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Preface 

In recent years, the growing concern over environmental pollution and its impact on 
human health has brought soil contamination to the forefront of scientific research 
and public attention. The presence of emerging contaminants, persistent organic 
pollutants, heavy metals, and other harmful substances in soil poses significant 
challenges to sustainable land management and ecosystem health. In order to address 
these pressing issues, innovative and efficient soil remediation techniques are 
urgently needed. This book aims to provide a comprehensive overview of the latest 
advancements in plant-based and microbial-assisted technologies for the reclamation 
of contaminated soil. Each chapter delves into specific aspects of soil remediation, 
exploring a range of strategies and applications. From the plantation-based reclama-
tion of emerging contaminants to the biodegradation of endocrine-disrupting 
chemicals, this book covers a wide spectrum of topics to offer readers a holistic 
understanding of the field. 

Chapter 1 focuses on the plantation-based soil reclamation of the emerging 
contaminants, highlighting the use of plants in the remediation process. Chapter 2 
explores plant-based technologies for the removal of pharmaceutical and personal 
care products (PPCPs) from soil, shedding light on the potential of vegetation for 
detoxification purposes. In Chap. 3, the concept of rhizoremediation is examined as a 
powerful approach to address persistent organic pollutants in soil. Chapter 4 
investigates the biotransformation of 1,4-dioxane, a hazardous compound, by bacte-
ria in the soil, presenting a promising solution for its remediation. The persistence, 
toxicity, and strategies for remediating brominated flame retardants in soil and 
sedimentation in aquatic matrices under aerobic and anaerobic conditions are 
explored in Chap. 5, offering valuable insights into the complex challenges 
associated with these contaminants. Moving forward, Chap. 6 dives into the biodeg-
radation of fungicides by bacteria in soil, while Chap. 7 explores the role of fungal 
enzymes in the bioremediation of environmental pollutants. Chapter 8 presents 
mycoremediation as a viable method for removing heavy metals and metalloids 
from soil, utilizing the remarkable abilities of fungi. In Chap. 9, the focus shifts to the 
bio-removal of analgesics and antibiotics by soil worms, uncovering the potential of 
these organisms in remediation efforts. Chapter 10 investigates vermiremediation, a 
process that employs earthworms to degrade pesticides and restore contaminated 
soil. The potential of biochar-assisted remediation for contaminated land is discussed
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in Chap. 11, highlighting the prospect and challenges associated with this innovative 
technique. Biomass-based engineered materials for soil remediation are explored in 
Chap. 12, emphasizing the importance of sustainable and eco-friendly approaches. 
Chapter 13 takes a closer look at the bioremediation of Asa River sediment using 
agricultural by-products, presenting a case study that demonstrates the practical 
application of such methods. The potential application of biochar for the efficient 
restoration of crude oil-contaminated sites is examined in Chap. 14, shedding light 
on the transformative power of this natural material. In Chap. 15, the focus turns to 
the biodegradation of low-density polyethylenes (LDPEs) using microbial consortia, 
offering a promising solution to address plastic pollution. Finally, Chap. 16 delves 
into the biodegradation aspects of endocrine-disrupting chemicals in soil, 
unravelling the complex interactions between these pollutants and soil 
microorganisms. By presenting a diverse range of topics and approaches, this 
book strives to foster a deeper understanding of soil remediation, encourage further 
research, and inspire innovative solutions to the pressing environmental challenges 
we face today. 

vi Preface

We sincerely hope that this book serves as a valuable resource for researchers, 
scientists, environmental professionals, policymakers, and anyone interested in the 
field of soil remediation. Together, we can work towards a cleaner, healthier, and 
more sustainable future for our planet. 

Kokrajhar, Assam, India Hemen Sarma 
Jaipur, Rajasthan, India Sanket J. Joshi
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Abstract 

Soil pollution with emerging contaminants such as human and veterinary 
pharmaceuticals, antibiotics, steroids, endocrine disruptors, perfluorinated 
compounds, water disinfection by-products, gasoline, industrial additives, and 
microplastics is one of the most persistent environmental problems, which poses a 
serious threat to the humans and the environment. Phytoremediation, one of the 
innovative strategies for remediating the soil polluted by such emerging 
contaminants, has been recognized as a powerful in situ approach to soil remedi-
ation. The synergistic actions of plants and their associated microorganisms can 
improve plant growth and enhance the biodegradation of emerging contaminants, 
thereby accelerating the removal of these pollutants from the soil. In view of the 
aforementioned discussion, this book chapter is designed to cover the plant 
species demonstrating higher removal efficiency of emerging contaminants 
from soil, explain different factors influencing phytoremediation of emerging 
contaminants in soil, and discuss the different fundamental mechanisms of 
endophyte-assisted phytoremediation of emerging contaminants. Finally, the 
advances, challenges, and new directions in the field of phytoremediation tech-
nology for the removal of selected emerging contaminants are also discussed. 

Keywords 

Phytoremediation · Emerging contaminants · Soil contamination · Constructed 
wetlands · Mechanism · Plant uptake 

1.1 Introduction 

A large array of emerging contaminants (ECs) are being recognized as a threat to the 
ecosystem, human health, and the environment, including water, soil, and air 
(Gomes et al. 2020). Pharmaceuticals and personal care products (PPCPs) such as 
antiseptics, fragrances, soaps, sunscreens, insect repellents, surfactants, fire



retardants, plasticizers, disinfection by-products of urban and industrial origin, 
pesticides, industrial chemicals, and municipal waste are the primary sources of 
ECs into the environment (Kumar et al. 2022). Economic growth and consumer-
centric lifestyle have largely contributed to the growing concern of ECs, which 
is likely to worsen in days to come. The use of ECs for health and general life quality 
is increasing globally, and complete removal from different environmental sources is 
almost impossible. 
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Hospitals, industrial-scale animal feeding operations, dairy farms, leaking sewer 
lines, landfills, and inappropriately disposed wastes are the primary sources of ECs, 
while wastewater treatment plants (WWTPs) are the main entry point into the 
aquatic environment in the urban water cycle (Pal et al. 2014). The pharmaceuticals 
such as analgesics, anti-inflammatory drugs, anti-epileptic drugs, blood lipid 
regulators, β-blockers, antibiotics, hormones, and cytostatic drugs are frequently 
encountered in surface water, groundwater, drinking water, and wastewater (Kurade 
et al. 2021). Different antibiotics, such as tetracycline, quinolones, penicillin, amox-
icillin, and gentamicin, are widely used in livestock farming to treat diarrhea and 
bovine pneumonia. Increased usage of a variety of antibiotics, sulfonamide, and 
tetracycline group in particular also leads to accumulation of those ECs in environ-
mental matrices, as a part of it excreted out is unaltered in urine and feces by animals. 
PPCPs and antibiotic traces are commonly found in sewage treatment plants with 
concentrations ranging from ng/L to μg/L (Chaturvedi et al. 2021). Table 1.1 
provides a list of various emerging contaminants with their concentration, class, 
and sources. 

Apart from analytical challenges for quantifying trace amounts (1–100 ng L-1 ), 
ECs have gained little recognition in environmental legislative lists. With no regu-
latory framework, significant ecotoxicological effects of PPCPs on human health are 
well anticipated. An increased presence of ECs in the environment is likely to cause 
bioaccumulation in some organisms and biomagnification (propagated through the 
food chain). Lipophilic compounds or metabolites, with a log Kow >3, tend to 
accumulate in the environment. Some ionophore veterinary antibiotics, gemfibrozil, 
ibuprofen, and diclofenac, have been known to bound to sewage sludge (Zenker 
et al. 2014). Pharmaceuticals can have very different bioconcentration factors 
depending on the aquatic environment, and relevant species when studied under 
environmentally relevant concentrations. The transformation product of ECs, though 
not extensively studied, can have even higher ecotoxicity and bioaccumulation 
potential (Maculewicz et al. 2022). A significant proportion of pharmaceuticals, 
possessing bioaccumulation potential, are not biodegradable and have a toxic effect 
on aquatic organisms. Bioaccumulation in aquatic organisms can have serious 
implications for top predators such as fish, birds, and humans (Richmond et al. 
2018). 

The presence of PPCPs in the aquatic ecosystem may exert a significant risk to 
human health and aquatic life. Though adverse effects of PPCPs on human health are 
not rigorously assessed, possible human health risks through ingestion of 
contaminated water (Pai et al. 2020) or food in the long term cannot be ignored. 
Negative effects of some model PPCPs, such as diclofenac, affecting the kidneys of



Class Location References 

fish and anti-ovulation potential or antidiabetic drug metformin causing feminization 
of male fish, have now been established (Ambrosio-Albuquerque et al. 2021). 
Complications in the reproductive system; reduction in sperm count in humans; 
egg breakage of fishes, birds, and turtles; and structural and functional impairment of 
the immune system in marine animals have been attributed to acute and chronic 
exposure to ECs. Dietary intake of PPCP contaminated with vegetables and fruits 
can cause a potentially harmful impact on human health. The accumulation of 
PPCPs in crops irrigated with reclaimed wastewater in the long term poses a risk 
to human health (Liu et al. 2020). Few PPCPs are known to impact the host immune 
system, male fertility, and alterations in the gut microbiome, thereby impacting 
energy metabolism (Kumar et al. 2022). The consumption of antibiotic-
contaminated foods and grains has been observed to develop antibiotic-resistant 
pathogens in the human body and can also aggravate estrogenic activity and 
immediate systemic hypersensitivity reactions (Keerthanan et al. 2021). The 
human risk associated with exposure to ECs is determined in terms of risk quotient 
(RQ), i.e., the ratio between estimated daily intake (EDI) and acceptable daily intake 
(ADI), and cumulative health hazard index (HI). 
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Table 1.1 Examples of various emerging contaminants with their concentration, class, and sources 

Contaminants and their concentration 
(ng L-1 )

Analgesics/ 
anti-
inflammatory 
drugs 

Acetaminophen, 3610–119,000; 
ibuprofen, 300–63,000; diclofenac, 
73–10,340 

Hospital 
WWTP, 
South Africa 

Kanama 
et al. (2018) 

Antibiotics Azithromycin, 26–991; carbamazepine, 
10–113; estrone, 26–124; bisphenol A, 
<LOQ–450 

Ahar River, 
India 

Williams 
et al. (2019) 

Antioxidants Nonylphenols, 1519–2773; hexestrol, 
<LOQ-17; diethylstilbestrol, <LOQ-10; 
dienestrol, <LOQ-11; estrone, <LOQ-
184; β-estradiol, <LOQ-62; 
17α-ethynylestradiol, 4–51 

WWTP, 
Guangdong 
Province, China 

Jiang et al. 
(2020) 

Antibacterial 
agents, 
disinfectants 

N4-acetyl-sulfamethoxazole, 14–31; 
triclosan, 15–26 

Wastewater, 
Beijing, China 

Liu et al. 
(2020) 

Analgesics/ 
anti-
inflammatory 
drugs 

Metformin, 4–31; acetaminophen, 3–99; 
atenolol, <MDL–4; cephalexin, <MDL– 
3; norfluoxetine, <MDL–10 ng mL-1 

Wastewater, 
Saudi Arabia 

Shraim et al. 
(2017) 

Estrogen 17α-Ethinyl estradiol, 1.3–407; 
bisphenol A, 0.5–450; 17β-estradiol, 
27–150; 4-nonylphenol, 0.3–5.4; 4-tert-
octylphenol, 0.3–7 

WWTP, 
Mexico 

López-
Velázquez 
et al. (2021) 

Plasticizer 2-Ethylhexyl phthalate, 28–528 ng g-1 Sediments, 
Jiangsu, China 

Fan et al. 
(2021) 

LOQ limit of quantification, MDL method detection limit
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The EDI, body weight normalized daily intake of contaminant, is given by 
Eq. (1.1): 

EDI= 
CD 
W 

, ð1:1Þ 

where D is the daily intake rate (g d-1 ) of contaminated food/drinks containing 
C ng g-1 of EC by an individual with body weight W (kg). Then, the RQ is given as 
in Eq. (1.2): 

RQ= 
EDI ng kg- 1 d- 1 

ADI ng kg- 1 d- 1 : ð1:2Þ 

The cumulative health HI is a reflection of the combined risk associated with each 
contaminant (Eq. 1.3): 

HI= 
n 

i= 1 

RQi: ð1:3Þ 

The value of RQ and HI >0.05 is considered to be a distinct human risk (Zhao 
et al. 2019). A recent study on screening-level risk assessment of 98 PPCPs, detected 
in the different water environments of India, suggested that a large proportion (47%) 
of the detected PPCPs possess a possible risk (RQ >1) to either aquatic species or 
human health. A few PPCPs with very high RQs (>1000) could potentially cause 
severe health concerns (Sengar and Vijayanandan 2022). 

The complete removal of ECs in WWTPs is not possible. Several conventional 
and advanced treatment processes have been already investigated. However, low 
octanol/water partition coefficients of ECs make their partitioning out of the aqueous 
phase a significant challenge. The use of activated carbon and, to an extent, biochar 
has been effective for the adsorptive removal of some ECs to a moderate extent 
(Rodriguez-Narvaez et al. 2017). The success of microfiltration and nanofiltration 
technologies varies depending on the type of membrane and the characteristics of 
contaminants (Lidén and Persson 2015). Due to toxicity, most of the ECs cannot be 
utilized as a sole carbon source in the microbiological treatment process and require 
an additional source of electron acceptor in co-metabolism. Microalgae/fungal based 
treatments have been effective for PPCPs and endocrine-disrupting chemicals 
(EDCs) (Matamoros et al. 2015). Biodegradation in the activated sludge process is 
widely adopted for the removal of EDCs with excellent removal efficiency while 
being moderately effective against some pharmaceuticals, where adsorption plays 
the dominant role in the removal. The use of hybrid systems such as ozonation 
followed by biological activated carbon has been highly efficient in the removal of 
pesticides and PPCPs (Ahmed et al. 2017). 

Environmental engineers have created more effective remediation techniques 
such as improved oxidation processes, microbial degradation, and enzymatic cataly-
sis in response to the ineffectiveness of standard WWTPs and recalcitrant PPCPs.



However, the cost of these procedures is still debatable, preventing their use in large-
scale commercial applications even though these technologies have been 
demonstrated to be effective and offer several benefits. Plant-based 
phytoremediation technologies are of immense interest due to their low-cost, 
eco-friendly biotic approach with low risks. The ubiquitous presence in almost 
every climatic region and the potential to take up organic and inorganic compounds 
from the soil-water system make phytoremediation a robust technology. Plants have 
been successfully utilized for the elimination of heavy metals and polychlorinated 
biphenyls from the contaminated environment (Passatore et al. 2014). Various 
removal mechanisms, such as phytostabilization, rhizodegradation, rhizofiltration, 
phytoextraction, phytoaccumulation, and phytodegradation, may be involved in the 
process (Wang et al. 2017). 

6 M. Zafar et al.

In this chapter, the different plant species and the factors influencing the removal 
of emerging contaminants have been illustrated. The mechanism of the 
phytoremediation process and the involvement of the enzymatic system have been 
discussed. Appropriate modifications to phytoremediation systems have also been 
discussed. 

1.2 Different Plant Species Demonstrating Higher Removal 
Efficiency of Emerging Contaminants from Soil 

The plant-based bioremediation technology enables the plant to accumulate toxic 
substances in different parts of plants and mobilize them into plant tissues through 
various metabolism. The studies on molecular and physiological mechanisms of the 
phytoremediation process have been gaining momentum in recent years through 
recent engineering and biological strategies related to the optimization and augmen-
tation of metabolic processes. Based on the availability of contaminants in different 
types, forms, and complexes, plants exploit different mechanisms in combination 
including degradation (e.g., rhizodegradation), accumulation (e.g., phytoextraction, 
rhizofiltration), dissipation (e.g., phytovolatilization), and immobilization (e.g., 
phytostabilization) to degrade, remove, or immobilize the toxic pollutants present 
in the soil environment. For phytoremediation, plant species are selected based on 
their adaptation to the regional climate, root depth, and nature and interaction with 
the contaminants. The ideal depth of different flora is reported as 3 ft., 10 ft., and 
20 ft. for remediation using grasses, shrubs, and deep-rooting trees, respectively 
(Chirakkara and Reddy 2015). An ideal plant species to be employed in the 
phytoremediation process should possess the following characteristics: hard in 
nature, high biomass canopy, tolerant to toxic effects of contaminants, easy cultiva-
tion, high adsorption capacity, and non-attractive to herbivorous. Besides, the nature 
of contaminants is a very important factor that determines the different mechanisms 
and interactions with plant tissues and organs. Based on these interactions, the 
phytoremediation process can be described as phytoaccumulation (in plant tissues), 
rhizodegradation (in the root zone), and phytodegradation (metabolism in plant 
tissues). During metabolic disintegrations, contaminants are either degraded or



transformed into other forms and get concentrated in the tissues and organs (Kafle 
et al. 2022) of hyperaccumulators. The plants have promising characteristics to 
transfer the contaminants from the root to the shoot and have capabilities of 
degradation, absorption, accumulation, and transfer to different parts of the plant. 
In recent years, phytoremediation of radionuclide-contaminated soils using different 
plant species through improving the soil environment by the addition of fertilizer, 
organic acids, or chelating agents has been reported extensively (Kafle et al. 2022). 

1 Plantation-Based Soil Reclamation of Emerging Contaminants 7

The selection of these plants is based on their ability to survive in a different 
adverse climate of contaminated sites and the pollutant mobilization potential. The 
ideal plant used in the phytoremediation process should have the capability of 
mitigating oxidative stress, which is caused by the activation of the oxidation system 
by reactive oxygen species (ROS). However, excessive radical scavenger generation 
can shift the equilibrium between its production and scavenging, leading to damage 
of plant cells. The important enzymatic antioxidants are superoxide dismutase, 
catalase, and peroxidases such as ascorbate peroxidase and guaiacol peroxidase 
(Das and Mazumdar 2016). Besides, superoxide radicals (O2) play the role of 
scavengers in the plant by converting it to hydrogen peroxide. These enzymes 
have the potential to cause severe oxidative stress in plants and can affect their 
growth and productivity (Rascio and Navari-Izzo 2011). The various physiological 
responses of plants used in phytoremediation under the influence of different 
emerging contaminant concentrations are summarized in Table 1.2. 

1.3 Factors Influencing Phytoremediation of Emerging 
Contaminants in Soil 

The type of plants and their morphology, environmental conditions, type of 
pollutants, and soil properties are the major factors that influence the translocation 
and absorption of emerging contaminants in plants. 

1.3.1 Plant Species and Their Morphology 

The selection of plant species and their morphological features play a critical role in 
influencing phytoremediation. The plant species that possess hyperaccumulation 
properties, high tolerance to onsite conditions, and short life cycles and plants that 
are easy to handle and harvest are suitable for the phytoremediation of soil. The 
bioaccumulation factor (BAF) determines whether the plant belongs to the 
hyperaccumulating species or non-hyperaccumulating species (Chaudhry et al. 
2020). The BAF is determined as the ratio of pollutants accumulated in the plant 
species to the concentration of pollutants present in the soil (Lesmeister et al. 2021). 
When the calculated BAF is >1.0, it indicates that the plant species possess the 
ability to hyperaccumulate the pollutants present in the soil (Agarwal et al. 2022). 
For example, Helianthus annus (sunflower), Zea mays (corn), Brassica campestris 
(field mustard), and Pisum sativum (pea) are some of the hyperaccumulator plants
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with BAF >1.0 (Eapen et al. 2007). The tolerance index (TI) is another factor that 
defines the ability of a plant to tolerate the pollutant concentration as well as to grow 
in conditions with longer periods in contaminated soil (Chaudhry et al. 2020). The TI 
is calculated by comparing the test plant group that is exposed to the pollutant 
conditions to that of the control (Samreen et al. 2021). When the TI is >1.0, it 
indicates that the plant can adapt to the pollutant stress conditions. On the other hand, 
when TI is <1.0, it indicates that the plant is under pollutant stress and cannot adapt 
to the polluted soil (Belouchrani et al. 2016). Therefore, it is important to select the 
species with higher BAF and TI values.

10 M. Zafar et al.

The plants absorb the pollutants mostly through roots, and the pollutants get 
translocated from the roots to the leaves, shoot, and other regions of the plant 
through transpiration, cohesion, adhesion, and osmosis mechanism (Madikizela 
et al. 2018). Plant species with a good root system (fibrous root) make more contact 
with the pollutants present in the soil and accumulate a higher concentration of 
pollutants as depicted in Fig. 1.1. The root concentration factor (RCF) for Festuca 
pratense (meadow fescue) ranges between 2 and 10 for the removal of metformin 
(antidiabetic drug) compared to the leaf concentration factor (LCF) due to the 
presence of a good fibrous root system in the plant (Eggen et al. 2011). Plant species 
such as Oryza sativa L. (rice) and Glycine max L. (soybeans) are known to 
accumulate antibiotics such as norfloxacin, oxytetracycline, and tetracycline via 
the root region because these species have limited translocation capacity (Bao 
et al. 2019; Khan et al. 2021). In contrast, certain plant species such as Echinodorus 
horemanii are known to accumulate carbamazepine, ibuprofen, atenolol, and triclo-
san in its leaf tissue compared to roots due to the fact that this plant belongs to 
submerged species and it is exposed to these pollutants through direct contact and 
has good translocation capacity (Bigott et al. 2021). 

1.3.2 Type of Pollutants 

The molecular weight, size, charge, hydrophobicity, and ratio between octanol-water 
coefficients (Kow) and octanol air coefficients (Koa), Kow/Koa, of the pollutant 
determine the translocation of pollutants in the various regions of the plant and its 
removal method. For pollutants such as PPCPs, the plant cell membrane lacks a 
specific transport system to accumulate the pollutants; rather, it is driven by the 
simple diffusion process (Keerthanan et al. 2021). This process mainly depends on 
the type of pollutants and their chemical properties such as Kow and Koa (Dowdy and 
Mckone 1997). When log Kow values of the pollutant range between 0.5 and 3.5, 
these types of pollutants are effectively translocated and transported across the 
membrane through cell fluids (Rissato et al. 2015). Pollutants with lower Koa values 
(1–3.5) are effectively absorbed and accumulated in the leaves (Zhu et al. 2020). 

Highly hydrophilic pollutants such as caffeine are known to be absorbed and 
translocated into the roots easily by several plant species, e.g., Scirpus validus, 
Elodea canadensis, and Salvinia molesta (Hu et al. 2021). On the other hand, 
anionic and hydrophobic pollutants are partitioned into lipid membranes in the
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root zone and are translocated from the roots. Cationic pollutants get accumulated in 
the leaves as they favor the translocation into other parts (Adeel et al. 2017). 
Nonionic contaminants are also known to be absorbed through the mechanism of 
chemical sorption into the membranes and cell walls of the roots (Zheng and Guo 
2021). Ionic contaminants such as PPCPs are confined in the phloem and get 
accumulated in various tissues such as the fruit region of the plant due to the 
negatively charged cell wall and cytosol of the plant (Goldstein et al. 2014).

12 M. Zafar et al.

1.3.3 Environmental Conditions 

Rainfall, sunlight, and temperature play a major role in seed germination and plant 
growth (Babu et al. 2021). Seasonal climatic variations (warm and cold season) 
greatly influence phytoremediation especially in tropical and subtropical regions as 
the conditions facilitate the removal mechanisms in plants (Cristina 2014). A 
temperate maritime climate zone enhances phytostabilization in plants for 
phytoremediation (Sherene 2010). The temperature conditions between 25 and 
42 °C are known to favor rhizoremediation in the plants as they favor the growth 
of microorganisms that can enhance the reduction of pollutants. The microorganisms 
near the rhizosphere reduce the pyrene into phthalic acid in the soil for the 
phytoremediation to proceed (Gabriele et al. 2021). The microbial community in 
the roots that forms biofilm around the root zone greatly depends on the temperature 
conditions. However, with minor deviation from the optimum temperature 
conditions, the phytoremediation efficiency can significantly decrease, leading to 
the inhibition of plant growth (Wu et al. 2019). 

Optimum rainfall or moisture content in the soil can enhance enzyme activity in 
the root zone. As a result, the removal of pollutants from the contaminated site 
becomes higher, and these conditions favor endophytic-assisted phytoremediation 
(He et al. 2020). In contrast to this, beyond the optimum conditions, water flooding 
and drought environmental conditions can harm the plant as well as the microbial 
community. Therefore, it is important to assess the type of plants that are suitable 
considering the environmental conditions for the better removal of pollutants from 
the soil. 

1.3.4 Soil Physicochemical and Biological Properties 

The pollutants can be strongly combined or adsorbed to the soil organic matter 
(SOM) present in the soil and can potentially reduce the availability of the pollutant 
for degradation since SOM is known to reduce the solubility of the contaminant 
(Bartrons and Peñuelas 2017; Nguyen et al. 2019). However, dissolved organic 
matter (DOM) is a part of SOM that increases the bioavailability of pollutants 
(Jayampathi et al. 2019). Pyrene bioavailability is greatly increased in the soil matrix 
when the DOM is present in the soil (Gabriele et al. 2021). Aged soil determines the 
type of organics present in the soil. Alfalfa phytoremediation studies have shown



that an increase in SOM (8.5%) in the soil plays a vital role as a limiting factor for the 
plant (Wei et al. 2017). Even 6.3% of SOM in the soil can retain the pollutant in the 
soil and reduce the availability of pollutants in the soil for the plants (Chekol et al. 
2002). 
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The soil pH values determine the availability of contaminants in the soil in neutral 
or ionic form. At a pH of 6.5–6.7, carbamazepine is known to be available in a 
neutral form, whereas sulfamethoxazole is present in an ionic form in the soil 
medium (Holling et al. 2012). Studies have shown that sulfamethoxazole is largely 
accumulated in the Brassica campestris (cabbage) tissue because the ionic form 
favors the adsorption and translocation of the pollutants from the root to the tissue 
(Herklotz et al. 2010). 

Soil oxygenation is more important for the rhizosphere microbial community as 
well as for the plant tissues to take up and translocate the pollutants in the aerial parts 
via the root system (Zhu et al. 2019). Therefore, it is important to mix with porous 
soil that facilitates soil oxygenation in the soil-contaminated sites for better 
phytoremediation. Furthermore, the presence of nutrients in the soil can enhance 
phytoremediation by augmenting the growth of the microbial community as well as 
the biomass of plant species. These factors not only facilitate phytoremediation but 
also enhance the endophytic assistance to the plants for the better removal of 
pollutants in the soil. 

1.4 Mechanisms of Endophyte-Assisted Phytoremediation 
of Emerging Contaminants in Soil 

Phytoremediation is an inexpensive and environmentally benign solution that has 
attracted much attention due to its capacity to remove contaminants through biotic 
processes with few hazards. Plants use various techniques to eliminate toxins from 
the contaminated site, including phytostabilization (PS), rhizodegradation, 
rhizofiltration, phytodegradation, phytoextraction, and phytoaccumulation. Addi-
tionally, combinations of plants and microbes, either plant–endophytic or plant– 
rhizospheric relationships, are also exploited to promote phytoremediation (Kurade 
et al. 2021). 

1.4.1 Mechanisms of PPCP Removal from Soil 

PPCPs are a distinct group of contaminants of emerging concern with the innate 
ability to exert physiological effects on humans, even at low dosages. Most PPCPs 
are capable of changing biological processes in various organisms because they are 
unable to create physiological effects at low doses (Kar et al. 2020). 

The three main biotic processes to remove organic chemicals are adsorption, 
bioaccumulation, and biodegradation. Furthermore, the PPCPs can reach plants in 
many different ways, such as through translocation and diffusion. In addition, PPCPs 
can diffuse through dissolved organics or enter the roots and aerial tissues in a mass



stream. Plants can absorb organic pollutants from the air through their leaves and 
roots. Still, the roots are the primary pathway for PPCP exposure. Most PPCPs have 
low volatility. Thus, they are usually exposed to plants through water or soil, either 
passively or actively. Through either a passive or active transport mechanism, plants 
can absorb xenobiotic compounds into the plant vacuole along with nutrients. Most 
organic pollutants are thought to be absorbed via a common mechanism known as 
passive uptake, controlled by transpiration, except a few hormonelike chemicals 
(such as phenoxy acid herbicides). 
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The pollutants are mass-translocated upwards into the shoots, leaves, and fruits 
across the xylem. This is made possible by the pressure gradient created by transpi-
ration, which is formed in the xylem. Stomata on the leaf surface require a continu-
ous transpiration flow regulated by translocation by constant water evaporation. 
Water evaporation from plants generates a continuous interaction of water molecules 
and their adherence to xylem vessels. Osmosis is used to capture and transport water 
and PPCPs from the roots to the leaves, and a “transpiration–cohesion–adhesion” 
mechanism follows this process. Compared to xylem sap, the phloem includes a 
comparatively large number of dissolved organics. These important conduits are in 
charge of transporting the photosynthesis end products from the leaves to the roots. 
The contaminants’ passing capacity through the endodermis cell membrane is based 
on the solubility of the contaminants in the aqueous phase (Kurade et al. 2021). The 
mechanism involved in the uptake of emerging organic contaminants through 
various phytoremediation processes is shown in Fig. 1.2. 

The PPCPs can be potentially absorbed by the plants and have detrimental effects 
on the physiology and functions of the plant, with the most frequent effects on 
germination, and growth and development of the plant. Tetracyclines, lincosamides, 
β-lactams, and macrolides are hazardous to plants and their growth and develop-
ment. They impair the uptake of phosphorus by numerous plant species, root 
activity, photosynthesis, chlorophyll content, seed germination, root length, and 
biomass (Bártíková et al. 2016). Table 1.3 shows the removal efficiency of different 
plant species for emerging compounds. 

1.4.2 Biodegradation of PPCPs Through Enzyme Synthesis 

Recent studies have demonstrated that enzymatic degradation is a required method 
by which plants remove PPCPs from the environment. Monooxygenases, cyto-
chrome P450s, laccase, peroxidase, nitrilase, and other enzymes may be involved 
in the biodegradation or biotransformation of PPCPs through metabolic pathways. 
Phase I and II enzymes usually transform the PPCPs in plants. A terminal oxidase 
called cytochrome P450 (CYP) catalyzes the cleavage of a dioxygen molecule 
(Hurtado et al. 2016). This is one of the enzymes in the phase I group that integrates 
into the substrate by using a hydrogen abstraction-oxygen rebound process. These 
enzymes primarily carry out decarboxylation, hydroxylation, demethylation, 
dealkylation, epoxidation, and isomerization. On rare occasions, they can work as 
peroxidases in the presence of H2O2 and reductases in the absence of oxygen.
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Fig. 1.2 Phytoremediation mechanism 

The phase II biotransformation reactions alter PPCPs with hydrophilic functional 
groups to increase the polarity of the final products in phase I. Phase II metabolism in 
A. thaliana resulted in the acetylation and conjugation of the product of sulfameth-
oxazole hydrolysis with glutathione, glucuronic acid, and amino acids. These pro-
cesses subsequently form non-extractable bound residues, which are sequestered 
most likely by integrating them into the cell walls or other cell components. In phase 
III, the conjugated metabolites are either deposited into vacuoles or bound to 
components of the cell wall (Kurade et al. 2021). 

1.4.3 Constructed Wetland for the Removal of PPCPs 

Constructed wetlands have gained popularity as a technology due to their excellent 
removal capacity of contaminants including PPCPs, simplicity of usage, low cost, 
and significant potential for recycling nutrients and water (Wang et al. 2017).
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The free water surface (FWS) systems, one of the common techniques in tertiary 
treatment facilities for the removal of different pollutants from water, are composed 
of shallow basins with water up to 0.4 m in depth and a hydraulic loading rate (HLR) 
between 0.7 and 5.0 cm d-1 . Because vegetation and biofilms work in harmony, 
organic molecules are degraded aerobically close to the water’s surface and anaero-
bically in deeper waters. It has been noted that the FWS systems have a high removal 
efficiency for PPCPs, such as naproxen, triclosan, and ketoprofen, as a result of 
exposure to sunshine (Hijosa-Valsero et al. 2010). Four FWS systems were merged 
and constructed using a range of vegetation, including Glyceria maxima, 
Myriophyllum spicatum, Typha spp., Carex spp., Phragmites australis, Scirpus 
sylvaticus, and Schoenoplectus lacustris, to assess the removal of 65 PPCPs. It 
showed normal anticipated clearance rates between 42 and 52%, which are lower 
than those of advanced treatment approaches (Naz et al. 2022). Although less 
dangerous than those treated with advanced tertiary treatments, PPCPs in water 
treated by FWS systems were nonetheless present. Therefore, it can be concluded 
that FWS systems can provide a supplemental treatment option for the treatment of 
PPCPs and that improved treatment technologies are required for their complete 
removal from wastewater. 

1.4.4 Floating Treatment Wetland 

Floating treatment wetlands (FTWs) are currently used to enhance water quality. 
FTW was first designed to improve the habitat and appearance of ornamental lakes 
and ponds. The FTW is made by developing emergent macrophytes with roots lying 
on a floating mat, which, in turn, inhabits deepwater. BOD, NH4-N, TP, and organic 
contaminants are all drastically reduced in FTW systems. When roots, rhizomes, and 
root-bound biofilms are associated with organic pollutants, physical and biological 
processes transform the pollutants by filtering, entrapping, and biodegrading partic-
ulate matter. Several methods have been used to remove different PPCPs, including 
plant uptake, biofilm-related microbial degradation (salicylic acid, ibuprofen, 
galaxolide), adsorption onto particulate matter with subsequent sedimentation (tet-
racycline, triclosan), and photodegradation (triclosan, naproxen, ketoprofen, and 
diclofenac) (Hurtado et al. 2016). 

The subsurface flow (SSF) systems, which are constructed using a porous media 
like sand, gravel, or small crushed pebbles with a typical bed depth of 0.6 m and an 
average HLR between 2 and 20 cm d-1 , are equal to a wetland of 0.5–5 ha with a 
flow of 1000 m3 d-1 . The SSF system normally provides two configurations: vertical 
SSF systems and horizontal SSF systems. These systems have an integrated structure 
of aerobic, semi-aerobic, and anaerobic zones in the subsurface. The granular 
medium is traversed by the wastewater either vertically or horizontally. The aerobic 
zones of the SSF system, which provide oxygen to the substrate through oxidation, 
are represented by the surrounding region of plant roots and rhizomes. It has been 
amply demonstrated that SSF systems enhance the removal of BOD, COD, phos-
phate, and nitrogen and provide optimum denitrification conditions. In addition, by



sticking to the organic material in the granular medium, polycyclic musks and other 
hydrophobic compounds may be successfully eliminated. Eliminating several of the 
regularly seen PPCPs in three separate rural horizontal SSF systems demonstrated 
substantial diversity (37–99% for β-blockers, 11–100% for anti-inflammatories, and 
18–95% for diuretics) (Zhang et al. 2014). 
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1.5 Recent Advancements and Challenges in the Field 
of Phytoremediation Technology for the Removal 
of Emerging Contaminants 

Recent advancements in research and challenges on phytoremediation for the 
removal of emerging contaminants were analyzed through bibliometric analysis. 
Bibliometrics is an approach to examining and analyzing the impact of research 
output through quantitative analysis using various computational and statistical 
tools. The various analyses such as citation analysis, co-citation analysis, keyword 
occurrences, and co-authorship analysis can be carried out using suitable software 
tools (e.g., VOSviewer). This analysis revealed the linkage of different articles 
published on different domains of phytoremediation and focused on a new dimen-
sion of future research on the phytoremediation of emerging pollutants (Narayana 
Prasad and Kalla 2021). 

Literature on recent research on phytoremediation was collected using the Scopus 
database on 29th of October 2022 using the search terms “Recent advancements 
AND challenges AND phytoremediation AND emerging contaminants.” The docu-
ment type was restricted to research articles, conference proceedings, and review 
papers published during the last 5 years (2019–2023). A total of 157 articles were 
found to be relevant to the recent applications in the area of phytoremediation, and 
screening was done based on relevant information in the search areas. The 
bibliometric analysis of the exported data was carried out using VOSviewer software 
(ver. 1.6.18) developed by Leiden University, Netherlands. The keywords men-
tioned in a research paper provide information on which research work was carried 
out. Thus, keyword co-occurrence analysis is important in Scientometrics, which can 
help readers to get a better insight into the current research-focusing area. 
The collected data comprised 157 research papers including review articles. During 
the analysis, a total of 5051 keywords was obtained, out of which 351 keywords met 
the threshold limit (set as a minimum of occurrences of the term to 5). The keywords 
were further screened to remove the irrelevant occurrences, and a final map was 
created (Fig. 1.3). The constructed map can be understood in such a way that the size 
of the circle reflects the weightage of the occurrence, and the nodal color illustrated 
the different cluster (e.g., red, blue, and green) appearing in the research area. The 
transition in the cluster color is represented as the evaluation of different research 
domains of phytoremediation. The red color cluster, having the largest network, 
showed the major research development on phytoremediation research work in the 
past 5 years. These research areas included the development of genomics and 
metabolomics including plant–microbes interaction study, and bioaugmentation.



The green color cluster represents the research focus on the application of nanotech-
nology and soil amendments with biochar for enhancement of the phytoremediation 
process. Besides, the purple color cluster represents the recent application of 
microalgae in the area of phytoremediation as green technology. 
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Fig. 1.3 Co-occurrence network visualization map of the key terms appeared during the search of 
advance research on phytoremediation in ScienceDirect (search terms: Recent advancements AND 
challenges AND phytoremediation AND emerging contaminants) 

In the recent times, sustainable genetic engineering has been playing an important 
role in the area of phytoremediation technology to cope up with the situation arising 
due to the advent of industrial revolution and resulting pollution. The research on 
phytoremediation techniques is focusing on various aspects of combinatorial genetic 
engineering tools in which the cluster repeats of spaced palindromic (CRISPR)-Cas9 
have showed a greater potential for site-specific expression regulation and provide a 
new insight on plant functional genomics. The gene editing in plant growth, pro-
moting rhizobacteria (PGPR) using the CRISPR-Cas9 technique, has improved the 
synthesis of bioactive compounds with simultaneous increase in biomass produc-
tion, tolerance to pollutants, transportation, accumulation, and detoxification of 
critical pollutants (Naz et al. 2022). The CRISPR-Cas9 technique is recognized as 
a modern way to increase the potential of genotypes to perform phytoremediation.



Hyperaccumulator-based phytoremediation technologies have been improved suc-
cessfully through the application of genetic engineering, which is known as 
“genoremediation,” to overcome the limitation associated with the traditional way 
of toxin removal from soil. Thus, tremendous efforts have been made in recent years 
in the area of gene expression-derived transporters/enzymes, and molecular 
mechanisms have been exploited for augmentation of “genoremediation” of envi-
ronmental contaminants (Rai et al. 2020). It has also been investigated that the 
molecular mechanism of phytoremediation and gene manipulations through 
overexpression of metal chelator and transporter genes resulted in the increase of 
plant biomass and reduced oxidative stress/phytotoxicity (Rai et al. 2019). 
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In addition, incorporation of omics tools such as metagenomics, meta-
transcriptomics, and metabolomics has remarkably revolutionized the potential of 
phytoremediation in recent years. A remarkable progress has been made using the 
next-generation sequencing (NGS) tool, as cutting-edge research through expression 
of alkB gene coding for alkane monooxygenase and CYP153 gene for P450 alkane 
hydroxylase in Dietzia genome, leading to phytoremediation of PHA (Alonso-
Gutiérrez et al. 2011). The molecular and genetic prospects of copper accumulation 
in a hyperaccumulator plant of Brassica napa through the expression of ATPase 
gene system have also been investigated (Zhang et al. 2019). 

Several broad-spectrum insecticides such as chlorfenapyr have been classified as 
hazardous materials and pose substantial risk to the reproductive ability of birds and 
threat to the environmental stability. Nowadays, integrated green and nanotechnol-
ogy is focusing on eco-friendly phytoremediation of these toxic recalcitrant 
compounds and to overcome the challenges associated with the sustainable environ-
mental management of plants used in phytoremediation. Besides, the green synthesis 
of Fe- and Ag-based nanoparticles is involved in the extraction of toxic compounds 
both as a stabilizer and as a reducing agent (Romeh et al. 2020). This approach is 
simple, eco-friendly, nonhazardous, economic, and time efficient and involves 
coating with natural organic compounds. The fast and efficient removal of 
chlorfenapyr using a combination of Plantago major and green nanoparticles of 
F-Fe0 , Ip-Ag0 , and Br-Ag0 supported by activated charcoal has been investigated 
(Romeh et al. 2020). The effect of solubility-enhancing agents (e.g., SiO2, argal, and 
ethanol) has been monitored and found effective for enhanced phytoremediation. 
Thus, these strategies can also be considered as an eco-friendly and cost-effective 
alternative approach to traditional remediation technologies for detoxification of 
contaminated soil. 

Anew, biochar preparation is considered as an active research domain under 
environmental management of phytoremediation plants. Calcium silicate-coated 
nZVI/biochar composite (BOS) has been prepared using an industrial waste, and 
phytoremediation technique is employed for As(V) removal (Tan et al. 2022). In this 
way, the toxicity risk of BOS is greatly reduced compared to the toxicity of raw 
material. In addition, microalgae-based bioremediation technique has been emerging 
as a potential alternative in recent years and has been employed for the removal of a 
variety of toxic chemicals including PPCPs, pesticides, heavy metals, and 
oil-contaminated sites from water streams (Bhatt et al. 2022).
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1.6 Conclusion 

In recent years, phytoremediation technology has been proven as an environmentally 
benign, economically feasible, and sustainable remediation option for the removal of 
ECs from the soil matrices. Phytoremediation in combination with microbial reme-
diation can be considered an eco-friendly technique as the microorganisms support 
the plant tolerance that overcomes toxicity in the form of less toxic form. The 
research on phytoremediation is focusing on plant genomics and proteomics 
approaches for improvement in the bioremediation potential of plants. The recent 
challenges, opportunities, and prospects in the area of phytoremediation of ECs lie in 
the improvement of plant stability and extraction efficiency through genetic engi-
neering, microbial assistance, and chelation support approaches. With the help of 
molecular tools, adaptive phytoremediation ability can be improved in the current 
global conditions. 
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Abstract 

The increase in people’s living standards has also led to an increase in the use of 
pharmaceuticals and personal care products (PPCPs). Pollution caused by unme-
tabolized or partially metabolized PPCPs has emerged as a serious danger in 
recent years. This pollution can be carried to soil, underground waters, wastewa-
ter, and even drinking water in cases where serious treatment is not done. 
Removal of the pollution does not take place as soon as the participation of the 
pollutant in the nature; it takes much longer. Phytoremediation is a general name 
given to the technology of removing pollutants using plants, and there are many
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different technologies under this name. Phytoremediation is much more econom-
ical than traditional physical and chemical treatment methods and has many 
technical and environmental advantages. This review summarizes current infor-
mation on the sources and transport of PPCPs, phytoremediation and its types, 
advantages and disadvantages, factors affecting the phytoremediation process, 
and removal of PPCPs in soil by plants.
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2.1 Introduction 

Nature and the environment are also affected by the negativities that arise as a result 
of industrialization, the development of technology and population growth, and the 
size of pollution that is increasing rapidly day by day. Soil pollution, which is a type 
of environmental pollution, appears to be a serious problem all over the world. As a 
result of soil pollution, the physical, chemical, biological, and geological structure of 
the soil is deteriorated (Menteşe 2017). Pharmaceuticals and personal care products 
(PPCPs) are also one of the important factors that play a role in these deteriorations. 
Since PPCPs are abundant in household, industrial, and hospital wastes, they cause 
pollution in both soil and water resources (Nguyen et al. 2019; Bhattacharyya et al. 
2022). 

A wide variety of methods are used to remove PPCPs from the environment. 
Advanced technologies are used in most of these methods, which necessitates the 
need for trained personnel as well as high investment and operating costs (Morone 
et al. 2019). However, phytoremediation is an environmentally friendly, cost-
effective, and easy-to-apply new method used to remove both organic and inorganic 
pollutants from the environment by plants (Muszyńska et al. 2020). Today, the use 
of phytoremediation technology is becoming more and more widespread. Generally, 
plants suitable for accumulating pollutants in their roots and stems are preferred. 
Plants remove pollutants from the environment through various natural biophysical 
or biochemical processes such as adsorption, transport, hyperaccumulation, and 
transformation (Chandra and Kumar 2018). 

In this chapter, current information on the sources and transport of PPCPs, 
phytoremediation and its types, advantages and disadvantages, factors affecting 
the phytoremediation process, and removal of PPCPs in soil by plants will be shared.



2 Plant-Based Technologies for the Removal of Pharmaceutical and. . . 29

2.2 The Sources and Transport of PPCPs 

PPCPs are a broad group of medicines, personal hygiene products, cosmetics, and 
household chemicals (Arias 2019). The intensive use and unconscious disposal of 
PPCPs, whose varieties and numbers are increasing day by day, have been a serious 
concern in recent years (Liu and Wong 2013; Chacon et al. 2022). Half-lives of 
PPCPs are short. However, they are included in the so-called pseudo-persistent class 
because they are continuously discharged into the environment, albeit in low 
concentrations (Yang et al. 2020). Degradation times in the environment vary 
depending on their chemical structure and metabolic process (Chen et al. 2015). 
The classification of PPCPs based on their purpose and properties is shown 
schematically in Fig. 2.1 (Perez-Lemus et al. 2019). 

Medical and personal waste, sewage, industrial and agricultural activities, aqua-
culture studies, veterinary uses, and livestock urine and feces are the main sources of 
PPCPs (Keerthanan et al. 2021). Pharmaceuticals are biologically active compounds 
and are excreted from the body without being fully metabolized (Bottoni and Caroli 
2018). Pharmaceuticals excreted from both human and animal bodies through urine 
and feces cause water and soil pollution (Tasho and Cho 2016). Personal care 
products, on the other hand, are dispersed to the environment through sewage 
without undergoing any metabolic changes (Yang et al. 2017). Domestic, industrial, 
and hospital wastewater discharged into sewage systems is treated by passing 
through various physical and biochemical processes. Treated urban wastewater is

Fig. 2.1 The classification of PPCPs based on their purpose and properties



considered among the best sources of irrigation water for sustainable water manage-
ment due to its high volume, applicability, and well-known quality characteristics 
(Can Doğan et al. 2016). In addition, the obtained sludge is used as a fertilizer. 
However, PPCPs found in these sources and which cannot be removed with con-
ventional systems at sufficient rates are released into the environment (Wang et al. 
2018). Studies have shown that PPCPs are found in concentrations ranging from ng 
to μg in the effluent and the resulting treatment sludge after treatment (Bartrons and 
Penuelas 2017; Rosman et al. 2018).
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PPCPs can accumulate in water and soil environments, as they generally dissolve 
easily in aqueous environments and do not evaporate at normal temperature and 
pressure (Wang et al. 2019). They can leak from the soil and mix with groundwater 
and drinking water, causing serious pollution (Shraim et al. 2017). They can also 
enter the food chain when they are in the soil for a long time and are not biodegrad-
able (Bhattacharyya et al. 2022). Since the number and types of PPCPs are very 
large, their behavior in the environment also differs. Their behavior is influenced by 
their physicochemical properties and environmental conditions (Xing et al. 2016). 
Environmental distribution of PPCPs with low volatility, high polarity, and hydro-
philic character occurs primarily through aqueous transport, and they are rapidly 
dispersed into the environment (Dhir 2022). Hydrophobic ones prefer to accumulate 
in soil or sediments (Caliman and Gavrilescu 2009; Ebele et al. 2017). 

2.3 Phytoremediation and Its Types 

Phytoremediation is derived from the words “phyto” meaning plant and “remedia-
tion” meaning improvement and entered the terminology in 1991. It is also called 
bioremediation or green remediation (EPA (Environmental Protection Agency) 
2000). With the phytoremediation method, organic and inorganic substances can 
be removed from the area where they cause pollution by using plants (Misra and 
Misra 2019). The main reason for using plants for cleaning the soil is to convert the 
impurities held by the soil into a more controllable and portable form by 
accumulating in the roots, stems, and leaves of the plant (Bhandari 2018; Can 
2020). Remediation methods used to remove organic and inorganic pollutants 
from soil are shown schematically in Fig. 2.2. 

There are six types of phytoremediation methods: phytoextraction, 
phytostabilization, phytovolatilization, rhizodegradation, phytodegradation, and 
rhizofiltration. The phytoextraction (phytoaccumulation) method is based on the 
principle that especially inorganic pollutants are taken from the soil by the plant 
roots, transported to the aboveground parts (stem and leaf) by moving within the 
plant tissues, and stored there (Pedron et al. 2021). Phytoextraction is a method 
mostly used to remove metals from contaminated soils. Since plant growth cannot be 
sustained in heavily polluted areas, it can be applied to areas with low or moderate 
metal pollution (Terzi and Yıldız 2011). The plant to be used in the phytoextraction 
method should have a high tolerance to heavy metals, have high biomass per hectare, 
show rapid growth, store heavy metals in the leaves, and have a strong and extensive



root system (Jadia and Fulekar 2008; Ijaz et al. 2016). The harvested plant can be 
used for biogas production, or it can be burned to recover heavy metal. The main 
advantages of phytoextraction are that it is environmentally friendly, does not cause 
any damage to soil quality, is inexpensive, and permanently extracts toxic pollutants 
from the soil (Etim 2012). Because the process is controlled by plants, it takes longer 
than traditional soil-clearing processes. This is the disadvantage of the method (Ali 
et al. 2017). The process of limiting the movement of pollutants in the soil with the 
help of plants is called phytostabilization or phytoimmobilization (Hrynkiewicz 
et al. 2018). Immobilization of pollutants is achieved by their deposition by the 
roots, their adherence to the surface of the roots, or their precipitation in the root zone 
of the plant. This technique is used to prevent erosion, reduce the pollutant load in 
groundwater, and prevent direct interaction with contaminated soil (Schwitzguebel 
et al. 2011). It is an important advantage that it does not require soil transportation. 
Its main disadvantage is that the pollution remains in the soil. Fertilization and soil 
improvement studies are needed to ensure maximum stabilization efficiency. Root 
depth is also extremely important for the efficiency of the system (Grzegorska et al. 
2020). Phytovolatilization occurs in two ways, direct and indirect. In direct 
phytovolatilization, organic and inorganic pollutants are absorbed by the plant 
roots and then transported along the shoots and released into the atmosphere during 
the transpiration process of the leaves. This process is also called phytovolatilization 
for short. Phytovolatilization depends on the physical properties of pollutants such as 
polarity, solubility, and hydrophobicity. Volatile compounds with high solubility in 
water can be easily removed. Furthermore, root depth of plants is also very important 
in this method (Pedron et al. 2021; Limmer and Burken 2016). In indirect 
phytovolatilization, an increase in the amount of volatile pollutants removed by
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Fig. 2.2 Remediation methods used to remove organic and inorganic pollutants from soil



increasing the activities of plant roots is provided. The activities of plant roots can be 
increased by methods such as chemical transport by hydraulic redistribution, 
increasing soil permeability, advection with water towards the surface, lowering 
the water table (Limmer and Burken 2016). The most important advantage of the 
phytovolatilization method is that many toxic compounds such as mercury 
compounds can be converted into less toxic forms. However, releasing very harmful 
or toxic substances into the atmosphere is also a disadvantage (Farraji et al. 2020). If 
the degradation takes place by microorganisms or by the effect of plant roots, this 
event is called rhizodegradation (Kafle et al. 2022). Microorganisms take pollutants 
into their body with the help of root system after their chemical structure has 
changed. This association keeps microorganisms at an optimum level for them to 
continue their vital activities and ensures the continuous breakdown of toxic 
pollutants. Thus, microorganisms in the soil break down organic pollutants and 
accumulate them in their bodies (Naeem et al. 2020). Plant roots activate sugars, 
alcohols, and organic acids as sources of carbohydrates for the soil microflora. Thus, 
they increase microbial formation and activity (Dominguez et al. 2020). The biggest 
advantage of rhizodegradation is that the pollutants are destroyed in the natural 
environment. However, they are transported to plants and the atmosphere, albeit to a 
lesser extent (Aybar et al. 2015). Compared to phytodegradation, rhizodegradation 
provides a very rapid purification due to the microbial community association 
(Farraji et al. 2020). Phytodegradation is also called phytotransformation. The 
basic mechanism in this method is the uptake of organic pollutants by plants and 
their metabolization in the plant structure (Spaczyński et al. 2012). Plant enzymes 
such as dehalogenase, nitroreductase, peroxidase, laccase, and nitrilase play an 
active role in the metabolism of pollutants (Asante-Badu et al. 2020). The 
incorporation of organic compounds into the plant is affected by the type of plant, 
the residence time of the pollution in the soil, and the physical and chemical structure 
of the soil (Arıkan 2021). The most important advantage of the method is that 
reduction or degradation takes place in the plant in line with physiological events 
and is not dependent on microorganisms. The disadvantages of the method are that 
toxic intermediates and end products can be formed during deterioration and their 
detection is very difficult (Sharma and Pathak 2014). Depending on the abiotic, 
biotic, and filtration processes with the roots, the process of taking the pollutants into 
the structure of the roots or keeping them on the plant roots is called rhizofiltration. 
During these processes, pollutants can be taken to the plant and transported. The 
pollutants can then be removed from the plant in different ways. The plants to be 
used in this method must have advanced root systems that act as filters (Kristanti 
et al. 2021). Rhizofiltration method is generally applied for metals and mixed wastes 
(Galal et al. 2018). It is an advantage of the system that it allows the use of terrestrial 
and aquatic plants. In addition to its applicability in natural environments, the system 
can also be applied in artificial areas such as pools, tanks, and ponds. The most 
important disadvantages of this method are the need for a constant pH range and 
placing the plants in the rhizofiltration system after they are grown in a greenhouse. 
In addition, periodic harvesting and plant disposal are required (Sharma and Pathak
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2014). Some of the plants frequently used in phytoremediation studies are shown in 
Table 2.1.

2 Plant-Based Technologies for the Removal of Pharmaceutical and. . . 33

Table 2.1 Some of the plants frequently used in phytoremediation studies 

Application Plants References 

Phytoextraction Indian mustard (Brassica juncea), 
sunflowers (Helianthus annuus), grass 
(Cynodon dactylon) 

Rathore et al. (2019); Alaboudi 
et al. (2018); Gajaje et al. (2021) 

Phytostabilization Phreatophytic trees, grasses (Bromus 
tomentellus, Chloris virgata, 
Calamagrostis epigejos) 

Ferro et al. (2013); Roohi et al. 
(2020); Mishra et al. (2020); 
Teodoro et al. (2020) 

Phytovolatilization Giant reed (Arundo donax L.), annual 
beard grass (Polypogon 
monspeliensis), reed (Phragmites 
australis) 

Guarino et al. (2020); Ruppert 
et al. (2013); Miguel et al. 
(2013) 

Rhizodegradation Sesbania (Sesbania cannabina), 
Cucurbits (Cucurbita sp.), Chinaberry 
tree (Melia azedarach) 

Maqbool et al. (2012); Ely and 
Smets (2017); Kotoky and 
Pandey (2020) 

Phytodegradation Red mangrove (Rhizophora mangle 
L.), willows (Salix viminalis), 
broadleaf cattail (Typha latifolia L.) 

Sampaio et al. (2019); Clausen 
et al. (2017); Papadopoulos and 
Zalidis (2019) 

Rhizofiltration Water hyacinth (Eichhornia 
crassipes), duckweed (Lemna minor), 
water lettuce (Pistia stratiotes) 

Kodituwakku and Yatawara 
(2020); Singh et al. (2021) 

2.4 Advantages and Disadvantages of Phytoremediation 

Phytoremediation has become a highly preferred method today because it is a natural 
method that provides cleaning of the soil and has many advantages. The main 
advantages of phytoremediation are as follows:

• It is much easier to implement than physicochemical technologies.
• It does not require special equipment during the application.
• It is effective in many organic and inorganic pollutants.
• It does not require specialized personnel.
• It can fight the reaper pollutant at the same time.
• The cost of breeding is much cheaper compared to other technologies.
• It allows the reusable area of application.
• It reduces erosion of soils.
• When the maintenance and renewal of the plants are done regularly, the system 

has a very long life.
• The spread of pollution to the environment is very low in on-site applications.
• It has an aesthetic appearance, creates habitat, and restores ecological function 

(Ekta and Modi 2018; Mohammed and M-Ridha 2019).
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Phytoremediation also has some disadvantages. The effectiveness of the system is 
limited by root depths and climatic conditions. In heavily polluted areas, plants do 
not show their effectiveness in a short time. Phytoremediation takes longer breeding 
time compared to other breeding methods. Since the survival and growth of plants 
are affected by soil and climatic conditions, it cannot be applied in every environ-
ment. It is not suitable for all compounds. The use of plants that are not in the 
ecosystem of the application area may adversely affect biodiversity (Chaudhry et al. 
2002; Aybar et al. 2015; Ekta and Modi 2018). 

