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Abstract 

Novel brominated flame retardants (NBFRs) and legacy BFRs have been used in 
industrial and home applications to reduce the risk of ignition. However, the use 
of flame retardants is of particular concern due to the likelihood of being found in
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high concentrations, persistence in the environment, and for bioaccumulation in 
the environment. BFRs are of interest due to the potential toxicity to humans and 
endocrine-disrupting properties. To adress toxicity and persistence of BFRs, new 
or novel BFRs (NFBRs) have been introduced as a replacement. However, 
NBFRs have similar chemical properties and environmental fates as legacy 
BFRs. This chapter discusses various methods of abiotic and biotic degradation 
of BFRs, culturing conditions, potential microorganisms, and enzymes that can 
biodegrade BFRs from various environmental sources. We include the proposed 
mechanisms of biodegradation and persistence in the environment for several 
congeners. Water matrices are also discussed as an environmental source since 
BFRs in sedimentation are not well known and pose an essential factor in 
assessing the amount of BFRs present in the environment. The presence of 
BFRs in our environment have been concerning as they have been linked by 
various studies to the decline of sperm counts and fertility issues of both genders 
as well as contribute to cognitive and developmental problems in children.
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5.1 Introduction 

Epoxy resins are widely used for many products but are highly combustible. 
Furthermore, the amount of heat created and the toxic gases released once ignited 
are significant causes of deaths and property damage. For this reason, flame 
retardants (FRs) have been developed to mitigate this problem (Waaijers and 
Parsons 2016). BFRs represent various chemicals applied to many products, includ-
ing plastics, polymers, textiles, wood, or other ignitable objects, to prevent combus-
tion. During the process of combustion, free radicals are formed. Halogens, namely 
bromine, are good at detaining free radicals and lowering the decomposition tem-
perature (Kodavanti et al. 2017). Approximately one-quarter of the world’s flame 
retardants are brominated (Andersson et al. 2006). There are three main groups of 
BFRs used. These are decabrominated diphenyl ether (BDE-209), 
tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCD) 
(Andersson et al. 2006). 

BFRs, also known as organohalogens, comprise a group of chemicals that use 
flame retardants, which is concerning due to their toxicity, bioaccumulation, and 
environmental accumulation. NBFRs have been cited as being neurotoxic in chil-
dren who are still developing (Roze et al. 2009). Due to bioaccumulation and 
toxicity, BFRs have been banned in various countries, and novel BFRs are being



used as an alternative to BFRs. However, novel BFRs have been shown to accumu-
late in aquatic matrices, air, sediment, and sludge and bioaccumulate in animals 
(Xiong et al. 2019). In this review, we will also focus on water matrices as 
sedimentation is a part of land management that is often overlooked and often 
harbors pollutants that are harmful to aquatic ecosystems (Bakker et al. 2008). 
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5.2 Toxicity of BFRS 

The toxicity of BFRs has been cited in many publications. BFRs are lipophilic and 
are stored in adipose tissue, and have the ability to biomagnify in the food chain. 
This is a potential risk considering that the animals humans consume have been 
shown to harbor BFRs. Evidence shows that DBDPE was found to induce oxidative 
stress, changes in morphology, and transcriptomics in white rot fungus P. ostreatus 
(Wang et al. 2022a). This study observed a decrease in fungal biomass in 
concentrations from 1 to 50 mg L-1 DBDPE. A decrease in superoxide dismutase, 
catalase, and glutathione was also observed. This is significant since all three are 
crucial in the detoxification process. Most significant was the role in the 
downregulation of genes involved in metabolisms such as oxidative phosphoryla-
tion, TCA cycle, and carbon metabolism. This study highlights transcriptomics as an 
essential tool in molecular biology for understanding the mechanisms of toxicity 
after exposure to pollutants. Moreover, a multi-omics approach can accurately map 
the pathways in response to pollutant exposure, thus revealing the mechanisms of 
toxicity for organisms (Li et al. 2022). 

Kidney miRNAs from grass carp were found to be significantly changed after 
exposure to BFR and DBDPE (Gan et al. 2016). The study found that five kidney 
miRNAs were significantly downregulated, while 36 kidney miRNAs were signifi-
cantly upregulated. Interestingly, miR-155, miR-205, and most miR-10 family 
members were upregulated. miR-155 is known to regulate immune response, 
miR-205 is linked to nephropathy, and dysregulation of miR-10 family members 
is associated with various cancers (Gan et al. 2016). The study proposes using 
miRNAs as biomarkers for evidence of environmental toxicity. This could be a 
useful tool to determine the extent of toxicity in organisms. 

