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Preface 

Advances in high-throughput biotechnologies have led to the generation of huge 
amounts of biomedical data that open a new research horizon from a reductionist 
view to a more complex understanding of the biological systems. To describe com-
plex interactions and regulatory mechanisms behind biological systems, biological 
networks are employed to represent all relevant interactions taking place in biologi-
cal systems. 

In networks, molecules (genes, proteins, metabolites) are reduced to a series of 
nodes connected by edges. Edges represent the pairwise relationships and interac-
tions between two molecules within the same network. Molecular networks have 
become extremely popular and have been used in every area of biology to model, 
for example, transcriptional regulation mechanisms and physical protein-protein 
interactions. Network theory offers a versatile and general toolbox for a framework 
for investigating biological systems ranging from the molecular to the global scale 
level. A key factor for the success of network theory in biomedical applications is 
that many structural network characteristics can be related to the functional proper-
ties of the respective biological system. The biological network also leads to a wide 
range of applications, such as pathways related to a disease that can unveil how the 
disease acts and provide novel tentative drug targets. In addition, it can also help 
predict the responses to disease and can be useful for novel drug development and 
treatments. 

In this book, the authors discuss various network theoretic and data analytics 
approaches used to analyze biological networks with respect to available tools, 
technologies, standards, algorithms, and databases for generating, representing, and 
analyzing graphical data. 

New Delhi, India� Romana Ishrat   
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1 Graph Theory in the Biological Networks 

Riddhi Jangid, Pallavi Somvanshi, 
and Gajendra Pratap Singh 

Abstract 

Graph theory is a mathematical tool widely used to study many different areas 
today. In this chapter, we demonstrate how the basic graph theory concepts can 
be applied to study molecular biology and its insights. We first introduced graph 
preliminaries and then used the theory by representing molecular networks using 
graphs. The depiction has been made by using examples and figures for a better 
understanding of a beginner. The chapter gives a good connection and motivation 
to study biology and mathematics together. 

Keywords 

Biological data · Biological networks · Graph theory · Molecular interactions 

1.1	� Introduction 

Graph theory is a branch of the study in discrete mathematics that expresses many 
different networks and structures in different fields like social network analysis and 
biological networks. We use interchangeably (very often) terms “graph” and “net-
work” in the chapter. A graph is nothing but a set of points linked with a set of lines. 
These points in a graph depict the entities that we want to model and the lines in the 
graph represent the connection between the points in our network. For instance, 
suppose we want to understand the network topology of DNA then we use the con-
cept of an n-dimensional De Bruijn graph in graph theory and can create a DNA 
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graph for any sequence (Jafarzadeh and Iranmanesh 2016). In the next section, we 
study the basic definitions of graph theory in order to understand how a graph can 
be studied in the context of Biology. 

1.2	� Basic Concepts of Graph Theory 

1.2.1	� Graph 

A graph consists of a non-empty set of elements (called vertices, points, junctions) 
that are joined with directed/undirected lines (called edges). The collection of these 
lines forms an edge set that contains ordered/unordered pairs of vertices. Hence, we 
define a graph G ≔ (V(G), E(G)) where V(G) and E(G) denotes the set of vertices 
and edges, respectively. E(G) consisting of only ordered pair of vertices is called a 
directed graph (digraph) and with that of only unordered pair of vertices is called 
an undirected Graph (Barnes and Harary 1983; Gupta 2008). 

Example: 
In Fig. 1.1, the vertex set is {A, B, C, D, E, F} while the edge set for Fig. 1.1a is 

{(A, D), (C, D), (A, B), (B, C), (A, E), (E, F), (C, F)} where the order of elements 
can be altered while in Fig. 1.1b it is strictly in the order {(A, D), (D, C), (A, B), (B, 
C), (A, E), (E, F), (F, C)}. It is easy to note for the undirected graph that every edge 
can be written in two different orders unlike in directed graphs. For instance, (C, D) 
and (D, C) are equivalent in the undirected graph. 

  
In biological context, directed graphs are used in the modeling of transcriptional 

regulatory networks and metabolic networks and in the study of neuronal networks. 
Directed graph because the nodes representing genes in the transcriptional regula-
tory networks will have a natural direction associated while modeling the interac-
tion from genes X to Y. In the case of undirected edges, the study of protein–protein 
interaction networks describes the physical interactions among the organism’s 
proteome. 

Fig. 1.1  (a) Undirected 
graph and (b) Directed 
graph with six vertices and 
seven edges  

R. Jangid et al.
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1.2.2	� Degree of a Vertex 

It is defined as the total number of edges associated with the vertex in a graph. In 
directed graphs, it is further classified as the Indegree or Outdegree of a vertex. We 
say Indegree and Outdegree are the number of edges incoming to the vertex and the 
number of edges outgoing from the vertex, respectively. 

In the above example, the degree of every vertex in Fig. 1.1a can be written as: 
deg(A) =  deg (C) = 3 and deg(B) =  deg (D) =  deg (E) =  deg (F) = 2 while in 
Fig. 1.1b; indeg(A) = 0, indeg(B) = 1, indeg(C) = 3, indeg(D) = 1, indeg(E) = 1, and 
indeg(F) = 1. Also, outdeg(A) = 3, outdeg(B) = 1, outdeg(C) = 0, outdeg(D) = 1, 

outdeg(E) = 1 and outdeg(F) = 1. 

1.2.3	� Representation of a Graph 

When it comes to representation, we represent any graph with its Adjacency matrix 
and Incidence matrix. If there is any graph with p vertices and q edges, then the 
adjacency matrix MA = [a]ij is of order p × p while the incidence matrix IA = [b]ij is 
of order p × q. We define them as, wherever there exists any edge among the vertex, 
we place the value 1 otherwise, 0. In the case of an undirected graph, the adjacency 
matrix is obviously a symmetric matrix unlike in the digraph. For the incidence 
matrix in a digraph, +1 represents the direction of the edge outgoing from a vertex 
while −1 depicts the direction of the edge incoming to a vertex. 

These adjacency matrices also give us information on the degree of vertices in 
the graph. For the example above, the adjacency matrices and incidence matrices for 
Fig. 1.1. are given in Figs. 1.2a, b and 1.3a, b. Here, we can also find the degree of 
respective vertices in an undirected graph by their row sums while for a directed 
graph, we can find the outdegree and indegree by row sums and column sums, 
respectively.  

Fig. 1.2  (a) Adjacency matrix and (b) Incidence matrix for Fig. 1.1a  

1  Graph Theory in the Biological Networks
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Fig. 1.3  (a) Adjacency matrix and (b) Incidence matrix for Fig. 1.1b  

Fig. 1.4  (a) An example 
of a subgraph of G. (b) An 
example of a spanning 
subgraph of G  

1.2.4	� Subgraph 

A graph G′ ≔ (V′(G′), E′(G′)) is said to be a subgraph of G if and only if the V′(G′) 
and E′(G′) of G′ are the subsets of the V(G) and E(G) of G, respectively. Further, if 
the V′(G′) = V(G) but the E′(G′) of G′ is a subset of the E(G) of G, then it is called 
spanning subgraph (see Fig. 1.4a, b).  

1.3	� Graph Algorithms 

Theorem 1   The sum of degrees of all the vertices in any graph G, is even. 

Proof   We know that every edge in a graph G contributes 2 degrees to the graph 
while 1 degree to every vertex to which it is adjacent. So, we can write: 

	 2 1 2q v v vp( )  = ( ) + ( ) +…+ ( )deg deg deg ,	   

R. Jangid et al.
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where p and q denotes the number of vertices and edges, respectively, in the 
graph G. Hence, 2(q) is always even. 

Theorem 2   In any graph, there are always even numbers of vertices of odd degrees. 

Proof   Let us consider a graph G having both degrees of vertices, even and odd. 
Diving the vertices into two groups, one having even degree vertices and the other 
one with odd degree vertices such that G1 =  deg (v1e) +  deg (v2e) + … +  deg (vpe) 
and G2 =  deg (v1o) +  deg (v2o) + … +  deg (vpo). By Theorem 1 we know that the sum 
of degrees of all the vertices is even, hence G1 + G2 is also even. This further implies 
that since G1 is already even, G2 must be even. Hence, proof. 

1.4	� Complex Graph Models 

Graphs of different types are studied according to the complexity of literature 
requirements. These different types of graphs are defined as follows. 

1.4.1	� Bipartite Graph 

Bipartite graph is that type of non-empty graph in which the set of vertices is parti-
tioned into two disjoint subsets, say 𝐴 and 𝐵 such that every edge joins the vertex 
from set 𝐴 to set 𝐵 and vice versa. A directed bipartite graph is that type of bipartite 
graph which is directed also (see Fig. 1.5).  

1.4.2	� Complete Graph 

Joining any vertex with every other vertex using an edge in a graph, such a graph is 
called a complete graph. We denote such graphs using Kp, where p denotes the num-
ber of vertices in the graph. 

Fig. 1.5  Example of a 
complete Bipartite graph 
K3, 3  

1  Graph Theory in the Biological Networks
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1.4.3	� Weighted Graph 

What if we assign some non-negative integer values to the edges of the graph? In 
that case, we will call such a graph a weighted graph in which non-negative integers 
(called weights) are attached to the edges. 

1.4.4	� Eulerian Graph 

In a graph starting from a vertex, if we cover every edge exactly once even after 
repeating the vertices and end with the same initial vertex, then such type of graph 
is called Eulerian Graph. In Fig. 1.1, the graphs are not Eulerian. One important 
result for Eulerian graphs is—Every connected graph is Eulerian whose all the ver-
tices are of even degree. 

1.4.5	� Hamiltonian Graph 

If instead of edges we wish to cover every vertex exactly once in any graph, then 
such type of graph is called a Hamiltonian graph. In this case, all edges may not be 
included. For example, Fig.  1.1a is a Hamiltonian graph since moving from 
D→A→B→C→F→E covers all the vertices exactly once. 

1.4.6	� Regular Graph 

A graph such that all the vertices in the graph have the same degree k is known as a 
k-regular graph. 

1.4.7	� Planar Graph 

A graph that can be drawn on paper without crossing an edge and without lifting a 
pen even once is called a planar graph. 

1.5	� Fundamentals of Network Theory and Its Characteristics 

We illustrate here the fundamentals of network theory with respect to the biological 
context. 

R. Jangid et al.
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1.5.1	� Biological Networks 

In the context of network biology, there are different questions that can be asked of 
graphs like:

	1.	 Whether there is any way to produce a metabolite X from A? 
	2.	 How long is a particular chain to X from A? 
	3.	 Whether all the proteins are connected to others by any path? 
	4.	 Which is the most influencing protein in any network?   

We will look for answers to such questions using the graph theoretical concepts 
that we discussed above. Showing the existence of a path in a graph/network solves 
our first query while the second problem is the shortest path problem in graph the-
ory. For the third query, one can look for the identification of connected components 
in a graph/network. And in the last one, we can solve it using looking for the most 
connected nodes in the graph/network. In such problems, we study graph algorithms 
that are applicable and used in many different areas (Jafarzadeh and Iranmanesh 
2016; Koutrouli et al. 2020; Mason and Verwoerd 2007; Pavlopoulos et al. 2011) as 
well. For example, the shortest path problem, traveling salesman problem, looking 
at connected components, minimum spanning tree problem, centrality measures, 
and Eulerian and Hamiltonian path problems. 

1.5.2	� Mathematical Concepts in Relation to Network Biology 

Except from the basic terminology in graph theory, we study: 
Density: It is defined as the ratio of edges that exists in a network. Mathematically, 

we write the formula for the directed graph Den q 
p pD = −( )1

 while for the undi-

rected graph Den
q 

p pU = −( )  
2 

1 
. 

Degree distributions: It is a histogram of degrees. It gives us the node fraction in 
any network having some degree x. Mathematically, P x 

p 
p 
x ( )  =  where px is the 

number of nodes with degree x while p is the nodes in the network. 
Clustering Coefficients: Also called cliquishness, we determine the degree to 

which the vertices of a graph form clusters with each other. The clustering coeffi-
cient tells us how much of a clique we find in a neighborhood of a vertex. 
Mathematically, C y 

x xu = −( )  
2 

1
 where u denotes the node with degree x and y are the 

number of edges among x neighbors of u in the graph. 

1  Graph Theory in the Biological Networks
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1.6	� Application of Graph Models in Biology 

There are numerous applications of graph models in biology. We illustrate here by 
showing the examples of biological networks (see Fig. 1.6): 

•	 Interaction networks for Protein–Protein 
•	 Networks for Sequence similarity 
•	 Networks for Gene regulatory system 
•	 Network for Signal Transduction 
•	 Network for Metabolic pathways 
•	 Network for Gene co-expression   

There are numerous types of data that can be presented in the theory of network 
biology and presenting the data as a network and their network analysis is an inte-
gral part of Systems Biology. When it comes to Protein–Protein Interactions, it is an 
undirected network as we can see in Fig. 1.7. When it comes to gene regulation 
networks, these are directed ones. Going from one gene to another is shown here by 
the green lines. In the case of the cell signaling pathway, the depicted path in the 
network is C→D→F. Metabolic biological pathways can be directional, and hence 
depicted using directed edges. Consider the network between proteins/genes A, B 
and metabolites m1, m2 and m3 where the directed edge set depicting metabolism 
pathways is {(A, m2), (m2, B), (m1, A), (m3, B)}, the concept of Bipartite graphs 
can be implemented here like metabolites interact with proteins/genes and two dif-
ferent kinds of nodes are used here to depict the interactions.  

We discuss here one such property of the Protein-protein Interaction network 
(PPIN). We are basically looking at the study of how a protein interacts with the 
other proteins in a cell. While studying the interactions, we show here a small world 
effect. 

Fig. 1.6  Depiction of types of biological networks using a graph  

R. Jangid et al.
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Fig. 1.7  (a) Protein–protein interaction network example of shortest path. (b) Protein–protein 
interaction network showing the proteins with maximum degrees. (c) Protein–protein interaction 
network showing the highly interconnected proteins in respective clusters  

Looking at the figure in the PPINs example, there are majorly three sub-networks 
in whole. Another formal word we use here is that we have three clusters in this net-
work. This is an undirected graph that has proteins as its nodes and their interconnec-
tions as edges. This shows good connectivity among the proteins. Consider looking 
for an optimal way to reach from protein A to protein B in the Fig. 1.7a. This is what 
we call the problem of finding the shortest path from one node to another. Here, the 
length of the path for moving from A to B is 5. The degree of node A and node B in 
the network is 1 in both cases which depicts that they both are connected to a single 
protein directly. We can see clearly from the figure that there is no Eulerian or 
Hamiltonian path that exists from A to B. Finding out the proteins that are important 
in the network can be studied using their centrality measures in the graph. This we can 
see in the next Fig. 1.7b, where we have the proteins in different colors showing high 
connectivity in the network. And in Fig. 1.7c is the nodes with high transitivity mean-
ing the proteins that are densely connected in the respective clusters. 

1  Graph Theory in the Biological Networks
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1.6.1	� Petri Net Modeling Approach in Pathway Analysis 

Petri nets, a formalized modeling language from around the 1960s, have been used 
to describe and model discrete event dynamic systems (DEDS) (Peterson 1981). 
These are structurally directed bipartite multigraphs, where we associate some 
defined set of rules with the graph and in turn help in analyzing DEDS. Bipartite in 
the sense as we have two disjoint sets of nodes depicted using circles (called places) 
and rectangles (called transitions) and directed arcs depicting the direction of pro-
cess flow in the graph (Fig. 1.8). The arcs must be used to connect circles and rect-
angles but in a manner such that it joins no two circles or rectangles at a time. An 
edge that is directed from a circle to a rectangle is the input place of that rectangle 
and vice versa. For any graph, known as the Petri net graph, we assign the tokens 
denoted by dots inside the circles in the graph. Writing the number of tokens as a 
vector is known as marking the Petri net. These markings are used for further execu-
tion of the Petri net. Theoretically, we define marking as n − vector =  (M1, M2, 
M3, …, Mn), where n is number of places in the Petri net structure and each Mi ∈ {0, 
1, 2, 3, …, n}.  

We use the Petri net modeling approach in order to find the possible pathways in 
biological networks given to us with certain conditions. Though there are some 
graph models that also study the pathway, there are some limitations to them. Hence 
we use the Petri net approach. 

1.6.1.1	� Petri Net Reachability-Based Analysis 
Petri net firing rule: Removing w(p, t) tokens from the input place of a transition and 
depositing w(t, p) tokens into the output place of the transition causes the state 
change in a Petri net, which we call firing of that transition. Here, w(p, t) denotes the 
weight of the arc from place to transition, and similarly w(t, p) denotes the weight 
of the arc from transition to a place. In the example we are discussing, we have w(p, 
t) = w(t, p) = 1 for all the transitions (see Fig. 1.9) (Murata 1989).   

Fig. 1.8  Example of a 
Petri net with initial 
marking (2, 1, 0)  

R. Jangid et al.
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Fig. 1.9  Illustration of firing rule in Petri net depicted in Fig. 1.8  

Fig. 1.10  Reachability/ 
Coverability graph of Petri 
net in Fig. 1.8  

1.6.2	� Petri Net Invariant Analysis 

Another analyzing technique for Petri net models is by creating Incidence matrix 
and solving them. We will get some equations but these equations have limited solv-
ability because of restrictions like the solution should be a non-negative integer. 
Hence, a Petri net model must be pure in order to use this analyzing technique. We 
write an incidence matrix where the rows and columns are the places and transi-
tions, respectively. And based upon these matrices, we mathematically solve by 
creating state equations and studying the Invariants. 

In Fig. 1.10, we have S1, S2, S3, S4 as the reachable markings from the initial 
marking S0. From Fig. 1.9, we can say that S0 = (2, 1, 0) and S1, S2, S3, S4 equals 
(1, 1, 1), (1, 0, 1), (0, 1, 2), (0, 0, 2), respectively. The red color of S3 and S4 in 
Fig. 1.10 depicts the state of deadlock in the Petri net while the red color of transi-
tions in Fig. 1.9 depicts that the transitions are enabled in the respective state of the 
Petri net.  

In order to study the pathways in biological processes, we study with the 
reachability-based analysis (Jha et al. 2022; Mansoori et al. 2020) as well as the 

1  Graph Theory in the Biological Networks
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Fig. 1.11  Example of 
Hamiltonian path approach 
for DNA sequencing  

Incidence matrix and state equations (Singh and Gupta 2019; Singh et  al. 2022; 
Singh et al. 2020; Singh et al. 2021). 

1.7	� Case Study 

As a case study, we look for a DNA sequencing example. In DNA sequencing, we 
shear the DNA into millions of small fragments. Now we read 500–700 nucleotides at 
a time from the small fragments (Sanger method). Our challenge is to assemble these 
short fragments (called reads) into a single genomic sequence (called “superstring”). 

Let us suppose that we are given data on some pieces of the Genome. If we wish 
to generate a DNA sequence from those genome pieces, then we have two graph 
theoretic approaches to solve this problem:

	1.	 Hamiltonian path approach—Taking the given pieces as nodes (with length k) 
and these nodes are connected by an arc if the k-1 rightmost nucleotide of first 
vertex overlaps with the k-1 nucleotide of the second one. 

	2.	 Eulerian path approach—Here, we take suffix/prefix as a node. Each oligonucle-
otide becomes an arc in which its initial endpoint is k-1 rightmost nucleotide of 
the arc and its terminal endpoint is k-1 leftmost nucleotide.   

For example (Fig. 1.11), we have the given pieces of genome—M = GTG, GCG, 
GCA, ATG, TGG, TGC, GGC, CGT, CAA, AAT.  Hamiltonian path approach  is 
used to generate a DNA sequence from these genome pieces and, we have the 
graph shown in the figure.  

Using this approach, we have the following graph model where we follow the 
path in which every node is covered exactly once. The resulting Hamiltonian 
path will be—ATG(v0)-TGG(v1)-GGC(v2)-GCG(v3)-CGT(v4)-GTG(v5)-
TGC(v6)-GCA(v7)-CAA(v8)-AAT(v10). Hence, we get the following sequence of 
Genome—ATGGCGTGCA. 

R. Jangid et al.
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Fig. 1.12  Example of Eulerian path approach for DNA sequencing  

But this approach of getting the sequence is time consuming when we have these 
pieces in millions or billions. So we use the second approach which is compara-
tively easier. 

In the Eulerian path approach, we have the graph as shown in Fig. 1.12.  
We follow the path as shown in the figure where every edge is covered exactly 

once and we got this as follows: ATG(v0)-TGG(v1)-GGC(v2)-GCG(v3)-CGT(v4)-
GTG(v5)-TGC(v6)-GCA(v7)-CAA(v8)-AAT(v10). Hence, we get the following 
sequence of Genome—ATGGCGTGCA. 

Clearly, both approaches give us the same solution but the second approach is less 
time consuming and easier to follow. So, in this way graph theory is used in DNA 
sequencing. Many other concepts can be studied in different other case studies as well. 

1.8	� Conclusion 

We have discussed in the chapter only the basic mathematical concepts in graph 
theory that are used in biology. One can use the theory in many different ways 
according to their needs. In order to study complex systems in biology, there are 
many extensions available in the literature that we might have missed but this note 
definitely covers all the basics that are difficult to find at a place. 
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2 Biological Networks Analysis 
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Abstract 

Networks are widely recognized as a popular method for representing complex 
biological processes by capturing the interconnected relationships between dif-
ferent biological components using binary interactions or connections. This 
chapter discusses many forms of biological networks and network models that 
are important for understanding complicated networks. In addition, we describe 
different network measures that are quantifiable description of biological net-
works. We also discussed different methods for detection of community. We 
briefly mention about hubs and formation of rich-club, system-level organization 
in a hierarchical network, detection of network modules and motifs, and bio-
markers. Lastly, we examine several databases that contain biological networks 
and explore how network modules are utilized in understanding the dynamics of 
diseases. We anticipate that a wide range of readers, from experts to newcomers, 
will benefit from this chapter and be influenced to advance the field. 

Keywords 

Biological networks · Graph theory · Protein–protein interaction networks (PPI) 
· Node · Edge · Genetic interaction networks · Degree distribution · Closeness 
centrality · Eigenvector centrality · Neighborhood connectivity · Betweenness 
centrality rich club · Transcriptional regulatory networks · Network motifs · 
Hierarchical network · Cell signaling networks · Hamiltonian energy · Clustering 
coefficient · Clustering methods · Biomarker · Metabolic networks · Network 
model · Scale-free network · Biological network databases · Disease dynamics

Najma · A. Farooqui (*) 
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia,  
New Delhi, India 
e-mail: najma2300912@st.jmi.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte 
Ltd. 2023 
R. Ishrat (ed.), Biological Networks in Human Health and Disease, 
https://doi.org/10.1007/978-981-99-4242-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4242-8_2&domain=pdf
mailto:najma2300912@st.jmi.ac.in
https://doi.org/10.1007/978-981-99-4242-8_2


16

2.1	� Overview of Biological Networks: Network Construction 

For a layperson, genomes, in general, are thought of as components that are purely 
defined by their linear DNA sequences. However, the reality is far more complex. 
The DNA (Deoxyribonucleic Acid) serves as the primary unit of heredity in all 
types of organisms. The DNA helix folds itself into several layers of higher-order 
structures in a hierarchical fashion that forms a chromosome (Woodcock 2006). The 
DNA folded in this fashion eventually gives it a compact structure enabling it to get 
accommodated in the limiting space of the cell’s nucleus. Besides this sophisticated 
arrangement of the genetic component itself, the cellular factors that are responsible 
for reading, copying, and maintaining the genome too are arranged in a complex 
and compartmentalized fashion within the cell’s nucleus. The cellular organization 
of the genomes and the cellular factors give an architectural environment for them 
to function. Determining how these particular molecules contribute to various cel-
lular processes is one of the main problems in current cell biology. Identification of 
these molecules and their interactions is critical for gaining complete knowledge of 
the complicated machinery within live cells. Exploring the answers to these ques-
tions may lead to insights into genome biology and how it works (Fig. 2.1). 

We, as human beings, are surrounded by a network of networks. Our body func-
tions through complex networks of networks working at different levels. Most bio-
logical functions arise from complex interactions from intricate interactions 
involving multiple cellular elements like nucleic acids, proteins, and small 

Chromosome 

Nucleus 

Cell 

DNA 

Gene 

Fig. 2.1  DNA makes up 
genes and is coiled within 
chromosomes inside the 
nucleus of a cell. Credit: 
NIGMS. 
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molecules. It is exceedingly uncommon for a biological function to be attributed 
solely to a single molecule. These intercellular webs of interactions include PPI, 
metabolic networks, transcription-regulatory networks, and signaling networks. 
The technologies like PROTEIN CHIPS or YEAST TWO-HYBRID determine 
these molecular interactions. 

Another key technique that is commonly used for analyzing complex systems in 
the physical, social, information, technology, and biological sciences is network 
theory. The application of network theory in biology is known as Network Biology. 
The development of network biology has revealed that there are universal laws that 
control cellular networks. This might provide a fresh conceptual framework for 
comprehending disease pathology in the twenty-first century. The biological sys-
tems are depicted in this as standard graphs with nodes and edges. The graphs’ 
nodes or vertices stand in for various entities or agents, and the edges or links sig-
nify a connection between two nodes. In a more realistic and complicated frame-
work, these edges may be heterogeneous, unweighted/weighted, and directional/ 
unidirectional. Biological networks play a crucial role in examining and under-
standing the interconnected relationships among various components (interactome) 
inside a biological system. These interactomes are the collection of direct or indirect 
molecular linkages of the biological system. Thus, overall, a biological network 
signifies the cell’s information processing system via the molecular wiring or 
molecular network (Kaviani and Sohn 2021). 

2.1.1	� Structure of Complex Networks and Notations 

Because of the data explosion generated by the omics era of biological research, it 
was important to shift away from a single gene/protein perspective and develop 
more systematic data analysis methodologies. System biology seeks to explore bio-
logical processes on a systems level, not just as isolated components but also as 
interacting systems and their evolving characteristics. System biology, which uses 
graph theory approaches to describe and analyze biological systems, is connected to 
network biology. The study of graphs, which are mathematical constructions used 
to represent pairwise interactions between things, is known as graph theory. In this 
context, a graph is a collection of vertices or nodes interconnected by lines or edges. 
In actuality, it is a group of conceptual ideas and techniques for visualizing and 
analyzing networks. Nodes represent different entities (e.g., genes or proteins) and 
edges convey information about how the nodes are linked (Muzio et al. 2021). 

Biological network analysis was driven by the methods and concepts of social 
network analysis, and the application of graph theory to the social sciences also 
contributed to its development. From the molecular to the ecosystem level, every 
biological entity interacts with other biological entities, giving us the opportunity to 
describe biology using a variety of networks such as ecological, neurological, meta-
bolic, or molecular interaction networks. Complex interactions among biomolecules 
are usually described using network models when studying biological systems. 

2  Biological Networks Analysis



18

These networks are known as biological networks and they represent biological 
systems mathematically (Pavlopoulos et al. 2011). 

For example, networks within cells typically exhibit the following 
characteristics:

	1	 They tend to be disassortative.
	2	 They possess structural and dynamic robustness.
	3	 Their degree distribution power law.
	4	 They exhibit a modular organization.
	5	 The average length of the shortest path between any two nodes is quite short, 

indicating a small-world feature. 

