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1 Introduction 

Continuum robot is a bioinspired robot that has structures like an elephant truck, 
snake body, and octopus’s limb. Due to their hyper flexibility and redundancy, they 
have wide applications in the medical domain, mainly in Single Port Access (SPA™) 
and Natural Orifice Transluminal Endoscopic Surgeries (NOTES) [1]. Conventional 
serial manipulators have serially connected rigid links with revolute joints, which 
offer more precise kinematic and dynamic control. However, the miniaturization 
of these robots is difficult due to the actuators being connected serially at joints. 
On the other hand, continuum robots are actuated passively by tendon, wire, Shape 
Memory Alloy (SMA), and precurved tubes for the concentric manipulator, for which 
the actuation unit is far from the manipulator [2]. Hence, they can be implemented for 
Minimally Invasive Surgery (MIS). However, these multisegment robots have more 
complex kinematics and dynamics than the conventional manipulator. In this chapter, 
a control framework has been formulated to control the tendon-driven three-segment 
continuum robot to follow the desired trajectory. The differential inverse kinematics 
[3] has been used with optimization in the null-space of Jacobian to get the unique 
configuration for each position. 

The remaining sections are arranged as follows; Sect. 2 details the preliminary 
design of the three-segment tendon-driven continuum robot. The continuum robot’s 
kinematics is explained in Sect. 3. Section 4 exhibits the control framework for the 
position control and simulation results.
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2 Preliminary Design 

The geometric model of tendon-driven three-segment continuum robot is shown in 
Fig. 1. Here, the robot consists of three segments, where each continuum segment is 
driven by three tendons. For which the spacer discs are positioned on the continuum 
robot’s backbone at specific intervals, act as guides for these tendons. The continuum 
robot is 150 mm in length, whereas each segment is 50 mm in length and has a 10 mm 
diameter of spacer discs with a 4 mm distance of guiding hole from the center of the 
backbone. The tendons of each segment are actuated independently by some motors 
or linear actuators. Again referring to Fig. 1, each robot segment is characterized 
by the configuration parameters (θ, ∅, S). Here, θ denotes the robot’s curvature’s 
bending angle, ∅ represents the angle of the bending plane from positive X-axis, S 
describe the robot’s segment’s length, which is assumed constant for each segment. 
The end tip position and orientation of the continuum robot is given by P = [x, y, z]T 
and R ∈ SO(3), which are referred to as task space parameters. 

Fig. 1 Geometric model of three-segment continuum robot
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3 Robot Kinematics 

3.1 Forward Kinematics 

In this section, to determine the kinematics of the continuum segment, a constant 
curvature-based method has been used [3–5]. Kinematics of the continuum segment 
is categorized in two stages, which is considered as task space to configuration 
space kinematic mapping and configuration space to joint (actuator) space kinematic 
mapping or vice versa as shown in Fig. 2 [5]. 

Configuration space to task space: The direct relation between the end tip task space 
parameters and the bending of continuum segments (in 3D curvature) is described 
by the robot independent forward kinematic mapping. Here, the end tip position 
(P) and orientation (R) of the kth continuum segment represented in homogenous 
transformation matrix for the kth segment is: 

T k k−1 =
[
Rk 

k−1 P
k 
k−1 

0 1

]
(1) 

Rk 
k−1 = 

⎡ 

⎣ 
cos2 ∅k(cos θk − 1) + 1 
sin ∅kcos ∅k(cos θk − 1) 
−cos ∅ksin θk 

sin ∅kcos ∅k(cos θk − 1) 
cos2 ∅k(1 − cos θk) + cos θk 

−sin ∅ksin θk 

cos ∅ksin θk 
sin ∅ksin θk 

cos θk 

⎤ 

⎦ 

(2) 

As shown in the following equation, the position vector of the segment’s end tip 
relative to its base or the end tip of the previous segment is; 

Pk 
k−1 = 

⎡ 

⎣ 
xk 
yk 
zk 

⎤ 

⎦ = 

⎡ 

⎢⎣ 

Sk cos ∅k (1−cos θk ) 
θk 

Sk sin ∅k (1−cos θk ) 
θk 

Sk sin θk 
θk 

⎤ 

⎥⎦ (3) 

where T k 
k−1 is the homogenous transformation matrix. Rk 

k−1 is the tip orientation 
matrix; Pk 

k−1 is the position vector; ∅k , θk and Sk are considered as the configuration 
parameters of the kth segment of the robot. By successive multiplication of the

Fig. 2 Kinematic model of continuum robot segment 
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transformation matrices corresponds to each segment, the total transformation matrix 
for continuum robot is obtained. 