2.5 The Factors Affecting the Phytoremediation Process 

It is of great importance to consider the factors affecting phytoremediation in the 
successful application of the phytoremediation method. The main factors affecting 
the phytoremediation process can be listed as follows:

• Physical and chemical properties of pollutants (such as solubility in water, 
octanol water distribution coefficient, vapor pressure)

• Environmental characteristics (such as temperature, pH, organic structure, soil 
moisture content)

• Plant characteristics (such as root system, plant types) (Srivastav et al. 2018) 

2.5.1 Physical and Chemical Properties of Pollutants 

Chemical properties of pollutants such as hydrophobicity and volatility affect their 
movement in the soil. Hydrophobicity is expressed by the octanol-water distribution 
coefficient (log Kow). Pollutants with high hydrophobicity also have high log Kow 

values. Hydrophobic molecules (log Kow >3) are tightly bound to the organic 
structure of the soil and do not dissolve in the water in the soil pores (Huang et al. 
2004). The volatility of the pollutant is expressed by Henry’s law (Hi) and shows the 
tendency of the compound to disperse in the air relative to water. Pollutants with a Hi 

value greater than 10-4 have a tendency to move in air spaces between soil particles. 
Those with a Hi value of less than 10

-6 tend to move in water and can be broken 
down by phytodegradation. Those with a Hi value between 10

-4 and 10-6 can move 
both in air and in water. They can also pass from the soil to the atmosphere via 
transpiration stream (Zand and Hoveidi 2016). The extent to which substances in the 
environment enter living organisms is expressed by bioavailability. The bioavail-
ability of pollutants is affected by environmental conditions, soil structure, 
biological activity, and chemical properties of pollutants (Gourlay-France and 
Tusseau-Vuillemin 2013). By making some improvements in the soil, the uptake 
of pollutants by the plants can be increased. For example, the bioavailability of 
hydrophobic molecules can be reduced by adding organic matter to the soil, or the 
bioavailability of pollutants can be increased by adding surfactant. Since organic 
compounds can be in more or less protonated forms at different charges, the



solubility of pollutants can be changed by changing the pH of the soil. This affects 
the uptake of pollutants by the plant (Biswas et al. 2018). Uptake of organic and 
inorganic pollutants by plant roots differs. Since the majority of organic pollutants 
are man-made, plants perceive these substances as xenobiotics. For this reason, they 
do not have carriers in plant membranes, and they tend to enter the plant by simple 
diffusion. Differences in root structure, biomass, transpiration, and growth rates of 
plant species differently affect the biochemistry of the soil environment and micro-
bial community. It is preferred that the plants to be used in the phytoremediation of 
organic pollutants are fast growing, durable, and tolerant to pollution and have a 
wide root structure and high biomass (Chen et al. 2019). 
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2.5.2 Environmental Characteristics 

The texture of the soil affects the bioavailability of the pollutants. Since clay soils 
have smaller particle structure and higher exchange capacity compared to silty and 
sandy soils, the bioavailability of pollutants in soils with high clay content is lower 
(Brady and Weil 2016). Soil moisture and temperature affect microbial activity (Kim 
et al. 2012). In soils with low moisture content, both microbial activity losses occur 
and plants become dehydrated. In soils with high moisture content, the movement of 
air and gases in the soil is prevented and anoxic zones are formed as a result of 
deterioration in which anaerobic microorganisms are dominant (Schimel 2018). 
Oxygen transfer from the root to the plant varies depending on the type of plant. 
Herbaceous wetland plants convert carbon dioxide, which their leaves absorb 
through photosynthesis, into oxygen and then carry them to the roots and then to 
the rhizosphere (Faußer et al. 2016). They also support bacterial populations in the 
rhizosphere, which can aid in the degradation of organic pollutants. Unlike wetland 
plants, woody plants have a weak capacity to transport oxygen from the leaves to the 
root (Dong et al. 2016). Temperature affects the speed of the mechanisms involved 
in phytoremediation. At temperatures between 10 and 40 °C, every 10 °C increase in 
temperature increases the rate of microbial degradation two times (Wright et al. 
1997). Both plants and rhizosphere microorganisms need nutrients to survive and 
grow in contaminated soils. The main nutrients required are macronutrients (such as 
carbon, nitrogen, phosphorus, potassium), micronutrients (such as calcium, magne-
sium, sulfur), and trace nutrients (such as manganese, zinc, iron, cobalt, copper) 
(Zand and Hoveidi 2016). Fertilization is applied in order to supplement the missing 
nutrients in the soil. For this purpose, organic fertilizers containing nitrogen, phos-
phorus, or potassium and carbon dioxide fertilizers are used (Wu et al. 2017). The 
amount of fertilizer to be used in fertilization processes is also very important. 
Studies have shown that excessive fertilizer application reduces phytoremediation 
efficiency (Xiong et al. 2012). In addition, it has been determined that the use of 
carbon dioxide fertilizers in phytoremediation increases the resistance of plants to 
pollution and improves plant biomass (Tang et al. 2003).
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2.5.3 Plant Characteristics 

Plant species selection is extremely important for the successful implementation of 
the phytoremediation process. The plant characteristics to be considered can be listed 
as follows:

• It should be resistant to the climatic conditions of the area where the pollution is 
located.

• It should be able to tolerate pollution.
• It should be resistant to the pH and salinity of the soil.
• It should grow fast.
• It should have a broad root structure.
• It should be resistant to drought and poor drainage conditions.
• It should have the capacity to take up and transport pollution. 

In addition to these, it is necessary to evaluate whether it is evergreen, sold 
commercially, and domestic (Ghavzan and Trivedy 2005; Laghlimi et al. 2015). 

2.6 Removal of PPCPs in Soil by Plants 

2.6.1 The Factors Affecting Uptake of PPCPs by Plants 

Since PPCPs are a large group, their physicochemical properties vary. Accordingly, 
the log Kow values are also different. Hydrophilic ones have low Kow values 
(between 1 and 4), while hydrophobic ones have high Kow values (>4). As a result, 
hydrophilic PPCPs tend to pass into the plant, while hydrophobic ones tend to stay in 
the soil (Colon and Toor 2016). PPCPs with a half-life of more than 14 days are 
taken up by plants, while those with a half-life of less than 14 days are degraded 
(Bondarenko et al. 2012). The organic carbon content of the soil is also effective on 
the degradation of PPCPs. Soil absorption of PPCPs is increased in soils with high 
organic carbon content. Therefore, their bioavailability is reduced (Li et al. 2013). 
PPCPs with a molecular weight of less than 1000 g mol-1 are easily absorbed by 
plant roots (Zhang et al. 2017). PPCPs can be acidic, basic, or neutral (Ohoro et al. 
2019). Acidic PPCPs decompose in aqueous media and form anions and undissoci-
ated acids. Since the cell membranes of plants have negative electrical potential, they 
repel anions and thus anions are difficult to be taken up by plants. Basic PPCPs 
dissolve in aqueous media and form neutral and cationic molecules. Cations are 
easily taken up by plants as they will be attracted by the negative electrical potential 
in plant cell membranes. Neutral molecules pass through plant cell biomembranes 
faster than charged molecules because the bioaccumulation of charged molecules is 
reduced by the roots (Guasch et al. 2012). 

Plants absorb organic pollutants from the air through their leaves and from the 
soil through their roots (Kurade et al. 2021). Because PPCPs generally have low 
volatility, they are transported from the soil to plants by being absorbed by plant



roots (Zhang et al. 2017). Plants carry the nutrients they receive from the soil through 
their roots to the upper parts with active and passive transport mechanisms 
(Brundrett et al. 2018). In active transport, biochemicals are transported from a 
region of low concentration to a region of high concentration. Therefore, chemical 
energy is needed. In contrast, in passive transport, biochemicals are transported from 
a region of high concentration to a region of low concentration. Therefore, there is no 
need for chemical energy (Trapp and Legind 2011). It has been determined that 
plants carry organic pollutants in the same way as nutrients, and they generally use 
the passive transport mechanism in this process (Madikizela et al. 2018). Molecular 
sizes of PPCPs taken from the soil by plants are highly effective on their transport 
mechanisms. While PPCPs with small molecular size easily pass through cell 
membranes and are transported to upper tissues via the xylem, those with large 
molecular size show resistance (Kvesitadze et al. 2015). Basic PPCPs have a larger 
translocation factor than acidic and neutral ones. Therefore, they are more easily 
transported from the roots towards the leaf tissues (Dodgen et al. 2015; Sungur 
2022). 
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2.6.2 Uptake of PPCPs from Soil by Plants 

Studies have shown that PPCPs from contaminated soils are taken up by plants and 
carried to the upper parts of the plant. People are exposed to these substances, which 
pose a health risk, especially as a result of the transfer of PPCPs to edible plants. 
Therefore, there are many studies on this subject. Some of these studies are 
summarized in Table 2.2. 

2.6.3 Remediation Methods Applied to Remove PPCPs in Soil 

Studies showing that PPCPs pass to edible plants have formed the idea that they can 
also pass to plants that are not consumed as food. Subsequently, an increasing 
number of studies have begun to be conducted on the removal of PPCPs, which 
cause soil and water pollution, by plants. These studies have shown that more than 
100 PPCPs can be removed. However, most of the work on this topic is concerned 
with the removal of PPCPs from aqueous media (Topal et al. 2018; Li et al. 2020a, b; 
Mohammed et al. 2021; Deng et al. 2022; Maldonado et al. 2022). The number of 
studies on the removal of PPCPs from the soil is currently very limited. Some of 
these studies were carried out under hydroponic conditions in soilless environments, 
and some of them were carried out in greenhouses (Carvalho et al. 2014). Hydro-
ponic studies can provide insight into plant-soil interactions regarding PPCP uptake, 
but hydroponically grown plants have physiological differences compared to soil-
grown plants (Miller et al. 2016; Kurwadkar et al. 2017). Some studies carried out in 
recent years on the removal of PPCPs by plants in both hydroponic and greenhouse 
conditions are briefly mentioned below.
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Table 2.2 Uptake of PPCPs from contaminated soil by edible plants 

Concentration 
range in plant 
(μg g-1 )

Atenolol, ciprofloxacin, 
metformin, minocycline, 
norfloxacin, naproxen, 
glyburide, sulfamerazine, 
penicillin G, triamterene, 
trimethoprim 

Tomato, carrot, potato, 
sweet corn 

2 × 10-5 – 
0.014 

Sabourin et al. 
(2012) 

Triclosan Cucumber, radish Up to 
5.2 × 10–3 

Prosser et al. 
(2014) 

Triclocarban Carrot, green pepper, 
tomato, cucumber 

Up to 
5.7 × 10-3 

Prosser et al. 
(2014) 

Carbamazepine, diclofenac, 
fluoxetine, propranolol, 
sulfamethazine, triclosan 

Radish, ryegrass 0.01–65.26 Carter et al. 
(2014) 

Carbamazepine, 
meprobamate, dilantin, 
naproxen 

Lettuce, spinach, 
cabbage 

3 × 10-5 – 
1.4 × 10–3 

Wu et al. (2014) 

Carbamazepine, diclofenac, 
acesulfame lamotrigine, 
ciprofloxacin, 
benzotriazole, gabapentin, 
acridone 

Potato, lettuce, carrot, 
zucchini, cabbage, 
pepper, eggplant, 
tomato, parsley, rucola 

3.8.10-3 – 
0.216 

Riemenschneider 
et al. (2016) 

Diclofenac, 
sulfamethoxazole, 
trimethoprim 

Tomato 3.4 × 10-3 – 
0.012 

Christou et al. 
(2017) 

Acetaminophen, antipyrine, 
propranolol, 
carbamazepine, 
trimethoprim, venlafaxine 

Tomato 3 × 10-4 – 
2 × 10-3 

Martinez-Piernas 
et al. (2019) 

Tetracycline, tylosin, 
norfloxacin, 
oxytetracycline, 
sulfamethoxazole, 
sulfamethazine, 
chlortetracycline, 
erythromycin, enrofloxacin, 
ciprofloxacin 

Peanut 7 × 10-5 – 
0.023 

Zhao et al. (2019) 

Atenolol, carbamazepine, 
triclosan 

Lettuce, radish, maize 1.8 × 10-3 – 
0.424 

Beltrán et al. 
(2020) 

Sulfamethoxazole, triclosan, 
ibuprofen, chloramphenicol, 
sulfamethazine, 
trimethoprim 

Eggplant, wheat, 
cucumber, long bean 

2 × 10-5 – 
0.028 

Liu et al. (2020) 

Adesanya et al. (2021) investigated the phytoextraction of ciprofloxacin (CIP) 
and sulfamethoxazole (SMX) by cattail (Typha latifolia L) and switchgrass (Pani-
cum virgatum L) under hydroponic conditions. They stated that after a 21-day



growth period, cattail takes up 34% of ciprofloxacin and 20% of sulfamethoxazole, 
while switchgrass takes up 10% of both antimicrobial drugs. Furthermore, they 
emphasized that it would be beneficial to carry out a similar study in 
non-hydroponic conditions, and the results may be different. Gahlawat and Gauba 
(2016) examined the phytoremediation potential of Brassica juncea for aspirin and 
tetracycline under hydroponic conditions. The study was continued for 28 days for 
aspirin and 24 days for tetracycline. Phytoremediation rate of Brassica juncea was 
determined as 90% for aspirin and 71% for tetracycline. Zhang et al. (2016) 
investigated whether four different plants (Typha, Phragmites, Iris, Juncus) could 
remove ibuprofen and iohexol in hydroponic culture. The plants were grown in the 
greenhouse until they reached a length of 200 mm and then transferred to glass 
vessels containing culture solution. Ibuprofen and iohexol were added to the culture 
solution. After a 24-day study, ibuprofen was almost completely removed by all 
plant species studied. Iohexol could be removed between 13 and 80% depending on 
the plant species. Typha and Phragmites plants removed both pharmaceuticals with 
the highest efficiency. Pierattini et al. (2016) studied the erythromycin uptake 
potential of Populus alba Villafranca under hydroponic conditions. They continued 
the study for 28 days, and 0.01, 0.1, and 1 mg L-1 erythromycin was poured into the 
Hoagland’s nutrient solution. The results obtained showed that erythrosine was 
found in all organs of the plant. They stated that more erythrosine was detected in 
the root of the plant compared to the leaves in all three applied erythrosine 
concentrations. 
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Lei et al. (2022) studied the use of Phragmites australis, Typha angustifolia, and 
Juncus effusus in the phytoremediation of micropollutants. The plants were grown in 
pots containing gravel in greenhouse conditions for 6–9 weeks. During this period, 
they applied 300 mL of the mixture solution containing 8 μg  L-1 of each 
micropollutant (trimethoprim, metoprolol, benzotriazole, carbamazepine, proprano-
lol, sulfamethoxazole, furosemide, mecoprop, diclofenac, and irbesartan) three 
times. Based on the results they obtained, they stated that Typha angustifolia and 
Juncus effusus have higher tolerance to the micropollutants they examined compared 
to the Phragmites australis, and they can be used successfully in the 
phytoremediation of these pollutants. Bhatt and Gauba (2021) investigated the 
tetracycline removal potential of basil (Ocimum basilicum) from the soil in a 
greenhouse environment. Basil plants were grown in plastic pots containing 1 kg 
of soil and grown at 36 °C, with 12 h of light and 12 h of darkness, by watering twice 
a week. 200, 400, and 600 mg kg-1 tetracycline was poured into the soil in the pot. 
After 4 weeks, the highest remediation capacity (97%) was detected in plants 
exposed to 200 mg kg-1 tetracycline. Basil exposed to 400 mg kg-1 tetracycline 
showed 77.8% remediation capacity, while basil exposed to 600 mg kg-1 tetracy-
cline showed 67.7% remediation capacity. Martins and Teixeira (2021) investigated 
whether the Solanum nigrum L. plant could be used to clean sites contaminated with 
paracetamol. After germinating the plants, they were transferred to containers 
containing vermiculite:perlite (2:1). They continued the study for 4 weeks and 
added 0.25 and 0.5 mg L-1 paracetamol to the dietary supplement. They stated 
that the applied paracetamol concentration did not make a difference on plant growth



but caused differences at biochemical and molecular levels. As a result, they 
emphasized that the Solanum nigrum L. plant can be used to clean paracetamol 
pollution, but plants with higher tolerance should also be examined. Li et al. 
(2020a, b) investigated the phytoremediation of tetracycline-group antibiotics (tetra-
cycline, oxytetracycline, chlortetracycline) from contaminated alkaline soils using 
Mirabilis jalapa L. and Tagetes patula L. plants. They continued the study in a 
greenhouse environment for 4 weeks. The antibiotics were applied to the soil, where 
the plants were located between 0.5 and 2 mg kg-1 . They found that both plants 
removed 99% of tetracycline-group antibiotics. Zhang et al. (2019a, b) examined the 
suitability of Bougainvillea spectabilis for the removal of galaxolide (HHCB) from 
contaminated soils. Bougainvillea spectabilis seedlings were planted in pots 
containing 1 kg of soil, and 50 and 100 mg kg-1 HHCB was applied to the soil. 
The study was continued for 6 weeks. Furthermore, some of the pots were ventilated 
with ambient air, while others were exposed to high CO2 levels (750 and 950 μL L-

1 ). Based on their results, they stated that Bougainvillea spectabilis is an extremely 
suitable plant for removing HHCB even from contaminated soil under high CO2. 
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2.7 Conclusion 

Soil has an important place in the food chain. In addition, it is home to vegetation 
and many species of living things. The most important feature that distinguishes the 
soil from air and water ecosystems is that it is more resistant to pollutants. However, 
in case of soil pollution, removing the pollutants from the soil and returning the soil 
to its former structure are much more difficult and costly than other systems (Mishra 
et al. 2016). Anthropogenic activities cause an increase in soil pollution day by day. 
Traditional methods used to clean the soil are expensive as well as destroy the 
environment (Dhanwal et al. 2017). Phytoremediation is an innovative, cost-
effective, and green environmental biotechnology that uses plants to clean 
contaminated areas (Bansal and Wani 2022). Nowadays, plants are frequently used 
to remove or render harmless pollutants in soil, water, and air. In order for the 
polluted environment to be successfully cleaned by plants, first of all, it is necessary 
to determine the characteristics of the environment, which pollutant it is 
contaminated with, and which plants will be more successful in cleaning this 
pollutant (Malik et al. 2015). 

There are many studies on phytoremediation in the literature. However, the 
majority of these studies focused on the removal of heavy metals from the environ-
ment by plants (Nikolić and Stevović 2015; Mahar et al. 2016; Zhang et al. 2019a, b; 
Yan et al. 2020). Recently, studies on the removal of PPCPs from the environment 
by plants have also started. However, as mentioned in Sect. 2.6.3, most of them are 
for the removal of PPCPs from aqueous media. The number of studies on the 
removal of PPCPs from the soil by plants is very few, and these studies are carried 
out in a laboratory or greenhouse environment. As a result of the examinations, it has 
been seen that there is an important gap in the literature that needs to be filled in this 
regard. Considering the plant diversity, there are many studies that can be carried



out. Particular attention should be paid to actual field studies because actual field 
conditions differ from laboratory and greenhouse environments (Ali et al. 2013). 
Phytoremediation applied in actual areas is affected by many factors such as 
temperature, precipitation, humidity, plant pathogens, nutrients, uneven distribution 
of pollutants, and changes in soil type and pH (Ji et al. 2011). 
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Although the mechanisms of uptake of PPCPs by plant roots are known, there are 
still some unclear aspects regarding the transport of both PPCPs and their 
metabolites into plant tissues (Kurade et al. 2021). A large number of studies on 
the phytoremediation of PPCPs in soil are needed to both clarify the uncertainties 
and fill the gaps in the literature. It is also of great importance that these studies be 
carried out as interdisciplinary because it is necessary to have knowledge in a wide 
variety of fields such as plant biology, ecology, soil chemistry, and microbiology. As 
a result, it can be said that phytoremediation techniques are one of the most effective 
and innovative techniques to be used in order to significantly reduce the pollution 
caused by PPCPs, which are widely used all over the world, and the number of 
studies on this subject should be increased. 
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Abstract 

Persistent organic pollutants (POPs) are highly toxic chemical substances 
infiltrated into the environment due to rapid innovation of new products for 
personal and industrial use. POPs have unique characteristics, such as rapid 
bioaccumulation, biomagnification, and transport, causing irreversible damage 
to our ecosystem. Significantly, these pollutants jeopardize organisms survival by 
affecting all ecological components, including soil, air, and water. The existing 
physical and chemical eradication methods of POPs are expensive and are not 
cost effective. Therefore, eco-friendly and sustainable alternative technology is 
urgently required. Rhizoremediation, along with various potential approaches 
like the addition of nanoparticles, charcoal, and compost, is shown to be 
promising in eliminating POPs from the environment. Some other approaches 
like a transgenic plant and genetically modified microorganisms are also 
promising, effective, and eco-friendly, which are still under research and devel-
opment for the remediation of POPs. 

Keywords 

POPs · Rhizoremediation · Assisted rhizoremediation · PAHs · OCPs · PCBs 

3.1 Introduction 

The rapid growth of industries and human-related activities have all contributed to 
the worsening of the environment, considered a major problem in recent decades. 
The paper and pulp, pharmaceutical, textile, leather, agrochemical, and petroleum 
industries are the most important because they have improved our lives although 
polluting the environment as a whole. As mentioned earlier, pollution generated due 
to anthropogenic activity has contaminated the land, which has resulted in a loss of 
soil quality and productivity. The drying of rivers, holes in the ozone layer, and 
increased global warming are some other consequences of environmental pollution. 
This could be the reason that the ecosystem gradually lost its equilibrium. The 
impact of land pollution was severe, and as a result, we have lost many floras and 
faunas. It has been repeatedly observed to endanger living organicism by causing 
natural disasters such as landscapes, floods, droughts, earthquakes, storms, 
tornadoes, and acid rains. 

Several studies show that persistent organic pollutants (POPs) have been released 
into the environment at an alarming rate in recent years. According to the United 
States Environmental Protection Agency (EPA), “POPs have a global impact on 
human health and the environment because POPs can be transported by wind and 
water, and contaminated soil. They have the potential to have an impact on people 
and wildlife far from where they are generated and released” (USEPA 2002). POPs 
were defined by Hanedar et al. (2019)  as  “organic compounds of natural or anthro-
pogenic origin that are resistant to photolytic, chemical, and biological degradation



and thus persist in the environment for long periods” (Hanedar et al. 2019). 
Examples are polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls 
(PCBs), and organochlorine pesticides (OCPs) that are the primary persistent organic 
pollutants in the environment (Neale et al. 2015). According to the Stockholm 
Convention 2019 report, the environment contains 28 most robust and hazardous 
POPs. Pesticides (chlordecone, lindane, aldrin, dieldrin, chlordane, toxaphene, 
endrin, hexachlorobenzene, dichlorodiphenyltrichloroethane (DDT), mirex, and hep-
tachlor), industrial chemicals (hexachlorobutadiene, polychlorinated 
naphthalenes, and polychlorinated biphenyls), and byproducts (polychlorinated 
dibenzo-para-dioxins, and polychlorinated dibenzofurans) are among them 
(Stockholm Convention—Home page n.d.). These chemicals remain in the environ-
ment for a long time after being introduced into nature due to their bioaccumulation 
and slow biodegradation in natural environment. According to Gaur et al. (2022), 
many POPs, such as PCBs and OCPs, are used in developing Asian countries for 
agricultural, industrial, and vector control purposes. In India, approximately 87,000 
tonnes of pesticides, primarily malathion and hexachlorocyclohexanes, are used 
yearly (Gaur et al. 2022). These POPs are in the soil due to a lack of facilities, 
managements, and concerns to remove and clean them up (Sarma et al. 2016). They 
coexist in soil by influencing soil polarity, molecular structure, soil-microbial com-
munity, solubility, hydrophobicity, pH, and other factors (Gaur et al. 2022; Varjani 
et al. 2017). Humans develop immunogenic, carcinogenic, mutagenic, genotoxic, 
and teratogenic health problems when exposed to these pollutants through ingestion, 
inhalation, or dermal routes (World Health Organization 2020). The characteristics 
and health effects of various POPs are listed in Table 3.1. 

3 Rhizoremediation of Persistent Organic Pollutants (POPs) from the Soil 51

According to Tiwari et al. (2016), physical, chemical, and thermal remediation 
strategies have been developed and implemented to address this global issue. These 
include conventional methods like flocculation, incineration, membrane separation, 
filtration, reverse osmosis, solvent extraction, chemical precipitation, electrodialysis, 
ion exchange, electrochemical treatments, alkali metal reduction, gas-phase chemi-
cal reduction, and dumping (Saravanan et al. 2020). Many advanced technologies 
have been developed in recent years but consume too much energy, are too expen-
sive, are not selective enough, become clogged, produce too much slime, or affect 
nearby resources (Sarwar et al. 2017). 

Some existing biological remediation procedures are gaining popularity due to 
their numerous benefits, such as high-quality, cost-effective, and environmentally 
friendly services, particularly for removing POPs from the environment 
(Jeevanantham et al. 2019). Phytoremediation is derived from the Greek prefix 
phyto, which means plant, and the Latin word “remediation,” which means to repair 
or eliminate (Jeevanantham et al. 2019). Thus, phytoremediation is a green and 
sustainable method that uses plants to remove, stabilize, and degrade POPs via 
hydrolysis, redox, and compartmentalization (Malik et al. 2022). This method has 
a minor impact on the environment. According to Jeevanantham et al. (2019), the 
critical components of phytoremediation are phytostabilization, phytovolatilization, 
phytodegradation, phytoextraction, and rhizoremediation. Despite the fact that 
plants help with this technique, combining it with the influence of microbes provided
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us with greater efficiency; this is how rhizoremediation technology was developed 
(Sarma et al. 2017). Rhizoremediation is a subset of phytoremediation that involves 
the biodegradation of organic pollutants in the rhizosphere by selective plants or 
plants that grow naturally on polluted soil where microbes assist the plants in 
accelerating the rhizoremediation process (Thijs and Vangronsveld 2015). Microbial 
activity in the rhizosphere improves plant mineral absorption and water absorption, 
promotes plant growth, protects against pathogens, and causes plant roots to release 
secondary metabolites used by microorganisms to break down pollutants (Hoang 
et al. 2021). In this sense, rhizoremediation is a symbiotic relationship between 
plants and microorganisms.
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A plant-microbe meta-transcriptomic study published recently discovered that 
POPs’ degradation genes expressed in the rhizosphere were primarily associated 
with bacteria. As a result, the bacteria that degrade POPs through rhizoremediation 
are thought to be the most important rhizosphere microorganisms (Correa-García 
et al. 2018). Rhizoremediation is accomplished through three processes, according to 
Oberai and Khanna (2018): biosurfactant production, organic acid synthesis, and 
biofilm development (Oberai and Khanna 2018). Both abiotic and biotic factors also 
influence rhizoremediation in the natural environment. 

Recent research has focused on increasing the rate of degradation of POPs 
through various strategies. This chapter focuses on how different assisted 
rhizoremediation strategies can help remove POPs from the environment and how 
they work together. Furthermore, various enhancing strategies and rhizoremediation 
challenges are addressed (Fig. 3.1). 

3.2 POPs in Soil 

Pollutants can infiltrate the environment in either a natural or an anthropogenic 
activity, but either way, their continued presence is detrimental to both human and 
environmental health (Fuller et al. 2022). According to the Indian Environment 
(Protection) Act of 1986, a pollutant is “any solid, liquid, or gas that is present in 
such a way that it may be harmful to the environment or tends to be.” This definition 
covers POPs that have the potential to harm the environment. POPs are a class of 
hazardous compounds that have been dumped into the environment at an alarming 
rate in recent decades. POPs are semi-volatile and poisonous and are released into 
the environment due to excessive use of agrochemicals, industrial chemicals, and 
fossil fuels and their inappropriate disposal (Hanedar et al. 2019; Ukalska-Jaruga 
et al. 2020). Since the middle of the eighteenth century, the industrial revolution has 
contributed to the steady but consistent release of POPs into the environment. The 
wind carries the vast majority of POPs from its source point to further distant sites, 
where they are deposited in the soil and water (Evangeliou et al. 2020). POPs can 
enter the atmosphere in one of the two ways: either by a single hop or by multiple 
hops. Once there, they can accumulate in the ground through precipitation and 
condensation and contaminate the soil (Evangeliou et al. 2020). Because of their 
large surface areas and long retention times, the majority of POPs are able to remain



in the soil matrix (Hanedar et al. 2019). As a direct consequence, they are rapidly 
taken up by the ground and enter into the food chain, which jeopardizes the 
ecosystem. 
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Fig. 3.1 The overall phytoremediation approaches to the restoration of contaminated soil (Sarma 
et al., 2019b).
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Organochlorine pesticides (OCPs) are one of the most frequent types of persistent 
organic pollutants (POPs) that are used in agriculture to protect crops from insects 
and to prevent diseases that are transmitted by vectors (Jayaraj et al. 2016). Later, it 
was outlawed because of its adverse effects on human health and the environment; 
nonetheless, it is still utilized in economically marginalized nations. In such 
countries, OCPs such as DDT, dieldrin, endosulfan, hexachlorocyclohexane, 
chloropropylene, and dicofol are commonly used (Jayaraj et al. 2016). Because of 
the strong and durable covalent link between the Cl and C atoms, they have various 
characteristics, such as low polarity, high persistence, and ability to drive through 
and move along with water. Pesticides that are volatile or chlorinated enter the 
biosphere and finally react with soil particles (Tzanetou and Karasali 2022). Organ-
ochlorine pesticides change the critical elements in the soil, which are phosphorus 
and nitrogen. Contaminants, on the other hand, change the nitrogen and carbon 
levels in the soil reversely (Egbe et al. 2021). OCPs also affect the biogeochemical 
cycle, behavior, richness, biochemical characteristics, and soil macro- and microor-
ganism distribution. This can cause problems for plants’ growth and development, 
making plants more susceptible to diseases and pests (Egbe et al. 2021). 

PAHs are organic colloids that can be colorless, light yellow, or white. They are 
made of two or more benzene rings and are released into the environment by 
industries such as power plants, vehicles, and oil refineries (Abdel-Shafy and 
Mansour 2016; Sarma et al. 2019b). PAHs can move from one site to another 
because of the movement of water and air that originates from their source. 
Bortey-Sam et al. (2014) discovered that after a cascade of biological processes 
deposit PAHs in the top layer of soil, the compounds then accumulates in plants and 
makes its way into the food chain. PAHs can enter the body of a human through the 
lungs, the digestive tract, or the skin, which can lead to various ailments. There have 
been hundreds of different PAHs found. Because of the potential for PAHs to cause 
cancer, the EPA has categorized 16 of these compounds as priority pollutants 
(Hussar et al. 2012). 

Polychlorinated biphenyls (PCBs) are a type of highly toxic aromatic chlorinated 
benzene that is frequently found in soil and has become a major source of concern in 
recent years. Throughout the 1800s, PCBs were extensively used in the leather, 
paper, and pulp industries as both a coolant and a dielectric liquid (Jing et al. 2018). 
PCBs can make their way into the environment through landfills, leachate, and 
dumping of waste containing PCBs. From the environment, PCBs can be ingested, 
inhaled, or absorbed via the skin if a person is close to contaminated soil (Kumar 
et al. 2014). Under the Stockholm Convention on POPs, PCBs have been made 
illegal worldwide because they are poisonous, lipophilic, and carcinogenic; have 
poor chemical and biological degradation; and have a significant potential for 
bioaccumulation (Vandana et al. 2022).
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3.3 Mechanism of Rhizoremediation 

Rhizoremediation is a sustainable remediation technique for eliminating soil 
pollutants by using plants and rhizosphere microbes. The plants and rhizosphere 
microbes release nutrients, enzymes, and biosurfactants into the rhizosphere by their 
symbiotic and co-metabolic activities, which helps the soil’s organic contaminants to 
be cleaned up (Poonam and Kumar 2019). Members of the plant families, e.g., 
Asteraceae, Brassicaceae, Cunoniaceae, Caryophyllaceae, Euphorbiaceae, Poaceae, 
Lamiaceae, and Fabaceae, among others, have been identified as rhizoremediation 
candidates (Ojuederie and Babalola 2017). The rhizosphere of such plants attracts a 
large number of bacteria, actinomycetes, and fungi that aid in rhizoremediation 
(Mendes et al. 2013). The reason for this is that plant root exudates provide 
nutritional support to rhizosphere microbes, while the plants get protection and aid 
with nitrogen fixation (Upadhyay et al. 2022; Sarma and Sarma 2010). Plant roots 
integrate nutrients, enhance redox conditions, and give oxygen, all of which contrib-
ute to promoting and activating rhizosphere microorganisms. Plant roots can also 
disperse rhizosphere microbes throughout the soil and into strata that microbes 
would otherwise be unable to reach (Backer et al. 2018). Plant root exudates are 
also reported to promote microbial respiration (Adamczyk et al. 2021). The process 
of rhizoremediation may be divided into two phases. First, the pollutants-degrading 
microbes start inoculation in the rhizosphere zone, and later the pollutants are 
degraded by respective microbes in the rhizosphere (Poonam and Kumar 2019). In 
both the phases, POPs are eliminated from soil (Mohanan et al. 2020). The three 
primary mechanisms in the breakdown of POPs via the microbe-mediated 
rhizoremediation process are biosurfactant synthesis, biofilm development, and 
organic acid production (Saravanan et al. 2020). Aside from those three 
mechanisms, rhizoremediation involves adsorption, redox reaction, desorption, pre-
cipitation, acidification, chelation, transportation, respiration, and exudation 
(Jeevanantham et al. 2019). 

3.3.1 Biosurfactant Production 

In the influence of root exudates, the rhizosphere microbes are stimulated for the 
synthesis of biosurfactants. Biosurfactants are amphiphilic biopolymers formed 
extracellularly or as part of microbe cells (Santos et al. 2016). Their hydrophobic 
and hydrophilic moieties aid in the reduction of fluid surface and interfacial tension 
(Patowary et al. 2022b). Recently, four biosurfactants with chemical and 
microbiological origins have been identified. Glycolipids, lipopeptides, 
phospholipids, and polymeric biosurfactants are examples of these types (Patowary 
et al. 2022a; Shu et al. 2021). The creation of micelles increased the solubility of 
hydrocarbon contaminants, resulting in their degradation by rhizosphere microbes 
(Bordoloi and Konwar 2009). POPs are challenging to remove from soil due to 
strong hydrophobicity, high water partition coefficient, high electronegativity, and 
low polarity (Kookana and Navarro 2022). The biosurfactant disrupts these qualities,



which moves the pollutants into the aqueous phase. This allows for the mobilization 
and removal of persistent contaminants in the soil matrix (Ławniczak et al. 2013). 
Biosurfactants, in general, emulsify hydrophobic contaminants into micro- and 
macro-emulsion forms and reduce the interfacial tension between the aqueous and 
nonaqueous phases (Sarma et al. 2021). Finally, increasing surface area increases the 
pollutants transfer rate to the aqueous phase and increases mobilization of adsorbent 
liquid-phase persistent pollutants (Cameotra and Makkar 2010). Overall, 
biosurfactants change the physiochemical properties of pollutants, making POPs 
more flexible and adaptable to further breakdown processes. 
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3.3.2 Biofilm Production 

A biofilm is a microorganisms aggregation in which cells are typically trapped inside 
a self-producing matrix. Generally, microbes adhere to other surfaces by secreting 
extracellular polysaccharides, which results in the formation of biofilms (Alotaibi 
2021). William Costerton (1995) defined biofilms as “a matrix-enclosed bacterial 
population adherent to each other and surfaces or interfaces” (Costerton 1995). 
Those microorganisms present in the biofilm have a better chance of survival since 
the matrix shields them and aids in the immobilization and breakdown of pollutant 
persistence compounds (Alotaibi 2021; Donlan 2002; Yin et al. 2019). 

3.3.3 Organic Acid Production 

The symbiotic interaction of plants and microbes has released acid-like molecules 
(organic acid) in the rhizosphere (Vishwakarma et al. 2020). Different plant species 
may produce a variety of organic acids (citric acids, oxalic acids, malic acids, 
succinic acids, and formic acids), which provide a carbon-rich habitat for 
microorganisms and can stimulate root colonization by establishing molecular 
communication with rhizosphere microbes (Macias-Benitez et al. 2020; Li et al. 
2021). These acids can act as chelating agents by providing protons and organic 
anions. Negatively charged anions can form complexes with positively charged 
metal ions such as Ca2+ ,  Fe2+ , and Al2+ to chelate them from the soil (Flora and 
Pachauri 2010). Organic acids reduce soil pH, improving POPs solubility, mobility, 
and fate and promoting POPs breakdown (Shah et al. 2022). For example, citric acid 
and glutaric acid alter intracellular redox equilibrium and boost microorganisms 
growth rates and enzymatic and oxygenase status, resulting in higher POPs biodeg-
radation (Zhang et al. 2021).
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3.4 Mechanism of PAHs Rhizoremediation 

Because PAHs include complex heterocyclic aromatic rings in their skeletons, it can 
be challenging to remedy polluted locations (Huang and Penning 2014). In the 
rhizosphere, PAH degradation is predominantly caused by microorganisms having 
specific PAH-degrading genes and enzymes (Correa-García et al. 2018). There are a 
variety of microorganisms that have been implicated in the PAHs rhizoremediation 
process, including bacteria, actinomycetes, and fungus (Ghosal et al. 2016). These 
rhizomicrobes are classified as either aerobic or anaerobic depending on their mode 
of respiration. Aerobic bacteria such as Pseudomonas, Mycobacterium, 
Sphingomonas, Alcaligenes, and Rhodococcus, among others, have been 
demonstrated to break down PAHs (Vidali 2001). In the rhizosphere, 
microorganisms reduce the hydrocarbons to produce carbon dioxide (CO2), reducing 
electron acceptors by a single species (Widdel et al. 2010). The breakdown of PAHs 
occurs in both aerobic and anaerobic environments (Premnath et al. 2021). In both 
cases, several aromatic molecules are first transformed into a few basic substrates 
(benzoate, phloroglucinol, and resorcinol). The aromatic rings are then activated and 
cleaved to generate a noncyclic molecules, which is later transformed into central 
intermediates. Carboxylation, decarboxylation, reduction, hydroxylation, 
dihydroxylation, deamination, aryl ether cleavages, and lyase reactions are all 
engaged in the rhizoremediation process that leads to the core intermediates, 
which then enter oxidation pathways and create CO2 and energy molecules (Widdel 
et al. 2010). Many enzymes released by bacteria, fungi, actinomycetes, yeast, and 
plants have been found to aid in the rhizodegradation of PAHs. For example, 
specific hydrocarbon-degrading enzymes like alkyl dehydroxylate (alkB and 
CYP153) are secreted by a variety of bactrial species including Rhodobacter, 
Mycobacterium, Frankia, and Bacteroidetes (Nie et al. 2014). Furthermore, Myco-
bacterium fortuitum produces catechol 1,2-dioxygenase (Silva et al. 2013), while 
Pseudomonas cepacia G40 and Pseudomonas sp. JS150 produces toluene-2-
monooxygenase, and Pseudomonas pickettii PK01 produces toluene-3-
monooxygenase, all of which play important roles in PAHs degradation (Bertoni 
et al. 1998). 

3.5 OCPs Rhizoremediation Mechanism 

One of today’s primary challenges is the accidental and purposeful discharge of 
OCPs into the environment, which must be retrieved using eco-friendly, cost-
effective reclamation technologies. Rhizoremediation stands out as a viable 
approach where in rhizomicrobes collaborate with plants to degrade pollutants 
within the rhizosphere offering an effective means of addressing this challenge. 
(Shukla et al. 2013). Different species of rhizobacteria, such as Acinetobacter, 
Alcaligenes, Bacillus, Pseudomonas, Serratia, Rhizobium, Streptococcus, and 
Stenotrophomonas, and fungi, including Mycorrhizae, Phanerochaete 
chrysosporium, Didemnum ligulum basidiomycetes, Ganoderma austral,



Coprinellus radians, etc., in collaboration with plants (Pisum sativum, Zea mays, 
Pinus pinea, Cucurbita pepo, Ricinus communis, Holcus lanatus, Cytisus striatus, 
Vigna radiata, and Zinnia angustifolia) may successfully ameliorate OCPs without 
causing harm to surrounding environmental entities (Wang et al. 2022; Arora and 
Kumar 2019). These possible organisms have been widely utilized to remediate 
OCPs throughout the last few decades. OCPs rhizoremediation is accomplished in 
two phases. Microorganisms first absorb the pollutants and then form a microbial 
film around it. Later, the microorganisms metabolized the OCPs through a sequence 
of the enzymatic process (Huang et al. 2018). The essential chemical steps in 
breaking down the intricate structure of OCPs include hydrolysis, oxidation, reduc-
tion, and expansion (Sarker et al. 2021). A pesticide’s hydrolysis is aided by 
hydrophilic environmental conditions, followed by oxidation/reduction, which 
modifies the compound’s redox state. The primary chemical group of a substance 
dictates whether it will be oxidized or reduced. The final stage is to expand a novel 
reaction product (Sarker et al. 2021; Rao et al. 2010). A diverse group of 
rhizomicrobes have been found to produced various enzymes such 
as monooxygenases, hydrolases, dehalogenase esterases, NADPH-cytochrome 
P450 reductases, and oxidoreductases. These enzymes play a crucial role 
in catalyzing the abovementioned reactions and are responsible for formation of 
highly soluble, less toxic intermediate compounds. Also, these enzymes are present 
in plants, aiding in the production of growth and other secondary metabolites to 
decrease pollution-induced stress (Mishra and Arora 2019). In the presence of 
glutathione S578 transferases, these intermediate products conjugated with sugar 
and amino acid molecules are transformed into CO2 and H2O in subsequent phases 
of cellular respiration (Gaur et al. 2018). For example, carboxylesterases accelerated 
the hydrolysis of the carboxyl ester link of carbamate, resulting in the formation of 
CO2 and methylamine, both of which may be utilized as a carbon source by microbes 
(Malhotra et al. 2021). According to Huang et al. (2018), Pseudomonas sp. degraded 
atrazine via the AtzA, AtzB, and AtzC enzymes. The AtzA enzyme catalyzes 
atrazine hydrolysis dichlorination to form hydroxyl atrazine. The hydroxyl atrazine 
was then transformed to N-isopropyl cyanuric amide via a dichlorination reaction 
mediated by the AtzB enzyme. The third intermediate compound is generated by 
hydrolyzing N-isopropyl cyanuric amide in the presence of the AtzC enzyme and 
then splitting into CO2 and NH3 (Huang et al. 2018). 
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3.6 Mechanism of PCBs Rhizoremediation 

Rhizoremediation has been considered a sustainable strategy for eliminating the 
toxic PCBs attached to soil particles or lowering their toxicity (Bala et al. 2022; Jing 
et al. 2018). It is easier to correctly retrieve PCBs from the rhizosphere by 
collaborating with plants and microorganisms. The influence of plants (root 
exudates) stimulates the breakdown capacity of rhizomicrobes or boosts the 
microbes’ ability to attenuate the complicated structure of PCBs (Rohrbacher and 
St-Arnaud 2016; Upadhyay et al. 2022). Meanwhile, the microorganisms can help



the plants for an extension of the root system as well as lowers the toxicity level of 
contaminated soil by lessening the plant’s vulnerability to abiotic stress (Vergani 
et al. 2019). Pseudomonas sp., Clostridium sp., Sphingomonas sp., Bacillus sp., 
Bradyrhizobium sp., Ralstonia sp., Alcaligenes xylosoxidans, Candidatus 
saccharibacteria, Ochrobactrum anthropi, Rhodococcus sp., and Ralstonia sp. are 
prospective rhizomicrobes capable of removing PCBs from soil under the influence 
of plants (Ancona et al. 2021). However, there are significant limitations to the 
approaches; due to the highly poisonous nature of PCBs, most rhizosphere 
microorganisms assume a non-culturable condition, and mortality of both plants 
and microorganisms is seen when exposed to PCBs (Iqbal et al. 2022; Ren et al. 
2022). PCBs are rhizoremediated in both aerobic and anaerobic environments. High-
chlorinated PCB compounds (e.g., PCB-47, PCB-77, PCB-153, and PCB-157) 
typically have high water partition coefficient (KOW); thus, organohalide anaerobic 
respiration may degrade these pollutants more efficiently by anaerobic microbes 
such as Achromobacter sp., Lysinibacillus sp., Desulfomonile tiedjei, Dehalobium 
chlorocoercia, Dehalococcoides mccartyi, and Desulfitobacterium dehalogenase 
(Pathiraja et al. 2019; Jing et al. 2019). The microbes halopriming of the meta and 
para positions of halogenated aromatic rings is done in the absence of oxygen. 
During this process, a chlorine atom is exchanged for a hydrogen atom, making it 
less toxic and more available for subsequent aerobic breakdown (Sharma et al. 
2018). Dehalococcoides sp. strain CBDB1 is a highly efficient bacterial species 
for accelerating the dechlorination of a wide variety of PCBs (Agulló et al. 2017; 
Jing et al. 2019). However, the root exudates act as a stimulant of the PCBs’ 
dichlorination process. 
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Through aerobic respiration, the aerobic microbes decomposed the dechlorinated 
product into chlorogenic acids, predominantly utlizing biphenyl catabolic enzymes. 
The three types of enzymes belong to the biphenyl catabolic enzyme cluster, i.e., 
dioxygenase encoded by bphA, dehydrogenase encoded by the bphB gene, and 
ring cleavage dioxygenase encoded by the bphC genes (Contreras et al. 2021). 

Dioxygenase enzyme catalysis is the formation of dihydrodiol from dechlorinated 
PCBs through the deoxygenation of the benzyl ring (Pimviriyakul et al. 2020). The 
oxidation of 2,3-dihydrodiol to 2,3-dihydroxybiphenyl is catalyzed by dehydroge-
nase. The ring cleavage dioxygenase is responsible for cleaving the biphenyl ring to 
generate less toxic phenyl catechol, which is then converted into CO2 and H2O 
(Furukawa 2000; Jing et al. 2018). 

3.7 Factors That Affect the Rhizoremediation 

The rhizoremediation process involves oxidation, reduction, carboxylation, decar-
boxylation, hydroxylation, dihydroxylation, and deamination of POPs in the soil 
environment via synergistic associations between plants and microbes. Rhizosphere 
and endophytic microorganisms in plant roots play a crucial role in accelerating all 
biochemical reactions by functioning as biocatalysts in the POPs rhizoremediation 
reactions via enzymatic pathways (Agarwal et al. 2020). However, as enzymes are



very selective and often function under modest reaction conditions, the 
rhizoremediation process ultimately depends on several biotic and abiotic variables 
(Jegannathan and Nielsen 2013; Kumar et al. 2021). Furthermore, the following 
characteristics influence POPs’ degradation process (Kebede et al. 2021). This 
suggests that rhizoremediation might be more successful and efficient if these 
elements are manipulated, adjusted, and regulated (Kebede et al. 2021). This 
includes the following factors cited below: 
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3.7.1 Plant Root Exudates 

Plant root exudates are a complex array of organic (low-molecular-weight and high-
molecular-weight metabolites) and inorganic chemicals (carbon dioxide and water) 
emitted into the rhizosphere environment by the root system during plant develop-
ment (Garriga et al. 2018). These chemical substances are essential ecological 
drivers that hasten the composition, variety, and numerous metabolic activities of 
the rhizosphere’s microbial population (Correa-García et al. 2018) by offering 
carbon- and energy-rich habitat for rhizomicrobes (Ma et al. 2022). In addition, 
these compounds can select and attract specific microbial communities to protect and 
improve plant growth from soil pollutants. Exudation not only earns benefits to the 
microbes, but the plant also gets a direct benefit for itself. For example, organic acids 
are one of the constituents of root exudates that offer microorganisms a carbon-rich 
environment that aids plants in nutrient acquisition, stress relief, and pollutant 
mineralization (Correa-García et al. 2018). Exudates can also aid in the microbial 
deterioration of soil organic contamination (Lu et al. 2017). As a result, the higher 
the concentration of exudates, the faster the POPs rhizodegradation. Phillips and his 
colleagues reported in 2012 that root exudates increased the bioavailability of 
dichlorodiphenyldichloroethylene (DDE), DDT, PCBs, and PAHs (Phillips et al. 
2012). Gao et al. (2010) also concluded that low-molecular-weight root exudates 
(citric acid and oxalic acid) promoted the desorption of POPs (phenanthrene and 
pyrene) from soil particles (Gao et al. 2010). In addition, the production of 
protocatechuate 3 and 4 dioxygenases, an aromatic ring breakage enzyme, was 
increased by root exudates (Yergeau et al. 2014). As a result, the pace of POPs 
breakdown has increased. On the other hand, the age of the plant, the amount of 
moisture in the soil, the species of plant, and the type of soil all affect the quality, 
quantity, and nature of root exudates, which in turn determines the rate at which 
organic pollutants are broken down (Maurer et al. 2021). 

3.7.2 Microbial Population 

It is one of the most important factor that govern the rhizoremediation process by 
increasing the humification of organic pollutants. POP-degrading microorganisms 
can digest, metabolize, or mineralize pollutants from the soil environment such as 
OCPs, PAHs, and PCBs (Seo et al. 2009). The degradation process takes place



within a well-coordinated rhizomicrobial community. It involves transferring a 
functional group or thoroughly degraded pollutants into less hazardous products 
(water, carbon dioxide, and inorganic salt) via aerobic and anaerobic environments. 
These communities, which comprise bacteria, fungi, and algae, have the power to 
eliminate POPs. According to previous research, Cyanobacteria sp., Alcaligenes sp., 
Bacillus sp., Staphylococcus sp., Enterobacter sp., Corynebacterium sp., 
Gemmatimonadetes sp., Streptococcus sp., Escherichia sp., etc. and others generate 
pollutant-degrading enzymes that are widely employed in POPs rhizoremediation 
(Gaur et al. 2018). The abundance of naturally occurring POP-degrading 
microorganisms in polluted soil shows a positive correlation to the rate of POPs 
rhizoremediation (Kebede et al. 2021). Their accessibility in terms of species 
diversity, evenness, and richness, on the other hand, is intimately tied to the types 
and nature of hydrocarbon contaminats and the surrounding environmental 
conditions. A vast microbial population performs better than a single strain in 
terms of the degradation rate because a single strain can only process a certain 
number of enzymes, but a diversified microbial community can process a wide range 
of POP-degrading enzymes (Kebede et al. 2021; Mishra et al. 2021). 
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3.7.3 Contamination Types and Concentration 

Significant considerations in the rhizoremediation process to remove pollutants from 
soil include the structure and concentration of contaminants (Tang et al. 2010). 
Pollutant’s physiochemical properties and concentration have an effect on the 
biodegradation, mineralization, metabolic capacities, and diversity of the 
rhizomicrobial population (Alori et al. 2022; Wassie 2017). In most situations, 
biodegradable genes are suppressed at low concentrations, resulting in a low 
removal of pollutants despite their biodegradability (Kebede et al. 2021; Seo et al. 
2009). Similarly, excessively high concentration are known to be harmful to the 
root’s microbiome, and biodegradation rates are decreasing (Poznyak et al. 2019). 
As a result, at an optimal concentration of pollutants, complete mineralization of 
POPs from polluted surroundings occurs (Kebede et al. 2021). 

3.7.4 Soil Properties and Soil Organic Matters 

The biochemical and physiochemical processes of soil such as water and nutrient 
transport, air accessibility, root penetration, soil drainage, pollutant ageing, and 
POPs dispersion within the soil are affected by soil physiochemical parameters 
such as moistures, redox conditions, temperatures, pH, organic matter, nutrients, 
and amount of clay, among others (Sarkar et al. 2020; Zhang et al. 2020a, b). The 
soil’s organic matter, which controls the soil’s characteristics and gives 
microorganisms an energy-rich home, is made up of a variety of bacteria, 
metabolites, and humic substances that emerge through the chemical and 
microbiological alteration of organic pollutants. (Bashir et al. 2021). High soil



organic matter provides a good environment for rhizomicrobes, allowing them to 
quickly increase their population and degrade pollutants since microorganisms act as 
a main catalyst for POPs breakdown in the rhizosphere (Masciandaro et al. 2013). 
The degradation rate varies according to the type and structure of the soil. Sandy soil 
exhibits greater degradation efficiency than clay soil. Clay soil particles obstruct the 
movement of oxygen and nutrients to microorganisms and promote the development 
of humic acid, lowering the effectiveness of POPs degradation (Haghollahi et al. 
2016). 
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Furthermore, the most prevalent rate-limiting variables are soil temperature, 
moistures, and soil nutrients (Onwuka 2018; Stark and Firestone 1995). When 
they are above or below the limit, they negatively influence the rate of deterioration. 
For the POPs degradation process to be successful, adequate concentrations of these 
components must be present in polluted soil. 

3.7.5 Temperature 

The important abiotic factor, i.e., temperature, have a varied effect on the variety of 
the microorganism population, which is the driving force behind POPs 
rhizoremediation (Scofield et al. 2015). Temperature regulates degradation rates by 
influencing microbial enzymes activity, pollutants chemistry, and oxygen solubility 
(Kebede et al. 2021). As a result, temperature is regarded as a key element in 
rhizoremediation, and the efficacy of eliminating POPs is directly proportional to 
temperature. The ideal temperature for efficient remediation is determined by the 
microbial species and the nature of the pollutants (Abdel-Shafy and Mansour 2016; 
Das and Chandran 2011). In general, the rate of deterioration slows with decreasing 
temperature and speeds up with increasing temperature (Sihag Pathak et al. 2014). 
According to Ribicic et al. (2018), organic pollutants’ breakdown processes are 
especially slow at low temperature (Ribicic et al. 2018). Furthermore, Liu et al. 
(2017) revealed that temperature significantly influences the selection of petroleum 
hydrocarbon-degrading bacteria, and the population of bacteria participating in 
hydrocarbon degradation is related to temperature change (Liu et al. 2017). Conse-
quently, for full POPs rhizodegradation, prospective bacteria require an ideal tem-
perature range. 

3.8 Enhancement of Rhizoremediation 

Rhizoremediation rates are often sluggish in natural conditions due to the effect of 
abovementioned abiotic and biotic factors (Hoang et al. 2021). Researchers are 
looking at the impact of various “catalyst approaches” on rhizoremediation 
capabilities, such as genetic engineering, nanoparticle assisted, and biochar assisted 
(Malik et al. 2022; Sarma et al. 2022). The combination of multiple techniques is 
critical for the remediation of particularly contaminated sites. It can become a highly 
efficient, environmentally friendly, and low-cost bioremediation technology in the



future (Oberai and Khanna 2018). The following subsection describes several 
rhizoremediation catalyst approaches. 
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3.8.1 Bio-stimulation Assisted 

Bio-stimulation is an addition of any stimulatory materials, bulking dealers, nutrient 
amendments, bio-surfactants, biopolymers, and slow-launch fertilizers to decorate 
and guide microbial increase and enzymatic activities of the autochthonous 
microorganisms in the infected soil for remediation activities (Wu et al. 2016). In 
addition to the common liming elements like nitrogen, phosphorus, potassium, 
carbon, and oxygen, which are often present in low quantities in soil, the process 
bio-stimulation involves not only adding or adjusting those elements, but it also 
address other types of limiting factors, micronutrients, and electron acceptors (Sayed 
et al. 2021). The trouble related to chemical nutrient addition to contaminated soil 
and groundwater differs from microbial addition. Bio-stimulation is the most suc-
cessful and efficient bioremediation approach compared with different in-situ reme-
diation in simulated soil infected with POPs (Myazin et al. 2021). The prerequisites 
for bio-stimulation include the presence of specific microorganisms, the ability to 
stimulate target microorganisms, and the ability to supply nutrients, C:N:P, 30:5:1, 
for stability growth (Simpanen et al. 2016). 

3.8.2 Bioaugmentation Assisted 

Bioaugmentation is the advent of microorganisms with specific catabolic talents into 
the tainted environment so that it will complement the indigenous population and 
increase up or enable the degradation of pollutants (Nzila et al. 2016). 
Bioaugmentation has validated success for remediation of PAHs in sediments with 
poor or lacking intrinsic degradation capability. Other studies also demonstrated that 
bioaugmentation did not decorate biodegradation notably compared to natural atten-
uation (Nzila et al. 2016; Omokhagbor Adams et al. 2020). One of the significant 
problems in applying bioaugmentation is to ensure the survival and pastime of the 
delivered organisms in the environment (Nzila et al. 2016). However, the critical 
issue for achieving the bioaugmentation procedure is the selection of the best 
microbial candidates (Nwankwegu and Onwosi 2017). When selecting the strain 
for augmentation, it is important to take into account the types of microbial groups 
that are present in the supply habitat. Bioaugmentation technique can also prove 
successful, specifically in the remediation of POPs (Nzila et al. 2016). This involves 
the addition of exogenous microbial cultures, autochthonous microbial 
communities, or genetically engineered microbes with a specific catabolic hobby 
that has adapted and been established to degrade contaminants to beautify degrada-
tion or increase the fee of degradation (Nzila et al. 2016; Thakare et al. 2021). 
Varjani et al. (2015) validated in-situ bioaugmentation of POPs using a microorgan-
ism consortium comprising six bacterial isolates for degradation of petroleum



hydrocarbon contaminants. They reported removal performance of 83.7% over 
75 days (Varjani et al. 2015). Covino et al. (2015) additionally confirmed 
bioaugmentation by using the autochthonous fungi from a petroleum hydrocarbon-
infected soil to degrade clay soil contaminated with petroleum hydrocarbons and 
achieve a removal performance of 79.7% after a 60-day period (Covino et al. 2015). 
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3.8.3 Transgenic Plant Assisted 

Overexpression of several types of genes (that help in POPs breakdown) in trans-
genic plants is one way to increase the rate of POPs rhizoremediation (Doty 2008). 
Transgenic plants typically have modified DNA, and many plant species may be 
transformed into transgenic plants using recombinant DNA technology (Jhansi Rani 
and Usha 2013). Transgenic plants are employed as hyperaccumulators of POPs, and 
their application in the bioremediation of POPs from contaminated soil is seen as a 
cost-effective strategy (Kumar et al. 2022a, b; Ojuederie et al. 2022). Transgenic 
plants were found to improve the overall phytoremediation approaches (Yan et al. 
2020). 

