
clouds (either LiDAR or RADAR). Previous methods conduct fusion in data-level 
[ 97, 98] or feature-level [ 25, 99–102], which rely either on calibration or directly 
using high-dimension features. As we have introduced in previous sections, BEV 
space provides a unified and convenient representation for LiDAR, camera and 
RADAR. Meanwhile, temporal information can be easily fused in the BEV space 
via ego-motion of vehicle. With the concern of robustness and consistency, a lot of 
works conduct BEV perception in a fusion-based way. 

10.5.1 Multi-modal Fusion 

Some methods operate feature fusion in 3D space [ 33, 89, 103–106]. As Fig. 10.25 
shows, UVTR converts image and point cloud to modality-specific voxel space and 
fuses the features with a voxel encoder. Some other methods perform feature fusion 
in BEV space [ 46, 71, 107]. As a representative work, BEVFusion [ 46] extracts 
multi-modal features from LiDAR and multi-view cameras, the features are trans-
formed into a shared BEV space efficiently and fused with a fully-convolutional BEV 
encoder. Then the encoded features are decoded by task-specific heads to support 
different perceptual tasks (Fig. 10.26). Besides fusion in 3D space or BEV space, 
there is a kind of methods conduct fusion via general queries [ 49, 52]. As shown in 
Fig. 10.27, FUTR3D [ 52] designs a query-based Modality-Agnostic Feature Sam-
pler (MAFS) to extract features from all available modalities according to the 3D 
reference point of each query, which is easily adaptable to all sensor configurations 
and combinations. 

The majority of recent research relies on single-agent systems, which struggle 
to handle occlusions and recognize far-off objects in complicated traffic situations. 
This problem can be addressed because to the advancement of Vehicle-to-Vehicle 
(V2V) communication technologies, which broadcast sensor data to other adjacent
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Fig. 10.25 The framework of UVTR with multi-modality inputs [103] 

Fig. 10.26 The architecture of BEVFusion [ 46] 

Fig. 10.27 Overview of FUTR3D [ 52] 

autonomous cars to provide alternative perspectives of the same scene. Inspired 
by v2v communication technology, CoBEVT [ 91] develops a multi-agent multi-
camera perception architecture that can cooperatively produce BEV map. However, 
it has only been validated on simulated datasets [108]. Most methods rely on object-
ground intersections (for example, shadows) as context for depth reasoning [109]. 
However, these methods become unreliable for distant objects. Besides vehicle-to-



10 Bird’s Eye View Perception for Autonomous Driving 343

vehicle communication, object-to-object relationship is also studied. Reference [110] 
proposes to localize object depth by comparing objects to each other and perform 
message-passing across a graph of the objects via a graph neural network. 

10.5.2 Temporal Fusion 

To alleviate the occlusion and estimate the motion of objects, temporal fusion is 
an effective way for robust BEV perception system. BEVDet4D [ 45] fuses the fea-
ture maps with sparial alignment and concatenation. A similar concatenation-based 
approach has also been used in other works, including TIIM [ 92], FIERY [ 43], and 
PolarFormer [ 95]. Conerning the object motion and ego-motion, BEVFormer [ 5], 
PETRv2 [ 81] and UniFormer [111] utilize attention module to fuse temporal infor-
mation from either previous BEV feature maps or previous frames, to more effectively 
create associations of the same objects in different timestamps (Fig. 10.28). 

Fig. 10.28 Overall architecture of BEVFormer [ 5] 

10.6 Datasets 

KITTI [112], nuScenes [113] and Waymo Open Dataset (WOD) [114] are  the most  
influential benchmarks for BEV perception. KITTI is a well-known benchmark for 
multiple autonomous driving tasks, such as stereo, optical flow, visual odometry, 
object detection and 3D tracking [112]. It contains 3712, 3769 and 7518 images for 
training, validation, and testing, respectively, also with corresponding LiDAR point 
clouds. The evaluation consists of 3D object detection and BEV evaluation. And 
there are three levels of difficulty according to objects’ size, occlusion and trunca-
tion. The nuScenes dataset is a public large-scale dataset for autonomous driving 
developed by the team at Motional [113]. There are 1000 driving scenes in Boston
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and Singapore, two cities that are known for their dense traffic and highly challenging 
driving situations. Among them, 850 scenes are used for training and validation, 150 
scenes are used for testing, with duration of 20 seconds each. The sensors include 6 
surrounding cameras, 1 LiDAR and 5 RADARs. The resolution of image is 1600. ×
900 pixels. In the meantime, corresponding CAN-bus data and high-definition map 
(HD Map) are available to investigate the help of numerous inputs. In the training, 
validation, and testing sets of the Waymo Open Dataset [114], there are 798, 202, 
and 80 video sequences, respectively. Each sequence consists of 5 LiDARs and 5 
views (side left, front left, front, front right and side right), the image resolution is 
1920 .× 1280 pixels or 1920 .× 886 pixels. 

Besides the datasets mentioned above, more benchmarks such as Argoverse, Lyft, 
KITTI-360, H3D, are also applicable to for BEV perception. Table 10.1 provides a 
summary of the detailed information for these benchmarks. 

Table 10.1 Datasets for BEV Perception 

Dataset Views Scenes Scans Images Det. Seg. Classes Night/rain Stereo 

KITTI 3D 
[112] 

1 – 15 K 15 K 80 K – 8 (3) . ✘/.✘ . ✔

nuScenes 
[113] 

6 1,000 390 K 1.4 M 1.4 M 40 K 23 (10) . ✔/.✔ . ✘

Waymo Open 
Dataset [114] 

5 1,150 230 K 12 M 12 M 50 K 4 (3) . ✔/.✔ . ✘

Argoverse V1 
[115] 

7 113 22 K 490 K 993 K – 15 . ✔/.✔ . ✔

Argoverse V2 
[116] 

7 1000 150 K 2.7 M – – 26 . ✔/.✔ . ✔

Lyft L5 [117] 6 366 46 K 260 K 1.3 M – 9 ✘/.✘ . ✘

H3D [118] 3 160 27 K 83 K 1.1 M – 8 . ✘/.✘ . ✘

Cityscapes 
3D [119] 

1 – – 5 K 40 K – 8 (6) . ✔/.✔ . ✔

KITTI 360 
[120] 

4 11 80 K 320 K 68 K 80 K 19 . ✘/.✘ . ✔

KITTI 3D: https://www.cvlibs.net/datasets/kitti/ 
nuScenes: https://www.nuscenes.org/nuscenes 
Waymo Open Dataset: https://waymo.com/open/ 
Argoverse v1: https://www.argoverse.org/av1.html 
Argoverse v2: https://www.argoverse.org/av2.html 
Lyft L5: https://www.woven-planet.global/en/data/perception-dataset 
H3D: https://usa.honda-ri.com/H3D 
Cityscapes 3D: https://www.cityscapes-dataset.com 
KITTI 360: https://www.cvlibs.net/datasets/kitti-360/
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10.7 Evaluation Metrics 

The most commonly used evaluation metric for BEV detection is average precision 
(AP), which refers to the area under the precision-recall curve. In order to calculate 
AP, the Intersection-over-Union (IoU) is used to measure the difference between 
predictions and ground truth (annotations, labels). The definition of IoU between 
prediction bounding box and ground truth is given by (10.5): 

.IoU = area of overlap

area of union
. (10.5) 

If the IoU is beyond the threshold, the prediction is seen as True Positive (TP). 
Otherwise, the result is treated as False Positive. False Negtive (FN) and True Negtive 
(TN) can be defined in the same way. Thus, Precision and Recall can be calculated 
as follows: 

.Precision = TP

TP + FP
= TP

Predictions
, (10.6) 

Recall = TP 

TP + FN 
= TP 

GroundTruth 
. (10.7) 

Using the interpolated values, AP can be calculated by (10.8): 

.AP = 1

|R|
Σ
r∈R

pinterp(r), (10.8) 

where . R denotes the set of all recall positions, the interpolation function .pinterp(·) is 
defined as: .pinterp = maxr, :r,≥rp(r,). Mean average precision (mAP) is the average of 
APs of different classes or difficulty levels. 

As for evaluation metrics for BEV segmentation, the IoU for each class and mIoU 
over all classes are the most frequently adopted. 

Besides the common metrics, there are dataset-specific metrics. 

• Average Orientation Similarity (AOS): 

.AOS = 1

|R|
Σ
r∈R

max
r, :r,≥r

c(r,), (10.9) 

where the c(r) denotes orientation similarity, which is a normalized variant of the 
cosine similarity. 

• Average Translation Error (ATE) calculates the Euclidean distance between pre-
dicted object center and ground truth on the 2D ground plane. 

• Average Scale Error (ASE) calculates the 3D IoU error.(1 − IoU ) after performing 
the alignment of translation and orientation.
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• Average Orientation Error (AOE) refers to the smallest yaw angle bias between 
the predictions and labels. 

• Average Velocity Error (AVE) is defined as the L2 norm of 2D velocity differences. 
• Average Attribute Error (AAE) indicates one minus attribute classification accu-
racy. 

