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1 Introduction 

Unmanned aerial vehicles (UAVs) have many useful applications ranging from 
surveillance [ 1], search [ 2], agriculture [ 3] to border patrol [ 4], and mapping [ 5]. In 
these applications, fully autonomous UAVs play an important and key role, because 
they perform tasks without the guidance of humans. The majority of drones come 
with a variety of sensors, including Inertial Measurement Units (IMUs), GPS, com-
passes, barometers, monocular, stereo cameras, and LIDAR sensors, among others. 
These sensors are used to localize the drone and to gather information about the sur-
roundings in order to map or avoid the various obstacles around the drone. The key 
point is to ensure that the drone has a high autonomy level with the use of robust and 
reliable navigation systems [ 6] and accurate localization. An important requirement 
to achieving this level of autonomy is to guarantee the takeoff as well as the landing 
phases to be totally autonomous. More importantly during the landing phase, the 
vehicle has to land safely on the landing platform [ 7]. There are two kinds of landing 
sites, the first one is that which is known to the vehicle before hand and the vehicle 
should reach it with the local positioning information [ 8]. The second kind is that 
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where the vehicle has to land in unseen or unknown environments [ 9]. In the first 
kind, the landing site is made from easily recognizable marker or markers so that 
it can be easily detected when the vehicle has reached the boundary of the landing 
site. The landing phase then is activated when the camera detects the special charac-
teristics of the marker. In the second kind, the criteria of flatness, spaciousness, and 
surface robustness are used to determine the best landing places. Landing platforms 
are used for the first case where we know before hand the special characteristics of 
the platform and use it to perform the landing strategy. One of the most promising 
methods for extending the operational range of UAVs with the least amount of vehicle 
modification is to use landing platforms. Additionally, automatic landing platforms 
could carry out tasks like picking up or loading goods, data exchange and processing, 
etc., in addition to the battery charge or replacement function [ 10]. There are two 
types of landing platforms which are the stationary type and the moving type. This 
work will focus on the first kind of landing site, which will be a set of markers known 
beforehand, and the platform will be stationary. 

There are solutions in the literature based on motion capture systems [ 11] or other  
sensors [ 12]. Additionally, several articles on moving targets focused on how a flying 
aircraft and a ground vehicle worked together to plan the landing maneuver [ 14, 15]. 
In this work however, it is assumed that the vehicle has no communication with the 
platform. Another article [ 16] demonstrates an onboard computer vision system for 
estimating a UAV’s pose in relation to a landing target based on a coarse-to-fine 
approach using a monocular camera. Different methods can be thought of to land 
the drone after detecting the marker of the landing platform such as image-based 
visual servoing [ 17, 18] which involves the use of computer vision data to regulate 
a robot’s movements. Though popularly used methods rely on calculating the pose 
of the drone after detecting the landmark and then transforming the pose from 3D 
camera coordinates into 3D world coordinates, it might lead to unnecessary errors 
if the camera is not calibrated properly. Some of these steps can be skipped with 
the help of visual servoing. The control needs to be modified to get the 2D image 
coordinates as input; this will make the process more robust to tiny calibration errors, 
which will be significant while transforming into world coordinates. 

2 Methodology 

In Image Based Visual Servoing (IBVS) [ 17, 18], the time variation . ṡ of the visual 
features. s can be linearly expressed with respect to the relative velocity of the camera 
. vc. The control is created to ensure that the visual features decouple exponentially 
to reach the required value . s∗, where .Ls is the interaction matrix associated with . s, 
and considering an eye-in-hand system observing a static object, then 

.vc = −λ  L†
s (s − s∗), ṡ = Lsvc, (1)
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where .  L†
s is an approximation of .Ls and its pseudo-inverse, . λ is a positive gain 

responsible for the time to convergence. Given the mounting details and the UAV’s 
center of mass, this velocity twist vector needs to be rotated and translated. 

The key here is the selection of the visual features to ensure the convergence of 
the controller to the desired position, one might select the individual corner points 
of an aruco markers as visual features, but the image moments of that marker were 
chosen instead. The reason is that image moments provide general representation 
of any object that can be segmented in an image. They are also more intuitive and 
meaningful than just the corners of an object [ 19, 20]. For a discrete set of . n image 
points, the moments .mi j and and the centered moments .μi j are defined by [ 21]: 

.mi j =
n

∑

k=1

xik y
j
k , μi j =

n
∑

k=1

(xk − xg)
i (yk − yg)

j , (2) 

where. n is the number of image points,.xg = m10
n ,.yg = m01

n and.m00 = n. It is known 
that these centered moments are invariant to 2D translational motion. 