For the successful remediation of POPs from the soil environment, 
POP-degrading genes like bph, CYP, alkB, alkB1, nahAc, and C12O encode the 
degrading enzymes such as biphenyl dioxygenase, cytochrome P450 
monooxygenase, nitroreductase, glutathione-S-transferase, and biphenyl catabolic 
enzymes that are introduced into the plant, which increases the degradation rate of 
POPs into the rhizosphere (Abhilash et al. 2009). 

3.8.4 Nanoparticle Assisted 

Nanoparticle-assisted rhizoremediation is an emerging approach for removing POPs 
from polluted soil. Due to its unique properties, smaller sizes, and wide surface area, 
this strategy has occupied a substantial area of study attention in the bioremediation 
sector over the last few years (Baruah et al. 2019; Chowdhury et al. 2022). 
Nanoparticles with these properties can efficiently adsorb and permeate POPs 
(Malik et al. 2022). Adding NPs to the rhizoremediation process first incorporates 
the physiochemical reactions as a catalyst that alter the physiochemical 
characteristics of pollutants such as absorption, adsorption, and dissolution, among 
others (Abebe et al. 2018; Rajput et al. 2022). The second phase instigates the 
contaminants to bioaccumulate, bio-stimulate, bio-transform, and mineralize 
(Desiante et al. 2021; Rajput et al. 2022). Most nanoparticle-assisted 
rhizoremediation technologies followed the steps mentioned earlier (Hidangmayum 
et al. 2022). Nanoparticles can be synthesized via physical, chemical, or biological 
techniques. However, several studies have shown that biologically synthesized 
nanoparticles in bioremediation are environmentally friendly, cost effective, and 
safe (Ahmed et al. 2022; Patel et al. 2020). Various biosynthesized nanoparticles are 
used for sequential POPs cleanup from the rhizosphere zone. However, the most



commonly investigated nanoparticles include carbon-based nanoparticles, nano-
zerovalent iron nanoparticles, metal oxide-based nanoparticles, and chitosan 
nanoparticles (Ghahari et al. 2022). 
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3.8.5 Biochar Assisted 

Biochar contributes to the expedited completion of the POPs rhizoremediation 
process. Biochar is an aromatic carbon-rich alkaline adsorbent synthesized from 
biomass by pyrolysis at 350–700 °C in an anaerobic atmosphere (Guo et al. 2022). In 
POP soils, biochar adjuvant rhizoremediation mechanisms include pore filling, ion 
exchange, hydrophobic interactions, electrostatic interactions, pi-electron 
interactions, physical adsorption, fission, complex formation, and precipitation 
(Lu et al. 2022; Malik et al. 2022; Xiang et al. 2022). In addition, these processes 
decrease the bioavailability and bioaccessibility of pollutants (Ejileugha 2022). 
Various biochars, including bamboo biochar, banana trunk biochar, wheat straw 
biochar, etc., have been reported to improve PCBs remediation from the rhizosphere 
zone (Valizadeh et al. 2021). Hayat et al. (2019) demonstrated that application of 
biochar in conjunction with ryegrass-aided rhizoremediation enhanced PCBs reme-
diation effectiveness by 85% (Hayat et al. 2019). Zhao et al. (2022) reported that 
rape straw biochar accelerated the rhizoremediation of PAHs and increased the 
production of PAH-RHDα GN genes in soil bacteria (Zhao et al. 2022). Biochar-
assisted phytoremediation lowers soil pH; improves soil organic content, soil micro-
bial population, and water-holding capacity; and increases the rate of POPs disinte-
gration (Sarma et al. 2019a) (Fig. 3.2). 

3.9 Conclusion 

POPs are organic pollutants that can be formed either naturally or artificially. It was 
widely produced commercially in the 1990s to fulfill the food demands. These are 
extensively used as a pesticides in the agriculture sector. The manufacturing and use 
of 16 most deadly POPs were prohibited globally in the late 1990s. However, the 
number has now risen to 28. Furthermore, numerous forms of POPs, such as PCBs 
and PAHs, are introduced into the environment by anthropogenic activity, causing 
soil, water, and air pollution, as well as acute and chronic impacts on flora and fauna. 

Consequently, numerous physical, chemical, and biological remediation 
approaches have been widely used to remove these contaminants from soil. Various 
investigations reveal that rhizoremediation, i.e., a plant-microbe-assisted bioremedi-
ation technology, is a sustainable and eco-friendly remedial technique for POPs. 
However, the rate of this approach is limited in the natural state due to various abiotic 
and biotic factors. Therefore, an in-depth investigation is necessary to cooperatively 
expedite remediation utilizing various approaches such as nanoparticles and biochar 
and to develop an eco-friendly, highly efficient rhizoremediation technology.
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Fig. 3.2 Biochar-assisted rhizoremediation of POPs from contaminated soil (Sarma et al., 2019b). 
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chemical for a wide range of industrial consumer products. It is a heterocyclic
organic ether that, through consumer products and industrial, municipal, and
domestic effluents, can get into the environment. Due to its volatility and
miscibility, short-term exposure results in irritation of the nose, eyes, and throat,
while excessive amounts damage the liver and kidney. Long-term exposure
results in carcinogenicity to humans that may associate with death. Statement
of problem: 1,4-Dioxane is nonbiodegradable in nature and hence persists in the
environmental compartments; some methods such as UV peroxide oxidation,
direct UV photolysis, and activated carbon adsorption were reported to be
effective in the removal of dioxane in the environment. Yet, their adaptation
challenges such as complex matrices, running costs, mass balance, and stoichi-
ometry limitations hinder their efficiency. Finding: Mimicking natural or
integrated techniques such as bacteriological transformation of dioxane via aero-
bic, anaerobic, microcosm, integrated microbial community, and co-metabolic
techniques is among the robust eco-friendly technologies against these
limitations. Soil matrix offers enormous microbial consortium for nature-based
remediation of dioxane with high turnup than single microbial strains. Since
bacteriological remediation offers adoptable, flexible, and quick implementation
strategies that minimizes the use of synthetic chemicals, its fundamental under-
standing will be inevitable. Conclusion: Nature-based remediation of dioxane is
an undoubtable future since apart from the natural occurrence of soil bacteria
responsible for degradation, their natural adaptation flexibility, energy conserva-
tion, and release of harmless by-products without formation of secondary syner-
gic harmful contaminants present a relatively affordable technique.
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4.1 Introduction

1,4-Dioxane (C4H8O2) is an industrial solvent produced for diverse direct
applications including raw material and as a solvent. Its chemical abstract service
number (CAS no.) assigned by the American Chemical Society is 123-91-1 with
synonyms including dioxan, diethylene dioxide, dioxane, p-dioxane, diethylene
oxide, glycol ethylene ether, or diethylene ether (McFee et al. 1994). At laboratory
scale, this colorless and flammable liquid is used as a stable reaction media and as an
extraction liquid for vegetable and animal oils (ATSDR 2006). Dioxane is useful as a
growth substrate in organisms (Barajas-Rodriguez et al. 2019) and solvent in paints,
ink, cosmetics, detergent, varnishes, and cleaning and shining fluids. With its
nonpolar and aprotic solvent as it is presented in Fig. 4.1, dioxane is in addition
utilized in the processing of petrochemicals, pesticide, pharmaceuticals, plastics and
rubber, explosives, polishing, and pulp and paper as a solvent (DES 2018).
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Fig. 4.1 Chemical structures of 1,4-dioxane (88.11 g/mol)

Fig. 4.2 Laboratory production of 1,4-dioxane (van Buskirk 2014)

Fig. 4.3 Industrial production of 1,4-dioxane (Wilbur and Jones 2012)

Among the chemical structures presented in Fig. 4.1, structure B containing two
planes of symmetry is the most stable due to minimum atomic constraints. The
laboratory-scale production is shown in Fig. 4.2, while the commercial production of
dioxane follows reaction root shown in Fig. 4.3.

Through literature survey, there are no industries in the world that directly
produce 1,4-dioxane, implying that its production might be sporadic. The produced
dioxane above undergoes heating with acids, distillation, salting out with CaCl2, and
distillation again in order to attain high level of purity. More than 90% of the
produced dioxane is used for stabilization of chlorinated solvents (US EPA 2014a)
such as trichloroethene and 1,1,1-trichloroethane (Milavec et al. 2020).

4.1.1 Properties of 1,4-Dioxane

Dioxane forms an adduct with 1,1,1-trichloroethane (TCE) that inhibits through
poisoning the catalytic reaction between TCE and aluminum containers used for



transportation of chlorinated solvents (Adamson et al. 2015). In most reactions and
solvent requirements, dioxane has replaced tetrahydrofuran, which has high toxicity
level than dioxane (Madhu 2018), high boiling point, hygroscopicity, diether chelat-
ing ligand (Tusher et al. 2021), and high water miscibility. According to the hard and
soft Lewis acids and bases (HSAB) theory (Pinter et al. 2013), dioxane is a hard base
implying that it is weakly polarizable, has high charge states, is less volatile, is
nonpolar, and has small molecule (Davarani et al. 2012). Dioxane can react as a
monodentate with uranium to produce useful materials (Fig. 4.4) for nuclear chem-
istry (Monreal et al. 2011).
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Fig. 4.4 Stable compounds of uranium-containing dioxane. [Image adopted with permission from
Monreal et al. (2011)]

O O Mg O O Mg O O

X X

X X

Fig. 4.5 Polymeric reaction of 1,4-dioxane

However, the bidentate ligand is complex due to bond constraints. The possible
reaction reported in Fig. 4.5 indicates the reaction between dioxane and Grignard
reagent to form a polymer (Che-revision Administrator 2014).

4.1.2 Sources and Occurrence of 1,4-Dioxane

Reports on the direct production of 1,4-dioxane are rare; however, it occurs in most
consumer products such as in cosmetics as a trace contaminant (Hossein et al. 2022)
that can penetrate human and animal skin (U.S. FDA 2016). Industrial
manufacturing of chlorinated solvents, papers and pulp, agricultural pesticides,
organic chemical, dyes, and rubber and textile processing are potential sources of
dioxane (Sun et al. 2016). It is a by-product during the manufacturing of aircraft
deicing fluids, dyes, antifreeze, greases, paint strippers, and other consumer products
(Hossein et al. 2022). Its high water miscibility and use in domestic activities
including cleansing and bathing, recreational swimming, industrial production, and
automobile activities release substantial amount of dioxane in terrestrial and marine
ecosystem (Karges et al. 2018). Through its environmental partitioning, dioxane is
rarely available in the atmosphere due to low volatility (Adamson et al. 2021),
surface water (Karges et al. 2020), soil (Hinchee et al. 2018), and groundwater
(Yamamoto et al. 2018a). The oceanic occurrence of dioxane is also reported by



Scaratti et al. (2020). The occurrence of dioxane in the body is rare since it is
transformed to β-hydroxyethoxyacetic acid and eliminated through urination (ITRC
2020a). Its occurrence in the drinking water (Adamson et al. 2021), food (Broughton
et al. 2019), and particulate matters (Lee and Choo 2013) has proved the occurrence
of dioxane in all ecosystem compartments. Thus, mostly use and disposal of
chlorinated compounds and consumer products, water and wastewater treatment
plants, accidental releases, landfills, and pipe leakages are the major sources of
dioxane to the environment.

4 Biotransformation of 1,4-Dioxane by the Use of Bacteria in the Soil 83

The LD50 of dioxane in rats is 5170 mg/kg, while the no-observed adverse effect
to human being is 400 mg/m3 (Supprenant 2012). Dioxane falls among EPA’s
unregulated contaminant monitoring rule (UCMR) that qualifies it as an emerging
contaminant (Suthersan et al. 2016; Sarma 2022), and in addition dioxins are
classified as persistent organic pollutants (Miraji et al. 2021).

4.1.3 Effects and Fate of 1,4-Dioxane

Compared to other solvents such as ethanol whereby the USA alone produced 84%
(6.3 million m3) of the world in the year 2020 (AFDC 2022), recent data of
1,4-dioxane production are limited. For example, in the year 1985, global production
of dioxane was 14,000 tons (13.6 million liters) (Wiki 2022); in the year 1990, about
18 million pounds was produced (7.9 million liters); and in the year 2002, the USA
alone produced ten million pounds (4.4 million liters) (Wilbur and Jones 2012)
indicating a gradual decrease. The absence of recent data on the direct global
production of dioxane is not clear, yet most consumer products such as automotive
coolants, chemical manufacturing, and textile contain dioxane. Dioxane is volatile
(EPA 2010) with atmospheric half-life of 1–3 days (US EPA 2014b). There are
several federal standard guidelines for dioxane exposure. Some of them are shown in
Table 4.1 (US EPA 2014a).

Breathing of contaminated air (ATSDR 2006); skin adsorption via use of sham-
poo, toothpaste, and other cosmetics (Alsohaimi et al. 2020); ingestion via packag-
ing material (Gi et al. 2018); food and food supplements/additives (Mo et al. 2022);
pesticide remnants in agricultural products (Begum et al. 2016); groundwater (Chu
et al. 2018); occupational exposure (US EPA 2014a); industrial effluents (Stepien

Table 4.1 Federal standard guidelines for 1,4-dioxane

Root of exposure Amount Exposure duration (days) Status

Inhalation 2.00 ppm <14 Acute

Inhalation 0.20 ppm 15–364 Intermediate

Respiration 0.03 ppm >365 Chronic

Oral 5 mg/kg 1 Acute

Oral 0.5 mg/kg 1 Intermediate

Oral 0.1 mg/kg 1 Chronic



et al. 2014); and use of spermicidal sponge (ATSDR 2012) are the potential roots of
exposure to dioxane.
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Fig. 4.6 Scopus analytic for the published papers mentioned 1,4-dioxane from 1931 to 2021

Experimental research on dioxane has established LD50 of about 2 g/kg for cats
and rabbits, 5.7–5.9 g/kg in mice, and 3.15–4 g/kg in guinea pigs. In this study,
kidney and liver were the chronic affected organs (OEHHA 1998). The United States
Environmental Protection Agency (US EPA) has reported 35 μg/L of dioxane as a
cancer risk level (US EPA 2012) and classified it as group B2 chemical that probably
causes human carcinogenic effect (McElroy et al. 2019). The Office of Environmen-
tal Health Hazard Assessment (OEHHA) has recommended 3 ppb of dioxane as a
maximum level in the drinking water (OEHHA 1998). Evidence of dioxane carci-
nogenicity is reported and summarized by the Scientific Committee on Consumer
Safety in its report number SCCS/1570/15 indicating that while the EU classifies it
as a carcinogen category 2, the IARC classifies it as a group 2B carcinogen chemical.
The SCCS recommends 55 μg/day; Australia has the highest recommendation of
420 μg/day, while Japan has the lowest recommendation of 4.3 μg/day (US EPA
2012).

Short-term or acute exposure to 1,4-dioxane may result in various effects, but the
common ones are drowsiness; nausea; irritation of the eyes, throat, and nose; and
headache (ATSDR 2012; US EPA 2014a). Long-term chronic exposure is associated
with drying and cracking of skin and liver, dermatitis, eczema, and kidney damage
(ATSDR 2012; US EPA 2014a). Recently, there has been an exponential growth in
the global reports regarding 1,4-dioxane as indicated in Fig. 4.6.

Exponential growth is an indication of global awareness on the environmental
impact of 1,4-dioxane, with the leading research area being chemistry as indicated in
Fig. 4.7.
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Fig. 4.7 Scopus analytic for the subject areas mentioned 1,4-dioxane from 1931 to 2021

Its occurrence as an impurity in most consumer products (Fuh et al. 2005)
presents a challenge in its roots and mitigation approaches. Thus, apart from dioxane
that will enter living organisms and causes adverse effects, the remaining will be
contaminant in the environmental ecosystem that requires natural remediation for the
ecosystem safety.

4.2 Remediation of 1,4-Dioxane

Chemical and physical properties of 1,4-dioxane lead to ineffective traditional
remediation especially through chemical treatment methods (ITRC 2020b). Further-
more, these properties render conventional unit processes involved in drinking and
wastewater treatment ineffective too (ITRC 2020b). Although under aerobic
conditions 1,4-dioxane is biodegradable via direct metabolism or co-metabolism,
the relative roles of these processes are dependent on both the concentration of
1,4-dioxane and the presence of co-contaminants (Zhang et al. 2017; He et al. 2018;
Broughton et al. 2019; Polasko et al. 2019; ITRC 2020b; Johnson et al. 2020;
Metabolism A, Cometabolism A, Biodegradation A, Tools MB 2021). Inhibitory
co-contaminants frequently complicate the biological treatment of 1,4-dioxane
(Johnson et al. 2020). Because of its uses as a solvent, wetting agent, and stabilizer
for chlorinated solvents, used in metal vapor degreasing, 1,4-dioxane is frequently
found with a variety of co-contaminants, including heavy metals like hexavalent
chromium [Cr(VI)] (Zhang et al. 2017; He et al. 2018; Broughton et al. 2019;
Polasko et al. 2019; ITRC 2020b; Johnson et al. 2020). Cr(VI) occurs naturally in



groundwater due to geological formations, but it also has anthropogenic sources that
can overlap with 1,4-dioxane.
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Microbes that use 1,4-dioxane as a carbon or energy source, as well as those that
co-metabolize it after growth on other organic substrates, can biodegrade it (Zhang
et al. 2017; He et al. 2018; Broughton et al. 2019; Polasko et al. 2019; ITRC 2020b;
Johnson et al. 2020). In this case, using microbes such as bacterial strains for
biodegradation of 1,4-dioxane is of interest for environmental and public health
safety. These techniques may be used to remediate 1,4-dioxane in contaminated
water, wastewater, and soil. The composition of soil microbial community in
contaminated soils is potential for the effectiveness of the remediation processes.

4.3 Soil Microbial Constituents

Soil comprises organic matters, minerals, gases, liquids, and living things, which
contribute to supporting life (Haumaier et al. 2001; Pettit 2004; Amundson et al.
1998). In addition to a porous phase containing water and gases, soil consists of a
solid phase comprised of minerals and organic matter (Haumaier et al. 2001;
Amundson et al. 1998) as presented in Fig. 4.8. The solid, liquid, and gaseous states
may coexist in the soil depending on the climatic conditions (Haumaier et al. 2001;
Amundson et al. 1998). Climate; relief such as elevation, orientation, and slope of
the terrain; organisms; and soil’s parent materials interact over time to produce soil.
The produced soil continuously changes due to various physical, chemical, and
biological processes, including weathering and related erosion (Velde 2013; Okon
and Antia 2022). Soil ecologists view soil as an ecosystem having deep internal
connections and complexity (Hopp and McDonnell 2009; Häring et al. 2012; Velde
2013; Reinhold-Hurek et al. 2015; Okon and Antia 2022).

Soil microbial constituents are the main factor that determines the functions of
soil microorganisms and how they impact soil characteristics and nutrient
constituents (Haumaier et al. 2001; Amundson et al. 1998; Reinhold-Hurek et al.
2015). The first known bacteria and microbes on earth are thought to have originated

Fig. 4.8 Soil structure and some of its constituents



in the waters between two and four billion years ago (Margulis and Sagan 1997;
Nisbet and Sleep 2001; Altermann et al. 2006).
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These bacteria could fix nitrogen, and as they grew over time, they released
oxygen into the environment (Margulis and Sagan 1997; Nisbet and Sleep 2001;
Altermann et al. 2006). This process is crucial because it impacts soil fertility and
structure. There are several soil microorganisms including bacteria, actinomycetes,
fungus, algae, and protozoa (Edwards and Fletcher 1988; Belnap 2001; Bhattarai
et al. 2015; Balasubramanian 2017). Each group has traits that characterize and
define their roles in the soil (Lopez de Ceballos et al. 1983; Shormanov et al. 2012;
Sei et al. 2013; Li et al. 2018; Yamamoto et al. 2018b; Tusher et al. 2021; Wang et al.
2021b). Each gram of soil around and surrounding plant roots, or the rhizosphere,
contains up to ten billion bacteria (Liu et al. 2007; Sei et al. 2013; Miao et al. 2019;
Polasko et al. 2019), which can be utilized for remediation purposes and restoration
of natural environments.

4.4 Bacteriological Transformation of 1,4-Dioxane in the Soil

In most environments, 1,4-dioxane does not biodegrade easily possibly due to their
chemical stability and high miscibility to water (Klečka and Gonsior 1986; Suh and
Mohseni 2004; Ghosh et al. 2010; Stepien et al. 2014). However, several
microorganisms have been identified that can biodegrade 1,4-dioxane, either directly
or through co-metabolism (Altermann et al. 2006; Inoue et al. 2016, 2018; Zhang
et al. 2017; Li et al. 2020; Johnson et al. 2020; Ramalingam and Cupples 2020a;
Zippilli et al. 2021; Murnane et al. 2021b; Kikani et al. 2021; Wang et al. 2021a).
Microorganisms use 1,4-dioxane as a growth substrate during metabolic biodegra-
dation, but growth is slow unless 1,4-dioxane concentrations are high to levels
greater than 100 mg/L (Ramalingam and Cupples 2020a; Metabolism A,
Cometabolism A, Biodegradation A, Tools MB 2021). An additional growth sub-
strate such as methane must be supplied during co-metabolic biodegradation to
support biomass growth and induce the appropriate 1,4-dioxane-degrading enzymes
(Gedalanga et al. 2014; US EPA 2017; Zhang et al. 2017; Aoyagi et al. 2018; He
et al. 2018; Hamid et al. 2020; Ramalingam and Cupples 2020a, b; Murnane et al.
2021b). Unlike metabolic degradation, co-metabolic processes can reduce
1,4-dioxane to very low concentrations, which is important for greener ecosystems.
These processes may be used separately or in combination based on needs. Details of
1,4-dioxane degradation conditions are presented in Table 4.2.

Some bacterial strains such as Amycolata sp. CB1190 and P. carboxydivorans
RM-31 are capable of degradation of 1,4-dioxane in various reaction conditions. The
utility of these microbes for environmental remediation of contaminants is undeni-
able. For example, Mahendra and colleagues investigated 1,4-dioxane, a probable
human carcinogen and an important emerging contaminant (Mahendra and Alvarez-
Cohen 2006). Their results revealed that among 20 bacteria strains, 13 were capable
of biodegrading dioxane (Mahendra and Alvarez-Cohen 2006), indicating potential
utility in remediation purposes.



Bacterial strain Implication Remarks References

(continued)
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Table 4.2 1,4-Dioxane degradation conditions

Reaction
condition

Pseudonocardia
dioxanivorans
CB1190

Metabolic
process, the
addition of
THFMO

The microbes
may potentially
improve
ecosystem health

Future
improvement
and use in
remediation
of other
contaminants

Mahendra and
Alvarez-Cohen
(2005, 2006)

P. benzenivorans B5 Metabolic
process, the
addition of
THFMO

The use of the
microbes for the
remediation of
other
contaminants

Future use in
remediation
of other
contaminants

Parales et al.
(1994)

Mycobacterium
sp. PH-06

Metabolic
process, the
addition of
PrMO

Kim et al. (2009)

Actinomycete
CB1190

Metabolic
process

Apart from
established
efficacy, the need
for research on
potential
conditions
necessary for
degradation of
1,4-dioxane and
other
contaminants

Utilization for
remediation
of
1,4-dioxane
and other
contaminants

Kelley et al.
(2001),
Nakamiya et al.
(2005), Mahendra
et al. (2013), Sei
et al. (2013),
Zhou et al. (2016)
and Murnane
et al. (2021b)

Amycolata
sp. CB1190

P. carboxydivorans
RM-31

Afipia sp. D1

A. baumannii DD1

X. flavus DT8

Pseudonocardia K1 Co-
metabolism
with the
addition of
THFMO

Most areas are
contaminated
with a mixture of
contaminants.
The use of these
processes will
potentially aid in
keeping the
environment
clean

Utilization of
these
processes for
remediation
purposes

Mahendra and
Alvarez-Cohen
(2006)

B. cepacian G4 Co-
metabolism
with the
addition of
T2MO

R. pickettii PKO1 Co-
metabolism
with the
addition of
T3MO

P. mendocina KR1 Co-
metabolism
with the
addition of
T4MO

Flavobacterium Co-
metabolism

Improvement
and
utilization of

Sun et al. (2011)

Patt and Abebe
(1995)



these
processes for
remediation
purposes
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Table 4.2 (continued)

Bacterial strain
Reaction
condition Implication Remarks References

Aureobasidium
pullulans NRRL
21064

R. ruber ENV425 Hand et al. (2015)

M. austroafricanum
JOB5

DeRosa et al.
(1996), House
and Hyman
(2010), Nam et al.
(2016) and Miao
et al. (2019)

THFMO tetrahydrofuran monooxygenase, PrMO propane monooxygenase, T2MO toluene
2-monooxygenase, T3MO toluene 3-monooxygenase, T4MO toluene 4-monooxygenase

The application of bacteria strains in the biodegradation of contaminants, includ-
ing 1,4-dioxane, was also reported by several researchers (Metsä-Ketelä et al. 2013;
Hamid et al. 2020; Murnane et al. 2021b).

4.4.1 Aerobic Biotransformation

Although they are uncommon, several microorganisms that can metabolize
1,4-dioxane in aerobic conditions have been isolated. Among the microbes that
can biotransform 1,4-dioxane in aerobic conditions, Pseudonocardia dioxanivorans
CB1190 is the best studied strain (Arve 2015; Isaka et al. 2016; Zhang et al. 2017;
Aoyagi et al. 2018; Guan et al. 2018; He et al. 2018; Miao et al. 2018; Barajas-
Rodriguez et al. 2019; Ramalingam and Cupples 2020b; Johnson et al. 2020; Dang
and Cupples 2021; Metabolism A, Cometabolism A, Biodegradation A, Tools MB
2021). Industrial activated sludge was used to enrich the bacterium and then fed with
tetrahydrofuran and finally 1,4-dioxane. Studies indicate that high levels of
chlorinated solvents, their by-products, and some metals may inhibit 1,4-dioxane
CB1190 strain degradation (Arve 2015; Isaka et al. 2016; Zhang et al. 2017; Aoyagi
et al. 2018; Guan et al. 2018; He et al. 2018; Miao et al. 2018; Barajas-Rodriguez
et al. 2019; Ramalingam and Cupples 2020b; Johnson et al. 2020; Dang and Cupples
2021; Metabolism A, Cometabolism A, Biodegradation A, Tools MB 2021). The
most effective inhibitors of 1,4-dioxane degradation are presented in Fig. 4.9.

It is reported that about 5 mg/L of 1,1-dichloroethene is an inhibitor of
1,4-dioxane biodegradation (Arve 2015; Isaka et al. 2016; Zhang et al. 2017;
Aoyagi et al. 2018; Guan et al. 2018; He et al. 2018; Miao et al. 2018; Barajas-
Rodriguez et al. 2019; Ramalingam and Cupples 2020b; Johnson et al. 2020; Dang
and Cupples 2021; Metabolism A, Cometabolism A, Biodegradation A, Tools MB
2021). The most effective metal inhibitor of 1,4-dioxane degradation by CB1190
was Cu(II), which lengthened the lag time at 1 mg/L and significantly decreased



1,4-dioxane degradation rates at 10 and 20 mg/L Cu(II). While Zn(II) did not impact
biodegradation of 1,4-dioxane at the highest test concentration (20 mg/L Zn), Cd(II),
Ni(II), and Ni(II) were less sensitive to 1,4-dioxane degradation (Arve 2015; Isaka
et al. 2016; Zhang et al. 2017; Aoyagi et al. 2018; Guan et al. 2018; He et al. 2018;
Miao et al. 2018; Barajas-Rodriguez et al. 2019; Ramalingam and Cupples 2020b;
Johnson et al. 2020; Dang and Cupples 2021; Metabolism A, Cometabolism A,
Biodegradation A, Tools MB 2021). This result indicates that 1,4-dioxane occurs as
a mixture of several contaminants; therefore, the more effective approach will be to
propose and improve techniques for co-biotransformation of 1,4-dioxane and its
co-contaminants in the environments. For the treatment of industrial wastewater
contaminated with 1,4-dioxane, biodegradation is a viable, economical, and environ-
mentally benign solution. A schematic and proposed chemical equation for aerobic
biotransformation is presented in Fig. 4.10.
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Fig. 4.9 Chemical structures of 1,4-dioxane degradation inhibitors (Source: Tomo Aoyagi et al.)
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Fig. 4.10 Series of chemical processes occurring during aerobic biotransformation of 1,4-dioxane
(released under CC by 4)

In a study, Tusher and colleagues explored metabolic bacteria from a stable
microbial community that degrades 1,4-dioxane (Tusher et al. 2021).
Pseudonocardia sp. (TS28), Dokdonella sp. (TS32), and Afipia sp. (TS43) were
three bacterial strains that were discovered to be capable to use 1,4-dioxane as their
only source of carbon and energy to break down organic compounds (Tusher et al.
2021). This was a pioneer study that detailed the participation of the genus
Dokdonella in the biodegradation of 1,4-dioxane as presented in Fig. 4.11. Genus
Dokdonella possesses inducible 1,4-dioxane-degrading enzymes’ potential for reme-
diation purposes (Tusher et al. 2021).
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Fig. 4.11 Biodegradation of 1,4-dioxane by Dokdonella bacterium (released under CC by 4)
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The findings of this study also contributed to our understanding of how various
1,4-dioxane degraders interact and cohabit in a consortium while utilizing a single
carbon supply to create an effective biological 1,4-dioxane treatment system.

4.4.2 Aerobic Co-metabolic Biotransformation of 1,4-Dioxane

A simultaneous degradation method of two compounds is known as co-metabolism,
whereby the degradation of a second compound always depends on the presence of
the first compound. Organisms involved in co-metabolizing 1,4-dioxane, in contrast
to 1,4-dioxane-metabolizing microorganisms, can break down 1,4-dioxane after
growing on a main growth-supporting substrate (Kashimoto et al. 1989; Mahendra
et al. 2013; US EPA 2014a, 2017; Arve 2015; Zhang et al. 2017, b; Johnson et al.
2020; Miao et al. 2020; Metabolism A, Cometabolism A, Biodegradation A, Tools
MB 2021; Tusher et al. 2021). Figure 4.12 shows some main processes involved in
co-metabolism.
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Co-metabolic active bacteria such as R. rhodochrous ATCC 21198 can often
break down co-substrates at lower concentrations below those attained by organisms
that metabolize and thrive on them since co-substrate is not utilized as either primary
carbon or energy sources (Kashimoto et al. 1989; Mahendra et al. 2013; US EPA
2014a, 2017; Arve 2015; Zhang et al. 2017, b; Johnson et al. 2020; Miao et al. 2020;
Metabolism A, Cometabolism A, Biodegradation A, Tools MB 2021; Tusher et al.
2021). Numerous bacteria such as Mycobacterium austroafricanum JOB5 (Arve
2015; Zhang et al. 2017; Johnson et al. 2020; Tusher et al. 2021) can co-metabolize
1,4-dioxane in various conditions. These include model organisms that utilize well-
characterized enzymes like soluble methane monooxygenase (sMMO) and grow on
primary substrates like toluene or methane, and other 1,4-dioxane co-metabolizing
strains reported to thrive on THF, ethane, and isobutane. Numerous bacterial
monooxygenases have the capacity to oxidize numerous co-substrates at once; if
fully studied and utilized, this may have a promising future in the remediation of
environmental contaminants.

Hatzinger and colleagues assessed methane and ethane capacity to promote the
aerobic co-metabolism that breaks down 1,4-dioxane in groundwater aquifers
(Hatzinger et al. 2017). Ethane encouragedM. sphagni ENV482, which was isolated
from a separate aquifer, to aerobically break down 1,4-dioxane (Hatzinger et al.
2017). According to this study, ethane, a common by-product of the biotic or abiotic
reductive dechlorination of chlorinated ethanes and ethenes, may act as a substrate to
speed up the breakdown of 1,4-dioxane in aquifers, especially in areas where these
by-products combine with aerobic groundwater (Hatzinger et al. 2017). A similar
study was conducted by Murnane and colleagues on co-metabolic transformation of
1,1,1-trichloroethane and 1,4-dioxane by pure cultures of R. rhodochrous (ATCC
strain 21198) (Murnane et al. 2021a). Results indicated that the transformation of
dioxane occurred without a lag phase for cells grown on 2-butanol, while an
induction period of several hours was required for 1-butanol-grown cells (Murnane
et al. 2021a). A similar observation was archived with activity-based labelling
patterns for monooxygenase hydroxylase components and specific rates of tetrahy-
drofuran degradation (Murnane et al. 2021a). The study further reported lower rates
of oxygen gas consumption in the reactors containing tetra-s-butylorthosilicate,
which has benefits for in situ bioremediation. Indicating the structure of SRC is
important when developing passive aerobic co-metabolic treatment systems.

4.4.3 Anaerobic Biotransformation of 1,4-Dioxane

Little metabolic or co-metabolic anaerobic 1,4-dioxane biodegradation has been
observed thus far (Skinner et al. 2009; Göen et al. 2016; Guan et al. 2018). There
was no evidence of 1,4-dioxane biodegradation in microcosm research employing
samples of aquifer material from several 1,4-dioxane-impacted sites. On
1,4-dioxane, an iron-reducing bacterium did grow anaerobically with chemical
processes (Arve 2015; Zhang et al. 2017; Hamid et al. 2020; Ramalingam and
Cupples 2020a; Dang and Cupples 2021; Sengupta and Dhal 2021). Fe(III)-reducing



facultative anaerobe S. oneidensis can produce hydroxyl radicals, which degrade
1,4-dioxane as indicated in Fig. 4.13 (Sekar and DiChristina 2014; Sekar et al.
2016).
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S. oneidensis produces Fe(II) in anaerobic circumstances, which interacts chemi-
cally with H2O2 to yield hydroxyl radicals that can result in oxidative 1,4-dioxane
breakdown (Sekar and DiChristina 2014; Sekar et al. 2016).

4.5 Roles of Soil Bacteria in the Biotransformation
of 1,4-Dioxane

A cyclic molecule such as 1,4-dioxane with two ether moieties was thought to be
relatively unmanageable to biodegradation, until a recent study that demonstrated
that it may be efficiently biotransformed (Zhang et al. 2016, 2017; He et al. 2018).
Dioxane-degrading bacteria are promising in situ bioremediation agents for cleaning
up 1,4-dioxane-contaminated soils because it is less expensive than using advanced
technologies. Several strains that may co-metabolically degrade dioxane have been
isolated from wastewater treatment facilities or dioxane-affected areas (He et al.
2018). Numerous research emphasized the significance of monooxygenase enzymes
in dioxane breakdown, and a gene cluster and sequence identified in
P. dioxanivorans CB1190 that can aid in this process (i.e., thmADBC) (Mahendra
and Alvarez-Cohen 2006; Kim et al. 2009; Sales et al. 2011). The gene cluster
encodes dioxane monooxygenases, the dissolving di-iron (SDIMO) that initiates the
breakdown of dioxane. The di-iron monooxygenase contains multiple bacterial
enzyme components that can catalyze the oxidation of a variety of priority pollutants
such as chlorinated solvents and aromatic hydrocarbons, among other contaminants,
implying that they have inherent bioremediation potential (Notomista et al. 2003;
Grostern et al. 2012).
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Fig. 4.14 Degradation of dioxane-enriched consortia and two archetypes (left) and concurrent
growth of consortia (right). [Source: He et al. (2018)]

A garden soil with unknown history of exposure to dioxane has shown a
capability to degrade 500 mg/L dioxane as the sole source of carbon and energy to
non-detectable levels within a week (He et al. 2018). Filtering through the aquifer
material hinders the subsurface dispersion of inoculated bacteria, which is particu-
larly problematic when the cultures aggregate. The archetypal dioxane degraders,
which aggregate in suspension and include P. dioxanivorans (CB1190) and
M. dioxanotrophicus (PH-06), are severely constrained by this (Grostern et al.
2012). Remarkably, the SDIMO consortia (A and B) enriched by He et al. (2018)
from garden soil did not clump as much as the archetype, making them better
candidates for in situ bioaugmentation at areas with inadequate indigenous dioxane
biodegradation ability. Figure 4.14 shows findings indicating that there is a substan-
tial growth of bacteria when exposed in the dioxane, while simultaneous decrease in
dioxane concurrently occurs.

Tenfold serial dilution was adopted during conduction of experiments in Fig. 4.14
where ammonium mineral salts were used as growth medium with an initial dioxane
concentration of 500 mg/L, while autoclaved bacteria were used as control.

4.6 Fate of 1,4-Dioxane Biotransformation Products

Numerous intermediates produced by the biotransformation of 1,4-dioxane in envi-
ronmental matrices have the potential to interact with the environment and result in
secondary pollution issues. Therefore, it is crucial to comprehend their fate and the



effects of these items. Spectrometry, chromatography, nuclear magnetic resonance
spectroscopy (NMR), gas chromatography-mass spectroscopy (GC-MS), high-pres-
sure liquid chromatography (HPLC), and gas chromatography-flame ionization
detection (GC-FID) are some techniques that can be used to quantify and qualita-
tively estimate the extent of changes in 1,4-dioxane (Kikani et al. 2022). The
production of metabolites with are structurally distinct via redox mechanisms is
the consequence of 1,4-dioxane transformation by biomaterials. There have been
papers on microbial systems’ qualitative evaluation of 1,4-dioxane intermediates and
metabolites. The intermediates produced by Cordyceps sinensis during the biodeg-
radation of 1,4-dioxane are shown in Fig. 4.15 (Nakamiya et al. 2005; Mahendra
et al. 2007; Kang and Doty 2014).
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Fig. 4.15 Some intermediate compounds produced by Cordyceps sinensis during biodegradation
of 1,4-dioxane

Shaily and colleagues (Mahendra et al. 2007) described a process for dioxane
oxidation by monooxygenase-expressing cells that does not result in the buildup of
hazardous intermediate compounds in the environment. In this mechanism, dioxane
is first transformed to 2-hydroxy-1,4-dioxane, which is then instantaneously
oxidized to 2-hydroxyethoxyacetic acid. During a second monooxygenation step,
2-hydroxy-1,4-dioxane is further hydroxylated, yielding a mixture of dihydroxy-
ethoxyacetic acids with a hydroxyl group in the ortho or para position. After the
second ether bond is broken, small organic molecules such as ethylene glycol,
glycolate, glyoxylate, and oxalate are progressively formed and mineralized to
CO2 via common cellular metabolic mechanism.

4.7 Conclusion

The occurrence of 1,4-dioxane in the water, wastewater, soil, drinking water, and
groundwater is globally reported. This chemical is classified as a carcinogenic
compound, posing a threat to ecosystems upon its chronic exposure. Its occurrence
in many consumer products as either an impurity or a solvent and its high miscibility
to water lead to its widespread contamination, complicating its remediation methods.
Bacteria such as Pseudonocardia dioxanivorans CB1190 through aerobic biotrans-
formation, Rhodococcus rhodochrous ATCC 21198 through co-metabolic transfor-
mation, and Shewanella oneidensis through anaerobic transformation have shown a
significant bioreduction of 1,4-dioxane concentration in the contaminated
environments. The role of these bacteria is through either consumption of
1,4-dioxane as a source of energy, thus reducing its concentration, or transformation



to different products that are harmless compared to parent molecule. In the future,
relying of microbial remediation of 1,4-dioxane is expected to take a pace since
nature does not leave behind unattended waste resulting in an ecological safety.
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Abstract 

Novel brominated flame retardants (NBFRs) and legacy BFRs have been used in 
industrial and home applications to reduce the risk of ignition. However, the use 
of flame retardants is of particular concern due to the likelihood of being found in
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high concentrations, persistence in the environment, and for bioaccumulation in 
the environment. BFRs are of interest due to the potential toxicity to humans and 
endocrine-disrupting properties. To adress toxicity and persistence of BFRs, new 
or novel BFRs (NFBRs) have been introduced as a replacement. However, 
NBFRs have similar chemical properties and environmental fates as legacy 
BFRs. This chapter discusses various methods of abiotic and biotic degradation 
of BFRs, culturing conditions, potential microorganisms, and enzymes that can 
biodegrade BFRs from various environmental sources. We include the proposed 
mechanisms of biodegradation and persistence in the environment for several 
congeners. Water matrices are also discussed as an environmental source since 
BFRs in sedimentation are not well known and pose an essential factor in 
assessing the amount of BFRs present in the environment. The presence of 
BFRs in our environment have been concerning as they have been linked by 
various studies to the decline of sperm counts and fertility issues of both genders 
as well as contribute to cognitive and developmental problems in children.
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5.1 Introduction 

Epoxy resins are widely used for many products but are highly combustible. 
Furthermore, the amount of heat created and the toxic gases released once ignited 
are significant causes of deaths and property damage. For this reason, flame 
retardants (FRs) have been developed to mitigate this problem (Waaijers and 
Parsons 2016). BFRs represent various chemicals applied to many products, includ-
ing plastics, polymers, textiles, wood, or other ignitable objects, to prevent combus-
tion. During the process of combustion, free radicals are formed. Halogens, namely 
bromine, are good at detaining free radicals and lowering the decomposition tem-
perature (Kodavanti et al. 2017). Approximately one-quarter of the world’s flame 
retardants are brominated (Andersson et al. 2006). There are three main groups of 
BFRs used. These are decabrominated diphenyl ether (BDE-209), 
tetrabromobisphenol A (TBBPA), and hexabromocyclododecane (HBCD) 
(Andersson et al. 2006). 

BFRs, also known as organohalogens, comprise a group of chemicals that use 
flame retardants, which is concerning due to their toxicity, bioaccumulation, and 
environmental accumulation. NBFRs have been cited as being neurotoxic in chil-
dren who are still developing (Roze et al. 2009). Due to bioaccumulation and 
toxicity, BFRs have been banned in various countries, and novel BFRs are being



used as an alternative to BFRs. However, novel BFRs have been shown to accumu-
late in aquatic matrices, air, sediment, and sludge and bioaccumulate in animals 
(Xiong et al. 2019). In this review, we will also focus on water matrices as 
sedimentation is a part of land management that is often overlooked and often 
harbors pollutants that are harmful to aquatic ecosystems (Bakker et al. 2008). 
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5.2 Toxicity of BFRS 

The toxicity of BFRs has been cited in many publications. BFRs are lipophilic and 
are stored in adipose tissue, and have the ability to biomagnify in the food chain. 
This is a potential risk considering that the animals humans consume have been 
shown to harbor BFRs. Evidence shows that DBDPE was found to induce oxidative 
stress, changes in morphology, and transcriptomics in white rot fungus P. ostreatus 
(Wang et al. 2022a). This study observed a decrease in fungal biomass in 
concentrations from 1 to 50 mg L-1 DBDPE. A decrease in superoxide dismutase, 
catalase, and glutathione was also observed. This is significant since all three are 
crucial in the detoxification process. Most significant was the role in the 
downregulation of genes involved in metabolisms such as oxidative phosphoryla-
tion, TCA cycle, and carbon metabolism. This study highlights transcriptomics as an 
essential tool in molecular biology for understanding the mechanisms of toxicity 
after exposure to pollutants. Moreover, a multi-omics approach can accurately map 
the pathways in response to pollutant exposure, thus revealing the mechanisms of 
toxicity for organisms (Li et al. 2022). 

Kidney miRNAs from grass carp were found to be significantly changed after 
exposure to BFR and DBDPE (Gan et al. 2016). The study found that five kidney 
miRNAs were significantly downregulated, while 36 kidney miRNAs were signifi-
cantly upregulated. Interestingly, miR-155, miR-205, and most miR-10 family 
members were upregulated. miR-155 is known to regulate immune response, 
miR-205 is linked to nephropathy, and dysregulation of miR-10 family members 
is associated with various cancers (Gan et al. 2016). The study proposes using 
miRNAs as biomarkers for evidence of environmental toxicity. This could be a 
useful tool to determine the extent of toxicity in organisms. 

Sun et al. (2020) found that exposure to DBDPE and BDE-209 was linked to 
hepatoxicity, liver pathology, and changes in the morphology of the liver. These 
changes also included an increase in liver weight, with an abnormal liver/body ratio. 
The study also found that BDE-209 and DBDPE could induce inflammation and 
oxidative stress, increase serum glucose levels, and interfere with metabolic 
pathways through the downregulation of enzymes in rats. A recent publication 
found similar results with DBDPE and BDE-209. Jing et al. (2019) linked 
BDE-209 to morphological and structural changes in the heart. The study on male 
rats also found that decabromodiphenyl ethane (DBDPE) and BDE-209 increased 
inflammatory markers, interleukin-1 beta (IL-1 b), as well as IL6 and IL10. The 
results of the study also indicated that BDE-209 had stronger toxic effects and could 
cause oxidative stress, inflammation, and heart damage. DBDPE also caused



oxidative stress, lipid peroxidation, genetic toxicity, and DNA damage in the 
earthworm, Eisenia fetida (Zhao et al. 2020). Lipid peroxidation and enzyme 
inhibition were also found in a study by Feng et al. (2013) in  Carassius auratus. 
These findings present severe implications for public health as chronic exposure and 
high concentrations of DBDPE lead to heart and liver disease, lipid peroxidation, 
and possibly DNA damage. 
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Ji et al. (2014) discovered gender-specific responses to TBBPA. The physiologi-
cal effects on the model organism, Mytilus galloprovincialis, were determined using 
iTRAQ-based proteome analysis. TBBPA exposure may cause a variety of physio-
logical responses, including apoptosis, signal transduction, immunological and 
oxidative stress, and energy disturbance. More importantly, the study revealed 
gender-specific responses and encouraged inclusion of both genders when 
investigating the effects of environmental toxicity of BFRs. Several articles highlight 
a cocktail of pollutants, including BFRs that may be responsible for the declining 
sperm counts and semen quality within the past few decades (Ingle et al. 2018; Yu  
et al. 2018). In addition, BFRs were cited as causing fertility problems in both 
genders as well as developmental problems in children (Kodavanti et al. 2022). 

5.3 Persistence of BFRs in the Environment 

Polybrominated diphenyl ethers (PBDEs) are ubiquitous in the environment as they 
are present in air, soil, and water. PBDEs, penta-PBDE, octa-PBDE, and deca-
PBDEs, have been on the persistent organic pollutants (POPs) list since 2017 (Jing 
et al. 2019; Ezechiáš et al. 2014). Altogether, there are 209 different congeners. 
Since PBDEs are not bound to other chemicals, they can be easily added to furniture 
or textiles. In addition, they are volatile and quickly released into the air (Webster 
et al. 2009). For this reason, household dust and indoor air have a higher concentra-
tion of PBDEs than outdoors. Novel PBDEs have been used as a replacement for 
legacy PBDEs however, they are also persistent in the environment and are toxic and 
biomagnified in the food chain (Ezechiáš et al. 2014). 

Due to various physiological properties such as low vapor pressure, low Henry’s 
law constant, low solubility, and low octanol-water partition, legacy BFRs such as 
TBBPA can quickly be deposited onto the soil, sediments, and particles in the 
atmosphere (Dong et al. 2022; Sunday et al. 2022). The majority of BFRs are 
additives. They are added and mixed as the polymer is being made but are not 
usually bound to the polymer covalently (Yu et al. 2016). Therefore, PBDEs are 
considered additives, allowing them to easily volatilize away from the original 
product they were added to and subsequently enter the environment (Yang et al. 
2018). More concerning is that little is known about the toxicity of partially degraded 
BFRs or lower brominated BFRs as a result of natural environmental processes. 
Moreover, assessing the amount of BFRs trapped in sedimentation is difficult. 
Figure 5.1 illustrates the broad distribution of BFRs in soil and sedimentation in 
Europe, Asia, and the USA. Lao et al. (2023) found that the amounts of BFRs, 
especially PBDEs, present in sediment were significantly correlated with the amount



of industrialization and output of the surrounding geographical areas along the Pearl 
River Delta (Lao et al. 2023). Figure 5.1 shows the distribution of various BFRs in 
Asia, Europe, the USA, and Japan in soil and sediment. 
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Fig. 5.1 BFR consumption and distribution in soil and sediment. [Retrieved from Yu et al. (2016)] 

5.3.1 Potential Exposure to Legacy BFRs and NBFRs in Indoor 
and Outdoor Settings 

The persistence of legacy BFRs in indoor settings poses a health risk for humans, 
and the same may be expected of NBFRs. Four main routes of toxicity were 
identified. These are ingestion of indoor dust, absorption through the skin, inhalation 
of BFRs in indoor dust, and ingestion of BFRs in food (Zuiderveen et al. 2020). 
Reche et al. (2019) collected samples of outdoor ambient air, indoor workplace 
ambient air, and indoor dust across Spain to determine concentrations and trends for 
each. The study found that high concentrations of outdoor PBDE ranging from 1.18 
to 28.6 pg m-3 were correlated to outdoor landfills and recycling centers. In addition, 
high dechlorane plus (DP) concentrations in indoor air at concentrations of 
2.90–42.6 pg m-3 were strongly correlated to new electronic devices. 

A similar study by McGrath et al. (2018) conducted in Melbourne, Australia, 
tested 51 dust samples from homes, offices, and vehicles to identify prominent BFRs 
in each setting. The BFRs tested were eight PBDEs (-28, -47, -99, -100, -153,
-154, -183, and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, 
BEH-TEBP, BTBPE, and DBDP) identified using selective pressurized liquid 
extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry 
(GC-MSMS). The study also found that legacy and NBFRs were linked to specific 
areas, such as offices with the highest concentrations of penta-BDE. At the same 
time, homes and vehicles contained higher levels of EH-TBB and BDE 209. In 
addition, toddlers were more at risk by up to 2 orders of magnitude than adults for 
exposure to PBDEs and NBFRs. This is especially concerning since evidence 
suggests that BFRs are neurotoxic to children (Roze et al. 2009).
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Ingestion of BFRs has been found to vary with different foods and locations close 
to e-waste recycling areas. Various studies have found the presence of PBDEs in fish 
and meat products in China (Shi et al. 2018). Sun et al. (2014) found that daily 
consumption of PBDEs in the coastal regions of South China ranged from 1.42 to 
5.91 ng d-1 . HBCDs were ubiquitous in human milk and food products of animal 
origin in China despite that HBCD has been restricted since 2016 (Shi et al. 2018). 
The implications of this are that HBCD and relevant congeners are likely airborne, 
and contaminated dust is being ingested and tends to persist in the environment and 
biomagnify in the food chain. 

5.4 Biodegradation of BFRs in Soils and Sedimentation Under 
Anaerobic and Aerobic Conditions 

The kinetic rates for the biodegradation of BFRs in both anaerobic and aerobic soils 
differ. Generally, degradation kinetics are faster in aerobic soils (Nyholm et al. 
2010). However, biodegradation is much more substantial and efficient under 
anaerobic conditions (Gerecke et al. 2006). During the anaerobic digestion of 
organic micropollutants, four main stages occur. These consist of methanogenesis, 
hydrolysis, acidogenesis, and acetogenesis (Carneiro et al. 2020). These processes 
are also influenced by microorganisms and cometabolite biotransformation (Arias 
et al. 2018). 

Biodegradation of other BFRs, such as tetrabromobisphenol A (TBBPA), was 
found to be influenced by the complexity of the carbon source. Complex sources 
such as wastewater, as opposed to glucose, were biodegraded slower (Macêdo et al. 
2022). This was further corroborated by Balaban et al. (2021) demonstrating that the 
addition of a vitamin source delayed bacterial growth and, as a result, reduced 
TBNPA and DBNPG biodegradation. Moreover, the study concluded that 
concentrations higher than 0.5 mg L-1 inhibited biodegradation in Clostridium 
spp. This is in agreement with Wang et al. (2022b), who stated that higher 
concentrations of DBDPE inhibit biodegradation. Concentrations higher than 
50 mg L-1 were too toxic for the organisms. 

Clostridium spp. has also proven to be effective in the biodegradation of HBCD 
(Li et al. 2020). In this study, both Bacillus spp. and Clostridium spp. were capable 
of biodegradation of up to 70% and 77% from cell suspensions taken from Chiang 
Chung soil and riverbank soil, respectively. The biodegradation was conducted 
under aerobic conditions. The biodegradation kinetics was slower in soil than in 
soil suspension for this study. 

Huang et al. utilized a system of maize plants and P. aeruginosa strain HS9 to 
remove HBCD from the soil. The optimal temperature and pH reported were 30 °C 
at pH8, respectively, for the increased degradation rate of hexabromocyclododecane 
(HBCD). The study reported that the HS9 strain could remove 69% of the 
1.7 mg L-1 of HBCDs (α-, β-, and γ-HBCD) in 14 days. The addition of HS9 was 
also found to stimulate plant growth by removing HBCDs from the soil. Further, 
adding HS9 enriched the number of microbes in rhizospheric soil. This included



fungal microbes, an essential part of soil microbial ecosystems. Peng et al. (2015) 
reported degradation of HBCD and a-HBCD to 90% under similar culturing 
conditions of 30 °C and pH 7 using the bacterial strain Achromobacter sp. Stepwise 
increasing additions of HBCD were added to culturing conditions to optimize the 
ability to biodegrade α-, β-, and γ-HBCD in a study by Geng et al. (2019). The 
biodegradation of HBCD was under aerobic conditions using a Pseudomonas 
sp. strain GJY at 30 °C at pH 7. Soil samples were collected from Ziya e-waste 
recycling centers in Tianjin, China. The strains were derived from the soil samples 
using extinction-dilution techniques. The degradation of each isomer was conducted 
in MSM with each diastereoisomer. After 8 days, the results showed degradation 
efficiencies of 85.38%, 82.64%, and 75.5% for α-, β-, and γ-HBCD, respectively. 
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Another synergistic application for degradation was applied to degrade BDE-209. 
Chang et al. (2021) utilized a novel bio-slurry bioreactor (NBB), which consisted 
of UVA LED irradiation coupled with biodegradation by microbes in a 
Ca-montmorillonite clay slurry. The NBB coupled UV-resistant bacteria, 
Stenotrophomonas sp., Pseudomonas sp., and Microbacterium sp., and UV photol-
ysis was carried out in a clay slurry under anaerobic conditions. Quantification of 
debromination was done by measuring Br- using ion chromatography. Biodegrada-
tion was done by using BDE-209 as the sole source of carbon. The degradation 
kinetics were most efficient with the coupled system than either alone. 

Yan et al. (2018) reported using soil columns under anaerobic conditions to 
degrade pentabromodiphenyl ether (BDE-91). The study replaced oxygen with 
sulfate as the final electron acceptor in columns filled with soil to remediate 
contaminated reclaimed water to recharge groundwater. Interestingly, this study 
used sulfate-reducing bacteria and archaea for the biodegradation of BDE-91. 
Elevated levels of sulfate were found to enhance the biodegradation of BDE-91. 

Anaerobic conditions were utilized in a study by Ramaswamy et al. (2021). 
Dehalococcoides mccartyi strain CG1 debrominated tetrabromobisphenol A 
(TBBPA) ultimately into BPA in 10 days. Dehalococcoides mccartyi strain CG1 
was able to utilize TBBPA as a sole source of carbon. Furthermore, a proteomic 
analysis revealed that the reductive dehalogenase, PcbA1, was responsible for 
debromination of TBBPA. Therefore, the acceleration of biodegradation of 
TBBPA was interpreted as metabolic utilization of TBBPA. Furthermore, a 
92-fold increase in cell density of D. mccartyi strain CG1 demonstrated further 
evidence of this. 

BDE-209 and other polybrominated diphenyl ethers can be broken down by 
coupling a Fenton system with persulfate (Wu et al. 2020). This abiotic approach 
can remove BDE-209 from soils or other hard surfaces. The study reported degrada-
tion efficiency ranging from 73.4 to 95.8%. The addition of persulfate resulted in the 
generation of SO4. The SO4 was believed to make a nucleophilic attack on 
BDE-209, resulting in debromination to lower brominated constituents and 
pentabromophenol (Wu et al. 2020). The mechanism was achieved through the 
cleavage of C–O bonds and subsequent replacement with OH groups (Wu et al. 
2020). The resulting products, nona-BDEs and pentabromophenols, were vulnerable



to further transformation. The study presents this data as a cost-effective solution for 
removing BDE-209 from soils in an aerobic environment. 
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Larger eukaryote organisms are potential solutions to removing BFRs from the 
soil. Earthworms were used in a study by Qiao et al. (2022) for the potential removal 
of BFRs: BDE 209, PBT, DBDPE, BTBPE, and HBB. The removal of these BFRs 
varied with each BFR. BFRs with similar molecular weights and chemical structures 
had similar enrichment and removal results. The study also demonstrated the 
potential for secondary pollution from worm castings that were not retained in the 
earthworm. The use of earthworms could remove BDE-209 and DBDPE from the 
soil. The removal of the other BFRs could have been more efficient. 