R3 
0 = R1 

0.R
2 
1.R

3 
2 (4) 

where (k = 1, 2, 3). 

P3 
0 = 

⎡ 

⎣ 
x 
y 
z 

⎤ 

⎦ = R1 
0.R

2 
1. P

3 
2 + R1 

0.P
2 
1 + P1 

0 (5) 

where P3 
0 and R

3 
0 is the end tip position and orientation of the distal segment of the 

three-segment continuum robot w.r.t the robot base frame respectively. 

Note: The  θi = 0 the singular configuration of the robot for any θi ; hence it is avoided 
by giving some nonzero minimum scalar value. 

3.2 Inverse Kinematics 

Inverse kinematics for the single segment is much simpler than multisegment 
continuum robots due to their nonlinear kinematics. Where each segment is actu-
ated independently by the tendons. The vector represents the tendon lengths for each 
segment qi = l i j  where li j  = Si −θi d cos(γi j  −∅i ), j = 1, 2, and 3 (number of tendons 
for each segment); i = 1 . . .  n no. of segments. li j  is the length of the jth tendon of 
ith segment and γi j  , the angle of the guiding hole on the spacer disk from the positive 
x-axis as shown in Fig. 1. These holes are at equal distances along a circle of radius d 

on the disc. Configuration vector ψi

(]
θi , ∅i]

]T)
of each segment. Various methods 

are used to compute the inverse kinematics for multisegment continuum robots like 
differential (velocity) kinematics [3], FABRIC approach [6], and geometric approach 
base closed-loop inverse kinematics [7], etc. These methods have their own sets of 
advantages and disadvantages. To control the current three-segment robot, we employ 
the differential inverse kinematics approach. The end tip linear velocity of the distal 
segment of the robot is represented as; 

V = Ṗ = 

⎡ 

⎣ 
ẋ 
ẏ 
ż 

⎤ 

⎦ = J tψ ψ̇ (6) 

J tψ = 

⎡ 

⎢⎣ 

∂ X 
∂θ 1 

∂ X 
∂∅1 

∂ X 
∂θ 2 

∂Y 
∂θ 1 

∂Y 
∂∅1 

∂Y 
∂θ 2 

∂ Z 
∂θ 1 

∂ Z 
∂∅1 

∂ Z 
∂θ 2 

∂ X 
∂∅2 

∂ X 
∂θ 3 

∂ X 
∂∅3 

∂Y 
∂∅2 

∂Y 
∂θ 3 

∂Y 
∂∅3 

∂ Z 
∂∅2 

∂ Z 
∂θ 3 

∂ Z 
∂∅3 

⎤ 

⎥⎦ (7)
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Here, J tψ is the Jacobian matrix for configuration space to task space, which 
shows the system is over-actuated. Hence, the inverted Jacobian pseudo inverse [3, 
8] has been derived. The general inverse kinematics equation is represented as; 

ψ̇ = J T tψ
(
J tψ . J T tψ

)
.V = J# 

tψ .V (8) 

Now the pseudo-inverse with explicit optimization criteria is given by; 

ψ̇ = J# 
tψ .V +

(
I − J# 

tψ J tψ
)(

ψ0 − ψ
)

(9) 

where J # tψ is the pseudo inverse of the jacobian matrix J tψ , and(
I − J# 

tψ J tψ
)
(ψ0 − ψ) is the optimization term in the null-space of Jaco-

bian. The explicit optimization criterion provides control over robot configurations. 
The tendon length of actuation for the continuum segment is given by; 

⎡ 

⎣Δq1

Δq2

Δq3 

⎤ 

⎦ = Jq,ψΔψ = 

⎡ 

⎣ 
J12 0 0  
J21 J22 0 
J31 J32 J33 

⎤ 

⎦Δψ (10) 

Tendons used for the actuation of distal segments are passed through the previous 
proximal segments, therefore Δq1,Δq2, and Lq3 are the change in length vector of 
the tendons and Jq,ψ is Jacobian for configuration space to joint space. 