2.2	� Biological Networks and Types 

2.2.1	� Biological Networks 

The idea of biological networks is based on the observation that multiple networks 
operate in living cells to carry out and regulate every element of cellular life, these 
elements are made up of a variety of components ranging from basic biomolecules 
to the entire organism, and these networks function within a highly organized 
framework. All biological activities are carefully and tightly controlled at the cel-
lular level (Grigorov 2005). 

The foundation of life processes for the entire structural range of living matter, 
including biomolecules like proteins and nucleic acids, cellular organelles like cyto-
skeleton and mitochondria, tissues, whole cells, and organs, is made up of biologi-
cal networks, which are organized, deterministic systems. Finally, the entire 
organism makes up this structural spectrum. These networks collaborate to carry out 
certain physiological activities inside a particular cellular compartment. They 
describe how various biological processes, such as genetic regulation, cellular sig-
naling, and metabolism are structured. These networks are frequently used to com-
prehend and analyze biological processes at the system level, find fascinating 
modules or sub-networks, and identify potentially important proteins based on their 
network characteristics. These networks are representations of biological systems 
and the relationships that exist between them. They provide insights into compli-
cated biological systems, revealing information about them. They integrate biologi-
cal omics data with biological interactome data to disclose information inside these 
systems (e.g., gene–gene associations and protein–protein interactions). The net-
works involved in transcription, protein–protein interaction, and metabolism are the 
most important for managing biological systems. These networks are studied using 
a combination of statistical methodologies, graph theory methods, mathematical 
models, and visualization tools. The study of biological networks is now an impor-
tant part of systems and computational biology. Because such analysis provides a 
common language for describing relationships within complex systems, it has 
become more crucial in gaining a better understanding of physiological functions. 
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Many efforts have been made to study and analyze the topology and structure of 
cellular networks, as well as their relationship to cellular function and organization. 
These networks are often modular, have a small world property with minimal aver-
age path-lengths, and use scale-free topologies with power law degree distributions; 
this makes them resistant to adversity. 

As a result, networks can enhance our knowledge of biological systems and their 
flow. Among other aspects, networks are used to analyze gene lists from high-
throughput biology as well as data from post-genome-wide association studies. 
There are various approaches to using network information to enhance our knowl-
edge of biological systems. One example is the development of new organizational 
assumptions based on network topology information. Using massive network data 
to test and confirm or refute current hypotheses is a complimentary strategy for a 
very long time, theorists have speculated about the connection between the evolu-
tion of genes and the networks that they produce. With the availability of large-scale 
quantitative data on the topology of molecular networks, it is now possible to pose 
explicit queries about the role of network structure in the evolutionary process and 
how evolution influences network structure. Several recent researches have demon-
strated the effectiveness of this innovative approach to biology (Yu et al. 2013). 

2.2.2	� Types of Biological Networks 

2.2.2.1	� Different Types of Biological Networks Are Described below
	1.	 Protein–protein interaction networks.
	2.	 Metabolic networks.
	3.	 Gene/transcriptional regulatory networks.
	4.	 Genetic interaction networks.
	5.	 Cell signaling networks. 

Protein–Protein Interaction Networks 
One of system biology’s main objectives is to better understand protein–protein 
interactions. PPINs, or protein–protein interaction networks, are mathematical 
depictions of the physical interactions that take place between proteins in a cell. 
Understanding protein–protein interactions (PPIs) is critical for understanding both 
normal and pathological cell physiology because PPIs are required for understand-
ing every process in a cell. It is also essential in drug development. PPIs are a type 
of molecular interaction data that is widely used. These interactions give both an 
experimental foundation for understanding cell modular architecture and important 
information for predicting the biological function of specific proteins. Many of the 
cell’s most critical molecular activities, such as DNA replication, are carried out by 
complex molecular machines made up of many protein components that are orga-
nized by their protein–protein interactions. It is possible to represent a collection of 
pairwise interactions among a collection of proteins in a natural way by using a 
graph with proteins as its nodes and pairwise interactions as its edges. The collec-
tion of all interactions (entire set of PPINs that exist in a biological system) between 
the proteins of an organism is usually called the interactome (Jordán et al. 2012).
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PPIs can be detected by: in vitro methods (like NMR spectroscopy, protein frag-
ment complementation, phage display, tandem affinity purification, protein arrays, 
X-ray crystallography, and co-immunoprecipitation, affinity chromatography) and 
in vivo methods (like yeast two-hybrid (Y2H, Y3H) and synthetic lethality) based 
approaches). These experimental resources have been used to create extensive PPI 
networks. But on the other hand, the volume of PPI data is making laboratory vali-
dation difficult. Therefore, computational analysis of PPI networks using in silico 
methods (like in silico 2 hybrid structure-based approaches, gene expression, gene 
fusion, sequence-based approaches, chromosome proximity, phylogenetic tree, and 
mirror tree), is turning into a crucial tool for understanding the functions of yet 
undiscovered proteins. Protein–protein interaction (PPI) is currently one of the 
important areas of study for the advancement of contemporary system biology 
(Srinivasa Rao et al. 2014). 

Metabolic Networks 
Metabolic networks are built by collecting and linking biochemical data with 
genetic sequences. The mass flow in basic chemical pathways that generate vital 
components like amino acids, carbohydrates, and lipids, as well as the energy 
required by biological reactions, are usually the focus of the metabolic network. As 
a result, these networks frequently include information on both proteins and 
metabolites. 

The metabolic network is made up of all chemical processes that utilize catalytic 
proteins to facilitate the metabolism of small molecules (metabolites). A metabolic 
pathway is a set of processes that transform one or more educts into one or more 
products. Metabolic pathways are involved in the storage and release of energy. 

Metabolic networks are made up of very similar building components. The ver-
tices in this network indicate the educts and products, while the connecting reaction 
is represented by an edge that will be tagged with the catalyzing enzyme and per-
haps supplemented with cofactors. This representation solely depicts a reaction’s 
connection (topology). The reaction kinetics, or the concentration gradients of the 
relevant molecular partners in terms of their starting concentrations, is required for 
modeling (Haggart et al. 2011). 

Metabolic network databases include databases that focus on a single organism 
like HinCyc110 (for H. influenzae), EcoCyc109 (for E. coli), and PseudoCyc111 
(for Pseudomonas aeruginosa), as well as databases that include a wide range of 
organisms like KEGG, MPW, and MetaCyc. 

These databases contain information and graphics that depict such pathways and 
their connections. Computers are increasingly being used to process photos. These 
databases are large enough to compare metabolic pathway topologies in various 
animals (Succoio et al. 2022). 

Gene Regulatory Networks 
Gene regulatory networks, or GRNs, are essential for regulating how genes are 
expressed. These are collections of regulatory links between transcription factors 
(TFs) and TF-binding sites, or between genes and their regulators. Cis- and 
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trans-regulatory elements are the two primary regulatory types. Trans-regulatory 
elements can regulate away from the genes from which they were transcribed, 
whereas cis-regulatory elements are located close to the structural region of the 
gene they regulate. Moreover, GRNs are directional as TFs regulate their targets, 
dynamic, i.e., changing across different conditions, and can be visualized as bipar-
tite graphs, which are crucial for understanding the underlying mechanisms of dis-
ease pathogenesis. GRNs are composed of “nodes,” which represent the genes and 
their regulators, joined together by “edges,” which represent physical and regulatory 
interactions (Ertaylan et al. 2014). 

GRNs are bipartite because there are two types of nodes: Genes and TFs. The 
overall topology of GRNs has been analyzed in many systems. To create the most 
comprehensive and accurate GRN models possible, it is ideal to incorporate physi-
cal and regulatory links. The presence of TF and gene hubs indicates that GRNs are 
not random structures. GRN modules are highly interconnected. There are various 
databases present that hosts information about gene regulation, commonly used 
repositories are the KEGG, GTRD, and TRRUST. A comprehensive understanding 
of GRNs is a major challenge in the field of systems biology. 

Reconstruction of regulatory networks is made possible by recent developments 
in high-throughput approaches, which offer a wealth of binding data from tech-
niques like ChIP-Seq, miRNA-Seq, and ATAC-Seq along with expression data from 
RNA-Seq. Reconstruction of the gene regulatory interaction to form GRNs is one of 
the key tasks in systems biology. Gene expression data are frequently used in the 
creation of a GRN. For repairing GRNs in a true cellular context, a number of com-
putational techniques and models have been developed to date. Nevertheless, each 
of them uses a unique set of presumptions and techniques to create unique blue-
prints. Several statistical and mathematical tools can be used to visualize and study 
it. For GRN visualization, Cytoscape is a widely used and simple-to-use application 
that has shown to be quite helpful (MacNeil and Walhout 2011). 

Genetic Interaction Networks 
A genetic interaction network is a collection of genes that are connected by edges 
and have functional interactions with one another. It is believed that these genes 
either physically interact with one another through the gene products they produce, 
such as proteins, or that one gene affects the activity of another gene. The phrase 
“genetic interaction” refers to a collection of functional connections between genes 
that cooperate to carry out a certain activity and are frequently physically linked to 
one another to create a more complicated structure. 

Understanding biological activities requires information about interacting pro-
teins, which may be easily attained by examining networks of these connections. 
These interactions are crucial to the majority of biological processes. 

Genetic interactions require combination of two or more genes to generate an 
unexpected phenotype. These interactions are further categorized into two catego-
ries i) Negative genetic interaction) and ii) Positive genetic interactions. Negative 
genetic interactions are caused when two mutations, none of them lethal individu-
ally, combine to cause cell death. Positive genetic interactions occur when a lethal 
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variant of one gene is suppressed by the variant of another gene or their combined 
effect is less severe than expected. These types of interactions are essential in under-
standing pathways and regulation in model organisms, functional relationships 
between genes, also undiscovered genetics associated with complex human diseases 
(Boucher and Jenna 2013). 

A resource for forecasting gene and pathway function is a global genetic interac-
tion network, which shows the functional arrangement of a cell. This network high-
lights the ubiquity of genetic connections and how they can amplify the abnormalities 
brought on by a single mutation. They typically show pairs of genes active in paral-
lel pathways or various molecular machinery (Costanzo et al. 2016). 

Genetic interaction profile of a gene is made up of its unique set of positive and 
negative genetic interactions. Positive interactions may provide links associated 
with problems in cellular proteostasis and cell cycle progression or insights into 
general mechanisms of genetic suppression. Negative genetic interactions between 
functionally related genes, mapped key bioprocesses, and recognized pleiotropic 
genes can be inferred using alternative functional information. Genetic interaction 
profiles provide a quantifiable measure of functional similarity, and similar net-
works created by correlating large-scale genetic interaction profiles organize genes 
into clusters that highlight biological processes. When genetic interaction profiling 
networks are coupled with other types of interactome networks, predictive models 
of biological processes can be created, resulting in potentially powerful models 
which can form a potentially powerful model by using different datasets (Wiredja 
and Bebek 2017). 

Cell Signaling Networks 
A crucial regulatory system that is vital for all life activities in living creatures is cell 
signaling. Cell signaling networks control and direct cellular functions, intercellular 
interactions, and reactions to the environment. The various signaling pathways that 
signaling networks use to carry out their functions each represent an ordered series 
of reactions that are elicited and started by signal molecules, primarily proteins that 
turn on receptor proteins, and that lead to biochemical or biophysical modifications 
in the pathway. A primary mechanism to control the number of intracellular compo-
nents occurs at different levels, i.e., the post-transcriptional mRNA processing level 
(alternative splicing) than on next level which includes post-translational modifica-
tions (such as phosphorylation, acetylation, methylation, and so on). 

Signaling networks can be visualized as directed graphs with edges pointing in 
the direction of signal propagation. There are one or more starting nodes in a signal-
ing network that represent the binding of the initial signal(s) to receptor(s) and one 
or more output nodes that indicate the cellular responses to the signal(s). Along with 
these nodes, there are several intermediary nodes that involve ions, enzymes, genes, 
secondary messengers, kinases, proteins, metabolites, and other chemicals in signal 
transmission. The edges of a signaling network indicate many interactions between 
signaling components such as transcription, protein phosphorylation, protein bind-
ing, enzymatic catalysis, complex formation, and regulation (Vieira and Vera-
Licona 2019).
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In living organisms, there are numerous cellular signaling networks, both extra-
cellular and intracellular. Some important cellular signaling networks are the PI 
3-Kinase/Akt Signaling pathway, MAPK/ERK pathway, Wnt signaling pathways, 
Apoptosis signaling pathways, cAMP-dependent signaling pathway, Retinoic acid 
signaling pathway, Calcium signaling pathways, Delta-Notch signaling pathway, 
Hedgehog signaling pathway, Insulin signaling pathways, VEGF mediated signal-
ing pathway, Oscillatory rhythm network, and many more. At each step of the cel-
lular signaling process, feedbacks are possible which forms a signal transduction 
network. 

Cellular signaling network reconstruction includes genome annotation, expres-
sion arrays, cell physiology characterizations, biochemical experimentation, and 
other such data sources. Data for reconstructing networks can be found in renowned 
pathway databases like (Reactome, KEGG), specific repositories such as the 
NetPath, MiST, or Human-gpDB are also present (Papin et al. 2005). 

Modeling cellular signaling networks is quite challenging as they involve the 
interactions of components from different levels such as transcriptome, metabo-
lome, and proteome. Mathematical modeling of cellular networks enables us to fig-
ure out the basic design of cell signaling networks from a system-level perspective 
and how transmission of information affects the network (Albert and Wang 2009). 
Large-scale networks can be structurally analyzed in their totality since it does not 
require a comprehensive understanding of the parameters that have been obtained 
via thorough experimentation. 

Complex networks being ubiquitous have gained extensive attention from the 
scientific community. Complex systems’ internal states can help us gain a general 
understanding of their biological, technical, and social surroundings. The key com-
ponent of network biology is the behavior of a complex network. The characteristics 
of complex networks can be understood through network models. Three main mod-
els have been studied that have direct control of biological networks. 

2.3	� Network Topological Properties 

From living cells to the Internet, complex systems work in synchronization with its 
components through pairwise interactions. As mentioned earlier, these components 
can be described as a set of interconnected nodes. Here, each edge represents the 
interactions between two nodes. Altogether, these nodes and edges form a network 
or a graph. Such networks/graphs are studied and conceptualized through 
Graph Theory. 

Depending on the type of interactions, networks can be classified as directed or 
undirected. A directed network’s connections have a specific direction between its 
nodes, such as when information flow is regulated from a transcription factor to a 
gene. However, the interactions in undirected networks have no assigned direction. 
In protein interaction networks, for example, a link represents a mutually binding 
relationship (Fig. 2.2).
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Fig. 2.2  Types of graphs (a) Graph representing edges and nodes (b) Directed graph (c) Undirected 
graph (d) Weighted graph 

The structural properties of complex networks are understood by examining their 
topological parameters. The fundamental network measures that provide insights 
into the significant behaviors of the network are Degree distribution, Clustering 
coefficient, Neighborhood connectivity, Eigenvector centrality, Closeness central-
ity, and Betweenness centrality. These measures help us gain a deeper understand-
ing of the network’s important properties and how its nodes are connected. 

Degree distribution: In a network, the degree k refers to a measure of centrality 
that indicates the number of connections a node has with other nodes. In a network 
represented by a graph G = (N, E), where N and E represent the number of nodes 
and edges, respectively, the probability of the degree distribution (P(k)) of the net-
work can be defined as the proportion of nodes with a particular degree relative to 
the total size of the network:
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Here, nk depicts the count of nodes that have a degree of k, while N denotes the 
total number of nodes in the network. The probability distribution P(k) provides 
insight into the significance of hubs or modules within the network. It follows a 
power law pattern, where P(k) is approximately proportional to the inverse of k 
raised to the power γ. The value of γ determines the level of importance attributed 
to hubs or modules in the network, which can vary depending on whether the net-
work exhibits characteristics of scale-free or hierarchical structures. 

Neighborhood connectivity: A node’s connectivity is determined by the number 
of its neighbors. The neighborhood connectivity of a node “n” is calculated by find-
ing the average connectivity of all of its neighboring nodes. In the network, the 
neighborhood connectivity (CN(k)) can be expressed as follows: 
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In the network’s context, the conditional probability (P(q/k)) represents the prob-
ability that a link originating from a node with connectivity k will connect to a node 
with connectivity q. The presence of a positive power relationship in the neighbor-
hood connectivity (CN(k)) can serve as an indicator of assortativity within the net-
work’s topology. 

Clustering coefficient: The clustering coefficient is a topological parameter that 
represents the extent of interconnectivity and strength of connections between a 
node and its neighboring nodes in a network. It is determined by calculating the 
ratio of the number of edges that exist between the node’s nearest neighborhood 
edges (ei) to the total possible number of edges for a node of degree ki. In an undi-
rected network, the clustering coefficient (C(ki)) of the “ith” node can be calculated 
using the below formula: 
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Betweenness centrality: Betweenness centrality (CB) is a measure of a node’s 
importance in controlling the flow of information within the network. It reflects the 
extent to which a node can control other nodes by acting as a bridge between them. 
To compute the betweenness centrality of a node “v”, we consider the number of 
geodesic paths between every pair of nodes “i” and “j” that pass through “v”, repre-
sented by dij(v), and the total number of geodesic paths between “i” and “j”, repre-
sented by dij. The formula for calculating the betweenness centrality (CB(v)) of a 
node “v” is: 
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Closeness centrality: Closeness centrality (CC) quantifies the efficiency of infor-
mation dissemination from a node to other nodes that it can reach within the 
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network. It is defined as the reciprocal of the average geodesic distance between the 
node and all other connected nodes in the network. In other words, the closeness 
centrality of a node “i” is calculated as the inverse of the average shortest path dis-
tance between node “i” and its neighboring nodes. The formula to determine the 
closeness centrality (CC) of a node “i” is as follows: 
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where dij represents the geodesic path length from nodes i to j, and n is the total 
number of vertices in the graph reachable from node i. 

Here, dij denotes the geodesic path length from node i to j, while n represents the 
total number of vertices in the graph that are accessible from the node i. 

Eigenvector centrality: The eigenvector centrality (CE) of a node “i” in a net-
work is directly related to the collective centrality of its neighboring nodes. The 
formula for calculating the eigenvector centrality (CE) of node “i” is as follows: 
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Here, the term “nn(i)” refers to the nearest neighbors of node “i” within the net-
work. The eigenvalue (λ) and eigenvector (vi) of the node are determined by the 
equation Avi = λvi, where “A” represents the adjacency matrix of the network or 
graph. The principal eigenvector, associated with the highest eigenvalue (λmax), is 
considered to have a positive eigenvector centrality score. It can be used as an indi-
cator of spreading power a node in the network (Farooqui et al. 2018). 

2.4	� Detection of Network Module and Motifs 

Network motifs refer to small, interconnected sub-graphs that are frequently 
observed in networks. These motifs represent recurring patterns within the network 
structure. However, identifying network motifs requires significant computational 
effort as they need to be tested for similarity multiple times (Patra and Mohapatra 
2020). The various tools and algorithms used in the process of finding network 
motifs are briefly described below: 

NeMoFinder: Mesoscale network motifs are discovered using this algorithm. 
Network motif detection (NetMODE): It is a network motif detection software pack-

age to improve runtime efficiency. 
Grochow and Kellis: It is a motif-centric algorithm, where frequency is counted on 

the basis of a particular isomorphic class. 
Kavosh: It is a network-centric algorithm to improve runtime efficiency. 
Elhesha–Kahveci: It is a motif-centric algorithm for finding disjoint network motifs 

in a target network. 
MODA: It is a motif-centric algorithm based on a pattern growth methodology.
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CoMoFinder: An algorithm to accurately and efficiently identify composite net-
work motifs in genome-scale coregulatory networks. 

MODET:—It is an motif-centric algorithm based on a static ET. 
Accelerated motif (Acc-Motif) and QuateXelero: These are network motif discovery 

algorithms. 
MDET: It is a Fast and scalable network motif discovery algorithm for exploring 

higher-order network organizations. 

2.5	� Rich Club and Community Finding Algorithm 

2.5.1	� Rich-Club Finding Algorithm 

In a network, the nodes that have a large endowment to the overall topological orga-
nization are called hubs. The most generally used centrality in identifying hubs is 
degree centrality, and the other centralities (like closeness, eigenvector, and 
betweenness) also give useful detail on each node. Other measures like vulnerabil-
ity, are used to identify the vitality of a node in a network. Since there is no single 
direct way to identify hubs, each measure is very much correlated to one another. 
Therefore, it is always good to use them together to rank the important nodes and 
identify the candidate hubs (Rubinov and Sporns 2010). 

Due to their central role, hubs perform many important roles in the network. 
These hubs are accounted for effective communication, as well as the inclusion of 
information, among different nodes or modules in a network. Many real-world com-
plex networks, such as social and World Wide Web, are observed to have dispersed 
topologies consisting of an organization of functional modules. In such networks, 
the importance and roles of hubs are very illuminative, and these hubs have a ten-
dency of interconnecting among themselves further forming a highly powerful 
group of specialized hubs, known as a rich club. The formation of rich clubs 
increases the robustness, efficient communication, propagation of the signal, and 
integrability of a complex network (van den Heuvel and Sporns 2011). 

In a modular network, the hubs can be further classified using the participation 
coefficient measure (Pi) defined as (Guimerà et al. 2007): 
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(2.7) 

Here N stands for the total number of modules, ki denotes the hub node’s degree, 
and kij denotes the number of links the hub node possesses with other nodes within 
a specific module (j). 

After identifying the degree range k for hub nodes, the existence of rich clubs is 
studied by measuring the rich-club coefficient (k) over the degree range (Zhou and 
Mondragon 2004).
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2.5.1.1	� System-Level Organization in a Hierarchical Network 
System-level organization of fundamental functional components of a hierarchical 
network at different levels is maintained to perform important specific tasks at those 
various levels in the self-organized fashion of the components (System-Level 
Organization in a Hierarchical Network n.d.) and the emergence of important regu-
lators at a local and global level referred to as hubs (Albert and Barabási 2002) are 
some of the fundamental features of most of the natural and artificial networks. This 
hierarchical organization of the network extends from how cells function, brain 
organization, and how proteins cross-talk at the molecular level (Stelzl et al. 2005), 
the evolution of species during the prebiotic era (Jain and Krishna 2001) to inter and 
intracellular talks in tissue network. Traditionally, biology has been based on the 
central idea that life processes are hierarchically organized and indicates that it is 
this structure that controls the system’s dynamics. Surprisingly, we lack an objective 
manner to assess how real this hierarchical organization is, even if we are given dif-
ferent levels and their interactions in the hierarchy (Pennisi 2005). Among the topo-
logical characteristics of a network one is functional organization of it via various 
fundamental functional units known as network motifs (Milo et al. 2002) and their 
roles in building up the network organization/reorganization that led to the network 
complex in nature. Motifs in a network may be of many types, and every network 
motif performs a well-defined function within the network (Alon 2019) and most 
motifs in the network overlap to process information among them. Clustering of 
motifs (similar types or different) by overlapping structural and functional modules 
of various topologies, clustering modules form super-modules that cross-talk among 
them to organize the whole network. Cancer networks are observed to have self-
similar organizational characteristics like rich-club formation, modular structure, 
hubs, etc. This small-world structure generates nonlinear dynamical behavior and 
the rich-club formation supports the flexible integration of the individual modules. 
Complex network theory is a useful tool to study the organizational structure of 
complex systems like cancer. The exploration of self-organizing properties can be 
done by observing fractal growth mechanisms (Song et al. 2006). 

2.5.2	� Community Finding Algorithm 

Clustering: detection of community: Networks that are created from the real world 
have distinctive properties (topological) which are dissimilar from random net-
works given by Pál Erdős and Alfréd Rényi in 2002. They generally show depen-
dence on degree for clustering coefficients with biased diversity in degree, which is 
absent in random networks. These networks (real-world) show edges heteroge-
neously on a large scale in distribution, with nodes forming dense sub-regions of 
closely connected groups resulting in a modular structure in the network calling it a 
community. As seen clearly from fractal studies and scaling behaviors, many of the 
real-world complex networks have shown to be organized as hierarchical with self-
similar sub-units (sub-communities) present in larger communities (Ravasz and 
Barabási 2003).
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Finding communities is, however, not a simple problem. Primary goal of this is 
to extract useful information to efficiently perceive the functional organization in 
the system that it represents, however, it may indirectly help in identifying the 
abnormalities in the system and also a possible target. A community can be per-
ceived as the existence of densely connected nodes into a consistent group with rela-
tively fewer connections with the outside group. Therefore, it is required to apply 
efficient algorithmic methods, which is a great challenge considering the huge 
amount of computational complexity (Fortunato 2010). This computational com-
plexity estimates the maximal number of computational steps required to perform 
an assigned task that accounts for the worst-case scenario(s) and is affected by the 
way a network is stored in the working memory of the computer. In network-based 
algorithms, networks are usually stored in either adjacency list format or adjacency 
matrix (adjacency list occupies less space). The long history of dividing a network 
into modules starts from the work of Stuart A. Rice in the 1930s who grouped peo-
ple on voting patterns similarities, by studying their working relationships using 
personal interviews with Weiss and Jacobson. In 1962, H.  Simon discussed the 
importance of maintaining hierarchy, self-organization, evolution in complex sys-
tems, and many more. The first algorithm called Kernighan–Lin algorithm was 
developed in the 1970s for dividing resources to have effective parallel computing. 
However, being specific, it was a graph partitioning algorithm. While the idea 
behind finding communities is to identify the natural fault lines between the com-
munities without having previous knowledge. Therefore, it is natural to come up 
with so many ways for finding a community based on their definition of a commu-
nity. The techniques for finding community can be classified into four major types: 
(1) Agglomerative that relies on some similarity measures: such as Jaccard similar-
ity, cosine similarity, correlation coefficient, Katz similarity, or Euclidean distance; 
(2) Identification of intermodular edges: methods based on fluid-flow, betweenness 
centrality measures, current-flow analogies, etc.; (3) Quality function optimization 
of partitions, like likelihood-based measures, modularity, and Hamiltonian in Potts 
model; and (4) statistical inference methods such as block modeling (Bickel and 
Chen 2009). 

The most commonly used quality function is the modularity that compares an 
observed edge density within a partition. Modularity Q can be measured by using: 
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Here m stands for a total number of edges in the community, k represents degrees, 
Aij denotes adjacency matrix of size i × j, and the δ function yields 1 if nodes i and 
j are in the same community. Some well-known community finding algorithms are 
discussed below. 

Hierarchical clustering method: With the rise of social network analysis, this 
clustering method focuses on the hierarchical decomposition of a network aggregat-
ing nodes based on predefined topological similarity measures. There are varieties 
of clustering (hierarchical) algorithms that emerge from the pliability in the choice 
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of the “similarity measure” as well as having different rules for assigning “similar-
ity score” to a collected mass of nodes. Therefore, a hierarchical clustering method 
begins with a commonly used measure, i.e., cosine similarity σji: 

	 σ ij ij i jn k  k= / 	
(2.9) 

where kj and ki are the respective degree of nodes j and i. The algorithm then gener-
ates an n × n similarity matrix, from this similarity matrix the nodes bearing the 
highest similarity values are agglomerated to form group(s) of size = 2. The next 
step of agglomeration involves a choice from three methods: (1) single-linkage, (2) 
complete-linkage, and (3) average-linkage clustering. Let us suppose in the general 
form we have two groups of size vi and vj so there will be vivj possible pairs such that 
one node falls into group vi and another node into group vj. From these pairs, high-
est similarity pair is considered in the case of single-linkage clustering, while the 
least similar pair is considered for complete-linkage clustering. Finally, the mean 
similarity from all the pairs is considered as an index in the case of average-linkage 
clustering. Finally, we obtain a complete hierarchical picture of the network, start-
ing from single nodes and successively grouping them into clusters in the hierarchi-
cal order (Newman 2012). This method is still widely used, as it tends to have 
clusters of high-degree nodes leaving behind low-degree nodes. 