5.5 Biodegradation of Contaminated Water and Sediment 
Matrices 

Systematic surveillance of BFRs in wastewater treatment plants (WWTPs) is crucial 
for understanding efficient methods of removal and contamination. Moreover, little 
is known about certain BFRs, such as 1,2-dibromo-4-(1,2-bromomethyl) cyclohex-
ane (TBECH), in aqueous environments. Anaerobic digestion is a well-studied 
aspect of wastewater treatment. Hydrolysis is essential in this process and facilitates 
the enzymatic breakdown of larger molecules into monomers (Macêdo et al. 2022). 
Carneiro et al. (2020) found that hydrolysis and acidogenesis were crucial steps in 
removing organic micropollutants from wastewater. Wastewater treatment plants 
could detoxify wastewater by coupling bioremediation methods with regular 
treatments. Ruan et al. (2019) discovered that BFRs were prevalent in influent 
water sampled from various WWTPs in Hong Kong. This work emphasized the 
need to monitor the enantiomer-specific behavior of chiral BFRs in the various 
treatments used in WWTPs. The study also discovered that biological treatment 
resulted in more efficient BFR elimination and enantiomer-specific degradation of 
chiral BFRs. 

A novel approach of combining an upflow anaerobic sludge blanket bioreactor 
(UASB) and integrated fixed film/activated sludge (IFAS) system can increase the 
efficiency of organic micropollutant removal as was done in a study by Arias et al. 
(2018). This innovative approach reduced nitrogen by using methane as an electron 
donor. The study reported that the system consisting of methanotrophs and hetero-
trophic denitrifiers removed 93% of chemical oxygen demand and dissolved meth-
ane in the UASB effluent. The purpose of the system was to increase microbial 
diversity to achieve more efficient removal of organic micropollutants. However, 
different culturing conditions, which will be discussed further, are essential for 
achieving this goal. 

In a study by Balaban et al. (2021), a four-strain consortium was used to degrade 
both TBNPA and DBNPG. Table 5.1 lists the genera, GenBank accession number, 
and species in the consortium that biodegraded both TBNPA and DBNPG. Interest-
ingly, the study reported that both compounds were degraded at similar rates. The 
authors hypothesized that this might be due to similar enzymes and metabolic
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pathways of degradation for both. The study proposed a monooxygenase pathway 
for degradation. When both TBNPA and DBNPG were added, the degradation 
kinetics were almost twice as long (from 3–4 days to 7 days). Bacterial growth 
was determined to be the limiting factor, and a carbon source was needed for 
biodegradation. Yeast extract and glucose significantly enhanced biodegradation 
(3–7 days), while the vitamin mix slowed degradation kinetics (1–2 months). 
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Table 5.1 Table showing the genera, species, and GenBank accession numbers of the four-strain 
consortium with initial densities of each strain 

Strain (highest similarity,
99%)

GenBank accession
number

OD 600 (initial density 
CFU mL-1 ) 

DB2 Pseudomonas citronellolis KY229738 0.001 (1.10 × 105 ) 

DB3 Gordonia sihwensis KY229739 0.001 (1.70 × 105 ) 

DB4 Shinella zoogloeoides KY229740 0.004 (4.90 × 105 ) 

DB5 Microbacterium oxydans KY229741 0.027 (3.00 × 106 ) 

TB1 Pseudomonas aeruginosa KY229734 

TB2 Delftia tsuruhatensis KY229735 

TB3 Pseudomonas citronellolis KY229736 

TB4 Sphingobacterium 
siyangense 

KY229752 

TB5 Microbacterium 
paraoxydans 

KY229753 

The species listed are capable of biodegradation of TBNPA and DBNPG. Retrieved from Balaban 
et al. (2021) 

Liang et al. (2019a) found that efficient removal of typical BFR, 2,4,6-
tribromophenol (TBP), was possible using Bacillus sp. GZT. This study also 
identified genes and enzymes corresponding to the bioremediation of TBP and 
proposed an enzymatic pathway (pictured below in Fig. 5.2) for biodegradation. 
Interestingly, the study proposed the possibility of biodegradation enhancement and 
tolerance with recombinant strains containing the genes: tbpA, tbpB, tbpC, tbpD, 
and tbpE. 

Lin et al. (2021) used a microbial fuel cell to bioremediate and detoxify waste-
water. Microbial fuel cells (MFCs) have been used more recently to biodegrade 
various organic compounds and recover energy by increasing the electron transfer 
rate and biodegradation efficiency (Hassan et al. 2018). The efficiency of using 
MFCs is evident with a less toxic final product of bioremediation and energy 
recovery through bioelectrochemical processes (Hassan et al. 2018). Lin et al. used 
different genera of bacteria for dehalogenation (Pseudomonas), electroactive bacte-
ria (Desulfovibrio), and aromatic ring-cleaving bacteria (Geobacter) in the MFC for 
further biodegradation than bisphenol A.
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Fig. 5.2 Proposed mechanism of reduction by GR-Cu NPs. The reduction of TBBPA occurs on the 
surface of Cu NPs, and electrons from GR are transferred to the active sites of Cu NPs. GR(Cl) is 
transformed into two byproducts, goethite and magnetite, after TBBPA is reduced. [Retrieved from 
Fang et al. (2019)] 

5.6 Catalytic Methods of Degradation and Reduction of BFRs 
in Wastewater, Aquatic Matrices, and Sediment 

The presence of BFRs in sedimentation from a temporospatial aspect needs to be 
better studied and understood. In a study by Vauclin et al. (2021), sediment cores 
were taken along the backwater areas along the Rhône River. An age-depth model 
was established to find how the concentrations of BFRs and other pollutants were 
prevalent for each period. The findings were consistent with phasing out certain 
pollutants, such as polychlorinated biphenyls, which showed lower concentrations 
after phasing out. The study also found that novel and legacy BFRs reached peak 
concentrations in the early 2000s and have remained stable since the 2010s. The 
study highlighted the importance of sediment cores for determining spatiotemporal 
trends in both legacy and novel BFRs. Due to the hydrophobicity of BFRs, sedi-
mentation often becomes a sink, and high concentrations of BFRs can be found in 
river sedimentation near e-waste sights (Yu et al. 2016). Xiong et al. (2017) 
proposed bioaugmentation with Bacillus sp. GZT for TBP removal from river 
water/sediment. This is in addition to the phyla isolated from sediments. These 
were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. In this study, 
the biodegradation of TBP was enhanced by supplementation with NaCl, glucose, 
yeast extract, sodium propionate, and humic acids.
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Catalytic methods of removing BFRs from wastewater have been explored in 
various studies. These methods include photocatalytic, electrocatalytic, and plasma 
catalytic degradation and reduction. Sedimentation can reduce and debrominate 
BFRs through microorganisms or reductive catalysis. Green rust (GR), which 
consists of layers of sedimentation with Fe(II) and high amounts of Fe2+ –O–Fe3+ 

in the iron hydroxide layer, is capable of reductive catalysis (O’Loughlin and Burris 
2004). Figure 5.2 illustrates the proposed mechanism of reduction by GR-CuNPs, 
which primarily occurs on the surface of the GR. O’Loughlin and Burris (2004) 
demonstrated that the addition of Cu and Ag significantly enhanced the reducing 
capabilities of GR on halogenated organic compounds. Fang et al. (2019) also 
confirmed that adding Cu nanoparticles (Cu NP) to GR enhanced the reduction of 
TBBPA. The GR was interlayered with Cl-, SO4 

2-, and CO3 
2-. The GR(Cl)-Cu NP 

obtained the greatest degradation efficiency at 92.11%. 
Enhanced heterogeneous photo-Fenton catalytic photodegradation was utilized 

by Huang et al. (2020). An efficient degradation rate of 97.4% was achieved by 
coupling bio-template synthesized ceria with natural ferrihydrites in a novel hetero-
geneous photo-Fenton system. Furthermore, adding bio-template synthesized ceria 
with natural ferrihydrites resulted in the regeneration of Fe2+ and the production of 
photoelectrons, which is often a limiting factor. 

Natural organic matter is an environmentally friendly alternative for use in 
photocatalytic degradation. Soluble organic matter can form active free radicals 
such as OH when hit with visible light that, in turn, can oxidize BFRs (Dong et al. 
2022). Natural organic matter such as humic acids and carboxylate ions in the 
environment has proven to be a promising solution to BFRs. Humic acids can 
form reactive oxygen species or photochemically produced reactive intermediates 
capable of degrading persistent organic pollutants (Dong et al. 2022). For example, 
Son et al. (2019) used Aldrich humic acid to photodegrade HBCD and its three 
diastereoisomers in simulated solar light. Likewise, Zhang et al. (2018) found that 
dissolved organic matter could photodegrade novel BFR, 2,3-dibromopropyl-2,4,6-
tribromophenyl ether (DPTE), in simulated light with the addition of chlorine. 

5.7 Mechanisms of Biodegradation 

The debromination of BFRs is the most important step in the biodegradation of 
BFRs since it allows for complete mineralization (Segev et al. 2009a). In general, the 
more bromines in a BFR, the slower the biodegradation rate. Typically, the arrange-
ment and amount of bromines or halogens are also inversely proportional to biodeg-
radation kinetics. Under anaerobic conditions, biodegradation of PBDEs favors 
reductive bromination or reduces the number of bromines (Zhao et al. 2018). In 
aerobic degradation, cleavage of the aromatic ring occurred first, followed by 
debromination and hydroxylation (Zhao et al. 2018). It is important to note that 
reductive removal of the halogen or debromination forming a halide anion is crucial



in reducing the toxicity of the compound in question (Hug et al. 2013). This outlines 
the importance of organohalide respiration, which refers to the respiration process 
where anaerobic bacteria use halogenated hydrocarbons as a final electron acceptor 
(Hug et al. 2013). 
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The fate and intermediate lower brominated BFRs, such as in PBDEs, can often 
be even more environmentally toxic than the parental species (Pan et al. 2016). 
Therefore, it is important to understand the fate, mechanisms, and degradation 
kinetics of both novel and legacy BFRs undergoing natural photodegradation 
(Zhang et al. 2018). Pan et al. (2016) reviewed the fate of PBDEs in various 
environmental matrices, including aqueous, organic, solid, gas, and Ti–O2-mediated 
phases, to understand the natural photodegradation of PBDE congeners. 

In some instances, the method of degradation influenced the resulting congeners. 
For example, Wang et al. (2019) investigated the debromination of 2,2′,4,4′-
-tetrabromodiphenyl ether (BDE-47), which had preferential debromination at the 
para-bromine in the H-transfer system to generate BDE-17, while the preference was 
ortho-bromine in an electron transfer system to generate BDE-28. Both methods 
were part of a nanoscale zerovalent iron (n-ZVI) system and six n-ZVI-based 
bimetallic systems (Fe/Cu, Fe/Ni, Fe/Pd, Fe/Ag, Fe/Pt, and Fe/Au). Interestingly, 
the metals Pd, Pt, Ni, Cu, and Au use hydrogen gas to debrominated PBDEs. The 
study determined that bimetallic and NaBH4, Fe/Pt, Fe/Ni, and Fe/Pd preferred 
H-transfer mechanisms, while e-transfer mechanisms preferred Fe/Ag. Conversely, 
Fe/Cu and Fe/Au preferentially debrominate equally under e-transfer and H-transfer 
mechanisms. The mechanism for debromination of halogenated compounds has 
been divided into two hypotheses. The first hypothesis has been to attribute 
dehalogenation to electron transfer, where the difference in corrosion potential 
between Fe and the additive metal allowed for more current and, thus, more electron 
transfer (Yan et al. 2010; Wang et al. 2019). The other hypothesis is that the 
additive’s ability to absorb hydrogen would dictate the speed of hydrogen transfer 
and, thus, dehalogenation (Chun et al. 2010; Wang et al. 2019). Chun et al. (2010) 
also concluded that the size and distribution of the metal additives on the surface of 
Fe were the most important variable. Hydrogen transfer in a palladized zerovalent 
zinc (Pd/ZVZ) system is also pH dependent, as illustrated in a study by Xu 
et al. (2020). 

As previously mentioned, Geng et al. (2019) conducted biodegradation studies 
using Pseudomonas strain GJY. The study also proposed a mechanism of biodegra-
dation of the three diastereoisomers of HBCD. In addition, they tracked subsequent 
metabolites using ultra-performance liquid chromatography-tandem mass spectrom-
etry (UPLC-MSMS). The study proposed that the pathway for HBCD biodegrada-
tion consisted of ring opening, hydroxyl substitution, and debromination. This 
pathway differs from other biotransformation studies of HBCD and highlights that 
microorganisms influence how HBCD isomers are distributed in environmental 
settings. Figure 5.3 highlights a proposed pathway of debromination of HBCD-
contaminated soil from Chiang Chun (Li et al. 2020).
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Fig. 5.3 The proposed pathway of HBCD biodegradation through the process of debromination 
from soils collected from Chiang Chun. The metabolites were identified via gas chromatography 
(GC) and gas chromatography-mass spectrometry (GC-MS). [Retrieved from Li et al. (2020)] 

5.8 Genes and Enzymes Involved in the Biodegradation 
of BFRs 

Genome annotations and identification of enzymes involved in biodegradation 
pathways are crucial for successful biodegradation of BFRs and other pollutants. 
Liu et al. (2015) overexpressed tbbpa A for biodegradation studies of TBBPA. This 
gene was identified due to upregulation when exposed to TBBPA. Whole-genome 
sequencing of Ochrobactrum sp. strain T was compared to the NCBI database for 
identification of potential TBBPA-degrading genes. Gene tbbpa A was identified 
and cloned into an expression vector. The constructed strain was able to degrade 
TBBPA and removed bromine with 78% efficiency and demineralization at 37.8% 
efficiency in 96 h. This was observed to be very similar to the parental strain. These 
results demonstrated the possibility of creating constructs for the purpose of biodeg-
radation of POPs. Culturing conditions were aerobic in mineral medium at 37 °C at  
pH 7. Table 5.2 lists the genes and enzymes that have been identified as capable of 
degradation and mineralization of BFRs. Some enzymes may be capable of biodeg-
radation of multiple BFRs with similar structures. 

Whole-genome sequencing of microorganisms capable of debromination as well 
as biodegradation is another important step in deducing the molecular mechanisms 
involved in bioremediation of BFRs (Shah et al. 2018; Liang et al. 2019a). Genes 
encoding enzymes that play an important role in the biodegradation of BFRs are 
ideal targets for genomic analysis when considering potential candidates for biodeg-
radation. Wang et al. (2022b) isolated extracellular enzymes, MnP, Lip, Lac, and 
cytochrome P450, which aided in the biodegradation of DBDPE. The most impor-
tant extracellular enzyme for degradation was Lac. The study also noted that



antioxidant enzymes CAT and SOD were important for reducing the toxicity of 
P. ostreatus. 
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Table 5.2 Genes and enzymes experimentally shown to biodegrade BFRs 

Genes/enzymes BFRs or congener degraded References 

C12O, C23O, C34O, Nid A, and 
Rf 

Aromatic hydrocarbons, can 
facilitate oxidative cleavage 
of catechol and LBN PBDE 
congeners 

Chou et al. (2016) 

Dehalogenases: RdhA and Rdases 
Dioxygenases: C23O, RF, and 
ARHD 

BDE-209 Chang et al. (2021) 

Genes: tbpA, tbpB, tbpC, tbpD, 
and tbpE 

TBP Liang et al. (2019b) 

Monooxygenase TBNPA and DBNPG Balaban et al. (2021) 

Dehalogenase: PcbA1 TBBPA Ramaswamy et al. (2021) 

Gene: tbbpa A encoding for 
bromophenol dehalogenase 

TBBPA Liang et al. (2019a) 

LinA2 and LinB: haloalkane 
dehalogenases 

HBCD Heeb et al. (2014) 

Laccase Bromophenols Uhnáková et al. (2009) 

Enzymes: MnP, LiP, Lac, and 
cytochrome P450 

DBDPE Wang et al. (2022b) 

P. aeruginosa LY11 
Crude enzyme extract 

BDE-209 Liu et al. (2015) 

Enzymes have a potential to degrade BFRs more efficiently and rapidly than the 
organism itself. This was illustrated in a study by Liu et al. (2015). Crude enzyme 
extract was isolated from P. aeruginosa LY11. This strain is known for biodegrada-
tion of BDE-209. The crude enzyme was extracted through sonication, centrifuga-
tion, and finally filtration through a 0.22 μm filter. The resulting filtrate is what was 
considered crude enzyme extract. In this study, the crude enzyme was able to 
degrade BDE-209 in a shorter time period of 5 h and more efficiently at 92.77%. 
This study provides insight into the possibility of using crude enzyme extract from 
other microorganisms previously known to biodegrade specific BFRs. The potential 
to mass produce crude enzyme extract through over-expression systems may be a 
more efficient means of bioremediation of BFRs. 

5.9 Culturing Conditions in Bioremediation Strategies 

The culturing conditions for many degradation systems varied with each type of 
BFR. Some were cultured in aerobic or anaerobic conditions where temperature, pH, 
and culture supplementation varied with each organism. For some, supplementation 
was necessary for bioremediation, while other studies used the BFR as the sole 
carbon source. Table 5.3 summarizes the culturing conditions for various BFRs from 
optimized protocols for degradation and mineralization.
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Tokarz et al. (2008) reported that adding vitamin B12 enhanced the 
debromination kinetics. Other studies showed enhancements with the addition of 
glucose or other carbohydrates (Wang et al. 2022b). However, some additions for 
one strain may enhance degradation and inhibit others. This was evident when 
adding a vitamin mix slowed the degradation rate of BFRs (Balaban et al. 2021). 
Some bacterial strains are capable of biodegradation when the BFR is the sole source 
of carbon. This was observed for the Bacillus cereus JP12 strain (Lu et al. 2013), 
where BDE-209 was added to MSM at 30 °C, pH 6. Degradation efficiency was 
enhanced by adding other carbon sources, surfactants, and metals Cu2+ and Zn2+ . 
Similarly, zerovalent iron enhanced the biodegradation of BDE-209 and BDE-28 
(Yang et al. 2017). Shah et al. (2018) also used Bacillus cereus for successful 
biodegradation of HBCD with another strain called HBCD-sjtu at a higher pH of 
7 at 30  °C. This demonstrates that physiological conditions were as important as 
culturing and media for the biodegradation of certain BFRs. It also demonstrated that 
despite using the same genus and species of bacteria, the BFR degradation 
influenced the culturing conditions. Optimal temperatures ranged from 30 °C a  
pH 7 (Peng et al. 2015) to  35  °C at pH 9 (Chang et al. 2021), depending on the 
bacterial strain. Changes in pH and temperature resulted in less biodegradation 
efficiency and was dependent on the BFR. 

5.10 Conclusion and Future Direction 

The possibility of phasing out NBFRs and using bio-sustainable organobromine 
BFRs is a promising solution to the problem of BFR environmental contamination. 
Sequencing genomes of microorganisms capable of biodegradation of BFRs is 
essential for understanding the molecular mechanisms of biodegradation. The poten-
tial for isolating genes and enzymes that biodegrade BFRs is high when 
microorganisms are collected from e-waste sites or near industrial facilities where 
BFRs are present. There have been many different genera and species of bacteria that 
have demonstrated the ability to biodegrade various BFRs. However, culturing 
conditions vary with each species of microbes used. 

Another important consideration is the possibility that microorganisms that can 
remove chloride from hexachlorocyclohexanes may also debrominate BFRs, espe-
cially when the chemical structures are similar. Various studies, as previously 
mentioned, demonstrated that bacterial strains with dehalogenases may also remove 
halogens from different compounds, thus implying that microorganisms can 
bioremediate a variety of POPs. 

The strategies presented here include various methods to address emerging BFR 
pollutants from different environmental sources. Catalysis is a proven method for 
efficient mineralization and biodegradation in abiotic methods. Using natural 
organic matter is an environmentally friendly way to oxidize BFRs and a promising 
way to address environmental pollution. One example discussed is humic acids, 
which form free radicals when exposed to light. In biotic methods, several organisms 
and systems have been presented. The supplementation and culturing conditions



varied with each BFR and organism. The addition of enzymes proved essential for 
biodegradation and highlights the possibility of engineering enzymes for the degra-
dation of BFRs or in synergy with microorganisms. 

120 A. Nava and H. Sarma

The urgent need to remove POPs has never been more evident. Several 
publications have identified various pollutants including BFRs as being responsible 
for declining sperm counts over the past few decades. The exposure to BFRs through 
ingestion, inhalation, and absorption through the skin has taken their toll on the 
fertility of both genders as well as developmental consequences for children. This 
exposure to BFRs is most prevalent in indoor settings, e-waste recycling centers, and 
other industrial locations where BFRs are manufactured. Therefore, the best strategy 
moving forward is to bioremediate BFRs from wastewater treatment plants before 
they are released into the surrounding environment. 
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Abstract 

Fungicides, one important class of crop protection products, are important to 
protect the crops from fungal attacks to meet the challenge of increased food 
production in the present era of increasing global population and food demand. A 
large amount of the applied fungicides are lost in the different environmental 
compartments, either directly through intentional use (such as agronomic 
practices) or unintentionally (e.g., spray drift, surface runoff, leaching). More-
over, the injudicious and indiscriminate use of chemical fungicides results in 
various human and environmental health hazards. The presence of unwanted 
fungicide residues and their persistence behavior in environmental matrices 
may not only contaminate the soil, water, and air but also possess toxicity of 
both acute and chronic nature towards nontarget organisms. Bioremediation is a 
potent decontamination technique of different xenobiotics including pesticides 
with the use of biological resources such as plants and microbes. Among different 
bioremediation techniques, biodegradation, particularly microbial degradation 
using bacteria and fungi, is considered as an important decontamination tool 
due to its cost-effective and sustainable nature. Biodegradation of xenobiotics 
including fungicides by using bacteria is important in this regard. Therefore, a 
spotlight in the form of this chapter has been shone upon the role of bacteria in the 
degradation of fungicides from soil, along with an address to the present 
limitations and future opportunities hidden underneath them. 

Keywords 

Xenobiotics · Pesticides · Fungicides · Biodegradation · Bioremediation · 
Bacteria · Soil 

6.1 Introduction 

The United Nations (UN) projects that the world’s population will increase by 
medium levels during the coming decades, reaching 9.7 billion people in 2050 and 
10.4 billion in 2100. The demand for food is rising quickly around the world, and 
yields on most farms are well below potential, and also the current track of agricul-
tural expansion has major long-term environmental consequences. The goal of 
eradicating hunger worldwide by 2030 is sadly not on the right path. According to 
the UN, if current trends continue, by 2030, there will be more than 840 million 
people who will be impacted by hunger, and investments of between US$39 and US 
$50 billion per year until 2030 will be needed to pull about 840 and 909 million 
people out of hunger (Chichaibelu et al. 2021). In addition to that, there are various 
grounds for anticipating an increase in the disease pressure on crops. The ability of 
national quarantine authorities to prevent exotic infections from entering their



countries will be diminished or possibly eliminated as a result of global warming and 
the expansion of worldwide travel and trade. Crop disease effects cannot be 
minimized because they are always nearby. It is alarming to learn that crop diseases 
can still result in up to 30% crop losses in important, intensively studied crops even 
when the conditions are optimum for growth and development (Oliver and Hewitt 
2014). Among disease causal organisms, plant pathogenic fungi have historically 
been a challenge to human’s ability to produce food in sufficient quantities and with 
acceptable quality. Nearly 20,000 of the over 1 lakh species of fungi mentioned in 
the world cause numerous plant diseases (Thind 2017). Currently, around four 
million tonnes of pesticides are used per year on a global basis, and from 1990 to 
2010, it was discovered that the percentage of total pesticides coming from 
herbicides was 55%, while the percentages of fungicides and insecticides were 
23% and 17%, respectively (Sharma et al. 2019). Gikas et al. (2022) reported that 
fungicide use worldwide is estimated at 4 lakh tonnes or 17.5% of total pesticide use. 
Geographically, Europe is regarded as the leading market for fungicides, which 
mostly uses fungicides on fruits, vegetables, and grains and cereals. By keeping an 
eye on destroying diseases in agricultural cultivars, fungicides can play a significant 
part in protecting crop health safety. Fungicides are treated to crops directly or to 
seeds. Many of the fungicides applied to seeds have systemic activity, which enables 
them to penetrate plant tissues and protect against infections and pests in a manner 
similar to that of their insecticidal counterparts (Zubrod et al. 2019). The fungicides 
improve food safety by preventing the growth of several fungi that can poison food 
and human beings. In order to feed the world’s population, agriculture must develop 
ways to be socially, economically, and environmentally sustainable. In plant infec-
tion management strategies, fungicides are now widely accepted as the second line 
of defense following disease resistance. Due to this reality, crop protection manage-
ment systems with fungicides as a key component must be used. 
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Microbial breakdown of xenobiotics in soil environments is a crucial topic to 
research in present days as it prevents the accumulation of these chemicals in the 
environment. Studies on the microbial degradation of pesticide residues first began 
in the 1940s (Arbeli and Fuentes 2007). Bacteria found in nature can break down 
xenobiotic residues cheaply, sustainably, and without causing secondary contami-
nation. The complexity and changeability of the natural environment, however, 
could have an impact on the viability and effectiveness of the microbial breakdown 
of these chemicals. There are many different degradation processes, such as oxida-
tion, reduction, hydrolysis, dehalogenation, dehydrogenation, condensation, and 
decarboxylation. Huang et al. (2018) listed several pesticide-degrading bacterial 
species. Bacteria have the dominant position in the study of biodegradation due to 
their high flexibility and ease of inducing mutations. In addition to the aforemen-
tioned, there are numerous microorganisms that break down xenobiotic compounds, 
including Escherichia coli, Clostridium, Bacillus licheniformis, Thiobacillus, and 
others. Therefore, in this chapter, we have critically analyzed the role of different 
types of bacteria in the biodegradation of fungicides in soil, along with addressing 
the constraints and future perspectives of this domain.
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6.2 Risk and Environmental Fate of Chemical Fungicides 

Fungicides can enter water bodies through the point (such as discharge from 
wastewater treatment facilities after household and agricultural usage) and nonpoint 
(such as drift, drainage, and surface runoff mostly from agricultural use) sources 
after being used (Zubrod et al. 2019). They can be harmful to a variety of nontarget 
organisms in aquatic systems because they affect fundamental biological functions 
that are not exclusive to fungus (e.g., energy production). The widespread use of 
chemical fungicides in agriculture also raises serious concerns about the health of the 
human beings. Exposure experiments on rats revealed endocrine-disrupting, 
histopathological, biochemical, and hematological effects (Stamati et al. 2016). 
Despite the widespread usage of fungicides and the related potential ecotoxicologi-
cal concerns in nontarget aquatic systems, the environmental fate and consequences 
of fungicides have received significantly less attention than insecticides and 
herbicides. In contrast to insecticides and herbicides, which received 62% and 
24% of the studies on pesticidal effects, between 1991 and 2013, fungicide 
experiments were confined to only 13% of the studies (Köhler and Triebskorn 2013). 

Among inorganic fungicides, copper and sulfur fungicides are mostly used. 
Although they are an important element for organisms to grow, a large concentration 
in the environment can cause serious drawbacks. The predominant and biocidal 
oxidation ion when copper oxide dissolves in water is Cu2+ , which can accumulate in 
decapod crustaceans, fish, and algae and be stored in barnacles, bivalves, and aquatic 
insects. Cyanobacteria are the species most sensitive to copper exposure, while 
coccolithophores and dinoflagellates are less sensitive to copper and diatoms exhibit 
copper resistance (Gikas et al. 2022). Sulfur can be poisonous to bacteria and fungus 
that are beneficial for the environment, and toxicity in apricots, cucurbits, and 
raspberries has also been reported (Četkauskaitė et al. 2004). Compared to copper, 
there is limited information on sulfur’s interaction with organisms, its threshold for 
toxicity, and its environmental outcome. 

Organic fungicides promise a number of benefits, including increased efficacy 
and reduced chance of pathogens becoming resistant to fungicides. Their environ-
mental fate depends on several physicochemical factors, such as water solubility, 
ionization potential, half-life in soil and water (DT50), volatility, soil texture, pH, 
clay mineral type, cation exchange capacity, organic carbon content, and dissolved 
organic matter. Fungicides applied to seeds are effective against soilborne diseases, 
although they may persist in low quantities in the plant or rhizosphere for up to 
several months. Regarding direct application on crops such as trees and vine 
branches, drift hazard can lead to pollution of nearby natural waters from fungicide 
residue. An investigation regarding the presence of several pesticides in northern 
Italian vineyard groundwater bodies was conducted, and five fungicides 
(fluopicolide, metalaxyl-M, tetraconazole, penconazole, and dimethomorph) with 
very high concentrations surpassed the environmental quality level imposed by the 
European Union (0.1 g L-1 ) (Marsala et al. 2020). In a pesticide monitoring study of 
two river basins in North Greece, with cereals, cotton, and corn as the principal 
crops, during a period of 2 years, extremely high amounts of seven fungicides



(azoxystrobin, etridiazole, diphenylamine, tebuconazole, propiconazole, and 
quintozene) were discovered (Papadakis et al. 2015). Cui et al. (2017) looked into 
the neonatal and embryonic Daphnia magna tissues for the acute and chronic 
toxicity of the strobilurins trifloxystrobin, pyraclostrobin, and kresoxim-methyl 
and found that, when exposed to fungicides, Daphnia embryos are more vulnerable 
than neonates. 
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Evaluation of chiral fungicides’ half-life in crops and soils has been the principal 
method used to study their environmental behavior, which revealed interesting data 
about their possible biodegradation and persistence. In a field experiment, the half-
life of penconazole enantiomers in soil and plant tissues was studied, and the 
findings revealed that in grapes and soil, the penconazole enantiomer (-) 
decomposed considerably more quickly than its (+) isomer (Zhang et al. 2019). 
The aquatic alga Chlorella pyrenoidosa was the subject of an investigation by Deng 
et al. (2019) on the toxicity of four stereoisomers of metconazole. The study revealed 
that the 1S, 5S isomer more severely triggered the disruption of photosynthesis, the 
production of reactive oxygen species, and the antioxidant response. 

Nanofungicide has its active ingredients within the size range of 10–100 nm. 
Their application in the control of fungal diseases can be categorized into two 
groups: nanoparticles acting as protectants (on their own) and as carriers for organic 
fungicides (Worrall et al. 2018). The primary benefits of using nanoparticles as 
organic fungicide carriers are the enhancement of the active ingredient’s activity and 
persistence, the enhanced capacity for translocation within plants, the overcoming of 
issues with poor water solubility, and the attainment of gradual release. However, 
environmental fate, toxicity towards nontarget organisms, and decontamination 
technologies have not been adequately studied. According to Ameen et al. (2021), 
different parameters, such as application rate, size, and kind of nanomaterial, might 
affect how a plant grows after being exposed to nanopesticides. The nanofungicide 
Cu(OH)2 was applied to maize, and the results showed that it reduces biomass 
(17–20%) and the amount of chlorophyll a and b in the leaves (Zhao et al. 2017). 
Abd-alla et al. (2016) reported that high concentrations of silver nanoparticles 
reduced glomalin content, mycorrhizal colonization, and responsiveness of Glomus 
aggregatum. 

Another class of fungicides with a distinctive method of action is chemical plant 
defense activators. Acibenzolar-S-methyl is a chemical that can activate plants’ 
defense mechanism, is moderately toxic to invertebrates, is moderate to highly 
hazardous to fish, and is extremely harmful to aquatic flora (Guziejewski et al. 
2014). Acibenzolar-S-methyl is also reported to be phytotoxic and has been 
associated with productivity losses, and under some circumstances, it may enhance 
other pest attacks (De Oliveira et al. 2018). Chemical plant activators’ environmental 
destiny and toxicological effects on nontarget organisms are still unexplored and 
require thorough investigation. Fungicides are principally employed to protect 
human life by boosting agricultural productivity and reducing the spread of infec-
tious diseases, but occasionally, their negative consequences outweigh the 
advantages of their use.
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6.3 Biodegradation: A Potent Soil Bioremediation Strategy 
for Fungicides 

Industrialization’s rush to achieve quick economic development is having a detri-
mental effect on environmental management and pollution issues, causing the 
accumulation of potentially dangerous elements in the environment, including 
plastic, rubber, metal, industrial waste, etc. The contaminated ecosystem has a 
detrimental effect on the plants, aquatic life, soil environment, microbial activities, 
and metabolic functions. The biogeochemical cycle of the elements present in the 
environment has an impact on the ecosystem and how it functions, as well as how it 
affects human health. Waste management is extremely important for the creation of 
sustainable and livable communities, yet it is still challenging in many developing 
countries. 

Traditional waste remediation methods, like soil washing, adsorption, floccula-
tion, chemical oxidation, landfilling, pyrolysis, and incineration, are resource and 
time intensive; also, they are not environmentally friendly. Recently, as people are 
working to develop sustainable methods for cleaning up and restoring contaminated 
soil, their curiosity to learn more about the bioremediation of harmful pollutants has 
increased. Bioremediation can be defined as a technique used to treat contaminated 
sites in order to restore them to their pre-contamination state that involves the use of 
green plants, living organisms, primarily microorganisms, and their enzymes to 
degrade, transform, remove, mineralize, and detoxify environmental pollutants and 
hazardous elements of the environmental waste (Azubuike et al. 2016). These 
organisms may already exist at the contaminated site or they may be isolated and 
transported from elsewhere for bioremediation. Through their metabolic processes, 
they break down and convert these contaminants and use them for growth. Since 
multiple bacteria must work together to completely degrade a pollutant, it is often 
required to add additional microbes to the contaminated spot to speed up the 
degradation process. When it comes to the movement and removal of pollutants 
from contaminated sites, bioremediation technology can be divided into two groups: 
ex situ bioremediation (which involves the excavation and transportation of 
pollutants from the actual polluted location and transporting them to another site) 
and in situ bioremediation (performed at the original site of the contamination) 
(Saxena et al. 2021; Randika et al. 2022). However, there are several negative 
aspects to the bioremediation process. Some substances like chlorinated organic 
contaminants and radionuclides cannot be broken down by microbes. When bacteria 
break down pollutants, they occasionally create harmful byproducts or metabolites. 
Since bioremediation is a highly scientific process, it should be adapted to site-
specific conditions; therefore, a small-scale treatability study should be conducted 
before using the approach to treat a contaminated site (Boopathy 2000). The term 
“biodegradation” describes the process by which harmful xenobiotics are changed 
into less toxic substances. The word “xenobiotic” refers to a chemical compound that 
is not a natural part of a living creature exposed to it (from the Greek words “xenos” 
and “bioticos,” which mean “strange” and “life related,” respectively) (Hashmi et al. 
2017). They are alien to living organisms and have the propensity to accumulate in



the environment. Microorganisms offer a lot of potential for biodegradation. Their 
sustained adaption to environments containing these substances is directly related to 
their capacity to lower the concentration of xenobiotics. 
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Persistent behavior of different pesticides exerts contamination and toxicity 
problems towards different environmental compartments and nontarget organisms 
in both the short and long terms (Cuevas et al. 2018; Shahid et al. 2020). Among 
different microbial remediation techniques such as bioaugmentation and 
biostimulation, biodegradation utilizing microbes directly or microbial enzymes is 
quite popular nowadays (Ortiz-Hernández et al. 2013). Biodegradation can be used 
as a strategy to remove different xenobiotics including fungicides from environmen-
tal compartments. Biodegradation is an economical, environmentally benign, and 
sustainable decontamination approach in this regard. 

6.4 Bacterial Biodegradation of Synthetic Fungicides in Soil 

6.4.1 Mechanism of Degradation 

Pesticides are converted into breakdown products or mineralized by microorganisms 
during biodegradation processes, which employ the pollutant xenobiotics as nutri-
tion for their metabolic processes (Raffa and Chiampo 2021). The microbes includ-
ing bacteria or fungi that participate in the breakdown process can produce extra- or 
intracellular enzymes. Several enzymes like peroxidases, hydrolases, and 
oxygenases play a crucial part in the biotransformation mechanisms by influencing 
and catalyzing the biochemical reactions. There are three stages to the microbial 
enzyme-based breakdown of pesticides (Verma et al. 2014), which can be summed 
up as follows: 

Phase 1: In this phase, the pesticides undergo hydrolysis, oxidation, or reduction 
processes to become more water-soluble and less dangerous compounds. 

Phase 2: Here, the products from phase 1 are transformed into sugars and amino 
acids, which are more water soluble and less poisonous. 

Phase 3: The secondary conjugates of the phase 2 metabolites that are less 
poisonous are produced. 

When a bioremediation activity is proposed, the degradation time must be 
considered a pertinent factor. The first-order model (Khajezadeh et al. 2020), 
which is dependent on the pollutant concentration at the start and end of the process, 
is often used to interpret it. However, this strategy has some limitations since it 
depends on several factors, including microbial activity, water content, temperature, 
availability, and leaching of pesticides in the soil (Soulas and Lagacherie 2001).
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6.4.2 Bacteria-Mediated Biodegradation of Fungicides in Soil 

6.4.2.1 Biodegradation by Bacteria 
Over time, several bacterial strains that can break down pesticides in soils have been 
discovered. Each bacterium has a unique characteristic that makes it especially well 
suited for a degradative process. The degradation is frequently easier if a bacterial 
consortium is used rather than an isolated pure culture (Doolotkeldieva et al. 2021). 
Actually, in the natural environment, bacteria cohabit and rely on one another to 
survive. However, the formation of metabolites during the degradation process can 
also result in extra-environmental issues because they might be harder to get rid of 
than the original component. This must be taken into account as a disadvantage. 

Mineralization 
Pesticides can degrade into inorganic substances such as carbon dioxide, salts, 
minerals, and water through the mineralization process (Bhoi et al. 2018). The 
pesticide may serve as a source of nourishment for the microorganisms. The 
concentration of the microbial community determines the pace of mineralization; 
hence, a decline in the microbial population does not accelerate degradation. For 
instance, when the soil microbial community is diminished, numerous metabolites 
might emerge that are more poisonous, persistent, and mobile than the original 
chlorothalonil (CTN), an organochlorine fungicide that is destroyed in CO2 

(de Souza et al. 2017). This is caused by a lack of actively degrading groups in the 
soil or a decline in soil biodiversity, which results in limited microbial diversity. 
Different bacteria involved in degradation of fungicides have been enlisted in 
Table 6.1 and briefly summarized in the following subsections. 

Nitrophenols 
To date, numerous pure cultures of bacteria that can break down DNOC have been 
identified and reported. One bacterium, Arthrobacter simplex, used DNOC as its sole 
source of carbon and energy and decomposed it by releasing nitrite (Jensen and 
Gundersen 1955). Via formation of the 4-amino-2-methyl-6-nitrophenol, 5-amino-
3-methylcatechol, and 2,3,5-trihydroxytoluene (THT), a Pseudomonas 
sp. decomposed DNOC (Tewfik and Evans 1966). According to Lenke and 
Knackmuss (1996), R. erythropolis HL 24-1 biotransformed DNOC into 4,6-dini-
tro-2-methylhexanoate. Two hydride ions were added to DNOC to start the reaction, 
which continued by protonation to produce 4,6-dinitro-2-methylhexanone. Thereaf-
ter, 4,6-dinitro-2-methylhexanoate was produced by the subsequent hydrolysis of 
4,6-dinitro-2-methylhexanone. 

Dinoseb, another fungicide of this group, was transformed by bacteria under 
anaerobic reducing conditions by first having the nitro groups converted to amino 
groups and then having the amino groups replaced with hydroxyl groups (Kaake 
et al. 1995). Either a single anaerobic bacterium or a group of anaerobic bacteria may 
entirely mineralize NPs into CO2 and methane. Complete mineralization of DNOC 
into CO2 and acetate by an anaerobic consortium made up of three bacterial 
morphotypes was examined by Stevens et al. (1991).
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Table 6.1 Bacterial biodegradation of fungicides 

Name of 
fungicide 

Benzimidazole Carbendazim Bacillus subtilis, Paracoccus sp., 
Flavobacterium, Pseudomonas sp. 

Xiao et al. 
(2013) 

Streptomyces sp. CB1, Bacillus subtilis 
CB2, Rhizobium leguminosarum CB4, 
and Pseudomonas aeruginosa CB3 

Singh et al. 
(2019) 

Strobilurin Azoxystrobin Rhodanobacter sp. CCH1 and 
Cupriavidus sp. CCH2 

Howell et al. 
(2014) 

Pyraclostrobin Klebsiella strain 1805 Lopes et al. 
(2010) 

Nitrophenol DNOC Rhizobium leguminosarum Hamdi and 
Tewfik 
(1970) 

Dinoseb Clostridium bifermentans KMR-1 Hammill and 
Crawford 
(1996) 

Ethylene-bis-
dithiocarbamate 

Mancozeb Bacillus sp. Doneche 
et al. (1983) 

Dicarboximide Dimethachlon, 
iprodione, and 
procymidone 

Cocultures of Brevundimonas 
naejangsanensis J3 and Providencia 
stuartii JD 

Zhang et al. 
(2021) 

Azole Epoxiconazole 
and fludioxonil 

Different bacterial species of 
Proteobacteria phylum, having most 
common genera of Ochrobactrum, 
Pseudomonas, and Comamonas 

Alexandrino 
et al. (2020) 

Thiabendazole Bacterial consortium with dominant 
genera of Filimonas, Sinobacteriaceae, 
Bradyrhizobium, Sphingomonas, and 
Hydrogenophaga 

Vasileiadis 
et al. (2022) 

Tebuconazole Alcaligenes faecalis WZ-2 Sun et al. 
(2020) 

Serratia marcescens B1 Wang et al. 
(2018) 

Carbendazim 
It takes around 3–6 months for carbendazim to break down on turf soil, about 6–-
12 months on bare soil, and up to 25 months in water, both under aerobic and 
anaerobic conditions (Panda et al. 2018). Additionally, a sizable inhibitory effect on 
the activities of soil dehydrogenase, nitrification, and ammonification has been noted 
(Pattanasupong et al. 2004). A schematic representation of bacterial degradation 
products of carbendazim has been shown in Fig. 6.1. 

In different studies, the degradation of carbendazim in different matrices was 
demonstrated by several species of Rhodococcus, including R. erythropolis CB11, 
R. qingshe, R. erythropolis djl-11, R. jialingiae djl-6-2, etc. (Singh et al. 2016) 
Another bacterium with the exceptional genetic ability to use a variety of carbon 
sources for survival is Pseudomonas, which has already been used for carbendazim



bioremediation. One study used biological assays and 16s rRNA sequence homol-
ogy to identify Pseudomonas sp. strain CBW, which used carbendazim as its sole 
source of carbon and nitrogen (Fang et al. 2010). Aside from these, Ralstonia sp. 1-1 
(Zhang et al. 2005), Bacillus pumilus NY97-1 (Zhang et al. 2009), Bacillus subtilis 
(Salunkhe et al. 2014), etc. were other microorganisms obtained from soils of 
various countries having the degradation potential of carbendazim. According to a 
different study, in 24 h, Brevibacillus borstelensis and Streptomyces albogriseolus 
degraded carbendazim by 98% and 91%, respectively. However, the combined 
inoculation was considerably more successful, as evidenced by the 97% deteriora-
tion after just 12 h (Arya and Sharma 2016). 
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Fig. 6.1 Bacterial biodegradation of carbendazim (Modified from Singh et al. 2016) 

Strobilurins 
According to experts, the most important method of removing strobilurin is by the 
microbial breakdown (Chen et al. 2018; Feng et al. 2020). Arthrobacter, Bacillus, 
Cupriavidus, Pseudomonas, Klebsiella, Rhodanobacter, Stenotrophomonas, and 
Aphanoascus are a few of the strobilurin-degrading bacteria that have so far been 
isolated (Feng et al. 2020). Bacteria have the most important function among the



strobilurin-degrading microorganisms, including fungus and other organisms. The 
long-term use of strobilurins has an impact on ecosystems’ microbial populations 
and biodiversity. By suppressing mitochondrial respiration, strobilurins may directly 
decrease fungal biomass and cause a switch from fungal to bacterial dominance in 
soil activities because of their distinct mode of action (Baćmaga et al. 2015). For 
instance, even in the absence of light, the parent compound azoxystrobin undergoes 
considerable biodegradation within 21 days, which can diminish the diversity of 
fungi in soil. When used in the same environment, these compounds prevented the 
growth and development of fungi but did not affect the diversity of bacteria (Adetutu 
et al. 2008). 
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In one study, both the fungicides pyraclostrobin and epoxiconazole were found to 
be degraded by a Klebsiella strain 1805 isolated from soil (Lopes et al. 2010). Four 
different species, namely, Arthrobacter oxydans, Stenotrophomonas maltophilia, 
Bacillus flexus, and Bacillus amyloliquefaciens, isolated from soil were able to use 
trifloxystrobin as a carbon source (Clinton et al. 2011). In another study, four 
different Bacillus sp. and two different Aphanoascus sp. also survived when exposed 
to a high dose of azoxystrobin (22.50 mg kg-1 ) when isolated from polluted soil 
(Baćmaga et al. 2015). Additionally, Chen et al. (2018) discovered two microbial 
communities (HI2 and HI6) from Hawaiian soils that were capable of utilizing 
pyraclostrobin as their sole source of carbon and nitrogen. 

Others 
In a study by Mohamed and Mostafa (2018), Planomicrobium flavidum strain EF, a 
newly discovered soil isolate, was investigated to check whether it could use captan 
as its only source of carbon. When compared to the minimum salt medium without 
captan, this bacterium exhibits greater growth patterns on captan-only supplemented 
media. It is captan resistant up to 2000 ppm. Additionally, Planomicrobium flavidum 
used nearly 77.5% of captan after just 2 h of growth under shaking, and only 0.8% of 
the fungicide was left after 24 h of bacterial growth. Wang et al. (2018) isolated one 
tebuconazole-degrading bacterial strain, Serratia marcescens strain B1. The mixing 
of the strain (3 × 107 CFU g-1 dry soil) with tebuconazole (200 mg L-1 ) in soil 
revealed around 96.46% degradation of the fungicide in 30 days, as compared to 
only 70.42% degradation in control, i.e., without bacterial strain. In another study, 
co-cultures of Brevundimonas naejangsanensis J3 and Providencia stuartii JD were 
tried to degrade three dicarboximide fungicides, namely iprodione, dimethachlon, 
and procymidone (Zhang et al. 2021). The degradation study revealed more than 
90% degradation of the test fungicides after 7 days in field soils treated with the 
co-cultures immobilized in a charcoal–alginate–chitosan matrix. 

Co-metabolism 
It is the biotransformation process of an organic substance that is not needed to 
sustain microbial growth through a sequence of processes. Due to this synergistic 
impact, the pesticides are eventually destroyed by microbes and enzymes into 
valuable chemicals for various biological, chemical, and physical transformations 
(Van Eerd et al. 2003). The application of this strategy in bacterial biodegradation of



fungicides in the soil is still limited. In one study by Katayama et al. (1991), 
11 bacterial strains having the degradation potential of chlorothalonil were isolated 
and identified as Flavobacterium, Azomonas, Pseudomonas, and Moraxella spp. 
Most of the isolates except two from Flavobacterium strains showed the requirement 
of other carbon sources for chlorothalonil degradation. 
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6.4.2.2 Biodegradation by Enzymes 
The enzymes produced by microorganisms or plants during their metabolic pro-
cesses are responsible for enzymatic biodegradation. Enzymes are biological 
macromolecules that can speed up biochemical processes like the breakdown of 
pesticides (Atalah et al. 2019). By reducing the process’s intrinsic activation energy, 
these molecules influence the reaction rate. They mostly participate in the metabolic 
processes of oxidation, hydrolysis, reduction, and conjugation. 

The first stage of pesticide degradation, oxidation, involves the transfer of an 
electron from reductants to oxidants (Martín et al. 2009). Microorganisms use the 
heat or energy produced during the reaction for their metabolic processes. By 
introducing hydrogen or hydroxyl groups from water molecules, hydrolysis enables 
the breakage of substrate bonds (Anwar et al. 2009). Thus, the original pesticide 
molecules are split into smaller chain compounds. Typically, esterases, cellulases, 
and lipases are involved in the hydrolysis routes. The reduction process is made 
possible due to the action of reductive enzymes such as nitroreductase (Carles et al. 
2021), whereas the conjugation reaction is carried out utilizing different enzymes 
(Verma et al. 2014). To speed up the mineralization of pesticides, different exoge-
nous or endogenous natural chemicals are also added (Raffa and Chiampo 2021). 

In general, esterase and other degrading enzymes play a significant role in the 
biodegradation of ester-containing pesticides (Zhan et al. 2020; Bhatt et al. 2020). 
For instance, the metabolic process of pyraclostrobin biodegradation was proposed 
by Chen et al. (2018), where carbamate hydrolysis allowed pyraclostrobin to be 
detoxified by allowing the tertiary amine group to be decarboxylated and hydrolyzed 
to the primary amine group. The metabolic mechanism revealed that carboxyl-
esterase is essential for the biodegradation of pyraclostrobin. Due to the numerous 
active sites on their molecules, strobilurins have complex structures, but the potential 
chemical mechanisms involved in their biodegradation pathways are comparable 
(Wang et al. 2018). Additionally, Chen et al. (2018) hypothesized that carboxyl-
esterase would help with pyraclostrobin detoxification. 

6.4.3 Application of Bacterial Biodegradation in Microbial 
Remediation 

The bioremediation processes can be used in situ, ex situ, or directly on the site 
(Raffa and Chiampo 2021). Different microbial remediation techniques of pesticides 
have been enlisted in Table 6.2. Among all the techniques, the in situ methods are 
mostly in practice for fungicide removal from contaminated soils. In the in situ 
methods, treatment is done in the contaminated area, and the procedure is usually



aerobic. The soil must be given oxygen for this to occur. These techniques are 
inexpensive and incredibly efficient. The fact that the contaminated soil is not 
transported is their greatest benefit. In one study by Baćmaga et al. (2017), soil 
augmentation by bacterial consortia showed increased activity of soil enzymes, 
namely dehydrogenases, catalase, urease, acidic phosphatase, and alkaline phospha-
tase, in azoxystrobin-contaminated soil. In another study, Pseudochrobactrum 
sp. BSQ1 and Massilia sp. BLM18, which can hydrolytically and reductively 
dehalogenate chlorothalonil (TPN), respectively, were used in bioaugmentation by 
Xu et al. (2018). In all bioaugmentation treatments, the test fungicide (50 mg kg-1 ) 
was entirely eliminated within 35 days, with half-lives for strains BSQ1 and BLM18 
of 6.8 and 9.8 days, respectively. 
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Table 6.2 Different microbial remediation techniques of pesticides 

Technique

In situ 

Description References 

Natural 
attenuation 

This method makes use of the microorganisms found in 
contaminated soil for decontamination purpose. 

Mulligan and 
Yong (2004) 

Biostimulation It is the process of maximizing the types and amounts of 
nutrients used to stimulate and enhance the growth of 
native microorganisms. 

Aldas-Vargas 
et al. (2021) 

Bioaugmentation It is the addition of enzymes or microbial strains to 
contaminated soils. 

Xu et al. (2018) 

Bioventing Supplying oxygen to areas of the soil that are not yet 
saturated encourages the development of local 
microorganisms that can break down pollutants. 

Hvidberg et al. 
(2007) 

Biosparging To raise the oxygen level and encourage the 
microorganisms to break down the contaminant, this 
strategy involves injecting air under pressure into the 
saturated soil zone. 

Varshney 
(2019) 

Ex situ 

Composting The pesticide-contaminated soil is blended with nutrients 
to encourage the chemicals’ aerobic breakdown. This 
method includes biopiles and land cultivation. 

Lin et al. 
(2022) 

On-site Contaminated soil is taken and processed in a nearby 
location of the polluted area. 

Raffa and 
Chiampo 
(2021) 

6.5 Factors Affecting Bacterial Biodegradation of Synthetic 
Fungicides in Soil 

6.5.1 Structure of Pesticide 

The design of the chemical’s stability is greatly influenced by its composition. The 
pesticide’s biotransformation is dramatically altered by a slight alteration in its 
chemical makeup, which eventually has an impact on biodegradation. The



rhizosphere’s microorganisms may turn pesticides into compounds that crops can 
absorb and move around with more efficiency. In light of this, any component that 
increases microbial activity in the rhizospheric region should also increase the 
overall efficacy of the bioremediation of pesticides (Yan et al. 2020). 
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6.5.2 Concentration of Pesticide 

The success of biodegradation depends on the pesticide concentration. The fre-
quency of bioremediation is impacted when a pesticide approaches its biodegrada-
tion capacity. 

6.5.3 Characteristics of Soil 

For the diffusion and movement of pesticides within crops, soil moisture is an 
important element. When the soil is dry, the rate of degradation decreases, while 
pesticides show higher degradation as the moisture content increases (Raffa and 
Chiampo 2021). The pH of the soil and the charge that pesticide molecules carry 
both affect how quickly a pesticide degrades. It controls how pesticides are absorbed 
and moved throughout the plant’s root and shoot. 

Another critical aspect in the removal of pesticides is temperature. Pesticides 
easily dissolve in the aqueous phase when the temperature rises, improving their 
availability to bacteria. Thus, the microbial populations in the soil may either directly 
or indirectly aid in the bioremediation process. At higher temperatures, it has also 
been shown that some pesticides volatilize. However, low temperatures impede the 
breakdown of pesticides. 

6.6 Present Limitations and Future Outlooks 

1. The aforementioned information makes it clear that only a limited number of 
microbial strains can consume and subsequently remove fungicides from the 
environment. Since fungicides demonstrate long-term environmental persistence, 
bioremediation of the severely contaminated soil requires the use of bacteria that 
are highly effective, competent, and ecologically competitive. Positively, new 
strains are being isolated from a variety of sources that have exceptional biore-
mediation qualities. Future approaches to fungicide bioremediation are 
anticipated to include the use of activated carbon, immobilized microbial carriers, 
bioaugmentation, and genetically modified microorganisms (Singh et al. 2016). 

2. The previous studies also showed that the fungicide metabolites may be consid-
erably more hazardous and persistent in the environment than the parent sub-
stance (Khandelwal et al. 2014). Therefore, more in-depth knowledge of the 
fungicides’ potential molecular pathways and their ultimate fate is critical. The 
research on the isolation and characterization of rhizobacteria that can increase
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pollutant bioavailability is also very important in the context of bioremediation. 
This asset is especially concerning because some biodegradable microorganisms 
respond positively to contaminants through chemotaxis. Therefore, the combined 
effects of biosurfactant and chemotaxis can promote bacterial growth and micro-
bial spread in contaminated areas, aiding in the removal of pesticides (Orozco 
et al. 2014). 

3. The bioavailability of the contaminants is a problem with soil bioremediation. 
This lack of bioavailability frequently lowers the efficacy of pesticide extraction 
(Megharaj et al. 2011). The application of biosurfactants may solve this problem. 
Hydrophobic pollutants are dissolved in the hydrophobic layers of the micelles to 
speed up the transition of substances from a solid to a liquid phase, where bacteria 
can more easily access them. The primary source of bacterial biosurfactants is 
rhamnolipids, which are derived from glycolipids. Rhamnolipids have been 
found to speed up the biodegradation of pesticides (Bai et al. 2017). However, 
the application of biosurfactants in the biodegradation of fungicides in the soil is 
still lacking. 

4. A well-known tactic is to genetically modify bacteria to increase their capacity for 
bioremediation (Kaur et al. 2021). It is still feasible to create recombinant species 
that can combine different traits, such as the capacity to produce biosurfactants 
while degrading contaminants, colonize healthy environments, and support plant 
growth. Regarding the application of genetically engineered bacteria in fungicide 
bioremediation, several countries have laws that prohibit the introduction of 
recombinant species, and these restrictions, along with some persistent environ-
mental problems, may hinder the development and large-scale application of this 
strategy (Gkorezis et al. 2016). Therefore, further development of regulatory 
frameworks is also important in this regard. 