• nuScenes Detection Score (NDS) is the combination of the mean AP and the mean 
TP over all catergories: 

.NDS = 1

10

[
5 · mAP +

5Σ
k=1

(1 − min (1,mTPk))

]
. (10.10) 

• Average Precision weighted by Heading (APH) takes account of heading angel 
while calculating the AP metric. 

• Longitudinal Error Tolerant 3D Average Precision (LET-3D-AP) is designed to be 
more tolerant with respect to depth estimation errors. 

.LET − 3D − AP =
{ 1

0
p(r)dr, (10.11) 

where .p(r) is the precision value at recall . r. 
• Longitudinal Affinity Weighted LET-3D-APL (LET-3D-APL) penalizes the pre-
dictions that do not overlap with any ground truth. 

.LET − 3D − APL =
{ 1

0
pL(r)dr =

{ 1

0
āl · p(r)dr, (10.12) 

where .pL(r) indicates the longitudinal affinity weighted precision, the precision 
value at recall. r is denoted by.p(r), and the factor. āl means the average longitudinal 
affinity of all matched predictions treated as TP. 

10.8 Industrial Applications 

In the industry, BEV perception has been on the rise in recent years. The system-
level architecture design for BEV perception is discussed in this section. The various 
BEV perception architectures put forth by companies worldwide are summarized 
in Fig. 10.29. The industrial BEV perception architectures usually consist of data 
preprocessing, feature extractor, PV-BEV transformation, fusion module and task-
specific prediction head. Each module is elaborated in details below.
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Fig. 10.29 BEV architecture comparison across industrial corporations [ 87, 121, 122] 

10.8.1 Data Preprocessing 

Several data modalities, including camera, LiDAR, RADAR, IMU, and GPS, are 
supported by BEV-based perception algorithms at present. The primary perception 
sensors for autonomous driving are cameras and LiDAR. Several products, such as 
those made by Tesla [ 87], PhiGent [123], and Mobileye [124], only use cameras 
as input sensors. The others use a variety of camera and LiDAR combinations, for 
example, Horizon [121] and HAOMO [122]. Be aware that sensor fusion designs fre-
quently use IMU and GPS signals [ 87, 121, 122]. For examples, see Tesla, Horizon, 
and HAOMO. In the data preprocessing, numerous sensors are usually calibrated 
and synchronized. 

10.8.2 Feature Extraction 

A backbone network and a neck network frequently make up the feature extractor 
module, which transforms raw data into useful feature representations. Several fea-
ture extractor combinations exist for the backbone network and neck network. As an 
illustration, the image backbone network can be RegNet [125] in Tesla and ResNet 
[126] in HAOMO. The neck network could be FPN [74] adopted by HAOMO, BiFPN 
[127] utilized by Tesla, etc. The voxel-based option from Mobileye or the pillar-based 
choice from HAOMO are both ideal candidates for the backbone in terms of point 
cloud input.
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10.8.3 PV-BEV Transformation and Fusion 

In industry, there are mainly four approaches to perform PV-BEV transformation: 

1. Fixed IPM. Projecting PV features into BEV space can be achieved by a fixed 
view transformation based on the assumption that the ground is flat. The ground 
plane is handled well by fixed IPM projection. Nonetheless, it is sensitive to road 
flatness and vehicle jolting. 

2. Adaptive IPM. The extrinsic parameters of self-driving vehicles are used by adap-
tive IPM, which projects features to BEV in accordance with these parameters. 
Adaptive IPM still makes the flat ground assumption despite being robust to vehi-
cle pose. 

3. Transformer-based view transformation. Transforming PV features into BEV 
space using a dense transformer is known as transformer-based view transfor-
mation. Tesla, Horizon, and HAOMO have all broadly adopted this data-driven 
transformation since it works without making any assumptions first. 

4. ViDAR (Pseudo-LiDAR). This term is first proposed by Waymo and Mobileye 
concurrently at different venues [124, 128] in early 2018, to describe the method 
of projecting PV features from visual inputs into BEV space, resembling the repre-
sentation form of LiDAR point cloud. Therefore, point cloud-based techniques can 
be applied to obtain BEV features. Recently, there have been numerous ViDAR 
applications, including those from Tesla, Mobileye, Waymo, Toyota, [ 87, 124, 
128–130], etc. 

In the industrial world, ViDAR and transformer choices predominate. And the 
multi-modal fusion or spatiotemporal fusion are often adopted as a auxiliary of the 
view transformation module. 

10.8.4 Perception Heads 

The multi-head design is widely adopted in industrial BEV perception architecture 
as well. All prediction results such as motion prediction, map segmentation and 3D 
bounding boxes are decoded from BEV feature space since BEV feature is a unified 
representation that aggregates multi-modal information. In some designs, predic-
tion results in PV are also decoded from the associated PV features. According to 
Horizon Robotics [121], the prediction results can be classified into four categories: 
(a) Low-level results are related to physics constrains, such as optical flow, depth, 
normal vector, etc. (b) Semantic-level results include entity extractions, for example, 
vehicle bounding boxes, laneline segmentation, etc. (c) Structure-level results repre-
sent relationship between objects, including object tracking, motion prediction, etc. 
(d) Implicit information such as feature map of auxiliary task.
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10.9 Existing Challenges 

The processing of raw point cloud in LiDAR-based methods requires high memory 
consumption and computational cost. However, converted representations such as 
voxel and pillar lose information to varying degrees. Generating a balanced trade-off 
between performance and efficiency becomes a vital challenge for LiDAR-based 
BEV perception. 

For camera-based methods, the core issue is to reconstruct 3D information from 
2D images. In 2D-3D methods, the effort is devoted to estimating depth or depth 
distribution. However, “Pseudo-LiDAR” methods can not estimate accurate depth 
as real LiDAR, while “Lift” methods do not perform well at object boundaries and 
far away distance. Thus a better depth estimation approach is in urgent need to be 
explored. In 3D-2D methods, recent studies devote to complementing geometric 
into network approaches. IPM-based methods have good interpretability but can not 
avoid distortions above the ground plane. MLP-based methods are theoretically a 
universal approximator [131], but not fully explored in the depth, occlusion and 
multi-view. Transformer-based methods have best performance at present but still 
need to further investigate better queries, spatiotemporal fusion, network lightweight 
and polar parameterization. For network training, effective ground truth annotation 
for the BEV grid is still pending. 

In general, the existing challenges of BEV perception are: 

• Proposing a better representation of point cloud; 
• Designing a better depth estimator for 2D images; 
• Achieving better generalization ability and robustness; 
• Obtaining the truth value annotation in the BEV grid conveniently; 
• Trading-off between performance and efficiency in applications. 

10.10 Conclusions 

In the traditional approach, various perception tasks such as 3D object detection, 
obstacle instance segmentation, lane line segmentation, and trajectory prediction are 
separated from each other. This separation makes the autonomous driving algorithm 
need to use multiple sub-modules in series, which greatly increases the development 
and maintenance cost of the whole system. BEV perception allows these perception 
tasks to be implemented within a single algorithmic framework, significantly reduc-
ing the need for manpower. Considering the advantages of BEV mentioned above, 
many research institutions and major car companies are promoting the implemen-
tation of BEV solutions. Corresponding BEV algorithms have been proposed based 
on different combinations of sensor input layers, basic tasks, and product scenarios. 
While it is certain that BEV perception algorithm can integrate the features of mul-
tiple sensors and improve the accuracy of perception and prediction, its potential to
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be the ultimate solution for autonomous driving is uncertain and depends on various 
factors. 
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Chapter 11 
Road Environment Perception for Safe 
and Comfortable Driving 

Sicen Guo, Yu Jiang, Jiahang Li, Dacheng Zhou, Shuai Su, 
Mohammud Junaid Bocus, Xingyi Zhu, Qijun Chen, and Rui Fan 

Abstract With the ongoing evolution of autonomous driving technology, road envi-
ronment perception systems have become a significant focus of research. However, 
there is currently a paucity of comprehensive survey articles that provide a systematic 
overview of state-of-the-art (SoTA) computer vision techniques and vibration meth-
ods for road defect detection, particularly with regards to deep learning methods. This 
chapter aims to fill this gap by describing the sensing technologies for vision-based
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and vibration-based road environment data acquisition, summarizing several public 
datasets for pothole and crack detection, and providing a comprehensive review of 
SoTA road defect detection algorithms. Additionally, this chapter also discusses the 
core competencies of autonomous vehicle software systems, such as planning and 
control. Finally, we offer a glimpse into the future of autonomous driving systems, 
envisioning the integration of both vision and motion sensors. We believe that this 
survey will act as a helpful guide for advancing road defect detection technology, 
providing strategic advice and practical guidance to those involved in developing 
such systems.

11.1 Introduction 

Over the past few decades, the global vehicle population has significantly increased, 
resulting in greater pressure on road surfaces and a corresponding rise in road defects. 
These harsh road conditions not only damage vehicles but also impede smooth driv-
ing and contribute to traffic accidents. In fact, one-third of the approximately 33,000 
yearly crashes are attributed to poor road conditions [ 1]. A study by The Pacific 
Institute for Research and Evaluation, which analyzed crash data from various gov-
ernment agencies over 18 months, found that road issues such as potholes and icy 
conditions on highways are responsible for over 42,000 fatalities annually [ 2]. 

