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Abstract

Network medicine (NM) is a developing field within network science that
focuses on molecular and genetic interrelationships, disease network biomark-
ers, and the discovery of therapeutic targets, and it is a rapidly growing arena for
medical science and research, which comes with the possibilities to reform the
system of disease diagnosis and its treatment. The NM uses topological and
dynamic properties of the biological networks (protein—protein interactions and
metabolic pathways) to distinguish the disease patterns (characterizing the
behavior of disease genes) and associated drugs. Biomedical data provide a base
to develop a significant model and get potential results at the network level. In
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this chapter, we have discussed the integrative use of emerging tools and the
databases of NM, which provide a basic platform to systematically investigate
the molecular complexity of diseases, dominant disease genes (modules), drug
targets, disease-enriched pathways (altered pathways), and molecular interac-
tions between apparently distinct phenotypes. The field of network medicine and
its implications for diagnostics, prognosis, and therapeutics with unprecedented
breadth and precision have great potential in the future.

Keywords

Network medicine - System pharmacology - Precision medicine - Disease—gene
relationship - Drug repurposing

5.1 Introduction

“Interaction” is a single word that makes communication among the physical body
(human beings), and even cellular components activate its functional switches by
“interactions” with another component of the cell; overall, these interactions repre-
sent the human interactome. Interactome assessment is exclusively a tool-based
approach to the theoretical paradigm and methodological tools utilized, describe,
investigate, and comprehend structural and relational features of human health and
disorders. Network-based research is becoming a crucial technique for identifying
disease susceptibility genes and their associations with various diseases (Alam et al.
2022). Additionally, this research has enhanced our comprehension of drug targets
and their results and proposed new drug targets, treatments, and therapeutic man-
agement strategies for serious disorders (Fig. 5.1).

Network-based approaches to human disease offer a variety of biological and
therapeutic uses. Indeed, a better comprehension of the consequences of (1) cellular
interconnections failure or (2) rewiring in cellular interconnections on disease pro-
gression could lead to the identification and classification of disease-associated
genes and pathways which could provide better targets for drug development.
Advancement in these fields could also restructure the clinical application and prac-
tice, from the development of improved and more precise biomarkers that monitor
the functional integrity of the network that is perturbed by the diseases as well as
improvements in disease classification and pave the way to personalized therapies
and treatment.

In a recent study, Gysi et al. employed network medicine and drug repurposing
methods to distinguish the repurposable drugs for COVID-19 (Morselli Gysi et al.
2021). Similarly, a multi-target herb called Caesalpinia pulcherima (CP) is used
therapeutically to treat breast cancer (Sakle et al. 2020). Furthermore, Azuaje et al.
contributed to our understanding of the cardiovascular effects of non-cardiovascular
medications by integrating multiple sources of drug and target interaction data.
They constructed the myocardial infarction (MI) drug-target interactome network,
offering systemic insights into the topic (Azuaje et al. 2011). In a related study, Kim
et al. have proposed that examining the network-based drug—disease intimacy can
offer a novel perspective on the therapeutic effects of drugs in the context of
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Fig. 5.1 Overview of network medicine approach

Systemic Sclerosis (SSc) disease. This approach may provide insights into drug
combinations or drug repositioning strategies (Kim et al. 2020).

In this chapter, we focused on networks and their role in disease, System
Pharmacology, Pharmacogenomics in Precision Medicine, Drug—Target Interaction,
Drug—Drug Interaction, Drug Repurposing Opportunities, Drug Side Effects, and
Integrating Omics data with Networks: Challenges and Ways. We hope this new
chapter provides the same platform for scholars from biological science back-
grounds to work on interdisciplinary research areas that can be useful for describing
the causes of disease and pinpointing potential treatment targets, which will improve
preventative healthcare and have a knock-on effect on personalized therapy.