6.7 Conclusion 

The presence of unwanted fungicide residues and their long-term persistency behav-
ior in soil possess a serious threat to the nontarget organisms and the environment. 
Microbial degradation of fungicides using bacteria is, therefore, an eco-friendly 
option to remove these unwanted xenobiotics. Different types of bacterial genera 
employed for the degradation of various kinds of fungicides in soil have been 
discussed in this chapter. The success of the biodegradation program depends mostly 
on three factors, i.e., genera and species of bacteria used, properties of the fungicide 
to be degraded, and physicochemical characteristics of the contaminated soil. Most 
of the studies conducted so far are limited only in isolation and characterization of 
fungicide-degrading bacteria, and their degradation potential in the mineral salt 
medium. However, bacterial biodegradation potential in soil, particularly under 
field conditions, is most important to generate more realistic information for the 
large-scale application of this technique. Therefore, future studies on biodegradation 
potential of bacterial consortia, combinatorial decontamination approach using 
bacterial degradation as one of its components, cost-effective large-scale bacterial



degradation-based fungicide-contaminated soil decontamination program, and gov-
ernment intervention in terms of monetary support and public awareness for adop-
tion of biodegradation-based decontamination technologies are required for the 
success of this sustainable and green decontamination approach to achieve environ-
mental as well as agricultural sustainability in the long run. 
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Abstract 

The fungi grow in diverse habitats and potentially secrete an array of extracellular 
enzymes capable of decomposing matter. The fungal enzymes include amylases, 
cellulases, catalases, cytochrome P450s, dehalogenases, dehydrogenases, 
hydrolases, laccases, lipases, peroxidases, proteases, and xylanases; they play 
an essential role in the detoxification of pollutants. The potential of using 
extracellular fungal enzymes for detoxifying organic substances is promising, 
as it offers an environmentally friendly remediation approach. These enzymes 
effectively break down and degrade organic pollutants, making them a valuable
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tool for restoring contaminated environments in a sustainable and eco-friendly 
manner. The substances comprised coal, agrochemicals, paper leather tanning 
effects, persistent organic pollutants, pharmaceuticals and personal care products 
(PPCPs), polycyclic aromatic hydrocarbons (PAHs), and textile dyes. Fungal 
microbes give an extensive range of enzymes specified in hazardous detoxifying 
compounds and could be potential candidates for bioremediation of environmen-
tal toxic waste. This chapter examines fungal enzymes used in bioremediation, 
emphasizing their applicability, effectiveness, and role in breaking down envi-
ronmental waste. It shows how these enzymes are crucial in the remediation 
process, aiding the removal of pollutants and restoring polluted environments.
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7.1 Introduction 

Environmental pollutants are growing increasingly due to toxic compounds’ arbi-
trary and often decisive discharge (Temporiti et al. 2022). The application of 
chemicals in industrial processes like nuclear experiments, agricultural practices, 
and various aspects of daily human activities and needs results in the discharge of 
toxic substances into the environment either intentionally or by accident 
(Vishwanath et al. 2014; Clark et al. 2022). The hazardous chemicals recognized 
as polluting the atmosphere include pesticides, heavy metals, hydrocarbons, drugs, 
halogenated solvents, and agricultural chemicals. After their release into the envi-
ronment, these chemicals are transported through the water, soil, and atmosphere 
(Deshmukh et al. 2016). 

Similarly, the environment is being polluted with a large number of pollutants and 
obstinate substances such as heavy metals, polyaromatic hydrocarbons (PAHs), 
polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), 
and polychlorinated dibenzofurans. Various conventional chemical processes for 
the degradation of these toxic substances have been explored to overcome these 
threats. However, they are insufficient for large-scale commercial administration 
(Deshmukh et al. 2016; Akcil et al. 2015; Sonawane et al. 2022). Bioremediation is a 
biological degradation mechanism (by microbes, plants, and microbial or plant 
secretions) to degrade environmental pollutants. Microbe-assisted remediation uses 
microbial processes to treat areas polluted by harmful substances, eliminate 
unwanted components, and reduce the production of toxic by-products (Temporiti 
et al. 2022). Fungi use environmental pollutants by interacting with them physically, 
which results in complete degradation or accumulation of environmental pollutants 
as the known cosmopolitan distribution of fungal microbes can release various 
enzymes, making it possible candidates for the remediation of extreme pollutants. 
They play a crucial role in the normalization of pollutants, including agrochemicals, 
coal, persistent organic pollutants, paper leather tanning effects, pharmaceuticals,



personal care products, polycyclic aromatic hydrocarbons, and textile dyes 
(Deshmukh et al. 2016). Fungal enzymes like amylases, catalases, cellulases, cyto-
chrome P450, dehydrogenases, dehalogenases, hydrolases, laccases, lipases, 
peroxidases, proteases, and xylanases have shown promising potential degradation 
of agrochemicals, aromatic hydrocarbons, dyes, detergents, halogenated 
compounds, and polymers (Vishwanath et al. 2014; Anasonye et al. 2014; 
Deshmukh et al. 2016; Rao and Li 2017; Li et al. 2020). For instance, heavy metal 
tolerance has been studied in hyphae-producing fungi such as Aspergillus, 
Acremonium, Curvularia, and Pythium (Akhtar et al. 2013). Rosales et al. (2013) 
have studied the degradation of polycyclic aromatic hydrocarbons in solid-phase 
fermentation during the growth of agro-industrial wastes by Pleurotus ostreatus and 
T. versicolor. Fungal forms (such as Aspergillus sp., Penicillium sp., and 
alkalophilic white-rot fungus) possess potential application in the degradation of 
colored substances from bleached kraft pulp mills, sugar industry, leather tanning 
effluents, and textile dyes. An elimination of petroleum hydrocarbons (PHs) from 
soil polluted with petrol and diesel was achieved using fungi like A. niger and 
P. chrysosporium (Maruthi et al. 2013). 
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Filamentous and other mycorrhizal fungi demonstrate a remarkable potential for 
the degradation of lignin, a recalcitrant substance, and phenolics by oxidation 
mechanism (Baker et al. 2019). Morel et al. (2013) and Rudakiya et al. (2019) 
have reported that fungi produced these enzymes to implicate in the degradation and 
decomposition of toxic substances (discharge as industrial waste and organic 
substances). A literature survey suggested that the fungal microbes could confirm 
with comparative genomics to recognize the genes involved in the detoxification of 
hazardous substances, and currently, these fungi-secreted enzymes have been exten-
sively modified for remediation of hazardous substances in a cost-effective and 
environment-friendly approach (Baker et al. 2019; Temporiti et al. 2022). 

7.2 Fungal Enzymes in Bioremediation 

Bioremediation is the application of living entities to remove harmful pollutants by 
reducing the harmfulness of pollutants and returning them to their normal environ-
ment (Mahmud et al. 2022). Microbial enzymes are known to be superior enzyme 
systems (primary metabolites) derived from diverse microorganisms, especially 
fungi, for utilization in industries on commercial levels (Clark et al. 2022). Fungal 
microbes are the important candidate for bioremediation as they are typical 
degraders of organic and inorganic matter or toxic substances from their surround-
ings by secreting different extracellular enzymes through the processes of immobili-
zation, metabolism, degradation, or absorption (Deshmukh et al. 2016; Hiralal et al. 
2022) (Table 7.1). The most studied fungal secreted enzymes involved in bioreme-
diation include amylases, cellulases, catalases, cytochrome P450s, dehalogenases, 
dehydrogenases, hydrolases, laccases, lipases, proteases, peroxidases, and 
xylanases, which have exhibited potent decomposition of hazardous environmental 
pollutants (Table 7.2). Likewise, the polymers like cellulose, lipids, protein, starch,



and xylan in the waste can be hydrolyzed by the administration of fungi-secreted 
extracellular enzymes produced in their developmental stage. 
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Table 7.1 List of fungi involved in bioremediation 

Fungi Remediated pollutants References 

White-rot fungi Pesticide degradation Deshmukh et al. 
(2016) 

Aspergillus foetidus Nickel and chromium Chakraborty et al. 
(2013) 

A. niger Refinery effluents Sabah et al. (2016) 

Penicillium sp. Nickel and chromium Malla et al. (2022) 

Rhizopus sp. Cu-, Fe-, and Zn-contaminated 
waters 

Ezeilo et al. (2020) 

Aspergillus niger Petroleum-contaminated soil and 
water 

Odili et al. (2020) 

Trametes versicolor Atrazine in soil and organic 
contents 

Deshmukh et al. 
(2016) 

Pleurotus ostreatus PCBs and phenols Shraddha et al. 
(2011) 

Lasiodiplodia sp. Cadmium, Pb, and zinc Deng et al. (2014) 

Pestalotiopsis sp. Cu, Pb, Zn, and chromium Choo et al. (2015) 

Fusarium sp. 
Colletotrichum sp. 

Pb, chromium, Cu, and Zn Mahish et al. (2022) 

Trichoderma, Aspergillus 
Mortierella, Apecilomyces 

Co Townsley and Ross 
(1986) 

T. versicolor 
Pleurotus ostreatus 

Xenobiotics and PCBs Keum and Li (2004) 

Peniophora incarnata Xenobiotics and PAHs Lee et al. (2016) 

Coriolus versicolor Pesticides Yang et al. (2013) 

Aspergillus foetidus Textile dyes Sumathi and Manju 
(2000) 

Phanerochaete velutina, Stropharia 
rugosoannulata 

Dibenzofurans and 
polychlorinated dioxins 

Anasonye et al. 
(2014) 

P. ostreatus, T. versicolor Polychlorinated biphenyls Rubilar et al. (2008) 

Chrysosporium, Trametes 
versicolor 

BTEX (benzene, toluene, 
ethylbenzene, xylene) 

Godambe and 
Fulekar (2017) 

Aspergillus oryzae Petroleum hydrocarbons Mahmud et al. 
(2022) 

7.2.1 Proteases 

The fungi-secreted protease enzymes potentially convert proteinaceous waste into 
simpler amino acids. Similarly, they play an essential role in the bioremediation of 
organic waste products (Table 7.2). For example, Haider et al. (2019) have reported 
that proteases are employed in the decomposition of polymers, such as the



(continued)
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Table 7.2 Fungal enzymes in bioremediation of organic and other pollutants 

Enzymes Origin Mode of action References 

Cellulases Aspergillus niger, 
Trichoderma viride VKF3, 
Rhizopus oryzae CCT 7560, 
Trichoderma sp. 

Degradation of 
lignocellulosic biomass 
through solid fermentation 

Srivastava et al. 
(2018) 

Xylanases Thielavia terrestris, 
Talaromyces thermophiles, 
Paecilomyces thermophile, 
Achaetomium sp., 
Rhizomucor pusillus, 
Rasamsonia emersonii, 
Talaromyces leycettanus, 
Melanocarpus albomyces, 
and Aspergillus oryzae LC1 

In animal feed industries, 
agriculture wastes, 
breweries, food industries, 
juice industries, paper 
industries, refineries, and 
textile industries 

Bhardwaj et al. 
(2019) and Rao 
and Li (2017) 

Amylases Aspergillus niger, 
Aspergillus oryzae, 
Thermomyces lanuginosus 

Production of acetic and 
citric acids, and α-amylase 
enzyme (hydrolytic potential 
and tolerance to acidity) 

de Souza and 
Magalhaes 
(2010) 

Proteases Aspergillus, Penicillium, 
Trichoderma, 
Cladosporium Rhizopus, 
Mucor, Humicola, 
Thermoascus, 
Thermomyces 

Food, baking, brewing, 
detergents, cheese, leather 
and textile, biodegradation of 
proteinaceous waste 
remediates into simpler 
amino acids 

Bhunia and 
Basak (2014) 
and Kumar and 
Jain (2020) 

Lipases Aspergillus, Penicillium, 
Rhizopus, Candida 

Synthesis of biodegradable 
polymers, biodiesel 
production, in detergent 
industries, diagnostic and 
medical fields, fine 
chemicals and 
pharmaceuticals, food 
industries, and textile 
industries 

Kanmani et al. 
(2015) 

Laccases Agaricus bisporus, 
Ascomycetes, 
Basidiomycetes, Coprinus 
cinereus, Deuteromycetes, 
Phanerochaete 
chrysosporium, Pleurotus 
ostreatus, Trametes 
versicolor 

Bioremediation of 
pharmaceuticals, particularly 
antibiotics, and 
detoxification of persistent 
organic pollutants are 
essential environmental 
challenges that require 
effective solutions 

Yang et al. 
(2017) 

Peroxidases White-rot fungi Bioremediation of phenolic 
and non-phenolic substances 
by oxidation 

Deshmukh 
et al. (2016) 

Catalases Aspergillus foetidus, 
Aspergillus niger, 
Penicillium sp., Rhizopus 
sp. 

Bioremediation of heavy 
metals and restoration of 
oil-contaminated soil 

Deshmukh 
et al. (2016) 

Cytochrome 
P450 

P. chrysosporium, 
Aspergillus oryzae 

Degradation of xenobiotic 
compounds, pesticides, and 
industrial wastes 

Pratiwi et al. 
(2022)



decomposition of α-ester, lipase c-ω, and polyhydroxybutyrate depolymerase β-ester 
linkages. The proteases are also useful in deleting or deproteinizing marine crusta-
cean wastes. Likewise, they can potentially decompose keratin proteins and could be 
applied in poultry discharge management. Thus, the enzyme keratinase can be useful 
in deleting keratinous wastes. Kumar and Jain (2020) have reported that the fungi 
(Aspergillus, Cladosporium, Penicillium, and Trichoderma) were screened for the 
synthesis of proteases and their action to degrade proteins discharged from temples. 
The proteases secreted by the fungi Endothia parasitica and Mucor miehei progres-
sively replace rennin in cheese making (De Souza et al. 2015). The proteases have 
been secreted from different fungal forms such as Aspergillus flavus, Candida mogii, 
Myceliophthora thermophila, Neurospora crassa, Phanerochaete chrysosporium, 
Pleurotus ostreatus, Saccharomyces pombe, Schizophyllum commune, 
Sporotrichum thermophile, Thermomyces lanuginosus, and T. ibadanensis, which 
are employed to prepare enzyme-derived detergents to eliminate the harsh dyes from 
clothes for a shine cleansing effect (Naeem et al. 2022).
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Table 7.2 (continued)

Enzymes Origin Mode of action References 

Hydrolases Trametes polyzona Degradation of 
macromolecular substances 

Rao et al. 
(2010) 

Laccase, 
lignin-
degrading 
systems 

Ascomycetes, 
Deuteromycetes, 
Basidiomycetes, 
P. chrysosporium, 
T. versicolor 

Polyaromatic hydrocarbons 
(PAHs) 

Peng et al. 
(2008) 

Cytochrome 
P450 

P. chrysosporium, 
Aspergillus oryzae 

Petroleum hydrocarbons Mahmud et al. 
(2022) 

Lignin 
peroxidase 
Manganese 
peroxidase 

C. polyzona, P. ostreatus, 
T. versicolor 

Polychlorinated biphenyls Rubilar et al. 
(2008) 

Peroxidase Cladophialophora sp. strain 
T1, Phanerochaete 
chrysosporium, Trametes 
versicolor 

BTEX (benzene, toluene, 
ethylbenzene, xylene) 

Godambe and 
Fulekar (2017) 

Cytochrome 
P450 

Aspergillus niger, Coriolus 
versicolor, Pleurotus sajor-
caju, Trametes pubescens 

Pesticides Kvesitadze 
et al. (2004) 
and Rudakiya 
et al. (2019) 

7.2.2 Lipases 

The lipases have efficient applicability in industries as they have been isolated from 
microbes (bacteria and fungi), plants, and animal cells (Karigar and Rao 2011; 
Deshmukh et al. 2016) (Table 7.2), and they act by catalyzing various reactions



like aminolysis, alcoholysis, esterification, and hydrolysis (Riffaldi et al. 2006). For 
instance, they influence the hydrolysis reaction of triacylglycerols, converting oils 
into free fatty acids and glycerol. The hydrocarbon degradation in soil was achieved 
through lipase activity and is considered the most beneficial indicator. The enzyme 
lipase was isolated from Candida rugosa through a biphasic oil-water system, 
resulting in the hydrolysis of triolein and being more efficient. Enzyme lipase can 
cleave the ester links of triolein and subsequently derive monoolein, diolein, and 
glycerol forms, and in the catalysis reaction, the synthesis of oleic acid was recorded 
at every subsequent step (Karigar and Rao 2011). Lipase enzymes can improve the 
detoxification of lubricant wastes (oils, fats, and proteins) discharged from industries 
(Basheer et al. 2011). 
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7.2.3 Laccases 

Many fungi have been recognized as enzyme laccase producers, and they belong to 
the blue oxidase group and are copper-containing extracellular enzymes implicated 
in detoxifying toxic elements. The secretion of laccases from T. versicolor oxidizes 
most phenolics and non-phenolic substances (Margot et al. 2013; Deshmukh et al. 
2016). The catalytic activities of enzyme laccase affect the oxidation reaction of 
phenolic substances like orthodiphenols and para-diphenols. The production of 
polymeric substances by enzyme laccase can be used for remediation processes, 
especially removing xenobiotic components. The laccases derived from Coriolopsis 
rigida, Myceliophthora thermophila, Pycnoporus coccineus, and Trametes villosa 
are used in recycled paper industries for the decolorization of flexographic inks 
(Fillat et al. 2012). Similarly, the marine fungi secreted laccase-mediated decolori-
zation, decomposition, and mineralization of reactive blue 4 dye (Verma et al. 2012; 
Vishwanath et al. 2014). Likewise, Chhaya and Gupte (2013) studied an endocrine-
disrupting chemical (bisphenol A), and its degradation was achieved with Fusarium 
incarnatum-derived enzyme laccase. Schultz et al. (2001) showed that the enzyme 
laccase secreted by Pycnoporus cinnabarinus could dechlorinate and detoxify 
chlorinated hydroxybiphenyls. Agaricus bisporus, Coprinus cinereus, 
Phanerochaete chrysosporium, Pleurotus ostreatus, and Trametes versicolor fungal 
forms are potentially involved in the remediation of pharmaceutical waste, 
antibiotics, and persistent organic pollutants (Yang et al. 2017). 

7.2.4 Peroxidases 

With the high redox potential, non-specificity, and capability to oxidize substrates 
(Conesa et al. 2002; Temporiti et al. 2022), peroxidases are categorized (based on 
origin and activity) into lignin peroxidase, manganese peroxidase, and versatile 
peroxidase, and white-rot fungi and basidiomycetes secrete them and are mostly 
accounted for the degradation of environmentally toxic substances. The most 
recognized group of enzyme peroxidase-secreting fungi (ligninolytic fungi) like



Bjerkandera adusta, Ceriporiopsis subvermispora, Dichomitus squalens, 
Phanerochaete chrysosporium, Pleurotus spp., Phlebia radiata, and Trametes 
versicolor (Temporiti et al. 2022; Ayuso-Fernández et al. 2017). The phenolics 
and non-phenolic substances are oxidized with the versatile type of peroxidases 
(VP) and are highly potential applications in removing environmental pollutants 
(Karigar and Rao 2011). They are concerned with the fabrication of biofuels and 
paper (Li et al. 2015), waste management, and remediation of industrial waste like 
synthetic dyes and PAHs (Daccò et al. 2020; Temporiti et al. 2022). Godambe and 
Fulekar (2017) have studied the peroxidases released by fungi such as 
Cladophialophora sp. strain T1, Phanerochaete chrysosporium, and Trametes 
versicolor and which are employed in the detoxification of benzene, toluene, ethyl-
benzene, and xylene (BTEX). 
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7.2.5 Catalases 

Catalases are the group of oxidoreductase enzymes secreted by fungi that have the 
proficient potential of converting hydrogen peroxide chemicals into water and 
oxygen; thereby, catalases are used as oxygen molecules in the route of degradation 
of pollutants (Deshmukh et al. 2016). Chakraborty et al. (2013) have studied and 
reported good development and resistance of the fungus Aspergillus foetidus by 
increasing the level of catalase for degrading malondialdehyde (MDA) and hydro-
gen peroxide with exposure of Pb (200 mg/L). Swaminathan et al. (2009) have 
reported that catalase also has potential application in the degradation of pesticides 
by initial oxidation, reduction or hydrolysis, and amalgamation of pesticides, which 
reduces water toxicity and enhances water solubility and subsequently converts 
remaining metabolites into secondary nontoxic substances. Pb2+ and Cu2+ added 
alone or mixed with the 50 mg/L consortia of fungi (A. niger, Penicillium sp., and 
Rhizopus sp.) exhibited an increased catalase action (Thippeswamy et al. 2014). The 
activities of the enzyme catalase can be utilized as a tool for examining decomposi-
tion potential; on the other hand, the catalase actions are reduced along with the 
rising concentration of oil at the time of restoration of oil-polluted soils (Lin et al. 
2009). Therefore, considering the activity of catalases in giving heavy metal resis-
tance to fungi and fungal microbes secreting this enzyme could be effective 
candidates for remediation of heavy metal-polluted sites (Table 7.2). 

7.2.6 Cytochrome P450 

It is a heme-containing ubiquitous enzyme and very significant for the remediation 
of toxic substances by oxidation reaction (Li et al. 2020). It can also implicate the 
metabolic detoxification of xenobiotic compounds via chemical normalization such 
as aliphatic hydroxylation, dealkylation, dehalogenation, and epoxidation (Bancel 
et al. 2002). Cytochrome P450 is an extremely versatile redox enzyme that can be a 
beneficial tool for developing biocatalysts that can achieve reductive exclusion



mechanisms for the degradation of environmental pollutants (Behrendorff 2021). 
For instance, Baker et al. (2019) have discussed that the Phanerochaete 
chrysosporium fungi have been exhibited to degrade PAH (anthracene) and the 
endocrine-cleaving alkylphenols. The degradation and detoxification of benzoate 
derivatives were attempted by secreting P450s from both Ascomycota and 
Basidiomycota group species. Furthermore, the non-ligninolytic fungi 
(Scopulariopsis brevicaulis) secreted class II P450s, which showed significant 
detoxification and complete transformation of anthracene. 
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7.2.7 Dehalogenases 

The dehalogenases are frequently employed in the remediation of halogenated 
organic substances by cleaving C–X bonds via three processes such as hydrolysis, 
reduction, and oxygenolysis (Hussain et al. 2018). Allpress and Gowland (1998) 
have investigated that dehalogenase catalyzes dehalogenation reactions such as the 
alteration of halogen atoms by a hydroxyl group (OH) from hydrogen and water. For 
instance, Schultz et al. (2001) investigated the dehalogenation reaction of 
chlorinated hydroxybiphenyls catalyzed by the enzyme laccase secreted by the 
fungus Pycnoporus cinnabarinus. 

7.3 Fungal Enzyme in Bioremediation of Organic Pollutants 

Fungi are very versatile microorganisms to detoxify an array of pollutants by 
secreting various enzymes; likewise, fungi alter their metabolic pathways for the 
degradation of relatively new organic pollutants. Fungal enzymes play a vital role in 
the detoxification of organically contaminated soils like diesel, petroleum, PAHs, 
pesticides, fuels, polychlorinated biphenyls (PCBs), chlorophenols, and dyes (Diez 
2010; Singha and Chatterjee 2022) (Table 7.2; Fig. 7.1). Fungal metabolic processes 
are utilized for the degradation of organic substances into nontoxic compounds in an 
economical, eco-friendly, and efficient way (Yair et al. 2008). The fungal enzyme 
oxygenase that can metabolize trichloroethylene is associated with dichloroethylene 
and vinyl chlorides into CO2 and Cl, the nontoxic final products (Yoshikawa et al. 
2017; Shelke et al. 2022). Various organic pollutants penetrate through the fungal 
cell membranes, and these can be degraded by intracellular enzymes like cytochrome 
P450, dehalogenases, and nitroreductases (Tripathi et al. 2017; Stella et al. 2017; 
Ostrem and Yu 2018), get converted into simpler organic substances by β-oxidation, 
and consequently enter into the TCA cycle (Varjani 2017). 

The degradation of aromatic hydrocarbons by white-rot fungi (P. chrysosporium 
and Pleurotus pulmonarius) was attained in historically contaminated soils (naph-
thalene, tetrachlorobenzene, dichloroaniline, diphenyl ether, and N-phenyl-1-naph-
thylamine) (Diez 2010). Kües (2015) reported that white-rot fungi achieved lignin 
degradation by secreting class II peroxidases specialized for high oxidation effect. 
The enzyme cytochrome P450 is secreted by fungi such as Aspergillus niger,



Coriolus versicolor, Pleurotus sajor-caju, and Trametes pubescens, which are 
employed in the detoxification of pesticides (Kvesitadze et al. 2004; Rudakiya 
et al. 2019). Similarly, P. chrysosporium and Aspergillus oryzae produced cyto-
chrome P450 enzyme, which was beneficial for the degradation of petroleum 
hydrocarbons (Mahmud et al. 2022), xenobiotic substances, pesticides, and indus-
trial wastes (Pratiwi et al. 2022). Moreover, Kvesitadze et al. (2004) and Rudakiya 
et al. (2019) have reported that the detoxification of agrochemical waste was attained 
by the cytochrome P450 produced by fungi like Aspergillus niger, Coriolus 
versicolor, Pleurotus sajor-caju, and Trametes pubescens. Therefore, the various 
fungal forms secreted by various enzymes were employed in the detoxification/ 
degradation of toxic organic pollutants, and some of the examples are explained in 
Table 7.2. 
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TCA Cycle 

β-Oxidation 

Fig. 7.1 Bioremediation of organic pollutants 

7.4 Conclusion 

Fungal microbes are essential in decomposing environmental pollutants due to their 
diverse enzyme secretion capability. Fungal enzymes have the potential to make 
over and detoxify environmental pollutants efficiently. In this chapter, we have 
discussed and explored diverse aspects together, exhibiting fungi’s varied and new 
metabolic capabilities and their significance in the remediation of toxic substances. 
The chapter represents extensive studies of fungal diversity, fungal actions against 
environmental hazards, utilization of fungal microbes for detoxification of toxic 
substances, and perceptions on the application of fungal microbes in bioremediation. 
The fungi-assisted removal of heavy metal and hazardous compounds from the 
environment would be studied well, and their targeted gene amplification could be 
a potential area of research. Further investigations would be holding out for inclusive 
perception of bioremediation routes, and progress in the genetic study indicates that



complete genome investigations can help to recognize and exhibit the detoxification 
mechanisms. 
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Abstract 

Soil and water pollution is a matter of great concern in the twenty-first century, 
the majority of which is caused by various organic compounds, agricultural and 
municipal wastes, heavy metals, and microorganisms. Due to fast industrializa-
tion, mining, and other technical breakthroughs, the soil environment is continu-
ously poisoned by heavy metals in the modern period. As a result, heavy metal 
contamination has become a major concern worldwide. Mycoremediation is a
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type of bioremediation that uses fungi to remove, degrade, or reduce the toxicity 
of various pollutants from various substrates. Filamentous fungi have several 
properties that make them suitable for heavy metal (HM) bioremediation. Fungi 
have a high adsorption and accumulation capability for HMs; thus, they could be 
helpful. Bioaccumulation, bio-adsorption, biosynthesis, biomineralization, 
bio-oxidoreduction, extracellular or intracellular precipitation, surface sorption, 
and other bio-mechanisms involved in HM tolerance and removal by fungus 
differ from species to species. However, the major influential parameters that 
affect HM bioremediation include time, pH, temperature, HM concentration, dose 
of fungal biomass, and shaking rate, which vary depending on the fungi and 
composition of the HMs. Hence, mycoremediation is thought to be a more 
effective strategy than traditional methods for removing hazardous chemicals, 
including heavy metals, from soil and water bodies in a long-term and cost-
efficient manner.
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8.1 Introduction 

Mother Nature is continuously impacted by increasing industrial and developmental 
activities, and as a result, foreign elements are continually being introduced to 
nature. These elements include heavy metals, pollutants, chemicals derived from 
agricultural lands, and other sources. They are the most dangerous substances and 
are discharged in substantial quantities that enter the ecosystem directly or indirectly. 
Many metals function as micronutrients when used in the wrong quantities, but when 
used in the right quantities, they are advantageous for the growth and development of 
plants and also support metabolic activity as metalloenzymes. But if used in appro-
priate amounts, they are not hazardous or behave like heavy metals. Heavy metals 
are highly soluble in water and are consumed by aquatic species that pose a 
significant risk to human health due to their non-biodegradability, high toxicity, 
and long persistence. Continuous exposure to these heavy metals is quite 
concerning. Thus, it is a crucial time to find a better solution. Bioremediation is an 
environmentally benign approach that uses fungi, bacteria, or plants to treat waste-
water and other contaminated areas (Kumari et al. 2019). In intensive agricultural 
and horticultural systems, large amounts of fertilizers and pesticides are being 
routinely used on the soil and the plant to provide enough nitrogen (N), phosphorus 
(P), and potassium (K) as well as protection, respectively. Heavy metals are 
contaminants present in trace amounts in the compounds used to supply these 
elements, and following repeated fertilizer and pesticide applications, their presence 
in the soil and in the environment may dramatically increase (Jones and Jarvis 1981; 
Basta et al. 2005; McLaren et al. 2005; Wuana and Okieimen 2011). In addition to



macronutrients, plants also need certain micronutrients in order to develop and 
complete their life cycle. 
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Some soils are deficient in the heavy metals required for healthy plant develop-
ment (Lasat 1999); thus, crops can be given these by adding them to the soil or 
spraying them on the leaves. Occasionally, copper (Cu) and manganese (Mn) are 
also added to the soil to treat cereal and root crops if the soil has a deficit in the 
elements. When some phosphate fertilizers are applied to the soil, cadmium (Cd) and 
other hazardous metals such as lead (Pb), mercury (Hg), and fluoride (F) are 
unintentionally added to the soil (Madhavan et al. 2017). Due to the application of 
numerous biosolids, heavy metals like copper, arsenic, lead, cadmium, and nickel, 
and some other pollutants like manures from livestock, municipal sewage sludge, 
and composts, are unintentionally accumulated in the soil (Basta et al. 2005). Animal 
manures from farms, such as those from chickens, cows, and pigs, are regularly 
applied to pastures and crops as solids or slurries (Sumner 2000). However, copper 
(Cu) and zinc (Zn) are added to diets as growth promoters, and the arsenic 
(As) found in poultry health products in the pig and poultry sectors may have the 
potential to pollute the soil with metals (Sumner 2000). The manures generated by 
animals on such diets have high concentrations of Zn, As, and Cu. If these are often 
dispersed over constrained areas of land, a sizeable amount of these metals may 
ultimately accumulate in the soil. Most organic solid waste products that can be 
recycled for environmental objectives are sewage sludge or biosolids (USEPA 
1994). In most of the nations that permit biosolid reuse produced by urban 
populations, the application of biosolid materials in the soil is a prevalent practice. 
The heavy metals that are most frequently discovered in biosolids include Zn, Pb, 
Cd, Ni, Cu, and Cr, and the concentrations of these metals are determined by the type 
of industrial activity, its intensity, as well as the procedure used to treat the biosolids. 
Under some conditions, metals added to soils during the treatment of biosolids may 
seep through the soil layer and possibly pollute groundwater (McLaren et al. 2005). 

It has been a regular practice in many regions of the world for more than 
400 years to apply municipal, industrial, and related effluents to land (Reed et al. 
1995). As per the estimation, it was found that wastewater irrigates 20 million 
hectares of arable land globally. In practice, farmers are more focused on growing 
their yields and profits than on the benefits or threats associated with the environ-
ment. Even while wastewater effluents typically have low metal concentrations, they 
may eventually cause a significant metal accumulation in the soil if used to irrigate 
land over an extended period. The legacy of widespread distribution of metal 
pollutants in soil has been left to many nations by the mining and processing of 
metal ores in conjunction with industries. When dumped directly into natural 
depressions such as on-site wetlands, heavy and larger particles known as tailings 
that get deposited at the bottom of the flotation cell during mining can accumulate in 
high quantities (DeVolder et al. 2003). The extensive smelting and mining of zinc 
and lead ore have been contaminating the land and threatening human and ecological 
health. Most of the lengthy, expensive restoration techniques employed for these 
sites may not restore soil productivity. The environmental risk that heavy metals in 
soil pose to people is correlated with bioavailability. Another significant source of



soil pollution is the airborne emission of lead from the combustion of gasoline 
containing tetraethyl lead; this dramatically raises the level of lead in urban soils 
and major roadways. Due to lubricating oils and tire treads, Zn and Cd may also be 
added to soils close to roads (USEPA 1994; Wuana and Okieimen 2011). The 
numerous factors which are involved in heavy metal removal are illustrated in 
Fig. 8.1. The purpose of this review is to provide information on heavy metals and 
different metalloids that are responsible for environmental pollution because of their 
persistency, toxicity, and accumulation in the biosphere, as well as to highlight the 
bioremediation methods like mycoremediation that have so far proven to be effective 
(Raffa et al. 2021). 
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Fig. 8.1 Factors involved in heavy metal/metalloid removal 

8.2 Heavy Metals/Metalloids in Soil 

All metals and metalloids having a density of more than 5 g cm3 have been 
collectively referred to as “heavy metals” (Wuana and Okieimen 2011; Pendias 
and Pendias 2001). Generally, common transitional metals like zinc (Zn), copper 
(Cu), lead (Pb), cadmium (Cd), and mercury (Hg) are referred to as “heavy metals” 
in this context, whereas “metalloids” refer to a class of chemical elements that 
exhibit properties that fall somewhere between those of metals and nonmetals and 
naturally occur as poly-hydroxylated species. This category often includes the 
chemical elements arsenic (As), boron (B), silicon (Si), antimony (Sb), germanium 
(Ge), and tellurium (Te), as well as less frequent elements like astatine (At) and 
polonium (Po). These heavy metals and metalloids in the soil or water may substan-
tially impact human and ecological health (Chan et al. 2016). Any metallic chemical 
element that has a high density and has the potential to be poisonous even at low



doses is referred to as a heavy (or trace) metal. Although heavy metals are easily 
absorbed and bioaccumulated in different plant sections, they are neither essential 
nor play a crucial function in cells’ metabolic pathways (Nas and Ali 2018). Cobalt 
(Co), nickel (Ni), copper (Cu), vanadium (V), zinc (Zn), and chromium (Cr) are 
heavy elements that, at low concentrations, are not poisonous (Nas and Ali 2018). 
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Heavy metals are an essential component of the planet and cannot be removed or 
degraded. Because of their propensity to collect in live cells, they are enormously 
hazardous. When a chemical compound gradually assembles within living things 
over time in contrast to its environmental concentration, this is referred to as 
bioaccumulation. Industrial and consumer waste, as well as acid rain, which causes 
weathering and the release of heavy metals into groundwater, rivers, lakes, and 
streams are all ways that trace metals can enter the water and harm aquatic life. 
Heavy metals and metalloids are present in the soil due to the parent materials. These 
materials come from lithogenic and human-made processes (Alloway 2013). 
Anthropogenic activities that are increasing the number of heavy metals in the 
environment include mining, smelters, foundries, burning of fossil fuels, using 
gasoline, waste incinerators, and other industrial operations. This affects the 
environment’s ability to sustain life and provide for its basic needs. The three 
heavy metals that are most problematic are cadmium, mercury, and lead, according 
to the European Monitoring and Evaluation Programme (EMEP), because of their 
severely detrimental impacts on human health. According to Damodaran et al. 
(2013), the physiology and composition of the organism’s cell wall, as well as 
physicochemical factors like concentration of the metal, time, temperature, pH, 
and ionic strength of the metal, all play a role in the intricate process by which the 
heavy metal removal mechanism operates. Any environmental product containing 
these heavy metals may be harmful to human health as well as to soil, plants, and 
animals. According to Singh and Kalamdhad (2011), it is highly concerning that 
heavy metals are absorbed by plants, subsequently accumulated, and transferred to 
human tissues through the food chain. Interactions between plants, fungi, bacteria, 
and other living and nonliving elements of the environment occur. Under stress, they 
often adapt metabolically to the environment by going through various mechanisms 
to lessen the toxicity (Abdullahi et al. 2021). 

Heavy metal and metalloid soil pollution is a problem that affects every nation on 
the planet. Since heavy metal contamination cannot biodegrade and builds up in the 
soil, hurting people, animals, and the ecosystem for a very long time, it has drawn 
more attention recently. Exposure to heavy metals and metalloids is linked to various 
health issues, including kidney problems, developmental and neurobehavioral 
difficulties, bone problems, blood pressure issues, and tumor growth. These issues 
become pertinent when there are appreciable concentrations of heavy metals in the 
soil. An estimated five million locations worldwide have soil that is polluted with 
heavy metals and metalloids. The primary source of this pollution is frequent 
anthropogenic activities. Developed nations like the USA, China, Australia, and 
EU members tend to have more heavy metal-contaminated areas than developing 
nations (Brito et al. 2020; Yu et al. 2020). The average global amounts of these 
pollutants in soil vary depending on the kind of soil, the environment around it, and



the distance from the source of contamination. Heavy metal/metalloid species 
continue to get attention worldwide due to the persistent nature of such damaging 
pollutants, which include static, durable, accumulative, and nonbiodegradable 
properties (Zhao et al. 2019). The soil near metal smelters has been contaminated 
by the heavy metal/metalloid species that metal smelting activities have discharged 
into the environment. The buildup of heavy metal/metalloid species poses a danger 
to the ecological environment, variety, functioning of soil microorganisms, food 
security, and human health. Soil microorganisms have a key role in defining the 
quality of the soil since they are the guardians of the ecosystem’s structure and 
functioning (Hou et al. 2019). Although soil microorganisms can influence soil 
properties, the physicochemical properties of the soils can also have a large influence 
on them. According to research, microorganisms greatly enhance soil fertility, crop 
health, and nutrient circulation in the soil. It is commonly acknowledged that the 
toxic stress brought on by heavy metals and metalloids may significantly influence 
the number, variety, and ecological functions of the soil’s microbial communities. 
For instance, heavy metal/metalloid pollutants have an impact on the ecological 
processes in soils that functional groups and a variety of functional genes sparked. 
As a result, the variety of microorganisms has diminished and the structure of soil 
microbial communities has changed even more. Numerous heavy metal/metalloid-
tolerant bacteria may transform or eliminate heavy metals from polluted soil (Qiao 
et al. 2019). Bioremediation has been recognized as a promising green and sustain-
able method for cleaning up heavy metal pollution. Bioremediation has been 
recognized as a promising green and sustainable method for cleaning up heavy 
metal pollution. Furthermore, alterations in the chemical forms of heavy metal/ 
metalloid species brought on by the physicochemical characteristics of soil may 
have a secondary effect on the makeup of microbial communities (Hu et al. 2021). 
Approximately 51 elements in the periodic table are considered heavy metals or 
metalloids. Because of their chemical properties and those of the soil, they are 
mobile and bioavailable in the soil. The interaction of soil components with metals 
and metalloids is influenced by the pH, the characteristics of the adsorbent surface, 
and the presence of cations and anions. Zinc (Zn), chromium (Cr), nickel (Ni), 
manganese (Mn), cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) are the 
most prevalent heavy metals and metalloids. The most hazardous substances are 
those with Cr, Cu, Zn, Cd, Pb, Hg, and As in them. As the underlying bedrock 
weathers, they are frequently discovered as ores (sulfides of Pb, Co, Fe, As, Pb, Zn, 
Ag, and Ni, and oxides of Se, Al, Mn, and Sb). Along with sulfides of arsenic, 
mercury, lead, and cadmium, chalcopyrite, CuFeS2, and pyrite, FeS2, are naturally 
occurring sulfides of copper and iron in the soil. In particular, ore mining and 
refining, using pesticides and fertilizers, and solid wastes all contribute to the 
environmental problem by raising the levels of heavy metals and metalloids. 
Heavy metals and metalloids are used in many industries, increasing market demand, 
and worldwide output. Many biological processes, including the nervous system, 
production of complex molecules, respiration systems, and control and functioning 
of enzymes, require trace amounts of copper, selenium, zinc, iron, vanadium, and 
manganese. Electronic gadgets, especially semiconductors, are made largely from
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metals, including iron, zinc, tin, lead, copper, and tungsten (Koller and Saleh 2018). 
It is clear that certain elements, particularly chromium, copper, zinc, and lead, are 
employed in many industries and that there is a significant annual output worldwide, 
wherein the United States, China, Australia, Russia, Peru, and Mexico are the major 
producing nations (Raffa et al. 2021). Microbial bioremediation lowers the expense 
of the heavy metal pollution treatment process while also being effective, economi-
cal, and ecologically benign (Mishra 2017). The primary mechanisms for microbial 
removal of heavy metals are biosorption, which includes ion exchange, redox 
reactions, adsorption of chemicals, precipitation, and formation of a complex with 
organic ligands; secondly, biomineralization which includes bioleaching, which 
involves releasing heavy metal ions from insoluble ores through dissolution or 
complexation; and thirdly, bio-oxidation (González Henao and Ghneim-Herrera 
2021). 
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8.3 Mycoremediation of Soil 

8.3.1 Important Fungal Species Involved in Bioremediation 

Microbial bioremediation lowers the expense of the heavy metal pollution treatment 
process while also being effective, economical, and ecologically benign (Mishra 
2017). The primary mechanisms for microbial removal of heavy metals are 
biosorption, biomineralization, and bio-oxidation (Jin et al. 2018; González Henao 
and Ghneim-Herrera 2021). Fungi are used in bioremediation because of their 
resistance and tolerance, which are used in some aquatic environments where they 
overpower heavy metals. Aspergillus niger, which functions as a multi-tolerant 
fungus, is one example of the growing fungi employed in the mycoremediation 
approach. Different fungi, including Penicillium, Aspergillus, Trichoderma, Fusar-
ium, etc., use a variety of strategies within the cell wall to remove different kinds of 
heavy metals, including cell surface precipitation, detoxification, accumulation, 
efflux, and alterations. Contaminated water and soil keep the majority of metal-
tolerant fungi separate. The nature of the fungal resistance is a result of the genetic 
makeup of the fungi, concentration of HMs, environmental conditions, nutritional 
availability, and various forms of heavy metals. These factors also affect how fungi 
react to metal and how resistant they are. Aspergillus flavus CR500 and Trichoderma 
harzianum are two examples of heavy metal-resistant fungi. According to Table. 8.1, 
most fungi belong to the class Ascomycetes and are resistant to heavy metals. 

Aspergillus, Chaetomium, Coniochaeta, and Phoma, all Ascomycetes, have been 
researched for their similarities between the genomic and secrotomic to allow their 
presence in the breakdown of biomass and parthenogenesis in the dry environment 
(Hua et al. 2012; Challacombe et al. 2019). According to the investigation, it was 
found that all fungi can readily produce melanin because of their melanized struc-
tural makeup. Because of these qualities, they can thrive in arid environments. Some 
proteins have also tested positive and are found in nature and fungi. Both positive 
and negative interactions between heavy metals and fungi exist (Ruley et al. 2006).



In a positive interaction, the presence of HMs has no effect, but in an adverse 
interaction, the presence of HMs can cause fungus death or growth inhibition. A 
new phase in removing heavy metals from a wasteland may result from the interac-
tion of heavy metals and fungi. Numerous experts have noted that the majority of 
fungi can remove various metals in a viable form. Fungi have excellent qualities that 
can be exploited in bioremediation, and they also function as decomposers with 
vigorous enzymatic activity (Baker 1987). In large plants, the fungi and 
microorganisms in the rhizosphere play a crucial part in the synergistic mechanism, 
which directly increases the tolerance capacity of heavy metals. Few researchers 
have studied the interactions between different species of fungi and microorganisms 
in the remediation of heavy metals (Kumari et al. 2019). A schematic diagram of 
fungal remediation is depicted in Fig. 8.2. 
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Table 8.1 Fungi used to remove metals and contaminants 

Metals Fungal species Classes 

Zinc (Zn), chromium 
(Cr), lead (Pb) 
Copper (Cu) 
Cadmium (Cd) 
Aluminum (Al) 

Penicillium sp., Aspergillus spp., 
Fusarium sp., Trichoderma sp. 
Botrytis sp. 
Humicola sp.,Trichoderma sp. 
Trichoderma sp. 

Ascomycetes/ 
Basidiomycetes/ 
Zygomycetes 

Zinc (Zn), lead (Pb), 
cadmium (Cd) 
Chromium (Cr), 
mercury (Hg) 

Ganoderma sp., Pleurotus sp. 
Pleurotus sp. 

Chromium (Cr) 
Zinc (Zn) 

Mucor sp. 
Rhizopus oryzae 

Fig. 8.2 Mycoremediation of heavy metals 

Trichoderma fungi are well adapted to aid in eliminating lead from the environ-
ment. Hence, Trichoderma asperellum may be used in mycoremediation and may 
play a supporting function in soil phytoremediation (Bandurska et al. 2021). The 
study of the interaction between the cell surface of fungi and heavy metals is



essential because the composition, structure, adsorption and absorption processes, 
and accumulation of heavy metals in the fungus vary from fungus to fungus (Chan 
et al. 2016). Myco-adsorption and mycoremediation are other terms for the adsorp-
tion of heavy metals on the surface of fungi. Heavy metals like cadmium, mercury, 
arsenic, chromium, and lead are used for the adsorption process using fungus-like 
Aspergillus sp., Thamnidium sp., etc. (Kumar and Dwivedi 2019). It is safe for 
biological systems to use the fungus to absorb and remove heavy metals from 
contaminated locations. The removal of heavy metals is seen to be a very safe and 
environmentally beneficial method when live creatures like fungi, or mushrooms, are 
used (Kumari and Kumar 2019). It is widely acknowledged that mushroom farming 
is an important tool for restoring, replenishing, and remediating the earth’s 
overburdened ecosphere and being a rapidly growing sector of the agricultural 
industry. 
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In comparison to microfungi, mushrooms are crucial in the buildup of heavy 
metals. Since mushrooms are thought to be more advantageous than plants due to 
their shorter life cycles and more adaptability, mycoremediation can be viewed as an 
advanced remediation method. An efficient biosorbent for hazardous metals is the 
mushroom. They expand rapidly in their natural habitat but lack the immobilization 
or deployment of specific reactor configurations necessary for other microbial 
sorbents. Instead, they evolve into sorbents because of their texture and other 
favorable properties (Damodaran et al. 2013). Elekes and Busuioc examined the 
levels of heavy metals in five different mushrooms taken from the Bucegi Massif in 
the Carpathian Mountains: Collybia butyracea, Calvatia excipuliformis, Boletus 
griseus, Marasmius oreades, and Hygrophorus virgineus. Compared to other spe-
cies, C. excipuliformis has higher concentrations of Cu (244.864.26) and Zn 
(92.190.21) than other species. Additionally, compared to other mushrooms, 
C. butyracea and Zn C. excipuliformis have a larger bioaccumulation factor for Cu 
(Pihurov et al. 2019). 

8.3.2 Toxic Compounds Degraded by Fungi 

The intake of essential and nonessential metals is crucial for eliminating heavy 
metals. The internal mechanism of fungi can tolerate some metals quite easily. 
They have a unique level of metal tolerance (Renu and Singh 2016). Antioxidants 
that are both enzymatic and nonenzymatic help keep the fungus’ ability to tolerate 
stress in check. Within a single organism, more than one antioxidant property is 
present for the antioxidant mechanisms (Yang et al. 2016). In the tropical plant 
species Candida, the enzyme glutathione first assembles the metal glutathione 
complex, which causes the cellular level of oxidized glutathione to rise and aids in 
detoxifying metals. By generating metallothionein, which enhances fungal tolerance 
to cadmium, glutathione also aids in lowering the levels of toxicity (Wu et al. 1975). 

Thiol is a substance utilized to signal cells and is thought crucial. Thiol synthesis 
has increased in the plant species Aspergillus flavus. Gamma-glutathione makes up 
one of the two tails of glutathione, and the other tail belongs to the thiol group. Here,



the reaction between the thiol group and the glutathione results in cadmium 
bisglutathionate. The catalase, phenol, proline, and thiol concentration in Aspergillus 
flavus increases in response to the chromium stress (Salt et al. 1998). Again, in some 
fungus, large amounts of particular proteins are produced that can aid in the buildup 
and reclamation of heavy metals. Even the overproduction of these proteins causes a 
stressful condition known as heat shock. Organic acids can also be used to relieve 
heavy metal stress. Plants are protected from the stress brought on by heavy metals 
by the formation of organic acids. The fungus Penicillium sp. contains organic acids 
that help detoxify and remedy metals, including zinc, copper, cadmium, chromium, 
arsenic, manganese, and lead. These acids include pyruvic acid, oxalic acid, citric 
acid, gluconic acid, and malic acid (Kumari and Kumar 2019). These acids have 
metabolites that are intracellular, intercellular, and extracellular. During the 
phytomining of metals, these extracellular organic acids facilitate the extraction 
process from the low-grade mining ores. Due to the organic acid present inside the 
cells, all of these metals precipitate (Kumari et al. 2019). Numerous kinds of 
inactivated fungal biomass and live fungal cells have been used in comprehensive 
research on heavy metal removal by sorption utilizing fungus (Chan et al. 2016). 
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Through various enzymatic processes, fungi may change hazardous metals and 
metalloids into less toxic forms, changing the concentrations of heavy metals in the 
environment. Using mercuric reductase, fungi may detoxify organomercury 
compounds, and the resulting mercury, Hg(II), can then be further reduced to the 
more combustible elemental mercury, Hg(0). Similarly, it happens in the conversion 
of As(V) to As(III) by arsenate reductases, which are a few common detoxification 
processes that may be involved once As(V) enters the fungal cells via the phosphate 
transporters (Gonzalez-Chavez et al. 2011). It is shown that three contiguous genes 
control Saccharomyces cerevisiae’s resistance to arsenic, a transcriptional regulator 
(ACR1), an enzyme arsenate reductase (ACR2), and a plasma membrane arsenite 
efflux pump (ACR3). The methylation of inorganic arsenic to create volatile 
derivatives is another mechanism by which fungi are resistant to metals and 
metalloids. Metals and metalloids can be methylated by an enzymatic process in 
which the metal is transferred to the methyl group. The methylated metal compounds 
commonly differ from their parent compounds in terms of toxicity, solubility, and 
volatility. Metals that can be methylated include Pb, Hg, and Sn and metalloids like 
Se, As, and Te. Monomethylarsonic acid and dimethylarsenic acid can be converted 
to volatile trimethylarsine oxide by Candida humicola, Gliocladium roseum, and 
Penicillium sp. (Cullen and Reimer 1989). The heat-resistant Neosartorya fischeri 
was found to effectively volatilize (up to 23% of total As) (Hartmann et al. 2003). 
Reactive oxygen species (ROS) produced by heavy metals like copper, iron, chro-
mium, cadmium, lead, and mercury can lead to oxidative stress, affect calcium 
homeostasis, and cause damage to DNA (Klaunig et al. 1998). ROS generation 
has the potential to make fungi poisonous and harm a variety of vital 
macromolecules, including lipids, proteins, and nucleic acids. Metal/metalloid toler-
ance in fungi has been linked to their capacity to remove ROS (Fujs et al. 2005). Due 
to their high thiolate sulfur content, small proteins (between 2 and 7 kDa), such as 
metallothioneins, can bind metal ions for storage and detoxification in both



eukaryotes and prokaryotes. In addition to glutathione (GSH), glutathione disulfide 
or oxidized glutathione (GSSG), non-protein sulfhydryl groups (NP-SH), and 
protein-bound sulfhydryl groups (PB-SH), it has been shown that cysteine-rich 
peptides, such as phytochelatins, and other thiol substances can bind metal ions 
and scavenge ROS. Additionally, the response of fungi to metal/metalloid exposure 
or their detoxification is significantly influenced by antioxidant enzymes. Numerous 
antioxidant enzymes have been found in fungi, and they may neutralize ROS and its 
byproducts or repair the harm they cause. The ability to shield cells against metal/ 
metalloid-induced stress has been demonstrated for superoxide dismutase (SOD), 
glutathione peroxidase (POD), glutathione reductase (GR), glutathione 
S-transferases (GSTs), and catalase (CAT) (Shen et al. 2015). Jiang et al. (2015) 
demonstrated that the synthesis of NP-SH, GSH, PB-SH, and GSSG, as well as the 
induction of antioxidant enzymes, greatly altered Oudemansiella radicata’s 
responses to Cu exposure or Cu detoxification. 
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8.3.3 Enzyme Involved in the Biodegradation of Toxic Compounds 

The best tools for bioremediation are enzymes since they hasten all chemical 
reactions that take place on pollutants. Enzymes frequently have broad enough 
specificities to work on several substances with structural similarities. Additionally, 
it is possible to alter enzymes to enhance both their stability and function in specific 
situations or with particular substrates (Theerachat et al. 2012). For the bioremedia-
tion of pollutants, many distinct enzymes, such as mono- or dioxygenases, 
peroxidases, hydrolases, halogenases, transferases, oxidoreductases, and 
phosphotriesterases, are derived from a wide variety of microorganisms and plant 
sources as well. Every time, the soil, in addition to the air and water, is polluted by 
significant quantities of organic pollutants. These pollutants include pesticides and 
herbicides, plastics, dyes, medicines, and heavy metals. Most organic substances that 
need to be cleaned up on a global scale include aromatic molecules, chlorinated 
hydrocarbons, polymers, polycyclic aromatic hydrocarbons (PAHs), 
organocyanides, steroids, etc. The primary contributor to their lethality is the sturdy 
structure they possess. The following is an example of an enzyme that plays an 
essential role in bioremediation. 

Hydrolases (EC3): Hydrolase enzymes such as nitrilases, aminohydrolases, and 
organophosphorus hydrolases are among the most helpful in the bioremediation of 
numerous chemicals, including pesticides and herbicides and nitrile, polymers, and 
organophosphorus compounds. Some other hydrolase enzymes include lipases and 
cutinases (Ufarté et al. 2015). Nitrilases (EC 3.5.5.1) can hydrolyze the triple bonds 
present between the carbon and nitrogen (known as the nitrile group) in polymers, 
herbicides, and plastics in a stereo-, regio-, or chemoselective manner, resulting in 
the production of carboxylic acid and ammonia. Many species, such as Streptomyces 
sp., Fusarium solani, Rhodococcus rhodochrous, Aspergillus niger, and others, can 
express these enzymes (Martinkova et al. 2017). Organophosphorus hydrolases 
(EC 3.1.8.2) are organophosphate chemicals that were produced and utilized not just



as pesticides but also in warfare and the pharmaceutical industry. The enzyme 
known as organophosphorus hydrolase, which also goes by the name 
phosphotriesterase, is one of the enzymes that may be used for the bioremediation 
of organophosphorus chemicals. Aspergillus niger and Penicillium lilacinum are two 
examples of well-known fungus species that are responsible for the synthesis of this 
enzyme (Martinkova et al. 2017). Ligninolytic peroxidases: White-rot fungus 
(WRF) and other groups of fungi generate enzymes that break down lignin, and 
these enzymes have a wide range of uses in bioremediation. Because of the strong 
nonspecificity and high non-stereoselectivity of these enzymes, they are able to 
digest a wide variety of molecules that are resistant to degradation. These four 
varieties include things like laccase (LAC), lignin peroxidase (LiP), manganese 
peroxidase (MnP), and versatile peroxidase (VP) (Kaur et al. 2016). 
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Fungi can lower the toxicity of metals and metalloids through their enzymatic 
activity, which can affect the amounts of these compounds in the environment. The 
enzyme fungal organomercury lyase is responsible for the conversion of 
organomercury compounds to Hg(II), which may then be further reduced by mercu-
ric dehydrogenase into the more volatile element Hg(0) (Gadd 1993). After phos-
phate transporters move As(V) into fungal cells, many common detoxification 
mechanisms may be engaged, including arsenate reductases reducing it to As(III) 
and AMF sequestering it (Sharples et al. 2000; Gonzalez-Chavez et al. 2011). 
S. cerevisiae’s resistance is caused by three contiguous genes: ACR1 
(a transcriptional regulator), ACR2 (arsenate reductase), and ACR3 (plasma mem-
brane arsenite efflux pump). Fungi may also resist metals and metalloids by 
methylating inorganic arsenic to form volatile derivatives. An enzymatic process 
transfers metals like Hg, Sn, and Pb to the methyl group, resulting in molecules with 
varied solubility, volatility, and toxicity (Barkay and Wagner-Döbler 2005). 
Trimethylarsine oxide is produced when the nonvolatile monomethylarsonic acid 
and dimethylarsenic acid are fermented by the microorganisms Candida humicola 
(Cullen and Reimer 1989), Gliocladium roseum, and Penicillium sp. (Cox and 
Alexander 1973). Heat-resistant Neosartorya fischeri was shown to biovolatalize 
(up to 23% of total As) (Cernansky et al. 2007) effectively. Scopulariopsis 
brevicaulis (Andrewes et al. 2000)  and  Cryptococcus humicola (McDougall and 
Blanchette 1996) have both been found to biomethylate As and Sb (Hartmann et al. 
2003). Both investigations found that these fungi methylate As and Sb similarly. 
Iron, copper, cadmium, chromium, lead, and mercury produced reactive oxygen 
species (ROS), causing oxidative stress, calcium homeostasis changes, and DNA 
damage (Klaunig et al. 1998). ROS may destroy proteins, nucleic acids, and lipids, 
making fungus poisonous. Fungi with metal/metalloid tolerance can reduce ROS 
(Fujs et al. 2005). Metal ions may be stored and detoxified in tiny proteins like 
metallothioneins (2–7 kDa) in both pro- and eukaryotes because of their high thiolate 
sulfur content. Phytochelatins, cysteine-rich peptides, and other thiol compounds, 
including nonprotein sulfhydryl groups (NP-SH), protein-bound SH, GSH, and 
GSSG, are known to connect metal ions and scavenge reactive oxygen species 
(Cobbett and Goldsbrough 2002). In addition, antioxidant enzymes contribute 
significantly to the reactions of fungi to the presence of metals and metalloids, as



well as to the detoxification of these substances (Raab et al. 2004). Antioxidant 
enzymes have been isolated thanks to the work done by fungi. These antioxidant 
enzymes have the potential to either get rid of reactive oxygen species (ROS) and 
their derivatives or repair the harm caused by these substances. It has been shown 
that the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (POD), glutathione reductase (GR), and glutathione S-transferases (GSTs) are 
all capable of protecting cells from the damage that is caused by metals and 
metalloids (Shen et al. 2015). Jiang et al. (2015) discovered in their research that 
the production of NP-SH, PB-SH, GSH, and GSSG, as well as the activation of 
antioxidant enzymes (including SOD, POD, CAT, and GR), played a significant role 
in Oudemansiella radicata’s reactions to copper toxicity or copper detoxification. 
These enzymes were found to be involved in the production of NP-SH, PB-SH, 
GSH, and GS. 
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8.3.4 Bioaugmentation and Biostimulation 

8.3.4.1 Bioaugmentation 
Autochthonous or allochthonous wild-type or genetically modified microorganisms 
are applied to contaminated hazardous waste sites through bioaugmentation to speed 
up the removal of unwanted substances. Oil-contaminated settings are typically the 
focus of bioaugmentation efforts as bioremediation (Mrozik and Piotrowska-Seget 
2010). 