4 Position Control 

Due to the complex architecture and nonlinear kinematics of multi-segment 
continuum robot, joint level control is quite challenging. In this section, position 
control of three segment continuum robot is presented. In order to avoid kinematic 
nonlinearity, the control input is given in configuration space, and then it is mapped 
into joint space variables by using Eq. (10). 

The continuum robot has a redundant motion for which more solutions are avail-
able at the same end tip position. By using the optimization in null-space of Jaco-
bian given in (12), a unique configuration has been achieved for a tip position. The 
presented control framework is shown in Fig. 3. Initially, desired task space trajec-
tory (desired position and linear velocity vector) is defined by Pd (t), Ṗd (t) and ψs , 
Ps represents the starting configuration and position of the robot, respectively. After 
introducing the position error in Eq. (9), the Equation becomes; 

ψ̇ = J# 
tψ .

(
Ṗ d + K p.ep

)
+ (

I − J# 
tψ J tψ

)(
ψ0 − ψ

)
(11) 

ep(t) = Pd (t) − Pa(t) (12)



188 S. Bamoriya and C. S. Kumar

Fig. 3 Block diagram of kinematic control framework 

Putting Eq. (11) in (6) will result in 

ė p(t) + K p.ep = 0 (13) 

Here, the proportional controller has been used with proportional gain K p and 
the control signal will be provided in the form of the rate of change of configuration 

variables. The additional term
(
I − J # tψ Jtψ

)
(ψ0 − ψ) in the above Equation repre-

sents the optimal null-space of Jacobian to get a unique configuration for the desired 
position [3]. It does not affect the robot tip position. The control input is mapped 
in the joint space Eq. (10) and integrated to get the actual robot tip position using 
forward kinematics. Motor level control will be taken care of the saturation limit 
of the tendon actuation. In this section, the presented control framework has been 
implemented for trajectory tracking. 

4.1 Circular Trajectory 

To verify the proposed control framework, a numerical simulation is carried out for 
the circular trajectory with some disturbance in the joint level as shown in Fig. 4. Here, 
we start the simulation from the rest position of the robot also known as the home 
position, that is, ψs = [0, 0, 0, 0, 0, 0], Ps = [0, 0, 150] starting configuration and 
position of the robot, respectively. There is an initial positional error (Ps − Pd (0)) 
has been provided to the system which has to be compensated by the proportional 
controller with gain K p = 30. The desired trajectory has been formulated as; 

⎧⎨ 

⎩ 

xd = R. cos
(
2π 
T t

)
yd = R. sin

(
2π 
T t

)
t ∈ [0, 30]s 

zd = 90 
(14)

where R = 50 mm is the radius of the circular trajectory, T is the total duration of the 
simulation, and set to 30 s, using fixed step time Δt as one millisecond. During the 
tracking, a saturation limit is provided to the input rate of change of tendon length
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Fig. 4 Task space trajectory tracking of the circular trajectory a tracking, b position error, c tendon 
length variation without external disturbance, d tendon length variation with disturbance

which depends on the motor speed to control the tendon length (by pushing and 
pulling). Now, the motor level actuation can be written as; 

r.ωm = q̇(t) + δ̇k(t) (15) 

where ωm the motor speed and r is the radius of the pulley for tendon actuation. 
Here δ̇k represents the disturbance in tendon actuation for kth segment. At the motor 
level, we take care of the kinematic constraints by holding the motor actuation while 
violating the constraints. Although the motor speedn limits [0.5 − 0.5] rad/s, that is, 
the limit of the rate of tendon actuation (r.ωm) ∈ [5, − 5] mm/s. where r = 10 mm. 
The maximum and minimum length of the tendon for each segment has been used 
as kinematic constraints as;

{ (
li j

)
min = Si − d.θmax(

li j
)
max = Si + d.θmax 

(16)
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For the presented Continuum robot. |θ |max = π , d = 4 mm, and the length of each 
segment Si = 50 mm. Hence, the (L1)min = 37.434 mm and (L1)max = 62.566 mm 
is the minimum and the maximum length of the tendon during actuation of the 
first segment, similarly (L2)min = 2 × 37.434 mm, (L2)max = 2 × 62.566 mm and 
(L3)min = 3×37.434 mm, (L3)max = 3×62.566 mm. The robot construction and the 
actuation mechanism will offer disturbances in the tendon actuation due to its bucking 
and friction. In the present work, the disturbance in the form of δ̇k = k. sin

(
t. 2π 

T

)
has been introduced at the joint level. 