Betweenness-based method: In 2002, M. Girvan and M. E. J. Newman suggested 
the most popular method for recognizing communities by performing topological 
measures of the network (Girvan and Newman 2002). They used the concept of 
betweenness centrality and formulated the concept of edge betweenness which is 
described as the number of geodesic paths that run through an edge. It further con-
siders the emergence of compact modules expected to have a higher edge between-
ness. The algorithm first calculates the edge betweenness and search for the highest 
score. Then remove the corresponding highest-scoring edge and on each edge 
removal, the edge betweenness scores are again calculated, this process iterates, 
then, in the end, the network starts to split into parts until the nodes are separated. 
Finally, the network is decomposed hierarchically and can be represented by a den-
drogram which is left at the bottom representing the individual nodes. 

One disadvantage of this algorithm is its high computational complexity which 
means it is a slow algorithm. The method was further extended by using modularity 
maximization to identify the best partition. Another vital variation of this model was 
proposed by Radicchi et al. in which the intermodular edges are identified in dense 
modules that can have the formation of short loops as compared to the edges 
between modules. Other related models that use the “fluid-flow” can successfully 
identify intermodular edges and also improve the speed of the algorithm (Wu and 
Huberman 2004). 

Optimization method: Optimization method is based on heuristics algorithms 
involving the calculation of an approximate solution by assigning a quality func-
tion. Modularity, Hamiltonian in Potts model, E/I ratio, likelihood base measures, 
etc., are some classes of the quality function used in optimizing problems. From 
these, modularity is mostly used because of its innate ability to interpret communi-
ties based on a null model. There is a variety of algorithms based on approximation 
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techniques from various disciplines such as physics, mathematics, biology, and 
computational science. Some common methods are simulated annealing (Guimerà 
et al. 2004), greedy algorithm, spectral optimization techniques, etc. 

For instance, simulated annealing is a global optimizing strategy based on the 
concept of slow cooling of solids, in physics. It uses a probabilistic strategy to pro-
vide a good approximation for a global optimum solution (Medus et al. 2005). It 
starts by arbitrarily assigning some communities to the network. Then, randomly 
moves node i into another community with a condition for the new community must 
have at least one edge already connected to node i. If the modularity Q increases the 
move is accepted, otherwise a probability eβ_Q is assigned to the move. The algo-
rithm stops when no further improvement on modularity is possible, and finally, the 
state reached is the best-approximated state. The algorithm has been reported to 
give good results (Danon et al. 2005); however, it is slow. While greedy algorithm 
on the other hand starts considering each node as a partition. Then in every followed 
step, a single edge is added until all edges are added. Then, the optimized configura-
tion is chosen by selecting the maximum modularity state. In addition to it, Schuetz 
and Caflisch (Schuetz and Caflisch 2008) suggested instead of allowing one com-
munity pair, more pairs should be allowed to avoid large accumulation into large 
communities. Other important community detection techniques include Modularity 
optimization and methods like Infomap algorithm a non-modularity-based, statisti-
cal inference and distance-based clustering algorithm, and other statistical inference 
methods. 

2.6	� Biomarker Discovery 

Biomarker was defined as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention” by a working group of National 
Institutes of Health Biomarkers in 1998. According to WHO, definition of biomark-
ers includes “almost any measurement reflecting an interaction between a biological 
system and a potential hazard, which may be chemical, physical, or biological? The 
measured response may be functional and physiological, biochemical at the cellular 
level, or a molecular interaction.” Biomarkers are a measurement tool for assessing 
the health status of an individual measured from outside of the patient, i.e., they 
provide reliable and accurate indications of the state of their health (Strimbu and 
Tavel 2010) Currently, it is used as a chemical that is administered into an organism 
to check organ function or other health-related characteristics whose detection sig-
nals a certain disease’s development, progression, and treatment effectiveness. For 
instance, an infection may be indicated by the presence of an antibody. More spe-
cifically, biomarkers can include certain cells, chemicals, genes, gene products, 
enzymes, or hormones. They can also include anything from blood pressure pulse 
and to more comprehensive laboratory testing of blood, urine, tissues, and other 
body fluids. Biomarkers can identify both complex organ processes and distinctive 
alterations in biological systems.
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Biomarkers are used in the pharmaceutical industry to determine a drug’s effi-
cacy and safety, which can reduce development costs and lead to additional thera-
peutic targets. By using biomarkers, scientists can increase their precision in 
addition to providing more accurate diagnoses and recommending more efficient 
therapies. 

The need for novel therapeutic approaches, such as regenerative medicine, the 
availability of potent new “omics” technologies, the rise of novel and unproven 
targets in the pharmaceutical industry, and the chance to use improved and well-
validated biomarker assays have all played a role in the dramatic rise in the discov-
ery of biomarkers over the last 10 years. In order to encourage the early removal of 
unpromising compounds and accelerate the release of breakthrough medicines and 
technology, the tool Support Industry has prioritized the safety and mode of action, 
i.e., potency-related indicators over disease-related biomarkers. Surrogate markers 
are required to replace inaccurate clinical end objectives, particularly in fields of 
newly evolving technologies such as regenerative medicine. Precisely, biomarkers 
are required to determine which treatments are most suited to each individual’s 
needs (Krzyszczyk et al. 2018). The use of new and complicated technologies is 
improving biomarker discovery and development, raising the possibility that addi-
tional clinical uses of biomarkers will be applied to improve illness diagnosis, prog-
nosis, and monitoring. Biomarker development is a multi-step process that includes 
basic research, validation, and clinical application. 

2.7	� Identification of Key Regulators 

All hubs within a network play crucial roles in regulating its functions, but the most 
powerful and impactful genes are those that govern the network’s operations at both 
the overall and motif-specific levels. These genes, referred to as the “Key Regulators,” 
were identified through gene tracing techniques. By employing Newman and 
Girvan’s community detection or clustering method, gene tracing was performed 
within numerous communities or sub-communities, extending up to the motif level 
(Tazyeen et al. 2022). By employing tracing techniques, it is possible to identify 
most influential and significant genes in the network that control the network. 

Other Methods like Rich-club finding algorithm (Sect. 2.5.1), Community finding 
algorithm (Sect. 2.5.2), and Biomarker Discovery (Sect. 2.6) which we have dis-
cussed earlier in this chapter are also used for identification of Key regulators. 

2.8	� Statistical Properties and Models of Biological Network 

2.8.1	� Random Network Model 

The Random Network Model was first developed by Pál Erdős and Alfréd Rényi. 
Since the large random networks follow the Poisson degree distribution, it is often 
called the Poisson random network model (Wu et al. 2017). Generally, a network 
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consists of only nodes and links. However, to reproduce the complexity of a real 
system, the links of the network must be placed appropriately. In the case of Random 
Networks, the links are randomly placed between the nodes (Fig. 2.3a). Two differ-
ent models define the Random Network Model. The first is G(N, M) model in which 
a random network G is connected randomly with N vertices and M edges. Another 
model is G(N, p) in which instead of specifying M edges, the nodes are specified 
with probability p in the random network. Thus, the size of the preferred random 
network is produced both by specifying the number of edges, or the probability of 
observing the links between the edges. The random networks can be analyzed by 
investigative multiple graphs, where the number of nodes/vertices remains identi-
cal, but their links are randomly changed (Fig. 2.3a). The Random Network Model 
has led to several significant findings for network structure. The Random Network 
follows Poisson degree distribution and is completely connected for fairly small 
values of average degree. This signifies that for a random network each node does 
not need to be connected to too many other nodes. Another significant feature of a 
random network is that the connected random network is slightly compact even for 
large networks. 

 

Fig. 2.3  (a) Random network. (b) Scale-free network. (c) Hierarchical network 
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2.8.2	� Scale-Free Network Model 

Despite the success of the random network model, there remains uncertainty 
whether real networks such as biological networks or social networks are truly ran-
dom. This led to the discovery of the scale-free property which describes the struc-
ture and dynamics of complex systems (Barabási 2009). Since then, researchers 
have revealed scale-free structures in a wide range of systems. In the case of the 
Barabási–Albert model of a scale-free network, the network is governed by high-
degree nodes which means nodes that are highly connected (Fig. 2.3b). These highly 
connected nodes are called hubs (Fornito et al. 2016). For the reason that the real-
world networks are scale-free, some degree of nodes with degree k follows a power 
law k−α, where α > 1. Scale-free networks are robust against accidental failures but 
susceptible to coordinated attacks. The links in scale-free networks are established 
based on two different mechanisms, i.e., growth and preferential attachment. A new 
node prefers to get attached to a node that already has many connections. This will 
ultimately result in a network that is dominated by a few highly connected nodes 
called hubs. 

2.8.3	� Hierarchical Network Model 

Several real-life networks like protein–protein interaction networks, metabolic net-
works, or some social networks exhibit scale-free properties along with high clus-
tering. This led to the evolution of hierarchical network models which incorporate 
the scale-free topology and high clustering into one single model (Ravasz and 
Barabási 2003). For generating the hierarchical network models, it is expected that 
clusters associate in an iterative style for the co-occurrence of local clustering, mod-
ularity, and scale-free topology in various real systems (Fig. 2.3c). We can also say 
that the hierarchical network model shares its foremost property of having a greater 
number of hubs in the network with the scale-free model family. However, unlike 
other alike models (Barabási–Albert, Watts–Strogatz), in hierarchical models, the 
nodes with a greater number of connections are likely to have a lesser clustering 
coefficient. In the case of the Barabási-Albert model, with the increase in the num-
ber of nodes the average clustering coefficient decreases. On the contrary, in a hier-
archical network, there is no exact pattern and relationship between the network size 
and its average clustering coefficient. 

2.9	� Biological Network Databases 

The analysis and modelling of biological networks, as well as their investigation, 
are crucial tasks in modern life sciences. The majority of biological networks are 
still far from full, and because of the complexity of the relationships and the unique 
characteristics of the data, they are frequently challenging to understand (Zhang and 
Itan 2019). Therefore, a major problem for bioinformatics is the creation of 
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sufficient storage and querying technologies. Initially, flat files and relational data-
bases were used to construct storage systems. Despite their simplicity, both types 
have limitations in terms of access times and querying capability. As a result, a lot 
of databases have come onto the scene recently (Guzzi and Roy 2020). 

Here, we will talk about categories of biological network databases as well as 
some helpful online resources that have biological network information. 

2.9.1	� Biological General Repository for Interaction Datasets 

It is a free database that consists manually curated proteins from several species, 
like yeast, mouse, fly, worm, and human. (Oughtred et  al. 2021a). In Biological 
General Repository for Interaction Dataset (BioGRID), curated interactions can be 
used to create complicated networks capable of speeding up the discovery of new 
biomedical treatments, especially for conditions affecting human health and dis-
ease. Its data is derived solely from primary experimental data found in the bio-
medical literature, and it includes both narrowly focused low-throughput trials and 
large high-throughput datasets. It also tracks how proteins change post-translationally 
and how proteins or genes interact with bioactive small molecules, including many 
well-known medications. All annotations are incorporated using an integrated net-
work visualization tool that allows users to generate network graphs of protein, 
chemical, and genetic linkages (Oughtred et al. 2021b). 

2.9.2	� The Database of Interacting Proteins 

This database contains a list of protein interactions that have been verified through 
experimentation. It integrates data from several sources to create a single, reliable 
list of protein–protein interactions. The information on protein–protein interaction 
networks was retrieved from the most trustworthy, core subset of the Database of 
Interacting Proteins (DIP) data and used in computational ways to both manually 
and automatically curate the data housed in the DIP database (DIP:Home n.d.). DIP 
contains PPI from various organisms that have been experimentally confirmed. It is 
implemented as a relational database. Each DIP entry comprises generic protein 
information (e.g., gene name and cellular location), as well as cross-references to 
other databases and information about experimental methods and specific experi-
ments. Each interaction is issued a unique code. DIP interactions must be detailed 
in peer-reviewed papers, and the entry process is manual. A web interface can be 
used to create queries in both interactive and batch modes. A user can download a 
subset of DIP in many formats in batch mode.
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2.9.3	� Biomolecular Interaction Network Database 

Biomolecular Interaction Network Database (BIND) comprises protein interactions 
that have been annotated with molecular function information gathered from the 
literature. It is based on three types of data records: pathways, molecular complexes, 
and interactions. The database allows various types of searches, including those that 
use identifiers from other biological databases or those that focus on certain fields 
like literature data, molecule structure, and gene data, including functions. With the 
use of a BIND interaction viewer, the extracted data may be seen. Graphs are used 
to describe networks, and the nodes in the graphs, which represent molecules, are 
labeled with various pieces of ontological data (Bader et al. 2001). A web-based 
system is readily available for searching, examining, and submitting records. 
Individual contributions, interaction data from the PDB, and various large-scale 
interaction and complex mapping studies using mass spectrometry, yeast two 
hybrid, genetic interactions, and phage display have all been added to BIND. The 
graphical analysis tool, which helps connect functional domains to protein interac-
tions, allows users to visualize the domain composition of proteins in interaction 
and complex data. In addition, a tool for grouping interaction networks has been 
developed to aid in focusing on crucial areas. (Bader et al. 2003). 

2.9.4	� IntAct 

IntAct is a free database and toolbox for storing, presenting, and analyzing protein 
interactions. It contains not only protein interactions data but also DNA and molec-
ular interactions data (Orchard et  al. 2014). All interactions are either submitted 
directly by the user or derived from literature curation. The web interface of IntAct 
provides users with textual and visual depictions of protein interactions, allowing 
exploration of interaction networks in relation to the Gene Ontology (GO) annota-
tions of the involved proteins. Additionally, a web service is available to facilitate 
computational retrieval of interaction networks in XML format. Currently, IntAct 
contains approximately 2200 binary and complex interactions, which have been 
meticulously curated in collaboration with the Swiss-Prot team and extensively 
annotated using controlled vocabularies to maintain data consistency (Hermjakob 
et al. 2004). 

It establishes a system for semantically consistent annotation by utilizing regu-
lated vocabularies and ontologies. Researchers can submit PSI-MI interactions to 
the database curators via email. 

2.9.5	� Online Predicted Human Interaction Database 

It contains predicted interactions between human proteins. It mixes PPI obtained 
from databases and books with hypotheses generated by other organisms. Online 
Predicted Human Interaction Database (OPHID) graph visualization tool allows 
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users to view the results of queries made using one or more protein IDs. For aca-
demic use, the database is available without charge (Brown and Jurisica 2005). 

2.9.6	� Search Tool for the Retrieval of Interacting Genes/ 
Proteins (STRING) 

It is a repository that intends to collect biochemical relationships between proteins, 
proteins and DNA, and DNA and DNA. On the website, you can access the database 
by entering a protein identification or the main sequence of a protein. The STRING 
database’s goal is to gather, score, and integrate all publicly available sources of 
protein–protein interaction data, as well as to supplement them with computational 
predictions. Its ultimate goal is to create a comprehensive and objective global net-
work that includes both direct (physical) and indirect (functional) interactions. The 
most crucial feature is the ability to upload complete genome-wide datasets as input, 
which allows users to visualize subsets as interaction networks and do gene set 
enrichment analysis on the entire input (Szklarczyk et al. 2019). 

2.9.7	� Molecular Interaction 

It is a curated database of PPIs for multiple model organisms. Molecular Interaction’s 
(MINT’s) objective is to systematically collect and organize information regarding 
molecular interactions by retrieving experimental details from peer-reviewed jour-
nal publications. Over time, the number of curated physical interactions in the data-
base has increased to approximately 95,000. This comprehensive dataset is publicly 
accessible online through web-based interfaces and an FTP server, enabling users to 
explore the data interactively or in batch mode. MINT also contains HomoMINT, a 
database that focuses on interactions between human proteins discovered through 
analysis of orthologous proteins in model species (Chatr-aryamontri et al. 2007). 

2.9.8	� Regulatory Network Repository 

This resource focuses on five main types of post-transcriptional regulatory connec-
tions in humans and mice. It contains in-depth details on numerous combinations of 
synergistic organizational interactions between TFs, miRNAs, and genes. The flex-
ible architecture of Regulatory Network Repository’s (RegNetwork’s) database 
allows for future expansions to encompass gene regulatory networks of other organ-
isms. It encompasses a comprehensive compilation of experimentally observed or 
predicted regulatory interactions at the transcriptional and post-transcriptional lev-
els. Utilizing RegNetwork, researchers can delve into context-specific investiga-
tions of transcriptional and post-transcriptional regulatory interactions by leveraging 
domain-specific experimental data (Liu et al. 2015).
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2.9.9	� Transcriptional Regulatory Relationships Unraveled by 
Sentence-Based Text Mining 

It is a repository of human and mouse transcriptional regulatory networks. It con-
tains 8444 TF-target regulatory interactions from 800 human TFs and 6552 interac-
tions from 828 mouse TFs. It is now the most comprehensive publicly accessible 
database of human transcription factor (TF)–target interactions. It enriches TF–tar-
get pairs significantly, especially in highly ranked interactions inferred from high-
throughput data. This shows that Transcriptional Regulatory Relationships 
Unraveled by Sentence-Based Text Mining (TRRUST) can be used to reconstruct 
human transcriptional regulatory networks (TRNs) computationally (Han 
et al. 2018). 

2.9.10	� miRTarBase 

This database collects verified interactions between microRNA and its targets. Six 
hundred fifty seven miRNAs and 2297 target genes from 17 species, including 
human, mouse, chicken, sheep, and others, are stored in this database. It compiled a 
database of around 3500 MTIs by manually examining relevant literature and pains-
takingly data mining the text to filter research articles linked to functional investiga-
tions of miRNAs. The MTIs collected in the miRTarBase can also provide a 
considerable number of positive samples for the development of computational 
algorithms capable of finding miRNA–target interactions. This database also makes 
use of gene ontology and KEGG pathway enrichment annotation to investigate the 
functionality of target genes involved in human MTIs (Hsu et al. 2011). 

2.9.11	� BioCyc Pathway/Genome Databases (PGDBs) 

Thousands of sequenced organisms’ metabolic pathways and genome information 
are available in this database. These are created by the same software that antici-
pates the metabolic pathways of completely sequenced organisms and identifies the 
operons and genes that provide the necessary enzymes. Additionally, information 
from other bioinformatics databases is incorporated, including Gene Ontology 
details and the protein features from UniProt. On its website, a variety of software 
applications are available for database searching and visualization, omics data pro-
cessing, comparative genomics, and comparative pathway research (Karp 
et al. 2017). 

2.9.12	� MetaCyc 

It is a reference database that includes metabolic processes and enzymes from dif-
ferent domains of life. It lists the primary and secondary metabolic pathways as well 
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as the metabolites, operations, enzymes, and genes associated with them. It is the 
most extensive curated compilation of metabolic pathways, with 2749 pathways 
drawn from over 60,000 publications. Its content is carefully selected and evidence-
based, resulting in an encyclopedic reference tool for metabolism. It is also used to 
produce several hundred organism-specific Pathway/Genome Databases (PGDBs) 
that can be assessed from BioCyc.org. MetaCyc aims to create a database of the 
entire world of metabolism by conserving a representative sample of each experi-
mentally elucidated clarified pathway (Caspi et al. 2020). 

2.9.13	� ENZYME 

The ENZYME database is a library of information about the nomenclature of 
enzymes. It has been recently developed into a crucial tool for the creation of meta-
bolic datasets. In the most recent version, there are details on 3705 enzymes. It is 
mostly based on recommendations made by the Nomenclature Committee of the 
International Union of Biochemistry and Molecular Biology (IUBMB), and it 
describes every type of recorded enzyme for which an EC (Enzyme Commission) 
number has been assigned (Bairoch 2000). 

2.9.14	� Reactome 

It is a freely available and reviewed database having knowledge about pathways in 
living organisms. It shows how different molecules, like DNA, proteins, and small 
molecules, work together in biological processes such as traditional intermediate 
metabolism, signaling, innate and adaptive immunity, and apoptosis. Its objective is 
to offer bioinformatics tools that will facilitate fundamental research, genomic anal-
ysis, modelling, systems biology, and education by visualizing, interpreting, and 
analyzing pathway knowledge. With a focus on producing precise and reliable 
answers for genome-wide datasets with interactive reaction times, it offers a variety 
of pathway analysis tools. Pathway analysis techniques are commonly used to ana-
lyze Omics data generated by high-throughput technology (Fabregat et al. 2017). 

2.9.15	� KaPPA-View4 

It is a database that stores metabolic pathways and enables the visual representation 
of gene-to-gene and metabolite-to-metabolite relationships as curves on a metabolic 
pathway map or a combination of up to four maps. This illustration is helpful in 
uncovering new roles for transcription factors that control the genes in a metabolic 
pathway. Its website http://kpv.kazusa.or.jp/kpv4-kegg/ provides access to KEGG 
pathway maps and maps produced from their gene classifications (Sakurai 
et al. 2011).
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2.9.16	� Netpath Pathway 

NetPath is a database of carefully selected human signaling pathways. NetPath pro-
vides extensive maps of several immunological signaling pathways, including over 
2800 examples of transcriptionally regulated genes and roughly 1600 reactions 
retrieved from the literature all of which are connected to more than 5500 research 
publications. It is the result of collaboration between Johns Hopkins University’s 
Pandey Lab and the Institute of Bioinformatics. NetPath’s all pathways can be 
downloaded free of cost in SBML version 2.1 and BioPAX level 3.0, PSI-MI ver-
sion 2.5 (Kandasamy et al. 2010). 

2.9.17	� TRANSFAC 

The database TRANSFAC offers details on the genomic binding locations and 
DNA-binding preferences of eukaryotic transcription factors. It has a library of 
positional weight matrices that includes a unique collection of DNA-binding mod-
els that can be used to conduct a complete examination of genomic sequences for 
probable transcription factor binding sites (TFBSs). It can be used as a transcrip-
tional regulatory encyclopedia or as a tool to identify possible TFBSs (Matys 
et al. 2003). 

2.9.18	� Human Protein Reference Database 

Human Protein Reference Database (HPRD) is a unified platform for visually rep-
resenting and integrating information about domain architecture, post-translational 
modifications, interaction networks, and disease associations for each protein in the 
human proteome. 

HPRD serves as a consolidated platform that visually presents and integrates 
various data about post-translational modifications, domain architecture, interaction 
networks, and disease associations for every protein present in the human proteome. 
The data within this database is meticulously curated from scientific literature by 
proficient biologists who carefully read, comprehend, and analyze the published 
information. HPRD was constructed using an object-oriented database in Zope, an 
open-source web application server that provides flexible querying capabilities and 
enables dynamic display of data (Peri et al. 2004). 

2.9.19	� DisGeNET 

DisGeNET is among the most complete databases of its sort currently available, 
containing over 38, 0000 linkages between more than 16,000 genes and 13,000 vari-
ants and disorders of genes implicated in human disorders. It incorporates data from 
GWAS catalogs, animal models, scholarly literature, and expert-curated sources. Its 

Najma and A. Farooqui



41

data is routinely tagged with community-driven ontologies and controlled vocabu-
laries. It is a platform that can be utilized in a number of research tasks, including 
investigating the molecular causes of particular human diseases and their comor-
bidities, analyzing disease gene characteristics, developing hypotheses about drug 
therapeutic effects and side effects, confirming computationally predicted disease 
genes, and evaluating the effectiveness of text mining techniques. 

The data can be accessed using Cytoscape, a web interface application. 

2.9.20	� Drug Bank 

Drug Bank is an extensively annotated database that integrates comprehensive drug 
data with detailed information about drug targets and drug actions. It has been 
extensively employed in various applications such as identifying in silico drug tar-
gets, conducting drug docking or screening experiments, predicting drug metabo-
lism and interactions, facilitating drug design, as well as supporting pharmaceutical 
education in a comprehensive manner (Wishart et al. 2008). 

2.9.21	� The Molecular Signatures Database (MSigDB) 

It is one of the gene set databases for gene set enrichment analysis. It is among the 
most popular and extensive repositories of gene sets primarily used for gene set 
enrichment analysis. Initially focused on metabolic disorders and cancer, it has sig-
nificantly grown over time and now encompasses over 10,000 sets of genes. 

This database provides a range of gene expression signatures, including empiri-
cally obtained signatures and signatures describing pathways and ontologies from 
other curated resources. 

2.9.22	� Kyoto Encyclopedia of Genes and Genomes 

Kyoto Encyclopedia of Genes and Genomes (KEGG) serves as a valuable resource 
for conducting systematic analyses of gene activities through the exploration of 
gene and molecular networks. The primary component of KEGG is the PATHWAY 
database, which provides graphical representations of biochemical pathways, 
including a wide range of metabolic pathways and selected regulatory processes. 
Another essential aspect of KEGG is the ortholog group tables, which present infor-
mation on orthologous and paralogous gene groups across multiple organisms. 
These tables contribute to the expression of pathway information within the KEGG 
database (Kanehisa and Goto 2000). 

KEGG handles the GENES database, which includes gene catalogs for organ-
isms with complete genomes and some with incomplete genomes. Apart from col-
lecting data, KEGG also provides computational tools. These tools help in 
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reconstructing biochemical pathways from entire genome sequences and predicting 
gene regulatory networks. 

2.9.23	� NCBI Gene Expression Omnibus 

Established in 2000, the Gene Expression Omnibus (GEO) database is a freely 
accessible repository that serves as a global resource for gene expression studies. Its 
primary purpose is to preserve and distribute high-throughput gene expression data 
sets and other functional genomics data. Over time, GEO has expanded to accept 
high-throughput data related to various applications, such as genome–protein inter-
actions, genome methylation, chromatin structure, and keeping pace with advanc-
ing technologies. The database contains a vast collection of tens of thousands of 
research data sets and offers web-based tools and techniques for users to discover 
data relevant to their specific interests. Furthermore, users can leverage these tools 
to visualize and analyze the data within the database (Clough and Barrett 2016). 

2.9.24	� EBI Array Express 

Array Express serves as a publicly accessible repository dedicated to microarray-
based gene expression data. It stores meticulously annotated raw and normalized 
data, which can be submitted online in a standardized format or directly from local 
databases or LIMS (Laboratory Information Management Systems). Reviewers and 
writers are granted password-protected access to prepublication data. Access to the 
stored data can be obtained through accession numbers or by employing various 
search criteria like species, author, and array platform. Additionally, a subset of 
curated data deposited in the Array Express data warehouse offers the capability to 
query experiments based on gene and sample attributes. For further analysis and 
visualization of the data, Array Express provides an integrated data analysis tool 
called Expression Profiler (Rocca-Serra et al. 2003). 

2.10	� Role of Network Modules in Disease Dynamics 

In molecular networks, the concept of modularity is widely accepted. Module-based 
approaches have a number of advantages, including improved disease classification 
and robustness in the discovery of dysregulated pathways. Module-centric tech-
niques are particularly promising in their investigation because it is thought that 
complex disorders are caused by a variety of genetic changes altering a common 
element of the biological system. How can disease-related modules and sub-
networks be found? Sub-networks impacted by a specific disease can be differenti-
ated from the broader network by combining the interaction data with extra 
information available on the disease state.
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To detect modified network modules and elucidate the correlation between phe-
notypic and genotypic data (Cho et al. 2012), scientists have employed a combina-
tion of molecular phenotypic data, such as gene expression patterns observed in 
diseased samples, and genotypic information such as single nucleotide polymor-
phisms (SNPs) and copy number alterations. 