Factors Affecting Bioaugmentation 
Bioaugmentation relies on microbial consortia adapting to the location to be 
decontaminated. To succeed, the newly imported microbial consortia must compete 
with indigenous microbes, predators, and abiotic influences. According to research, 
it increases the biodegradation of polluted soil by enhancing remediation efficiency. 
Bioaugmentation is mainly done in soils with fewer pollutant-degrading 
microorganisms and chemicals that require multi-process treatment. Several more 
criteria govern soil bioaugmentation. pH, temperature, moisture, organic matter, 
aeration, and nutrient concentration affect bioaugmentation. Remediation is ineffec-
tive if specific soil properties are missing in nature (Yuniati 2018). According to 
literature, Burkholderia sp. FDS-1 degrades nitrophenolic pesticides best at 30 °C 
and slightly alkaline pH. Catabolic genes and enzymes are responsible for the varied 
catabolic actions of microbial organisms (Rivelli et al. 2013). 

Selection of Microbes 
Bioaugmenting microorganisms played different roles in polluted site augmentation 
in the literature. Soil augmentation uses several microbial strains or consortia. Soil 
contaminants influence soil quality and soil microbial populations, which perform 
many vital tasks. Selecting the right microbial strains or consortiums is crucial for 
successful soil augmentation. Fast growth, easy culturing, high pollutant concentra-
tion resistance, and tolerance of a wide variety of environmental conditions are just a



few characteristics of microorganisms that must be considered when choosing a 
strain or microbial consortia. Soil contamination can also be remedied by harvesting 
beneficial microorganisms from other polluted areas that have been exposed to the 
same or comparable chemicals and then reintroducing them to the target area 
(Adams et al. 2020). 
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8.3.4.2 Biostimulation 
Biostimulation is a low-cost and efficient green remediation strategy. Rate-limiting 
nutrients, including phosphorus, nitrogen, oxygen, and electron donors, are added to 
highly polluted areas to stimulate the local bacteria into degrading the harmful and 
toxic pollutants (Elektorowicz 1994). 

Mechanism of Stimulation 
Hydrocarbon bioremediation is more effective than biostimulation (Adams et al. 
2020). Biostimulation is an effective hydrocarbon-degrading technique, notably for 
petroleum compounds and derivatives. Rate-limiting nutrients increase decontami-
nation and boost microbial degradation capacity. In particular, biostimulation or 
rate-limiting nutrient input can considerably repair petroleum-contaminated 
locations with less efficient and metabolically deficient microbial populations. 
Most of the credit for this goes to the low price of carbon (C), one of the rate-
limiting resources needed by native bacteria for metabolic activities involving 
petroleum contaminants. Thus, adding a few rate-limiting nutrients besides carbon 
to the soil dramatically increases petroleum breakdown. Besides rate-limiting 
minerals, additional nutrient-rich organic materials can accelerate restoration. 
Organic waste from household sewage treatment (biosolids) with nitrogen- and 
phosphorus-rich inorganic fertilizers accelerates petroleum hydrocarbon breakdown 
by 96%. 

Factors Affecting Stimulation 
Environmental factors, including pH, moisture, temperature, and others, affect 
biostimulation-based contaminated site bioremediation (Abdulsalam et al. 2011). 
The biostimulation rate is also affected by environmental physiology. In this situa-
tion, marine bioremediation might be considered. The marine ecosystem’s bioreme-
diation rate could be better because microorganisms cannot target the polymer for 
destruction since wave motion dilutes or washes it out. There are examples of the 
harmful impacts of excessive fertilizer input to soil. An increased quantity of N and P 
sources can promote eutrophication, which increases algae growth and lowers water 
dissolved oxygen, killing aquatic life (Nikolopoulou and Kalogerakis 2009). Thus, 
biostimulation’s environmental dependence can restrict the method’s development 
or efficiency. By balancing the soil’s rate-limiting nutrient additions, biostimulation 
efficiently removes complex pollutants from the ecosystem (Zawierucha and Malina 
2011). 

Biostimulation has the potential to remediate several contaminants, including 
polyester polyurethanes, sulfate, and petroleum hydrocarbons. Sulfate contamina-
tion of groundwater is harmful to ecosystems and human health. They are being



fixed using biostimulation. Electron-donor alteration can enhance sulfate reduction 
(Miao et al. 2012). Soil degradation of polyester polyurethanes is hastened by 
biostimulation. Foams, fibers, textiles, and synthetic leather are just a few of the 
many applications for polyester polyurethanes (PU), a synthetic polymer (Cosgrove 
et al. 2010). Like macromolecules in living organisms, these polymers form 
connections within themselves (such as ester and urethane linkages). The disintegra-
tion of microbes is accelerated by intramolecular interactions, which serve as attack 
sites for the microbes (Zheng et al. 2005). The best strategy for acclimating microbial 
communities in petroleum-polluted environments is called biostimulation. Conse-
quently, the pace of cleanup was higher in adapted populations than in 
uncontaminated ones. 
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8.3.5 Agricultural Effluents and Their Mycoremediation 

Modern farming techniques wholly depend on agricultural chemicals, including 
herbicides, pesticides, weedicides, insecticides, and fertilizers, to increase crop 
output; this trend has developed throughout the past century (Carvalho 2017). 
Agrochemicals and residues remain in the environment because agricultural 
effluents create pollutants. The soil ecosystem’s biota, which contains many fungal 
species, helps biological processes. These activities include mineralization, elemen-
tal cycling, biodegradation of organic molecules, and enhanced agricultural produc-
tion due to the bioavailability of insoluble components. Agrochemicals in excessive 
quantities can harm the biological processes they were meant to boost. Here is a list 
of the fungi used in the mycoremediation process in Table 8.2. 

8.4 Factors Affecting Mycoremediation 

Mycoremediation is intimately linked to several crucial elements. Heavy metal 
remediation can be affected by pH, temperature, duration, pollutant concentration, 
and adsorbent dosage. Mycoremediation can be performed by either cultivating 
fungus or using fungal biomass, although in both circumstances, the most influential 
parameter is the pH of the solution. Fungal cell viability in the context of mycelial 
growth, metallic solubility, available active sites (functional groups) on the adsor-
bent, and interaction like attraction and repulsion between the adsorbent and metal 
ions due to the hydrogen ion (H+ ) isoionic effect all play a role in the removal 
capacity. Acidic or basic pH reduces HM sorption and fungi growth. Fungi biologi-
cally collect metal. Therefore, medium pH impacts clearance rate. Aspergillus is 
affected at pH 4. It was observed that biosorption was inhibited below pH 3.0 
(Pundir et al. 2018). Metal cations repelled positively charged fungal biomass 
metal-binding active sites or ligands, limiting biosorption. Pundir et al. (2018) 
found that metal hydroxide formation reduces metal removal above pH 5. Fungi 
with more outstanding negative charges bind strongly with metal ions at higher 
pH. Surface functional group separation impacts it (Mohsenzadeh and Shahrokhi
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2014; Rawat et al. 2020). The adsorption of fungal biomass is prevented by pH 
changes (Li et al. 2018). When the pH of the solution drops, the dead biomass of 
Auricularia polytricha, Flammulina velutipes, Pleurotus eryngii, and P. ostreatus 
binds Cu(II), Zn(II), and Hg(II) at quantities ranging from 5.64 to 77.39%. At pH -
2 (Pourkarim et al. 2017), dead biomass from the artist’s bracket fungus is an 
effective source for Cr(VI) adsorption.
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Temperature affects adsorption differently. The fungal (Penicillium fellutanum) 
endothermic process in Ni and Zn removal is from deceased cellulose hybrid with 
bentonite (FBC) (Rashid et al. 2016). Endothermic or exothermic adsorption 
reactions occur (Pourkarim et al. 2017). Active fungus clears well at 25–35 °C 
(Kumar and Dwivedi 2019). Elevated temperatures distort and damage biosorbent 
surface functional groups (active sites) and affect cell membrane integrity, microbial 
cell wall configuration, metal microbe complex stability, and ionization 
characteristics, decreasing metal bioabsorption using fungal biomass. The clearance 
rate drops with adsorbing species’ thermal energy (Pourkarim et al. 2017). A fungal 
(Penicillium fellutanum) mixture of bentonite and decomposing biomass (FBC) 
eliminates Ni and Zn better at 30–51 °C than at 51 °C (Rashid et al. 2016). Fungal 
cell wall component reorientation and chemical moiety ionization may explain the 
active site’s high affinity for metal ions at moderate temperatures. 

Fungal biomass absorbed heavy metals faster than by mycoremediation 
(Salvadori et al. 2015). While fungal biomass adsorption takes minutes to hours, 
growing fungi can remove HM in a matter of hours to days. At 100 min, Cai et al. 
(2016) noticed that the combination of polyvinyl alcohol (PVA) and sodium alginate 
(SA) more efficiently removed Cu, Pb, and Cd from immobilized live conidia of 
Penicillium janthinellum strain GXCR. Dried artist’s bracket and Lepiota hystrix 
biomass removed Cr, Cu, and Hg(II) in 30 and 5 min, respectively (Pourkarim et al. 
2017). Adsorption occurs after pollutant interaction; with the process being func-
tional group dependent, the adsorbent surface’s active site is quickly saturated. As a 
result, pollutant removal will either be constant or reduce because of desorption 
phenomena (Hajahmadi et al. 2019). Adsorption processes have two phases: an 
initial quick phase that lasts a short while and an additional slower phase that lasts a 
long period until equilibrium. 

After equilibrium, ions had trouble filling the adsorbent’s vacant active sites; 
hence, increasing time duration lowered the adsorption potential. Periodic 
intraparticle diffusion may reduce fungal biomass adsorption potential. Gupta and 
Balomajumder (2015) discussed dual-phase adsorption; the adsorbent’s active sites 
are free to bind metal ions in the first phase. The second phase removes leftover 
active sites and may reject pollutants and bulk phase. Because they share charges, 
some of the dissolved solutes may have a repulsion toward the small adsorption 
inorganic on the adsorbent surface, reducing adsorption and rate of interaction 
between the active substituent and solute particles following the second phase. 
Solute concentration directly impacts the adsorption rate. Growing fungus and 
fungal biomass remediation require it. 

In developing fungus, heavy metal concentration initially increases the clearance 
rate, but it declines after reaching its optimal concentration. The first phenomena



may be related to active locations on growing fungus, and increased interaction 
between HMs and developing cell fungi that encourages maximal clearance. How-
ever, time, growth, and metabolic rate regulated metal buildup and promoted metal 
elimination. However, greater HM concentrations are hazardous to developing 
fungi, slowing sorption and removal by inhibiting their metabolism and develop-
ment. Lead enhances fungal biomass, predominantly filamentous, in the culture’s 
beginning and end phases (Samadi et al. 2017). Fungal biomass (dead and treated) 
affected removal rate similarly to growing fungus, initially increasing HM concen-
tration to saturate the active site and then decreasing after equilibrium. The concen-
tration differential between the fluid and fungal biomass allows metal ions to saturate 
active sites as the removal rate increases (Zang et al. 2017). Due to increased 
diffusion, the lower metal concentration gradient decreases transport (Chen et al. 
2012). At the point of equilibrium concentration, the removal rate may decrease due 
to adsorbent inactivity and HM repulsion. 
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According to Uzunoğlu et al. (2014), Sargassum acinarum can remove 
100 mg L-1 of Cu(II) at its maximum rate (seaweed). While Saravanan et al. 
(2016) used a mixed biosorbent of custard apple seeds and A. niger to remove Cr 
(VI) and Ni(II), they discovered that the specific removal rate decreases with metal 
concentration. Zang discovered that Auricularia auricula has its maximum adsorp-
tion capacity at 200 mg L-1 Cr(VI) in effluent. Adsorption tests rely on the amount 
of fungal adsorbent used. Adsorbent concentrations that are higher enhance HM 
interaction and active site availability. When mycelial pellets were raised from 2 to 
10 g L-1 , rates of Cr(VI) ion elimination improved from 20.1 to 88.5%. Biosorbent 
also increased the number of active sites. In other investigations, the correlation 
between fungal adsorbent dosage and pollutant removal rate was maintained despite 
differences in pollutant and adsorbent (Mondal et al. 2017). Figure 8.3 shows the 
general process of mycoremediation of heavy metals. 

8.5 Recent Advancements in Mycoremediation 

Humans contaminate the environment by introducing heavy metals, radionuclides, 
hydrocarbons, and pollutants. The urban and industrial expansion has polluted 
surface and groundwater, harming persons and the ecosystem (Kour et al. 2021). 
Thus, the need for environmental ethics pollution-reduction methods is growing. 
Pesticides and herbicides protect crops from pests and weeds, enhancing productiv-
ity and yield. Agriculture has increased pesticide use. These poison ecosystems and 
are intransigent. Pesticides cause cancer, mutagenesis, immunosuppression, hor-
mone imbalance, and other health problems (Gupta 2004). To use and abuse 
pesticides as a means of generating power, microorganisms have evolved various 
enzymes, activation mechanisms, and metabolic pathways (Goel et al. 2008; Kumar 
et al. 2021). Many different pollutants can be degraded by fungus via two different 
processes called mycodegradation and mycodeterioration. “Mycoremediation” 
describes the process of using fungus in nature to break down pollutants and 
garbage. Fungal species, including Phanerochaete velutina, Coriolus versicolor,



and Pleurotus ostreatus, have exhibited the capacity to degrade a variety of 
herbicides, including atrazine (Castillo et al. 2001). Biodegradation of Granstar 
(tribenuron methyl) to various metabolites was shown to be most effective when 
performed by Aspergillus versicolor over 5 weeks (Ai-jawhari and Ai-seadi 2016). 
Exploring endophytic fungus aids heavy metal biosorption. Penicillium sp. and 
A. niger have a better biosorption capability in metal contaminant settings by 
binding metals present in various pollution sources. Polluted environments can 
absorb heavy metals through biosorption utilizing metabolically driven or physico-
chemical adsorption processes. Aromatic hydrocarbons are more environmentally 
harmful than aliphatic ones. Endophytes help their hosts degrade organic 
contaminants and reduce phytotoxicity by using relevant degradation pathways 
and metabolic capacity (Soleimani et al. 2010). Many microbes extract hydrocarbons 
from air, water, and soil. Biodegradation is slow. Thus, instead of depending on a 
specific organism, microbes from diverse genera can act together to extend degrada-
tion. Petroleum-contaminated soil, water, and surfaces include many 
microorganisms. Microorganisms may attach heavy metal ions to their cell walls, 
rendering them immobile. In addition, they may transform certain contaminants into 
water-soluble molecules and utilize them as food and fuel. Bioremediation is a 
method that can be used to speed up by the presence of microorganisms that 
stimulate plant growth or promote decomposition by rhizobia (Kavamura and 
Esposito 2010). Because of their high biomass content, fungi are helpful in the 
biodegradation of heavy metal-polluted areas. Because they break down so easily, 
convert, and cycle nutrients, fungi play a crucial role on Earth. In their
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Fig. 8.3 The overall process of mycoremediation of heavy metal



groundbreaking research, Wunch et al. (1999) documented for the first time the 
fungi’s ability to degrade anthropogenic chemicals.
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8.6 Conclusion and Future Prospectus 

It is possible to increase the resistance of metal/metalloid-resistant fungus to envi-
ronmental toxins using various genetic engineering techniques. Pocsi (2011), using 
S. cerevisiae as a model system, has suggested increasing synthesis of extracellular 
and intracellular metal chelators as a possible target for genetic modifications, taking 
off the metal scavengers to slow the metal flow, increasing the production of 
components of the antioxidative defense system, altering the network of regulators, 
and interfering with programmed cell death (apoptosis). Scientists have developed 
fungal strains from the endophytic fungi Mucor sp. CBRF59 by fusing protoplasts 
(Deng et al. 2013). Rape plants were injected with the mutant strain CBRF59T3 to 
increase the stress tolerance of an unidentified fungus utilized in heavy metal-
polluted soil phytoremediation. Rape sprouts cultivated on Cd(II)- and Pb(II)-
contaminated soils had 35–189% higher Cd(II) levels (Deng et al. 2013). Qiu et al. 
(2015) discovered that a modified BY-G strain was more resistant to oxidative stress, 
heat, furfural, hydroxymethylfurfural, and Cd than a reference strain of S. cerevisiae 
(II). Public opinion on bioremediation using GM microorganisms is crucial. Using 
genetically modified fungus to treat metals and metalloids seems promising. The 
intricacy of the toxic effects of metals and metalloids on cells has long escaped 
comprehension. Still, sequence information on their genomes has enabled 
postgenomic techniques to gain abundant data on the roles of their genes and the 
mechanisms that regulate them. Immobilization of metals by their reduction has uses 
in bioremediation and in creating new biomaterials and catalysts (Gadd et al. 2012). 
Subtracting heavy metals from wastewater and soils using a biosorption-based 
biosynthesis of nanoparticles can also help in the production of heavy metal 
nanoparticles that may be used in the technology industry (Karman et al. 2015). 
One innovative strategy for creating metal nanoparticles (NPs) involves using the 
highly organized physical and metabolic activity of microbial cells (Gericke and 
Pinches 2006). Compared to other microorganisms, fungi are preferable for 
synthesizing NPs due to their manageability, simplicity of food requirements, strong 
cell wall-binding capability, and high intracellular metal absorption capabilities 
(Sanghi and Verma 2009). Several research has examined whether fungus can 
detoxify polluted surroundings by producing nanomaterials and removing harmful 
metals. Velmurugan et al. (2010) found that Fusarium sp. from a South Korean zinc-
contaminated mine could absorb up to 320 mg L-1 and produce ZnO NPs. In an 
aqueous solution, Hypocrea lixii dead biomass may produce CuO and NiO NPs by 
reducing Cu and Ni ions (Marcia Regina Salvadori et al. 2015). Rhodotorula 
mucilaginosa and Trichoderma koningiopsis biosynthesize Cu NPs (Salvadori 
et al. 2014). Nanoparticles improve fungal bioremediation. It was found that adding 
1  mg  L-1 Ag-NPs to Phanerochaete chrysosporium increased its Cd(II) removal by 
tenfold (Zuo et al. 2015). When used to remove Cd and break down



2,4-dichlorophenol, P. chrysosporium immobilized on TiO2 nanoparticles (PTNs) is 
a one-of-a-kind, high-value bioremediation material due to their antioxidative 
defense mechanism and physiological fluxes (Tan et al. 2015). Suspiciously, fungi 
can efficiently remove NPs from aqueous mediums. It was found that Pleurotus 
eryngii and Trametes versicolor can remove 86% and 61% of Al2O3 NPs, respec-
tively. Although less effective against Co NPs, P. eryngii can eliminate 58% of Pt 
NPs (Jakubiak et al. 2014). 
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Tripathi et al. (2013) proposed many essential sustainability metrics as a means to 
evaluate the potential for the durable success of corrected systems. The decrease in 
pollutant levels and residual concentrations after the remediation are major factors 
illustrating the enhancement of soil physicochemical qualities, the growth of micro-
bial biomass, the diversity of their functions in soil, and the improvement in the 
biodiversity component, which includes sensitive and key species. The traditional 
physicochemical techniques, including evaporation, electrochemical treatment, 
membrane technology, filtration, ion exchange, reverse osmosis, chemical precipi-
tation, oxidation, and reduction, are desirable and potential substitutes. This is true 
notwithstanding the difficulties involved in applying molecular methods to increase 
the likelihood of remediation. Because it is capable of meeting a number of the 
aforementioned characteristics, fungal bioremediation is an alternative that is both 
successful and durable in terms of removing heavy metals and metalloids from 
polluted areas. The metal-resistant fungus has arisen as a possible solution to the 
pollution from metals and metalloids in light of recent developments in nanotech-
nology and our growing understanding of the life cycles of nanoparticles. 
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Abstract 

The consequences of pharmaceuticals in the environment are still uncharted. 
Earthworms and soil insects have a positive significant role in the improvement 
of soil health and organic matter contents. They are an important part of most 
ecosystems particularly soil fauna, which makes a significant portion of 
macrofauna biomass. Because of the high rate of antibiotic and analgesic con-
sumption in animal husbandry as well as human medicine, it has become a 
worldwide menace which induces antibiotic resistance in bacteria and causes 
toxicological damage to organisms as well as environment. Earthworm plays a 
major role in reducing the toxicity of the soil as well as degradation of analgesics 
and antibiotics. The chapter highlights the degradation of analgesics and 
antibiotics by soil worm. 
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9.1 Introduction 

Antibiotics are powerful, bioactive chemicals that are employed to treat bacterial 
infections. Following ingestion, these compounds are eventually excreted and reach 
the soil and environment, increasing the residual concentrations in soils, which can 
vary from a few μg  to  g  kg-1 and are comparable to those found in soil that has been 
poisoned by pesticides. Many antibiotic compounds combine polar functional 
molecules with nonpolar cores. Amphiphilic or amphoteric properties are common 
in antibiotics. However, molecules from different structural classes exhibit an 
extensive variety of physicochemical properties (Thiele-Bruhn 2003). Ibuprofen 
and monocyclic paracetamol, which are frequently used to treat mild-to-moderate 
pain, are two examples of analgesics and nonsteroidal anti-inflammatory 
medications (NSAIDs), which are currently regarded as one of the most developing 
groups of xenobiotics. Degradation of such pollutants has grown to be a significant 
issue due to the improved understanding of the long-term negative consequences of 
these xenobiotics as well as their biological and pharmacokinetic activities, particu-
larly at environmentally significant concentrations. Additionally, traditional waste-
water treatment plants (WWTPs) are still not completely capable of removing these 
specific types of micropollutants (Żur et al. 2018). Earthworms are 
macroinvertebrate oligochaete worms that live in dirt and are reddish to dark 
brown, tubular, and segmented. As they dig their holes, these worms increase the 
soil’s nutrition and efficiency; they are known as “farmer’s friends” (Bhorgin and 
Uma 2014). The addition of substantial amounts of organic and inorganic matter in 
the form of nitrogenous waste by worm casting and air and water penetration 
through holes both contribute to improved soil fertility (Katsvairo et al. 2007). 
Antibiotics are degraded and rendered inactive more efficiently as a result of 
biotransformation. However, some metabolites retain antibiotic activity, and attach-
ment to the soil matrix prevents the degradation of these antibiotics. Although all 
antibiotics are extremely bioactive, their effects on soil organisms are significantly 
distinct. Pharmaceutical residues from antibiotics have the potential to cause resis-
tance to diseases in either a direct or an indirect way through the transmission of 
plasmids from nonpathogenic to pathogenic microbes (Wegener et al. 1998). 
Antibiotics in soil may be degraded by microbes in addition to being degraded by 
abiotic processes. It has been found that specific bacteria that break down 
pharmaceuticals exist in soils that have been contaminated with antibiotics, for 
instance, in liquid cultures, strains from the genera Microbacterium (Topp et al. 
2013), Stenotrophomonas (Leng et al. 2016), Burkholderia (Zhang and Dick 2014), 
Labrys (Mulla et al. 2018), Escherichia (Wen et al. 2018; Mulla et al. 2018), and 
Ochrobactrum (Mulla et al. 2018; Zhang et al. 2017). Other bacteria associated with 
the genera Microbacterium (Kim et al. 2011), Klebsiella (Xin et al. 2012), Labrys



(Amorim et al. 2014), Acinetobacter, Escherichia (Zhang et al. 2012), and Bacillus 
(Erickson et al. 2014), which are able to begin degrading sulfapyridine, chloram-
phenicol, ciprofloxacin, sulfamethazine, ceftiofur, and norfloxacin, have been 
isolated from sediments, seawater, sludge, patients, animal, and feces. In particular, 
Microbacterium sp. demonstrated sulfamethazine breakdown in soil and sped up the 
process of minerals forming from that antibiotic by 44–57% when added to agricul-
tural soil (Hirth et al. 2016). 
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9.2 Pharmaceutical Sources in the Environment 

Pharmaceuticals and over-the-counter (OTC) medications have been found in trace 
amounts in the environment, with concentrations less than one part per billion (i.e., 
1 μg L-1 ). The active pharmaceutical ingredients (APIs) that are released into the 
environment might do so via three basic routes. Because of regular patient and 
consumer usage and excretion into sewage and wastewater treatment systems, the 
great majority of APIs are found in water systems. The inappropriate flushing or 
pouring of unnecessary or expired medications through drains by consumers is a 
second route for their inadvertent disposal. The third route uses wastewater that has 
been released from API manufacturing facilities. They ultimately enter the environ-
ment through several additional smaller channels, including landfill leachate and 
hospital discharges (Caldwell 2016). 

9.3 Ecological Toxicological Effect of Analgesics 

Any natural or artificial substance that reduces pain (produces analgesia) without 
leading to unconsciousness, paralysis, or other severe impairments of sensory 
function or nerve impulse conduction is an analgesic, also referred to as a painkiller. 
It differs from anesthetics, which result in anesthesia, or the remission of pain by 
inducing unconsciousness. The Greek words an- (“without”) and -algia (“pain”) are 
the origins of the word analgesic. Analgesia describes the lack of pain perception 
when a person is still conscious. Currently used analgesic medications are either 
narcotics or non-narcotics with known harmful and adverse effects (Table 9.1). 
Concern over environmental pollution has grown in recent years as a result of 
mixed contaminants that have been released into the environment as a result of 
greater living standards. The removal of toxins from a location is necessary, but is 
frequently impractical due to technological, environmental, geographical, social, or 
financial limitations. 

With the progress of medicine in recent years, the demand and supply of medici-
nal products have both quickly expanded. About 3000 chemicals are needed to make 
medications, and hundreds of tons are produced annually (Carvalho and Santos 
2016; Grenni et al. 2018). The most widely used drugs in the world are analgesics, 
antibiotics, and anti-inflammatory medications. As a result, the advancement of 
water-soluble and pharmacologically active organic micropollutants, also known



as pharmaceutical active ingredient, has gained considerable attention globally, in 
contrary of being used extensively as veterinary medicine in farms worldwide to 
prevent and treat animal diseases so as to boost economic benefits in intensive 
livestock, as a variety of these pharmaceuticals are used regularly by humans for 
their health (Blanco et al. 2017; Ekpeghere et al. 2017; Gros et al. 2019; Ramírez-
Morales et al. 2021). 
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Table 9.1 The effects of drugs on the environment and humans 

Analgesics Effects References 

Acetaminophen Cardiovascular abnormalities, hatch 
and motor behavior, and interruption of 
oocyte maturation/ovulation in Danio 
rerio 

David and Pancharatna (2009), 
Lister and Van Der Kraak (2009) 
and Xia et al. (2017) 

Ibuprofen Inhibits CYP2M in Cyprinus carpio Thibaut et al. (2006) 

Diclofenac Population declines of Gyps vultures Cuthbert et al. (2007) 

Ketoprofen Inhibits CYP2M in Cyprinus carpio Thibaut et al. (2006) 

Diclofenac Prostate gland synthesis and damage to 
the gills, liver, and kidneys of Salmo 
trutta f. fario 

Hoeger et al. (2005) 

Naproxen Pisum sativum Svobodníková et al. (2020) 

Diclofenac Histological alterations of the kidneys 
and gills; cytological alterations of the 
liver, kidneys, and gills; and 
deterioration of ionic regulation in 
Oncorhynchus mykiss 

Schwaiger et al. (2004), 
Triebskorn et al. (2004) and Gravel 
et al. (2009) 

Naproxen Inhibits CYP2M in Cyprinus carpio Thibaut et al. (2006) 

Diclofenac Inhibits CYP2M in Cyprinus carpio Thibaut et al. (2006) 

Ibuprofen Change breeding pattern of Oryzias 
latipes 

Flippin et al. (2007) 

Carbamazepine Inhibition of basal EROD activity in 
cultures of rainbow trout hepatocytes 
Inhibition of emergence of 
Chironomus riparius 

Laville et al. (2004) and Nentwig 
et al. (2004) 

Diclofenac Alteration of estrogenic activity, 
response of specific tissue biomarkers, 
decreased superoxide dismutase and 
glutathione reductase activities in gills, 
and high catalase activity and levels of 
lipid peroxidation in the digestive 
gland in Mytilus galloprovincialis 

Gonzalez-Rey and Bebianno 
(2014) 

Diclofenac Inhibition of basal EROD activity in 
cultures of rainbow trout hepatocytes 

Laville et al. (2004) 

Ibuprofen Reduces the shoot and root lengths, 
fresh and dry weights, leaf area, 
chlorophyll a and b, carotenoid, total 
chlorophyll, mineral (K and Mg), 
glutathione reductase, and soluble 
protein contents of Vigna unguiculata 

Wijaya et al. (2020)
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The pharmaceutical’s/toxicant’s contact with the receptors causes functional and 
anatomical alterations in the organism that lead to fatal or nonlethal consequences 
(Vischetti et al. 2020). A few parameters, including bioavailability, toxicokinetics, 
biological transformation, and toxicodynamics, must be taken into account for a 
toxicant to have a significant impact. Pharmaceuticals are excreted from the body 
after ingestion as active components or metabolites in the urine and feces (Sui et al. 
2015; aus der Beek et al. 2016). However, due to effluent leach-outs produced during 
discharge conditions, these medicines can also be traced in water bodies, including 
freshwater, marine settings, as well as groundwater (Furlong et al. 2017; Ojemaye 
and Petrik 2018; Reis-Santos et al. 2018; Fekadu et al. 2019; Letsinger et al. 2019; 
Zainab et al. 2020). The fundamental issue is that some of these emerging 
contaminants (ECs) cannot be completely eliminated out by traditional treatment 
plants. The tremendous increase in pharmaceutical usage globally and the resulting 
environmental effects, especially their hindrance in aquatic and terrestrial 
ecosystems, make the study of medicines extremely important. Pharmaceutical 
compounds are regarded as ECs in the settings of wastewater and bioremediation 
due to the lack of regulations for their environmental disposal and the lack of 
knowledge on their long-term impacts on the environment (Dhangar and Kumar 
2020; Valdez-Carrillo et al. 2020; Chaturvedi et al. 2021; Rathi et al. 2021), which 
are yet unclear (Ahmed et al. 2017). This rising issue has been aggravated as some 
medications are counter sold without a prescription, which has created havoc 
environmentally (Gil et al. 2017). 

Anthropogenic activities are the main source of the majority of new 
contaminants, most of which find their way into the environment. All potential 
emerging contaminants are put through a variety of degradation procedures prior 
to discharge into the environment in order to be eliminated (Khan et al. 2020). The 
population of xenobiotic organisms and the production of new contaminants can 
both be decreased by the degradation of specific synthetic compounds. The environ-
ment (soil, groundwater, drinking water, surface water, wastewater, treatment plants, 
or sediments) in which they are present will try to shift into a transformation product 
when other chemicals and emerging pollutants are stressed by biological processes 
(Biswas et al. 2022; K’oreje et al. 2021). When compared to their parent chemical, 
these altered products show increased persistence and considerable increased toxic-
ity. When they transform, they could also acquire new characteristics. The process of 
biotic or abiotic transformation is followed by this chemical transition. By making 
the compounds more polar, the biotic process transforms the molecules (Reymann 
et al. 2020). 

9.4 Ecological Toxicological Effect of Antibiotics 

Pharmaceuticals play a vivacious role in the maintenance of human health along 
with the quality of life, and the extensive utilization of these compounds as a 
treatment option against various human and animal diseases for the last 20 years 
has already been reported as microcontaminants of water and soil ecosystems



(Boxall 2004; Carvalho and Santos 2016). Antibiotics are among the most impera-
tive and lifesaving discoveries of the past era prominently contributing to the 
treatment of life-threatening bacterial infections and have changed our traditional 
way of treatment significantly. Among various pharmaceutical products available 
commercially, antibiotics have caught extreme attention because of (1) their avail-
ability in huge concentration in soil and water ecosystems and (2) the emergence of 
multidrug resistance in bacteria which has posed severe health concern in humans 
and animals (Thiele-Bruhn 2003; Kümmerer 2009; Pawlowski et al. 2016). In 
addition, gradually as a consequence of irrational or overuse of different varieties 
of antibiotics against various bacterial infections and in livestock production, the 
rapid emergence of antimicrobial residues in the environment has grown into a 
global concern (Ben et al. 2019). 
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Antimicrobial is a vast term, which refers to a compound having the ability to 
fight against a variety of microorganisms including bacteria, viruses, fungi, protozoa, 
etc. Among antimicrobials, antibiotics are the one capable of fighting definitely 
against bacterial infections in animals and human host, which separates them from 
other antimicrobials or from disinfectants available (Brandt et al. 2015). There are 
few antibiotics known for their anticancer activities such as mitosanes, enediynes, 
bleomycin, actinomycin D, anthracyclines, anthracenones, and epothilones or as 
pesticides like streptomycin (Demain and Sanchez 2009; Cars et al. 2001). 
Antibiotics available commercially are either natural, synthetic, or semisynthetic 
and are derived from bacteria and fungi, which helps in inhibiting or killing other 
opponent microorganisms with bactericidal or bacteriostatic activity. Semisynthetic 
antibiotics are actually natural chemicals with an alteration by introducing an 
additive in their formulation, which helps in increasing its effectiveness, thus making 
it extra stable and less biodegradable. There are different classes of antibiotics based 
on their chemical structure and different groups attached, and they are classified on 
the basis of their mode of actions like cell wall inhibitors, protein synthesis 
inhibitors, inhibitors of nucleic acids, and metabolic pathway inhibitors (Kümmerer 
2009). 

Antibiotics upon administration inside the body get partly metabolized followed 
by excretion of a large amount of unaltered antibiotics or active metabolites through 
feces or urine (European Centre for Disease Prevention and Control (ECDC), 
European Food Safety Authority (EFSA), and European Medicines Agency 
(EMA) 2017; Kemper 2008), which consequently reaches the sewage treatment 
plant (Louvet et al. 2010). As per the previous literature available, 70% of the 
consumed antibiotics are excreted via urine and feces because of their poor metabo-
lism and absorption within human or animal body (Jutkina et al. 2018). An efficient 
removal of antibiotics and antibiotic-resistant genes (ARGs) from sludge or sewage 
waste treatment facility is not possible because of the utilization of our poor 
traditional method, which allows their entry into the natural environment 
(Berendonk et al. 2015; Cacace et al. 2019). Frequently, antibiotics and ARGs are 
observed in groundwater, surface water, and water supply systems, as water acts as 
an essential sink of antibiotic and pollution of resistance gene and their presence in 
the system is the greatest threat for both human health and the ecosystem (Table 9.2)



(Ma et al. 2017; Wang et al. 2020a; Zhang et al. 2022). Moreover, evidences 
regarding circulation of antibiotics and antibiotic-resistant genes in the environment, 
understanding on different pathways of pollution, various risks related to human 
health and the environment, and mechanisms of degradation and elimination of 
antibiotics and ARGs have always evoked a challenge for research in this area 
because of the intricacy of the natural and artificial systems, which makes the 
situation even more critical. 
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Table 9.2 The effects of antibiotics on the environment and humans 

Antibiotics Effects References 

Antibiotics Algae and aquatic plants are severely 
affected 

Brain et al. (2008) and Brausch 
et al. (2012) 

Antibiotics Block the electron chain of 
photosystem II and increase oxidative 
stress (photosynthesis inhibitors) 

Nie et al. (2013) 

Antibiotics Bacteria seem to be developing 
resistance to antibacterial substances 
due to exposure to low concentrations 
over several generations 

Kollef et al. (2017), Willyard 
(2017), García et al. (2020) and 
Wang et al. (2020b) 

Antibiotics Crustaceans such as Artemia salina, 
Daphnia magna, and Ceriodaphnia 
dubia show relatively low acute 
toxicity 

Wollenberger et al. (2000), 
Kołodziejska et al. (2013) and 
Minguez et al. (2016) 

Antibiotics Invertebrates such as Hydra attenuata 
and crustaceans such as Artemia 
salina, Daphnia magna, and 
Ceriodaphnia dubia show relatively 
low acute toxicity in the presence of 
antibiotics 

Wollenberger et al. (2000), 
Kołodziejska et al. (2013) and 
Minguez et al. 2016 

Tetracyclines, 
macrolides, and 
streptomycin 

Antibacterial resistance measured in 
soil bacteria obtained from sites treated 
with pig slurry 

Sengelov et al. (2003) 

Tylosin Impacts on the structure of soil 
microbial communities 

Westergaard et al. (2001) 

Erythromycin Inhibition of growth cyanobacteria and 
aquatic plants 

Pomati et al. (2004) 

Tetracycline Inhibition of growth cyanobacteria and 
aquatic plants 

Pomati et al. (2004) 

Sulfamethoxazole Inhibition of basal EROD activity in 
cultures of rainbow trout hepatocytes 

Laville et al. (2004) 

Human healthcare practices depend on antibiotic efficacy in treating and 
preventing bacterial infections (Livermore 2009). In addition, bacteria are evolving 
various mechanisms to combat these drugs (developing antibiotic resistance), which 
can increase the morbidity and mortality rate of bacterial infections by reducing their 
effectiveness (O’Neill 2014). The term antimicrobial resistance (AMR) refers to 
resistance capability developed in microorganisms, which may be bacterial, viral, 
fungal, or parasitic towards all the chemicals with antimicrobial action. However,



now the terms antimicrobials and antibiotics are frequently used synonymously in 
the existing literature. Over the past years, the consequence of AMR, particularly 
antibiotic resistance, has accomplished AMR to be placed along with the topmost 
global issues like pandemic influenza, terrorism, and climate change on the UK Risk 
Register (UK Cabinet Office 2015; Cabinet Office 2017). It has been opined by the 
World Health Organization (WHO) that in a post-antibiotic era, common infections 
and minor injuries can kill, far from being an apocalyptic fantasy, which instead has 
real possibility for the twenty-first century (World Health Organization 2014). 
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The increasing prevalence of the drug-resistant infection globally (Livermore 
2009; Finley et al. 2013; Wellington et al. 2013) has already triggered the irrational 
use of frequently used commercially available antibiotics and further compelled us 
to rely on the usage of costlier last-resort antibiotics as treatment options, which has 
ultimately resulted into the development of multidrug-resistant variety (e.g., colistin 
resistance) (Nhu et al. 2016). Development of a novel antibiotic is really a tedious 
effort, which involves huge investments by the pharmaceutical industries to improve 
a product having the potential of a small profit and limited life span before resistance 
develops (O’Neill 2015). If we consider the updates of the past three decades, cyclic 
lipopeptides and oxazolidinones were the only novel antimicrobials available com-
mercially (Gupta and Nayak 2014), and if similar pattern continues, then it will 
become definitely really hard to treat the common infections which are easy to treat 
at present and ultimately will lead us towards pre-antimicrobial era. Furthermore, the 
consequence of the situation will be inability to treat and prevent any bacterial 
infection from common to severe, and it will gradually elevate the risk of acute 
morbidity and mortality linked with repetitive medical processes (O’Dowd 2018). 
According to a report expressly prepared by the UK Government in 2014, it is 
expected that by 2050, antimicrobial resistance will be the chief source of death 
worldwide with an increase in the death rate from 700,000 in 2014 to ten million. 
Additionally, as a consequence of AMR on the entire economy, a loss of up to 
100 trillion USD of world’s GDP has been predicted by 2050 according to this report 
(O’Dowd 2018). Furthermore, it is assessed that NHS has already expended £180 
million each year on AMR management (O’Dowd 2018). In 2017, a frontier report 
published by the UN Environment Programme registered AMR as the most severe 
environmental pollution concern worldwide (Gaze and Depledge 2017). 

The release of excreted antimicrobials into the environment via anthropogenetic 
sources has highly influenced the competency of microorganism to evolve and 
develop novel defense mechanisms. According to the previous literature available, 
these unique resistance mechanisms were found to be mobile genetic elements 
mediated and are capable of facilitating the propagation of resistance components 
among microbial communities (Holmes et al. 2016). Antimicrobials even after 
excretion (can occur via both urine and feces) from animals and humans remain in 
active form as high as 90% (Levison and Levison 2009). As a result of the waste 
ejection via accomplished sewage water discharges and agricultural effluence into 
the environment (Singer et al. 2016), detection of antibiotic-resistant bacteria from 
the polluted environment has become very frequent along with a quantifiable 
concentration of antibiotics ranging from ng L-1 to μg  L-1 (Andersson and Hughes



2012). According to the previous reports available, even the lowest concentrations of 
antibiotics are capable of generating a selective pressure environment for 
ARB/ARGs (Gullberg et al. 2011, 2014; Murray et al. 2018, 2020, 2021, Lundström 
et al. 2016; Kraupner et al. 2018, 2020, Stanton et al. 2020). 
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As we know that antibiotics are a major pollutant of the environment which 
cannot be degraded via physical adsorption, photodegradation is a very costly 
approach, while the chemical oxidation may lead to secondary pollution. However, 
biodegradation of antibiotics is gathering more attention due to several advantages 
like being less expensive and easy to operate, with no risk of secondary pollution. 
Despite degradation by microbes and by activated sludge procedure, in both the 
cases, the dissemination of ARGs will definitely arise. Hence, the utilization of 
antibiotic-degrading enzymes after purification for antibiotic degradation is a noble 
approach, and constructing genetically engineered bacteria with useful features (like 
degrading enzyme-producing capability) or in vitro synthesis of associated enzymes 
will help in reducing the cost of our approach and will make it far more attractive. 
However, the problem regarding the toxicity profile of the antibiotic degradation 
product is the biggest concern of the hour. As health care and regulatory system 
differs in different countries, the changes to improve the system should be initiated 
with the local practices followed by their global implementation (Kuppusamy et al. 
2018). Different parameters like usage of antibiotics, their availability, quality, and 
manufacture need to be organized in underdeveloped and developing countries, and 
additionally, the regulation of interventions associated with hospitals and antibiotic 
practice in animals (food producing) should be given the supreme priority (Chokshi 
et al. 2019). 

9.5 Antibiotic Effects on Earthworms in Their Natural Habitat 

Earthworms are the recognized predominant members of soil microfauna, which 
affects microbial communities of soil along with the biological processes by altering 
soil properties and structures (Babu Ojha and Devkota 2014) and accessibility and 
cycling of nutrients (Orozco et al. 1996), and further, it has been proposed that the 
gut of earthworm plays a vital role in influencing the microbial composition 
(Medina-Sauza et al. 2019) and function (Zhu et al. 2021) in soil. As already 
reported, the soil moisture, bacterial populations, and organic matter can be signifi-
cantly improved by earthworm activities (Kim et al. 2017), and additionally it affects 
bacterial driven biochemical processes as well (Araujo et al. 2004; Chapuis-Lardy 
et al. 2010). However, few studies have demonstrated a diverse reaction upon 
changed soil conditions because of different cell structure, community structures, 
physiological traits, and interaction between divergent species when the effect of 
earthworms on fungi present in the soil was explored and compared with bacteria 
(James et al. 1995; Koide et al. 2005; Kooijman et al. 2016). Studies investigating 
the single properties of the microbial communities such as α-diversity and 
β-diversity as well as linkage among microbial taxa (for example, co-occurrence 
patterns) help in establishing the niche stability (Chaffron et al. 2010) and the role of



n

microbes in several ecosystems (Ruan et al. 2006). Further, to determine the 
co-occurrence patterns in microbes belonging to the most complex and wide-ranging 
communities, network analysis has been efficaciously employed and enabling a 
comprehensive analysis of microbial communities within numerous samples 
(Banerjee et al. 2016; Qiu et al. 2021) due to the advancement in high-throughput 
sequencing technology. Additionally, network analysis provides a new vision to 
understand the structure of microbial communities (de Vries et al. 2018) and, 
simultaneously, may help us to recognize the complexity within microbiomes 
(Banerjee et al. 2019) and the association between microbes and ecosystem func-
tioning (Qiu et al. 2021). By assessing network typology parameters, co-occurrence 
networks can be analyzed for their complexity and connectivity within microbial 
species and lineages. As reported in previous literature, earthworms play an impera-
tive role in changing soil microbial communities and biogeochemical cycles (Araujo 
et al. 2004; Kim et al. 2017). However, whether earthworms change the soil 
microbial interactions, as indicated by network connectivity upon addition of 
earthworms, is still not clearly understood. Network connectivity might be 
implicated in the composition of the microbiome, which is particularly important 
(Wagg et al. 2019). 
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It is an established fact that antibiotic resistance genes (ARGs) are emerging as 
microbial contaminants of various ecosystems like water, animal gut (Chen et al. 
2013; Zheng et al. 2018; Ding et al. 2019), soil, and activity sludge (Su et al. 2017; 
Zhu et al. 2021), which can have harmful effects on humans and animals, as they 
have been noticed in soil, water, activity sludge, and animal guts. It was 
demonstrated by Zhu and co-workers in 2021 that earthworms play an important 
role in decreasing risks linked with antibiotic-resistant genes (ARGs) in soils. 
Additionally, it is indicated that the earthworm gut facilitates reduction of bacterial 
hosts and mobile genetic elements (MGEs) and further contributes towards reduction 
of ARGs in soils of varied ecosystems (Zhu et al. 2021). Furthermore, microcosm 
studies and field experiments showed that earthworms have the capability to change 
bacterial communities and decrease the number and ARG abundance in soils. ARG 
patterns can be altered and disseminated across microbes (Gaze et al. 2011)  i  
diverse ecosystems, facilitated by horizontal gene transfer (HGT), affluence of 
microbes, and community arrangement mediated by MGEs (Pallares-Vega et al. 
2019; Rodriguez-Mozaz et al. 2015). Tang and colleagues in 2020 found that MGEs 
function as a major limitation for the ARG removal from an industrial scale 
composting system (Tang et al. 2020), as these MGEs work as an efficient vehicle 
for carrying ARGs and often positively associate with ARGs (McCann et al. 2019; 
Yan et al. 2019). Moreover, as a result of interactions between microbes, microbial 
abundance would be affected, changing the composition of the microbiome (Qiu 
et al. 2021). In a particular ecosystem, bacteria can discharge antibiotics which either 
inhibit or kill other microbes that are not resistant to antibiotics. Alternatively, the 
transfer of genes (e.g., ARGs) between bacterial cells is facilitated by microbial 
interactions (e.g., direct contact between bacteria) (Koonin et al. 2001). Conse-
quently, ARG abundance may be altered as a result of the interactions between 
microbes affecting microbiota communities and horizontal gene transfer (HGT)



between them. As already reported, the transfer of antibiotic-resistant genes among 
diverse microbes requires the involvement of mobile genetic elements (MGEs) 
(Chen et al. 2016; Zhu et al. 2017), and comparative studies of earthworm soil 
with normal soil (considered as control) after incubation of 30 days to analyze 
absolute abundance and lower relative abundance were done (Li et al. 2022). 
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Evidences suggest that the reduction of MGEs due to the presence of earthworms 
in the soil can potentially be able to reduce the transmission of ARGs within 
microbes. Further, one of the potential reasons for this significant alteration in the 
shifts of MGEs upon addition of earthworms might be variations in bacterial 
communities. Additionally, previous studies indicated towards a strong positive 
correlation establishment in various ecosystems between MGEs and bacteria (Han 
et al. 2018; Liu et al. 2020) and suggested the role of earthworm in altering bacterial 
communities in the soil, ultimately decreasing the ARG and MGE array (Zhu et al. 
2021). Besides bacterial community, microbial interactions can also affect the 
function of the ecosystem (de Menezes et al. 2017; Wagg et al. 2019), and according 
to a study, the decrease in the microbial interaction between different bacteria might 
have a role in the decrease of MGE abundance in soil comprising earthworms. In a 
similar study, MGE abundance and Zi (within-module connectivity) showed a 
substantial and positive association, which suggests that bacterial interaction 
which is facilitated by earthworms would affect the MGE abundance in soil 
(Li et al. 2022). The bacterial conjugation frequency through plasmid or transposable 
elements (TEs) that carry genetic material via direct cell-to-cell contact (Sheth et al. 
2016) may be decreased as a result of reduced bacterial connectivity, an imperative 
process of horizontal gene transfer (Heß et al. 2018). From various studies, it has 
been observed that for the shifting of ARGs within the microbiota of earthworms, 
multiple major factors are involved such as mobile genetic elements (MGEs), 
microbial communities, and soil properties. Therefore, it is of great importance to 
explore different sources and factors controlling the destiny of ARGs in the gut 
microbiota of our friend earthworm. 

9.6 Conclusion 

Earthworms are well known for their contribution to ecological processes such as 
soil structure, nitrogen cycling, and plant growth. There is evidence that earthworms 
shape soil microbial communities, either directly through their eating or indirectly 
through a priming effect brought on by an increase in the amount of labile chemicals 
available. According to studies, earthworms might encourage the removal of 
analgesics and antibiotics and reduce the prevalence of antibiotic resistance genes 
in the microbial community. This suggests that the earthworm stomach is the focal 
point for analgesic-antibiotic removal in analgesic-antibiotic-amended soil. The 
abundance of antibiotic resistance genes in the microbial community decreased as 
a result of lower analgesic-antibiotic concentrations and a change in the structure of 
the microbial community. These chapters emphasize the possible contributions of



earthworms to the removal of analgesics and antibiotics as well as to further reducing 
the emergence of analgesic-antibiotic resistance in contaminated soil. 
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Abstract 

Due to the advent of rapid urbanization and the introduction of modern 
techniques into the farming sector, nature witnessed the greener lands getting 
burdened by the chemicals day by day. Rampant usage of the pesticides has led to 
a major menace to the ecosystem and mankind. Organochlorine pesticides such as 
DDT, dicofol, and organophosphorus pesticides like malathion and parathion 
have been related to health concerns and environmental hazards and have pol-
luted agricultural lands throughout the world. To bioremediate contaminated soil, 
an economically feasible and sustainable technology has been employed, time 
and again. Vermiremediation is one such technique and is a sustainable
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developing technology that involves the utilization of earthworms to eliminate the 
toxins from the contaminated soil. Earthworms have the potential to either absorb 
the chemicals present in the soil through their body wall or release poison to 
lower the concentration of pesticides. Earthworms are capable of either biotrans-
formation or degradation of the pesticides leaving them innocuous in their bodies. 
Earthworm helps in the conditioning of the soil through biodegradation, biotrans-
formation, and physical action. As a result, the contaminated soil gets converted 
into an environmentally friendly usable form. Thus, the chapter deliberates the 
strategic management of vermiremediation to remediate the pesticide-intoxicated 
soil and to restore its normal physiological ecology and functioning.

212 S. Nag et al.

Keywords 

Pesticides · Bioremediation · Vermiremediation · Biodegradation · 
Bioaugmentation 

10.1 Introduction 

With increasing colonization, the undeniable need for food supply has increased. 
Pertaining to the agriculture sector worldwide each year, tonnes of pesticides are 
used to scale up production. However, it has been predicted that up to 3.5 million 
tonnes of pesticides will be used globally by the year 2020. A pesticide is any 
substance that is used for destroying, preventing, repelling and mitigating any 
inflicting pest (Zhang et al. 2007). The major outcome of utilizing pesticides is 
that it affects the environment very ghastly. The prime elements in the negative 
impact of current industrial agriculture on nature are the fortuitous outcomes of the 
pesticides (Shi et al. 2020). By means of runoff and pesticide flow, the agricultural 
fields, zone of grazing, human habitation, primitive regions, and remote habitats of 
aquatic lives can be acquired by pesticides. Inferior methods for storing, conveying, 
as well as discarding pesticides also result in other problems (Gupta and Garg 2008). 
Repeated pesticide use builds up pest resistance over time, and its effects on other 
species may contribute to the pest’s reappearance. Sustainable agriculture practices 
like polyculture and integrated pest control, which use fewer pesticides, lessen these 
effects without using toxic chemicals that are hazardous to humans and the environ-
ment (Shi et al. 2020). Numerous industrial and agricultural operations result in a 
steady release of chemicals into the environment. Without a question, the use of 
agrochemicals in modern agriculture has increased the output, which is crucial for 
fulfilling the demands of the expanding population and guaranteeing the safety and 
security of food (Fawole et al. 2020). However, this has also had a large detrimental 
influence on the human health by increasing the concentration of pesticides and other 
related substances in the environment and on food. Pesticide poisoning instances 
have been linked to an array of cases globally (Shi et al. 2020). It is now well 
accepted that pesticides have long-term negative effects on human health, including 
respiratory illnesses, diabetes, congenital problems, genetic issues, and cancer.



These health effects could change according to the type and intensity of exposure 
(Almutairi 2019). A sustainable method for treating agrochemicals, cleaning up 
chemically contaminated soils, boosting soil fertility, and producing food crops is 
vermiculture technology, which involves the usage of earthworms in the production 
of essential drugs and industrial raw materials, which is advantageous (Lacalle et al. 
2020). 
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The composting of the solid debris of municipality, the vermifiltration of sewer 
water generated by the municipality and industries, the reintegration of soil which is 
chemically mutilated, and the harvesting of fruits and vegetables are some of the 
victorious implementations of vermicomposting (Martinkosky et al. 2015). 
Vermicomposting results in a 75% breakdown of waste, a 95% reduction in 
wastewater’s total dissolved solids (TDSs) and biological oxygen demand (BOD), 
and a 30–40% increase in crop plant growth over agrochemicals due to earthworm 
castings. Technology used in vermiculture is socially acceptable, economically 
viable, and environmentally sustainable (Javed and Hashmi 2021). Over a period 
of 600 million years, earthworms have been referred to as “environmental 
engineers.” Scientists have long recognized earthworms’ function as “waste and 
soil engineers.” The study of vermiculture, however, has been completely 
transformed by recent discoveries about their role in the rehabilitation of polluted 
soil and the presence of significant bioactive compounds for the creation of contem-
porary medications (Azarpira et al. 2014). Earthworms mediate all biodegradation, 
bioconversion, and bioproduction processes because they can consume organic 
materials that other organisms cannot use. They outperform all other biological 
treatment techniques because they obtain higher usage compared to the destruction 
rate reached by other techniques. They achieve value accretion that is between 
100 and 1000 times greater than other biological approaches (Javed and Hashmi 
2021). Earthworms have also been discovered to be beneficial for bioremediation, 
the process of removing toxins from soil, which increases soil fertility and crop 
output. Organic wastes have received the majority of attention in vermiremediation 
such as organophosphates and chlorates, with inorganic pollutants receiving rela-
tively less attention (Baloochi et al. 2018). The development and productivity of the 
plant are enhanced by the earthworms by means of intricate mechanical and bio-
chemical interactions with the biotic and abiotic constituents of soil. When earth-
worm burrows, some soil is consumed by them, which results in the mechanical 
disintegration of the soil particles and expands the surface area for the mechanical 
deed (Gupta and Garg 2008). For the transport of water, particles, nutrients, and air, 
earthworm burrows serve as conduits. Millions of enzymes and microorganisms 
found in earthworm guts speed up the biochemical conversion and mineralization of 
soil organic materials, enriching the soil. Increased plant growth and crop output are 
made possible by all of these processes working together with additional factors 
(Njoku et al. 2016). In order to alter, degrade, or eliminate pollutants from the soil 
environment, vermiremediation makes use of the biotic and abiotic interactions, life 
cycle, burrowing, and feeding activity of earthworms (Baloochi et al. 2018). In the 
second stage of metabolism, four enzyme systems—hydrolases, esterases (also 
hydrolases), mixed function oxidases (MFOs), and glutathione S-transferases



(GST)—are principally involved in the breakdown of pesticides (Dada et al. 2021). 
Enzymes are responsible for catalyzing the following metabolic processes: hydroly-
sis (chemical breakdown of substances by water), oxidation (addition of oxygen), 
epoxidation (addition of oxygen to a double bond), addition of oxygen to an amino 
group (NH2) of a nitro group, addition of a hydroxyl group to a benzene ring, 
dehalogenation (cleavage of carbon-halogen bonds), reduction of an amino group 
(NO2) to an amino group, substitution of an oxygen atom for a sulfur atom, 
metabolism of side chains, and aromatic ring cleavage (Baloochi et al. 2018). 
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10.1.1 Pesticide and Its Classification 

Pesticides are organochemicals used in agriculture or in public health programs to 
protect functional feed from pestilence, and mankind from vector-borne ailments, 
such as dengue, malaria, chikungunya, African sleeping sickness, kala-azar, and 
others (Haddi et al. 2020; Nicolopoulou-Stamati et al. 2016). Pesticides may be 
classified according to their (1) chemical composition, (2) mode of entry, and 
(3) target pest/mechanism as described in Fig. 10.1 (Akashe et al. 2018; Kaur 
et al. 2019). 