Sun et al. (2020) found that exposure to DBDPE and BDE-209 was linked to 
hepatoxicity, liver pathology, and changes in the morphology of the liver. These 
changes also included an increase in liver weight, with an abnormal liver/body ratio. 
The study also found that BDE-209 and DBDPE could induce inflammation and 
oxidative stress, increase serum glucose levels, and interfere with metabolic 
pathways through the downregulation of enzymes in rats. A recent publication 
found similar results with DBDPE and BDE-209. Jing et al. (2019) linked 
BDE-209 to morphological and structural changes in the heart. The study on male 
rats also found that decabromodiphenyl ethane (DBDPE) and BDE-209 increased 
inflammatory markers, interleukin-1 beta (IL-1 b), as well as IL6 and IL10. The 
results of the study also indicated that BDE-209 had stronger toxic effects and could 
cause oxidative stress, inflammation, and heart damage. DBDPE also caused



oxidative stress, lipid peroxidation, genetic toxicity, and DNA damage in the 
earthworm, Eisenia fetida (Zhao et al. 2020). Lipid peroxidation and enzyme 
inhibition were also found in a study by Feng et al. (2013) in  Carassius auratus. 
These findings present severe implications for public health as chronic exposure and 
high concentrations of DBDPE lead to heart and liver disease, lipid peroxidation, 
and possibly DNA damage. 
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Ji et al. (2014) discovered gender-specific responses to TBBPA. The physiologi-
cal effects on the model organism, Mytilus galloprovincialis, were determined using 
iTRAQ-based proteome analysis. TBBPA exposure may cause a variety of physio-
logical responses, including apoptosis, signal transduction, immunological and 
oxidative stress, and energy disturbance. More importantly, the study revealed 
gender-specific responses and encouraged inclusion of both genders when 
investigating the effects of environmental toxicity of BFRs. Several articles highlight 
a cocktail of pollutants, including BFRs that may be responsible for the declining 
sperm counts and semen quality within the past few decades (Ingle et al. 2018; Yu  
et al. 2018). In addition, BFRs were cited as causing fertility problems in both 
genders as well as developmental problems in children (Kodavanti et al. 2022). 

5.3 Persistence of BFRs in the Environment 

Polybrominated diphenyl ethers (PBDEs) are ubiquitous in the environment as they 
are present in air, soil, and water. PBDEs, penta-PBDE, octa-PBDE, and deca-
PBDEs, have been on the persistent organic pollutants (POPs) list since 2017 (Jing 
et al. 2019; Ezechiáš et al. 2014). Altogether, there are 209 different congeners. 
Since PBDEs are not bound to other chemicals, they can be easily added to furniture 
or textiles. In addition, they are volatile and quickly released into the air (Webster 
et al. 2009). For this reason, household dust and indoor air have a higher concentra-
tion of PBDEs than outdoors. Novel PBDEs have been used as a replacement for 
legacy PBDEs however, they are also persistent in the environment and are toxic and 
biomagnified in the food chain (Ezechiáš et al. 2014). 

Due to various physiological properties such as low vapor pressure, low Henry’s 
law constant, low solubility, and low octanol-water partition, legacy BFRs such as 
TBBPA can quickly be deposited onto the soil, sediments, and particles in the 
atmosphere (Dong et al. 2022; Sunday et al. 2022). The majority of BFRs are 
additives. They are added and mixed as the polymer is being made but are not 
usually bound to the polymer covalently (Yu et al. 2016). Therefore, PBDEs are 
considered additives, allowing them to easily volatilize away from the original 
product they were added to and subsequently enter the environment (Yang et al. 
2018). More concerning is that little is known about the toxicity of partially degraded 
BFRs or lower brominated BFRs as a result of natural environmental processes. 
Moreover, assessing the amount of BFRs trapped in sedimentation is difficult. 
Figure 5.1 illustrates the broad distribution of BFRs in soil and sedimentation in 
Europe, Asia, and the USA. Lao et al. (2023) found that the amounts of BFRs, 
especially PBDEs, present in sediment were significantly correlated with the amount



of industrialization and output of the surrounding geographical areas along the Pearl 
River Delta (Lao et al. 2023). Figure 5.1 shows the distribution of various BFRs in 
Asia, Europe, the USA, and Japan in soil and sediment. 
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Fig. 5.1 BFR consumption and distribution in soil and sediment. [Retrieved from Yu et al. (2016)] 

5.3.1 Potential Exposure to Legacy BFRs and NBFRs in Indoor 
and Outdoor Settings 

The persistence of legacy BFRs in indoor settings poses a health risk for humans, 
and the same may be expected of NBFRs. Four main routes of toxicity were 
identified. These are ingestion of indoor dust, absorption through the skin, inhalation 
of BFRs in indoor dust, and ingestion of BFRs in food (Zuiderveen et al. 2020). 
Reche et al. (2019) collected samples of outdoor ambient air, indoor workplace 
ambient air, and indoor dust across Spain to determine concentrations and trends for 
each. The study found that high concentrations of outdoor PBDE ranging from 1.18 
to 28.6 pg m-3 were correlated to outdoor landfills and recycling centers. In addition, 
high dechlorane plus (DP) concentrations in indoor air at concentrations of 
2.90–42.6 pg m-3 were strongly correlated to new electronic devices. 