5.2  BasicPrinciples and Key Components
of Network Medicine

5.2.1 Systems Pharmacology

The early understanding of the molecular mechanisms behind pharmacological
action was provided by classical investigations, such as the development of the
receptor hypothesis that distinguished between competitive and noncompetitive
inhibition. The prevalence of medications that target membrane receptors (mostly
GPCRs) explains the influence and applicability of receptor theory in contemporary
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pharmacology. The majority of the remaining drugs are enzyme inhibitors, which
are often analogs based on substrates, analogs based on transition states, or alloste-
ric inhibitors that are designed to bind reversibly or irreversibly based on the sub-
strate and substrate-binding pocket configuration. The genomic, proteomic, network,
and other high-throughput investigations have produced a wealth of “systems-level”
knowledge over the last 10 years. The number of well-characterized, druggable tar-
gets is continuously rising through the use of high-throughput technology, structural
and biochemical studies, and human genome research. Targeted therapies and bio-
logical medicines have thus emerged as a result of the expansion of the pharmaco-
logical pipeline and concentration on complicated, multigenic disorders. In recent
studies, regulatory network analysis and structural analysis were used to anticipate
the therapeutic benefits of medications for complicated disorders as well as poten-
tial off-target consequences (Boran and Iyengar 2010; Black and Leff 1983; Maehle
et al. 2002; Colquhoun 2006).

5.2.2 Pharmacogenomics in Precision Medicine

One of the fundamental components of personalized treatment is pharmacogenom-
ics (PGx). In personalized medicine, also known as precision medicine, patients are
given prescriptions for drugs that are right for them based on their genetic, environ-
mental, and lifestyle characteristics. Two key functions of pharmacogenomics in
precision medicine. It first directs pharmaceutical firms in drug development and
discovery. Second, it helps doctors choose the best medication for patients based on
their genetic makeup, avoid adverse drug reactions, and maximize drug efficacy by
providing the appropriate amount. Based on the understanding of pharmacogenom-
ics, personalized/precision medicine has significant potential benefits. Precision
medicine is the future of healthcare, and it will eventually become the standard
of care.

5.2.3 Biological Networks and Important Databases

A method of expressing systems as complicated sets of binary interactions or rela-
tions between distinct biological components is called a biological network (e.g.,
genes, proteins, taxa, and metabolites). Now, with the availability of large-scale
multi-omics data, the biological system has expanded from basic to advanced levels
(like PPI connectivity and functional changes in disease stages, Disease-specific
interactome, genetic perturbations, and network dysfunction).

Protein—protein interaction networks (PINs), in which proteins act as nodes and
interactions as undirected edges, depict the physical connections between the pro-
teins that are present in a cell. Protein—protein interactions (PPIs) are the most thor-
oughly studied networks in biology and are crucial to cellular functions. PPIs can be
found using a variety of experimental methods, with the yeast two-hybrid system
being one of the more popular methods for studying binary interactions. Mass
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spectrometry-based high-throughput research have recently uncovered numerous
sets of protein interactions.

The databases that catalog experimentally determined protein—protein interac-
tions have been the result of numerous international efforts over the past few
decades, such as the Munich Information Center for Protein Sequence (MIPS) pro-
tein interaction database (Schoof et al. 2005), Biomolecular Interaction Network
Database (BIND) (Bader 2003), Database of Interacting Proteins (DIP) (Xenarios
2000), Molecular Interaction database (MINT) (Chatr-aryamontri et al. 2007), and
Protein Interaction database (IntAct) (Hermjakob 2004). These databases are clas-
sified into primary and secondary databases based on their interaction prediction
method but now one new term introduced “Meta-database” which is a combination
of different primary and secondary databases to get new and maximum protein—pro-
tein interactions in network (Fig. 5.2). The list of protein interaction databases is
given in Table 5.1.

Moreover PPI, the Metabolic networks explain the associations between small
biomolecules (metabolites) and the enzymes (proteins) that interact with them to
catalyze a biochemical reaction. Genetic interaction networks are valuable for
understanding the relationship between genotype and phenotype because they relate
to the functional interactions between pairs of genes in an organism.

Similarly, a gene regulatory network (GRN) is a collection of molecular regula-
tors that interact with one another and with other components of the cell to regulate
the expression level of mRNA and protein. Further, when different cell signaling
pathways interact, cellular signaling networks are built, and they are identified by a
combination of experimental and computational techniques.