Road defects such as potholes can significantly increase the risk of accidents and 
vehicle repair costs, particularly in poor or substandard conditions. The impact of 
hitting a pothole can cause damage to the vehicle’s suspension and can also result in 
the driver losing control of the vehicle. When a vehicle’s tyres encounter a pothole, 
the forces acting on the tyres become imbalanced, leading to weight shifting to the 
lower tyres and causing the vehicle to tilt. As the tyre strikes the pothole’s edge, a 
concentrated force impacts the tyre directly, which can result in tyre deformation, 
breakage, and even rim bending. These impacts not only cause damage to the vehicle, 
but also interfere with the driving experience, making it difficult to drive the vehicle 
in a straight line. 

Autonomous driving, also known as robot-assisted driving, has garnered signif-
icant research attention in recent years. The utilization of autonomous vehicles is 
projected to have a crucial impact on the future of urban transportation systems by 
enhancing safety, productivity, accessibility, road efficiency, and environmental sus-
tainability. The pursuit of fully autonomous vehicles has instigated intense competi-
tion among leading companies, including Google, Toyota, and Ford, to advance their 
respective autonomous robotic vehicle concepts [ 4– 6]. Autonomous ground vehicles 
have been recognized for their prospects to provide crucial benefits to society, such 
as reducing the frequency of road accidents caused by human factors, optimizing 
fuel consumption, and enhancing driving convenience. 

Despite the significant milestone that autonomous vehicles represent in the 
advancement of intelligent automation, concerns about their safety and reliability 
continue to be major issues. Autonomous vehicles require robust detection of their
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surroundings and interpretation of a wide range of contextual information to avoid 
collisions, particularly from a safety perspective. Road environment perception capa-
bilities play a crucial role in ensuring the safe deployment of autonomous vehicles. 
For example, ClearMotion [ 7] has developed a cloud software called RoadMotion. 
The collection and analysis of road surface mapping data by autonomous vehicles 
enable the vehicle subsystems to make informed decisions in real-time. This data 
facilitates safer control of steering, stopping, starting, and absorbing shocks based on 
the actual road conditions. This requires the vehicle sensors to recognize various road 
defects, as well as road signs such as lane lines, speed humps, and pedestrian crossing. 
In the contemporary realm of autonomous driving, the detection and localization of 
roadway defects have garnered paramount importance in ensuring safe and efficient 
transportation. To this end, sophisticated algorithms have been developed, which 
predominantly employ a global mapping approach, harnessing the power of Global 
Positioning Systems (GPSs), Light Detection and Ranging (LIDARs), and cameras. 
Such algorithms meticulously detect and precisely localize a given defect within the 
vehicle’s coordinate system, subsequently transforming this information into global 
coordinates. Leveraging this accurate spatial information, the algorithm scrutinizes 
the global map and identifies the optimal path for the vehicle, guaranteeing smooth 
navigation on the road [ 8, 9]. 

In the last two decades, the field of road perception has witnessed a remark-
able transformation, marked by the advent of advanced acquisition and detection 
techniques. Yet, most recent surveys in this field do not comprehensively cover the 
SoTA advancements in computer vision, including 3-D point cloud modeling, seg-
mentation, and machine/deep learning. Furthermore, the relatively nascent field of 
vibration-based road detection remains largely unexplored. In light of this, we present 
a meticulous and comprehensive review of the SoTA road perception systems, dis-
cussing both computer vision-based and vibration-based road defect detection algo-
rithms. To facilitate a comprehensive understanding of this domain, we begin by 
providing a systematic overview of available systems and methods, as illustrated in 
Fig. 11.1. We begin by providing a comprehensive introduction to vision-based road 
imaging methods (see Sect. 11.2.1), followed by an introduction of vibration-based 
road environment acquisition techniques (see Sect. 11.2.2). We then introduce the 
road defect datasets obtained through the aforementioned methodologies (see Sect. 
11.3). To ensure a clear and coherent presentation, we categorize road defect detection 
algorithms into two main groups: vision-based (see Sect. 11.4.1) and vibration-based 
(see Sect. 11.4.2). Subsequently, we describe how road information can be utilized 
in autonomous driving systems for vehicle planning and control (see Sect. 11.5). 
Finally, we conduct a critical evaluation of the limitations of existing methods and 
explore future research directions in this fast-evolving field (see Sect. 11.6). Our 
comprehensive survey promises to equip researchers and practitioners alike with a 
nuanced and in-depth understanding of the latest developments in road perception 
systems.
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11.2 Sensing Technologies for Road Environment 
Perception 

11.2.1 Vision Sensors 

11.2.1.1 2-D Imaging 

The collection of road data through 2-D imaging methods, such as digital imaging or 
digital image acquisition, was first initiated in the early 1990s [ 10, 11]. However, the 
limitations of 2-D images make it difficult to effectively depict the physical structure 
of roads [ 12]. During that time, cameras and range sensors were commonly used 
as the primary sensing devices for acquiring road information. Nonetheless, image 
segmentation algorithms that are applied to gray-scale/RGB road defect images can
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Fig. 11.1 A systematic overview of road environment perception systems created based on our 
previous taxonomy introduced in [ 3]
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Fig. 11.2 Laser 
triangulation [ 19]. By 
placing the sensor at a 
predetermined distance from 
the laser’s light source, the 
reflection angle of the laser 
illumination can be 
calculated, enabling the 
derivation of precise 3-D 
information about the road 
surface 

be easily influenced by a wide range of factors, including unfavorable illumination 
conditions [ 13]. To overcome these limitations and simultaneously enhance the accu-
racy of road defect detection, researchers have increasingly turned to 3-D imaging 
technologies [ 12, 14, 15].

11.2.1.2 3-D Imaging 

The first successful use of 3-D imaging methods to collect road surface data was in 
1997 [ 16]. This section aims to provide a comprehensive discussion of the contem-
porary 3-D imaging technologies that are currently being employed for the purpose 
of acquiring road data. 

Laser scanning is a widely adopted imaging method for precise 3-D road surface 
data acquisition [ 17]. Nonetheless, it requires laser sensors to be mounted on ded-
icated detection vehicles like the Georgia Institute of Technology Sensing Vehicle 
[ 18]. As a result, this method is not widely used due to the high cost of equipment 
acquisition and long-term maintenance expenses [ 15] (Fig. 11.2). 

Microsoft Kinect [ 13] was originally developed for motion sensing games on the 
Xbox-360 platform, but have since been utilized for a variety of other applications. 
These sensors are equipped with various components such as an infrared (IR) sen-
sor/camera, an IR emitter, an RGB camera, accelerometers, a tilt motor for motion 
tracking capabilities, and microphones [ 17]. Microsoft Kinect is a ideal technology 
for road surface imaging when installed on a vehicle, with a working range of 800– 
4000 mm. Previous studies have used Kinect sensors for 3-D road data acquisition 
and defect detection [ 13, 20, 21]. However, the reliability of Kinect sensors can be 
challenged by the IR saturation issue, particularly when exposed to direct sunlight 
[ 22] (Fig. 11.3). 

Multiple images captured from different views can also be used to reconstruct the 
3-D geometry of a road surface [ 12, 24]. This technique is based on the theory of 
multi-view geometry [ 25]. The initial proposal for an automatic 3-D reconstruction 
and modeling system for road signs was introduced in [ 26]. The authors employed
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Fig. 11.3 Microsoft Kinect 
sensor [ 23] 

a multi-view constrained 3-D reconstruction approach that incorporates geometric 
constraints on the shape of the road signs to obtain an optimal 3-D silhouette, achiev-
ing centimeter-level accuracy. 

11.2.2 Vibration Sensors 

Vibration-based road defect detection methods utilize non-vision-based sensors, such 
as inertial sensors (e.g., accelerometer and gyroscope sensors), vehicle speed, vehicle 
suspension states, drivers’ inputs, etc. Vibration-based road defect detection methods 
have gained popularity due to their cost-effectiveness and relatively light computa-
tional burden. Despite being tied to vehicle dynamics and potentially affected by 
vehicle parameters, these methods provide more robust measurements as they are 
less influenced by weather or lighting conditions. 