Next, interaction matrix may be defined. If planar objects are taken into account 
and for each object point, the degenerate case when the camera optical center is on 
the plane is excluded.1/Z = Ax + By + C . For any point in the image, the velocity 
.xk is given from [ 17]. Using 1 to set .s = xk we obtain: 

. ẋk = −(Axk + Byk + C)vx + xk(Axk + Byk + C)vz + xk ykωx

− (1 + x2k )ωy + ykωz (3) 

. ẏk = −(Axk + Byk + C)vy + yk(Axk + Byk + C)vz − xk ykωy

+ (1 + y2k )ωx + xkωz . (4) 

The first two components of the interaction matrix that relate .xg and . yg: 

.Lxg =
[

− 1
Zg

0 xgvz xgωx xgωy yg
]

, Lyg =
[

0 − 1
Zg

ygvz ygωx ygωx −xg.
]

(5) 

From the observations taken from [ 21], the centered moments will be invariant to 
tranlsational motions if.A = B = 0 that happens when the object and the image plane 
are parallel to each other. 

In [ 19, 22], to control the three translational motions these visual features have 
been selected: . xg , .yg the center of gravity and the area of the object in the image . a. 
Based on [  21] the interaction matrix can be expressed as 

. Lxg = [−C 0 Cxg ∈1 −(1 + ∈2) yg
]

, Lyg = [

0 −C Cyg 1 + ∈3 −∈1 −xg
]

,

La = [

0 0 2aδC 3aδyg −3aδxg 0.
]

(6) 

A modification to this interaction matrix will be made by adding normalization in the 

form .an = z∗
√

a∗
a , xn = anxg, andyn = an yg , where .a∗ is the desired area of the
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object in the desired image, and .z∗ is the desired depth between the camera and the 
object in the image. The resulting interaction matrix elements after the modification 
will be 

.

⎡

⎣

Lxn
L yn
Lan

⎤

⎦ =
⎡

⎣

−1 0 0 an∈11 −an(1 + ∈12) yn
0 −1 0 an(1 + ∈21) −an∈22 −xn
0 0 −1 −an∈31 an∈32 0.

⎤

⎦ (7) 

This new interaction matrix has a decoupling property to control the three transla-
tional velocities, and the three features have the same dynamics. For discrete objects, 
since.μ20 + μ02 is invariant to 2D rotation and translation [ 21]. a = μ20 + μ02, a∗ =
μ∗
20 + μ∗

02. Since the high-level control of the drone can only control 4 dofs, . vx , . vy , 
.vz and yaw rate, so we will keep only those columns from the full interaction matrix 
resulting in 

.

⎡

⎣

Lxn
L yn
Lan

⎤

⎦ =
⎡

⎣

−1 0 0 yn
0 −1 0 −xn
0 0 −1 0.

⎤

⎦ (8) 

In [ 19, 22], to control the three rotational motions, these visual features have been 
selected: the orientation of the object in the image. α = 1

2 arctan 2(2μ11, (μ20 − μ02))

and two moment invariants. ci ,.c j chosen from combination of image momments that 
are invariant to 2D translation, rotation, and scale. A modification to the general form 
of the orientation of the object has been made to be specific to the orientation of the 
fiducial marker. The algorithm detects the four corners with a fixed order, the new 
angle will be the angle between the first corner, and the third corner of the detected 
marker:.α = arctan 2((y2 − y1), (x2 − x1)). The interaction matrix has the following 
form: 

.

⎡

⎣

Lci
Lck
Lα

⎤

⎦ =
⎡

⎣

0 0 0 ciωx ciωy 0
0 0 0 c jωx c jωy 0
0 0 0 αωx αωy −1

⎤

⎦ (9) 

Since we only need to control the yaw rate, only the last row with the 4th and 
5th columns removed will be used i.e., .Lα = [

0 0 0 −1
]

. Finally, the following 
interaction matrix will be used in the IBVS approach based on our 4 DOFs high-
level control: 

.

⎡

⎢

⎢

⎣

Lxn
L yn
Lan
Lα

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−1 0 0 yn
0 −1 0 −xn
0 0 −1 0
0 0 0 −1.