A similar study by McGrath et al. (2018) conducted in Melbourne, Australia, 
tested 51 dust samples from homes, offices, and vehicles to identify prominent BFRs 
in each setting. The BFRs tested were eight PBDEs (-28, -47, -99, -100, -153,
-154, -183, and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, 
BEH-TEBP, BTBPE, and DBDP) identified using selective pressurized liquid 
extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry 
(GC-MSMS). The study also found that legacy and NBFRs were linked to specific 
areas, such as offices with the highest concentrations of penta-BDE. At the same 
time, homes and vehicles contained higher levels of EH-TBB and BDE 209. In 
addition, toddlers were more at risk by up to 2 orders of magnitude than adults for 
exposure to PBDEs and NBFRs. This is especially concerning since evidence 
suggests that BFRs are neurotoxic to children (Roze et al. 2009).
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Ingestion of BFRs has been found to vary with different foods and locations close 
to e-waste recycling areas. Various studies have found the presence of PBDEs in fish 
and meat products in China (Shi et al. 2018). Sun et al. (2014) found that daily 
consumption of PBDEs in the coastal regions of South China ranged from 1.42 to 
5.91 ng d-1 . HBCDs were ubiquitous in human milk and food products of animal 
origin in China despite that HBCD has been restricted since 2016 (Shi et al. 2018). 
The implications of this are that HBCD and relevant congeners are likely airborne, 
and contaminated dust is being ingested and tends to persist in the environment and 
biomagnify in the food chain. 

5.4 Biodegradation of BFRs in Soils and Sedimentation Under 
Anaerobic and Aerobic Conditions 

The kinetic rates for the biodegradation of BFRs in both anaerobic and aerobic soils 
differ. Generally, degradation kinetics are faster in aerobic soils (Nyholm et al. 
2010). However, biodegradation is much more substantial and efficient under 
anaerobic conditions (Gerecke et al. 2006). During the anaerobic digestion of 
organic micropollutants, four main stages occur. These consist of methanogenesis, 
hydrolysis, acidogenesis, and acetogenesis (Carneiro et al. 2020). These processes 
are also influenced by microorganisms and cometabolite biotransformation (Arias 
et al. 2018). 

Biodegradation of other BFRs, such as tetrabromobisphenol A (TBBPA), was 
found to be influenced by the complexity of the carbon source. Complex sources 
such as wastewater, as opposed to glucose, were biodegraded slower (Macêdo et al. 
2022). This was further corroborated by Balaban et al. (2021) demonstrating that the 
addition of a vitamin source delayed bacterial growth and, as a result, reduced 
TBNPA and DBNPG biodegradation. Moreover, the study concluded that 
concentrations higher than 0.5 mg L-1 inhibited biodegradation in Clostridium 
spp. This is in agreement with Wang et al. (2022b), who stated that higher 
concentrations of DBDPE inhibit biodegradation. Concentrations higher than 
50 mg L-1 were too toxic for the organisms. 

Clostridium spp. has also proven to be effective in the biodegradation of HBCD 
(Li et al. 2020). In this study, both Bacillus spp. and Clostridium spp. were capable 
of biodegradation of up to 70% and 77% from cell suspensions taken from Chiang 
Chung soil and riverbank soil, respectively. The biodegradation was conducted 
under aerobic conditions. The biodegradation kinetics was slower in soil than in 
soil suspension for this study. 

Huang et al. utilized a system of maize plants and P. aeruginosa strain HS9 to 
remove HBCD from the soil. The optimal temperature and pH reported were 30 °C 
at pH8, respectively, for the increased degradation rate of hexabromocyclododecane 
(HBCD). The study reported that the HS9 strain could remove 69% of the 
1.7 mg L-1 of HBCDs (α-, β-, and γ-HBCD) in 14 days. The addition of HS9 was 
also found to stimulate plant growth by removing HBCDs from the soil. Further, 
adding HS9 enriched the number of microbes in rhizospheric soil. This included



fungal microbes, an essential part of soil microbial ecosystems. Peng et al. (2015) 
reported degradation of HBCD and a-HBCD to 90% under similar culturing 
conditions of 30 °C and pH 7 using the bacterial strain Achromobacter sp. Stepwise 
increasing additions of HBCD were added to culturing conditions to optimize the 
ability to biodegrade α-, β-, and γ-HBCD in a study by Geng et al. (2019). The 
biodegradation of HBCD was under aerobic conditions using a Pseudomonas 
sp. strain GJY at 30 °C at pH 7. Soil samples were collected from Ziya e-waste 
recycling centers in Tianjin, China. The strains were derived from the soil samples 
using extinction-dilution techniques. The degradation of each isomer was conducted 
in MSM with each diastereoisomer. After 8 days, the results showed degradation 
efficiencies of 85.38%, 82.64%, and 75.5% for α-, β-, and γ-HBCD, respectively. 
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Another synergistic application for degradation was applied to degrade BDE-209. 
Chang et al. (2021) utilized a novel bio-slurry bioreactor (NBB), which consisted 
of UVA LED irradiation coupled with biodegradation by microbes in a 
Ca-montmorillonite clay slurry. The NBB coupled UV-resistant bacteria, 
Stenotrophomonas sp., Pseudomonas sp., and Microbacterium sp., and UV photol-
ysis was carried out in a clay slurry under anaerobic conditions. Quantification of 
debromination was done by measuring Br- using ion chromatography. Biodegrada-
tion was done by using BDE-209 as the sole source of carbon. The degradation 
kinetics were most efficient with the coupled system than either alone. 