A complex biological network consists of various nodes (including genes, pro-
teins, and metabolites.) and connections among nodes are represented by joining
lines, called “edges.” The hubs are nodes that connect with other nodes frequently
and play important roles in biological processes. The total number of edges that a
node is connected to is referred to as its degree. Finding the node with the top degree
can support to distinguish a biological-entity that plays the most important role
within the network. For more details about the basic biological network and its

33 comman proteins and
their first neighbour proteins

Fig.5.2 An example of human disease networks
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Table 5.1 Protein—protein interaction databases

Primary database
Experimental/

Databases | URL Predicted Reference

BioGrid https://thebiogrid.org/ Exp. Oughtred et al.
(2019)

HPRD http://www.hprd.org/ Exp. Goel et al. (2012)

IntAct https://www.ebi.ac.uk/intact/home Exp. Hermjakob (2004)

MINT https://mint.bio.uniroma?2.it/ Exp. Chatr-aryamontri
et al. (2007)

HuRI http://www.interactome-atlas.org/ Exp. Luck et al. (2020)

Secondary database

STRING https://string-db.org/ Exp. & Pred. Szklarczyk et al.
(2019)

UniHI http://www.unihi.org/ Exp. & Pred. Kalathur et al.
(2014)

Mentha http://mentha.uniroma2.it/ Exp. Calderone et al.
(2013)

APID http://cicblade.dep.usal.es:8080/ Exp. Alonso-Lépez et al.

APID/init.action (2019)
HIPPIE http://cbdm-01.zdv.uni-mainz. Exp. Alanis-Lobato et al.
de/~mschaefer/hippie/index.php (2017)

HitPredict | http://www.hitpredict.org/ Exp. Patil et al. (2011)

11D http://iid.ophid.utoronto.ca/ Exp. & Pred. Kotlyar et al. (2016)

HINT http://hint.yulab.org/ Exp. Das and Yu (2012)

GPS-Prot http://gpsprot.org/ Exp. Fahey et al. (2011)

* Primary protein interaction databases containing literature-curated PPIs for human
proteins.

* Secondary protein interaction databases containing predicted and curated from primary
databases.

topological properties, importance can be read in our previous articles (Alam et al.
2019; Alam et al. 2021).

5.2.4 Human Disease Networks

A disease gene network involves the incorporation of genes linked to specific dis-
ease phenotypes into an established human interactome. The hypothesis posits that
genes and their corresponding products associated with a given disease have the
propensity to interact and form clusters within a localized sub-network, as opposed
to being randomly distributed across the entire human interactome (Lee and
Loscalzo 2019). The unbiased analysis of pathobiological linkages between various
disease processes has also been made possible by disease networks. To construct the
human disease network, there are many ways including literature survey to find the
disease-associated genes and construct network. Further, there are many good, com-
prehensive databases available DisGeNet, an extensive and carefully curated data-
base, integrates data from multiple publicly accessible databases, such as “UniProt/
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SwissProt,” “Cancer Genome Interpreter (CGI),” “Comparative Toxicogenomic
DatabaseTM (CTDTM),” “Orphanet,” “Mouse Genome Database (MGD),”
“PsyGeNET,” “Genomics England,” “ClinGen,” and “Rat Genome Database
(RGD).” These databases were utilized to collect information on genes associated
with various diseases, which were subsequently compiled and organized within the
DisGeNet database (Pinero et al. 2015).

Recently, we analyzed three diseases (including Cardiovascular disease, Diabetes
type-2, and Parathyroid adenoma) and found that 33 genes are common in these
diseases (Fig. 5.2). Similarly, in our one more previous articles (Alam et al. 2022)
where we identified 33 high-scoring significant modules that hub genes that are
shared between tuberculosis (TB) and overlapping non-communicable diseases
(NCDs) (lung cancer, rheumatoid arthritis, diabetes mellitus, Parkinson’s disease,
and cardiovascular disease).

5.2.5 Drug-Target Interactions

The conventional “one disease—one target reductionist approach” is not widely
applicable since the majority of drugs exert their effects by targeting multiple pro-
teins, resulting in a net pharmacological impact that encompasses both therapeutic
and adverse effects. Network techniques provide valuable tools for predicting drug
actions in complex biological contexts. In this context, drugs can be mapped onto
the human interactome through their identified targets, where the effects of drugs on
specific nodes or targets are represented by edges in the biological network. In our
previous study, when the common disease genes related to TB and non-communicable
disease (NCDs) that include lung cancer, rheumatoid arthritis, diabetes mellitus,
Parkinson’s disease, and cardiovascular disease; and built a bipartite network (drugs
and targets) by mapping the hub genes of the modules to their corresponding drugs
using the DGIdb database, the results revealed that a significant portion of the target
genes had multiple hits (as shown in Fig. 5.3). This indicates that genes interacting
with a greater variety of drugs may be more intricately connected to the underlying
mechanisms driving the pathological phenotype associated with these drugs. The
presence of multiple drug interactions with a gene suggests its involvement in mul-
tiple pathways or biological processes relevant to the disease phenotype, emphasiz-
ing its potential significance in the context of therapeutic interventions and
understanding disease mechanisms (Alam et al. 2022).