One of the earlier attempts at using mobile inertial sensors to detect potholes 
was conducted by a research group in CASIL at MIT in 2008. In [ 28], Eriksson 
et al. created a system known as pothole patrol that used inertial sensors and GPS 
sensors from mobile devices deployed to a fleet of seven taxis in the Boston area. The 
orientation of each mobile sensor was fixed in the vehicle once installed. Therefore, a 
one-time calibration can be performed for each vehicle right after sensor installation. 
In [ 29], researchers at Microsoft Research India presented Nericell, an add-on system 
that can be carried together with smartphones by users in the normal course. Since the 
orientation of the mobile sensors may vary when placed inside a vehicle, a practical 
reorientation approach was developed to virtually align the smartphone’s three axes 
with body frame of the car. In 2011, Perttunen et al. collected accelerometer data at 
38Hz and GPS data at 1Hz from a Nokia N95 8GB mobile phone, and they were able 
to detect road defects by training and deploying an SVM detector [ 30]. Later, with 
the increasing programmability and sensor accessibility of smartphones, researchers 
started developing applications directly on smartphones to detect potholes and other 
types of road defects using built-in smartphone sensors (see Table 11.1 for a list 
of possible sensors or signals that can be used for road defect detection). Android 
smartphones with accelerometers were used in [ 31] for real-time pothole detection. 
Wu et al. [ 32] developed a customized Android application and the smartphone can 
be mounted without being fixed to the back seat. In [ 33], the authors proposed a
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Table 11.1 Different types of smartphone sensor data for road defect detection 

Signal/sensor name Type Unit Description 

Acceleration Measured .m/s2 Raw accelerometer 
measurements 

Gyroscope Measured .deg/s Raw gyroscope measurements 

Linear acceleration Derived .m/s2 Accelerometer measurements 
excluding gravity 

Magnetometer Measured .µT Ambient geomagnetic field 
measurements 

Gravity Derived .m/s2 Gravitational acceleration 

Rotation Derived .rad Orientation of the sensor 

GPS Measured .deg Location information of the 
sensor 

Fig. 11.4 In-vehicle sensors for vibration signals collection [ 27] 

model called smart-patrolling on Android phones to crowd-source data for pothole 
detection. A system called Wolverine was introduced in [ 34] and was implemented 
on a Google Nexus S. A road monitoring system was developed using a Nokia 
Lumia 820 mobile device to detect road defects from measured gyroscope data 
around gravity rotation and accelerometer sensor data [ 35]. Recently, Rajput et al. 
placed smartphones in public transportation buses with dense connectivity to achieve 
large-scale road monitoring [ 36]. While most research studies rely on accelerometer 
sensing as the primary indicator for road defects, the RoadMonitor system [ 35] 
proposed a cross-validation methodology for the detection and severity assessment 
of road bumps using gyroscope sensors. 

Although smartphones can be used as vibration sensors, vehicle built-in sensors 
generally provide richer content. In [ 37], researchers constructed a signal set con-
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Table 11.2 Pothole dataset 

Pothole dataset Sensors Color/gray Dataset size Resolution 

[ 43] GoPro Hero 3 +  
camera 

Color 628 2,760.× 3,680 

[ 44] – Color 3,227 (2,475 for 
training and 752 
for testing) 

720.× 1,280 

[ 45] Smartphone 
mounted on a car 

Color 9,053 600.× 600 

[ 22] ZED stereo 
camera 

Color 67 800.× 1,312 

[ 46] ZED stereo 
camera 

Color 600 (240 for 
training, 180 for 
validation and 
180 for testing) 

400.× 400 

UDTIRI Collected from 
the Internet or 
taken manually 

Color 1,000 (600 for 
training, 100 for 
validation and 
300 for testing) 

Variety of 
resolutions 

taining eighteen different signals for road surface defect detection. The signal set 
includes measurements from the Inertial Measurement Unit (IMU) located at the 
center of gravity of the vehicle, as well as measurements from the shock absorber 
and spindle signals. Similarly, in [ 27], vehicle measurements, including suspension 
position reading, were collected to conduct state estimation based on Jump-Diffusion 
Processes (JDPs). The sensor data collection setup utilized by [ 27] is presented in 
Fig. 11.4. 

11.3 Public Datasets 

Data plays a crucial role in deep learning algorithms. While there are many large-scale 
datasets available for general-purpose object detection, the small number and size of 
existing datasets have become a bottleneck for the development of defect detection 
systems. This section provides an overview of common road imaging datasets, as 
well as pothole and crack datasets, which are summarized in Tables 11.2 and 11.3. 

11.3.1 Road Imaging Datasets 

Road scene imaging datasets are crucial for road defect detection. While datasets 
such as KITTI [ 38] and Cityscape [ 39], which are widely used for computer vision
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Table 11.3 Crack dataset 

Crack dataset Sensors Color/gray Dataset size Resolution 

[ 48] Nine CMOS line 
camera 

Gray 38,000 6,144.× 1,024 

[ 49] Aviiva SM2 CL 
1010 Camera 

Color – 1,024.× 1,714 

[ 50] DSLR camera 
(Nikon D5200) 

Color 332 277 images with 
4,928.× 3,264 
and 55 images  
with 5,888. ×
3,584 

[ 51] 16 MP Nikon 
digital camera 

Color 56,092 256.× 256,64. ×
64 

[ 52] Collected from 
the Internet or 
taken manually 

Color 200 Variety of 
resolutions 

[ 53] Digital camera Color 1,328 4,032.× 3,016 

[ 54] Color 600 224.× 144,976. ×
640 

tasks, also include road scenes, they provide less information about the road surface 
and are primarily focused on street scenes. Specifically, there are datasets dedicated 
to road surface defect detection, such as those used for 3D reconstruction of road 
surfaces [ 12, 15]. 

For the road surface 3-D reconstruction, [ 12] creates three datasets 1 (91 stereo 
image pairs). Datasets 1 and 2 focus on road scenes, while dataset 3 assists researchers 
in evaluating with sample models. Each dataset includes both uncalibrated and cal-
ibrated left and right images. The calibrated images are serve as estimation of the 
disparity map, while the uncalibrated images and calibration parameters are used to 
reconstruct the 3-D road geometry. Additionally, they have created a road pothole 
3-D geometry reconstruction dataset 2 [ 15]. The accuracy of the road pothole 3-D 
geometry reconstructed using stereo vision technology is 2.23 mm. 

Toronto-3-D 3 [ 40] is a sizable dataset of urban outdoor point cloud collected by a 
Mobile Laser Scanning (MLS) system in Toronto, Canada. It contains approximately 
78.3 million points and covers around 1 km of road.

The RadarScenes dataset 4 [ 41] consists of recordings collected from a measure-
ment vehicle equipped with four automotive radar sensors and a documentary camera 
facing the front. It includes point cloud data collected by the radar sensors and seman-

1 https://github.com/ruirangerfan/road_surface_3d_reconstruction_datasets. 
2 https://github.com/ruirangerfan/rethinking_road_reconstruction_pothole_detection. 
3 https://www.kaggle.com/datasets/priteshraj10/point-cloud-lidar-toronto-3d. 
4 https://www.kaggle.com/datasets/aleksandrdubrovin/the-radarscenes-data-set. 
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tic annotations on a point-wise level. The dataset was recorded in Ulm, Germany over 
a period of three years from 2016 to 2018 and spans over 4 hours in length.

RoadSaW [ 42] is a recently introduced dataset that aims to facilitate the estimation 
of road surface and wetness. The dataset contains 720,000 bird’s-eye-view patches 
captured on a test track, high-resolution videos, and accurate synchronized water 
film height measurements. The dataset covers various surface types such as asphalt, 
concrete, and cobblestone. The FLIR Blackfly 3.2 MP, 30 fps camera is mounted 
behind the truck’s windscreen at a height of 2.66 meters. The primary dataset consists 
of 250 videos recorded on five different days and is split almost evenly among the 
training (70%), validation (20%), and test (10%) sets. 

11.3.2 Pothole Datasets 

[ 45] presented a sizable road defect dataset, 5 containing 9,053 color road images 
with a resolution of 600 .× 600 pixels collected in Japan. The images, which show 
15,435 road defects, were captured using a smartphone installed on a car in diverse 
weather and lighting conditions. 

A comprehensive dataset 6 for instance-level pothole detection has been compiled 
by Rath et al. [ 43]. The dataset comprises a training set, a test set, and an annota-
tion CSV file. The training set includes 2,658 color images of pothole-free roads 
and 1,119 color images of roads with potholes, while the test set contains 628 color 
images. These images, with a resolution of 2,760 .× 3,680 pixels, were taken by 
a GoPro Hero 3+ camera, with a 0.5-s time-lapse mode, while the car moved at a 
40 km/h average speed and scanned the road surface. The dataset size is approxi-
mately 2.70 GB. 

The first multi-modal road pothole detection dataset 7 to facilitate the development 
and evaluation of more advanced and accurate pothole detection algorithms is pre-
sented in [ 22]. This dataset includes 55 groups of data, consisting of (1) RGB images, 
(2) subpixel disparity images, (3) transformed disparity images, and (4) pixel-level 
pothole annotations, with an image resolution of 800 .× 1,312 pixels. Additionally, 
the Pothole-600 dataset 8 [ 46] provides two types of vision sensor data: color images 
and transformed disparity images. The transformed disparity images are obtained 
by applying the disparity transformation algorithm [ 47] to dense subpixel disparity 
images estimated using the stereo matching algorithm [ 12]. 

UDTIRI dataset 9 focuses on object detection, semantic segmentation, and instance 
segmentation tasks in the field of pothole detection. The dataset consists of images 
collected from online search engines as well as a collection of real images captured

5 https://github.com/sekilab/RoadDamageDetector. 
6 https://kaggle.com/sovitrath/road-pothole-images-for-pothole-detection. 
7 https://github.com/ruirangerfan/stereo_pothole_datasets. 
8 https://sites.google.com/view/pothole-600. 
9 https://www.udtiri.com/. 
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in China to increase the diversity of image sources. The potholes in the UDTIRI 
dataset vary in scale, with the smallest pothole covering.0.3% of the image area and 
the largest covering .92%. On average, potholes cover .11.2% of the image area. The 
dataset also provides pixel-level statistics, with the average pothole bounding box 
having a width of 500 pixels, a height of 248 pixels, and an average area of 224,892 
pixels. 