Yan et al. (2018) reported using soil columns under anaerobic conditions to 
degrade pentabromodiphenyl ether (BDE-91). The study replaced oxygen with 
sulfate as the final electron acceptor in columns filled with soil to remediate 
contaminated reclaimed water to recharge groundwater. Interestingly, this study 
used sulfate-reducing bacteria and archaea for the biodegradation of BDE-91. 
Elevated levels of sulfate were found to enhance the biodegradation of BDE-91. 

Anaerobic conditions were utilized in a study by Ramaswamy et al. (2021). 
Dehalococcoides mccartyi strain CG1 debrominated tetrabromobisphenol A 
(TBBPA) ultimately into BPA in 10 days. Dehalococcoides mccartyi strain CG1 
was able to utilize TBBPA as a sole source of carbon. Furthermore, a proteomic 
analysis revealed that the reductive dehalogenase, PcbA1, was responsible for 
debromination of TBBPA. Therefore, the acceleration of biodegradation of 
TBBPA was interpreted as metabolic utilization of TBBPA. Furthermore, a 
92-fold increase in cell density of D. mccartyi strain CG1 demonstrated further 
evidence of this. 

BDE-209 and other polybrominated diphenyl ethers can be broken down by 
coupling a Fenton system with persulfate (Wu et al. 2020). This abiotic approach 
can remove BDE-209 from soils or other hard surfaces. The study reported degrada-
tion efficiency ranging from 73.4 to 95.8%. The addition of persulfate resulted in the 
generation of SO4. The SO4 was believed to make a nucleophilic attack on 
BDE-209, resulting in debromination to lower brominated constituents and 
pentabromophenol (Wu et al. 2020). The mechanism was achieved through the 
cleavage of C–O bonds and subsequent replacement with OH groups (Wu et al. 
2020). The resulting products, nona-BDEs and pentabromophenols, were vulnerable



to further transformation. The study presents this data as a cost-effective solution for 
removing BDE-209 from soils in an aerobic environment. 
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Larger eukaryote organisms are potential solutions to removing BFRs from the 
soil. Earthworms were used in a study by Qiao et al. (2022) for the potential removal 
of BFRs: BDE 209, PBT, DBDPE, BTBPE, and HBB. The removal of these BFRs 
varied with each BFR. BFRs with similar molecular weights and chemical structures 
had similar enrichment and removal results. The study also demonstrated the 
potential for secondary pollution from worm castings that were not retained in the 
earthworm. The use of earthworms could remove BDE-209 and DBDPE from the 
soil. The removal of the other BFRs could have been more efficient. 

5.5 Biodegradation of Contaminated Water and Sediment 
Matrices 

Systematic surveillance of BFRs in wastewater treatment plants (WWTPs) is crucial 
for understanding efficient methods of removal and contamination. Moreover, little 
is known about certain BFRs, such as 1,2-dibromo-4-(1,2-bromomethyl) cyclohex-
ane (TBECH), in aqueous environments. Anaerobic digestion is a well-studied 
aspect of wastewater treatment. Hydrolysis is essential in this process and facilitates 
the enzymatic breakdown of larger molecules into monomers (Macêdo et al. 2022). 
Carneiro et al. (2020) found that hydrolysis and acidogenesis were crucial steps in 
removing organic micropollutants from wastewater. Wastewater treatment plants 
could detoxify wastewater by coupling bioremediation methods with regular 
treatments. Ruan et al. (2019) discovered that BFRs were prevalent in influent 
water sampled from various WWTPs in Hong Kong. This work emphasized the 
need to monitor the enantiomer-specific behavior of chiral BFRs in the various 
treatments used in WWTPs. The study also discovered that biological treatment 
resulted in more efficient BFR elimination and enantiomer-specific degradation of 
chiral BFRs. 

A novel approach of combining an upflow anaerobic sludge blanket bioreactor 
(UASB) and integrated fixed film/activated sludge (IFAS) system can increase the 
efficiency of organic micropollutant removal as was done in a study by Arias et al. 
(2018). This innovative approach reduced nitrogen by using methane as an electron 
donor. The study reported that the system consisting of methanotrophs and hetero-
trophic denitrifiers removed 93% of chemical oxygen demand and dissolved meth-
ane in the UASB effluent. The purpose of the system was to increase microbial 
diversity to achieve more efficient removal of organic micropollutants. However, 
different culturing conditions, which will be discussed further, are essential for 
achieving this goal. 