The trajectory tracking in the task space is shown in Fig. 4a. The position tracking 
errors during the simulation are shown in Fig. 4b. Variation in tendon lengths during 
actuation for all three segments has been shown in Fig. 4c under kinematic constraint. 
The position errors reduce to zero in 3.6 s, thus tracking the desired trajectory. The 
effect of the external disturbance in tendon length actuation in position tracking (see 
Fig. 4a) has also been compensated by the motor level control during trajectory 
tracking, for which the changes in tendon length can be seen in Fig. 4d. 

4.2 Spiral Trajectory 

The same control framework has been used to track the spiral curve trajectory, which 
also being stated from the home position with the initial positional error (Ps − Pd (0)). 

⎧⎨ 

⎩ 

xd = R. cos
(
2π 
T t

)
yd = R. sin

(
2π 
T t

)
zd = 120 − 5.

(
4π 
T t

) t ∈ [0, 50]s (17) 

where R = 50 mm is the radius of the trajectory, T is the total duration of the 
simulation, set to 50 s, using fixed time step Δt as one millisecond. The disturbance 
in the form of δk = k. sin(t) function has been introduced at a joint level as above. 
Figure 5a shows the tracking of the spiral trajectory, and Fig. 5b shows the position 
error during trajectory tracking.

Result and discussion: The position errors reduce to zero in 3 s (see Fig. 5b); thus, 
the system is successfully tracking the desired trajectory shown in Fig. 5a. Variations 
in the tendon lengths for all three segments are shown in Fig. 5c. The motor level 
control also compensates for the effect of the disturbance in tendon length actuation, 
due to which the changes in tendon length are shown in Fig. 5d. It is observed that 
when the tendon length constraints were being violated, and the motor control was 
instructed to hold the position (ωm = 0) to avoid the mechanism failure. Later, 
the controller compensates for the disturbance by actuating the tendons under the 
saturation limit.
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Fig. 5 Task space trajectory tracking of the spiral trajectory a tracking, b position error, c tendon 
length variation without external disturbance, d tendon length variation with disturbance

5 Conclusion and Future Work 

In this work, position control has been achieved for the three segment continuum 
robot using configuration space-based control architecture. The proposed control 
framework is simple and more efficient than the joint space control. This can be 
further extended to control both the position and orientation of the continuum robot 
for surgical application. A presented control framework can be introduced for task 
space mapping between the haptic device (master) and multi-segment continuum 
robot (slave). Development of an optimal control framework for task space trajectory 
(position and orientation) control with redundancy resolution and its experimental 
validation on the robot is our future work.



192 S. Bamoriya and C. S. Kumar

References 

1. Clancy TE, Brooks DC (2004) Minimally invasive surgery. Encycl Gastroenterol 6:653–659 
2. Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a 

survey. IEEE Trans Robot 31(6):1261–1280 
3. Hannan MW, Walker ID (2003) Kinematics and the implementation of an elephant’s trunk 

manipulator and other continuum style robots. J Robot Syst 20(2):45–63 
4. Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum 

robots: a review. Int J Rob Res 29(13):1661–1683 
5. Bamoriya S, Kumar CS (2022) Kinematics of three segment continuum robot for surgical 

application. In: Machines, mechanism and robotics: proceedings of iNaCoMM 2019. Springer, 
Singapore, pp 1011–1021 

6. Zhang W, Yang Z, Dong T, Xu K (2018) FABRIKc: an efficient iterative inverse kinematics 
solver for continuum robots. IEEE/ASME International conference on advanced intelligence 
mechatronics, AIM, July 2018, pp 346–352 

7. Neppalli S, Csencsits MA, Jones BA, Walker ID (2009) Closed-form inverse kinematics for 
continuum manipulators. Adv Robot 23(15):2077–2091 

8. Godage IS, Medrano-Cerda GA, Branson DT, Guglielmino E, Caldwell DG (2015) Modal 
kinematics for multisection continuum arms. Bioinspiration Biomimetics 10(3)


	 Control Framework for Position Control of Three-Segment Tendon-Driven Continuum Robot
	1 Introduction
	2 Preliminary Design
	3 Robot Kinematics
	3.1 Forward Kinematics
	3.2 Inverse Kinematics

	4 Position Control
	4.1 Circular Trajectory
	4.2 Spiral Trajectory

	5 Conclusion and Future Work
	References