By mapping the genes exhibiting alterations in diseases onto a protein–protein 
interaction (PPI) network and subsequently identifying network modules enriched 
with these altered genes, it becomes possible to uncover dysregulated pathways. 
This approach operates under the hypothesis that complex diseases arise from a col-
lection of mutations that, while varying considerably among patients, tend to dys-
regulate shared pathways. 

On the other hand, molecular-level alterations like changes in gene expression 
are directly associated to organismal-level phenotypes like diseases. Therefore, the 
modules that are enriched with differentially expressed genes are taken into account 
by a different group of methodologies and it is possible to think of molecular path-
ways as informational channels. 

For example, the activation of the EGFR (epidermal growth factor receptor) by 
its receptor triggers the activation of various downstream signaling proteins, initiat-
ing multiple signal transduction cascades such as the MAPK, Akt, and JNK path-
ways, ultimately leading to cell proliferation. Consequently, the third category of 
methods focuses on predicting the molecules and modules that govern the transfer 
of such specific information (Wee and Wang 2017). 

What advantages do phenotypic and genotypic variations in disease have in rela-
tion to their molecular interactions? Firstly, through a groundbreaking approach, 
Ideker et al. (Ideker et al. 2002) integrated yeast protein–protein and protein–DNA 
interactions with gene expression changes resulting from perturbations in the yeast 
galactose utilization pathway. They successfully identified active sub-networks, 
which encompassed interconnected genes with significant differential expression. 
Interestingly, these sub-networks included common transcription factors that exhib-
ited modest changes in gene expression but played a crucial role in connecting other 
dysregulated genes (Hughes and de Boer 2013). Secondly, employing a module-
based method enhances statistical power, enabling the identification of perturbed 
modules even when individual gene perturbations are statistically insignificant. This 
is particularly relevant in genetic disorders such as autism and schizophrenia, where 
rare germline alterations pose challenges in distinguishing them from background 
noise. Recent studies have shown that many of the altered genes are part of highly 
interconnected protein networks. Consequently, a network-based approach becomes 
more effective in identifying the causal genes in such scenarios. 

Thirdly, recognized network modules provide a deeper understanding of the 
underlying biological mechanisms of diseases, leading to more precise indicators 
for disease diagnosis and treatment. This enables the identification of specific tar-
gets and strategies for intervention. This holistic perspective offered by network 
modules contributes to improved accuracy and effectiveness in disease management.
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2.11	� Case Study Based on Inference and Analysis of Network 
Related to Disease Dynamics 

When used to analyze breast cancer metastasis, Chuang et al. found that dysregu-
lated network modules provide predictions that are more reliable and precise than 
single gene-based classifications (Chuang et al. 2007). This research established the 
efficacy of using network modules to classify diseases. Later on, various modifica-
tions and changes were proposed to their work. Like (Lee et  al. 2008), curated 
pathways and a subset of genes having characteristics that may be used to distin-
guish between different disease phenotypes were used by Lee et al. and Dao et al. 
(Wu et al. 2013) created new network-based methods for classifying cancer sub-
types by locating highly connected sub-networks using randomized algorithms and 
for ideal marker identification methods like bottom-up enumeration and set cover 
were also presented. 

Kim et al. found gene modules using a module cover technique to identify dis-
ease heterogeneity in Rembrandt brain cancer data and TCGA ovarian cancer sam-
ples (Kim et al. 2013). These selected modules were then integrated with the results 
of an independently proposed classification scheme and this led to the discovery of 
disease type characterization on the basis of module combinations. 

Disease homology can also be discussed using network modules. Overlaps of 
dysregulated network modules help to explain why some complicated diseases have 
similar phenotypic characteristics. A PathBlast model was used by Suthram et al. 
(Sharan et al. 2005) to locate dense sub-networks. By evaluating the expression pat-
terns of various diseases in the modules, analysis of disease homology was per-
formed. It was shown that some dysregulated modules are shared by various 
diseases, this reveals why some medications are effective for a variety of ailments. 

The PPI network approaches can also be used to identify key regulatory genes of 
the network that regulates the activities and signal flow of the complete network. In 
one of our studies, we analyzed the Turner Syndrome (TS) regulatory network con-
structed from manually curated genes that were involved in TS from published lit-
eratures. Protein–protein interactions, functions, TS networks, and orthologs were 
all combined to accomplish this. It was found that the TS network shows hierarchi-
cal features, signifying system-level organization involving the occurrence of mod-
ules/communities interrelated in a certain fashion. Two key regulators namely, 
KDM6A and BDNF were identified. These key regulators serve as the backbone of 
the network and are deeply rooted. Any network activities are regulated by these 
genes and could be possible target genes for resisting the syndrome. Because the 
network is hierarchical, removing KDM6A and BDNF does not cause the network 
to break down; rather, the network reorganizes itself to accommodate the alteration. 
We combined the network-based study with phylogenetic study to find a few essen-
tial and conserved interactions (interologs). KDM6A-WDR5, KDM6A-ASH2L, 
and WDR5-ASH2L are three significant interologs (evolutionarily conserved pro-
tein–protein interactions) that we identified, constituting a motif (Farooqui 
et al. 2018).
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In another study, we examined the Turner Syndrome network created from the 
microarray expression data of TS.  We again identified the key regulators of TS 
through microarray data of TS by combining functions, protein interactions, ortho-
logs, disease networks, and its correlation with two common comorbidities, 
Recurrent Miscarriage (RM) and Diabetes Mellitus Type 2 (T2DM). Some impor-
tant signature genes of the above comorbidities were identified. It was found that the 
TS network shows hierarchical features, signifying system-level organization 
involving occurrence of modules/communities interrelated in a certain fashion. 
POU2F1, LCP2, CCL22, ENAM, PTPN22, CXCL5, S1PR4, FAM20A, and EFNB3 
were identified as important regulators (Farooqui et al. 2021). These key regulators 
act as the backbone of the network and are deeply rooted (Ideker et al. 2002). Any 
network activities are regulated by these genes and could be possible target genes 
for resisting the syndrome. 

The study of complicated diseases can be benefited by the effective tools pro-
vided by network biology. The concept behind network-based techniques is that 
rather than looking at individual genes, dysregulated modules can provide a more 
comprehensive understanding of complicated disorders. 

2.12	� Conclusion 

Great efforts have been made over the last two decades to extract the dependence 
and interplay between structure and function in biological networks because they 
are highly relevant to biological processes. To summarize, biological networks pro-
vide a conceptual and intuitive framework for studying, modelling, characterizing, 
and comprehending complicated interactions between various components of a bio-
logical system. Network biology studies the “interactome,” which is a collection of 
direct and indirect molecular connections in biological systems. Many areas of bio-
medical science have benefited from network biology. This simple but powerful 
concept enables us to extract the essence of gene–protein interactions, predict drug 
interactions, study disease comorbidity, and discover important associations. Of 
course, identifying an association is only the first step toward identifying a mecha-
nism, but it is frequently a critical step. Because of significant advancements in data 
capture, computational tools, and network models, network biology has emerged as 
the first and most crucial step in bioinformatics, providing an approach for under-
standing the structure–function relationship in biological systems. Recent develop-
ments in this subject demonstrate that it can be used to infer biological organization, 
function, and evolution. 
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3 Network Analysis Based Software 
Packages, Tools, and Web Servers 
to Accelerate Bioinformatics Research 

Nikhat Imam, Sadik Bay, Mohd Faizan Siddiqui, 
and Okan Yildirim 

Abstract 

Biological networks are the best way to represent complex biological systems in 
terms of sets of interactions between biological entities (e.g., genes, proteins, 
taxa, and metabolites). Now, with the availability of large-scale multi-omics 
data, the biological system has expanded from basic to advanced levels (like PPI 
connectivity and functional changes in disease stages, disease-specific interac-
tome, genetic perturbations, and network dysfunction). In this chapter, we dis-
cuss the fundamental concept of network theory and various network types such 

N. Imam (*) 
Department of Mathematics, Institute of Computer Science and Information Technology, 
Magadh University, Bodh Gaya, India 

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia,  
New Delhi, India 

S. Bay 
Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol 
University, İstanbul, Türkiye 

M. F. Siddiqui 
International Medical Faculty, Osh State University, Osh, Kyrgyzstan 

O. Yildirim 
Department of Chemical Biology Otto-Hahn-Strasse, Max Planck Institute of Molecular 
Physiology, Dortmund, Germany 

Sadik Bay and Okan Yildrim are both currently affiliated with the Memorial Sloan Kettering 
Cancer Center in New York City, USA. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte 
Ltd. 2023 
R. Ishrat (ed.), Biological Networks in Human Health and Disease, 
https://doi.org/10.1007/978-981-99-4242-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4242-8_3&domain=pdf
https://doi.org/10.1007/978-981-99-4242-8_3


52

as Protein–protein interaction networks, metabolic networks, genetic interaction 
networks, gene/transcriptional regulatory networks, and cell signaling networks. 
In addition, we describe network topological properties that help to understand 
the structure of a network which facilitates understanding the hidden mecha-
nisms. Finally, we discuss a variety a number of online and stand-alone tools that 
exist for network construction, analysis, Network functional module 
Identification, and visualization. Overall, this chapter reaches a very broad spec-
trum of researchers varying from experts to beginners and they can look up a 
genetic universe virtually via biological networks. 

Keywords 

Network biology · Network visualization · Tools/software 

3.1	� Introduction 

A biological network serves as a representation of complex systems, encompassing 
binary interactions between different biological entities, such as genes, proteins, 
taxa, and metabolites. The advancement of multi-omics data has expanded our 
understanding of biological systems, including PPI connectivity and functional 
changes during disease progression, disease-specific interactomes, genetic pertur-
bations, and network dysfunction. 

Protein–protein interaction networks (PINs) depict the physical connections 
between proteins within a cellular context. In these networks, proteins are repre-
sented as nodes, and their interactions are depicted as undirected edges. PPIs play a 
critical role in various cellular processes and have been extensively investigated in 
biological research. Experimental techniques, including the yeast two-hybrid sys-
tem and mass spectrometry, have been utilized to discover and identify large sets of 
protein interactions. 

In recent decades, numerous international initiatives have led to the development 
of databases that compile experimentally determined protein–protein interactions. 
Examples of these databases include the Munich Information Center for Protein 
Sequence (MIPS) protein interaction database (Schoof et al. 2005), the Biomolecular 
Interaction Network Database (BIND) (Bader 2003), the Database of Interacting 
Proteins (DIP) (Xenarios 2000), the Molecular Interaction database (MINT) (Chatr-
aryamontri et al. 2007), and the protein Interaction database (IntAct) (Hermjakob 
2004). These databases are classified into primary and secondary databases based 
on their interaction prediction method but now one new term introduced is “Meta-
database” which is a combination of different primary and secondary databases to 
get new and maximum protein–protein interactions in the network (Fig. 3.2). The 
list of protein interaction databases is given in Table 3.1.   
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Table 3.1  Protein–protein interaction databases 

Primary database 

Databases URL 
Experimental/ 
Predicted References 

BioGrid https://thebiogrid.org/ Exp. Oughtred et al. 
(2019) 

HPRD http://www.hprd.org/ Exp. Goel et al. (2012) 
IntAct https://www.ebi.ac.uk/intact/home Exp. Hermjakob (2004) 
MINT https://mint.bio.uniroma2.it/ Exp. Chatr-aryamontri 

et al. (2007) 
HuRI http://www.interactome-atlas.org/ Exp. Luck et al. (2020) 
Secondary database 
STRING https://string-db.org/ Exp. & pred. Szklarczyk et al. 

(2019) 
UniHI http://www.unihi.org/ Exp. & pred. Kalathur et al. 

(2014) 
Mentha http://mentha.uniroma2.it/ Exp. Calderone et al. 

(2013) 
APID http://cicblade.dep.usal.es:8080/ 

APID/init.action 
Exp. Alonso-López et al. 

(2019) 
HIPPIE http://cbdm-01.zdv.uni-mainz. 

de/~mschaefer/hippie/index.php 
Exp. Alanis-Lobato et al. 

(2017) 
HitPredict http://www.hitpredict.org/ Exp. Patil et al. (2011) 
IID http://iid.ophid.utoronto.ca/ Exp. and pred. Kotlyar et al. (2016) 
HINT http://hint.yulab.org/ Exp. Das and Yu (2012) 
GPS-Prot http://gpsprot.org/ Exp. Fahey et al. (2011) 
•  primary protein interaction databases containing literature-curated PPIs for human proteins 
•  secondary protein interaction databases containing predicted and curated from primary 
databases 

3.2	� Types of Biological Networks 

There are various types of networks (Fig. 3.1). The details are given below:

•	 Protein–protein interaction (PPI) networks.  
•	 Protein–protein interaction networks (PINs) serve as mathematical models that 

depict the direct interactions between proteins. These interactions, known as 
PPIs, play a fundamental role in nearly every cellular process, making it impera-
tive to comprehend them in order to understand cell physiology under both nor-
mal and disease conditions. 

•	 Metabolic Networks.  
•	 Metabolic networks illustrate the relationships between enzymes and small bio-

molecules, referred to as metabolites, which are proteins that facilitate biochemi-
cal reactions. These networks illustrate the interactions that occur during the 
catalysis of these reactions. 
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Fig. 3.1  Types of biological interactions that networks can represent  

•	 Genetic Interaction Networks.  
•	 Genetic interaction networks provide insights into the functional relationships 

between pairs of genes within an organism, facilitating our understanding of the 
connection between genotype and phenotype. 

•	 Gene/transcriptional Regulatory Networks.  
•	 A genetic regulatory network (GRN), also known as a gene regulatory network, 

comprises a set of molecular regulators that interact with each other and other 
substances within a cell. Its purpose is to control the levels of gene expression for 
mRNA and proteins. 

•	 Cell Signaling Networks.  
•	 Cellular signaling networks emerge through the interaction of various cell sig-

naling pathways and are typically identified through a combination of experi-
mental and computational techniques.   

3.3	� Network Topology 

The properties of networks are valuable in extracting meaningful information. 
Network analysis aims to utilize the complexity of networks to uncover insights that 
would be challenging to obtain by examining individual components in isolation. 
Topological properties, such as the arrangement of nodes and edges within a net-
work, are instrumental in identifying significant sub-structures. These properties 
can be applied to the network as a whole or to individual nodes and edges. Various 
topological properties and concepts are commonly used in network analysis 
(Fig. 3.2).  

•	 The Degree of a Network 
•	 The degree of a node indicates the number of edges connected to that specific 

node. This parameter is highly significant as it influences various characteristics, 
such as node centrality. By examining the degree distribution across all nodes in 
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Fig. 3.2  Topological properties of a network (figure adopted from EMBL-EBI Training)   

a network, we can determine whether the network exhibits a scale-free pattern, 
which we will explore in more detail. In visual representations, such as Fig. 3.2a, 
the size and color of each node correspond to its degree. In directed networks, 
nodes possess two types of degrees: out-degree, which represents edges leaving 
the node, and in-degree, which represents edges entering the node. 

•	 Shortest Paths 
•	 Shortest paths, which represent the minimum distance between any two nodes, 

provide a model for information flow within networks. This concept holds par-
ticular relevance in numerous biological networks. In Fig. 3.2b, the shortest path 
between nodes A and B is highlighted and spans five steps. 

•	 Scale-Free Networks 
•	 In scale-free networks, most nodes have connections to only a limited number of 

neighboring nodes. However, a small subset of high-degree nodes, known as 
hubs and highlighted in orange, play a crucial role in ensuring the network’s 
overall connectivity. This configuration is depicted in Fig. 3.2c. 

•	 Transitivity 
•	 Transitivity refers to the existence of closely interconnected nodes within a net-

work, often referred to as clusters or communities. These groups of nodes exhibit 
stronger internal connections compared to the connections with the rest of the 
network, as depicted in Fig. 3.2d. Alternatively, these groups are also known as 
topological clusters. 

•	 Centralities
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•	 Centrality measures encompass different concepts and can be assessed for both 
nodes and edges to determine their significance in terms of network connectivity 
and information flow. The degree of a node directly affects various centrality 
measures, such as “degree centrality,” but its influence decreases in more 
advanced measures like “betweenness centrality.” Figure 3.2e highlights nodes 
with higher betweenness centrality, indicating greater centrality, using warm col-
ors. The size of each node in the figure corresponds to its degree. 

3.4	� Network Representation and Analysis Tools 

There are multiple tools that can be used to construct, integrate, and analyze PPI 
data to understand its biological meaning of the network. 

3.4.1	� Cytoscape 

It is widely regarded as a highly popular open-source software tool that facilitates 
the visual exploration of diverse biomedical networks, encompassing interactions 
involving proteins, genes, and various other types. Initially, it was designed for bio-
logical networks, but it also can be used for other purposes where show the relation-
ship between two entities (Fig.  3.3). Cytoscape is popular among the network 
biologist to its working with a large variety of apps and plugins for various network 
analysis tailored for specific purposes, such as community search (e.g., MCODE, 
clusterMaker2, and JActiveModules), or for conducting Gene Set Enrichment 
Analysis (BiNGO, ClueGO, EnrichmentMap), are available within the Cytoscape 
software ecosystem.  

3.4.2	� GeNeCK 

GeNeCK is a user-friendly web server with a graphical interface, accessible at 
http://lce.biohpc.swmed.edu/geneck. Users can easily upload their data and submit 
it through the provided interface. One recommended approach for most users is to 
utilize ENA (Edge Neighborhood Aggregation), as it typically performs well in 
various scenarios without the need for manually selecting tuning parameters. ENA 
also provides p-values for each connection, indicating the statistical significance of 
the associations. Once the job is complete, the constructed network can be viewed 
on the GeNeCK website. 

3.4.3	� GeneMANIA 

GeneMANIA is an effective tool that utilizes a vast collection of functional associa-
tion data to identify genes that are related to a given set of input genes. This com-
prehensive data encompasses protein and genetic interactions, pathways, 
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NODE-1 NODE-2 
A interact with O 
B interact with P 
C interact with Q 
D interact with R 
E interact with S 
F interact with T 
G interact with U 
H interact with V 
I interact with W 
J interact with X 
K interact with Y 
L interact with Z 
M interact with Z 
N interact with U 
O interact with A 
P interact with R 
Q interact with T 
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Fig. 3.3  Cytoscape is a popular tool for network analysis that represents the relationship between 
two entities   

co-expression, co-localization, and protein domain similarity. With GeneMANIA, 
you can explore additional genes associated with specific pathways, complexes, or 
functions, such as protein kinases. The results generated by GeneMANIA depend 
on the genes you provide as input. For example, if your gene list represents a protein 
complex, GeneMANIA will suggest potential additional members of that complex. 
Similarly, when you input a gene list, GeneMANIA will identify connections 
between the genes within the selected datasets. 

3.4.4	� STRING 

STRING serves as an extensive database that encompasses a wide range of known 
and predicted protein–protein interactions. It covers both direct (physical) and indi-
rect (functional) associations between proteins. The data in STRING is obtained 
from diverse sources, including computational predictions, knowledge transfer 
between organisms, and the aggregation of interactions from other primary data-
bases. Presently, the STRING database offers valuable information on 24,584,628 
proteins across 5090 organisms. 
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3.4.5	� FunCoup 

FunCoup utilizes a range of evidence and gold standards, including protein com-
plexes, physical protein interactions, metabolic pathways, and signaling pathways, 
to predict four distinct classes of functional couplings. It integrates multiple types 
of evidence, such as co-expression, protein–protein interactions (PPIs), genetic 
interactions, PHP similarity, and co-regulation, across 11 model organisms, to con-
struct comprehensive genome-wide networks. To facilitate the transfer of evidence 
between species, FunCoup relies on ortholog assignments from in paranoid. 

3.5	� Network Visualizer Tools 

3.5.1	� Arena3Dweb 

Arena3Dweb is the first, fully interactive and dependency-free, web application 
which allows the visualization of multilayered graphs in 3D space. This tool helps 
users to integrate multiple networks in a single view along with their intra-layer and 
inter-layer links. Users also can align networks and highlight the network’s topo-
logical properties, highlighting the edges and important paths. The current version 
supports the weighted and unweighted undirected networks and it is written in R, 
Shiny, and Javascript (Karatzas et al. 2021). It can be accessed by using link (https:// 
bib.fleming.gr:8084/app/arena3d). 

3.5.2	� GEPHI 

Gephi exhibits the ability to handle extensive networks, encompassing thousands of 
nodes and millions of edges, necessitating substantial computational resources. 
Being open source and multi-platform, it offers a diverse array of advanced network-
related algorithms available as plugins, such as NET-EXPO and DyCoNet (Bastian 
2009). It can be downloaded from Gephi - The Open Graph Viz Platform than can 
used in Windows, Mac OS X and Linux system in local machine. 

3.5.3	� Igraph 

Igraph is a versatile collection of libraries designed for graph creation, manipula-
tion, and network analysis. Originally written in C, Igraph is also available as pack-
age for Python and R programming languages. Igraph can be installed by using R 
studio. Just type “install.packages(“igraph”)”. 

3.5.4	� Pathview 

The Pathview R package is a versatile toolset designed for integrating and visual-
izing pathway-based data. It facilitates the mapping and visualization of user data 
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onto pathway graphs. Users simply provide a list of gene or compound data along 
with the desired pathway, and Pathview takes care of automatically downloading 
pathway network data, parsing the data file, mapping the user data to the pathway, 
and generating pathway graphs with the mapped data. While Pathview can function 
as a standalone program, it also offers seamless integration with other pathway 
analysis tools, enabling large-scale and fully automated analysis pipelines (Luo and 
Brouwer 2013). 

3.5.5	� VisANT 

It is a specialized tool designed for visual data mining of biological networks and 
pathways. It offers functionalities such as integrating disease and therapy hierar-
chies, associations between diseases and genes, associations between therapies and 
drugs, and interactions between drugs and targets. The latest version of VisANT 
incorporates disease and drug hierarchies, disease–gene associations, therapy–drug 
associations, and drug–target interactions. It allows for gene and drug annotation 
based on disease and therapy information. Additionally, it enables the prediction of 
associated diseases and therapies through enrichment analysis using user-provided 
gene or drug sets. VisANT supports network transformation and provides a user-
friendly web interface for customizing node and edge properties. It is freely avail-
able at http://visant.bu.edu (Hu et al. 2013). 

3.5.6	� BioNetStat 

This tool is accessible through the Bioconductor package in R, which provides a 
user-friendly graphical interface. It allows users to compare two or more correlation 
networks based on the probability distribution of network centrality measures. 
BioNetStat specializes in conducting differential network analysis, examining net-
work features, and highlighting significant differences between disease and normal 
conditions using statistical significance scores. It is worth noting that this tool is not 
restricted to gene expression networks alone; it can also be applied to various data 
types such as proteomics, phenomics, metabolomics, as well as economic and social 
network data (Jardim 2019). 

3.5.7	� NetworkAnalyst 

The increasing use of gene expression profiling within the context of protein–pro-
tein interaction (PPI) networks requires robust and user-friendly bioinformatics 
tools for understanding systems-level data. This tool assists in visualizing and com-
paring multiple gene lists through interactive heatmaps, enrichment networks, Venn 
diagrams, or chord diagrams (Zhou et al. 2019). It can be accessed at https://www. 
networkanalyst.ca/. 
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3.6	� Network Clustering Tools 

3.6.1	� NeAT 

The Network Analysis Tools (NeAT) is a series of modular computer programs 
(Fig. 3.4) specifically designed for the analysis of biological networks via integra-
tion of many algorithms for the analysis of biological networks: networks compari-
son, clustering and pathfinding, network randomization, and network topological 
properties analysis (Brohée et al. 2008). NeAT user-friendly web interface to allow 
easy access to the tools and data processing (http://rsat.sbroscoff.fr/index_neat.html).

3.6.2	� clusterMaker 

clusterMaker is a plugin available for Cytoscape that provides a unified interface for 
various clustering techniques and visualization options. It supports multiple cluster-
ing algorithms, such as hierarchical, k-medoid, AutoSOME, and k-means, which 
are useful for clustering expression or genetic data. Additionally, it offers partition-
ing algorithms like MCL, transitivity clustering, affinity propagation, MCODE, 
community clustering (GLAY), SCPS, and AutoSOME, enabling network partition-
ing based on similarity or distance values. The clustering results can be visualized 
as hierarchical groups of nodes or heat maps for hierarchical, k-medoid, AutoSOME, 
and k-means algorithms. The plugin introduces collapsible “meta nodes” that aid in 
interactive exploration of putative family associations within the Cytoscape net-
work. Moreover, the results can be displayed as a separate network containing only 
intra-cluster edges or with inter-cluster edges included. clusterMaker is compatible 
with Cytoscape version 2.8.2 or newer and can be accessed through the Cytoscape 
plugin manager under the Analysis category. 

3.6.3	� GephiCrunch 

It utilizes a range of techniques to compare the structures of two networks, such as 
average clustering coefficients, average path lengths, diameters, degree distribu-
tions, clustering and eccentricity spectra, and graphlet-based heuristics. These 
methods enable more precise and rigorous comparisons between the networks. 

3.7	� Other Miscellaneous Tools 

3.7.1	� Network BLAST 

This tool enables the identification of protein complexes within protein–protein 
interaction networks. It has the capability to analyze either a single network or two 
networks from different species. In the case of analyzing two networks, Network 
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BLAST generates a collection of complexes that exhibit evolutionary conservation 
across the two networks. The tool is available for download on a local Linux 
machine and can be installed with minimal hardware requirements (AMD XP2500+ 
1 GB, Intel XEON 3 Ghz 3 GB). 

3.7.2	� SpectralNET 

A tool to analyze the networks and node interactions, such as chemical–genetic 
networks. It is available as a standalone. Spectral NET offers a user-friendly 
approach for analyzing graph-theoretic metrics in data modeling and dimensional-
ity reduction (Forman et al. 2005).Users can conveniently access it through either 
a.NET application or an ASP.NET web application, available at http://chembank. 
broad.harvard.edu/resources/. 