In a study by Balaban et al. (2021), a four-strain consortium was used to degrade 
both TBNPA and DBNPG. Table 5.1 lists the genera, GenBank accession number, 
and species in the consortium that biodegraded both TBNPA and DBNPG. Interest-
ingly, the study reported that both compounds were degraded at similar rates. The 
authors hypothesized that this might be due to similar enzymes and metabolic



ID

pathways of degradation for both. The study proposed a monooxygenase pathway 
for degradation. When both TBNPA and DBNPG were added, the degradation 
kinetics were almost twice as long (from 3–4 days to 7 days). Bacterial growth 
was determined to be the limiting factor, and a carbon source was needed for 
biodegradation. Yeast extract and glucose significantly enhanced biodegradation 
(3–7 days), while the vitamin mix slowed degradation kinetics (1–2 months). 
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Table 5.1 Table showing the genera, species, and GenBank accession numbers of the four-strain 
consortium with initial densities of each strain 

Strain (highest similarity,
99%)

GenBank accession
number

OD 600 (initial density 
CFU mL-1 ) 

DB2 Pseudomonas citronellolis KY229738 0.001 (1.10 × 105 ) 

DB3 Gordonia sihwensis KY229739 0.001 (1.70 × 105 ) 

DB4 Shinella zoogloeoides KY229740 0.004 (4.90 × 105 ) 

DB5 Microbacterium oxydans KY229741 0.027 (3.00 × 106 ) 

TB1 Pseudomonas aeruginosa KY229734 

TB2 Delftia tsuruhatensis KY229735 

TB3 Pseudomonas citronellolis KY229736 

TB4 Sphingobacterium 
siyangense 

KY229752 

TB5 Microbacterium 
paraoxydans 

KY229753 

The species listed are capable of biodegradation of TBNPA and DBNPG. Retrieved from Balaban 
et al. (2021) 

Liang et al. (2019a) found that efficient removal of typical BFR, 2,4,6-
tribromophenol (TBP), was possible using Bacillus sp. GZT. This study also 
identified genes and enzymes corresponding to the bioremediation of TBP and 
proposed an enzymatic pathway (pictured below in Fig. 5.2) for biodegradation. 
Interestingly, the study proposed the possibility of biodegradation enhancement and 
tolerance with recombinant strains containing the genes: tbpA, tbpB, tbpC, tbpD, 
and tbpE. 

Lin et al. (2021) used a microbial fuel cell to bioremediate and detoxify waste-
water. Microbial fuel cells (MFCs) have been used more recently to biodegrade 
various organic compounds and recover energy by increasing the electron transfer 
rate and biodegradation efficiency (Hassan et al. 2018). The efficiency of using 
MFCs is evident with a less toxic final product of bioremediation and energy 
recovery through bioelectrochemical processes (Hassan et al. 2018). Lin et al. used 
different genera of bacteria for dehalogenation (Pseudomonas), electroactive bacte-
ria (Desulfovibrio), and aromatic ring-cleaving bacteria (Geobacter) in the MFC for 
further biodegradation than bisphenol A.
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Fig. 5.2 Proposed mechanism of reduction by GR-Cu NPs. The reduction of TBBPA occurs on the 
surface of Cu NPs, and electrons from GR are transferred to the active sites of Cu NPs. GR(Cl) is 
transformed into two byproducts, goethite and magnetite, after TBBPA is reduced. [Retrieved from 
Fang et al. (2019)] 

5.6 Catalytic Methods of Degradation and Reduction of BFRs 
in Wastewater, Aquatic Matrices, and Sediment 

The presence of BFRs in sedimentation from a temporospatial aspect needs to be 
better studied and understood. In a study by Vauclin et al. (2021), sediment cores 
were taken along the backwater areas along the Rhône River. An age-depth model 
was established to find how the concentrations of BFRs and other pollutants were 
prevalent for each period. The findings were consistent with phasing out certain 
pollutants, such as polychlorinated biphenyls, which showed lower concentrations 
after phasing out. The study also found that novel and legacy BFRs reached peak 
concentrations in the early 2000s and have remained stable since the 2010s. The 
study highlighted the importance of sediment cores for determining spatiotemporal 
trends in both legacy and novel BFRs. Due to the hydrophobicity of BFRs, sedi-
mentation often becomes a sink, and high concentrations of BFRs can be found in 
river sedimentation near e-waste sights (Yu et al. 2016). Xiong et al. (2017) 
proposed bioaugmentation with Bacillus sp. GZT for TBP removal from river 
water/sediment. This is in addition to the phyla isolated from sediments. These 
were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. In this study, 
the biodegradation of TBP was enhanced by supplementation with NaCl, glucose, 
yeast extract, sodium propionate, and humic acids.
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Catalytic methods of removing BFRs from wastewater have been explored in 
various studies. These methods include photocatalytic, electrocatalytic, and plasma 
catalytic degradation and reduction. Sedimentation can reduce and debrominate 
BFRs through microorganisms or reductive catalysis. Green rust (GR), which 
consists of layers of sedimentation with Fe(II) and high amounts of Fe2+ –O–Fe3+ 