11.3.3 Crack Datasets 

Cha et al. proposed a crack dataset[ 50], which was obtained using a hand-held DSLR 
camera (Nikon D5200) in a complex building at the University of Manitoba. The 
dataset comprises 332 raw images, including 277 images with a resolution of 4,928 
. × 3,264 pixels and 55 images with a resolution of 5,888. × 3,584 pixels. The objects 
in the images were located at distances ranging from approximately 1.0 to 1.5 m, 
although some images were taken at distances below 0.1 m for testing purposes. 
Additionally, the lighting intensities in the images were significantly different. The 
dataset was divided into training and validation subsets, consisting of 277 images, 
and a testing subset consisting of 55 images. 

Zhang et al. presented a dataset [ 51] consisting of 56,092 images of manually 
annotated concrete bridge decks that include cracks of varying widths, ranging from 
as narrow as 0.06 mm to as wide as 25 mm. The images have a size of 256 .× 256 
pixels and are subdivided into smaller sub-images with dimensions of 64. × 64 pixels 
to improve detection accuracy. From an initial pool of 4,800 images, 4,300 images 
are partitioned into 17,200 sub-images, and blurry images or those with corner cracks 
are excluded. As a result, a total of 16,789 images are used as the dataset for this 
study. Moreover, to evaluate the classifier’s generalization ability, 500 bridge deck 
images are randomly combined to form 20 images with a size of 1,280. × 1,280 pixels 
for testing. 

Choi et al. introduced a dataset [ 52] comprising of 200 digital images sourced 
from the internet or captured manually. Each image was captured under distinct 
conditions such as varying distances, lighting intensity, field of view (FOV), and 
image quality. The images have spatial dimensions between 513 and 1,920 pixels in 
any axis. The minimum size of the images is 513.× 513 pixels, while the maximum 
size is approximately that of high definition images, which is 1,920 .× 1,080 pixels. 

A digital single lens reflex camera was used to capture a total of 409 photos 
(4,032 .× 3,016 pixels) in a tunnel in Huzhou, Zhejiang Province, China, under 
various lighting circumstances [ 53]. Since training convolutional neural networks 
(CNNs) on large images may cause GPU memory overflow, the large images were 
cropped to a size of 512 .× 512 pixels. The resulting dataset contains 919 cropped 
images, which were randomly divided into a training set and a test set with a ratio 
of 4:1. The training set was used to optimize the model parameters, and the test set 
was used to evaluate the model’s accuracy.
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11.4 Road Defect Detection 

11.4.1 Computer Vision-Based Road Defect Detection 

An overview of the taxonomy of cutting-edge computer vision-based road defect 
detection algorithms is presented in Fig. 11.1. Classical 2-D image processing-based 
algorithms employ explicit programming to process road RGB or disparity/depth 
images, involving various techniques such as image enhancement, compression, 
transformation, and segmentation [ 55]. On the other hand, segmentation-based meth-
ods and 3-D road point cloud modeling involve fitting geometric models, such as 
planar or quadratic surfaces, to the road point cloud and then segmenting the cloud 
by comparing observed and fitted surfaces. Machine/deep learning-based algorithms 
utilize techniques such as image classification, object recognition, or semantic seg-
mentation to detect road potholes. Hybrid methods combine two or more meth-
ods to increase overall performance. Recent studies have shown that deep learning 
approaches hold potential for road defect detection [ 56– 58]. 

11.4.1.1 2-D Image Processing-Based Approaches 

The classical 2-D image processing techniques have been widely studied for road 
defect detection, and they generally follow four fundamental steps: (1) image pre-
processing, (2) image segmentation, (3) defect extraction, and (4) post-processing. 
Ryu et al. [ 59] proposed a classical 2-D image processing technique that uses a his-
togram shape-based thresholding technique [ 60] to binarize the grayscale road data. 
The segmented images then undergo post-processing operations to eliminate noise, 
including median filter and morphology operations. The median filter smooths the 
image while preserving edges, and morphology operation helps in reducing redun-
dant noise. Finally, the histogram of pixel intensity is evaluated to identify the regions 
of interest containing road defects. 

Researchers have developed various image segmentation algorithms for detecting 
road defects using depth/disparity images, which have led to higher accuracy in 
intelligent road condition assessment systems [ 13, 18, 61]. For instance, [ 13] used  
the Microsoft Kinect sensor to capture depth images of pavements, which were 
segmented using the wavelet transform algorithm [62]. Tsai et al. introduced a method 
[ 18] that utilizes a quite precise laser scanner placed on a road inspection vehicle 
to identify road defects via depth images. Initially, a high-pass filter is applied to 
the depth images to make the depth values of undamaged road pixels more similar. 
The processed depth images are then segmented using the watershed method [ 63] 
to detect road defects. Similarly, Fan et al. processed dense road disparity images 
using the disparity transformation algorithm [ 61], which made road defects more 
distinct. They then applied a histogram-based thresholding technique to the converted 
disparity images to identify road faults.
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11.4.1.2 3-D Point Modeling and Segmentation-Based Approaches 

In recent years, 3-D point clouds have shown great promise for road pothole detection 
and segmentation. The techniques developed for processing 3-D road point clouds 
generally follow two procedures [ 64, 65]. Firstly, the 3-D point cloud is interpolated 
into an explicit geometric model, typically a planar or quadratic surface, in order to 
obtain a structured representation of the road surface. Secondly, the 3-D point cloud 
is segmented by comparing it with the geometric interpolation model, which enables 
the identification of road potholes with greater accuracy and efficiency [ 64, 65]. 

An example of utilizing the 3-D point cloud technique for road defect detection 
and segmentation is shown in [ 64]. This method employs least-squares fitting to 
approximate the dense 3-D road point clouds with quadratic surfaces, and calculates 
the elevation difference between the observed surfaces and the fitted surfaces to 
extract road defects (potholes) effectively. 

The accuracy of least-squares fitting will be significantly impaired by the outliers 
in input data [ 22]. To address this challenge, [ 66] introduced the robust least-squares 
approximation with bi-square weights for modeling road point clouds. Reference 
[ 47] further improved the robustness of quadratic surface fitting by employing the 
random sample consensus (RANSAC) algorithm [ 67]. In addition, [ 22, 68] improved 
the accuracy of road defect detection by introducing surface normal information into 
the quadratic surface fitting procedure. These techniques have demonstrated their 
effectiveness in accurately modeling road surfaces and detecting road defects with a 
high level of precision. 

Compared to other approaches, 3-D point cloud modeling and segmentation meth-
ods are relatively uncommon, mainly because real-world roads are often highly irreg-
ular and uneven, making these techniques sometimes impractical. 

11.4.1.3 Machine Learning-Based Approaches 

The year 2012 marked a significant turning point in the field of machine learn-
ing, as neural network-based methods surpassed traditional hand-designed feature 
approaches in the ImageNet classification competition. Since then, the development 
of machine learning methods has progressed rapidly, resulting in many advanced 
algorithms for tasks such as image classification, object detection, and semantic 
segmentation, which consistently outperform traditional methods. The use of deep 
learning methods has become standard practice in many fields due to their abil-
ity to provide broader coverage and higher performance for solving more complex 
problems. In this section, we will review road defect detection applications of excel-
lent learning-based methods, including image classification, object detection, and 
semantic segmentation.
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Fig. 11.5 Architecture of image classification progress [ 69] 

Image Classification Approaches 

The increasing availability of large training datasets and computational resources 
has facilitated the extensive use of Deep Convolutional Neural Networks (DCNNs) 
in detecting road defects. Compared to classical support vector machine (SVM) 
approaches, DCNNs can learn more abstract and hierarchical visual features, result-
ing in better detection performance [61]. Various DCNN-based approaches have been 
proposed for road defect detection [ 69– 72], and they have been extensively studied 
[ 69, 71]. A study by Pereira et al. [ 69] presented a DCNN architecture consisting of 
four convolutional-pooling layers and a fully connected (FC) layer. The model was 
able to accurately classify defect and non-defect images in road data obtained from 
Timor-Leste. Similarly, Ye et al. [ 17] proposed a DCNN for road pothole classifica-
tion [ 71]. The network consists of a pre-pooling layer, three convolutional-pooling 
layers, a sigmoid layer, and two fully connected layers. The pre-pooling layer is tai-
lored to eliminate features that are irrelevant to road potholes, resulting in improved 
classification performance of road images. The experimental results demonstrate that 
the network can effectively identify road defects in different lighting conditions. 

As shown in Fig. 11.5, image classification involves two steps: generating a fea-
ture map and performing feature learning through convolutional networks. The final 
output layer is a fully connected layer that flattens the input received from preceding 
layers and provides the result. Different classification networks vary in the architec-
ture of the feature learning network used. For example, Bhatia et al. [ 72] proposed a 
DCNN based on the widely used residual network architecture [ 73]. Their proposed 
model was tested on thermal road images collected in challenging weather condi-
tions and outperformed previous methods [ 59, 70, 74] in accurately classifying road 
images into pothole and non-pothole images. 