3.8	� Conclusion 

A biological network is a way to represent the complex system of binary interac-
tions or links between various biological entities. In this chapter, we have focused 
on Network analysis and visualization tools (Offline/Online) which make it easy for 
us to understand the broad maps of cellular organization. There are many network 
analysis visualization tools are exist, but we mainly discussed here only 11 tools 
that are widely used and popular among researchers. Most of the tools support a 
GUI (graphic user interface) where users can process tire data by a few mouse 
clicks, simple dialog boxes and data imports allow most functionality to be accessed. 
However, Several tools need some basic programing skills in R and Python to read, 
process, and write the data. Plugins are an important way for advanced users to 
customize and extend an application (Cytoscape and VisANT) based on third par-
ties generic software to develop new functionality and integrate it directly within the 
tool. As we know that each tool is designed differently (different algorithm used) so 
the result would be different from other tools, so before using any tool, the user 
must be sure about what is aim of study, what type of result they want, and cross-
check and validate the result with other tools. All the tools/software introduced in 
this chapter are freely accessible to foster collaboration among researchers and 
accelerate advancements in the field of systems biology. 
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4 Networks Analytics of Heterogeneous 
Big Data 

Rafat Ali and Nida Jamil Khan 

Abstract 

Day by day exponential growth in experimentation is generating staggering 
amounts of data in the different fields of biological research. Generating this high 
volume of data brought the term “Big Data.” The term “Big Data” has several 
dimensions which contain a huge amount of unstructured and structured data 
sets. Analysis, interpretation, and complete extraction of meaningful information 
from the raw, structured, and unstructured datasets lead to big scientific inven-
tions, open the routes of progress in industry and economic development. Due to 
bulky data set makes it is very complex and complicated in the sense of co-
relationship and connections among them, managing the hierarchy level, and 
many data linkages. It is extremely difficult to easily manage data quality with 
proper security and privacy with such a large number of multivariate raw data. 
Since “Big Data” encompasses both organized and unstructured data sets, there-
fore storing, transferring, processing, and searching the raw data is extremely 
challenging, and it cannot be managed using traditional database systems and 
software tools. The heterogeneous “Big data” set contains petabytes or exabytes 
of raw data, with billions to trillions of archived records. To gain hidden informa-
tion from the big, archived records complex network biology approach has a 
significant role. Biological complex networks like gene–gene and protein–pro-
tein interaction networks have been appreciated for finding genes and pathways 
associated with diseases. These complex networks could provide significant 
insights into the mechanisms of complex diseases like cancer.
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4.1	� Big Data Analytics for Network Biology 

In the various domains of biological study, exponential increase in experimentation 
has produced huge amounts of data. The phrase “Big Data” was coined to describe 
the emerging field of modern biology due to the huge amount of data generated. The 
phrase “Big Data” refers to a number of dimensions that include a sizable number 
of unstructured and organized data sets. Big scientific discoveries are made possible 
by the analysis, interpretation, and thorough extraction of useful data from large 
raw, structured, and unstructured databases. This also paves the way for advance-
ments in business and economic growth. Because of the data set’s weight, managing 
the hierarchy level and numerous data links, as well as its co-relationships and link-
ages, makes it extremely difficult. Easily managing such a massive volume of mul-
tivariate raw data is challenging. Because “Big Data” includes both structured and 
unstructured data sets, managing the raw data is exceedingly difficult. It cannot be 
done with the help of conventional database management systems and software 
tools. The heterogeneous “Big data” collection might include trillions of old records 
together petabytes or exabytes in size (Altaf-Ul-Amin et al. 2014). The era of Big 
Data is closely related to the era of Omics, and omics technologies and assays, in 
particular, omics technologies and assays are key to producing enormous amounts 
of data. So, omics is a significant stakeholder in big data. 

Future generations will use emerging technologies like imaging systems, 
spectroscopy-based flow cytometry, different sequencing techniques, and others to 
produce enormous amounts of data (Nielsen et al. 2010). Big challenges of big data 
in biology to store, analyze, and interpret have been brought in by the greater vol-
ume of nucleic acid sequencing data and output of advanced high-throughput tech-
niques in system biology, whether it is cell biology or molecular biology, producing 
piles of omics data in different omics-based fields like-genomes, transcriptomes, 
proteomes, metabolomes, interactomes, and so on (Pal et  al. 2020). Additional 
sources that are expanding exponentially are also producing a significant amount of 
raw data. Analysis of a big amount of data is really a concern of the new scientific 
era. Big data analytics is a fast-growing technology that has been used in various 
areas, including network biology. The complex network biology approach plays a 
vital role in extracting hidden information from large stored records. To uncover 
disease-associated genes and pathways complex networks such as gene–gene or 
protein–protein interaction networks have gained importance. It is possible that 
these intricate networks may reveal important information about how complicated 
diseases like cancer function. Since every gene, protein, piece of DNA, and pathway 
in the human body is somehow related to one another, a complex network approach 
offers a simulation method for learning actual information about the gene, protein, 
etc. plays a vital role in extracting hidden information from the big stored biological 
data (Fig. 4.1). 
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4.2	� Genetic Profiling Data 

The word “genetic profile” is typically used to refer to a composition of genetic 
traits that are associated with a human individual, such as genetic signals or infor-
mation. It is crucial to emphasize that profiling is the method by which such a col-
lection of traits is linked to the target qualities considered when making decisions, 
such as any disease occurrence (European Commission 2018). 

In healthcare and scientific research, genetic profiling is used to link particular 
genetic traits to increased or decreased risk of detecting and curing specific dis-
eases. Rarely diseases are monogenic or caused by genetic variations at a single 
locus that have a significant impact on the disease’s course. An illustration of such 
a monogenic disease is cystic fibrosis. Genetic diseases are often polygenic, which 
means they are probably caused by a combination of various genes, lifestyle choices, 
and environmental factors. Even though several DNA-related markers are important 
for identifying individuals and particular characteristics, in general, only a very 
small portion of DNA is important for medical treatment and study, such as genes, 
SNPs, Short Tandem Repeats (STR), and whole genome sequences. In contrast to, 
RNA variations, these markers are directly associated with the DNA without any 
translation step in between, allowing one to concentrate on stable molecular proper-
ties. Because STRs are typically employed to create an individual’s genetic finger-
print, they are extremely important (Sariyar et al. 2017). Profiling may be done in 
various situations, including forensic science, marketing, healthcare settings, and 
information science. Big data expands how profiling may be used to find new pat-
terns and make automated decisions (Hildebrandt 2008). Healthcare profiling 
allows for more tailored decisions than those based on average traits, which is 
closely connected to personalized therapy. Its potential applications include prog-
nostication, resistance detection, disease monitoring, risk assessment, recurrence 

Fig. 4.1  Figure illustrating big data handling and analytical approach 
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detection, and early detection. Biomarker-guided diagnostic decisions and therapy 
selection are significant (Wjst 2010). 

4.3	� Data Quality 

By 2025, it is estimated that between 100 million and 2 billion human genomes will 
have been sequenced, making genomics the world’s biggest “big data” challenge 
(Stephens et al. 2015). Increasing amounts of genomic data of various types have 
been generated by high-throughput technologies and, more recently, Next Generation 
Sequencing (Schuster 2008), making significant advancements in the understanding 
of human genome mechanisms and their application to previously unheard-of per-
sonalized medicine outcomes. Data and metadata integration is regarded as an activ-
ity of unquestionable importance prior to data analysis and biological knowledge 
discovery, with pressing demands for improved data extraction, matching, normal-
ization, and enrichment methodologies to enable building multiple perspectives 
over the genome; these can lead to the identification of meaningful relationships, 
which are otherwise not perceptible when using incompatible data representations 
(Samarajiwa et al. 2018). The way that bioinformatics and genomics, in past years 
operated by utilizing the extensive fieldwork done by its practitioners in terms of 
data collection, management, and analysis. Best practices are gathered from many 
laboratories and projects, discussed on discussion boards (like https://www.biostars. 
org, http://seqanswers.com, and https://www.researchgate.net), and compiled in 
documentation or wiki guides in tool and software source repositories. The quality 
of the experimental data generated by these procedures, for which standard proto-
cols are frequently made up of several scripts, are accessible, and become a primary 
interest to bioinformaticians. In contrast, less focus has been placed on the high-
quality actions that may be taken when combining several experimental data in 
systematic methods. Handling data standards in both schemata and values, as well 
as applying integration methods that enhance data quality, become more crucial 
with the development of a culture of data FAIRness (Wilkinson et al. 2016) and of 
open and sharable research, which is supported by efforts like FAIRsharing (Sansone 
et  al. 2019) focusing on accuracy, consistency, currency, and reliability (Hedeler 
and Missier 2008). One out of three business leaders do not trust the data they use 
to make decisions, according to IBM’s 2012 report on data quality (https://open-
sistemas.com/en/the-four-vs-of-big-data); this ratio is unacceptable in industries 
like healthcare and precision medicine, which are heavily reliant on genomic data-
bases and decision-making techniques. 

“Quality” in genomics has typically been used to refer to “quality control” steps 
on sequences, typically a pre-processing activity aimed at removing adapter 
sequences, low-quality reads, uncalled bases, and contaminants. This usage dates 
back to DNA microarrays (Ji and Davis 2006) and Next Generation Sequencing 
(Schuster 2008). Instead, we use the term “Data Quality” (DQ) in this study to refer 
to the larger definition given by Wang and Strong (Wang and Strong 1996), which 
is typically encapsulated by the phrase “fitness for use,” i.e., the capacity of datasets 
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to satisfy the needs of their users. DQ is assessed using many quality factors (i.e., 
single aspects or components of a data quality concept (Stvilia et al. 2007). A sum-
mary of cutting-edge methods for resolving problems with data quality in general 
databases is given in (Fan 2015), under the heading “data cleaning.” Data of low 
quality in genetic databases have a huge economic and medical impact on their 
users/customers. For instance, incorrect target selection for medical investigations 
or pharmaceutical research may result from inaccuracies in genomic data. 
Pharmaceutical corporations invest billions of dollars in research just to release a 
few novel medications (Hensley 2002). Only a small number of the hundreds of 
potential leads generated from experimental genetic data make it to clinical trials, 
and only one medicine is commercially viable. It is of considerable importance to 
base these far-reaching judgments on good-quality data (Shankaranarayanan 
et al. 2000). 

4.4	� Major Public Databases 

Genome mapping and sequencing technologies are producing a huge amount of 
data; as a result, dependable and effective storage methods are needed. The first 
organization of genome sequencing and mapping data involved manual data collec-
tion and deposit in a central location, such as a table with columns and rows. This 
uses resources in a laborious, time consuming, and ineffective manner. A drawback 
was rapidly identified as the absence of synergy between big independent collec-
tions of different sorts of data. Data are combined through the science of informatics 
developed by information technology experiments in the lab that enables the gather-
ing, analysis, and distribution of beneficial combinations of pertinent data. In order 
to minimize mistakes, eliminate redundancy across comparable data sources, and 
make well-informed judgments regarding outcomes, informatics offers a semi-
automated method for retrieving, filtering, and making comparisons and contrasts 
of data in an electronic format. Many databases are created using tables or relational 
databases as their foundation. Alternatives include object-oriented techniques that 
allow for flexible data categorization and analysis based on this classification, as 
well as data storage and retrieval (Carroll et al. 2001). 

Biology is undergoing a revolution as a result of genome-wide analyses of gene 
function and expression as well as a genomic structure made possible by genomic 
sequence data. The application of human genetic data is anticipated to have pro-
found effects on pathology and the creation of individualized treatments. Online 
genomic databases provide free access to genome reference sequences for thou-
sands of species. Genome browser’s user-friendly software that produces interac-
tive, graphical representations of key chromosomal areas with comprehensive 
annotations, including genes, epigenetic information, and sequence variations, may 
be used to immediately download or search sequence data. In addition to detailing 
several methods for searching them, such as employing IDs for genes and chemi-
cals, karyotype bands, chromosomal locations, sequences, and motifs, this chapter 
enlisted Table  4.1 major genomic databases and genome browsers. The human 
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genome is highlighted, along with methods for visualizing and retrieving data 
related to genome plasticities, such as sequence and structural variations (Hutchins 
2020).  

As the principal public repository for genomic sequence data, the National 
Center for Biotechnology Information (NCBI) gathers and preserves vast quantities 
of diverse data. The NCBI website’s text-based search and retrieval system, which 
enables quick and simple access to a variety of biological databases, integrates data 
on genomes, genes, gene expressions, gene variation, gene families, proteins, and 
protein domains with analytical, search, and retrieval capabilities. The speed of dis-
covery is accelerated by the use of comparative genomic analysis methods to gain a 
deeper knowledge of evolutionary processes. Our knowledge of the biology of liv-
ing things has undergone a fundamental transformation as a result of the increase in 
genome sequencing that has been sparked by recent technological advancements. 
The information management system and the visualization tools will now face addi-
tional difficulties as a result of the enormous growth in DNA sequence data. To 
organize this genomic sequence flood and enhance the usefulness of the related 
data, new approaches need to be developed (Tatusova 2016). 

4.5	� Challenges of Handling Genomics’ Data 

We reported here a number of difficulties that data scientists use open datasets to 
address biological and clinical issues confront. Despite the significant effort put into 
creating such public datasets, they are spread across several sources, varied in terms 
of their formats, and frequently fulfill extremely varying quality criteria (Ceri and 
Pinoli 2020). The development of high-throughput technologies at much lower 
prices has led to a massive data explosion in genomics in recent years. The age of 
millions of accessible genomes is about to begin. Notably, each genome can include 
billions of nucleotides that are encoded in terabytes of plain text (GBs). It is obvious 
that these genetic data provide unaware of data difficulties (Wong 2019). There has 
been an explosion of genetic data created as a result of recent advancements in bio-
technology, particularly next generation sequencing in genomics. Both in terms of 
volume and variety, the findings are substantial. Much more information is con-
tained in big data, which also presents data analysis with novelty. The high-
throughput data produced by NGS and similar technologies is called big data. 
Volume, Velocity, Variety, Veracity, and Value, sometimes known as the 5Vs, are 
characteristics of Big Data that make it distinctive in terms of difficulties and poten-
tial. Big Data in genomics is being produced at a pace and scale never before seen 
because of new technologies like NGS. Data analysis is challenging because of Big 
Data. Regarding the study of Big Data in genomics, we talked about the difficulties 
with data integration, data administration, computer infrastructure, dimension 
reduction, data smoothing, and data security. The analysis of single-cell sequencing 
data, de-novelization of sequencing reads, and the study of rare genetic variations 
are a few more issues that are more data specific. These fields are the subject of 
active research and will deliver crucial data and tools for comprehending genomics 
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and life in general (Xu 2020). High dimensionality, which relates to both the sample 
size and the number of variables and their structures, distinguishes big data in 
genomics. The sheer amount of data presents problems for computing and data stor-
age. For only the raw data of each sample, the volume of data might be terabytes. It 
is a good idea to maintain the raw data for the various forms of genomic data, fre-
quently in the form of picture files, so that when more advanced base calling algo-
rithms become available, they may be used to increase accuracy (Barrett et al. 2013). 

The computation in genomics is impractical with current computer infrastructure 
due to the massive amounts of Big Data. For research with huge sample sizes, it can 
take months to complete the alignment and annotation of NGS reads utilizing desk-
top PCs. Utilizing high-performance computing resources like computer clusters is 
one way to solve this issue. The goal is to divide the large computing task into 
smaller tasks and distribute them across the cluster’s compute nodes. The result is 
highly parallel computing, which enables quick completion of large tasks (Almasi 
and Gottlieb 1989). In the field of processing large data, there are several problems 
that need to be solved. These problems need to be solved holistically, utilizing the 
knowledge of several computer science disciplines. Data Cleansing/Acquisition/ 
Capture, Data Storage/Sharing/Transfer, Data Analysis, as well as certain ethical 
considerations that come from the exposure and processing of large data, are some 
big data management challenges that scientists should address (Jagadish et al. 2014). 

4.6	� Security of Genomics’ Data 

A wealth of genetic data has recently been generated due to the lower cost of DNA 
sequencing, which is used to promote scientific research, enhance clinical practices, 
and enhance healthcare delivery. Genome-wide association studies (GWASs), diag-
nostic testing, personalized medicine, and drug discovery are all being revolution-
ized by these developments. The human genome is complex in nature and uniquely 
identifies an individual. Therefore this presents security and privacy problems. In 
this chapter, we discuss the issue of genomic privacy and evaluate pertinent privacy 
assaults that have been utilized to invade someone’s privacy. These attacks may be 
categorized as identity tracking, attribute disclosure, and completeness attacks 
(Abukari and Chen 2020). The development of genome sequencing methods pro-
motes the accessibility of genetic data and its gathering for processing, sharing, and 
storage. Despite these advantages, there are still significant worries regarding how 
genetic data is stored, shared, transported, and processed. DNA donors occasionally 
inquire about the storage of their genetic information. Who can access it? What are 
safety precautions in place to safeguard my privacy? These worries result from the 
fact that (Australian Genomics 2016) Applications of genetic data now and in the 
future might lead to ethical and privacy issues. The danger of misuse by prospective 
criminals is increased by the processing and storing of this data since the human 
genome contains sensitive personal data.
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4.7	� Conclusion 

We are currently in the era of “big data,” in which big data technology is being rap-
idly applied to biomedical and healthcare fields. We might face big problems if we 
do not have big solutions for big amounts of data. With sophisticated platforms and 
tools like gene sequencing mapping tools now in use to assist in analyzing biologi-
cal data, big data application in bioinformatics is still in a relatively early stage of 
development. To analyze big data network biology approach is a big solution. 
However, before analyzing the big amount of data, researchers need to improve 
several things. The absence of consistency in laboratory practices and values makes 
it difficult to integrate data. For instance, imaging data that originates from many 
laboratories using various techniques can experience technological batch effects. 
When there is a batch effect, efforts are made to normalize the data; while this may 
be simpler for image data, normalizing laboratory test data is inherently more chal-
lenging. Big data integration and usage in all domains continue to be hampered by 
security and privacy issues; as a result, secure platforms with improved communica-
tion standards and protocols are urgently required. Big Data involves complex sys-
tems, revenue, and difficulties. To increase the effective evaluation online as well as 
the display, analysis, and storage of Big Data, more research is required. Big Data’s 
main security issues are privacy, integrity, availability, and confidentiality of out-
sourced data. 
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5 Network Medicine: Methods 
and Applications 

Aftab Alam, Okan Yildirim, Faizan Siddiqui, Nikhat Imam, 
and Sadik Bay 

Abstract 

Network medicine (NM) is a developing field within network science that 
focuses on molecular and genetic interrelationships, disease network biomark-
ers, and the discovery of therapeutic targets, and it is a rapidly growing arena for 
medical science and research, which comes with the possibilities to reform the 
system of disease diagnosis and its treatment. The NM uses topological and 
dynamic properties of the biological networks (protein–protein interactions and 
metabolic pathways) to distinguish the disease patterns (characterizing the 
behavior of disease genes) and associated drugs. Biomedical data provide a base 
to develop a significant model and get potential results at the network level. In 
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this chapter, we have discussed the integrative use of emerging tools and the 
databases of NM, which provide a basic platform to systematically investigate 
the molecular complexity of diseases, dominant disease genes (modules), drug 
targets, disease-enriched pathways (altered pathways), and molecular interac-
tions between apparently distinct phenotypes. The field of network medicine and 
its implications for diagnostics, prognosis, and therapeutics with unprecedented 
breadth and precision have great potential in the future. 

Keywords 

Network medicine · System pharmacology · Precision medicine · Disease–gene 
relationship · Drug repurposing 

5.1	� Introduction 

“Interaction” is a single word that makes communication among the physical body 
(human beings), and even cellular components activate its functional switches by 
“interactions” with another component of the cell; overall, these interactions repre-
sent the human interactome. Interactome assessment is exclusively a tool-based 
approach to the theoretical paradigm and methodological tools utilized, describe, 
investigate, and comprehend structural and relational features of human health and 
disorders. Network-based research is becoming a crucial technique for identifying 
disease susceptibility genes and their associations with various diseases (Alam et al. 
2022). Additionally, this research has enhanced our comprehension of drug targets 
and their results and proposed new drug targets, treatments, and therapeutic man-
agement strategies for serious disorders (Fig. 5.1).  

Network-based approaches to human disease offer a variety of biological and 
therapeutic uses. Indeed, a better comprehension of the consequences of (1) cellular 
interconnections failure or (2) rewiring in cellular interconnections on disease pro-
gression could lead to the identification and classification of disease-associated 
genes and pathways which could provide better targets for drug development. 
Advancement in these fields could also restructure the clinical application and prac-
tice, from the development of improved and more precise biomarkers that monitor 
the functional integrity of the network that is perturbed by the diseases as well as 
improvements in disease classification and pave the way to personalized therapies 
and treatment. 

In a recent study, Gysi et al. employed network medicine and drug repurposing 
methods to distinguish the repurposable drugs for COVID-19 (Morselli Gysi et al. 
2021). Similarly, a multi-target herb called Caesalpinia pulcherima (CP) is used 
therapeutically to treat breast cancer (Sakle et al. 2020). Furthermore, Azuaje et al. 
contributed to our understanding of the cardiovascular effects of non-cardiovascular 
medications by integrating multiple sources of drug and target interaction data. 
They constructed the myocardial infarction (MI) drug-target interactome network, 
offering systemic insights into the topic (Azuaje et al. 2011). In a related study, Kim 
et al. have proposed that examining the network-based drug–disease intimacy can 
offer a novel perspective on the therapeutic effects of drugs in the context of 
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Fig. 5.1  Overview of network medicine approach  

Systemic Sclerosis (SSc) disease. This approach may provide insights into drug 
combinations or drug repositioning strategies (Kim et al. 2020). 

In this chapter, we focused on networks and their role in disease, System 
Pharmacology, Pharmacogenomics in Precision Medicine, Drug–Target Interaction, 
Drug–Drug Interaction, Drug Repurposing Opportunities, Drug Side Effects, and 
Integrating Omics data with Networks: Challenges and Ways. We hope this new 
chapter provides the same platform for scholars from biological science back-
grounds to work on interdisciplinary research areas that can be useful for describing 
the causes of disease and pinpointing potential treatment targets, which will improve 
preventative healthcare and have a knock-on effect on personalized therapy. 

5.2	� Basic Principles and Key Components 
of Network Medicine 

5.2.1	� Systems Pharmacology 

The early understanding of the molecular mechanisms behind pharmacological 
action was provided by classical investigations, such as the development of the 
receptor hypothesis that distinguished between competitive and noncompetitive 
inhibition. The prevalence of medications that target membrane receptors (mostly 
GPCRs) explains the influence and applicability of receptor theory in contemporary 
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pharmacology. The majority of the remaining drugs are enzyme inhibitors, which 
are often analogs based on substrates, analogs based on transition states, or alloste-
ric inhibitors that are designed to bind reversibly or irreversibly based on the sub-
strate and substrate-binding pocket configuration. The genomic, proteomic, network, 
and other high-throughput investigations have produced a wealth of “systems-level” 
knowledge over the last 10 years. The number of well-characterized, druggable tar-
gets is continuously rising through the use of high-throughput technology, structural 
and biochemical studies, and human genome research. Targeted therapies and bio-
logical medicines have thus emerged as a result of the expansion of the pharmaco-
logical pipeline and concentration on complicated, multigenic disorders. In recent 
studies, regulatory network analysis and structural analysis were used to anticipate 
the therapeutic benefits of medications for complicated disorders as well as poten-
tial off-target consequences (Boran and Iyengar 2010; Black and Leff 1983; Maehle 
et al. 2002; Colquhoun 2006). 

5.2.2	� Pharmacogenomics in Precision Medicine 

One of the fundamental components of personalized treatment is pharmacogenom-
ics (PGx). In personalized medicine, also known as precision medicine, patients are 
given prescriptions for drugs that are right for them based on their genetic, environ-
mental, and lifestyle characteristics. Two key functions of pharmacogenomics in 
precision medicine. It first directs pharmaceutical firms in drug development and 
discovery. Second, it helps doctors choose the best medication for patients based on 
their genetic makeup, avoid adverse drug reactions, and maximize drug efficacy by 
providing the appropriate amount. Based on the understanding of pharmacogenom-
ics, personalized/precision medicine has significant potential benefits. Precision 
medicine is the future of healthcare, and it will eventually become the standard 
of care. 

5.2.3	� Biological Networks and Important Databases 

A method of expressing systems as complicated sets of binary interactions or rela-
tions between distinct biological components is called a biological network (e.g., 
genes, proteins, taxa, and metabolites). Now, with the availability of large-scale 
multi-omics data, the biological system has expanded from basic to advanced levels 
(like PPI connectivity and functional changes in disease stages, Disease-specific 
interactome, genetic perturbations, and network dysfunction). 

Protein–protein interaction networks (PINs), in which proteins act as nodes and 
interactions as undirected edges, depict the physical connections between the pro-
teins that are present in a cell. Protein–protein interactions (PPIs) are the most thor-
oughly studied networks in biology and are crucial to cellular functions. PPIs can be 
found using a variety of experimental methods, with the yeast two-hybrid system 
being one of the more popular methods for studying binary interactions. Mass 
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spectrometry-based high-throughput research have recently uncovered numerous 
sets of protein interactions. 

The databases that catalog experimentally determined protein–protein interac-
tions have been the result of numerous international efforts over the past few 
decades, such as the Munich Information Center for Protein Sequence (MIPS) pro-
tein interaction database (Schoof et al. 2005), Biomolecular Interaction Network 
Database (BIND) (Bader 2003), Database of Interacting Proteins (DIP) (Xenarios 
2000), Molecular Interaction database (MINT) (Chatr-aryamontri et al. 2007), and 
Protein Interaction database (IntAct) (Hermjakob 2004). These databases are clas-
sified into primary and secondary databases based on their interaction prediction 
method but now one new term introduced “Meta-database” which is a combination 
of different primary and secondary databases to get new and maximum protein–pro-
tein interactions in network (Fig. 5.2). The list of protein interaction databases is 
given in Table 5.1.    

Moreover PPI, the Metabolic networks explain the associations between small 
biomolecules (metabolites) and the enzymes (proteins) that interact with them to 
catalyze a biochemical reaction. Genetic interaction networks are valuable for 
understanding the relationship between genotype and phenotype because they relate 
to the functional interactions between pairs of genes in an organism. 

Similarly, a gene regulatory network (GRN) is a collection of molecular regula-
tors that interact with one another and with other components of the cell to regulate 
the expression level of mRNA and protein. Further, when different cell signaling 
pathways interact, cellular signaling networks are built, and they are identified by a 
combination of experimental and computational techniques. 

A complex biological network consists of various nodes (including genes, pro-
teins, and metabolites.) and connections among nodes are represented by joining 
lines, called “edges.” The hubs are nodes that connect with other nodes frequently 
and play important roles in biological processes. The total number of edges that a 
node is connected to is referred to as its degree. Finding the node with the top degree 
can support to distinguish a biological-entity that plays the most important role 
within the network. For more details about the basic biological network and its 

Fig. 5.2  An example of human disease networks  
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Table 5.1  Protein–protein interaction databases 

Primary database 

Databases URL 
Experimental/ 
Predicted Reference 

BioGrid https://thebiogrid.org/ Exp. Oughtred et al. 
(2019) 

HPRD http://www.hprd.org/ Exp. Goel et al. (2012) 
IntAct https://www.ebi.ac.uk/intact/home Exp. Hermjakob (2004) 
MINT https://mint.bio.uniroma2.it/ Exp. Chatr-aryamontri 

et al. (2007) 
HuRI http://www.interactome-atlas.org/ Exp. Luck et al. (2020) 
Secondary database 
STRING https://string-db.org/ Exp. & Pred. Szklarczyk et al. 

(2019) 
UniHI http://www.unihi.org/ Exp. & Pred. Kalathur et al. 

(2014) 
Mentha http://mentha.uniroma2.it/ Exp. Calderone et al. 

(2013) 
APID http://cicblade.dep.usal.es:8080/ 

APID/init.action 
Exp. Alonso-López et al. 

(2019) 
HIPPIE http://cbdm-01.zdv.uni-mainz. 

de/~mschaefer/hippie/index.php 
Exp. Alanis-Lobato et al. 

(2017) 
HitPredict http://www.hitpredict.org/ Exp. Patil et al. (2011) 
IID http://iid.ophid.utoronto.ca/ Exp. & Pred. Kotlyar et al. (2016) 
HINT http://hint.yulab.org/ Exp. Das and Yu (2012) 
GPS-Prot http://gpsprot.org/ Exp. Fahey et al. (2011) 
•  Primary protein interaction databases containing literature-curated PPIs for human 
proteins. 
•  Secondary protein interaction databases containing predicted and curated from primary 
databases.

topological properties, importance can be read in our previous articles (Alam et al. 
2019; Alam et al. 2021). 