5.2.6 Drug-Drug Interaction

A change in a drug’s impact on the body when it is combined with another drug. The
absorption of either drug can be sped up, slowed down, or improved by a drug—drug
interaction. This could alter the way one or both drugs work, increase or decrease
their effects, or have negative consequences. Studies have demonstrated that a sub-
stantial proportion, ranging from approximately 37-60%, of hospitalized patients
may have one or more potentially interacting drug combinations upon admission
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(Costa 1991). Digoxin, beta-blockers, estrogen, oral hypoglycemic medicines, and
diuretics were the five drug classes most likely to be involved in possible drug inter-
actions. In this way, Cao et al. have developed a database, e.g., DDInter (http://
ddinter.scbdd.com) (Xiong et al. 2022), The curated Drug—Drug Interaction (DDI)
database offers extensive data, practical medication guidance, an intuitive func-
tional interface, and powerful visualization tools to cater to the needs of the scien-
tific community. The database currently includes approximately 0.24 million DDI
associations. Figure 5.3 showcases the Drug—Target Interaction Network, where all
13 modules’ targets (in green) are mapped with their respective drugs (in magenta).
The illustration on the right demonstrates the number of interacting drugs with key
targets, the database connects 1833 approved drugs, encompassing 1972 entities.
Each drug in the database is accompanied by essential chemical and pharmacologi-
cal information, along with its interaction network. This comprehensive annotation
allows for a deeper understanding of the drug’s characteristics and its interactions
with other entities within the network (Fig. 5.4).

5.2.7 Functional Modules in Molecular Networks

Protein clusters or sub-networks that exhibit dense connections are often regarded
as potential functional modules within a given network. Another hypothesis pro-
poses that proteins interacting with similar groups of other proteins in the network

Management
methods

Interaction -
Mechanism

Seticription @ classification

Alt ti
c.rna_l\.re Metabolism
medications ;
. profile

Severity level @ DDI W El m References

oo
L] L]
- —
Data browsing Data retrieval Interaction checker

Fig. 5.4 DDlInter provides detailed annotations of each DDI association and enables users to
conduct data query (image courtesy, please refer: https://doi.org/10.1093/nar/gkab880)
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Fig. 5.5 Guilt-by-association approach: different colors are used to denote proteins with known
functions, while proteins with unknown functions are left uncolored. Transferring functional anno-
tation from directly interacting proteins allows for the inference of protein function (indicated by
arrows)

tend to have comparable functions. Even in cases where direct interactions are
absent, these proteins contribute to similar biological functions and should be
included in the same modules. However, both definitions of modules rely on a guilt-
by-association approach, as illustrated in Fig. 5.5. For instance, if two proteins
interact with each other, it is more likely that they share the same cellular function-
alities compared to proteins that do not interact (Wang and Qian 2014).

There are many tools for the identification of functional modules within the net-
work, but few are widely used among the researcher including the LEV (leading
eigenvector) method that detects the communities in network from package “igraph”
in R (Newman 2006). Another approach called MCODE (Molecular Complex
Detection) focuses on identifying densely connected regions within a network.
MCODE aims to identify molecular complexes or clusters characterized by high
connectivity and close proximity of nodes (Bader and Hogue 2003).

Another is the DIAMOnD (DIseAse MOdule Detection), which we can investi-
gate the local network neighborhood (LNN) near a particular set of known disease
proteins, and this helps us identify potential new disease target protein (Ghiassian
et al. 2015) and last one which I found very useful and accurate that is MTGO
(Module detection via Topological information and Gene Ontology knowledge) is a
method that identifies modules within a network using both network topology and
the biological role of proteins based on Gene Ontology (GO) terms (Vellaetal. 2018).