in the iron hydroxide layer, is capable of reductive catalysis (O’Loughlin and Burris 
2004). Figure 5.2 illustrates the proposed mechanism of reduction by GR-CuNPs, 
which primarily occurs on the surface of the GR. O’Loughlin and Burris (2004) 
demonstrated that the addition of Cu and Ag significantly enhanced the reducing 
capabilities of GR on halogenated organic compounds. Fang et al. (2019) also 
confirmed that adding Cu nanoparticles (Cu NP) to GR enhanced the reduction of 
TBBPA. The GR was interlayered with Cl-, SO4 

2-, and CO3 
2-. The GR(Cl)-Cu NP 

obtained the greatest degradation efficiency at 92.11%. 
Enhanced heterogeneous photo-Fenton catalytic photodegradation was utilized 

by Huang et al. (2020). An efficient degradation rate of 97.4% was achieved by 
coupling bio-template synthesized ceria with natural ferrihydrites in a novel hetero-
geneous photo-Fenton system. Furthermore, adding bio-template synthesized ceria 
with natural ferrihydrites resulted in the regeneration of Fe2+ and the production of 
photoelectrons, which is often a limiting factor. 

Natural organic matter is an environmentally friendly alternative for use in 
photocatalytic degradation. Soluble organic matter can form active free radicals 
such as OH when hit with visible light that, in turn, can oxidize BFRs (Dong et al. 
2022). Natural organic matter such as humic acids and carboxylate ions in the 
environment has proven to be a promising solution to BFRs. Humic acids can 
form reactive oxygen species or photochemically produced reactive intermediates 
capable of degrading persistent organic pollutants (Dong et al. 2022). For example, 
Son et al. (2019) used Aldrich humic acid to photodegrade HBCD and its three 
diastereoisomers in simulated solar light. Likewise, Zhang et al. (2018) found that 
dissolved organic matter could photodegrade novel BFR, 2,3-dibromopropyl-2,4,6-
tribromophenyl ether (DPTE), in simulated light with the addition of chlorine. 

5.7 Mechanisms of Biodegradation 

The debromination of BFRs is the most important step in the biodegradation of 
BFRs since it allows for complete mineralization (Segev et al. 2009a). In general, the 
more bromines in a BFR, the slower the biodegradation rate. Typically, the arrange-
ment and amount of bromines or halogens are also inversely proportional to biodeg-
radation kinetics. Under anaerobic conditions, biodegradation of PBDEs favors 
reductive bromination or reduces the number of bromines (Zhao et al. 2018). In 
aerobic degradation, cleavage of the aromatic ring occurred first, followed by 
debromination and hydroxylation (Zhao et al. 2018). It is important to note that 
reductive removal of the halogen or debromination forming a halide anion is crucial



in reducing the toxicity of the compound in question (Hug et al. 2013). This outlines 
the importance of organohalide respiration, which refers to the respiration process 
where anaerobic bacteria use halogenated hydrocarbons as a final electron acceptor 
(Hug et al. 2013). 
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The fate and intermediate lower brominated BFRs, such as in PBDEs, can often 
be even more environmentally toxic than the parental species (Pan et al. 2016). 
Therefore, it is important to understand the fate, mechanisms, and degradation 
kinetics of both novel and legacy BFRs undergoing natural photodegradation 
(Zhang et al. 2018). Pan et al. (2016) reviewed the fate of PBDEs in various 
environmental matrices, including aqueous, organic, solid, gas, and Ti–O2-mediated 
phases, to understand the natural photodegradation of PBDE congeners. 

In some instances, the method of degradation influenced the resulting congeners. 
For example, Wang et al. (2019) investigated the debromination of 2,2′,4,4′-
-tetrabromodiphenyl ether (BDE-47), which had preferential debromination at the 
para-bromine in the H-transfer system to generate BDE-17, while the preference was 
ortho-bromine in an electron transfer system to generate BDE-28. Both methods 
were part of a nanoscale zerovalent iron (n-ZVI) system and six n-ZVI-based 
bimetallic systems (Fe/Cu, Fe/Ni, Fe/Pd, Fe/Ag, Fe/Pt, and Fe/Au). Interestingly, 
the metals Pd, Pt, Ni, Cu, and Au use hydrogen gas to debrominated PBDEs. The 
study determined that bimetallic and NaBH4, Fe/Pt, Fe/Ni, and Fe/Pd preferred 
H-transfer mechanisms, while e-transfer mechanisms preferred Fe/Ag. Conversely, 
Fe/Cu and Fe/Au preferentially debrominate equally under e-transfer and H-transfer 
mechanisms. The mechanism for debromination of halogenated compounds has 
been divided into two hypotheses. The first hypothesis has been to attribute 
dehalogenation to electron transfer, where the difference in corrosion potential 
between Fe and the additive metal allowed for more current and, thus, more electron 
transfer (Yan et al. 2010; Wang et al. 2019). The other hypothesis is that the 
additive’s ability to absorb hydrogen would dictate the speed of hydrogen transfer 
and, thus, dehalogenation (Chun et al. 2010; Wang et al. 2019). Chun et al. (2010) 
also concluded that the size and distribution of the metal additives on the surface of 
Fe were the most important variable. Hydrogen transfer in a palladized zerovalent 
zinc (Pd/ZVZ) system is also pH dependent, as illustrated in a study by Xu 
et al. (2020). 