The mechanism of action of any chemical substance that acts as a pesticide is 
mainly based on three principles:

Fig. 10.1 Classification of pesticides



• Normal biological pathways are disrupted when molecules of pesticides react 
with biomolecules.

• The higher the concentration of the pesticide, the greater the symptoms.
• The greater the dose of the pesticide, the higher the concentration.
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There are at least seven different types of chemical reactions by which the 
majority of pesticides act on their target. 

10.1.1.1 Enzyme Inhibition 
The pesticide may be similar in structure to the substrate or coenzyme and block the 
function of the target enzyme in a vital pathway. Their action may be very selective 
and depends upon how important the enzyme it is inhibiting; for example, 
carbamates and organophosphorus insecticides inhibit the enzyme acetylcholinester-
ase, a neurotransmitter. Glyphosate and glufosinate inhibit amino acid production in 
plants (Casida 2009; Lushchak et al. 2018). 

10.1.1.2 Disturbing Chemical Signaling Pathways 
Some pesticides imitate the signaling substances in a biological pathway and may 
modify the signal by making it stronger, longer lasting, or signaling at the wrong 
time. These are called agonists. Some pesticides act by blocking the receptor site of 
the real signaling agents. These are called antagonists, e.g., 
2,4-dichlorophenoxyacetic acid (2,4-D) that mimics the plant hormone auxin 
(Casida 2009; Lushchak et al. 2018). 

10.1.1.3 Reactive Molecules that Destroy Cellular Components 
Radical oxygen, superoxide, or hydroxyl ions may be formed as a reaction between 
the pesticide and any target biomolecule. These reactive ions degrade important 
cellular components. These are selective toxins; for example, paraquat, a herbicide, 
acts by producing reactive oxygen species disrupting the membrane of mitochondria 
or chloroplasts (Casida 2009; Lushchak et al. 2018). 

10.1.1.4 By Changing the pH 
Pesticide molecules may change the pH gradient across cell membranes or walls and 
thereby disrupt structural integrity and functioning of the same. These molecules are 
usually weak organic acid or base, e.g., ammonia (Casida 2009; Lushchak et al. 
2018). 

10.1.1.5 By Changing Structural Integrity 
Some pesticide molecules which are lipophilic substances may dissolve into the 
membrane and alter their structures. Some specific molecules are metabolized into 
potentially toxic substances; for example, hexane, when metabolized to 
2,5-hexanedione, is a toxic nerve poison (Casida 2009; Lushchak et al. 2018).
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10.1.1.6 By Altering Osmotic Balance 
Toxic substances can act by disturbing the electrolyte balance or osmotic pressure so 
that the cells may rupture, thereby killing the organism; for example, NaCl in higher 
concentrations is toxic to aquatic animals (Casida 2009; Lushchak et al. 2018). 

10.1.1.7 By Destroying Proteins 
Strong alkalis, acids, oxidants, or reductants can destroy tissue, DNA, or proteins 
(Casida 2009; Lushchak et al. 2018). 

10.1.2 Effects of Pesticide on Human Health and Environment 

The effect of pesticide to improve agricultural yield and quality of food cannot be 
overlooked. But the safe storage, disposal, and remediation of pesticides are major 
environmental challenges. 

There has been an approximately 11% increase per year in pesticide production 
globally. This has increased production from 0.2 million tonnes [in 1950] to more 
than five million tonnes [in 2000]. Around three billion kilograms of pesticides are 
used, but only 1% of this huge mass is used to control pests. 80% of all pesticides 
used are intended to kill insects, 15% are herbicides, 1.46% are used to treat plant 
fungal diseases, and 3% are other types of pesticides. Insecticides account for around 
29.5% of consumption, fungicides account for about 17.5%, and the remaining 5.5% 
is made up of consumption. Compared to the global usage of 44% of pesticides, 
India accounts for 76% of the total consumption. The discharge of chemicals used in 
agricultural soils accounts for 50% of water pollution in rivers and streams 
(Rajmohan et al. 2020). 

The duration for which the pesticides are retained in the environment depends on 
certain factors, viz.:

• Type of soil
• Method of pesticide application
• Capacity of soil to absorb pesticides
• Organic matter content of the soil 

The distribution of some pesticides in major river bodies is summarized in 
Table 10.1. 

The aquatic microbiota [zooplankton, phytoplankton] take up the various 
un-degradable metabolites of pesticides and unchanged pesticides from the water 
and store them within their cells. Over time, there is a storage pool of these toxic 
molecules in the ecosystem, which is referred to as bioaccumulation. The higher up 
we go on the food chain, the higher the concentration of these toxic end products that 
are stored in the body fat of the organism. This phenomenon is biomagnification. 

Most of the used pesticides are carried away by rainwater and irrigation to the 
nearby waterbody. Some of the pesticides can percolate into the soil and contaminate 
the groundwater table. The remnant on the surface of the soil is carried by runoff



Country Concentration of pesticide References

water to the nearby water source, thus contaminating it further (Gupta and Gupta 
2020). The fate of pesticides is depicted in Fig. 10.2. 
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Table 10.1 Pesticide occurrence in river bodies 

Water body 
studied 

India Yamuna river DDT—66.17–722.94 ng/L, 
hexachlorocyclohexane— 
12.76–593.49 ng/L 

Pradhan et al. (2022); 
Rajmohan et al. 
(2020) 

Japan Chikuma 
River, Shinano 
River 

Isoprothiolane—8200 ng/L, 
bromobutide—3 ng/L 

Bangladesh Fishponds, 
tube wells 

Malathion—42.58–922.8 μg/L, 
diazinon—31.5 μg/L 

Malaysia Tengi River Imidacloprid—57.7 ng/L, 
propiconazole—4493.1 ng/L 
Difenoconazole—1620.3 ng/L, 
buprofezin—729.1 ng/L 

Fig. 10.2 Fate of pesticides in nature 

On considering the effects of chemical pesticides on human health and the 
ecosystem (as mentioned in Table 10.2), it is clear that we need newer



eco-friendly alternatives. On the one hand, various bioremediation strategies need to 
be implemented to clear the ecological pollutants. Vermiremediation with 
bio-mixtures is the next step in making the ecosystem free of these toxic pesticides. 
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Table 10.2 Effect of pesticides on human health 

Pesticide Class Effect on human body References 

Lindane Insecticide Human carcinogen IARC Working Group on the 
Evaluation of Carcinogenic 
Risks to Humans (2018) 

DDT Insecticide Stimulates human 
colon cancer cells and 
liver cancer cell 
proliferation 

IARC Working Group on the 
Evaluation of Carcinogenic 
Risks to Humans (2018) 

Malathion Organophosphates Induces DNA and 
chromosomal damage 
in humans 

IARC publications website— 
some organophosphate 
insecticides and herbicides 
(n.d.) 

Diazinon Organophosphates Chromosomal damage 
in human cells 

Pandir (2018) 

Pendimethalin Herbicide of the 
dinitroaniline 
class 

Risk of acute 
myocardial infarction 

Zago et al. (2020) 

Arsenic, 
trimethylarsine 

Organic arsenicals Atherosclerosis and 
systemic arterial 
hypertension 

Zago et al. (2020) 

Carbofuran Carbamate Myocardial infarction Sekhotha et al. (2016) 

10.1.3 Vermiremediation 

The term vermiremediation was derived from the Latin terms vermis (meaning 
worm) and remedium (meaning to solve), respectively. Vermiremediation refers to 
the utilization of earthworms’ life cycle (i.e., feeding, burrowing, metabolism, and 
secretion) for effectively removing contaminants from the soil and degrading nonre-
cyclable chemicals. In order to enhance vermiremediation biosurfactants, nutrient 
additions, management techniques, and combinations with other remediation 
technologies are used (Shi et al. 2020). 

The earthworms while moving through the drilosphere lead to formation of 
burrows, which act as regions of input of oxygen and nutrients and aid in the 
movement of water and other particles in compacted soil. During this process, the 
earthworms take in and digest the soil in the region, leading to a positive impact on 
the soil, which enhances the process of vermiremediation (Shi et al. 2014). 

The earthworms maintain a stable temperature, which fastens the biodegradation 
and other bioprocesses. According to several research conducted, earthworms are 
used in bioremediation and other bioprocess techniques to speed up the removal of 
agrochemicals from the soil such as a wide variety of contaminants, including crude



oils, pesticides, and PCBs. Earthworms can enhance various biotic and abiotic 
conditions of soil, which improves the activity of indigenous soil microbes and 
aids in the process of biodegradation. Earthworms have played fundamental roles in 
various sectors from restoring the fertility of land to improving the constituents 
of soil. 
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The behavior and characteristics of various earthworm species to break down 
organic agrochemicals were observed and studied thoroughly. Most frequently and 
extensively used species, namely Eisenia fetida, play a significant role in the 
bioremediation of pesticides. To understand the ability of earthworms to 
bioremediate and the destiny and persistence of pesticides in the environment, 
numerous studies have been conducted worldwide (Usmani et al. 2020). Research 
shows that species like E. fetida, Pheretima hawayana, Eisenia andrei, 
E. tetrahedra, Perionyx excavatus, Allolobophora caliginosa, Lumbricus rubellus, 
Lumbricus terrestris, and Pontoscolex corethrurus show commendable result in the 
elimination of pollutants and pesticides from the soil. Researchers have assessed 
how various forces inside the intestine of earthworms remold and disintegrate the 
pesticides present in the soil and decrease its concentration up to 57–97%. In certain 
cases, the earthworms lead to reduction of size of the particles by 25–30% 
(Chaudhary et al. 2004). Expanding agriculture and uncontrolled use of pesticides 
frequently have a negative impact on the soil environment, producing severe popu-
lation loss, toxicity, and soil contamination. Therefore, as we proceed towards the 
greener and sustainable approach of agriculture, farmers must be made aware of the 
utilization of earthworms and how to use pesticides more sparingly or not at all in 
order to protect the ecosystem and biodiversity. 

10.2 Enzymes Involved in Vermiremediation of Pesticides 

The assessment of biomarkers in earthworms is an essential tool to understand the 
vermiremediation of pesticides. It has gained importance and is considered a major 
key to understanding soil pollution worldwide. Owagboriaye et al. (2020) stated that 
activities of glutathione S-transferase (GST) and lactate dehydrogenase (LDH) in 
Alma millsoni, Eudrilus eugeniae, and Libyodrilus violaceus increased when 
exposed to herbicides and pesticides like glyphosate herbicides. In vermiremediation 
of pesticides, glutathione S-transferase plays an essential role in the detoxification, 
biotransformation, and elimination processes. Another vital enzyme is lactate dehy-
drogenase, which is a glycolytic enzyme present in the tissues of earthworms. 

Lactate dehydrogenase acts as an indicator of stress when earthworms are 
subjected to stress, and therefore this indicator provides energy to the organism 
within a short interval of time. Thus, the increase in the levels of glutathione 
S-transferase and lactate dehydrogenase can be correlated with the physiological 
capability of the earthworm to cope with stressful conditions like oxidative stress 
induced by pesticides. A study conducted by Rodríguez-Seijo et al. (2018) showed 
similar results of an increase in glutathione S-transferase and lactate dehydrogenase



during stress, and he correlated these with lipid peroxidation, energy consumption, 
and oxidative stress. 

220 S. Nag et al.

Gamma-aminobutyric acid (GABA) aminotransferase is a neuromuscular trans-
mitter in invertebrates and regulates the chloride channels. In the presence of 
cypermethrin, GABA-dependent uptake of chloride ions gets inhibited and leads 
to neurotoxicity in the brains of earthworms. Thus, GABA aminotransferase is a 
sensitive biomarker for the cypermethrin contamination of soils (Ch et al. 2015). 

Acetylcholinesterase is a cholinergic enzyme belonging to the class cholinester-
ase and plays an essential role in the breakdown of acetylcholine to choline and 
acetic acid. In the presence of organophosphate pesticides, the activity of acetylcho-
linesterase gets inhibited due to phosphorylation with serine residue, but there is no 
significant effect when earthworms are exposed to such stressed conditions. More-
over, the biocidal effects of pesticides via inhibition of acetylcholinesterase result in 
neurotransmission abnormality, paralysis, and finally death of the organism. Thus, 
the survival of the earthworm can be correlated with the non-effect (Tiwari et al. 
2016). 

Malate dehydrogenase (MDH) catalyzes the conversion of oxaloacetate to malate 
in the tricarboxylic acid cycle. Ch et al. (2015) state that when earthworms are 
exposed to high levels of pesticides such as cypermethrin, there is an increase in the 
levels of malate. This is due to the increased energy demand of the earthworm when 
exposed to such pesticides. 

Recent studies suggest that the gut microbiota of the earthworms produce 
enzymes such as cellulose-degrading cellulase, amylose-degrading amylase, 
pectin-degrading pectinase, acid phosphatase, alkaline phosphatase, and nitrate 
reductase, which have the ability to break down the organic components of the 
pesticides to simpler forms. When exposed to deltamethrin, cellulase activity gets 
reduced, and when exposed to lindane, the activity gets increased. Exposure to these 
two pesticides has been found lethal to earthworms as well (Tiwari et al. 2016). The 
presence of fipronil leads to a decrease in the levels of cellulase, invertase, and 
pectinase in E. eugeniae. These enzymes are responsible for the degradation of 
complex carbohydrates and the generation of energy. Exposure to chlorpyrifos leads 
to a reduction in the levels of carboxylesterases, which detoxifies pesticides in the 
soil in Lumbricus terrestris (Martínez Morcillo et al. 2013). Thus, the impact of 
pesticides on earthworms induced variations in the different functions of the 
enzymes. These enzymes, therefore, serve as potential biomarkers of pesticide 
contamination of soil, but more research needs to be carried out in this field to 
manage farming practices and avoid pesticide contamination of soil. Some of these 
important enzymes are mentioned in Table 10.3. 

10.3 Mechanism of Pesticide Remediation 

Through intricate biophysical and physicochemical interactivity with soil abiotic and 
biotic components, earthworms increase plant growth and productivity. Earthworms 
consume the soil as they burrow, which causes the soil’s particles to break down
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mechanically and increases the surface area available for biotic activity. Earthworm 
species have many characteristics like the ability to estivate, and environmental 
physical properties, as productive survivors in soil. These options result in the 
increased survival rate of earthworms and accentuate adaptability to exist in adverse 
physiological conditions pertaining to terribly low or high temperatures (-4° to 40 ° 
C) and pH (4.3–9.2) (Contreras-Ramos et al. 2006). For the transport of water, 
particles, nutrients, and air, earthworm burrows serve as conduits. Millions of 
enzymes and microorganisms found in earthworm guts speed up the biochemical 
conversion and mineralization of soil organic materials, enriching the soil. Increased 
plant growth and crop output are made possible by all of these processes working 
together with additional factors. It is acknowledged that earthworms can help with a 
variety of environmental issues. Vermitechnology is the study of using earthworms 
to increase food production and address other environmental and human problems.
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Fig. 10.3 Schematic representation of vermiremediation of pesticides at a glance (Created with 
BioRender.com) 

The four mechanisms involved in vermiremediation are vermiextraction, 
vermiaccumulation, vermitransformation, and drilodegradation (Shi et al. 2020). 
Figure 10.3 illustrates and demonstrates a detailed schematic representation of 
these mechanisms at a glance and depicts the efficacy of such processes employed 
by the earthworm species. 

Vermiaccumulation and vermiextraction are processes where the earthworm 
takes up pesticides from the soil, thereby leading to a reduction of the pesticides in 
the soil. Studies show that vermiaccumulation in the previous decades majorly

http://biorender.com


focused on these aspects: pathways of intake of pesticides, its bioaccumulation, and 
distribution. Earthworms take up pesticides from the soil using two mechanisms: 
passive epidermal uptake and epidermal uptake. Passive epidermal uptake involves 
the uptake of pesticides in the direction of decreasing chemical potential, which later 
gets absorbed by the body walls of the earthworm and translocated throughout the 
body. On the contrary, dietary uptake pathway involves the earthworm feeding 
directly on soil with organic compounds, which can further be grounded, digested, 
and processed resulting in the absorption of pesticides by the intestinal tract of the 
earthworms (Shi et al. 2014). Vermiaccumulation has further been associated with 
physiological characteristics such as lipid content of tissues, concentration of 
pesticides present in the soil, and physicochemical traits of the pesticides. Recent 
studies show that the distribution of pesticides is heterogeneous in the earthworms, 
where the distribution of pesticides was fractionated into three different sections of 
the earthworm: sub-organism (spanning throughout the clitellum encompassing 
sections above and below it), tissue (body wall, gut, and body fluids), and subcellular 
(intracellular and extracellular fractions) (Miao et al. 2018). 
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Vermiaccumulation and vermiextraction are followed by vermitransformation 
and vermidegradation. These processes involve the degradation of the pesticides 
using enzymes such as CYP450 and peroxidase or gut microbiota or both. These two 
pathways are further associated with vermiconversion and vermicomposting. 
Vermiconversion involves the conversion of solid wastes into biofertilizer materials 
via a combined action of earthworms and microbiota, whereas vermicomposting 
involves the conversion of solid organic waste into compost. The major difference 
between these processes is that vermiconversion and vermicomposting focus on 
biodegradable organic wastes, and vermitransformation and vermidegradation focus 
on the treatment of chemicals. Currently, there are studies on vermitransformation, 
which are majorly focused on only the ecotoxicological impact of the contaminant 
on the earthworms (Bhat et al. 2018). 

Earthworms also possess the attribute of accumulating pesticides and detoxifying 
them using their metabolic activities. The earthworm species, majorly Eisenia fetida, 
can metabolize organic pollutants such as herbicides, pesticides, trinitrotoluene, and 
many more. Recent studies also state the degradation of enantiomer pesticides by 
earthworms (Qu et al. 2014). This study suggested that the enantioselectivity of 
fipronil resulted from the metabolism of the earthworm and the organism’s presence 
accentuated the degradation of fipronil in soil. The biochemical processing of 
organic pesticides takes place in two phases: phase I, transformation, and phase II, 
conjugation. Phase I involves the transformation of hydrophobic pesticides into 
chemically active, polarized, and water-soluble compounds via the introduction of 
hydroxyl or sulfonyl groups. Phase II involves the conjugation of metabolites with 
glutathiones, amino acids, or sugars from phase I reactions, thereby producing 
hydrophilic conjugates (Shi et al. 2020). 

The final mechanism of vermiremediation is drilodegradation, which takes place 
in the drilosphere which is 2 mm thick soil around the earthworm burrow. It is based 
on the principle of the drilosphere effect, whereby the excreta of the earthworm 
supplement energy and nutrients to the indigenous microorganisms, leading to



increased degradation of pesticides. Channelization by earthworms in the 
drilosphere leads to the growth of aerobic microorganisms, and the organic carbon 
supply from the earthworm mucus acts both as a source of energy and as electron 
donors. Thus, this multitude of processes such as breakdown, elimination, and 
degradation of organic pesticides collectively define what is known as 
drilodegradation or drilostimulation (Hoang et al. 2016). Therefore, these distin-
guishable characteristics make vermiremediation an essential process in the biore-
mediation of polluted soil with pesticides and organic contaminants. 
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10.4 Challenges Involved in Vermiremediation of Pesticides 

Like all bioremediation techniques, the vermiremediation method has several 
limitations. Only weakly or moderately contaminated soils that enable earthworm 
survival are suitable for vermiremediation. The survival of earthworms may be 
impacted by the toxicity of the contaminants in soil that has been severely 
contaminated (Shi et al. 2019). 

Additionally, depending on the biological groupings of earthworm species 
utilized, the only way to study the activity of earthworm is vermiremediation. 
Earthworms are divided into three groups based on how they like their habitats: 
surface dwellers (epigeic), deep burrowing (anecic), and surface feeder (endogeic). 
The most common example of epigeic earthworms is Eisenia fetida, which are 
categorized as detritivores based on their eating habits and are found as soil feeders 
where they mostly consume plant litter and other organic materials (Bhattacharya 
and Kim 2016). 

For earthworms to exist in soil, there must be specific circumstances, like enough 
food. Earthworms typically avoid unfavorable soil conditions that could reduce their 
metabolism and chances of survival by altering their structure and function, like 
increased H+ ions, increased ionic strength, and enhanced concentrations of heavy 
metals and pesticides (Eijsackers 2010; Kooijman and Cammeraat 2010; Lapied 
et al. 2009). Due to the fact that many birds eat earthworms, vermiremediation may 
contaminate the food chain. 

Additionally, the soil’s climate needs to be suitable for earthworm activity. 
Extreme temperatures may restrict their activities. To enable the earthworms to 
live by burrowing the tunnel in the soil, there needs to be a lot of water in the soil. 
At several organizational levels, such as the individual, population, and community 
levels, pesticides have an impact on earthworms. Individual pesticides may build up 
in the tissues of the earthworm, changing the activity of antioxidant enzymes, gene 
expression, and DNA structure. Pesticides can have an impact on earthworm repro-
duction, growth, and survival at the discrete and community levels (Brulle et al. 
2011; Dittbrenner et al. 2012). 

The longevity of earthworms and the dispersion and bioavailability of high-order 
components also limit vermiremediation. The growth of earthworms can be signifi-
cantly impacted by low-grade soil and increased proportion of soil pollutants (Sinha 
et al. 2008). Surfactants are used to increase pollutant mobility and bioavailability,



substantially increasing earthworm growth, which would increase their ability to 
absorb nutrients through nutrient management techniques or by combining them 
with other methods. Thus, it can improve the vermiremediation of organic-
contaminated soils (Megharaj et al. 2011). 
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Since vermiremediation mostly relies upon the bias eating of the earthworm, food 
availability may also have an impact on its potential. Vermiremediation might also 
be used under tight guidelines. Due to their sensitivity, earthworms may not survive 
in certain climates, seasons, or other environmental circumstances, which could 
impede vermiremediation procedures (Butt and Lowe 2011). 

10.5 Recent Advancements and Future Prospects 

The amalgamation of earthworms and plants is a positive approach for potential 
toxic element-polluted soil remediation. According to the findings from numerous 
recently published articles, using plants and microbes in addition to earthworms 
alone or in combination with them could be an alternate method for cleaning up 
potentially toxic agrochemical-contaminated soils. Additionally, Eisenia fetida can 
improve the uptake and translocation of potentially toxic contaminants like cadmium 
in plants such as Brassica juncea (Kaur et al. 2017). 

According to Nneji et al. (2016), vermiremediation can be augmented by utilizing 
the interactions between microbes and earthworms. Earthworms and drilospheric 
microorganisms are paired in microbe-assisted vermiremediation, which facilitates 
the cleanup of biotics by speeding up detoxification and degradation rates of 
pesticides and influencing pesticide motility and isolation, along with the absorption 
of pesticide (Nneji et al. 2016). 

Phytoremediation can be coupled with vermiremediation. Deng and Zeng (2017) 
asserted that the rate of elimination of phenanthrene following the treatment of 
alfalfa, earthworms, and white rot fungus in soil was 93%, a level significantly 
greater than the control variables. 

As a final “polishing” phase, vermiremediation can also be utilized to eliminate 
any remaining toxins after the first remedial treatment has been administered. After 
physical and chemical treatment as well as residual pollution cleanup, it can help to 
restore the soil structure and texture by supplying organic nutrients and promoting 
the growth of microorganisms in the drilosphere (Sinha et al. 2008). 

According to Li et al. (2015), inoculating soil with both Australopithecus 
robustus Perrier and Eisenia fetida Savigny earthworm species substantially 
increases the level of pentachlorophenol in soil and deduces the basal metabolic 
rate (BMR). This finding raises the possibility of development of good bacteria in the 
soil and boosts the bacterial community that breaks down pentachlorophenol and 
speeds up the process. 

According to Bonkowski et al. (2000) and Curry and Schmidt (2007), by 
employing food and improving inoculation conditions, one may increase the earth-
worm biomass and improve the productivity and absorption capacity of 
vermiremediation systems. Because of their dietary preferences, earthworms may



have better growth if the quality of their feed is upgraded. According to Butt and 
Lowe (2011), due to the drilosphere effect, higher earthworm development results in 
higher rates of absorption and organic pollutant decomposition in the soil. Addition-
ally, earthworms need an appropriate habitat to survive, and thus, it is important to 
maintain ideal inoculation conditions during vermiremediation operations, like heat, 
humidity, grade of food, and H+ concentration, to ensure the growth of earthworm. 
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To promote the widespread usage of vermiremediation, a lot more basic research 
measures will be needed in the future given the number of unresolved issues. It is 
important to fully understand the capability, contribution, and mechanism of each 
step involved in phytoremediation. It is also important to comprehend how organic 
contaminants behave inside the drilosphere. Verifying the vermiremediation 
sweetening measures is important, and considering their possible side effects is 
also important. Peripheral concerns including the effectiveness of red worm collec-
tion techniques from contaminated soil and secure postharvest disposal should be 
taken seriously (Shi et al. 2019). 

10.5.1 Conclusion 

Due to the advent of rapid expansion in the agricultural sector, there is a substantial 
accumulation of agrochemicals and pesticides in the soil, deteriorating its normal 
ecological conditions. Though agrochemicals and predominantly pesticides are 
meant to enhance the lifestyle and shelf lives of food sources, their prolonged 
utilization ultimately leads to detrimental effects on human health. An average of 
two million tonnes of pesticide is utilized around the globe. The presence of a higher 
concentration of pesticides in the soil leads to various health issues concerning 
humans and the natural ecological niche. Pertaining to the aforementioned reasons, 
there is a need for risk management and toxicity assessment for the percolating 
agrochemicals and other organochemical compounds. Thus, it is of immense impor-
tance to biodegrade and remove such contaminants from soil. Vermiremediation is 
one such advanced and eco-friendly technique that has paved a path for sustainable 
management and degradation of organic and inorganic organophosphorus 
compounds present in the soil. It improves the efficiency of various biological 
methods related to bioremediation and bio-removal of toxic compounds. In due 
course of time, an array of screening methodologies have been adopted for the 
selection of viable species of earthworms to reach the highest sustainable efficiency. 
Physico-mechanical activities of earthworms play an imperative role in the optimi-
zation of contaminated soil conditions and enhancing the efficacious sorption of 
toxic compounds. Predominantly, the species of earthworms used in the process of 
vermiremediation not only aid in the bio-removal of pesticides but also improve the 
nutritional status of the soil. The next step is to test whether vermiremediation can be 
applied to fine soils because these trials could not tell us whether earthworms can 
reduce pollutant sorption or boost bioavailability. However, a pilot project is neces-
sary to scale up and use the treatment procedure in uncontrolled environments where 
earthworm interactions may be more beneficial. Considering the immense



biotechnological potential of earthworms pertaining to the agricultural sector, there 
is a need for scientific expeditions on the issues of sustainable remediation manage-
ment techniques and toxicity assays. 
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Abstract 

The pyrolysis of organic waste produces a carbon-rich substance known as 
biochar. This organic waste might include biomass crops, home waste, manures, 
industrial waste generated in cities, agricultural forestry leftovers, nontraditional 
materials, and sludge wastes. Biochar is currently being utilized on a widespread 
scale by several stakeholders for the removal of organic and inorganic 
contaminants from soil. The properties of biochar are directly affected by pro-
duction methods, feedstock, and operating parameters, which significantly impact 
their use in various applications. Furthermore, the porosity, composition,
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pyrolysis temperature, feedstock, and pyrolysis time of biochar formation deter-
mine its quality and efficacy in remediation.

232 T. Basumatary and H. Sarma

Keywords 

Biochar · Heavy metal · Remediation · Soil 

11.1 Introduction 

Biochar is a carbon-rich substance generated by the pyrolysis of organic leftovers. 
Biochar can be made from ordinary wastes such as biomass crops, domestic trash, 
manures, urban industrial waste, agricultural forestry residues, nontraditional 
materials, and sludge waste. However, the productivity of biochar is modified by 
feedstock type and pyrolysis conditions (Oni et al. 2019; Han et al. 2020). 

As the economy and living conditions improve, more biowaste resources, such as 
organic, agricultural, and woody wastes, are generated regularly (Zhou et al. 2021). 
As a result, land contamination has become a major global issue, with the influence 
of human activities apparent in food security and safety concerns. Polluted soils 
serve as a repository for poisons that can be consumed by plants and other species, 
leached into water sources, or transported to other sites. The ecology is being 
devastated due to heavy metals entering the food chain. Organic pollutants (OPs) 
and inorganic pollutants (IPs) are the two major types of pollutants (IPs) detrimental 
for all living organisms. The OPs may travel long distances and are toxic, persistent, 
and bioaccumulative. Inorganic pollutants, such as heavy metals As, Cr, Cu, Pb, Cd, 
Hg, Ni, and Zn, have a deleterious impact on the health of people, plants, animals, 
and soil fertility. These metals, which are present in the soil, pose risks to the entire 
biosphere and are accumulated directly by plants, which can be dangerous for the 
plant and the food chain that consumes it; they also change the soil’s properties, such 
as pH, natural chemistry, color, and porosity, which has an impact on the soil’s 
quality and contaminates the water (Akram et al. 2018; Duarte et al. 2018; Sarma 
et al. 2019; Briffa et al. 2020). 

Biochar has a saturation adsorption capacity to adsorb a pollutant. It has been 
widely utilized in environmental remediation due to its wide range of raw 
ingredients, low cost, and large specific surface area (Lyu et al. 2020). Biochar’s 
distinguishing characteristics, such as its high carbon content, cation exchange 
capacity, and higher specific surface area, have recently been presented as an 
economically viable approach for remediating heavy metal-contaminated soils 
(Lahori et al. 2017; Sakhiya et al. 2020). Several favorable immobilization properties 
of biochar, such as its microporous structure, active surface functional groups, high 
pH, and cation exchange capacity (CEC), make it simpler for heavy metals to 
undergo chemical modification (Xie et al. 2015). There are numerous applications 
for biochar, including pollution remediation due to high CEC and specific surface 
area, soil fertility improvement via liming action, enrichment in the volatile matter, 
increase in pore volume, carbon sequestration due to carbon and ash content, and so



on (Tomczyk et al. 2020). Furthermore, biochar carbon sequestration in soil signifi-
cantly reduces greenhouse gas emissions, and biochar’s stability is the most critical 
driver of its ability to absorb carbon (Leng et al. 2019). Biochar made from various 
agricultural biomass can boost the growth of native plants and improve the efficacy 
of phytoremediation in polluted soil containing metalloids (van Nguyen et al. 2022). 
Although biochar can absorb metals from water, its capacity is often lower than other 
common biosorbents, such as activated carbon. As a result, recent studies have 
changed biochar to improve its metal sorption capacity (Li et al. 2017) (Li et al. 
2017). This chapter describes the history of biochar application and its importance in 
land remediation. Further, we discuss the fundamental properties of biochar, its 
mechanism for cleaning up contaminated soil, and various biochar feedstocks for 
sustainable remediation of contaminated land. 
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11.2 History of Biochar 

Evidence shows that biochar has been utilized for at least 2000 years. However, the 
oldest beginnings of biochar can be traced back to American Indian cultures in the 
Amazon basin. The incredibly fertile Terra Preta (black soil of India) soils, which 
were created by ancient indigenous cultures, contain evidence of the successful 
usage of biochar. Biochar can be detected in these soils, indicating that biochar 
has been extensively used (Weber and Quicker 2018). Compared to the soils of the 
surrounding area, the soils in Terra Preta have a higher cation exchange capacity, 
pH, and base saturation, as well as a high phosphorus content ranging from 200 to 
400 mg P/kg (Fraser et al. 2011). The locals would make charcoal, mix it with 
organic waste, and plant shattered pottery and broken glass in small patches of the 
soil before utilizing the concoction as fertilizer. Even though tropical rains speed up 
soil erosion and loss of water-soluble nutrients, many of the earth’s soils are 
hundreds or even thousands of years old. They have retained a surprisingly high 
level of fertility (Sonoki et al. 2013). It is possible that the biochar is responsible for 
this action. 

Biochar should be distinguished from Terra Preta in terms of carbon concentra-
tion and structure. Human modifications to the Terra Preta soil horizon in the 
Amazon rainforest have significantly increased the tropical region’s potential to 
store carbon. Char is a soil additive that was inspired by Terra Preta and was one 
of the reasons that helped boost soil fertility. According to Bezerra et al. (2016), the 
first wave of research on Terra Preta de Indio happened throughout the 1980s. 
Biochar research began in 2006, making it the third field to be opened, whereas 
Terra Preta Nova research began in 2002. Terra Preta became less popular as biochar 
research got more common (Bezerra et al. 2016; Kamarudin et al. 2022). It is 
projected that combining biochar with manures, minerals, and clays and then heating 
the mixture at low temperatures will result in enriched biochar with long-term 
stability comparable to Terra Preta (Chia et al. 2014). However, additional 
in-depth studies on the carbon levels and characteristics of the Terra Preta soil 
were published near the turn of the century. Studies into the properties of biochar



as a soil supplement began around the same time. As a result, there has been a 
resurgence of interest in incorporating biochar into the soil (Aller 2016). 
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11.3 Fate of Land Pollution 

Human activities are the principal sources of soil contamination, resulting in the 
accumulation of contaminants in soils that can reach dangerous levels. People’s and 
the environment’s health may be jeopardized as a result of the rise in soil contami-
nation during the last few decades (Cachada et al. 2018). Heavy metal pollution in 
soil has increased dramatically as a result of urbanization, industrialization, and 
recent agricultural advancements. Mining and smelting, combustion of fossil fuels 
for energy, municipal trash disposal, pesticides, sewage irrigation, and fertilizer 
application are all examples of anthropogenic activity. Furthermore, heavy metals 
may enter the food chain after being absorbed by plants, exposing people to them 
and having serious consequences for human and environmental health (Li et al. 
2019a, 2019b; Zwolak et al. 2019; Hou et al. 2020; Sarma and Prasad 2015). 

Persistent organic pollutants (POPs) can enter the environment via soil transport 
and landfills; household furnaces; agricultural sprays; incinerations; putrefaction; 
various combustions; chemical facilities; waste from various operations such as 
building destruction; use of outdated oil; evaporation; medical waste; organochlo-
rine pesticide storage; industries such as pulp and paper, leather, pharmaceutical, oil 
and gas, and oil refineries; sites that produce produced gas; and mechanical facilities 
(Gaur et al. 2018; Khan et al. 2018; Bhattacharyya et al. 2022). Heavy metal 
pollution is caused by both natural and man-made mechanisms. Heavy metals can 
be inherited by soils from metal-rich parent rocks such as serpentine and black shale. 
Natural causes include volcanoes, soil erosion, rock breakup, and so on. Mining, 
smelting, incomplete fossil combustion, waste disposal, electronic product produc-
tion, corrosion, car emissions, and agricultural activities, on the other hand, are 
examples of anthropogenic sources of heavy metal pollution (He et al. 2015; Kanwar 
et al. 2020) (Sarma et al. 2021). 

Pollutants include oil hydrocarbons such as alkanes, alkenes, and cycloalkanes; 
chlorinated substances such as polychlorinated biphenyls (PCBs), polychlorinated 
dibenzodioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs); monomeric 
aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene, collec-
tively known as BTEX; polycyclic aromatic hydrocarbons (PAHs) such as chrysene 
and fluoranthene; and many pesticides (Duarte et al. 2018). 

These pollutants were able to persist in the soil for extended periods due to the 
inability of soil microbes to break down heavy metals. Even in the soil, organic 
compounds have the potential to be transformed into more harmful forms. These 
more toxic forms can subsequently accumulate in animals and humans via the food 
chain and significantly affect human health (Guan and Sun 2014). Pb, Cd, As, and Cr 
are extremely dangerous metals that are mutagenic, carcinogenic, and genotoxic. If 
the concentration of the harmful heavy metals Hg, Cr, As, Zn, Cd, Ur, Se, Ag, Au, 
and Ni surpasses the maximum allowable values, they contaminate the environment



and affect crop productivity, soil quality, and public health (Mishra et al. 2019; 
Ojuederie and Babalola 2017). 
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The types and effects of organic and inorganic pollutant are described in 
Table 11.1. 

11.4 Synthesis of Biochar 

Ordinary waste conversion is feasible for environmental sustainability and produc-
tivity (Weber and Quicker 2018). The biochar produced from various sources 
demonstrates a variety of performances and attributes due to the varied ratios of 
the components contained in the feedstock. For example, wood biochar had a lower 
potassium concentration and pH (Vaughn et al. 2013; Wang and Wang 2019). 
Biochar can be produced in traditional earthen charcoal kilns, where the pyrolysis, 
gasification, and combustion processes run parallel beneath the earthen kiln layer. In 
addition, there are other low-cost mobile biochar production systems, such as the 
drum method (Das et al. 2020). Microwave-assisted pyrolysis (MAP) technology, on 
the other hand, provides faster processing times, lower energy requirements, more 
effective heat transmission, and better selective heating than current methods. 
Therefore, microwave-assisted pyrolysis (MAP) was also used to produce biochar, 
bio-oil, and bio-gas, which is deemed sustainable (Xiang et al. 2020). Although 
biochar can be produced through pyrolysis, hydrothermal carbonization, gasifica-
tion, flash carbonization, and torrefaction, pyrolysis is the most often utilized process 
(Yaashikaa et al. 2020). 

11.4.1 Pyrolysis Procedure 

Pyrolysis is one of the most practical and successful ways of getting biomass energy 
from char (Tripathi et al. 2016). Typically, pyrolysis yields a solid, structured 
carbonaceous substance with a large surface area, lower oxygen and hydrogen 
content, and a higher nutritional concentration than the feedstock (Ennis et al. 
2012). In addition, a large quantity of carbon is successfully fixed in a more stable 
form due to pyrolysis (Toková et al. 2020). The chemical and physical properties of 
biochar are primarily determined by feedstock type and pyrolysis circumstances, 
such as residence time, temperature, heating rate, and reactor type. The main 
thermochemical techniques utilized for biochar production include traditional car-
bonization (slow pyrolysis), fast pyrolysis, flash carbonization, and gasification 
(Manyà 2012). In anaerobic settings, biomass typically undergoes pyrolysis at 
temperatures ranging from 300 to 900 °C (Liang et al. 2021). 

Pyrolysis is classified as fast or slow based on the heating rate and reaction time; 
fast pyrolysis is processed at a very high heating rate (10–200 °C/s) to produce 
primarily bio-oil, whereas slow pyrolysis has a low heating rate (1–100 °C/min), the 
pyrolysis temperature is often between 300 and 700 °C, and it usually takes a long 
residence time (lasting minutes to hours or even days) to produce biochar. The
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Table 11.1 Types and effects of organic and inorganic pollutant 

Types of 
pollutants 

Organic 
pollutants 

Endocrine-
disrupting chemicals 

Perfluoroalkyl compounds (PFAS) have been linked to 
several conditions, including breast cancer, polycystic 
ovary syndrome, endometriosis, impaired glucose 
tolerance in children and adults, low birth weight, poor 
semen quality, polycystic ovary syndrome, and 
endometriosis (Kahn et al. 2020) 

Chlorinated phenols Chlorinated phenols cause health issues in humans and 
animals, including histopathological changes (Oluwasanu 
2018) 

Azo dyes Azo dyes produce toxic metabolites, which can cause 
toxic effects like allergic reactions, tumor formation, and 
endocrine disruption (Deng et al. 2020) 

Petroleum 
hydrocarbons 

Petroleum hydrocarbons cause neurological conditions 
such as fatigue, neurasthenia, and pneumonitis from 
aspiration into the lungs, which is accompanied by 
choking, coughing, wheezing, shortness of breath, 
cyanosis, and fever (Ahmed et al. 2018) 

Pesticides Pesticides’ effects on the spectrum of oncological 
(cancer) and hematological morbidity, and pulmonary 
dysfunction, in addition to immune system inadequacies 
and inborn abnormalities (Hassaan and el Nemr 2020) 

Persistent organic 
pollutants (POPs) 

Exposure to persistent organic pollutants causes serious 
health problems, including hormone disruption, cancer, 
cardiovascular disease, obesity, reproductive and 
neurological diseases, learning difficulties, and diabetes 
(POPs). Furthermore, these pollutants induce defects in 
female embryos (Alharbi et al. 2018) 

Inorganic 
pollutants 

Cadmium Cadmium-induced oxidative stress brought on by the 
formation of reactive oxygen species and 
bioaccumulation of Cd in the human system affects the 
antioxidant defense system, leading to various diseases 
(Suhani et al. 2021) 

Chromium People can get seriously harmed, such as developing lung 
cancer, due to the conversion of Cr(VI) to Cr(III). 
Occupational exposure to Cr(VI) may also result in 
respiratory issues. In addition, skin rashes, reduced 
immune systems, kidney and liver failure, genetic 
material alteration, and other health hazards are connected 
to Cr exposure. Humans who consume Cr(VI) may also 
have cardiovascular collapse (Raj and Maiti 2020) 

Arsenic Acute toxic arsenic exposure causes symptoms such as 
dry mouth, Mees’ lines in fingernails, diffuse skin rashes, 
breathing garlicky odor, weakness, muscle cramps, 
vomiting, diarrhea, nausea, abdominal pain, abdominal 
pain, psychosis, cardiovascular collapse, pulmonary 
edema, and kidney failure. The incidence and severity of 
pulmonary, cardiovascular, and cancer problems later in 
life have also been linked to exposure to arsenic during 

(continued)
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overall pore volume and surface area hardly change at pyrolysis temperatures below 
400 °C, i.e., at low temperatures. Low temperatures may not give the best conditions 
for completely devolatilizing volatile compounds. As a result, they may cause 
specific pores to become blocked and impede the creation of new pores. On the 
other hand, slow pyrolysis usually results in higher biochar production and better 
homogeneity. However, it takes a long time, making it unsuitable for the mass 
production of biochar. Biochar produced at lower temperatures (300–400 °C) has 
more diversified organic properties, such as aliphatic and cellulose-type structures, 
and contains more C-H functional groups and C-double bond-type bonds. The rapid 
temperature rise begins at 400–500 °C; as the temperature rises, amorphous carbons 
condense to become crystalline carbons; more volatiles are also eliminated, resulting 
in sparse areas that cause fissures in the material, which subsequently produces more 
pores. Because of the biomass’s dehydration and oxygenation, biochar produced at 
high temperatures (600–700 °C) has a highly fragrant character, a rise in surface 
area, formed micropores, and well-organized carbon (C) layers. The number of 
oxygen-containing H and O functional groups on the biochar surface decreases as 
temperature rises, while its surface area increases. The latter reduces the capacity of 
dangerous metals to bind to aqueous media (Leng et al. 2021; Li et al. 2019a, 2019b; 
Ambaye et al. 2020). For example, in 2013, an experiment was carried out to make 
biochar from eucalyptus wood (heated to 450 °C and 850 °C, greater pyrolysis 
temperatures). When this biochar was applied to soils, it enhanced adsorption and 
decreased the desorption of pesticides such as diuron, chlorpyrifos, and carbofuran 
(Zhang et al. 2013).
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Table 11.1 (continued)

Types of 
pollutants Effects 

pregnancy and youth, with some findings indicating a 
10-year latency period for these conditions (Bjørklund 
et al. 2019) 

Lead Due to immune modulation, oxidative, and inflammatory 
mechanisms, Pb exposure can cause neurological, 
respiratory, urinary, and cardiovascular disorders. 
Furthermore, Pb may disrupt the oxidant-antioxidant 
system’s balance and cause inflammatory responses in 
various organs. Pb exposure can cause changes in the 
body’s physiological functions and is linked to various 
diseases (Balali-Mood et al. 2021) 

Mercury The presence of mercury in the environment is becoming 
an increasing health problem. Mercury has been 
associated with several neurological disorders, including 
amyotrophic lateral sclerosis, Alzheimer’s disease, and 
Parkinson’s. In addition, elemental and inorganic mercury 
compounds have been associated with the immune 
system and renal damage, respectively, while MeHg has 
been linked to cardiovascular and nervous system harm 
(Wang et al. 2012)
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During pyrolysis, lignin, cellulose, hemicellulose, fat, and starch are thermally 
broken down into three primary products: biochar (a solid fraction), bio-oil (partially 
condensed volatile matter), and non-condensable gases (e.g., CO, CO2, CH4, and 
H2). Furthermore, the selective removal of particular elements (C, H, and O) into 
gases and other volatile molecules produces fluctuations in biochar’s O/C and H/C 
ratios. The ratio of O/C and H/C in biochar is significantly connected to aromaticity, 
biodegradability, and polarity, all of which are highly desirable qualities for organic 
pollutant removal (Oliveira et al. 2017). 

11.4.2 Biochar Characteristics 

Biochar contains nutrients such as P, K, Ca, and Mg, which are concentrated from 
the pyrolysis feedstock (Sun et al. 2018). The qualities of biochar are strongly 
dependent on pyrolysis temperature and process parameters such as residence 
duration and furnace temperature, as well as feedstock type. The pyrolysis tempera-
ture affects biochar’s physicochemical properties and structure, such as elemental 
components, pore structure, surface area, and functional groups. The impact of 
pyrolysis temperature on such features can be related to the inflow of volatiles at 
high temperatures. Biochar comprises aromatic, aliphatic, and stable organic carbon. 
Biochar’s most essential qualities are their chemical composition, stability, specific 
surface area, and porosity (Ding et al. 2016; Saletnik et al. 2019). 

Furthermore, density and porosity are crucial physical qualities that determine 
how biochar flows through the environment and interacts with water to affect soil 
hydrologic processes, particularly plant-available water-holding capacity (Brewer 
et al. 2014). The pore structure of biochar, which defines the specific surface area, 
influences its adsorption ability for heavy metals. Generally, the greater the surface 
area of biochar, the greater its adsorption capacity (Qiu et al. 2021). In addition, a 
large proportion of carbon is fixed in a more stable form during pyrolysis and 
efficiently stored after being applied to the soil (Toková et al. 2020). 

The physicochemical properties of biochar, such as composition, surface area, 
water-holding capacity, pH, electrical conductivity, particle, pore size distribution, 
and a variety of functional groups (such as –OH, –COOH, and –NH2 groups), make 
biochar more effective and have special significance in soil remediation as well as 
improving soil properties. For example, biochar’s properties can aid in adsorption 
and immobilization by complexing, electrostatic contact, and ion exchange between 
contaminants. In addition, biochar’s physicochemical properties allow it to be used 
to sequester carbon in the soil, improve composting, create organic fertilizers based 
on biochar, clean up polluted soils, improve soil qualities, reduce groundwater and 
surface water contamination, and remove pollution (Mandal et al. 2021, El-Naggar 
et al. 2019,  Gałwa-Widera 2021). However, because modified biochar offers a wide 
range of practical applications, considerably more research has been put on biochar 
modification to increase its qualities (Zhang et al. 2018).
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11.5 Adsorption Mechanism of Biochar 

The ability of biochar to adsorb heavy metals is mainly determined by its specific 
surface area, the quantity of surface-active functional groups it contains, and its 
cation exchange capacity. The efficacy of biochar in removing heavy metals is 
highly dependent on its properties, its sources, and the surroundings (Ke et al. 
2021; Qiu et al. 2021). Both the Langmuir and Freundlich isotherms are examples 
of adsorption isotherms and are handy tools for defining the relationship between an 
adsorbent and an adsorbate in any given system. The parameters produced from the 
various models provide essential information regarding the adsorbent’s sorption 
mechanisms, surface properties, and affinities. The Langmuir isotherm is the one 
that sees the most application in the process of removing a solute from a liquid 
solution. The Langmuir isotherm makes the presumption that the surfacing site is at a 
constant temperature. When there are no sorption limitations, and the adsorption 
process involves heterogeneous surface energy systems, the Freundlich isotherm can 
model the process. This is the case when the adsorption does not include homoge-
neous site energies (Park et al. 2013; Azlina Wan Ab Karim Ghani et al. 2013). 

11.5.1 Adsorption of Toxic Inorganic Metals 

The potential adsorption mechanism for inorganic materials like heavy metals often 
involves the combined effects of several different interactions. These interactions 
include electrostatic interaction, surface sorption, ion exchange, precipitation, and 
complexation as shown in Fig. 11.1 (Poissant et al. 2008). 

11.5.1.1 Electrostatic Interaction 
In interaction with electrostatic fields, biochar is usually zwitterionic, which 
indicates that it possesses both positively and negatively charged atoms. Therefore, 
biochar can take in positively charged metals due to its electrostatic attraction. 
Because of this, it is anticipated that the cation exchange capacity (CEC) of soils 
will rise due to the negatively charged functional groups; furthermore, pH-dependent 
O-containing functional groups (oxonium heterocycles) of biochar will also exhibit 
anion exchange capacity (AEC) (Oliveira et al. 2017). 

11.5.1.2 Surface Sorption 
The removal of heavy metals via the diffusion of metal ions into the pores of sorbents 
without forming chemical interactions is called surface sorption. Surface sorption is 
the word used to describe the removal of heavy metals. The biochar-metal sorption 
process, also known as the biochar mechanism, is susceptible to the solution’s  pH  
and the point of zero charges (PZC) of the biochar (Patra et al. 2017). In addition, 
biochar can absorb heavy metals via various adsorption mechanisms due to its high 
surface area, abundance of polar functional groups, and presence of transition metals 
(Gholizadeh and Hu 2021).
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Fig. 11.1 A biochar structural diagram showing the electrostatic interaction, surface sorption, ion 
exchange, precipitation, functional groups, and characteristics of biochar. Reprinted from Ref 
(Sarma et al. 2022) with permission from Elsevier. License Number: 446421163588 

11.5.1.3 Ion Exchange 
Ion exchange processes are reversible ion exchanges between a solid and a liquid 
phase. The solid phase is known as an ion exchanger and needs to be insoluble in the 
medium in which the exchange occurs (Barquilha and Braga 2021). The interchange 
of protons and ionized cations with dissolved salts on the surface of the biochar is 
necessary for the mechanistic process to occur. The ability of biochar to effectively 
absorb heavy metals depends on both the surface functional group and the 
contaminated size of the biochar (Ambaye et al. 2020). In particular, metal ions 
are significantly adsorbed in active biochar sites with phenolic and carboxylic 
functional groups on the material’s surface. As a result of the presence of mineral 
components, biochar can absorb metals by electrostatic attraction, ion exchange,



surface complexation, and precipitation of metals by releasing soluble ions (Sobik-
Szołtysek et al. 2021). 
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11.5.1.4 Complexation 
By merging two or more molecules, complexation can occur, resulting in the 
production of a well-defined, nonbonded geometrical structure. It is predicated on 
the interaction of weak forces such as H-bonding and hydrophobicity. When it 
comes to the immobilization of heavy metals, the surface functional groups of 
biochar play a significant role. When these functional groups interact with HM 
ions, stable complexes are formed by combining the two. More oxygen functional 
groups are present in biochar produced at lower temperatures. Because of surface 
oxidation and generation of carboxyl, the amount of oxygen in this kind of biochar 
increases over time (Dhiman et al. 2021). 

11.5.1.5 Precipitation 
One of the important ways of removing the inorganic pollution caused by biochar is 
through precipitation. It involves the development of mineral precipitates into the 
solution or onto the surface of the sorbing material for biochar, which is produced 
from the breakdown of cellulose and hemicelluloses material by pyrolysis at 
temperatures higher than 300 °C and possesses alkaline characteristics (Ambaye 
et al. 2020). The creation of one or more solids during the sorption process is 
precipitation. This can take place in a solution or on a surface. There has been 
much discussion about precipitation being an essential part of immobilizing heavy 
metals by utilizing biochar sorbents (Patra et al. 2017). 

11.5.2 Adsorption of Toxic Organic Metals 

On the other hand, the mechanisms behind the adsorption of organic contaminants 
by biochar are linked to a variety of different interactions. These interactions include 
hydrophobic interaction, pore filling, partitioning, electron donor and acceptor 
(EDA) interaction, and electrostatic contact (Poissant et al. 2008). Biochar has a 
higher surface area, is resistant to biodegradation, and has an active adsorption 
affinity for various hydrophobic organic and hazardous inorganic pollutants. 
Because of its higher surface-to-volume ratio, biochar has a stronger and more 
favorable affinity for harmful and persistent pollutants such as polycyclic aromatic 
hydrocarbons, dioxins, furans (PCDD/Fs), polybrominated diphenyl ethers 
(PBDEs), and polychlorinated biphenyls. These contaminants include PCBs. 
According to the research from Hu et al. (2020), one of the methods that biochar 
employs to reduce the mobility of inorganic pollutants is a change in pH (Das et al. 
2020). 

As a result, biochar can disrupt source-pathway links because it can absorb 
contaminants on its surface, resulting in a lower concentration of contaminants in 
the soil solution. Biochar can remediate soil by permanently absorbing contaminants



in the soil solution and preventing the pollutants from reaching receptors (Sizmur 
et al. 2015). 
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11.6 Biochar Made from Different Materials Can Be Used 
to Clean Up Polluted Land 

Biochar is a multipurpose material that can be used in various environmental 
remediation procedures (Yuan et al. 2019). Because of its carbonaceous structure 
and high surface area, biochar, for example, can trap heavy metals and pollutants 
from the water and soil matrices in which they are located (Odinga et al. 2021). In 
general, agricultural residue and woody biomass containing lignin, cellulose, and 
hemicellulose are excellent sources of biochar for lowering greenhouse gas 
emissions and cleaning up organic pollutants. Biochars with a high ash concentra-
tion, such as those derived from manure and sludge, on the other hand, are more 
suited for the remediation of heavy metal and cationic organic pollutant pollution 
(Ji et al. 2022). 

According to several research findings, soil that has been changed with biochar is 
more effective in absorbing a broader range of organic pollutants, reducing the 
quantity of those pollutants that plants take in. Herbicide bioavailability can be 
lowered when more charcoal is present in the soil. The accumulation of pesticides 
and other organic pollutants in plants can be considerably decreased by applying 
little biochar to the soil (Zhang et al. 2013). 

11.6.1 Application of Biochar in Phytoremediation 

Biochar and phytoremediation are risk-free, ecologically friendly technologies that 
may be at the forefront of attempts to clean up polluted soil (Paz-Ferreiro et al. 
2014). The multidisciplinary discipline of phytoremediation aims to either immobi-
lize or mobilize toxins induced by various environmental circumstances. The term 
“phytoremediation” refers to a wide range of remediation techniques, including 
rhizoremediation, phytoextraction, phytodegradation, and phytovolatilization 
(Narayanan and Ma 2022). 

Xu et al. (2020) employed a mixture of toxicological and physiological studies to 
assess the effect of biochar pyrolyzed from kitchen waste (KWB), corn straw (CSB), 
and peanut hulls (PHB) on the immobilization of lead (Pb) and cadmium (Cd) in 
polluted soil by planting swamp cabbage (Ipomoea aquatica Forsk.). The study 
discovered that biochar made by pyrolyzing KWB, CSB, and PHB was better at 
immobilizing Pb and Cd and may raise the pH of the soil. Additionally, swamp 
cabbage’s levels of SOD and POD reduced, while its fresh weight and root length 
increased following treatment with biochar. 

Bandara et al. (2016) conducted a study on heavy metal immobilization in 
serpentine soil by producing woody biochar from Gliricidia sepium (Jacq.) where 
tomato plants (Lycopersicon esculentum L.) were employed in a 6-week pot
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experiment with biochar application rates of different concentrations. After germi-
nation, the plants on the control treatment were unable to survive, whereas all of the 
seedlings typically flourished on biochar-modified soils; the results showed that 
biochar emerged as the most effective method for immobilizing metals, as evidenced 
by immobilization efficiencies of 68%, 92%, and 42% for nickel (Ni), manganese 
(Mn), and chromium (Cr), respectively (Bandara et al. 2016). 
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Table 11.2 The impact of biochar feedstock application on metal bioavailability and content 
in soil 

Pyrolysis 
conditions 
(°C) 

Sugarcane bagasse 
biochar 

450 Concentrations of Pb, Cu, and Cd metal in 
cabbage plants were considerably 
reduced as the biochar application rate 
was increased in topsoil 

Nie et al. 
(2018) 

Sewage sludge 
biochar 

500 Plant availability of the Cu, Ni, Zn, Cd, 
and Pb metals has been significantly 
reduced in Mediterranean soil 

Méndez 
et al. (2012) 

Rice husk biochar 500 Decreased levels of Cu, Zn, and Cd heavy 
metals in the soil from wetlands 

Gholizadeh 
and Hu 
(2021) 

Corn straw biochar 400 Adsorption of metals Cd and Pb from 
water and soil 

Chi et al. 
(2017) 

Peanut shell biochar 350–500 Biochar converted acid-soluble Pb and Zn 
to reducible bound speciation, which 
decreased the bioavailability of Pb and Zn 
in the soil 

Chao et al. 
(2018) 

Gliricidia sepium 
(Jacq.) biomass-
derived biochar 

300 and 
500 

Efficiency of immobilization for Ni, Mn, 
and Cr in tomato plant (Lycopersicon 
esculentum L.) 