5.3 Drug-Repurposing Opportunities

Network-based drug repurposing methodologies are based on the premise that
drugs capable of interacting with multiple targets can demonstrate efficacy against
specific diseases. Furthermore, these methodologies take into account the potential
therapeutic implications when two drugs target the same protein. By leveraging the
interconnected nature of biological networks, these approaches offer promising
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avenues for identifying new therapeutic uses for existing drugs. This approach
proves to be effective in the discovery and development of drug molecules with new
pharmacological or therapeutic indications. By targeting specific proteins through
therapeutic combinations or drug repurposing, it becomes possible to improve clini-
cal conditions in cases of comorbidity, enhance the potency of certain drugs, and
achieve synergistic effects for better treatment outcomes (Imam et al. 2023).

5.4 Drug Side Effects

Over a million significant injuries and fatalities are caused annually by adverse drug
reactions (ADRs), which are very common. Currently, many machine learning and
network-based approaches are used to predict the adverse drug. By leveraging fea-
tures such as composition, structure, and binding affinity, researchers have employed
methods that involve machine learning (ML) and deep learning techniques (Dara
et al. 2022). As part of these ongoing efforts, a recent development is the T-ARDIS
database (Galletti et al. 2021). T-ARDIS is a carefully curated compilation of rela-
tionships between proteins and Adverse Drug Reactions (ADRs). These associa-
tions are statistically evaluated and sourced from existing databases of drug—target
and drug—ADR associations.

5.5 Integrating Omics Data with Networks: Challenges
and Ways

Multi-omics data will soon be regularly used in preclinical and clinical contexts,
hence further constraints should apply standardized, rigorous bioinformatics tech-
niques to process, normalize, and analyze the massive datasets from various study
modalities. From this perspective, it should soon be possible to build networks of
networks to determine how various biological aspects are interconnected. Beyond
intracellular molecular networks, we are now combining the connections between
various cell-types, organ-systems, hosts and microorganisms, hosts and environ-
mental exposures, as well as other interconnections. It would also be essential to
incorporate psychosocial components when defining disease networks in order to
link all contributing factors to clinical results. As demonstrated, network controlla-
bility analysis continues to be useful for identifying important disease genes and
prioritizing potential targets.

The existing human interactome is incomplete, which restricts network analysis
of complicated human disorders. The interactome is expected to keep growing as
high-throughput technology and bioinformatics continue to progress. The existing
interactome is based solely on the binary biophysical interactions between the
curated PPIs, with little knowledge of or annotations for protein-binding patterns or
domains. There is an ongoing attempt to develop a “domain-specific interactome
(DSI)” where commonly shared domains or motifs, such “SH3” and “PDZ domain”
are two examples of frequently shared domains or motifs that are being screened



86 A.Alam et al.

and cloned for their interacting partners. The possibility of modifications to the
physical and metabolic characteristics in a physiological context that changes pro-
tein binding at these domains is a limitation of this strategy.

In addition, the majority protein—protein interactions (PPIs) within the current
interactome are predicted based on the induced protein expression levels observed
in experimental yeast cells, which could be very different from the endogenous
ecosystem where key targets are normally expressed. An area of active research is
the integration of PPIs with gene expression data and further techniques to provide
tissue and disease-specific perspective to the existing interactome. Notably, the
present interactome only contains one isoform of each gene product and provides
scant annotations regarding the splice isoforms that are being considered. It is gen-
erally accepted that distinct spliced forms can results in significant changes in phe-
notypic variations.

Reticulocyte analysis is a recently developed idea in which a patient’s unique
integrative biological network (reticulome) and a set of molecular-mutants/variants
are investigated. Each person has a unique set of biological networks. Biological
network environment within an individual unquestionably influences the final result
(phenotype) of a certain set of genetic variations (genotype) and therefore, should
be an essential element of any patient-specific data assessment. Therefore, custom-
ized reticulotype-based network studies have potential to strengthen the current
genotype/phenotype correlation attempts and may make the search for customized
targeted therapies.

5.6 Case Studies
5.6.1 Case Study: 1

Imam et al. conducted a recent study titled “Network-Medicine Approach for the
Identification of Genetic Association of Parathyroid Adenoma with Cardiovascular
Disease and Type-2 Diabetes.” This study delves into unexplored dimensions of
diseases by specifically investigating distantly related protein sets associated with
other diseases that have not been previously studied. The aim is to understand their
collective physiological impact on the pathological phenotype through network
analysis.