As previously mentioned, Geng et al. (2019) conducted biodegradation studies 
using Pseudomonas strain GJY. The study also proposed a mechanism of biodegra-
dation of the three diastereoisomers of HBCD. In addition, they tracked subsequent 
metabolites using ultra-performance liquid chromatography-tandem mass spectrom-
etry (UPLC-MSMS). The study proposed that the pathway for HBCD biodegrada-
tion consisted of ring opening, hydroxyl substitution, and debromination. This 
pathway differs from other biotransformation studies of HBCD and highlights that 
microorganisms influence how HBCD isomers are distributed in environmental 
settings. Figure 5.3 highlights a proposed pathway of debromination of HBCD-
contaminated soil from Chiang Chun (Li et al. 2020).
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Fig. 5.3 The proposed pathway of HBCD biodegradation through the process of debromination 
from soils collected from Chiang Chun. The metabolites were identified via gas chromatography 
(GC) and gas chromatography-mass spectrometry (GC-MS). [Retrieved from Li et al. (2020)] 

5.8 Genes and Enzymes Involved in the Biodegradation 
of BFRs 

Genome annotations and identification of enzymes involved in biodegradation 
pathways are crucial for successful biodegradation of BFRs and other pollutants. 
Liu et al. (2015) overexpressed tbbpa A for biodegradation studies of TBBPA. This 
gene was identified due to upregulation when exposed to TBBPA. Whole-genome 
sequencing of Ochrobactrum sp. strain T was compared to the NCBI database for 
identification of potential TBBPA-degrading genes. Gene tbbpa A was identified 
and cloned into an expression vector. The constructed strain was able to degrade 
TBBPA and removed bromine with 78% efficiency and demineralization at 37.8% 
efficiency in 96 h. This was observed to be very similar to the parental strain. These 
results demonstrated the possibility of creating constructs for the purpose of biodeg-
radation of POPs. Culturing conditions were aerobic in mineral medium at 37 °C at  
pH 7. Table 5.2 lists the genes and enzymes that have been identified as capable of 
degradation and mineralization of BFRs. Some enzymes may be capable of biodeg-
radation of multiple BFRs with similar structures. 

Whole-genome sequencing of microorganisms capable of debromination as well 
as biodegradation is another important step in deducing the molecular mechanisms 
involved in bioremediation of BFRs (Shah et al. 2018; Liang et al. 2019a). Genes 
encoding enzymes that play an important role in the biodegradation of BFRs are 
ideal targets for genomic analysis when considering potential candidates for biodeg-
radation. Wang et al. (2022b) isolated extracellular enzymes, MnP, Lip, Lac, and 
cytochrome P450, which aided in the biodegradation of DBDPE. The most impor-
tant extracellular enzyme for degradation was Lac. The study also noted that



antioxidant enzymes CAT and SOD were important for reducing the toxicity of 
P. ostreatus. 
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Table 5.2 Genes and enzymes experimentally shown to biodegrade BFRs 

Genes/enzymes BFRs or congener degraded References 

C12O, C23O, C34O, Nid A, and 
Rf 

Aromatic hydrocarbons, can 
facilitate oxidative cleavage 
of catechol and LBN PBDE 
congeners 

Chou et al. (2016) 

Dehalogenases: RdhA and Rdases 
Dioxygenases: C23O, RF, and 
ARHD 

BDE-209 Chang et al. (2021) 

Genes: tbpA, tbpB, tbpC, tbpD, 
and tbpE 

TBP Liang et al. (2019b) 

Monooxygenase TBNPA and DBNPG Balaban et al. (2021) 

Dehalogenase: PcbA1 TBBPA Ramaswamy et al. (2021) 

Gene: tbbpa A encoding for 
bromophenol dehalogenase 

TBBPA Liang et al. (2019a) 

LinA2 and LinB: haloalkane 
dehalogenases 

HBCD Heeb et al. (2014) 

Laccase Bromophenols Uhnáková et al. (2009) 

Enzymes: MnP, LiP, Lac, and 
cytochrome P450 

DBDPE Wang et al. (2022b) 

P. aeruginosa LY11 
Crude enzyme extract 

BDE-209 Liu et al. (2015) 