Compared to pothole classification, road crack detection has received more atten-
tion using classification networks, mainly due to the ability of CNNs to learn discrim-
inative visual features without explicit feature engineering [ 75]. For instance, [ 76] 
introduced a CNN for road crack detection that takes RGB road images as input. 
The learned visual features are then mapped to a scalar value using a fully con-
nected layer, representing the probability of the input image containing road cracks. 
Similarly, [ 56] proposed a deep CNN to classify road images as containing or not
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Fig. 11.6 Examples of Grad-CAM++ [ 79] results  [  80]: a road crack images, b the class activation 
maps of ResNet-50 [ 81], c the class activation maps of SENet [ 82]. The warmer the color is, the 
more attention the CNN pays 

containing road cracks. Besides image classification, an image thresholding method 
was applied to segment the road images for pixel-level road crack detection. 

A comprehensive evaluation of 30 SoTA CNNs was conducted by [ 77] for the  
purpose of road crack detection. The results of the experiments suggest that image 
classification is not a significantly challenging task for road crack detection, and 
the performance of deep CNNs in this area is highly similar. Furthermore, it was 
found that only 10,000 images are needed to train a well-performing CNN for this 
task. However, pre-trained CNNs often perform poorly on additional test sets, mak-
ing unsupervised domain adaptation (UDA) [ 78] an important area of research that 
requires more attention. Additionally, observable artificial intelligence (AI) algo-
rithms like Grad-CAM++ [ 79], have become essential for applications involving 
image classification to better understand CNN decision-making. Figure 11.6 shows 
an example of Grad-CAM++ results. 

Object Detection Approaches 

In 2015, Girshick introduced an advanced object detection algorithm named Fast 
R-CNN [ 83], which builds upon the R-CNN approach. This method employs CNNs 
to directly analyze the input image, producing a Convolutional Feature Map (CFM). 
Then, selective search is applied to identify region proposals from the CFM, and 
the proposals are reshaped to a fixed size using a Region of Interest (RoI) pooling 
layer before being fed into a fully connected layer. Finally, a softmax layer predicts 
the classes of the region proposals. However, the reliance of R-CNN [ 84] and Fast 
R-CNN [ 83] on selective search to generate region proposals is computationally 
expensive. To tackle this problem, Ren et al. presented Faster R-CNN [ 85], which 
introduces a region proposal network to learn the region proposals. Compared to 
R-CNN, Faster R-CNN is 250 times faster, and 11 times faster than Fast R-CNN.
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Unlike the R-CNN series, the YOLO series takes a distinct approach to object 
detection. YOLOv1 [ 86] views the issue of object detection as a regression prob-
lem and divides the input image into an .S × S grid, where each grid cell predicts 
.B bounding boxes with their corresponding class probabilities and offsets. How-
ever, YOLOv1 [ 86] suffers from a high number of localization errors and relatively 
low recall. To address these issues, YOLOv2 [ 87] introduces several improvements, 
including the addition of batch normalization to all convolutional layers, fine-tuning 
the classification network at full resolution, and replacing the fully connected layers 
with anchor boxes for predicting bounding boxes. 

Regarding the implementation of object detectors in road defect detection, several 
studies have utilized popular algorithms to detect road defects. For instance, Suong 
et al. [ 88] trained a YOLOv2 [  87] model to recognize road potholes, while [ 89] 
utilized a Faster R-CNN [ 85] to accomplish the same goal. Reference [ 90] employed 
three kinds of different YOLOv3 [ 91] architectures for detecting road defects, while 
[ 92] introduced YOLOv3 [ 91] to detect road potholes from RGB images obtained 
by a car-mounted smartphone. The proposed algorithm has been implemented on a 
Raspberry Pi 2 model B using TensorFlow, and the reported results show a mean 
average precision (mAP) of 68.83% and an inference time of 10 ms. Moreover, in a 
recent study 10 [ 93], the performances of YOLOv2 [ 87] and Mask R-CNN [ 94] for  
road defect detection have been compared and analyzed. However, these methods use 
object detection networks that are not specifically designed for the task of road defect 
detection and are limited to providing instance-level predictions. Consequently, in 
recent years, semantic image segmentation has emerged as a more desirable technique 
for detecting road defects, as it can provide pixel-level predictions. It should be noted 
that Dhiman et al. (2019) compared the performances of YOLOv2 and Mask R-CNN 
for road defect detection, but these methods still lack the specificity of semantic image 
segmentation. 

Semantic Segmentation Approaches 

Semantic segmentation is an image processing technique for labeling each pixel in 
an image with a corresponding class [ 95]. In recent years, semantic segmentation has 
gained significant popularity for road defect detection [ 96]. Cutting-edge semantic 
image segmentation networks can be broadly classified into two categories based on 
the number of encoders used: (1) single-modal [ 57] segmentation networks that use 
only one kind of vision sensor data, such as RGB or depth images, and (2) data-fusion 
segmentation networks that use multiple types of vision sensor data, such as color 
and transformed disparity images [ 97] or color and surface normal information [ 98]. 
Both types of networks have been employed by researchers for the detection of road 
defects and defects, and they all have achieved successful outcomes. 

Recent years have seen significant progress in the development of state-of-the-art 
solutions for semantic segmentation of road cracks. For instance, Choi et al. proposed

10 https://vimeo.com/337886918. 

https://vimeo.com/337886918
https://vimeo.com/337886918
https://vimeo.com/337886918
https://vimeo.com/337886918
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Fig. 11.7 DeepCrack architecture [ 58] (with permission for resue) 

an approach for the segmentation of concrete cracks called SDDNet [ 52], which uses 
a combination of standard convolutions, Densely connected Separable convolution 
(DenSep), and a modified Atrous Spatial Pyramid Pooling (ASPP) module. Similarly, 
Liu et al. introduced DeepCrack [ 58], which is a robust CNN-based model that 
utilizes a deep hierarchical feature learning architecture. As illustrated in Fig. 11.7, 
DeepCrack avoids using fully connected layers and instead inserts side-output layers 
after the convolutional layers. Deep supervision is applied at every side-output layer 
to generate a final fused output that can capture features at different scales and levels. 
Finally, guided filtering is used to refine the resulting fused prediction with the first 
side-output layer. 

In a recent study, Wang et al. [ 97] proposed a data-fusion convolutional neural 
network (CNN) for detecting road defects. The authors conducted a comprehensive 
evaluation of different modalities of visual features, including RGB images, dispar-
ity images, surface standard images [ 99], elevation images, HHA images, and trans-
formed disparity images [ 61]. The experimental results showed that the transformed 
disparity image is the most informative visual feature for road defect detection. The 
implications of their findings are significant for improving the effectiveness of road 
defect detection techniques. 

11.4.1.4 Hybrid Approaches 

Hybrid approaches for road defect detection usually involve the integration of mul-
tiple algorithms mentioned earlier. By combining different methods, the system can 
achieve greater robustness and produce more accurate detection results. 

Jog et al. proposed a hybrid approach for road pothole detection in 2012 [100]. The 
proposed method combines 2-D object recognition and 3-D road geometry recon-
struction to accurately detect road potholes. High definition camera video frames 
are initially utilized for road pothole recognition, while sparse 3-D road geometry 
reconstruction is concurrently performed using the same video. The combination 
of these two modalities allows for accurate detection of road potholes and reduces
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Fig. 11.8 Typical vibration-based road defect detection workflow 

the number of falsely detected potholes. This hybrid method provides an effective 
solution for road defect detection. 

In 2017, Kang et al. presented a hybrid road pothole detection system that utilizes 
2-D LiDAR data and RGB road images for automated detection [101]. This system 
overcomes the limitations caused by electromagnetic waves and poor road conditions, 
and benefits from the complementary strengths of these two types of data. The 2-D 
LiDAR data provides road profile information, while the RGB road images offer 
road texture information. Two LiDARs are used to obtain accurate and large road 
area coverage. By combining the advantages of different vision data sources, this 
hybrid system is able to enhance the overall road pothole detection accuracy. 

In 2019, [ 22] also proposed a hybrid network framework, which employs a hybrid 
framework that combines 2-D image processing and 3-D road surface modeling 
algorithms to enhance the detection of road potholes. Initially, potential undamaged 
road areas are extracted by applying disparity transformation (in Sect. 11.4.1.2) and 
Otsu’s thresholding [102]. Subsequently, a quadratic surface is fitted to the original 
disparity image using the RANSAC algorithm to improve the robustness of surface 
fitting. The difference between the actual and fitted disparity images is then analyzed 
to detect potholes. This approach shows promising results in terms of improving road 
defect detection accuracy. 

11.4.2 Vibration-Based Road Defect Detection 

As discussed in Sect. 11.2.2, vibration-based techniques utilize non-vision sensors, 
such as inertial sensors, to gather vehicle data, which is then analyzed using detection 
algorithms to identify road defects. Vibration-based methods are generally more cost-
effective than computer vision-based solutions, and have gained popularity among 
research groups in recent years. However, it is important to note that accurately 
estimating the dimensions of road defects is more challenging with vibration-based 
approaches compared to vision-based methods. 