The researchers performed a comparative analysis of disease-associated proteins
in Parathyroid Adenoma, Cardiovascular Disease, and Type-2 Diabetes with the aim
of identifying shared genetic factors. Utilizing network analysis methods, they
investigated functional modules within the protein-disease network that exhibited
dense internal connections but sparse connections with the rest of the network. As a
result, they discovered 13 target proteins that were found to be common to parathy-
roid adenoma, cardiovascular disease, and type 2 diabetes. These proteins were sub-
sequently organized into hierarchical modules and sub-modules within the
Protein—Protein Interaction (PPI) network. In their study, the researchers also
employed the concept of drug repurposing and drug combinations. They utilized



5 Network Medicine: Methods and Applications 87

target proteins and associated drugs in a drug—target bipartite network, which
included experimentally verified drug—target binary connections. They found that
36 drugs were common to both target-associated drugs (TAD) and disease-associated
drugs (DAD), supporting the effectiveness of a multi-target drug approach.

This network-based analysis presents promising avenues for personalized treat-
ment and the repurposing of drugs. It allows for the exploration of new targets and
combinations of multiple drugs, facilitating a comprehensive understanding of pro-
tein—disease associations and disease—disease relationships. By utilizing advanced
computational techniques, the study prioritizes drug—target interactions and exam-
ines disease—disease connections, thereby enhancing the selection of potential ther-
apeutic targets based on efficacy and safety in complex disease scenarios (For more
details, read the full article: https://doi.org/10.1093/bfgp/elac054).

5.6.2 Case Study:2

A study conducted by Aftab et al. aimed to construct a disease network by investi-
gating the overlap between Tuberculosis (TB) and other Non-Communicable
Diseases (NCDs) such as Parkinson’s Disease (PD), Cardiovascular Disease (CVD),
Diabetes Mellitus (DM), Rheumatoid Arthritis (RA), and Lung Cancer (LC).
Through the analysis of this disease network, the researchers identified common
genes associated with TB and other NCDs, establishing important gene—disease
relationships.

To delve deeper into these diseases, the researchers constructed separate gene
interaction networks for each disease by integrating carefully curated and experi-
mentally validated human interactions. Additionally, they generated and analyzed a
drug—target interactome network that encompassed clinically relevant drug—drug
and drug—target interactions. This comprehensive network offered a more compre-
hensive understanding of the intricate landscape of drug—target interactions.

The primary objective of this study was to establish a comprehensive workflow
that takes into account Tuberculosis (TB) and its overlapping Non-Communicable
Diseases (NCDs), emphasizing the significance of reconsidering and redefining
therapies and therapeutic management. The findings underscore the potential of
exploring uncharted territories in disease research, particularly the shared gene sets
that coexist among various diseases. By fostering collaboration, it becomes feasible
to collectively impact the pathological phenotype at a physiological level (For more
details, read the full article: https://doi.org/10.3389/fphar.2021.770762).

5.7 Conclusion

Multi-omics data will soon be regularly used in preclinical and clinical contexts,
hence further constraints should apply standardized, rigorous bioinformatics tech-
niques to process, normalize, and analyze the massive datasets from various study
modalities. From this perspective, it should soon be possible to build networks of
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networks to determine how various biological aspects are interconnected. Beyond
intracellular molecular networks, we are now combining the connections.

between various cell-_types, organ-systems, hosts and microorganisms, hosts
and environmental exposures, as well as other interconnections. It would also be
essential to incorporate psychosocial components when defining disease networks
in order to link all contributing factors to clinical results. As demonstrated, network
controllability analysis continue to be useful for identifying important disease genes
and prioritizing potential targets. Reticulocyte analysis is a recently developed idea
in which a patient’s unique integrative biological network (reticulome) and a set of
molecular-mutants/variants are investigated. Each person has a unique set of bio-
logical networks. A biological network environment within an individual unques-
tionably influences the final result (phenotype) of a certain set of genetic variations
(genotype) and therefore, should be an essential element of any patient-specific data
assessment. Therefore, customized reticulotype-based network studies have the
potential to strengthen the current genotype—phenotype correlation attempts and
may make the search for customized targeted therapies.
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