5.2.4	� Human Disease Networks 

A disease gene network involves the incorporation of genes linked to specific dis-
ease phenotypes into an established human interactome. The hypothesis posits that 
genes and their corresponding products associated with a given disease have the 
propensity to interact and form clusters within a localized sub-network, as opposed 
to being randomly distributed across the entire human interactome (Lee and 
Loscalzo 2019). The unbiased analysis of pathobiological linkages between various 
disease processes has also been made possible by disease networks. To construct the 
human disease network, there are many ways including literature survey to find the 
disease-associated genes and construct network. Further, there are many good, com-
prehensive databases available DisGeNet, an extensive and carefully curated data-
base, integrates data from multiple publicly accessible databases, such as “UniProt/
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SwissProt,” “Cancer Genome Interpreter (CGI),” “Comparative Toxicogenomic 
DatabaseTM (CTDTM),” “Orphanet,” “Mouse Genome Database (MGD),” 
“PsyGeNET,” “Genomics England,” “ClinGen,” and “Rat Genome Database 
(RGD).” These databases were utilized to collect information on genes associated 
with various diseases, which were subsequently compiled and organized within the 
DisGeNet database (Pinero et al. 2015). 

Recently, we analyzed three diseases (including Cardiovascular disease, Diabetes 
type-2, and Parathyroid adenoma) and found that 33 genes are common in these 
diseases (Fig. 5.2). Similarly, in our one more previous articles (Alam et al. 2022) 
where we identified 33 high-scoring significant modules that hub genes that are 
shared between tuberculosis (TB) and overlapping non-communicable diseases 
(NCDs) (lung cancer, rheumatoid arthritis, diabetes mellitus, Parkinson’s disease, 
and cardiovascular disease). 

5.2.5	� Drug–Target Interactions 

The conventional “one disease–one target reductionist approach” is not widely 
applicable since the majority of drugs exert their effects by targeting multiple pro-
teins, resulting in a net pharmacological impact that encompasses both therapeutic 
and adverse effects. Network techniques provide valuable tools for predicting drug 
actions in complex biological contexts. In this context, drugs can be mapped onto 
the human interactome through their identified targets, where the effects of drugs on 
specific nodes or targets are represented by edges in the biological network. In our 
previous study, when the common disease genes related to TB and non-communicable 
disease (NCDs) that include lung cancer, rheumatoid arthritis, diabetes mellitus, 
Parkinson’s disease, and cardiovascular disease; and built a bipartite network (drugs 
and targets) by mapping the hub genes of the modules to their corresponding drugs 
using the DGIdb database, the results revealed that a significant portion of the target 
genes had multiple hits (as shown in Fig. 5.3). This indicates that genes interacting 
with a greater variety of drugs may be more intricately connected to the underlying 
mechanisms driving the pathological phenotype associated with these drugs. The 
presence of multiple drug interactions with a gene suggests its involvement in mul-
tiple pathways or biological processes relevant to the disease phenotype, emphasiz-
ing its potential significance in the context of therapeutic interventions and 
understanding disease mechanisms (Alam et al. 2022).  

5.2.6	� Drug–Drug Interaction 

A change in a drug’s impact on the body when it is combined with another drug. The 
absorption of either drug can be sped up, slowed down, or improved by a drug–drug 
interaction. This could alter the way one or both drugs work, increase or decrease 
their effects, or have negative consequences. Studies have demonstrated that a sub-
stantial proportion, ranging from approximately 37–60%, of hospitalized patients 
may have one or more potentially interacting drug combinations upon admission 
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(Costa 1991). Digoxin, beta-blockers, estrogen, oral hypoglycemic medicines, and 
diuretics were the five drug classes most likely to be involved in possible drug inter-
actions. In this way, Cao et  al. have developed a database, e.g., DDInter (http:// 
ddinter.scbdd.com) (Xiong et al. 2022), The curated Drug–Drug Interaction (DDI) 
database offers extensive data, practical medication guidance, an intuitive func-
tional interface, and powerful visualization tools to cater to the needs of the scien-
tific community. The database currently includes approximately 0.24 million DDI 
associations. Figure 5.3 showcases the Drug–Target Interaction Network, where all 
13 modules’ targets (in green) are mapped with their respective drugs (in magenta). 
The illustration on the right demonstrates the number of interacting drugs with key 
targets, the database connects 1833 approved drugs, encompassing 1972 entities. 
Each drug in the database is accompanied by essential chemical and pharmacologi-
cal information, along with its interaction network. This comprehensive annotation 
allows for a deeper understanding of the drug’s characteristics and its interactions 
with other entities within the network (Fig. 5.4).   

5.2.7	� Functional Modules in Molecular Networks 

Protein clusters or sub-networks that exhibit dense connections are often regarded 
as potential functional modules within a given network. Another hypothesis pro-
poses that proteins interacting with similar groups of other proteins in the network 

Fig. 5.4  DDInter provides detailed annotations of each DDI association and enables users to 
conduct data query (image courtesy, please refer: https://doi.org/10.1093/nar/gkab880)   
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Fig. 5.5  Guilt-by-association approach: different colors are used to denote proteins with known 
functions, while proteins with unknown functions are left uncolored. Transferring functional anno-
tation from directly interacting proteins allows for the inference of protein function (indicated by 
arrows)  

tend to have comparable functions. Even in cases where direct interactions are 
absent, these proteins contribute to similar biological functions and should be 
included in the same modules. However, both definitions of modules rely on a guilt-
by-association approach, as illustrated in Fig.  5.5. For instance, if two proteins 
interact with each other, it is more likely that they share the same cellular function-
alities compared to proteins that do not interact (Wang and Qian 2014).  

There are many tools for the identification of functional modules within the net-
work, but few are widely used among the researcher including the LEV (leading 
eigenvector) method that detects the communities in network from package “igraph” 
in R (Newman 2006). Another approach called MCODE (Molecular Complex 
Detection) focuses on identifying densely connected regions within a network. 
MCODE aims to identify molecular complexes or clusters characterized by high 
connectivity and close proximity of nodes (Bader and Hogue 2003). 

Another is the DIAMOnD (DIseAse MOdule Detection), which we can investi-
gate the local network neighborhood (LNN) near a particular set of known disease 
proteins, and this helps us identify potential new disease target protein (Ghiassian 
et  al. 2015) and last one which I found very useful and accurate that is MTGO 
(Module detection via Topological information and Gene Ontology knowledge) is a 
method that identifies modules within a network using both network topology and 
the biological role of proteins based on Gene Ontology (GO) terms (Vella et al. 2018). 

5.3	� Drug–Repurposing Opportunities 

Network-based drug repurposing methodologies are based on the premise that 
drugs capable of interacting with multiple targets can demonstrate efficacy against 
specific diseases. Furthermore, these methodologies take into account the potential 
therapeutic implications when two drugs target the same protein. By leveraging the 
interconnected nature of biological networks, these approaches offer promising 
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avenues for identifying new therapeutic uses for existing drugs. This approach 
proves to be effective in the discovery and development of drug molecules with new 
pharmacological or therapeutic indications. By targeting specific proteins through 
therapeutic combinations or drug repurposing, it becomes possible to improve clini-
cal conditions in cases of comorbidity, enhance the potency of certain drugs, and 
achieve synergistic effects for better treatment outcomes (Imam et al. 2023). 

5.4	� Drug Side Effects 

Over a million significant injuries and fatalities are caused annually by adverse drug 
reactions (ADRs), which are very common. Currently, many machine learning and 
network-based approaches are used to predict the adverse drug. By leveraging fea-
tures such as composition, structure, and binding affinity, researchers have employed 
methods that involve machine learning (ML) and deep learning techniques (Dara 
et al. 2022). As part of these ongoing efforts, a recent development is the T-ARDIS 
database (Galletti et al. 2021). T-ARDIS is a carefully curated compilation of rela-
tionships between proteins and Adverse Drug Reactions (ADRs). These associa-
tions are statistically evaluated and sourced from existing databases of drug–target 
and drug–ADR associations. 

5.5	� Integrating Omics Data with Networks: Challenges 
and Ways 

Multi-omics data will soon be regularly used in preclinical and clinical contexts, 
hence further constraints should apply standardized, rigorous bioinformatics tech-
niques to process, normalize, and analyze the massive datasets from various study 
modalities. From this perspective, it should soon be possible to build networks of 
networks to determine how various biological aspects are interconnected. Beyond 
intracellular molecular networks, we are now combining the connections between 
various cell-types, organ-systems, hosts and microorganisms, hosts and environ-
mental exposures, as well as other interconnections. It would also be essential to 
incorporate psychosocial components when defining disease networks in order to 
link all contributing factors to clinical results. As demonstrated, network controlla-
bility analysis continues to be useful for identifying important disease genes and 
prioritizing potential targets. 

The existing human interactome is incomplete, which restricts network analysis 
of complicated human disorders. The interactome is expected to keep growing as 
high-throughput technology and bioinformatics continue to progress. The existing 
interactome is based solely on the binary biophysical interactions between the 
curated PPIs, with little knowledge of or annotations for protein-binding patterns or 
domains. There is an ongoing attempt to develop a “domain-specific interactome 
(DSI)” where commonly shared domains or motifs, such “SH3” and “PDZ domain” 
are two examples of frequently shared domains or motifs that are being screened 
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and cloned for their interacting partners. The possibility of modifications to the 
physical and metabolic characteristics in a physiological context that changes pro-
tein binding at these domains is a limitation of this strategy. 

In addition, the majority protein–protein interactions (PPIs) within the current 
interactome are predicted based on the induced protein expression levels observed 
in experimental yeast cells, which could be very different from the endogenous 
ecosystem where key targets are normally expressed. An area of active research is 
the integration of PPIs with gene expression data and further techniques to provide 
tissue and disease-specific perspective to the existing interactome. Notably, the 
present interactome only contains one isoform of each gene product and provides 
scant annotations regarding the splice isoforms that are being considered. It is gen-
erally accepted that distinct spliced forms can results in significant changes in phe-
notypic variations. 

Reticulocyte analysis is a recently developed idea in which a patient’s unique 
integrative biological network (reticulome) and a set of molecular-mutants/variants 
are investigated. Each person has a unique set of biological networks. Biological 
network environment within an individual unquestionably influences the final result 
(phenotype) of a certain set of genetic variations (genotype) and therefore, should 
be an essential element of any patient-specific data assessment. Therefore, custom-
ized reticulotype-based network studies have potential to strengthen the current 
genotype/phenotype correlation attempts and may make the search for customized 
targeted therapies. 

5.6	� Case Studies 

5.6.1	� Case Study: 1 

Imam et al. conducted a recent study titled “Network-Medicine Approach for the 
Identification of Genetic Association of Parathyroid Adenoma with Cardiovascular 
Disease and Type-2 Diabetes.” This study delves into unexplored dimensions of 
diseases by specifically investigating distantly related protein sets associated with 
other diseases that have not been previously studied. The aim is to understand their 
collective physiological impact on the pathological phenotype through network 
analysis. 

The researchers performed a comparative analysis of disease-associated proteins 
in Parathyroid Adenoma, Cardiovascular Disease, and Type-2 Diabetes with the aim 
of identifying shared genetic factors. Utilizing network analysis methods, they 
investigated functional modules within the protein-disease network that exhibited 
dense internal connections but sparse connections with the rest of the network. As a 
result, they discovered 13 target proteins that were found to be common to parathy-
roid adenoma, cardiovascular disease, and type 2 diabetes. These proteins were sub-
sequently organized into hierarchical modules and sub-modules within the 
Protein–Protein Interaction (PPI) network. In their study, the researchers also 
employed the concept of drug repurposing and drug combinations. They utilized 
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target proteins and associated drugs in a drug–target bipartite network, which 
included experimentally verified drug–target binary connections. They found that 
36 drugs were common to both target-associated drugs (TAD) and disease-associated 
drugs (DAD), supporting the effectiveness of a multi-target drug approach. 

This network-based analysis presents promising avenues for personalized treat-
ment and the repurposing of drugs. It allows for the exploration of new targets and 
combinations of multiple drugs, facilitating a comprehensive understanding of pro-
tein–disease associations and disease–disease relationships. By utilizing advanced 
computational techniques, the study prioritizes drug–target interactions and exam-
ines disease–disease connections, thereby enhancing the selection of potential ther-
apeutic targets based on efficacy and safety in complex disease scenarios (For more 
details, read the full article: https://doi.org/10.1093/bfgp/elac054). 

5.6.2	� Case Study: 2 

A study conducted by Aftab et al. aimed to construct a disease network by investi-
gating the overlap between Tuberculosis (TB) and other Non-Communicable 
Diseases (NCDs) such as Parkinson’s Disease (PD), Cardiovascular Disease (CVD), 
Diabetes Mellitus (DM), Rheumatoid Arthritis (RA), and Lung Cancer (LC). 
Through the analysis of this disease network, the researchers identified common 
genes associated with TB and other NCDs, establishing important gene–disease 
relationships. 

To delve deeper into these diseases, the researchers constructed separate gene 
interaction networks for each disease by integrating carefully curated and experi-
mentally validated human interactions. Additionally, they generated and analyzed a 
drug–target interactome network that encompassed clinically relevant drug–drug 
and drug–target interactions. This comprehensive network offered a more compre-
hensive understanding of the intricate landscape of drug–target interactions. 

The primary objective of this study was to establish a comprehensive workflow 
that takes into account Tuberculosis (TB) and its overlapping Non-Communicable 
Diseases (NCDs), emphasizing the significance of reconsidering and redefining 
therapies and therapeutic management. The findings underscore the potential of 
exploring uncharted territories in disease research, particularly the shared gene sets 
that coexist among various diseases. By fostering collaboration, it becomes feasible 
to collectively impact the pathological phenotype at a physiological level (For more 
details, read the full article: https://doi.org/10.3389/fphar.2021.770762). 

5.7	� Conclusion 

Multi-omics data will soon be regularly used in preclinical and clinical contexts, 
hence further constraints should apply standardized, rigorous bioinformatics tech-
niques to process, normalize, and analyze the massive datasets from various study 
modalities. From this perspective, it should soon be possible to build networks of 
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networks to determine how various biological aspects are interconnected. Beyond 
intracellular molecular networks, we are now combining the connections. 

between various cell-_types, organ-systems, hosts and microorganisms, hosts 
and environmental exposures, as well as other interconnections. It would also be 
essential to incorporate psychosocial components when defining disease networks 
in order to link all contributing factors to clinical results. As demonstrated, network 
controllability analysis continue to be useful for identifying important disease genes 
and prioritizing potential targets. Reticulocyte analysis is a recently developed idea 
in which a patient’s unique integrative biological network (reticulome) and a set of 
molecular-mutants/variants are investigated. Each person has a unique set of bio-
logical networks. A biological network environment within an individual unques-
tionably influences the final result (phenotype) of a certain set of genetic variations 
(genotype) and therefore, should be an essential element of any patient-specific data 
assessment. Therefore, customized reticulotype-based network studies have the 
potential to strengthen the current genotype–phenotype correlation attempts and 
may make the search for customized targeted therapies. 
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6 Role of R in Biological Network Analysis 

Mohd Murshad Ahmed and Safia Tazyeen 

Abstract 

The life sciences are becoming increasingly data rich as a result of technical 
development in molecular biology (large-scale systems biology, genomics). 
Appropriate analysis of large-scale datasets (proteomics, genomes, multi-omics 
data, Htseq, RNA-seq, ChIPseq, and so on) is now a bottleneck. One of the most 
frequent ways of representing biological systems as complicated sets of binary 
interactions or relationships between diverse bio-entities is through networks. In 
fields like computational biology, finance, neurology, political science, and pub-
lic health, network analysis is a technique that employs graph theory to investi-
gate complicated real-world hurdles. Networks, which are mainly portrayed as 
graphs with hundreds of nodes and thousands of vertices, are the best way to 
describe the various components of a system and their interactions. Some of the 
potential applications of network analysis in biology and medicine include dis-
covering drug targets, determining the function of a protein or gene, inventing 
successful strategies for treating various diseases, and providing early identifica-
tion of abnormalities. Several software tools, such as Gephi and Cytoscape, are 
built for network analysis and the production of network graphs. R has evolved 
into a formidable tool for network analysis, despite not being specifically 
designed for it. R has three distinct advantages over standalone network analysis 
applications. The goal of this research/chapter is to provide a solid understanding 
of how to use R to perform advanced data analysis. Researchers will learn how 
to extract relevant information from multiple datasets using a variety of regularly 
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used statistical and mathematical methodologies. The goal is also to demonstrate 
and highlight a few important methodologies related to network analysis, rather 
than to provide a fully-fledged analysis. In this chapter, we illustrate ideas, mod-
els, and methods from the graph theory world and explore how they might be 
utilized to uncover hidden aspects and features of a network. 

Keywords 
Packages · Co-expression network · Survival analysis · Modules analysis · Gene 
ontology 

6.1	� Introduction 

In biology, network structures are everywhere because many biological systems 
depend on intricate interactions between the parts that make them up. Predator–prey 
partnerships are the most frequent kind of species interaction in ecosystems and are 
essential to preserving biodiversity (Oleskin 2014). Synapses in the human brain are 
used to transmit electrical and chemical signals between neurons. DNA, RNA, pro-
teins, and other components play various roles in biochemical processes at the cel-
lular level that control how cells function. These systems are best represented 
mathematically by networks, which have sets of elements, which we shall call ver-
tices or nodes, with connections between them, called edges (Wang et al. 2021). 
Discovering the biological information from network concepts is of major signifi-
cance since biological entities are involved in complicated and complex interactions 
(Liu et al. 2020). Experimental biology developments have increased the availabil-
ity of large-scale biological network data (Vitkup 2004). We examine networks of 
protein–protein interactions (PPIs), in which proteins are represented as network 
nodes and interactions as network edges (Nabieva et al. 2005). Since proteins inter-
act with one another to carry out nearly all biological functions, studying the struc-
ture of PPI networks may provide new information about disease and complex 
biological phenomena (Memisevic et  al. 2010). Researchers have gained fresh 
insights into the challenge of modeling complex systems as a result of the growth of 
network data in a variety of fields, which has also sparked the development of vari-
ous cutting-edge statistical approaches and computational tools/databases such as 
R/RStudio/GEO2R (Wang et al. 2021). R is a widely used open-source program-
ming language for statistical computing and data analysis. R typically includes a 
command-line interface (Lovelace et al. 2019). R is accessible on popular operating 
systems like Windows, Linux, and macOS. The newest cutting-edge technology is 
the R programming language developed by Ross Ihaka and Robert Gentleman 
(Giorgi et al. 2022; Ihaka and Gentleman 1996). Much of the intricacy of cellular 
life is mediated by gene interaction networks, in which genes activate and repress 
the transcription of other genes, and their dysfunction can be fatal to an organism. 
So, systems biology has long sought to understand these networks (Saint-Antoine 
and Singh 2020). Exploring gene interactions experimentally by testing every pos-
sible gene pair is impractical due to the large number of genes present in the human 
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genome, which is approximately 20,000. However, modern molecular biology tech-
niques, such as DNA microarrays and next-generation sequencing (NGS), have 
made it possible to obtain a quantitative understanding of the transcriptome profile 
of a single cell or a group of cells. RNA-sequencing (RNA-Seq), whether done on 
individual cells or as bulk sequencing, is a particularly valuable tool for this pur-
pose. These methods have greatly facilitated the discovery of gene interactions and 
other molecular mechanisms underlying complex biological processes (Madsen 
et al. 2022). This chapter will demonstrate the numerous applications of the R lan-
guage. Despite the fact that R is one of the most popular and effective programming 
languages in bioinformatics, R excels in the creation of graphs and figures of publi-
cation quality and in the use of a variety of statistical tools, such as RNA-Seq and 
genomics. 

6.2	� Installation of R Software and Packages 

We will start by learning the statistical programming language R. R programming is 
a great option for processing and analyzing life science data since it has a large com-
munity of developers who are constantly creating new R programming packages. R 
software is deserving widespread acclaim, and it will continue to grow. A wide 
range of statistical techniques is supported by R software, including traditional sta-
tistical tests, modeling (both linear and nonlinear), classification, time series analy-
sis, cluster analysis, and graphical data display. R software is a great option for 
manipulating big data and life science data because it is extremely flexible and 
simple to learn. We first need to get access to R, then we can begin learning it. The 
focus of this chapter will be on R implementation. An R installation is available at 
http://cran.r-project.org and RStudio at http://www.rstudio.com/. This is simple; the 
software package is not large, and I normally work on things offline. R console like 
below will appear, and the R program will get started, see Fig. 6.1.

6.2.1	� Packages in R 

R packages are a collection of preset functions that can be used as a library when 
deploying an R application to promote reuse and a low-code design. R packages are 
created outside of the R environment and can be imported to make use of the avail-
able functions they include. When a package is loaded into the R environment, it 
offers the necessary functions that can be used. A library in C, C++, or Java is analo-
gous to a list of R Packages. Therefore, a package might essentially comprise a 
variety of functionality, such as functions, and constants, that we will then let the 
user use in the context of a certain situation. R comes with a number of packages 
that may be obtained from CRAN (Comprehensive R Archive Network) and GitHub.

6  Role of R in Biological Network Analysis
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6.2.2	� Installing R Packages 

Direct package installation is possible using either the IDE or commands. We use 
the function below and the package name to install packages: 

Syntax: 

install.packages() 

Code: 

install.packages(“affy”) 

The above code installs the affy package in R. 

6.2.3	� Loading R Packages 

To use the loaded packages in R, we must load them after installing the R package. 
To load the packages, we employ the functions below: 

Syntax: 

>Library (package name) 

Code: 

>Library (affy) 

Now affy package is loaded in R Console. To overview the complete process of 
R installation and update refer to Fig. 6.2.

6.3	� To Build Network Model Using R 

Data must be in a specific form for the network analysis packages to build the 
unique type of object that is required by each program. Adjacency matrices, also 
known as sociomatrices, are the foundation for the object classes used by the pro-
grams network, igraph, and tidygraph (see Fig. 6.3).

A three-edged, undirected graph is produced by the code below. The edges are 
1-  >  2, 2-  >  3, 3-  >  1 since the integers are read as vertex IDs. M1  <  − graph 
(edges = c(1,2, 2, 3, 1), n = 3, directed = F) plot(M1).
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Fig. 6.3  The diagram depicts the network plot in R

6.4	� Differential Gene Expression Analysis Microarray in R 

Among all gene analyses, gene expression analysis has the potential to be the most 
important. Gene expression is the process by which genetic information is trans-
ferred from DNA to mRNA and subsequently translated into proteins. Although 
gene expression profiling has helped to better categorize some diseases (such as 
chronic myelogenous leukemia and breast cancer), it still presents a significant bar-
rier to understanding the molecular mechanisms underlying disease pathogenesis. 
An overall picture of cellular activity can be obtained by studying the pattern of 
genes that are expressed at the transcriptional level in a particular cell or under par-
ticular circumstances. This process is known as gene expression profiling. Two 
techniques for doing so include DNA microarrays, which assess the relative activity 
of previously chosen target genes, or sequencing technologies, which enable profil-
ing of all active genes. Our comprehension of the cellular processes, metabolic 
alterations, and transcriptional reprogramming of the diseased heart among inherit-
able forms of cardiovascular disease has been significantly impacted by recent 
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developments in single cell disorder. By changing the environment to which the cell 
is exposed and identifying which genes are expressed, gene expression profiling 
enables you to examine the effects of various situations on gene expression. 
Alternately, gene expression profiling enables you to ascertain whether a cell is 
performing a function for which you are already aware that a particular gene is 
important. For instance, some genes have been linked to cell division; if these genes 
are active in a cell, you can determine whether the cell is dividing or whether it is 
differentiating. The creation of hypotheses frequently uses gene expression profil-
ing. Expression profiling under various circumstances can assist in developing a 
hypothesis when little is known about how and when a gene will be expressed. 

If so, it might be determined through additional research. Investigating the 
impact of drug-like compounds on cellular response is another application of gene 
profiling. Determine if cells express genes known to be involved in responding to 
hazardous environments when exposed to the drug in order to find the genetic mark-
ers of drug metabolism. 

Gene expression profiling is a potent method for locating DEGs and locating 
impacted pathways, and this method offers additional insight into the mechanisms 
underlying the progression of the disease. Suppose disease condition cells express 
higher or lower levels of certain genes, and these genes code for a protein receptor. 
In that case, this receptor may be involved in particular diseases, and targeting it 
with a drug might treat the disease. Gene expression profiling might then be a key 
diagnostic tool for people with complex diseases. In transcriptomics research, gene 
differential analysis is commonly utilized. When two groups of samples have dis-
tinct characteristics, their genes are almost certainly expressed differently. 
Differential analysis, in contrast to other analyses such as expression analysis or 
cluster analysis, focuses on the genes that are differentially expressed between two 
situations. The differentially expressed genes could explain why the two groups 
have different characteristics. Differential expression analysis aims to find genes 
whose expression varies depending on the situation. Correction for multiple testing 
is a significant factor in differential expression analysis. This is a statistical phenom-
enon that arises when a small number of samples are subjected to thousands of 
comparisons (for example, comparing the expression of numerous genes in differ-
ent situations) (most microarray experiments have less than five biological repli-
cates per condition). As a result, there is a higher chance of getting false-positive 
results. Advances in molecular biology and information technology have made it 
possible to explore a large portion of the genomes of numerous species in recent 
years. Because the amount of data created in the field of molecular biology is 
immense, current bioinformatics studies are focused on the structural and functional 
features of genes and proteins. The requirement to determine whether genes have 
different expression models by phenotype or experimental situation is the guiding 
premise in analyzing gene expression data. The “fold change” criteria is a straight-
forward method for choosing genes. Only if there are no or only a few repetitions is 
this conceivable. An analysis based solely on fold change, on the other hand, does 
not allow for the evaluation of the importance of expression differences in the pres-
ence of biological and experimental variables that may differ from gene to gene. 
This is the primary reason for evaluating differential expressions with statistical 
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tests. The fundamental tenet of biology explains how information is extracted from 
genes and used to make proteins. Proteins are created by RNA translation after RNA 
transcription. All living things use a process known as gene expression to produce 
the elements that makeup life from genetic information. A cell might read its genetic 
code differently since it only expresses a subset of the genes it possesses at any one 
time. The cell’s ability to regulate its size, shape, and functions is accomplished by 
controlling which genes are expressed. The phenotype of an organism, such as the 
color of a mouse’s hair or if it has any at all, depends on how the organism’s cells 
express the genes that are present in them. Gene expression profiling counts the 
genes that are active at any particular time in a cell. With this technique, thousands 
of genes can be measured at once; in some experiments, the entire genome can be 
measured simultaneously. By measuring mRNA levels, gene expression profiling 
reveals the pattern of genes that are expressed by a cell at the transcription level. 
This sometimes entails measuring the relative levels of mRNA in two or more 
experimental circumstances, then determining which conditions led to the expres-
sion of particular genes. Many biomedical researchers, from molecular biologists to 
environmental toxicologists, use gene expression profiling. This method can sup-
port a wide range of experimental objectives by providing precise information on 
gene expression. The process of using a gene’s information to create a functioning 
gene product, which may be a protein, is known as gene expression. Understanding 
the biological distinctions between healthy and sick situations requires knowledge 
of differential gene expression. 