Typically, the workflow of road defect detection approaches follows the steps 
depicted in Fig. 11.8. It should be noted that the first step, i.e., data acquisition 
approaches, has been discussed in Sect. 11.2.2. The last step, performance evaluation, 
can employ any generic method and is not specific to vibration-based methods. 
Hence, our discussion here will concentrate on the three intermediate steps, namely, 
data preparation, road defect detection, and crowd-sourcing of detection results.
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11.4.2.1 Data Preparation 

Like other machine learning workflows, it is important to preprocess the raw data 
collected from mobile and built-in vehicle sensors to obtain a curated dataset before 
analysis. To ensure precise road defect detection, the raw sensor data typically under-
goes smoothing and filtering. Additionally, if mobile sensors such as smartphones 
are employed, it is important to virtually re-orientate the sensor data to correspond 
with the vehicle’s body frame. 

Smoothing and Filtering 

Smoothing and filtering of raw signals can be achieved by performing convolution 
in the time domain with finite impulse response (FIR) filters, such as a moving-
average filter. Also, one can pass the raw signals through infinite impulse response 
(IIR) filters which are usually designed in the frequency domain. In both cases, low-
pass filters (e.g., [103, 104]) and/or high-pass filters (e.g., [ 28]) are typically used to 
remove the high-frequency sensor noise and/or the low-frequency bias, respectively. 
Band-pass filters are frequently employed to isolate signal content within a specific 
frequency range. The speed signal is often utilized to accept or reject windows for 
further processing. Windows where the vehicle is moving slowly or not moving at all 
are commonly discarded to eliminate events like door slams [ 28]. When speed can 
only be inferred from GPS sensors, smoothing and estimation methods like Kalman 
filters are used to enhance speed estimation and remove outliers [ 30]. In particular, 
accelerometer measurements can be combined with GPS to overcome time-to-first-
fix (TTFF) delays [105], and a technique called speed-dependency removal is used 
to segment the data. Speed-dependency removal is also addressed in [ 30]. 

Fig. 11.9 Smartphone sensor coordinate and vehicle body coordinate
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Reorientation 

Another common practice in data pre-processing is reorientation, which is referred 
to as the process of reorienting sensor data values from a device coordinate system 
to the vehicle body coordinate system (see Fig. 11.9). This challenge exists in almost 
all smartphone-based solutions since the displacement of a smartphone in a vehicle 
can be arbitrary. The development of Nericell by Mohan et al. involved extensive 
investigation into this issue [ 29]. They realized that while it is theoretically possible 
to infer the angles of rotation about each axis, such a framework yields multi-factor 
trigonometric equations that are complex to solve. Alternatively, they resorted to an 
equivalent framework based on Euler angles. Under this framework, a pre-rotation 
about .Z and a tilt angle about .Y can be estimated from a short window of data 
collected from the steady motion of the vehicle. Then, a post-rotation angle, again 
about . Z , can be derived from the braking and acceleration of a vehicle traveling in 
a straight line. These three Euler angles can easily represent any orientation, and 
this practical reorientation approach has been quickly adopted and extended by other 
research studies (e.g., [ 33, 106]). More reorientation strategies can be found in [107]. 

11.4.2.2 Road Defect Detection Methods 

In the literature, there are various methodologies reported for road defect detection 
using vibration signals. Generally, these algorithms can be divided into two cate-
gories: signal-based and data-driven approaches. The signal-based methods aim at 
filtering or estimating signals with physical meanings, and identifying outliers by 
imposing metrics and thresholds on them, whereas the data-driven approaches focus 
more on extracting distinctive information from the data and training machine learn-
ing classifiers to detect road defects. 

Signal and Model-Based Approaches 

The researchers at CSAIL, MIT, developed Pothole Patrol [ 28] which utilized a 
threshold on Z-peak (vertical peak acceleration) along with longitudinal accelera-
tion and vehicle speed to filter potential defects. They trained a simple parameter-
ized model using five different types of manually selected road events. The system 
reported a .0.2% false positive rate for pothole detection. The Nericell system pre-
sented by Microsoft Research India utilized Windows phones carried by users to 
perform rich sensing. The authors used empirical calibration to determine parame-
ters and thresholds for detecting bumps and defects based on vertical acceleration. 
The system was evaluated using data collected from Bangalore and Seattle, and 
reported promising results. 

In [ 31], the authors explored four different metrics on accelerometer sensor data 
for pothole detection. The first three metrics focused on the peak, standard deviation, 
and changing rate of the vertical acceleration. The fourth metric, called G-ZERO,
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detected the moment when the acceleration measurements in all three axes are close 
to zero. This was based on the assumption that when a vehicle enters a pothole, it 
experiences a temporary free fall. It is noteworthy that reorientation was not required 
with the G-ZERO approach. The authors reported a high detection accuracy of up to 
.90% using these simple metrics. 

In 2015, Li et al. analyzed pothole characteristics, and broke down the dynam-
ics of hitting a pothole into different stages [108]. A multi-phase dynamic model 
was created as a switching system with three modes to capture the pothole-hitting 
response. They compared the results with F-Tire in a simulation environment and 
demonstrated that their model is capable of generating similar results and trends as in 
F-Tire. A detection algorithm was proposed by recursively computing the confidence 
of each mode with Bayesian estimation and Unscented Kalman Filtering. In [ 27], 
a state estimation framework was developed to detect road defects. These measure-
ments from multiple vehicle state sensors were studied with both a full-vehicle model 
and half-model, and an optimal observer based on jump-diffusion processes (JDPs) 
was constructed to estimate known state and input signals, such as the road velocity 
input. In this work, it has also been demonstrated that the JDP-base estimator works 
better than a Kalman filter when jumps, such as potholes, cracks and bumps. With the 
estimated states, a threshold-based road defect detection algorithm was developed, 
and a false negative rate of .1.78% was reported. 

Data-Driven Approaches 

Data-driven methods involve training machine learning models using either extracted 
features or raw sensor signals to produce results close to labeled ground truth. A 
variety of signal-processing techniques can be applied to extract features from rich 
sensor data. In the time domain, features can be derived from statistics such as stan-
dard deviation, mean, entropy, variance, root mean square, median, integral square, 
and range [109]. Another method used for feature extraction in the time domain is 
dynamic time warping (DTW), which is primarily employed in research on speech 
recognition. DTW calculates the degree of similarity between two datasets by com-
paring incoming signal data to established templates. The similarity can then be used 
as a feature or compared against a threshold for detection purposes. In [ 33], DTW 
was compared to other machine learning methods such as support vector machines 
(SVMs), hidden-Markov models (HMMs), and general neural networks. In the fre-
quency domain, the power spectral density (PSD) of vibration signals reveals useful 
insights that could be used to distinguish different road conditions. 

Features can also be extracted in the wavelet domain (see, for example, [105, 110, 
111]). In her PhD thesis [110], Griffiths carefully analyzed Mexican Hat, Mortlet, 
Haar, as well as Daubechies 6 and 10. She came to the conclusion that road vehicle 
vibrations may be adequately analyzed using the Mortlet wavelet as well as the 
Daubechies 6 and 10 wavelets. Seraj et al. utilised wavelet decomposition analysis 
for signal processing of inertial sensor signals from smartphones. In [111], Li et 
al. applied continuous wavelet transform (CWT) to extract features from sensor
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data and were able to estimate the length of potholes by converting wavelet scales 
to physical scales. Additionally, Fourier transform and wavelet transform can be 
used to generate virtual images from 1D sensor data, making them compatible with 
convolutional neural networks (CNNs) [112]. 

As for classification, numerous machine learning techniques have been applied 
to detect road defects from vibration data. In [ 32], classifiers such as SVM, linear 
regression (LR), and random forest (RF) were trained and used for prediction. They 
reported that RF had the best performance as compared to other classifiers, and a 
precision of .88.5% was achieved. In [105], SVM was utilized in a real-time multi-
class detector that achieved consistent detection accuracy of approximately.90% for 
severe road defects, regardless of vehicle type or road location. Du et al. [103] used  
an improved Gaussian model for road-surface recognition and the k-nearest neighbor 
(kNN) method for classification. Their system operated at 400Hz for data sampling, 
and a detection accuracy rate of.96.03%was reported. In [104], the authors utilized a 
.C4.5 decision tree algorithm to classify sensor data from smartphones for detecting 
road conditions such as potholes and bumps. They developed an Android applica-
tion called RoadSense and evaluated its performance with experimental data, which 
showed a consistent detection rate of around .98.6%. In [113], the authors proposed 
a two-step method. First, a random forest filter was applied to quickly distinguish 
normal windows from defective windows. Then, data windows with different lengths 
were analyzed using DTW together with the kNN to determine the type of defects. 
Self Organizing Map (SOM) was applied in [ 36] to handle data collected from buses. 