⎤

⎥

⎥

⎦

(10) 

The full set of new visual features .s = [xn, yn, an, α] and the corresponding error 
vector .e = [

xn − z∗x∗
g yn − z∗y∗

g an − z∗ α − α∗.
]T
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The following approximation to the interaction matrix has proven to have a good 
performance in practice [ 18, 23].  L†

s = 1
2 (L

†
s(s) + L†

s(s∗)), where.L
†
s(s) is the interaction 

matrix computed from the measured features, while .L†
s(s∗) is computed from the 

desired features. 
According to the findings of [ 26], the velocity components created by the con-

troller employing this interaction matrix do not have significant oscillations and give 
a smooth trajectory in the image and in three dimensions. The gain. λ in the proposed 
controller is adaptive, which means the error value controls the magnitude of the gain 
.λ = (λmax − λmin)(

||e||
||emax|| ) + λmin, where.λmax,.λmin are the maximum and minimum 

values of the gain respectively. At time . t , .||e|| is the norm of the error vector and 
at the start of the program, .||emax|| is defined as the max. error in the control loop 
according to [ 25], where the authors show the effect and smoothness of adaptive 
gains in different visual servoing scenarios. This was adopted in this work. 

3 Evaluation and Discussion 

The current environment contains an Iris drone [ 27] inside a Gazebo world, equipped 
with a down-facing camera and two ArUcO markers with sizes 0.176 and 0.05 m, 
respectively, the code was written as a ROS package [24]. The environment is depicted 
in Fig. 1. The first marker will localize the drone at a .h = 0.6 m and centered with 
respect to the marker, and the second marker will localize it with .h = 0.25 m and 
centered. The threshold of the norm of error was empirically chosen as ..0.1m and 
..0.015m. 

The algorithm will do the following: Firstly, detect the larger ArUcO marker in 
order to localize the drone at the desired.h = 0.6m. Once detected, the IBVS module 
will initialize and recursively guide the drone to the desired location until the error 
threshold is reached. Second, once the first error threshold is reached and the second 
marker is detected, the IBVS module will initialize again with the new parameters 

(a) Iris Drone in the simulation environment (b) Fiducial markers detected using camera 

Fig. 1 Iris drone and fiducial markers
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to recursively guide the drone to the next desired location at.h = 0.25 m. Later, once 
the second error threshold is reached, the motors are turned off for landing. 

Algorithm 1 Landing algorithm with IBVS 
Require: Aruco marker 1 Detection 
Ensure: a∗ = desired area 1, z∗ = desired height 1 
n ← 4 
while e ≥ error threshold 1 do 

1) Compute mi j  based on Eq. (3) ► Start of IBVS Block 
2) Compute xg, yg and μi j  based on Eq.  (4)  
3) Calculate a based on Eq. (18) 
5) Compute an, xn , yn based on Eq. (16) 
6) Compute Ls based on Eq. (26) 
7) Calculate e based on Eq. (27) 
8) Generate vc based on Eq.  (2) ► End of IBVS Block 

end while 
Require: Aruco marker 2 Detection 
Ensure: a∗ = desired area 2, z∗ = desired height 2 
while e ≥ error threshold 2 do 

Repeat IBVS block 
end while 
Turn off Motors and Land 

In the main experiment, the value of the parameters: .λmax = 1.0 and .λmin = 0.5. 
The drone starts at the world position .x = [

0.2 0.2 2
]

, with the positions measured 
in meters. The desired height for the first marker is.h = 0.6m and the final position of 
the drone is.x = [

0.205 0.203 0
]

. The results of the IBVS algorithm for each marker 
in the experiment are shown in Fig. 2a–c for marker 1 and Fig. 2d–f for marker 2. 

In case of rough localization, we can see that the controller converges with decou-
pled error and reaches the error threshold in about 8 s with the low maximum gain, 
the trajectories are also smooth and there are no irregularities in the control signal. 
While using second marker in the stage of fine localization, from the data in the 
graphs we can notice the noisy nature of the drone and the problem becomes much 
harder for the controller due to the low error signal and the fine-positioning required 
to land. The system is converged in about 6 s. 

4 Conclusion 

This article proposed an image-based visual servoing controller for UAV that was 
able to converge and land the vehicle accurately using only the image moments as 
the visual features from two fiducial markers. This could be done without any local 
position or global position information helping the controller. The only step needed 
before the deployment of the controller is the learning step of the desired height and 
image moments that will be used as a reference for the controller. Once the desired 
image moments and height are known, the controller will stabilize and guide the
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(a) Error convergence for the first marker (b) The errors along the axes 

(c) High level control individual signals (d) Error convergence for the second marker 

(e) The errors along the axes (f) High level control individual signals 

Fig. 2 Simulation results 

drone to land on the predefined set of markers. The convergence of the UAV to the 
desired position has been verified through simulations. In the future, the methodology 
may be extended to handle a moving platform and land on it. 
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