6.5	� RNA-Seq Analysis in R 

Microarray data has been the most prevalent sort of transcriptomics data available 
to scientists for a long time. This began to change in 2009 when technological 
breakthroughs made RNA-seq a viable alternative to microarray data. The identifi-
cation and confirmation of biomarker signatures, as well as the importance of dif-
ferential gene expression in normal biological and pathological processes, can all be 
aided by gene expression analysis. High-throughput sequencing tools are used in 
RNA sequencing (RNA-Seq), which provides data on a cell’s transcriptome. 
Compared to prior Sanger sequencing and microarray-based techniques, RNA-Seq 
provides noticeably higher coverage and precision of the dynamic dynamics of the 
transcriptome. In addition to assessing gene expression, RNA-Seq data can be used 
to find novel transcripts, recognize alternatively spliced genes, and find allele-
specific expression. Researchers can now better comprehend the functional com-
plexity of the transcriptional machinery because of recent improvements in the 
RNA-Seq methodology, from sample preparation to library construction to data 
interpretation. R is used to analyze RNA-seq count data. With a focus on the DESeq, 
this will involve reading the data into R, doing quality control, differential expres-
sion analysis, and gene set testing.

6  Role of R in Biological Network Analysis
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6.6	� Weighted Correlation Network Analysis Using R 

Applications in bioinformatics are increasingly using correlation networks. 
Weighted gene co-expression network analysis (WGCNA) is one systems biology 
method for summarizing the correlation patterns across genes across microarray 
sets. WGCNA can be used to locate clusters (modules) of highly correlated genes, 
summarize these clusters, connect modules to one another and to variables from 
external samples, and compute module membership measures. Network-based gene 
screening techniques for the discovery of potential biomarkers or therapeutic targets 
are made easier by correlation networks. These methods have been effectively 
applied in a wide range of scientific fields, including cancer research, mouse genet-
ics, and yeast genetics. Steve Horvath and Peter Langfelder al did such type of 
analysis see link (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/ 
Rpackages/WGCNA/)(see Fig. 6.4).

6.7	� Network Component Analysis 

A framework called Network Component Analysis (NCA) is used to infer the 
dynamics of regulatory signaling from network structure. NCA employs the con-
nectivity structure of transcriptional regulatory networks to limit the decomposition 
to a single solution, in contrast to conventional approaches like principal component 
analysis or independent component analysis. The current version of NCA, however, 
is unable to take into account data from regulatory gene knockouts that limit the 
dynamics of regulatory signals, such as network topology data. By allowing for the 
incorporation of such data, NCA can be applied to systems that might not meet its 
identifiability requirements, resulting in more precise and self-consistent analysis 
across several experiments. High-throughput technologies like DNA microarrays 
commonly yield high-dimensional data sets that are the outputs of complex net-
worked systems under the control of covert regulatory signals. Principal component 
analysis and independent component analysis are two examples of traditional statis-
tical techniques for computing low-dimensional or hidden representations of these 
data sets. These techniques ignore the underlying network structures and provide 
decompositions based only on a priori statistical constraints on the computed com-
ponent signals. 

R Cluster Analysis Packages 
There are many tools, databases, and plugins available in Cytoscape to find mod-
ules/communities/subnetworks. Modules from the network can be found using 
plugins like MCODE and Cytohubba. The web-based database centiserver, in con-
trast, has more than 20 centrality algorithms that are also used to find modules. In 
this chapter, we will discuss the igraph package for modules/community findings. 
The native network breaks into sets of subnetworks (sub-communities) using igraph 
coding in R. Finding the most influential nodes in Network using R packages is an 
advance level of centrality, see Figs. 6.5, and 6.6.

6  Role of R in Biological Network Analysis
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Fig. 6.5  The diagram depicts different modules in R. The left corner (upper side) shows different 
colors of network for modules. The right corner (upper side) shows the module based on degree, 
in which a higher degree means large-size nodes, whereas different color indicates different mod-
ule nodes. The below-left corner indicates the modules with a color background. The below right 
corner shows the modules based on the country data

6.8	� Preparing Network Data in R 

The use of mathematical graph theory to represent, integrate, and analyze biological 
processes and data through networks is one of the fundamental ideas of systems 
biology. Depending on the type of data, biological networks such protein–protein 
interaction networks, gene regulatory networks, and metabolic networks can be cre-
ated. Using network-based techniques as an integration and modeling tool, signifi-
cant molecular connections can be uncovered. When used on specific patients, 
personalized network analysis can result in the identification of novel disease sub-
types and therapeutic targets, enabling the development of novel drugs, the identifi-
cation of novel biomarkers, and the repurposing of existing medications, as seen in 
the case of cancer. A biological system is represented as a network using a graph. It 
includes both biological components (such as cells, proteins, and genes) and the 
connections between them (like protein–protein interactions). In network biology, 
these are referred to as nodes and edges, respectively. Biological networks provide 
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a conceptual and accessible framework for studying, modeling, characterizing, and 
comprehending complicated interactions between various components in a biologi-
cal system. In computer science and mathematics, network theory (which includes 
graph theory) has a wide range of applications, some of which are directly related 
to biological and disease networks. Examples of these applications include the 
Internet, social networks, particle physics, and other networks. Additionally, it has 
been discovered that network motifs, which are recurring and statistically signifi-
cant sub-graphs in networks, have been preserved throughout evolution and are con-
nected to particular biological functions. A system that consists of well-defined 
interaction elements, carrying certain topological features corresponding to physi-
cally or functionally related structures, can be represented by a graph (or network) 
G(n;m). The interacting elements are represented by nodes/vertices and their mutual 
interactions by edges/links. The system-specific relationship among the nodes and 
edges describes the topology of the network. 

Based on edge attributes, there are three types of networks, directed, undirected, 
and weighted. In a directed network, the interaction among nodes has directional 
consequences, e.g., metabolic networks in which the nodes represent metabolites. 
The specific reaction pathways among the metabolites are represented by direc-
tional edges. Suppose the interactions can happen in both the direction with equal 
probability. In that case, the system is represented by an undirected network, e.g., a 
social friendship network, citation network, and large-scale functional biological 
network. Sometimes, edges can be attributed with weights to address a wide vari-
ance in the frequency of interaction among nodes, thus representing a weighted 
network. 

6.9	� Data Analysis and Visualization with R 

The support for graphs in the R language is its most popular feature for producing 
various graphs and charts for visualizations. The R language includes a large selec-
tion of packages and features that may be used to generate the graphs using the input 
data set for data analytics. The most popular graphs in the R programming language 
are the scatter plot, box plot, line, pie, histogram, and bar graphs. R graphs enable 
both two- and three-dimensional visualizations for exploratory data analysis. 
Graphs are created using R methods like plot(), barplot(), hist(), and pie(). Advanced 
graph functions are supported by R packages such as ggplot2 (see Fig. 6.4). 

6.9.1	� Boxplot 

Data can be represented graphically using boxes and whiskers using a boxplot. 
Variable value orders are sorted in ascending order before the data are divided into 
quarters. The box in the plot represents the IQR, or middle 50% of the data. The 
box’s black line indicates the median. 

See Code:
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Boxplot(trees, col = c("yellow", "red", "cyan"), main = "bp 
dataset") 

6.9.2	� Histogram 

A histogram is a graphic instrument that analyses just one variable. A number of 
values known as the frequency are calculated when a number of variable values are 
categorized into bins. Following this calculation, frequency bars are plotted in the 
corresponding beans. Frequency is used to represent a bar’s height. To create a his-
togram in R, we can use the hist() function, as seen below. Below is a straightfor-
ward histogram of tree heights: 

Code: 

hist(trees$Height, breaks = 10, col = "orange", main = "Histogram 
of Tree heights", xlab = "Height Bin") 

See Fig. 6.4. 

6.9.3	� Volcano Plot 

In a volcano plot, the fold change is often found on the x-axis and the p-value is 
found on the y-axis. This form of scatter plot illustrates the differential expression 
of genes. It makes it possible to quickly visually identify genes that have significant 
statistical fold changes. These genes might be the ones with the most biological 
impact. In a volcano plot, the genes that are most upregulated are on the right, the 
genes that are most downregulated are on the left, and the genes that are most statis-
tically significant are at the top, see Fig. 6.4. 

6.9.4	� Heatmap 

The individual values found in a matrix are represented as colors in a heatmap, 
which is a graphical representation of data. R comes with the heatmap () function 
by default. It generates high-quality matrices and provides statistical tools for data 
normalization, grouping, and dendrogram visualization. 

heatmap (data, scale=“column”) 
R functions like plot(), barplot(), hist(), and pie() are used to create graphs in the 

R language. Advanced graph functions are supported by R packages such as ggplot2, 
see Fig. 6.7.
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Fig. 6.7  The diagram depicts the visualizing plot in R 

6.10	� Case Study: Constructing a Protein–Protein Interaction 
Network from String Database to Find Out Influential 
Nodes Using R 

One disadvantage of using the PSICQUIC web service to build an interaction net-
work is that most biologists do not have easy access to it. Thankfully, there are some 
more user-friendly web-based tools available. We give a case study that demon-
strates how to create and visualize a network of experimentally validated interac-
tions from a gene list using a String database. In this case study, we used our 
published data on CVD and CKD (Ahmed et  al. 2022). The mRNA expression 
patterns of CKD (GSE15072, GSE23609, GSE43484, GSE62792, GSE66494) and 
CVD (GSE26887, GSE42955, GSE67492, GSE71226, GSE141512, GSE48060) 
were collected from normal and treated samples. Using the R tool (version 3.6.0, 
64-bit), gene expression microarray data from CVD and CKD were compared to 
find overlapped differentially expressed genes (DEGs). After that, all common/ 
overlapping DEGs were analyzed using the online STRING version 9.1 tool, and 
the results were shown using Cytoscape (version 3.8.0). We have found 15 modules/ 
clusters using Cystoscope’s MCODE plugin, 10 of which contained genes of inter-
est, and found that these were largely enriched in pathways. Nineteen important 
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Fig. 6.8  There are 587 nodes and 13,887 edges in the network of CVD and CKD. The most sig-
nificant nodes in the network are produced by R and significant packages are displayed. The nodes’ 
color and interactions become more apparent as you zoom in on them. The original network’s 
nodes are generally the same color, indicating that they have a score of less than 25. A color spec-
trum is used to indicate the nodes’ values. Yellow indicates that the nodes are larger and have val-
ues higher than 75 

genes (11 downregulated and 8 upregulated) were found in these 10 modules under 
study. The most important genes are found in modules 1 (RPL13 RPLP0 RPS24 
RPS2) and 5 (MYC COX7B SOCS3). This study used IVI techniques to identify the 
most significant nodes in a gene–gene network, which may lead to the creation of 
new biomarkers. In this study, we combined the most important topological charac-
teristics of the network to use a novel method called IVI (Integrated Value of 
Influence) to identify the network’s significant players. The most important or influ-
ential nodes in a network are those with a high spreading potential (the spreader 
nodes are supposed to have the biggest impact on the information flow in the net-
work) and a high hubness score. Top 20 nodes were extracted based on IVI values, 
hubness score, and spreading score, with RPS27A non-seed gene being the most 
significant node in the native network. However, among all the seed genes, RPS2 
was the most significant node, see Fig. 6.8. 

A constructed PPI data is available on the String database. The PSI-XML schema 
is a recent initiative by the Protein Standardization Initiative to formally standardize 
the way biologists should report molecular interaction data. 

The code chunk below demonstrates how to download and parse the CVD and 
CKD merge PPI data from the String database using igraph package. 

install.packages("igraph") 
install.packages("influential") 
library(influential) 
library(igraph) 
Interaction.Data<-read.delim("NETWORK STRING.txt" .sep ="\t")
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MsData<- CVD.data 
library(influential) 
CVD.Data<-read.delim("NETWORK.txt" .sep ="\t") 
MMData<- CVD.Data 
Mss_graph<- graph_from_data_frame(MMData) 
# Extracting the vertices 
GraphVertices<- V(Mss_graph) 
# Calculation of Spreading score 
Spreading.score<- spreading.score(graph = Mss_graph,
                                   vertices = GraphVertices,
                                   weights = 0, directed = F, mode 
= "all",
                                   loops = TRUE, d = 5, scaled = T) 

# Calculation of Hubness score 
Hubness.score<- hubness.score(graph = Mss_graph,
                                   vertices = GraphVertices,
                                   directed = 0, mode = "all",
                                   loops = TRUE, scaled = 1) 
head(argument) 

Upon reading the protein–protein interaction data into R environment, one intui-
tive approach to study it is to plot and query the statistics of the result String net-
work. In a biological network, it is often important to know the number of direct 
interactions (degree) that possess a component. In graph theory, this corresponds to 
computing the degree (or valency)of a node of a graph. The degree of a graph is the 
number of edges incident to the node, with loops counted twice. Top ten genes 
extracted from the network based on degree see Table 6.1. Code for a degree such 
as below: 

Mss_graph<- graph(MsData) 
# Extracting the vertices

Table 6.1  Top ten genes 
based on degree are 
illustrated 

Genes Degree 
“ABCE1” 159 
“ACTB” 118 
“ACTG1” 71 
“ACTR5” 14 
“AHSA2” 4 
“AKT1” 174 
“AKT3” 48 
“ANK1” 2 
“ANXA3” 4 
“ABCE1” 159 
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GraphVertices<- V(Mss_graph) 
# Calculating degree centrality 
networkdegree<- degree(Mss_graph, v = GraphVertices, normal-
ized = 0) 
head(networkdegree). 

6.11	� Future Direction 

R programming has a bright future and is now popular since it is a straightforward 
language for those who are new to programming. The most common language used 
by statisticians and data scientists is R. The number of R users is thought to be 
around 2 million. It is regarded as a game-changer because R programming has 
proven to be the greatest tool for data analysis. Aside from the information technol-
ogy sector, many other sectors use R programmers to make use of their data and 
solve their problems. Consider that the mumps vaccination took 5 years to develop, 
making it the second-fastest vaccine. The COVID-19 vaccination process took less 
than a year. AI, big data analytics, and bioinformatics all played a role in making it 
possible. 
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7 Machine Learning in Biological 
Networks 

Shahnawaz Ali 

Abstract 

In the past few years, AI has been a subject of discussion between general and 
also specific audiences. The countless articles published discussing the advance-
ment and promises of AI can provide in medicine have been increasing. On the 
other hand, the concept and application of quantitative matrices for the networks 
in biology started by Neumann in 2010 has now grown as a respective field of its 
own, i.e., Network Biology. It is time to join these two fields of study and apply 
the rules with some modifications to biological networks. As a result of these 
integrations, the current concepts of precision medicine can be boosted from its 
core and benefited, like Network Medicine. So, let us tackle some of the pressing 
questions like what has been achieved, where are we heading? This chapter aims 
to elucidate the fundamental principles of machine learning and deep learning, 
particularly in the context of the medical field. 

Keywords 

Machine learning · Deep learning · Biological networks · Supervised · 
Unsupervised · Precision medicine 
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BIND	 Biomolecular interaction network database 
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BN	 Biological network 
CNN	 Convolutional neural network 
CRAN	 Comprehensive R archive network 
DEDS	 Discrete event dynamic systems 
DIAMOnD	 DIseAse module detection 
DIP	 Database of interacting proteins 
DL	 Deep learning 
DNA	 Deoxyribonucleic acid 
DNN	 Deep neural network 
DQ	 Data quality 
DSI	 Domain-specific interactome 
GCN	 Graph convolutional network 
GNN	 Graph neural networks 
GRNs	 Gene regulatory networks 
GUI	 Graphic user interface 
HPRD	 Human protein reference database 
KEGG	 Kyoto Encyclopedia of Genes and Genomes 
LEV	 Leading eigenvector 
MIPS	 Munich Information Center for Protein Sequences 
ML	 Machine learning 
MSigDB	 Molecular Signatures Database 
nBN	 Non-biological network 
NCBI	 National Center for Biotechnology Information 
NetMODE	 Network motif detection 
NM	 Network medicine 
PM	 Precision medicine 
PPIN	 Protein–protein interaction network 
PPIs	 Protein–protein interactions 
RNA	 Ribonucleic acid 
RNN	 Recurrent neural network 
SSc	 Systemic sclerosis 
TFs	 Transcription factors 
WGCNA	 Weighted gene co-expression network analysis 

7.1	� Machine Learning: Supervised, Unsupervised, 
and Deep Learning 

Machine Learning (ML) as we know is a broader field of statistics and computer 
science. Think of ML as a compilation of sophisticated data analysis methods 
geared towards constructing models that have the ability to forecast probable results 
derived from complex and diverse data. In simple words, a classical ML model 
learns a 2D representation of that n-dimensional data that helps it to predict the 
outcome of a new dataset. Learning 2D representations as done in classical ML 
techniques or probabilistic modeling can only be done for problems that are well 
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structured like binary classification. For many real-world problems like text mining, 
recommendation system, and translation. We have to go deep (learn meaningful 
features successively), i.e., Deep Learning. As these are perceptual tasks involving 
skills that are intuitive to humans and has not been addressed with such a precision 
by classical ML. Some of these DL models have been used by social sites (aka on 
social networks) to build recommendation systems that are purely based on analyz-
ing Real-World Networks (or Non-biological networks). 

Over the last two decades, there has been an increase in the large datasets quan-
tifying molecules, proteins, and their interactions within living system. Projects like 
Human proteome atlas, Human cell atlas, and many others of similar scope has 
generated petabytes of data. This volume of data and high dimensionality gives us 
the perfect case to apply ML techniques, as these techniques thrive on these two 
properties. Raw data presented in such high volume makes it imperative to apply 
techniques tailored to handle large data, i.e., ML. Application of ML is becoming 
more permeating and applied not only to genomic annotation but identification of 
Transcription factors, etc. 

As discussed in Box 7.1, we have different ML techniques at hand that can be 
used for solving and understanding biological problems. Since, most of the biology 
questions either have constrained information or debatable data with high dimen-
sionality, making it a perfect case of unsupervised learning. On the hand, with the 
advent of High throughput techniques, the volume of data generated has also 
increased exponentially. So, to take care of “High dimensionality” and “volume” of 
the data, the two most important requirement for applying ML has been fulfilling, 
and enough reason we can use the power provided by the advancement of ML tech-
niques (i.e., DL) to get a perspective on any biological processes (genome, PPIs, 
GRNs, etc.) (Yip et al. 2013). 

“The core of ML technology depends on understanding the patterns from the raw data, 
while learning is based on its mathematical and statistical framework of rules and assump-

tions. It can simply be described in a conceptual way as in Fig. 7.1.” 

As it is clear from Fig. 7.1 (adapted from the book Deep Learning in Python by 
François Chollet), the shift in the overall perspective of solving problems is what 
makes ML or in general Artificial Intelligence (AI) interesting.

Fig. 7.1  The paradigm 
shifts from classical 
programming to Machine 
learning (Chollet 2021) 
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Definition “AI is an effort to automate tasks normally performed by humans. 
While ML is a subset of AI that generates trained model over tons of examples and 
find statistical structure that in the end allows to come up with rules for automating 
a particular task. On other hand Deep learning is a subfield of ML that means learn-
ing representations from data through successive layers of increasingly meaningful 
representations.”

Box 7.1 Important 
Classification of Machine Learning Techniques. 

Machine learning implementations are classified into three major catego-
ries, depending on the nature of the learning “Input” or “Output.”
	1.	 Categories based on Input:
	 (a)	 Supervised: When an algorithm learns from example data and associ-

ated target responses such as classes or tags, in order to later predict 
the correct response when posed with new examples. This approach is 
indeed similar to human learning under the supervision of a teacher. In 
biological context gene expression profiles to disease group, etc.

	 (b)	 Unsupervised: When an algorithm learns from plain examples without 
any associated response, by determining the data patterns on its own. 
The algorithm in question possesses an ability of transforming data, 
almost mirroring a human’s cognitive process of identifying objects 
by diligently assessing their degree of likeness.

	 (c)	 Semi-supervised learning: Imagine a scenario where you are provided 
with an imperfect training input. This input consists of a training set 
wherein certain target outputs are mysteriously absent. Let’s consider 
the specific example of protein structure classification. In this context, 
we are faced with the task of categorizing protein structures, but we 
are lacking crucial information regarding some of the target outputs.

	2.	 Categories based on Output:
	 (a)	 Classification: When inputs are divided into two or more classes, the 

learner must produce a model that assigns unseen inputs to one or 
more (multi-label classification) of these classes. An example of this 
type is Spam filtering that depends on the user to tag emails as spam 
or not spam thus supervised.

	 (b)	 Regression: When the target output is continuous, not discrete, thus 
this type also comes under supervised learning.

	 (c)	 Clustering: Being similar to classification and mostly misunderstood, 
it is the type where input can be divided into groups. Thus, making it 
a typical Unsupervised Learning. Sometimes we provide the expected 
no of clusters (as in k nearest neighbor) and other times we use other 
Dimensionality reduction methods to get to that number.

S. Ali



115

Fig. 7.2  Infographics for ML in bioinformatics 

Now that we understand different types of ML techniques and a little in the con-
text of Biology as discussed by Tarca et al. (2007) and how they are useful, we can 
now quickly talk about an interesting sub-field of ML, i.e., Deep Learning. As DL 
recently has given us a powerful tool like AlphaFold that can predict the structure of 
any protein with the outmost efficiency (Jumper et al. 2021). 

7.2	� Machine Learning Algorithms in Bioinformatics 

The generation of large amounts of data has posed a challenge for computational 
biologist that is to efficiently extract useful information. The tools are required to 
analyze this heterogeneous data and give an insight in the form of testable models. 
Since, Biological data can fall under several domains to which ML techniques can 
be applied some of which are genomics, proteomics, and systemics (system biology 
and Network biology), see infographics Fig. 7.2 (adapted from Larranaga et al. 2006). 

As evident from Fig. 7.2, the different domains where ML can be applied, now it 
is time to discuss some of the algorithms in this context. 

7.2.1	� Supervised Classification for Bioinformatics 

In the supervised classification algorithm, we have a feature set (represented by 
X n ∈ ) and class vector (C f  X= ( )∈). The classification can be binary (for 
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example, predicting the splice site or sample type) or multiple (predicting the age 
group of patients, cell types). The main aim of supervised classification methods is 
to associate a new data point with the appropriate label based on the rules thus 
learned as a result of training. 

The most important step of supervised classification is selection of Feature 
Subset (FSS). As FSS comes under searching the most appropriate subset of fea-
tures thus search algorithms, to our disposal two methods can be used exhaustive 
search and heuristic search. Exhaustive search evaluates all possible subsets which 
can be impractical when we have large sample space, while heuristic searches 
involving deterministic and stochastic FSS algorithms have been proposed 
(Kuncheva 1993and Inza et al. 2000). The benefit of FSS in supervised classifica-
tion is it reduces the dimension thus the cost of training and prediction. There are 
three important approaches proposed for FSS namely filter, wrapper, and hybrid see 
(Kohavi and John (1997), Inza et al. (2004), and Xing et al. (2001) for more. 

Now, it is time to discuss some of the classifiers that can be trained using features 
selected using the FSS method. The application of a classifier depends on the type 
of problem that it can solve means no classifier is universal, see Table 7.1 for more 
information on the supervised classifiers models/algo (Table 7.2). 

Table 7.1  Supervised classification algorithms 

Classifier Type Description 
Bayesian Naive Baye, tree 

augmented naive Bayes, 
semi-naive Bayes, and 
k-dependence Bayesian 
(kDB) 

Minimizes the total misclassification cost. 
Based on how the predictive variables given 
the class means p(x ∈ X| c) is approximated. 
Different classifiers can be obtained 

Logistic 
regression 

– It is represented by the 
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, where x is an 

instance to be classified. The model 
preparation consists of Wald test with a 
likelihood test 

Support vector 
machines 

– It maps inputs implicitly to a higher 
dimensional space so that they can be 
separated by hyperplane (Ivanciuc 2007) 

Discriminative 
analysis (DA) 

Fisher linear (FDA) and 
Linear (LDA) 

FDA is where the ratio between—group to 
within—group sums of squares are 
minimized. While LDA constructs a 
hyperplane between two groups, such that 
LDA function is zero at hyperplane 

Neural Nets ANN It is a set of multilayered neurons using 
activation function and backpropagation 
method to identify weights on each node (i.e., 
parameters) 

Classification 
trees 

Directed tree It organizes the predictive variable in the form 
of a tree with branches split into mutually 
distinct and exhaustive link
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Table 7.2  Domain-specific application of supervised classification algorithms 

Domain (as in 
Fig. 7.1) Implementation studies (some) 
Genomics Gene prediction methods (Le 2020), 

Protein-coding gene identification (Hoff et al. 2016, Numa and Itoh 2014 
and Campbell et al. 2014) 

Proteomics Prediction of protein–protein interactions (Rodgers-Melnick et al. 2013; Zhu 
et al. 2016; Liu et al. 2017; Szklarczyk et al. 2019 and Ding and Kihara 
2019) 

Other 
applications 

Gene Ontology category (Bradford et al. 2010, Kulmanov and Hoehndorf 
2020, You et al. 2018, Fa et al. 2018 and You et al. 2019) 

Table 7.3  Clustering methods in Bioinformatics (Kononenko and Kukar 2007) 

Algorithms Description 
k-means, k medoid, 
and M-mean 

Divides data into k clusters such that within group distance is minimized 

Generalized Lloyd It is a variant of k-means where vector is quantized using coder and 
encoder. Then these coded vectors are organized topologically using 
self-organized maps so that it captures the structure in low dimensions 
like 1 or 2D (Linde et al. 1980) 

Agglomerative, 
divisive 

Set of hierarchical: Agglomerative begins with N groups with one entity 
for N groups and then progressively merges until all points are contained 
in one group. While divisive starts with one group and successively 
divide it until N groups

7.2.2	� Clustering Algorithms in Bioinformatics 

Clustering also called segmentation are set of algorithms that deal with unlabeled 
data thus an Unsupervised way to naturally group data points into one or more clus-
ters. These clustering algorithms can be divided into Partition based or Hierarchical 
based approaches. When diving into the world of Clustering, there are several piv-
otal steps to consider. First and foremost, it is crucial to weed out any outliers or 
noise from the dataset, ensuring that we are working with clean and relevant data. 
Next, selecting the right distance measure is of utmost importance. This could 
involve using methods such as Euclidean or Manhattan to accurately quantify the 
dissimilarity between data points. After that, we must turn our attention to selecting 
the proper criterion for our clustering process. This entails optimizing the cost func-
tion or establishing a set of rules that align with our objectives. Once the criterion 
has been determined, we can proceed to choose the most suitable algorithms for our 
analysis. And lastly, it is imperative to validate the outcomes of our clustering 
efforts, ensuring their reliability and accuracy. By meticulously following these 
steps, we can maximize the effectiveness of our clustering (Table 7.3). 
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7.3	� Integrating Machine Learning in Biological Networks 

All interactions in a living organism consisting of either of the four molecular 
entities of DNA, RNA, Protein, and small molecules (ions, etc.) can be repre-
sented as respective as well as mixed multilayer (aka complex) networks called 
Biological Networks. These networks can be divided broadly into Signaling and 
Non-signaling. So, in order to understand the properties of interaction between 
these molecular entities, we need methods that can be applied to networks of 
these entities like GNNs. There are subsets of GNNs like GCNs that have 
adapted CNN, which is highly successful spatial based method. Table  7.4 
describes a list of methods and their implementations related to BN domain 
(Muzio et al. 2021). 