Road surface defect detection has also been approached using deep learning 
techniques, such as deep feed-forward networks (DFN), recurrent neural networks 
(RNNs), CNNs, and long-short-term memories (LSTMs). One advantage of deep 
learning techniques is that they can directly process the raw data without requiring 
any feature extraction process. However, when using CNNs for 1D signals, such as 
accelerometer sensor data, it is necessary to transform the data into a 2D virtual image, 
which can be achieved using various methods. In [114], various deep learning mod-
els such as CNN, LSTM, and reservoir computing models were examined for road 
surface defect detection. In [112], Baldini et al. proposed using short-time Fourier 
Transform (STFT) and continuous wavelet transform (CWT) on inertial sensors to 
generate virtual images for CNNs to classify road defects, achieving an accuracy 
of .97.2%. Luo et al. compared DFNs, CNNs, and RNNs in [ 37], using a range of 
sensor data, including suspension states, and found that RNNs outperformed DFNs 
and CNNs while using fewer model parameters. 

Seraj et al. proposed a method to detect road defects by analyzing driver behaviors 
in [115], which is different from previous studies that focused on the detection of 
different types of pavements and/or types of defects. They were able to reliably detect 
swerves for analyzing driver behavior by studying features of the road curves and 
using a simple machine learning technique. Signal analysis was performed using Sta-
tionary Wavelet Transformation (SWT) decomposition. In 2017, a similar approach 
of detecting road defects from the behavior of vehicles was presented in [116], where 
the sum-of-squares (SOS) polynomial was used as a metric to evaluate the normality 
of vehicle behavior.
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11.4.2.3 Crowd-Sourcing 

When it comes to road defect detection without vision sensors, aggregating detec-
tion results from different drives or crowd-sourced data can be more challenging 
compared to vision-based solutions, as low-cost GPS sensors are usually the only 
source of location information. In [ 28], a distance grid-based spatial clustering algo-
rithm was introduced to remove false positives that were unlikely to occur at the 
exact same location. A similar spatial clustering method was implemented in [115] 
to reduce smartphone GPS error, enabling precise aggregation of swerving behavior 
at the same location. In 2016, [117] proposed a clustering algorithm that incorpo-
rates Mahalanobis distance to quantify the similarity between newly reported and 
existing clusters. This method can effectively localize isolated defects and compress 
information for densely distributed ones. 

11.5 Planning and Control 

Planning and control are crucial aspects of autonomous vehicles that help ensure 
safe and efficient navigation. Planning refers to the process of determining a safe and 
efficient path for the vehicle to follow, taking into account its surroundings, envi-
ronmental conditions, and any constraints such as traffic laws and regulations. The 
vehicle’s planning system considers factors such as traffic patterns, road conditions, 
and the position and movement of other objects in the environment to create a map of 
the driving space. Based on this information, the vehicle’s onboard computer gener-
ates a path that minimizes risk and optimizes efficiency and updates it continuously as 
the vehicle moves and its surroundings change. Control, on the other hand, refers to 
the processes that ensure the vehicle follows the planned path. The control system of 
an autonomous vehicle receives information from various sensors and actuators, such 
as cameras, lidar, radar, and GPS, to understand its position, speed, and orientation. 
Based on this information, the control system makes decisions about how to control 
the vehicle’s movement, including steering, accelerating, and braking. The control 
system is also responsible for monitoring the vehicle’s performance and making any 
necessary adjustments to keep it on track and ensure it is operating safely. 

Different from other planning layers, a motion planner is a component of the plan-
ning system in an autonomous vehicle that is responsible for generating smooth and 
safe vehicle trajectories in the environment. The motion planner takes into account the 
vehicle’s surroundings, including other vehicles, road conditions, and any constraints 
such as traffic laws, to generate a feasible and safe path for the vehicle to follow 
(see [118, 119], and references therein). However, the majority of recently reported 
motion planning techniques are 2D-based and only the vehicle’s in-plane (longitu-
dinal and lateral) motions will take into account. Previous studies on autonomous 
vehicles have investigated the potential of utilizing preview information of upcom-
ing terrain, such as road grade, for optimizing their performance (e.g., [120–122]). 
However, these studies did not address how vertical trajectories can be planned to
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improve the comfort and safety of autonomous vehicles. In contrast, active suspen-
sion technology, which is a suspension system that can adjust in real-time based on 
road conditions and driving dynamics, has been extensively studied (e.g., [123–125]). 
When applied to autonomous vehicles, active suspension technology can enhance 
the driving experience by improving ride comfort, stability and control, safety, and 
sensor performance. 

In [126], a new framework referred to as XYZ motion planning was introduced 
by Jiang et al. . It is shown that with the knowledge of road surface defects, such as 
potholes or large dips, as well as the ability to actively control the vertical motion of an 
autonomous vehicle, a 3-D path can be planned for the vehicle, and can be executed 
by speed, steering, and active suspension control systems. It was also shown via 
simulation that this new planning and control framework provides increased ride 
comfort and safety. 

It has been reported that Tesla’s 2022.20 update includes a new feature that allows 
a vehicle to predict rough roads and raise the suspension accordingly for Model S and 
Model X vehicles, using data collected from other Teslas. This feature has been seen 
as a possible step towards the pothole-avoiding feature that Tesla CEO Elon Musk 
promised in 2020 [127]. However, unlike active suspension systems, this feature 
is based on predictive modeling and does not involve real-time adjustments to the 
suspension system. In contrast, Ford developed a semi-active suspension system for 
their 2017 Fusion V6 Sport that has a feedback control-based system installed to 
lessen the discomfort experienced by drivers when traveling on a road with potholes 
[128]. 

11.6 Existing Challenges and Future Insights 

In the era before the advent of deep learning in 2012, the primary research focus 
in the field of road perception were classical 2-D image processing-based methods. 
However, these explicit programming-based methods are computationally demand-
ing and sensitive to environmental factors, particularly changes weather in and illu-
mination conditions [ 13]. Additionally, the irregular shapes of road defects make it 
infeasible to rely on the geometric assumptions made in these methods. To overcome 
these limitations, 3D point cloud modeling and segmentation-based techniques were 
introduced in 2013, which greatly improved the accuracy of pothole detection [ 64]. 
However, these approaches have a limited field of view, assuming a single-frame 
3D road point cloud forms a planar or quadratic surface. Despite efforts to enhance 
the robustness of road point cloud modeling, such as using the RANSAC algorithm 
[ 22], these methods require many parameters to guarantee satisfactory performance, 
making them challenging to apply to new scenarios. 

Autonomous driving perception systems require detailed geometric information 
about road defects and obstacles, such as width, depth, and volume. As a result, 
hybrid methods that combine 3-D road reconstruction and semantic segmentation 
have become a promising area of research. While deep learning networks have shown
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excellent performance, they require large amounts of annotated data, making unsu-
pervised or self-supervised stereo matching algorithms an attractive alternative for 
road surface 3-D reconstruction. Furthermore, the development of more comprehen-
sive datasets for road perception and innovative data fusion methods, such as those 
proposed by [ 97, 98, 129], are essential for further progress in this field. 

In recent years, advancements in computing power and the decreasing cost of sens-
ing and computing technologies have led to significant progress in the research of 
autonomous driving systems. As a result, various companies are actively researching 
related technologies. Advanced driver assistance systems, such as Autopilot [130] 
and Super Cruise [131], integrate traffic-aware cruise control and lane-keeping assist 
systems to improve safety and reduce driver workload. Autopilot, as implemented 
in Tesla cars, adjusts the vehicle’s speed to match surrounding traffic and centers the 
vehicle in a clearly marked lane. Similarly, Super Cruise includes adaptive cruise 
control that maintains a safe distance from the vehicle ahead and a lane-keeping 
system that keeps the vehicle centered in the lane, even around curves. Addition-
ally, Super Cruise employs automatic emergency braking to help prevent collisions. 
Overall, these features enhance safety by reducing driver workload and assisting in 
potentially dangerous situations. 

Although significant progress has been made toward fully autonomous vehicles, 
there is still a long way to go before driverless cars become the norm. According 
to a poll by Partners for Automated Vehicle Education (PAVE) [132], Americans 
remain skeptical of current AV technology, but are slightly more optimistic about the 
availability of safe autonomous driving technology in the future. Nearly three in four 
Americans believe that AV technology is not ready for widespread use. Additionally, 
48% of Americans say they would never ride in a taxi or ride-share vehicle that was 
being driven autonomously. However, 58% believe that safe AVs will be available 
in ten years, while 20% believe that they will never be safe. The industry needs to 
work on gaining the trust and confidence of drivers before autonomous driving cars 
can become mainstream. 

11.7 Conclusion 

Researchers are highly engaged in road environment perception systems as 
autonomous driving technology advances. However, there is currently a lack of 
comprehensive surveys on the latest computer vision and vibration-based defect 
detection techniques, particularly those involving deep learning methods. We first 
discussed sensing technologies for acquiring data from vision-based and vibration-
based sensors. Following that, we summarized several public datasets about potholes 
and cracks. Then, a detailed analysis of SoTA road defect detection algorithms was 
presented. Computer vision-based methods include (1) 2-D image processing-based 
approaches, (2) 3-D point modeling and segmentation, and (3) deep learning-based 
approaches. Road defect detection methods based on vibration were also extensively 
discussed. This chapter also discussed the other core competencies of autonomous
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vehicle software systems: Planning and Control. Finally, we envisage that future 
autonomous driving systems will combine vision and motion sensors. 
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