Enzymes have a potential to degrade BFRs more efficiently and rapidly than the 
organism itself. This was illustrated in a study by Liu et al. (2015). Crude enzyme 
extract was isolated from P. aeruginosa LY11. This strain is known for biodegrada-
tion of BDE-209. The crude enzyme was extracted through sonication, centrifuga-
tion, and finally filtration through a 0.22 μm filter. The resulting filtrate is what was 
considered crude enzyme extract. In this study, the crude enzyme was able to 
degrade BDE-209 in a shorter time period of 5 h and more efficiently at 92.77%. 
This study provides insight into the possibility of using crude enzyme extract from 
other microorganisms previously known to biodegrade specific BFRs. The potential 
to mass produce crude enzyme extract through over-expression systems may be a 
more efficient means of bioremediation of BFRs. 

5.9 Culturing Conditions in Bioremediation Strategies 

The culturing conditions for many degradation systems varied with each type of 
BFR. Some were cultured in aerobic or anaerobic conditions where temperature, pH, 
and culture supplementation varied with each organism. For some, supplementation 
was necessary for bioremediation, while other studies used the BFR as the sole 
carbon source. Table 5.3 summarizes the culturing conditions for various BFRs from 
optimized protocols for degradation and mineralization.
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Tokarz et al. (2008) reported that adding vitamin B12 enhanced the 
debromination kinetics. Other studies showed enhancements with the addition of 
glucose or other carbohydrates (Wang et al. 2022b). However, some additions for 
one strain may enhance degradation and inhibit others. This was evident when 
adding a vitamin mix slowed the degradation rate of BFRs (Balaban et al. 2021). 
Some bacterial strains are capable of biodegradation when the BFR is the sole source 
of carbon. This was observed for the Bacillus cereus JP12 strain (Lu et al. 2013), 
where BDE-209 was added to MSM at 30 °C, pH 6. Degradation efficiency was 
enhanced by adding other carbon sources, surfactants, and metals Cu2+ and Zn2+ . 
Similarly, zerovalent iron enhanced the biodegradation of BDE-209 and BDE-28 
(Yang et al. 2017). Shah et al. (2018) also used Bacillus cereus for successful 
biodegradation of HBCD with another strain called HBCD-sjtu at a higher pH of 
7 at 30  °C. This demonstrates that physiological conditions were as important as 
culturing and media for the biodegradation of certain BFRs. It also demonstrated that 
despite using the same genus and species of bacteria, the BFR degradation 
influenced the culturing conditions. Optimal temperatures ranged from 30 °C a  
pH 7 (Peng et al. 2015) to  35  °C at pH 9 (Chang et al. 2021), depending on the 
bacterial strain. Changes in pH and temperature resulted in less biodegradation 
efficiency and was dependent on the BFR. 

5.10 Conclusion and Future Direction 

The possibility of phasing out NBFRs and using bio-sustainable organobromine 
BFRs is a promising solution to the problem of BFR environmental contamination. 
Sequencing genomes of microorganisms capable of biodegradation of BFRs is 
essential for understanding the molecular mechanisms of biodegradation. The poten-
tial for isolating genes and enzymes that biodegrade BFRs is high when 
microorganisms are collected from e-waste sites or near industrial facilities where 
BFRs are present. There have been many different genera and species of bacteria that 
have demonstrated the ability to biodegrade various BFRs. However, culturing 
conditions vary with each species of microbes used. 

Another important consideration is the possibility that microorganisms that can 
remove chloride from hexachlorocyclohexanes may also debrominate BFRs, espe-
cially when the chemical structures are similar. Various studies, as previously 
mentioned, demonstrated that bacterial strains with dehalogenases may also remove 
halogens from different compounds, thus implying that microorganisms can 
bioremediate a variety of POPs. 

The strategies presented here include various methods to address emerging BFR 
pollutants from different environmental sources. Catalysis is a proven method for 
efficient mineralization and biodegradation in abiotic methods. Using natural 
organic matter is an environmentally friendly way to oxidize BFRs and a promising 
way to address environmental pollution. One example discussed is humic acids, 
which form free radicals when exposed to light. In biotic methods, several organisms 
and systems have been presented. The supplementation and culturing conditions



varied with each BFR and organism. The addition of enzymes proved essential for 
biodegradation and highlights the possibility of engineering enzymes for the degra-
dation of BFRs or in synergy with microorganisms. 
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The urgent need to remove POPs has never been more evident. Several 
publications have identified various pollutants including BFRs as being responsible 
for declining sperm counts over the past few decades. The exposure to BFRs through 
ingestion, inhalation, and absorption through the skin has taken their toll on the 
fertility of both genders as well as developmental consequences for children. This 
exposure to BFRs is most prevalent in indoor settings, e-waste recycling centers, and 
other industrial locations where BFRs are manufactured. Therefore, the best strategy 
moving forward is to bioremediate BFRs from wastewater treatment plants before 
they are released into the surrounding environment. 
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