Thus, using these BNs, we can predict and classify various features that can be 
subdivided in terms of task involved like Node classification, Prediction of links, 
Graph Embedding, classification, and regression (Bhagat et al. 2011; Lü and Zhou 
2011; Tsuda and Saigo 2010). When it comes to protein networks and the predic-
tion of unknown protein functions, algorithms that classify nodes (i.e proteins) are 
particularly valuable. This allows us to effectively categorize and analyze the vari-
ous components within these networks. While link prediction algorithms are use-
ful when we want to know the regulation between genes in a gene regulation 
networks; thus predicting the edges of network. Graph embedding set of methods 
are useful when the goal is to find a lower dimension representation of a protein 
in a PPI. Graph embedding is used before applying any DL algorithm. As sum-
marized in Table 7.4, these techniques and methods fulfil the need to extract use-
ful information from the large amount of data given that can be represented in the 
form of graphs/networks.

Table 7.4  Some important methods related to BN and their source code 

Method (some) Implementations 
Defferrard et al. (2016) https://github.com/mdeff/cnn_graph 
Duvenaud et al. (2015) http://github.com/HIPS/neural-fingerprint 
Grover and Leskovec 
(2016) 

https://github.com/aditya-grover/node2vec 

Hamilton et al. (2017) https://github.com/williamleif/GraphSAGE 
Kipf and Welling 
(2017) 

https://github.com/tkipf/gcn 

Perozzi et al. (2014) https://github.com/phanein/deepwalk 
Tang et al. (2015) https://github.com/tangjianpku/LINE 
Baranwal et al. (2020) https://github.com/baranwa2/MetabolicPathwayPrediction 
Senior et al. (2020) https://github.com/deepmind/deepmind-research/tree/master/ 

alphafold_casp13 
Yue et al. (2020) https://github.com/xiangyue9607/BioNEV 
Zeng et al. (2019) https://github.com/CSUBioGroup/DeepEP 

S. Ali

https://github.com/mdeff/cnn_graph
http://github.com/HIPS/neural-fingerprint
https://github.com/aditya-grover/node2vec
https://github.com/williamleif/GraphSAGE
https://github.com/tkipf/gcn
https://github.com/phanein/deepwalk
https://github.com/tangjianpku/LINE
https://github.com/baranwa2/MetabolicPathwayPrediction
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13
https://github.com/xiangyue9607/BioNEV
https://github.com/CSUBioGroup/DeepEP


119

7.4	� Machine Learning in Disease Dynamics 

Understanding disease and its dynamics are two different yet interconnected 
research topics. One is being defining the molecular basis and later being its pro-
gression in terms of contagion rate and other biological and non-biological factors. 
Since ML techniques are data hungry they can be applied in several ways to fulfill 
different goals let us explore some of these applications and discuss some of the 
state-of-the-art algorithms that are being used for this purpose. 

One of the main applications is predicting the spread of infectious diseases like 
in case of viral infections Influenza, COVID-19, and Ebola. This has been useful for 
public health agencies as they plan their response to outbreaks (Golumbeanu et al. 
2022; Venkatramanan et al. 2021). 

Another important application is that it can be used to identify the risk factors for 
the disease. This involves analyzing large datasets to identify patterns and trends 
that may be associated with an increased risk of developing a particular disease. 
Factors like diet, lifestyle, or genetic predisposition may increase a person’s risk of 
developing a particular disease. This information can be used to develop targeted 
prevention strategies or to identify individuals at substantial risk who may benefit 
from early intervention (Salathé and Khandelwal 2011). 

In addition to predicting spread and identifying risk factors, ML can also be used 
to enhance the diagnosis with increased accuracy and develop personalized treat-
ments for individual patients. Finally, machine learning can also be used to improve 
public health interferences. ML algorithms can be used to identify the most effec-
tive strategies for preventing the spread of diseases or improving the health of popu-
lations. Thus, researchers may use ML to analyze data on the effectiveness of 
different public health interventions, like vaccination campaigns or health education 
programs, to identify the most effective strategies for improving the health in gen-
eral (Palaniappan and David 2022; Francisco et al. 2021). 

There are different types of machine learning algorithms that can be used to 
study disease dynamics, including supervised learning algorithms, unsupervised 
learning algorithms, reinforcement learning algorithms, and deep learning algo-
rithms. Supervised learning algorithms are trained on labeled data and can be used 
to predict the likelihood of a particular outcome, such as the likelihood that a patient 
will develop a particular disease. Unsupervised learning algorithms are not given 
labeled data and must instead identify patterns and relationships in the data on their 
own and can be used to identify clusters or groups within a dataset useful for iden-
tifying risk factors. Reinforcement learning algorithms learn by interacting with 
their environment and associated rewards or punishments based on their actions. 
These can be used to identify the most effective strategies for preventing the spread 
of diseases or improving the health of populations. Last yet more effective are Deep 
learning algorithms are a type of neural network that can process substantial 
amounts of data (say big data) and identify complex patterns and relationships. 
They are particularly suited for analyzing medical images and other high-
dimensional data and have been used to improve the accuracy of diagnoses and 
identify risk factors for various diseases.
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7.5	� Superlative Features of Machine Learning over 
Probabilistic Models 

Machine learning algorithms and probabilistic models are both used to make pre-
dictions or decisions based on data. However, there are several key differences 
between the two approaches, and machine learning algorithms have several advan-
tages over probabilistic models in certain situations (Jaynes 2003; Robert 2014). 

One key advantage of machine learning algorithms is their ability to learn from 
large amounts of data. Machine learning algorithms can analyze vast amounts of 
data and identify patterns and trends that may not be apparent to human analysts. 
This allows machine learning algorithms to make more accurate predictions or deci-
sions than probabilistic models, which may not be able to capture all of the relevant 
patterns and trends in the data. 

Another advantage of machine learning algorithms is their flexibility. Machine 
learning algorithms can be applied to a wide range of tasks and can be fine-tuned to 
specific problem domains. In contrast, probabilistic models are typically designed 
for specific types of problems and may not be as flexible or adaptable. 

Another advantage of machine learning algorithms is their ability to improve 
over time. Machine learning algorithms can continue to learn and improve as they 
are exposed to more data, allowing them to make increasingly accurate predictions 
or decisions. Probabilistic models, on the other hand, are typically fixed and do not 
improve as they are exposed to more data. 

Finally, machine learning algorithms are generally more efficient than probabi-
listic models at making predictions or decisions. Machine learning algorithms can 
process large amounts of data quickly and make predictions or decisions in real 
time, while probabilistic models may require more time to make predictions or 
decisions. 

Overall, machine learning algorithms offer a number of advantages over proba-
bilistic models, including their ability to learn from large amounts of data, their 
flexibility and adaptability, their ability to improve over time, and their efficiency at 
making predictions or decisions. As a result, machine learning algorithms are 
becoming increasingly popular for a wide range of applications, including health-
care, finance, marketing, and many others. 

Despite the many advantages of machine learning algorithms, probabilistic mod-
els still have their place in certain situations. For example, probabilistic models may 
be more suitable in cases where the underlying relationships between variables are 
well-understood and can be accurately modeled. Probabilistic models may also be 
more suitable in cases where the goal is to understand the underlying causal rela-
tionships between variables, rather than just making predictions or decisions based 
on the data. 

In general, machine learning algorithms are more suitable for tasks where the 
goal is to make accurate predictions or decisions based on large amounts of data, 
while probabilistic models are more suitable for tasks where the goal is to under-
stand the underlying causal relationships between variables. Choosing the 
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appropriate approach will depend on the specific goals of the project and the nature 
of the data and problem domain. 

Thus, machine learning algorithms offer several advantages over probabilistic 
models, including their ability to learn from large amounts of data, their flexibility 
and adaptability, their ability to improve over time, and their efficiency at making 
predictions or decisions. However, probabilistic models still have their place in cer-
tain situations, and the appropriate approach will depend on the specific goals of the 
project and the nature of the data and problem domain (Heath et al. 2008). 

7.6	� Machine Learning-Based Big Data Processing in Cancer 

In an era of big data, which in biology consists of domains like omics, imaging, and 
signal processing. The main challenge is to get important information out of large 
amount of data. With the advent and increased popularity of Deep Learning from 
early 2000, it has been discussed and emphasized in both academic and industrial 
settings. The main advantages of this branch of ML are its ability to use power of 
parallel computing, being data driven rather than hand-designed features and learn-
ing the representation of data in lower dimensions. The key elements of DL are its 
network architecture (for example, RNN, CNN, and DNN) and model training 
approaches (say optimization, choice of cost function, etc.). As seen in Table 7.5, 
some of the categories of DL are applied in a particular domain of biology. 

On the other hand, cancer is a complex and heterogeneous disease, and large 
amounts of data are generated from a variety of sources like biobanks, including 
genomic, clinical, and imaging data (Huppertz and Holzinger 2014). ML algorithms 
can be used to analyze these large datasets and identify patterns and trends that may 
not be apparent to human analysts, providing insights that can inform the develop-
ment of new diagnostic and treatment approaches. Thus, the advanced understand-
ing of risk factors associated with cancer will reduce the burden on healthcare 
(Leatherdale and Lee 2019). Overall, the use of machine learning in the processing 
of big data in cancer has the potential to improve the accuracy and speed of diagno-
sis, treatment planning, and disease monitoring, and to help identify new strategies 
for preventing and treating cancer (Dash et al. 2019; Iqbal et al. 2021).

Table 7.5  Categories of DL in bioinformatics (Min et al. 2017) 

Category 
Biological 
domain Implementations (some) 

DNN Omics Protein structure, protein and anomaly classification, and gene 
expression regulation 

Imaging Segmentation, recognition, and decoding of brain 
Signal 
processing 

Anomaly classification and decoding of brain 

CNN Omics All of the above 
RNN Omics All of the above 
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7.7	� Future Prospects of AI in the Field of Medicine 

AI, in general, is capable of performing tasks that normally require human intelli-
gence, is slowly permeating modern day-to-day life. Healthcare has lagged behind 
in adopting AI, but the pace of implementation is picking up. Computer-based deci-
sion support systems based on machine learning can take over the complex tasks 
currently assigned to experts. This has the potential to revolutionize healthcare by 
increasing diagnostic accuracy, improving clinical workflow, reducing labor costs, 
and improving treatment modalities. The growing interest in AI and machine learn-
ing in various industries, including healthcare, is largely due to the rise of deep 
learning. This is the process by which AI uses various forms of neural networks 
similar to the human brain to recognize patterns, and the process is based on: 
Availability based on big data repositories. The promise of AI in healthcare is to 
improve the quality and safety of care and democratize expertise using mobile 
devices such as smartphones. Mobile devices can be deployed with algorithms, 
potentially universally and inexpensively accessed in a low-cost, essential way any-
where in the world. Diagnosis provides care. AI is ripe for AI because healthcare 
has large datasets (big data). This is ideal for AI as it requires large datasets for 
computers to learn. As such, AI is rapidly becoming a key component of the health-
care environment. AI algorithms will play a key role in predicting cancer and help-
ing cancer patients make treatment decisions in the near future. Already digitized 
fields like radiology are already undergoing an AI revolution. Deep neural networks 
will be able to provide a synergistic combination of disciplines such as radiology, 
nuclear medicine, and surgical pathology which will hopefully allow the achieve-
ment of a medical paradigm which recognizes that every human being is unique. 
Although pathology especially surgical pathology was late to adopt AI, mainly due 
to practical and financial obstacles, and will require resources for additional work-
flows, personnel, equipment, storage of data, the time is now ripe, with rapid devel-
opment of new and better AI technology at lower cost (reduced costs of digital data 
and availability of digital images) for AI to succeed in surgical pathology. Various 
studies cited above demonstrate the increasingly effective role of AI in medicine. 
By increasing speed and accuracy of diagnosis and by improving prognostication, 
use of AI is translating into better patient care. AI will, in the near future, not replace 
humans but by performing routine repetitive tasks quickly and accurately, allowing 
us to give time to more complex cognitive tasks. Therefore, we need to adopt and 
train AI to take its advantage. This integration takes a lot of time as AI methods need 
to be integrated into training programs and we (professionals, researchers, etc.) 
need to be familiar with these data using computer algorithms in our daily work. 
Synergistic collaboration between disciplines such as will play a major role. 
Financial hurdles need to be overcome, especially for poorer developing countries, 
so they can benefit from improved applications of AI in medicine.

S. Ali



123

References 

Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO (2020) A deep learning architec-
ture for metabolic pathway prediction. Bioinformatics 36(8):2547–2553 

Bhagat S, Cormode G, Muthukrishnan S (2011) Node classification in social networks. In: 
Aggarwal CC (ed) Social network data analytics. Springer, New York, pp 115–148 

Bradford JR, Needham CJ, Tedder P, Care MA, Bulpitt AJ, Westhead DR (2010) GO-at: in silico 
prediction of gene function in Arabidopsis thaliana by combining heterogeneous data. Plant J 
61:713–721 

Campbell MS, Law M, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei J et al (2014) MAKER-P: 
a tool kit for the rapid creation, management, and quality control of plant genome annotations. 
Plant Physiol 164:513–524 

Chollet F (2021) Deep learning with python. Simon and Schuster 
Dash S, Shakyawar SK, Sharma M, Kaushik S (2019) Big data in healthcare: management, analy-

sis and future prospects. Journal of Big Data 6(1):1–25 
Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with 

fast localized spectral filtering. In: Proceedings of the 29th International conference on neural 
information processing systems, pp 3844–3852 

Ding Z, Kihara D (2019) Computational identification of protein-protein interactions in model 
plant proteomes. Sci Rep 9:1–13 

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP 
(2015) Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf 
Proces Syst 28:2224–2232 

Fa R, Cozzetto D, Wan C, Jones DT (2018) Predicting human protein function with multi-task 
deep neural networks. PLoS One 13:e0198216 

Francisco ME, Carvajal TM, Ryo M, Nukazawa K, Amalin DM, Watanabe K (2021) Dengue 
disease dynamics are modulated by the combined influences of precipitation and landscape: a 
machine learning approach. Sci Total Environ 792:148406 

Golumbeanu M, Yang G, Camponovo F, Stuckey EM, Hamon N, Mondy M et al (2022) Leveraging 
mathematical models of disease dynamics and machine learning to improve development of 
novel malaria interventions. MedRxiv 2021(11):61 

Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: proceedings of the 
22nd ACM SIGKDD International conference on knowledge discovery and data mining, 
New York: Association for Computing Machinery, 2016, pp. 855–64 

Hamilton WL, Ying R, Leskovec J.  Inductive representation learning on large graphs. In: pro-
ceedings of the 30th International conference on neural information processing systems, 2017, 
pp. 1024–34 

Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O (2008) Probabilistic model check-
ing of complex biological pathways. Theor Comput Sci 391(3):239–257 

Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M (2016) BRAKER1: unsupervised 
RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.  Bioinformatics 
32:767–769 

Huppertz B, Holzinger A (2014) Biobanks–a source of large biological data sets: open problems 
and future challenges. In: Interactive knowledge discovery and data mining in biomedical 
informatics. Springer, Berlin, Heidelberg, pp 317–330 

Inza I, Larranaga P, Etxeberria R et al (2000) Feature subset selection by Bayesian network-based 
optimization. Artif Intell 123:157–184 

Inza I, Larranaga P, Blanco R et al (2004) Filter versus wrapper gene selection approaches in DNA 
microarray domains. Artif Intell Med 31(2):91–103 

Iqbal MJ, Javed Z, Sadia H, Qureshi IA, Irshad A, Ahmed R et al (2021) Clinical applications of 
artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer 
Cell Int 21(1):1–11

7  Machine Learning in Biological Networks



124

Ivanciuc O (2007) Applications of support vector Machines in Chemistry. Rev Comput Chem 
23:291–400 

Jaynes ET (2003) Probability theory: the logic of science. Cambridge university press 
Jumper J, Evans R, Pritzel A et  al (2021) Highly accurate protein structure prediction with 

AlphaFold. Nature 596:583–589 
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: pro-

ceedings from the 5th International conference on learning representations (ICLR), 2017 
Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324 
Kononenko I, Kukar M (2007) Chapter 12-cluster analysis. Machine Learning and Data 

Mining:321–358 
Kulmanov M, Hoehndorf R (2020) DeepGOPlus: improved protein function prediction from 

sequence. Bioinformatics 36:422–429 
Kuncheva L (1993) Genetic algorithms for feature selection for parallel classifiers. Inf Process 

Lett 46:163–168 
Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I et al (2006) Machine learning in 

bioinformatics. Brief Bioinform 7(1):86–112 
Le D-H (2020) Machine learning-based approaches for disease gene prediction. Brief Funct 

Genomics 19(5–6):350–363 
Leatherdale ST, Lee J (2019) Artificial intelligence (AI) and cancer prevention: the potential appli-

cation of AI in cancer control programming needs to be explored in population laboratories 
such as Compass. Cancer Causes Control 30(7):671–675 

Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun 
28(1):84–95 

Liu S, Liu Y, Zhao J, Cai S, Qian H, Zuo K, Zhao L, Zhang L (2017) A computational interactome 
for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa). Plant J 
90:177–188 

Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Physica A: Statistical 
Mechanics and its Applications 390(6):1150–1170 

Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18(5):851–869 
Muzio G, O’Bray L, Borgwardt K (2021) Biological network analysis with deep learning. Brief 

Bioinform 22(2):1515–1530 
Numa H, Itoh T (2014) MEGANTE: a web-based system for integrated plant genome annotation. 

Plant Cell Physiol 55:e2. https://doi.org/10.1093/pcp/pct157 
Palaniappan S, David B (2022) Prediction of epidemic disease dynamics on the infection risk using 

machine learning algorithms. SN computer science 3(1):1–3 
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: proceed-

ings of the 20th ACM SIGKDD International conference on knowledge discovery and data 
mining, KDD’14, 2014, pp. 701–710 

Robert C (2014) Machine learning: a probabilistic perspective. MIT Press, Cambridge 
Rodgers-Melnick E, Culp M, DiFazio SP (2013) Predicting whole genome protein interaction 

networks from primary sequence data in model and non-model organisms using ENTS. BMC 
Genomics 14:608 

Salathé M, Khandelwal S (2011) Assessing vaccination sentiments with online social media: 
implications for infectious disease dynamics and control. PLoS Comput Biol 7(10):e1002199 

Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T et al (2020) Improved protein struc-
ture prediction using potentials from deep learning. Nature 577(7792):706–710 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M et al (2019) 
String v11: protein–protein association networks with increased coverage, supporting func-
tional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613 

Tang J, Qu M, Wang M, et al.. LINE: large-scale information network embedding. In: proceedings 
of the 24th International conference on World Wide Web, New York, United States: Association 
for Computing Machinery, 2015 

Tarca AL, Carey VJ, Chen XW, Romero R, Drăghici S (2007) Machine learning and its applica-
tions to biology. PLoS Comput Biol 3(6):e116

S. Ali

https://doi.org/10.1093/pcp/pct157


125

Tsuda K, Saigo H (2010) Graph classification. In: Managing and Mining Graph Data. Springer, 
New York, pp 337–363 

Venkatramanan S, Sadilek A, Fadikar A, Barrett CL, Biggerstaff M, Chen J et al (2021) Forecasting 
influenza activity using machine-learned mobility map. Nat Commun 12(1):1–12 

Xing EP, Jordan MI, Karp RM. Feature selection for high-dimensional genomic microarray data. 
In: proceedings of the eighteenth International conference in machine learning. ICML, 2001: 
pp. 601–8 

Yip KY, Cheng C, Gerstein M (2013) Machine learning and genome annotation: a match meant to 
be? Genome Biol 14(5):205 

You R, Huang X, Zhu S (2018) DeepText2GO: improving large-scale protein function prediction 
with deep semantic text representation. Methods 145:82–90 

You R, Yao S, Xiong Y, Huang X, Sun F, Mamitsuka H, Zhu S (2019) NetGO: improving large-
scale protein function prediction with massive network information. Nucleic Acids Res 
47:W379–W387 

Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y et  al (2020) Graph 
embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 
36(4):1241–1251 

Zeng M, Li M, Wu FX, Li Y, Pan Y (2019) DeepEP: a deep learning framework for identifying 
essential proteins. BMC bioinformatics 20(16):1–10 

Zhu G, Wu A, Xu X-J, Xiao P-P, Lu L, Liu J, Cao Y et al (2016) PPIM: a protein-protein interac-
tion database for maize. Plant Physiol 170:618–626

7  Machine Learning in Biological Networks


	Preface
	Contents
	Editor and Contributors
	About the Editor
	Contributors
	1: Graph Theory in the Biological Networks
	1.1	 Introduction
	1.2	 Basic Concepts of Graph Theory
	1.2.1	 Graph
	1.2.2	 Degree of a Vertex
	1.2.3	 Representation of a Graph
	1.2.4	 Subgraph

	1.3	 Graph Algorithms
	1.4	 Complex Graph Models
	1.4.1	 Bipartite Graph
	1.4.2	 Complete Graph
	1.4.3	 Weighted Graph
	1.4.4	 Eulerian Graph
	1.4.5	 Hamiltonian Graph
	1.4.6	 Regular Graph
	1.4.7	 Planar Graph

	1.5	 Fundamentals of Network Theory and Its Characteristics
	1.5.1	 Biological Networks
	1.5.2	 Mathematical Concepts in Relation to Network Biology

	1.6	 Application of Graph Models in Biology
	1.6.1	 Petri Net Modeling Approach in Pathway Analysis
	1.6.1.1	 Petri Net Reachability-Based Analysis

	1.6.2	 Petri Net Invariant Analysis

	1.7	 Case Study
	1.8	 Conclusion
	References

	2: Biological Networks Analysis
	2.1	 Overview of Biological Networks: Network Construction
	2.1.1	 Structure of Complex Networks and Notations

	2.2	 Biological Networks and Types
	2.2.1	 Biological Networks
	2.2.2	 Types of Biological Networks
	2.2.2.1	 Different Types of Biological Networks Are Described below
	Protein–Protein Interaction Networks
	Metabolic Networks
	Gene Regulatory Networks
	Genetic Interaction Networks
	Cell Signaling Networks



	2.3	 Network Topological Properties
	2.4	 Detection of Network Module and Motifs
	2.5	 Rich Club and Community Finding Algorithm
	2.5.1	 Rich-Club Finding Algorithm
	2.5.1.1	 System-Level Organization in a Hierarchical Network

	2.5.2	 Community Finding Algorithm

	2.6	 Biomarker Discovery
	2.7	 Identification of Key Regulators
	2.8	 Statistical Properties and Models of Biological Network
	2.8.1	 Random Network Model
	2.8.2	 Scale-Free Network Model
	2.8.3	 Hierarchical Network Model

	2.9	 Biological Network Databases
	2.9.1	 Biological General Repository for Interaction Datasets
	2.9.2	 The Database of Interacting Proteins
	2.9.3	 Biomolecular Interaction Network Database
	2.9.4	 IntAct
	2.9.5	 Online Predicted Human Interaction Database
	2.9.6	 Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
	2.9.7	 Molecular Interaction
	2.9.8	 Regulatory Network Repository
	2.9.9	 Transcriptional Regulatory Relationships Unraveled by Sentence-Based Text Mining
	2.9.10	 miRTarBase
	2.9.11	 BioCyc Pathway/Genome Databases (PGDBs)
	2.9.12	 MetaCyc
	2.9.13	 ENZYME
	2.9.14	 Reactome
	2.9.15	 KaPPA-View4
	2.9.16	 Netpath Pathway
	2.9.17	 TRANSFAC
	2.9.18	 Human Protein Reference Database
	2.9.19	 DisGeNET
	2.9.20	 Drug Bank
	2.9.21	 The Molecular Signatures Database (MSigDB)
	2.9.22	 Kyoto Encyclopedia of Genes and Genomes
	2.9.23	 NCBI Gene Expression Omnibus
	2.9.24	 EBI Array Express

	2.10	 Role of Network Modules in Disease Dynamics
	2.11	 Case Study Based on Inference and Analysis of Network Related to Disease Dynamics
	2.12	 Conclusion
	References

	3: Network Analysis Based Software Packages, Tools, and Web Servers to Accelerate Bioinformatics Research
	3.1	 Introduction
	3.2	 Types of Biological Networks
	3.3	 Network Topology
	3.4	 Network Representation and Analysis Tools
	3.4.1	 Cytoscape
	3.4.2	 GeNeCK
	3.4.3	 GeneMANIA
	3.4.4	 STRING
	3.4.5	 FunCoup

	3.5	 Network Visualizer Tools
	3.5.1	 Arena3Dweb
	3.5.2	 GEPHI
	3.5.3	 Igraph
	3.5.4	 Pathview
	3.5.5	 VisANT
	3.5.6	 BioNetStat
	3.5.7	 NetworkAnalyst

	3.6	 Network Clustering Tools
	3.6.1	 NeAT
	3.6.2	 clusterMaker
	3.6.3	 GephiCrunch

	3.7	 Other Miscellaneous Tools
	3.7.1	 Network BLAST
	3.7.2	 SpectralNET

	3.8	 Conclusion
	References

	4: Networks Analytics of Heterogeneous Big Data
	4.1	 Big Data Analytics for Network Biology
	4.2	 Genetic Profiling Data
	4.3	 Data Quality
	4.4	 Major Public Databases
	4.5	 Challenges of Handling Genomics’ Data
	4.6	 Security of Genomics’ Data
	4.7	 Conclusion
	References

	5: Network Medicine: Methods and Applications
	5.1	 Introduction
	5.2	 Basic Principles and Key Components of Network Medicine
	5.2.1	 Systems Pharmacology
	5.2.2	 Pharmacogenomics in Precision Medicine
	5.2.3	 Biological Networks and Important Databases
	5.2.4	 Human Disease Networks
	5.2.5	 Drug–Target Interactions
	5.2.6	 Drug–Drug Interaction
	5.2.7	 Functional Modules in Molecular Networks

	5.3	 Drug–Repurposing Opportunities
	5.4	 Drug Side Effects
	5.5	 Integrating Omics Data with Networks: Challenges and Ways
	5.6	 Case Studies
	5.6.1	 Case Study: 1
	5.6.2	 Case Study: 2

	5.7	 Conclusion
	References

	6: Role of R in Biological Network Analysis
	6.1	 Introduction
	6.2	 Installation of R Software and Packages
	6.2.1	 Packages in R
	6.2.2	 Installing R Packages
	6.2.3	 Loading R Packages

	6.3	 To Build Network Model Using R
	6.4	 Differential Gene Expression Analysis Microarray in R
	6.5	 RNA-Seq Analysis in R
	6.6	 Weighted Correlation Network Analysis Using R
	6.7	 Network Component Analysis
	6.8	 Preparing Network Data in R
	6.9	 Data Analysis and Visualization with R
	6.9.1	 Boxplot
	6.9.2	 Histogram
	6.9.3	 Volcano Plot
	6.9.4	 Heatmap

	6.10	 Case Study: Constructing a Protein–Protein Interaction Network from String Database to Find Out Influential Nodes Using R
	6.11	 Future Direction
	References

	7: Machine Learning in Biological Networks
	7.1	 Machine Learning: Supervised, Unsupervised, and Deep Learning
	7.2	 Machine Learning Algorithms in Bioinformatics
	7.2.1	 Supervised Classification for Bioinformatics
	7.2.2	 Clustering Algorithms in Bioinformatics

	7.3	 Integrating Machine Learning in Biological Networks
	7.4	 Machine Learning in Disease Dynamics
	7.5	 Superlative Features of Machine Learning over Probabilistic Models
	7.6	 Machine Learning-Based Big Data Processing in Cancer
	7.7	 Future Prospects of AI in the Field of Medicine
	References