Bandara 
et al. (2016) 

Wheat straw biochar 450 The organic functional groups in wheat 
straw biochar assisted in absorbing, 
storing, and relocating too much 
bioavailable Cd from solutions and soil 
that was polluted with the heavy metal 

Cui et al. 
(2019) 

Table 11.2 shows the impact of biochar feedstock application on metal bioavail-
ability and content in soil. 

11.6.2 Modification of Biochar for Assisted Remediation 

Recent studies have concentrated on biochar modification using unconventional 
structures and surface properties to improve biochar’s capacity for environmental 
remediation and overall positive impact (Rajapaksha et al. 2016). Efforts have been 
made to change biochar to have a higher porosity, surface area, or surface functional 
group content. Altering biochar can be done in several ways, including chemical,
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physical, and magnetic methods and through the impregnation of mineral oxides 
(Godwin et al. 2019). The effects of applying modified biochar feedstock on metal 
bioavailability and content in soil are shown in Table 11.3. 
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Table 11.3 The impact of modified biochar feedstock application on metal bioavailability and 
content in soil 

Modified 
biochar 

Thiol-
modified rice 
straw 
biochar (RS) 

Produced using mercaptoethanol in 
the esterification process 

Remediation of Cd and Pb 
from polluted soils 

Fan et al. 
(2020) 

Magnetic 
wheat straw 
biochars 

Wheat straw biochars magnetized 
with iron oxide 

Removed Pb from 
polluted soils 

Gong et al. 
(2020) 

Oxidized 
and thiolated 
pig manure 
biochar 

H2O2 and 
3-mercaptopropyltrimethoxysilane 
were used to oxidize and thiolate 
pig manure 

For low Cd 
concentrations, oxidized 
biochars showed the 
highest levels of sorption. 
Compared to unmodified 
and oxidized biochar, 
thiolated biochar 
demonstrated increased Pb 
sorption 

Wang 
et al. 
(2021) 

Bismuth-
impregnated 
biochar 

Wheat straw-derived biochar that 
has been treated with bismuth 
(BiBC) 

By controlling ferrolysis, 
bismuth-impregnated 
biochar (BiBC) reduced 
the bioavailability of 
arsenic in paddy soils 

Zhu et al. 
(2019) 

Modified 
coconut shell 
biochar 
(MCSB) 

Modified coconut shell biochar 
(MCSB) produced from coconut 
shell biochar (CSB) using a 
combination of ultrasonication and 
hydrochloric acid pickling 

Immobilization of Cd, Ni, 
and Zn in sandy soil 

Liu et al. 
(2018) 

The effectiveness of soil heavy metal immobilization and the mechanisms of a 
novel phosphorus-modified biochar synthesized using K3PO4 were studied by 
Zhang et al. in 2020 (produced by pyrolyzing with biomass feedstocks of bamboo, 
rice husk, wood, and cornstalk pre-impregnated with potassium phosphate). 
According to the findings, the phosphorus (P) compounds in modified biochar 
played a substantial role in the immobilization of copper (II) and cadmium (II) by 
creating precipitates or complexes with these elements at a ratio of between two and 
three. The acid-soluble forms of copper (II) and cadmium (II) ions might be 
transformed into more stable forms with the assistance of phosphorus-modified 
biochars. In addition, compared to bamboo and wood P-assisted biochars, the 
modified cornstalk and rice husk biochars show greater immobilization efficiencies 
for Cd (II) and Cu (II), with percentages ranging from 14 to 24% and 19 to 33%, 
respectively, for each element. Phosphorus also improved the extraction and mobil-
ity of arsenic, despite the fact that the input did not change. According to this study’s



findings, phosphorus-modified biochar can be used as an innovative soil rehabilita-
tion technique for heavy metal-polluted soils (Zhang et al. 2020). 
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Using thiol-modified rice straw biochar and mercaptoethanol in the esterification 
process, Fan et al. (2020) looked into the possibility of restoring contaminated soils 
that had been affected by cadmium and lead and lead poisoning. The thiol groups 
successfully placed onto the surface of the biochar served a function in the complex-
ation of metal ions. During the 28-day incubation trials with thiol-modified rice 
straw biochar, surface complexation reduced the available cadmium in the soil by 
34.8–39.2%. In addition, it reduced the available Pb-lead in the soil by 8.6–11.1% 
(Fan et al. 2020). 

According to Liu et al. (2018), modified coconut shell biochar (MCSB), which 
was produced from coconut shell biochar (CSB) using a combination of 
ultrasonication and hydrochloric acid pickling, which greatly enhanced the surface 
functional groups and microcosmic pore structure, could be used as an ameliorant to 
immobilize heavy metals in contaminated soils because it outperformed CSB in 
immobilizing metals. Therefore, sand soil samples were subjected to an incubation 
period of 63 days at a temperature of 25 °C with the addition of MCSB or CSB at 
concentrations of 0%, 2.5%, and 5%. According to the findings, the addition of 5% 
MCSB resulted in a reduction in the acid-soluble concentrations of Cd (30.1%), Ni 
(57.2%), and Zn (12.7%), respectively (Liu et al. 2018). 

Thermal pyrolysis of iron-treated cedar sawdust, as shown by Wan et al. (2020), 
can be used to manufacture adsorbents based on magnetic biochar that contains 
Fe3O4 particles embedded in a porous biochar matrix. These adsorbents can then be 
utilized to remove contaminants from aqueous solutions. According to the findings, 
20–30% of the arsenic, cadmium, and lead were simultaneously removed within 
24 h after the adsorbent was added to a multi-contaminated soil slurry and then 
separated from the soil. This method has considerable potential for treating heavy 
metal pollution in soil and aquatic ecosystems (Wan et al. 2020). 

11.7 Conclusion 

In conclusion, biochar provides a plethora of potential for boosting environmental 
sustainability. This could be the one option for waste treatment and lowering 
environmental pollution. The low feedstock cost and the simple processing proce-
dure also make biochar useful. Furthermore, biochar’s characteristics can aid in 
adsorption and immobilization via complexation, electrostatic interaction, and ion 
exchange, among other things. In addition, biochar’s physicochemical features 
enable it to sequester carbon in the soil, improve composting, develop biochar-
based organic fertilizers, clean up contaminated soils, improve soil quality, reduce 
groundwater and surface water contamination, and remove pollution.
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Abstract 

It is an undeniable fact that modern human civilization is proliferating at the cost 
of irrevocable damage to the primary natural resources, i.e., land, water, and air. 
Among these, land is one of the most crucial components as it sustains all the 
terrestrial life-forms. Sadly, reckless anthropogenic activities are deteriorating the 
soil quality at an alarming rate. Thus, soil remediation is demanding immediate 
attention of the scientific community. Though various conventional techniques 
have been developed for soil remediation, their inefficiency impels the 
researchers to probe for more effective and greener pathways. In that respect, 
biomass-based hybrid materials prove to have a huge application potential, since 
these engineered materials exhibit superior properties, such as high chemical 
resistance, large surface area, high porosity, and greater sorption capacity. Con-
sidering the significance and growing awareness of the concerned domain in the 
recent years, this chapter attempts to provide an overview of the synthesis and 
applications of various biomass-based materials for effective soil remediation. In 
conclusion, future prospects and the associated challenges have also been 
highlighted. 

Keywords 

Soil remediation · Biochar · Biomass · Bioengineered materials 

12.1 Introduction 

Soil performs crucial ecological functions that are beneficial for both natural and 
anthropogenic systems. The ability of the soil to conduct these functions is affected 
by some disturbances, which has an impact on ecosystem processes as a whole 
(Volchko et al. 2014). Few of the widespread disturbances are the effects of human 
activity, including resource exploitation, intensive farming, fast industrialization, 
war, and military training (Fayiga and Saha 2016; Jiang et al. 2018), that leads to the 
deposition of different types of contaminants. Due to the continual interactions 
between soil, water, and air, soil pollution is a significant environmental issue that 
puts ecosystems and human health at risk. According to estimates, in China, about 
16.1% of soils are polluted with organic and toxic metal contaminants. Serious 
health issues might be caused by toxic substances in soil (Zhang et al. 2019b). 
Several organic and inorganic pollutants like petroleum hydrocarbons, polycyclic 
aromatic hydrocarbons (PAHs), polychlorinated naphthalene (PCN), 
perfluorochemicals (PFCs), and various radioactive pollutants and heavy metals 
have severely polluted the soil (Anning and Akoto 2018; Dardouri and Sghaier 
2018). Exposure to such hazardous pollutants has significant negative effects on 
health, including cancer, neurological problems, weakened immune systems, organ 
dysfunction, as well as physical and mental illnesses (Fig. 12.1). The burden on 
society and terrestrial ecosystems has significantly increased because of the



extensive and rapid spread of pollutants like heavy metals on agricultural land. 
Contamination in croplands can expose heavy metals such as mercury, lead, nickel, 
arsenic, and cadmium at almost 82.4% of the samples through soil–plant–food chain. 
The rest of the samples are polluted by organic contaminants like 
dichlorodiphenyltrichloroethane (DDT) and PAHs (Zhao et al. 2015). For instance, 
the World Health Organization lists mercury in top ten substances of concern (WHO 
2017). As(III) has caused a number of environmental issues like human carcinoge-
nicity due to its high toxicity (Feng et al. 2018). The use of arsenic pesticides, 
industrial pollutant discharge, and mining are the major anthropogenic activities 
attributed to continuous degradation and dispersed arsenic contamination (Ghosh 
et al. 2014). 
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Fig. 12.1 Schematic representation of the anthropogenic and natural sources for soil pollution and 
their consequences (PCP pentachlorophenol, As arsenic, PCBs pentachlorobenzene, SO4 sulfate, Pb 
lead, TiO2 titanium dioxide nanoparticles, SiO2 silicon nanoparticles, NO3 nitrate, DDT 
dichlorodiphenyltrichloroethane, PFCs perfluorochemicals) 

The parent material of the soil (lithogenic source), as well as numerous anthropo-
genic sources, is the primary cause of heavy metal contamination. Most of the heavy 
metals are found naturally in soil-forming materials, often in the forms that are not 
easily accessible to plants. The minuscule levels of heavy metals (1000 mg kg-1 ) 
that naturally occur in soil due to deterioration of parent materials make them 
scarcely poisonous. The heavy metals basically turn into contaminants in the soil 
environments due to the following factors: (1) their generation rate through artificial 
cycles is faster than that of natural processes; (2) they are switched from mining to 
random places with a direct exposure possibility; (3) high concentration of metals is 
present in waste products; and (4) based on the chemical form, metals may become



more accessible in the receiving environmental system (D'Amore et al. 2005). It has 
been found that the organomercuric form of mercury inhibits brain function, while 
Hg2+ affects the lung and kidney (Clarkson and Magos 2006). Due to carcinogenic 
effects of PAHs present in the soil, exposure to such soils could be a severe threat to 
human health (Pei Zhang and Chen 2017). Lung cancer, stomach pains, ulcers, 
vomiting, diarrhea, skin issues, genetic changes, and various other human diseases 
are also caused by toxic metals. Itai-itai disease results in kidney failure and fragility 
of the bones and was first reported in Japan around the beginning of the twentieth 
century due to Cd poisoning through drinking water and rice contaminated by Cd 
(Shen et al. 2019). 
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12.1.1 Importance of Soil Remediation 

Even though governments and academic institutions have developed several effec-
tive interventions, soil contamination persists as an important environmental issue 
that prevents socioeconomic progress. Soil is one of the major environmental 
components that contain two major contaminants like persistent organic pollutants 
(POPs) and heavy metals, which needs to be remediated. Contamination of soil 
interferes or prevents various soil functions that harms human health. As a result, 
removal of contaminants is necessary to reduce the exposure risk and improve soil 
quality to maintain ecosystem. To ensure sustainability of the remediation process, 
“greener” remediation technologies are encouraged by introducing the “green and 
sustainable remediation” (GSR) movement (Hou and Al-Tabbaa 2014; Zhang et al. 
2020b). Therefore, it is essential to investigate remediation techniques with a 
reduced carbon footprint that provides greater environmental sustainability. 

12.2 Techniques for Soil Remediation 

Excavating the contaminated soil, putting it in a landfill, and then backfilling the area 
with new material are a widely used technique for handling soil contamination. High 
energy costs and scarcity of resources available naturally for backfilling make this 
technique complicated. Controlling the sources and improving the effectiveness of 
the remediation technology are both essential for complete removal of contaminants 
from polluted soil. For soil cleanup, a variety of remediation technologies have been 
developed globally, including thermal remediation for Hg (Hseu et al. 2014), soil 
washing for As (Ko et al. 2006), chemical leaching for Cd (Makino et al. 2007), 
solidification/stabilization for Zn (Al-Wabel et al. 2015), and phytoremediation for 
Pb (Babu et al. 2013). Cost, long-term effectiveness/persistency, commercial viabil-
ity, public acceptability, and physicochemical qualities such as mobility, toxicity, 
and volume are the important variables impacting the applicability and choice of 
such technologies. 

Two major categories of remediation technologies are in situ and ex situ remedi-
ation methods. Flowchart of different types of soil remediation techniques is



depicted in Fig. 12.2. Both the techniques have benefits and drawbacks depending 
on the soil characteristics, soil condition, and pollutant content. 
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Fig. 12.2 Flowchart of various soil treatment techniques 

12.2.1 In Situ Remediation Technologies 

It is an effective and affordable ecological remediation method for the treatment of 
polluted soils. The main advantage of “in situ treatments” is that soil that is 
contaminated does not need to be evacuated. It includes a range of techniques for 
the remediation of polluted soils without eradicating them from the site. Two 
categories of in situ treatment are solidification/stabilization treatment methods 
and biological/chemical treatment methods (Hussain et al. 2022). To decrease the 
pollution below standard levels, these remediation approaches may be employed 
independently or in combination. By using in situ treatment, soils remain in place, 
which lowers the possibility of increased contamination due to resuspension of 
pollutants. Because handling soils is relatively easy, in situ remediation technologies 
lower the exposure risk and subsequent soil spills. Additionally, these treatments 
help to decrease mobility and volume of toxic materials, as well as their subsequent 
emission and loss to the atmosphere. The significant disadvantage of this method for 
removal of contaminant is its less proficiency than “ex situ remediation” technique. 

12.2.2 Ex Situ Remediation Technologies 

Ex situ remediation, which treats polluted soils elsewhere by excavation, is not cost 
effective (Kuppusamy et al. 2016). Because excavation is expensive and exposes



workers to health risks from contaminants, the preferred method is in situ remedia-
tion. However ex situ treatment often provides more consistent results, is easier to 
monitor, and requires less time to complete than other methods to effectively remove 
contaminants despite the high expense. Ex situ treatments mainly comprise electri-
cal, chemical, physical, biological, and thermal treatment. Generally, digestible 
physical, electrical, and chemical methods have been condensed in a single category 
known as physicochemical treatment. The purpose of this treatment is to destroy and 
segregate the contaminants depending on the physiological properties of the 
pollutants and medium (Zhang et al. 2021). Using decontaminated soils for land-
scaping is possible after ex situ treatment. Equipment for these treatments is easily 
accessible and typically neither engineering nor energy intensive. 
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12.2.3 Physical Method of Soil Remediation 

This technique involves soil replacement procedure (Derakhshan Nejad et al. 
2018, b) and thermal desorption methods (Samaksaman et al. 2016). Land 
excavating method uses non-contaminated land to replace the polluted land 
completely or partially in order to reduce the contamination and to improve soil 
quality. This technique can reduce the environmental impact of contaminants by 
adequately separating the soil and ecosystem. This method is expensive and fitting 
only for land in small regions. The three types of soil replacement techniques are as 
follows: (1) soil spading, (2) soil replacement, and (3) importing non-contaminated 
soil. In land replacement technique, fresh/new soil is used to replace contaminated 
soil. This technique can be used to treat small-scale contamination. However, to 
accomplish dilution and natural deterioration, soil spading technique is used, i.e., 
digging the contaminated soil out and causing the contaminant to disperse. 
Importing new soil involves covering the surface of the polluted land with a 
significant amount of non-polluted soil to lower pollutant levels. In thermal desorp-
tion technique, infrared radiation is used to volatilize the contaminants (e.g., Hg, As) 
and steam, and microwaves are used to heat the contaminated soil (Derakhshan 
Nejad et al. 2018b). 

12.2.4 Chemical Method of Soil Remediation 

Chemical remediation process involves addition of chemicals in the polluted soils to 
remove or stabilize contaminants from contaminated surfaces. This process converts 
the polluted soils into less harmful forms that become useful for plants, waterbodies, 
and human beings. Metallic oxides, clays, or biomaterials are generally used for 
chemical treatments. Two different types of chemical remediation techniques are 
immobilization method and soil washing (chemical leaching) Tampouris et al. 2001.
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12.2.5 Phytoremediation 

In this technique, green plants are utilized in fixing contaminants that lowers the risk 
of environmental damage. The three major types of phytoremediation techniques are 
phyto-stabilization, phytovolatilization, and phytoextraction. The main feature of 
this technique is that it relies on the solar energy-driven technology. It is an 
economic technique that can be implied to treat soil having a mixture of 
contaminants without producing secondary waste. The major disadvantage of this 
method is that it requires a large span of time (Sarwar et al. 2017). 

12.2.6 Biological Remediation 

Biological remediation/bioremediation is an eco-friendly technique where 
microorganisms are used for treating pollutants through intrinsic bioremediation 
techniques (Aparicio et al. 2022). Addition of several enhancing agents (electron 
donors, electron acceptors, microbes, and nutrients) will enhance the capacity of 
such technique that results in enhanced bioremediation. Different types of 
mechanisms like precipitation, intracellular accumulation, extracellular complexa-
tion, and oxidation–reduction reaction are involved in this remediation method. This 
technique is useful for the treatment of industrial wastes, treatment of mining sites, 
and cleansing sewage sludge (Ye et al. 2017). 

12.3 Bioengineered Strategy for Soil Remediation 

Soil contamination causes several environmental problems, lowers the quality of 
agriculture, and has negative impact in all forms of life. The existing conventional 
physicochemical technologies (soil washing, vitrification, soil replacement, and 
electrokinetics) have shown to be efficient for treating polluted soils. Nevertheless, 
certain minor and major defects in these technologies continue to put them in 
trouble. High cost, poor feasibility, unsustainability, and inefficiency are some 
examples of this. Additional methods have the potential to deteriorate soil quality 
and remove other precious metals or only work in specific circumstances as low 
carbonate levels and insufficient soil permeability (Hou and Gao 2003; Khalid et al. 
2017). Other techniques such as stabilization and solidification have the potential to 
trap pollutants but are unable to remove, alter, or destroy the pollutants. On the other 
hand, bioremediation process is more economic and environmentally beneficial and 
consequently garnered more attraction in recent times. However, there are certain 
drawbacks of using bioremediation techniques. For instance, phytoremediation 
technique shows slower rate of accumulation of pollutants as a result of using of 
hyperaccumulators, which are often extremely slow growing. 

In laboratory-scale experiments, it has been shown that other biological 
techniques (bioaugmentation, digestate, etc.) provide significant possibilities for 
bioremediation of organic-inorganic pollutants and heavy metals. However, only a



small number of industrial and field applications have been made to ascertain the 
feasibility and viability of these technologies in the environment. Particularly, 
application of biochar in environmental engineering is one such technology that 
has attracted more attention. Recently, researchers have found that using biochar 
generated from biomass is a viable way to reduce contamination of polluted soil. 
Such materials played an important role for enhanced bioremediation by serving as a 
strong, sustainable adsorbent. Pyrolysis conditions, type of biomass material, and 
carbonization method largely affect the efficiency of biochar for adsorption of 
pollutants. During the last decade, implementation of biologically and chemically 
modified biochar materials to enhance the effectiveness of pollutant removal capac-
ity has gained large interest. Hence, the development and application of 
bioengineered biomass-based materials and their composites in contaminant and 
risk management, linked with the remediation of contaminated soil, have become 
one of the emerging areas of research. 
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12.4 Biomass 

Shortage of nonrenewable resources and environmental issues have pressurized the 
researchers to think of sustainable and cost-effective resources that can be obtained 
via green routes to develop advanced functional materials. Researchers have 
identified biomass as one of the resources that can meet the demands of nonrenew-
able resources and have various potential applications. Biomass can be described as 
plant-based organic matters, which are synthesized via photosynthesis to produce 
carbohydrates. Apart from plants, biomass can also refer to animal wastes, industrial 
wastes, agricultural wastes, and industrial and urban wastes. 

12.4.1 Biomass Feedstocks 

Plant and animal resources as well as any other materials derived from their wastes 
can be included in the biomass feedstocks. Biomass feedstocks mainly cover 
lignocellulosic materials, including wood and agriculture wastes and 
non-lignocellulosic materials such as food wastes and industrial and urban wastes 
(Janu et al. 2021). These biomass resources can be converted to different advanced 
engineered materials directly or after a chemical/physical treatment. Biomass 
feedstocks can be classified into five main sources, livestock wastes, woody bio-
mass, agricultural biomass, aquatic biomass, and industrial and urban waste 
(Fig. 12.3) (Jeguirim and Limousy 2019). 

These feedstocks can be used to produce materials like biochars, which have 
various applications in land and water remediation. In Table 12.1, we have compiled 
various biomass sources for char production and its applications. 

Plant resources are the oldest biomass derived from forests, woodlands, and 
different plantations. Woody biomass residues in forms of sawdust, chips, barks, 
shavings, etc. generated in large amount from all over the world can be converted to



various potential resources. Moreover, wood is a natural composite material com-
prising natural fibers, cellulose, hemicellulose, and lignin and other biomaterials, 
which have major emerging applications in various fields (Papageorgiou et al. 2021). 
Nowadays, the materials derived from wood have been explored in areas such as 
electronics, optics, catalysis, biomedical devices, and energy. 
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Fig. 12.3 Schematic outline of different biomass feedstocks 

Agriculture biomass includes the residues from agriculture crops such as husks, 
straws, stover, pulps, and other by-products. Some of the major agriculture residues 
for biochar production are paddy straws, sugarcane bagasse, palm kernel shells, 
empty fruit branches, wheat, and corn straws. A number of biomasses produced from 
agriculture have been used for soil enhancement and its remediation. Biochar 
production from agriculture wastes is recognized as an interesting route for devel-
opment for advanced engineering products for pollution control. 

Aquatic biomass is another important category of biomass feedstock that has been 
immensely used in water and soil remediation. Chars derived from these biomasses 
have a high content of carbon and can enrich the soil by adding up nutrients. 
Microalgae, macroalgae, and marine and freshwater plants are the main sources of 
aquatic biomass. 

A large number of livestock feces is being generated every year around the globe, 
which puts the ecosystem at great risk. Therefore, converting these animal manure to 
char is an interesting technology for reducing and endorsing these wastes. Bio-oil 
and gas obtained from animal wastes can be used directly as fuel, and biochar has a 
wide range of applications such as fertilizer, adsorbent, catalysis support, and energy 
storage. Numerous studies were done on soil remediation and its enhancement from 
biomass derived from livestock wastes. 

Waste from cities and industries that is accumulating in landfills has become a 
serious ecological and public issue across the world. Therefore, new strategies have 
been made for minimizing these wastes by converting them into useful materials for 
energy production and other advanced materials. Urban wastes mainly include 
household and commercial wastes such as metal, glass, paper, plastic, and food.



On the other hand, industrial wastes include medicinal wastes, textile wastes, waste
lignin, paper sludge, sewage sludge, metallic wastes, and petrochemical residues. 
Char production from urban and industrial wastes is becoming a hot research topic 
for degradation of environmental pollution. 

Form/part Applications References
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Table 12.1 Biomass sources for char production and its applications 

Methods 
of char 
preparation 

Biomass
sources

Operating 
conditions

Rubber wood Sawdust Slow 
pyrolysis 

10 g, 5 °C/ 
min, 
300–700 ° 
C, 1–3 h  

Property 
characterization 

Shaaban 
et al. (2014) 

Cypress Sawdust Slow 
pyrolysis 

5 °C/min, 
500 °C, 1 h 

Biofertilizer Haddad 
et al. (2018) 

Rape 
sunflower 

Petals and 
seeds 

Slow 
pyrolysis 

30 g, 30 ° 
C/min, 
550 °C, 
1 min 

Biochar for soil 
management 

Sánchez 
et al. (2009) 

Danshen Herb 
residues 

Slow 
pyrolysis 

10 °C/min, 
250–800 ° 
C, 3 h 

Adsorption of 
sulfamethoxazole 

Lian et al. 
(2014) 

Scenedesmus 
dimorphus 

Algae 
residues 

Slow 
pyrolysis 

40 °C/min, 
500 °C, 
100 mL/ 
min 

Adsorption of 
cobalt 

Bordoloi 
et al. (2017) 

Spirulina 
platensis 

Microalgae 
residues 

Pyrolysis 450 °C, 2 h Methylene blue 
adsorption 

Nautiyal 
et al. (2017) 

Water 
hyacinth 

Leaves and 
stem 

Slow 
pyrolysis 

15 g, 30 ° 
C/min, 
300–600 ° 
C, 10 min 

Chromium 
adsorption and 
reactivity 

Lin et al. 
(2018) 

Municipal 
solid waste 

Paper, 
textiles, 
plastics, 
organic 
wastes, etc. 

Slow 
pyrolysis 

400–600 ° 
C, 30 min 

Removal of 
aqueous As(V) 

Jin et al. 
(2014) 

Rice-straw 
biochar and 
calcite 

Straw 
residues 

Pyrolysis 500 °C, 2 h Ni removal from 
soil 

Ali et al. 
(2020) 

Orange peel Oven dried 
and finely 
grounded 

80 °C, 12 h Cadmium 
removal 

Akinhanmi 
et al. (2020)
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12.5 Biochar (BC) 

The complexity that soil bears creates immense challenges for soil remediation as 
they are expensive, time consuming, and hard to handle. Various methods for soil 
remediation have been discussed where sustainable materials were particularly 
emphasized due to their green aspects. Out of all the aforesaid materials, biochar, 
a carbonaceous substance, produced when biomass is gasified and subjected to 
pyrolysis, is a very useful and abundant material that can be easily derived from 
various biomass found in nature. BC’s unique properties, such as its resistance to 
degradation, negative charge, and large internal surface area, make it ideal for the 
rehabilitation of contaminated soils (Lua and Guo 1998). BC’s surface has a 
significant negative charge, which draws positively charged metals and organic 
molecules from the soil solution to its interior surface. By doing this, it will be 
possible to decrease the number of hazards in the soil solution along with their 
current and potential availability for microorganism’s uptake (Beesley et al. 2010; 
Mukherjee et al. 2011). 

12.5.1 Methods of Preparation of Biochar 

Carbonaceous material made from biomass by applying temperature above 300 °C is  
called biochar. 

Different methods have been adopted to prepare biochar, which are mainly 
divided into microwave carbonization, hydrothermal carbonization (HTC), and 
pyrolysis. Biochar has various physicochemical characteristics, such as number of 
functional groups, ash content, specific surface area, pore size, and yield, that mostly 
depend on BC’s preparation methods and raw materials. Among the other prepara-
tion methods, BC’s production from HTC is the highest (Sabio et al. 2016). 
However, microwave carbonization process is a controllable process with no hyster-
esis, energy efficiency, and fast heating (Afolabi et al. 2017; Liu et al. 2019). But 
BCs synthesized from microwave and HTC-controlled process are rarely considered 
as soil remediation material due to high content of organic materials. 

Pyrolysis is an efficient method for the preparation of biochar by thermal degra-
dation of biomass at elevated temperature. Electric heating or high-temperature 
medium is typically used in this procedure to achieve temperatures more than 
400 °C in inert atmospheres. 

The cellulose, hemicelluloses, and lignin content of the materials used in the 
production of biochar differs. Since different materials produce different amounts of 
cellulose, hemicellulose, and lignin in the biochar, its various physical and chemical 
compositions are different (Crombie et al. 2013; Williams and Besler 1993). Ther-
mal degradation of hemicelluloses requires the lowest temperature in the range of 
220–350 °C, while cellulose requires temperature between 315 °C and 400 °C. On 
the other hand, lignin covers a range from 150 °C  to  550  °C or even 900 °C (Enders 
et al. 2012; Yuan et al. 2011). At a temperature below 500 °C, pyrolysis of 
hemicelluloses and cellulose is an exothermic reaction while at a temperature



above 500 °C, the reaction is exothermic in nature (Park et al. 2015). It has been 
observed that biochar from straw contains more ash than that of other biochar, which 
is due to the higher Si content in straw (Enders et al. 2012; Yuan et al. 2011). It has 
also been investigated that the BC yield and the quantity of acidic functional groups 
(–COOH, –OH) decrease as the pyrolysis temperature rises, while the pH, content of 
ash, and basic functionalities increase. According to different heating rates, there are 
two types of pyrolysis method, fast pyrolysis (FP) and slow pyrolysis (SP) (Meyer 
et al. 2011). Thermal process in which biochar is degraded at a slow heating rate with 
limited supply of oxygen and long gas residence time is the slow pyrolysis process 
(Bruun et al. 2012; Mohan et al. 2006). The heating rate in FP process is a few 
hundred seconds and gives different products than SP (Laird et al. 2009). Biochars 
produced from FP and SP have different impact on the soil environment due to its 
different physical and chemical properties. Moreover, biochar obtained from slow 
pyrolysis contains complete pyrolyzed biomass fraction, while FP-BC consists of 
un-pyrolyzed labile fractions (Bruun et al. 2012). 
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Biomass feedstock can be effectively converted into biochar using hydrothermal 
carbonization. This process involves introducing the feedstock into water at rela-
tively low temperatures, typically between 180 and 220 °C. When compared to SP, 
HTC produces biochar with higher carbon content, but when it is compared to 
biochar made through SP, which is less acidic and richer in oxygen-containing 
functional groups and surface charge, HTC produces biochar with higher acidity 
(Román et al. 2018). 

Other techniques for transforming biomass include flash carbonization and 
torrefaction (Chen et al. 2015a), in addition to the microwave carbonization, hydro-
thermal carbonization, and pyrolysis. Thermochemical process such as torrefaction 
needs operating temperatures lower than 300 °C at a lower heating rate of 50 °C per 
minute, atmospheric pressure, a lengthy residence period of 1 h, and little or no 
oxygen supply (Van Poucke et al. 2019). In flash carbonization method, the flash fire 
is inflamed on the biomass-packed bed at a pressure of about 1–2 Mpa to convert the 
biomass into gas- and solid-phase products (Cha et al. 2016). At 1 Mpa, about 40% 
conversion of biomass to solid-phase BC takes place (Mochidzuki et al. 2003). 

In addition to microwave pyrolysis, new pyrolysis techniques such as plasma 
cracking and laser technologies have also been created. Laser pyrolysis method uses 
small samples and allows for rapid cooling and heating, which successfully inhabits 
the development of secondary reactions (Metz et al. 2004). The synthesis of coke 
and syngas is the primary application of plasma pyrolysis technology. It can signifi-
cantly enhance syngas production while lowering bio-oil yield as compared to 
conventional cracking technologies (Tang and Huang 2005; Yaman 2004). Since 
this technology is expensive and consumes a lot of energy, these new pyrolysis 
techniques are, nevertheless, hard to spread.
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12.5.2 Biochar for Soil Remediation 

Soil pollution is getting worse with time as a result of increased industrialization and 
anthropogenic activities. This is primarily because of the receding of soil area and 
increasing chemical pollution from substances like heavy metals, pesticides, acidic 
substances, petroleum wastes, and persistent organic pollutants. Along with heavy 
metals, organic pollutants such as medicinal residues, fertilizers, polycyclic aromatic 
hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs), and antibiotics 
make up the majority of pollutants in soil (Renella et al. 2004; Yang et al. 2014). 
These pollutants have carcinogenic, teratogenic, mutagenic, and genotoxic effects 
that put human health at risk through the food chain. In addition to affecting crop 
yield and quality decline, it further degrades the quality of the air and water 
ecosystems (Tang et al. 2010). 

Biochar was generally derived from waste solids and biomass, like animal, plant, 
and sludge waste. The ability of BC to eliminate contaminants, clean up polluted 
soil, and lower emission of greenhouse gases is the reason for its widespread use. 
Biochar provides benefits in immobilization of heavy metals and degradation of 
organic contaminants from soil due to its outstanding impact, economic advantage, 
and ease of use. BC is a promising amendment with great qualities that can be 
utilized to treat various types of soil contamination. However, not every biochar 
performs equally well in terms of enhancing soil quality. Biochar generated from 
plant biomass, agricultural residues, aquatic biomass, and urban wastes does not 
show equal performance in the enhancement of soil quality. 

12.5.2.1 Biochar from Industrial and Urban Waste for Soil Remediation 
Globally, the increasing levels of municipal and industrial trash in landfills are 
becoming a severe environmental and social problem. Therefore, new strategies 
for reducing these wastes have been developed by transforming them into beneficial 
materials for energy generation and other sophisticated technologies. Pathogens, 
contaminants, and toxic substances that are found in industrial and urban wastes can 
be eliminated by converting wastes to BCs, which is a potent method of waste 
eradication. 

Karimi et al. have showed that BC made up of industrial sludge from sewages 
alters soil pH and electrical conductivity values. Additionally, BCs might change 
readily found cadmium and lead in soil into their more stable form, decreasing their 
bioavailability and mobility. This study also noted the effect of changing pyrolysis 
temperature that alters the volume and micropore size. With increase in temperature, 
volume and microporous area of BC decrease (Karimi et al. 2020). 

One important factor affecting the porous characteristics of the biochar is the 
temperature used to create it. BC was produced in a study by Xing et al. by 
pyrolyzing sludge at temperatures of 900, 700, 500, and 300 °C. Outcomes showed 
a drastic decrease in the amount of Cu, Zn, As, and Pb (Xing et al. 2019). 

Municipal solid waste has recently attracted interest as a means of waste manage-
ment among the many feedstock (Ateş et al. 2013). Few studies have highlighted the 
use of BC made by solid waste from municipality, which decreases the amount of



waste in landfills, as well as a material to clean up environmental contamination and 
add value to compost (Jayawardhana et al. 2016). 
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Cd adsorption mechanism on biochar, which is produced by pyrolyzing 
biophysically dried sludge from sewage at 900 °C, has been studied using static 
equilibrium experiments under various conditions. It was observed that with increas-
ing pH, the removal ability increased, thus making pH the most significant element 
controlling the adsorption process. In contrast, temperature (between 15 °C and 35 ° 
C) has a minor and insignificant impact on the adsorptive function (Chen et al. 
2015b). 

A composite of chitosan and textile waste BC (TWB) was used to remedy 
Cd-polluted soil. When chitosan was coated with TWB, the mobility of Cd was 
lessened and its availability to moringa decreased. The strategy for cleaning land 
contaminated with Cd by this method showed excellent result. The toxicity of Cd 
was also reduced, and availability of vital nutrients increased in the plants (Zubair 
et al. 2021). 

The usage of recycled fibers in the paper industry is rising. De-inking paper 
wastes are produced in enormous quantities when pollutants, ink, coatings, and clay 
are removed to make recycled fibers. An intriguing alternative to waste valorization 
could be the production of BC by pyrolyzing the waste to apply it in repairing heavy 
metal-contaminated soil. In Zn-polluted soils, de-inked paper sludge-based BCs 
have been used under laboratory condition, soils was incubated, and soluble Zn 
was measured. It was found that the amount of mobile Zn decreased and Zn 
solubility dropped noticeably by BCs produced at higher temperature (Méndez 
et al. 2014). 

12.5.2.2 Biochar from Livestock Wastes for Soil Remediation 
Char production from livestock wastes is an interesting technology for the manage-
ment of animal manure by reducing and valorizing these wastes. As farming of cattle 
increased rapidly for human needs, the waste generated from them has also height-
ened which poses threat to human health (Chen et al. 2018). Due to the increased 
potential of microbial transmission, cow manure has caused serious ecological and 
health issues (Chen et al. 2020b). Therefore, one of the major difficulties facing the 
livestock industry is the proper disposal of contaminants from cow manure. It is 
generally recognized that turning cow manure into biochar is an efficient way to 
reuse animal pollutants (Van Poucke et al. 2019). Numerous studies have shown that 
biochars made from cow dung can be used as wastewater adsorbents and land 
remedial materials, and both the methods were widely used in environmental 
cleanup (Clancy et al. 2013; Khan et al. 2020; Qin et al. 2016; Yue et al. 2019). 

Though lodgepole pine BC had varying degrees of success for soil treatment, the 
removal of Zn and Cd using BCs obtained from cow dung and poultry litter showed 
satisfactory result. Moreover, when compost was added to either of the BCs, the soil 
demonstrated large production of switchgrass sprout and roots. Among them, when a 
mixture of 5% cow dung and 5% compost was used, a considerable decrease in Zn 
and Cd in the roots and switchgrass shoots was observed. There were significant 
performance differences among the BCs and compost combinations, when applied



to mine-impacted soil and heavy metal to increase switchgrass productivity. The 
application of compost along with BCs considerably enhanced the growth of 
switchgrass. This may be explained by the elevated pH in soil, which encourages 
the immobilization of Zn and Cd, reducing the amounts of heavy metals found in 
soil. Therefore, generating designer biochars is a crucial managerial element for 
building effective mine-site phyto-stabilization programs (Meier et al. 2017). 
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Meier et al. used BC derived from chicken manure (CBC) to immobilize Cu for 
growing metallophyte Oenothera picensis. The CBC showed decrease in Cu uptake 
by plants by changing its spatial distribution, bioavailability, and mobility. Plant 
development was aided by the rise in nutrients that were available and the reduction 
in Cu toxicity. The enhanced microbial activity most likely also aided in the 
promotion of plant development and decreased the bioavailability of copper. There-
fore, it was concluded that Cu-contaminated soils can be cleaned up with CMB 
(Novak et al. 2019). 

12.5.2.3 Biochar from Agricultural and Plant Residues for Soil 
Remediation 

Accumulation of hazardous compounds within the soil mainly causes soil contami-
nation, which is difficult to manage with conventional treatments. Among the 
various technologies, remediation techniques using plant-based materials have 
gained attention for soil remediation and rehabilitation from several years due to 
their ability to improve soil conditions, potential benefits in terms of cost, and public 
acceptance. Biochar derived from various plant-based feedstocks has been employed 
for the remediation of contaminated soil (Table 12.2) due to their ease of preparation 
and versatile application. 

Papageorgiou et al. have used wood waste as biomass source and converted it into 
biochar by pyrolysis, which was further implied for treating heavy metal and 
PAH-contaminated soil (Papageorgiou et al. 2021). The purpose of this study is to 
utilize wood waste-based biochar and evaluate its effect on the environment, consid-
ering the life cycle. The specific objectives are to (1) quantify and show the supplies 
and flows of metals and PAH present in contaminated soil, (2) assess the impact of 
these systems to the environment, and (3) manage contaminated soil by recovering 
energy from wood waste. 

Soil contamination by cadmium has proven to be a severe environmental issue. 
For reducing its mobility through biochar, Bashir et al. have evaluated the study of 
effectiveness of biochar (from maize stover (MSB), rice hull (RHB), and rice straw 
(RSB)) on the mobility of Cd and its augmentation in Chinese cabbage (Bashir et al. 
2018). The study demonstrated that raising the rate of biochar from 1.5% to 3% 
considerably enhances soil chemical properties (nutrients, organic carbon, and pH). 
Cd concentration reduced in CaCl2 extract at 3% utilization rate, by 46.49%, 39.7%, 
and 58.6% of MSB, RHB, and RSB, respectively, which was proven by toxicity 
characteristic leaching procedure (TCLP) and simple bio-accessibility extraction test 
(SBET). RSB validated positive outcomes for immobilization of Cd and lowering of 
its bioavailability to reduce risks to food security.



(continued)
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Table 12.2 Use of biochar derived from various plant-based feedstocks for remediation of 
contaminated soil 

S/ 
N 

Plant-based 
feedstocks Pollutants Remediation effect References 

1 Cotton straw 
chips 

Chlorpyrifos 
and fipronil 

Reducing bioavailability of both 
pesticides from the soil 

Yang et al. 
(2010) 

2 Red gum wood Acetamiprid Increase the sorption of 
acetamiprid by 52.3% for red soil 

Yu et al. (2011) 

3 Wheat straw Atrazine and 
trifluralin 

Lowering herbicide in soil using 
biochar amendments 

Nag et al. 
(2011) 

4 Rice straw Cu (II), Pb 
(II) 

Decreased acid-soluble lead and 
copper by 18.8–77.0% and 
19.7–100.0%, respectively 

Jiang et al. 
(2012) 

5 Miscanthus 
straw 

Cd, Zn, and 
Pb 

Using 10% BC, lead, zinc, and 
cadmium were lowered to almost 
92%, 87%, and 71%, respectively 

Houben et al. 
(2013) 

6 Soybean stover Pb Soybean stover-based BC was 
used in 20 wt.% to reduce lead 
leachability in military firing range 
up to 90% 

Moon et al. 
(2013) 

7 Rice, canola, 
soybean, and 
straws of 
peanut 

Pb (II) Treating soil with different BCs 
increased the adsorption of lead by 
42.5%, 50.5%, 56.9%, and 66.8%, 
respectively 

Jiang et al. 
(2014) 

8 Unfertilized 
dates 

Ni Reduction of 53% of Ni by using 
BCs 

Ehsan et al. 
(2014) 

9 Peanut shell PAH PAH bioaccumulation reduces by 
71–84% 

Khan et al. 
(2015) 

10 Rice straw Cd, Pb, Zn An increase of vegetable yield was 
observed by reducing metal 
bio-accessibility by 34–67% 

Niu et al. 
(2015) 

11 Rice straw, 
wheat straw 

Imidacloprid, 
isoproturon, 
and atrazine 

Stabilize the soil contaminated 
with organic pollutants 

Jin et al. (2016) 

12 Soybean stover Pb and Cu Immobilizing Pb up to 88% and 
Cu up to 87% 

Ahmad et al. 
(2016) 

13 Rice hull Fomesafen Increases the adsorption of 
fomesafen 4–26 times compared to 
unamended soil 

Khorram et al. 
(2017) 

14 Tomato green 
waste 

Cd Effectively reduces mobilization 
of Cd in soil by 35–54% and 
34–76% reduction in the 
accumulation of Cd in the shoots 
of pak choi cultivars 

Yasmin Khan 
et al. (2017) 

15 Corncob Bisphenol A 
(BPA) 

Immobilization of BPA was 
observed due to mineral 
dissolution by BC 

Li et al. 
(2017b) 

16 Walnut shell, 
corn straw, and 
rice straw 

Chrysene Biodegradation rate of chrysene 
increases by 3–45% 

Zhang et al. 
(2018a)



Pollutants Remediation effect References
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Table 12.2 (continued)

S/ 
N 

Plant-based 
feedstocks 

16 Corn straw PAH Using rice root BC, a reduction of 
2(+3)-, 4-, and 5(+6)-ring PAH 
uptake was observed up to 10%, 
40%, and 40%, respectively, and 
PAH bioaccumulation reduced by 
14%, 37%, and 46%, respectively 

Ni et al. (2018) 

17 Grape prune 
residue 

Cd, Pb, Cu, 
and Zn 

Decreased the mobility of Cu, Pb, 
Zn, and Cd by 70%, 62%, 49%, 
and 47%, respectively 

Hamzenejad 
Taghlidabad 
and Sepehr, 
(2018) 

18 Maize straw PAH Decreased 30% PAH from 
contaminated soil 

Li et al. (2019) 

19 Vegetable 
wastes 

Pb Achieved immobilization of Pb 
87% 

Igalavithana 
et al. (2019) 

20 Peanut vine 
and rice straw 

Cd Cd exchange rate was lowered in 
biochar-amended soil by 35.80% 
and 28.48%, respectively, by two 
biochars 

Chen et al. 
(2020c) 

21 Rice straw Cd Reduction of Cd accumulation and 
enhancement in Cd 
immobilization in rice were 
observed using Si-modified BC 

Sui et al. (2020) 

Another field study revealed the use of Brassica chinensis L. (pak choi) as test 
plant in a field experiment to examine the impact of biochar (sugarcane bagasse) on 
the health of soil microbiota as well as the availability of lead (Pb), copper (Cu), and 
cadmium (Cd) in polluted land. This study reveals that, with increase in biochar 
application, concentration of Cd reduced by 8.5% and availability of heavy metals to 
plant roots and shoots considerably decreased (Nie et al. 2018). 

Zhang et al. have conducted an incubation experiment using biochar from 
corncob, rice straw, walnut shell, and corn straw in order to determine how biochar 
properties, feedstocks, and heat treatment temperatures (HTTs) affect the biodegra-
dation of PAHs, microorganisms’ quantity, activity of enzyme, and microbial 
community shift in polluted land. Rather than the feedstocks, the HTTs had a 
stronger influence on microbial quantities and enzyme activity (Zhang et al. 2018). 

Agricultural residue-based biochar shows superior property to reduced high 
surface area and ash content over biochar from feedstocks due to the presence of 
higher proportions of lignocellulose components (Cao et al. 2019; Shi et al. 2019). 
So, it has been considered that biochar made from crop leftovers is a potential 
substance for the restoration of soils that are polluted with trace elements (Bian 
et al. 2016). 

Production of oil mallet and wheat chaff-based biochar at 550 °C on nascent 
plants in wetland such as Juncus subsecundus with various dosages and its effect in



Cd concentration under waterlogged soil conditions were examined by Zhang et al. 
in a glasshouse study. 
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By using wheat chaff biochar at lower concentration rates (0.5%), greater Cd 
removal results were observed. By using oil mallet biochar treatment, no significant 
difference was observed. Both biochars lowered Cd accumulation; however, because 
of the interaction between the biochar and the wet environment, Juncus subsecundus 
growth was not improved (Zhang et al. 2013). 

Liang et al. employed rice husk-derived biochar to remedy contaminated land 
near Dongting Lake. 40 g Biochar, prepared using pyrolysis at 500 °C, was added to 
400 g of soil, and the mixture was incubated for no more than 2 months. The findings 
showed that Zn, Cu, and Cd levels dropped in concentration (Liang et al. 2017). 

Undoubtedly, the effectiveness with which heavy metals are removed from soil 
by biochar depends on various biomasses they are derived from. This might be 
caused by the varied structures of the biochar made from various types of biomasses. 
In an investigation, two samples of biochar were created by pyrolyzing pig manure 
and corn straw. The outcomes displayed significant reduction of Hg, Cd, Pb, and 
Cr. For instance, the usage of biochar samples using pig manure and corn straw 
resulted in reduction in the concentration of Hg from 0.79 to 0.34 and 0.59 mg/kg, 
respectively (Zhang et al. 2018c). 

12.6 Engineered Biochar and Composites for Soil Remediation 

Various modifications to activate biochar for improving its physical and chemical 
properties are becoming an emerging trend (Wang et al. 2020). “Engineered 
biochar” refers to the modification made to improve its properties using physical, 
biological, and chemical means to achieve specific objectives (Panahi et al. 2020). 
Innumerable attempts to activate biochar without external doping agents have been 
performed including steam, gas, alkalis, acids, microwave, and oxidants (Panwar 
and Pawar 2020; Sajjadi et al. 2019b). A different strategy is to make composites of 
materials aside from biochar itself that have distinct and desirable properties. The 
range of applications for biochar for immobilization (Bandara et al. 2020), soil redox 
management (Yuan et al. 2017), carbon sequestration (Ennis et al. 2012), and 
greenhouse gas reduction (Kammann et al. 2017) accelerated the interest in its 
study. But compared to pristine biochar, biochar nanocomposites have shown 
promise for improving soil qualities through carbon mitigation (Bolan et al. 2022), 
nitrogen enrichment (Khajavi-Shojaei et al. 2020), microbial activity (Zhang et al. 
2020a), and elimination of toxic heavy metals (Gholizadeh and Hu 2021). Therefore, 
biochar and their composites impart great interest as a greener and more economic 
material. Here, in this section, we will discuss how we can tailor properties of 
biochar by modifying it and with addition of different agents such as metal oxides, 
surface agents, and nanomaterials. Also, we will address the advantage of biochar 
composites over their relatively pure form.
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12.6.1 Modification of Biochar 

Researchers investigated the effects of several modification techniques to produce 
biochar with better properties. In order to obtain the desired outcome, modification 
of the pure biochar using chemical or physical techniques is carried out (Fig. 12.4). 
Various parameters like the type of activator, activation period, temperature, and 
soaking period have significant influence on the properties of biochar. 

12.6.1.1 Chemical Oxidation and Reduction 
Surface oxidation of biochar to increase oxygen functionalities such as -COOH and
-OH increases its hydrophilicity. The biochar’s pore structure and size would alter 
concurrently, and this would ultimately result in an improvement in the biochar’s 
ability to adsorb polar adsorbates. HCl, HNO3, H2O2, H3PO4, and other common 
oxidants are utilized (Sajjadi et al. 2019a). The biochar modified by HNO3 has a 
higher concentration of acidic oxygen functionalities (Ho et al. 2014) and a higher 
NH3-N adsorption, despite the fact that the surface area of biochar altered by HNO3, 
H2O2, and HCl is similar to that of biochar treated by HCl. In terms of eliminating Pb 
pollution, biochar that has been treated by H3PO4 is superior to other acids. The 
extent of adsorption of Pb in biochar is enhanced by increasing porousness, surface 
area, and phosphate precipitation (Zhao et al. 2017). 

Modification using alkalis is referred to as chemical reduction. Here, various 
reducing agents are introduced in order to increase the biochar’s non-polarity. The 
porousness and surface area (SA) of biochar can also be increased by reducing the 
surface-located functional groups of biochar that results in improved adsorption

Fig. 12.4 An outline for modification of biochars



capacity for contaminants, particularly nonpolar adsorbates. Reducing agents such 
as NaOH (Li et al. 2017a), KOH (Wang et al. 2018), NH4OH, and others are 
frequently utilized. Modification effects vary depending on the reducing agent. Li 
et al. (2011) used chemically reduced carbon produced from coconut shell using 
NH4OH, NaOH, HNO3, H2SO4, and H3PO4 to determine which altered biochar will 
best increase the ability to absorb volatile organic compounds (VOCs). The results 
demonstrate higher adsorption of o-xylene in alkali-treated carbon than acid-treated 
carbon due to increased surface area, porosity, and decreased oxygen functionalities, 
although acid treatment had the opposite effect.
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12.6.1.2 Physical Modification 
Physical methods for biochar modification are more affordable and environmentally 
beneficial compared to chemical approaches. With simple and moderate treatments, 
it enhances the chemical and physical characteristics of BCs, its permeability, and 
porousness. The most often employed methods for physically altering biochars 
include microwave irradiation, steam/gas activation, magnetization, and ball milling. 

The mechanism of inducing porosity by steam/gas is due to elimination of the 
residues that are trapped inside the porous biochar (BC) structures as a result of 
incomplete combustion. Activation of BCs by carbon dioxide and hydrogen can be 
achieved through surface oxidation processes (Wang et al. 2019). As a result, 
compared to the pristine BCs, the steam-activated engineered BCs (E-BCs) exhibit 
increased adsorption capacity for methane and nitrogen dioxide. 

Another developing method for altering BCs is microwave irradiation, which 
raises their temperature by 200–300 °C using microwave heating in a brief period of 
time. In comparison to E-BCs made by conventional pyrolysis, those made through 
microwave irradiation have larger surface areas and exhibit greater absorption for 
numerous contaminants (Li et al. 2016). The physicochemical characteristics of 
BCs, such as water-holding ability and cation exchange capacity (CEC), are greatly 
enhanced when microwave irradiation is combined with steam activation or impreg-
nation (Lee et al. 2020). 

Another typical physical modification technique is ball milling, which reduces 
raw BCs to powder or nanoparticles. The adsorption capabilities of BCs significantly 
increase because of the simultaneous increase in particle size and surface area (Lyu 
et al. 2018). Introducing chemicals while ball milling can change the chemical 
characteristics of the BCs like micropore structure and surface functionalities. A 
major drawback in using ball-milled BCs is that they can easily transmit via soil 
pores and may pose risk to groundwater. In addition, biochar stability after pollutant 
adsorption is a complication. Using an external magnetic field, magnetic BCs 
produced by chemical ball milling are easily recoverable. Reusable magnetic BCs 
have been noted to demonstrate effective adsorption for inorganic and organic 
contaminants from wastewater (Yi et al. 2020). Additionally, the magnetization 
procedure increases BCs’ catalytic activity and surface charge, improving their 
suitability for environmental remediation.
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12.6.1.3 Other Modifications 
Feedstock when introduced to anaerobic digestions or bacterial conversion produces 
biofilms on the surfaces of BCs; this process is the biological modification of BCs. 
The generation of biofuel and biofertilizers, by aerobic or anaerobic digestion of 
waste biomass, creates economic value. BCs altered by pyrolyzed digestion of waste 
are reported to have strong anion exchange capacities, large surface areas, and 
hydrophobicity, which is extremely effective at removing cationic dyes and heavy 
metals (Wang et al. 2017). By creating biofilms, microorganisms improve BCs’ 
efficiency in the removal of soil pollutants. Elimination of pharmaceuticals and other 
contaminants by immobilization and biotransformation processes using biologically 
modified BCs through biofilm has proven to be extremely promising (Li et al. 
2020a). 

Minerals impregnated in biochar have shown higher CEC, mineralogical struc-
ture of clay minerals, and surface charge that can be employed for soil pollutant 
removal (Yao et al. 2014). 

The most popular clay minerals employed as inexpensive sorbents include 
montmorillonite, gibbsite, and kaolinite as well as iron oxides (Rajapaksha et al. 
2012). Introducing functionality in biochar matrix was achieved by combining 
bagasse, bamboo, and hickory chips with the clay (montmorillonite and/or kaolin) 
by pyrolyzing for 1 h at 600 °C in N2 atmosphere. Biochar serves as a good porous 
structure in biochar-clay composites to host and supports the distribution of the small 
particles of clay inside the matrix. 

12.6.2 Biochar Composites 

Due to all the constraints limiting the use of pristine BCs in environmental remedia-
tion, the concept of engineered biochars came into existence. Among them, chemi-
cally modified composites of biochar emerged as one of the most useful and popular, 
due to their high stability and various uses in multiple environmental remediation 
unlike their raw form. In addition to enhancing the physicochemical characteristics 
of BCs, composites of it combine the benefits of BCs with the additional materials. 
In many literature, biochar composites are divided into many categories. Here, we 
will classify biochar composite into major five categories, mineral-BC composites, 
metal-BC composites, carbonaceous engineering nanocomposites, microorganism 
BC composites, and layered double hydroxide (LDH)-BC composites (Wang et al. 
2022). 

There are essentially two methods for making biochar composites (Fig. 12.5):

• Pre-treatment of biochar with different nanomaterials: In this synthesis tech-
nique, biochar is doped with nanomaterials before pyrolysis to produce biochar 
composite. For example, Lawrinenko et al. (2017) used corn stover, alfalfa meal, 
and cellulose to synthesize biochars. These BCs were pre-wetted, either with 
AlCl3 or FeCl3, and thereby using programmable muffle furnace were slow 
pyrolyzed to 500 °C and 700 °C (i.e., highest treatment temperature) in N2
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Fig. 12.5 Schematic representation of pre- and post-pyrolysis treatment used for modification 
of BCs 

atmosphere. The biochar composite produced became surface functionalized by 
Al-O-C moieties resulting in higher (AEC) than pristine biochar at acidic pH.

• Posttreatment of biochar with nanomaterials: After pyrolysis, pristine BC may 
have enhanced qualities if impregnated with nanoparticles. Biochar is frequently 
treated via wet impregnation, heat treatment, and direct hydrolysis post-pyrolysis 
to produce biochar composites. Lin et al. (2019) employed Fe-Mn-modified BC 
to lower the amount of arsenic (III, V) present in soil by raising soil redox 
potential. Corn straw was used as a precursor to prepare BC by pyrolysis. Fe 
(NO3)3 and KMnO4 were precoated on BC before pyrolysis for 30 min at 600 °C. 
The resultant composite, when compared to the original BC, had substantial 
arsenic removal efficiencies. This was brought on by the soil’s elevated redox 
potential in the presence of the BC composite. The growth of crystalline and 
amorphous hydrous oxide bound of As was used to explain the process of arsenic 
reduction in soil due to the presence of Mn and Fe in BC composite. 

12.6.2.1 Classification of Biochar Composites 

Mineral-BC Composites 
Minerals found in nature can effectively enhance soil remediation when used with 
biochar, which also results in increased soil fertility and helps with soil remediation. 

Herath et al. (2020) conceived of montmorillonite as a silicon source as opposed 
to using it as a cation exchange material. The development of Si-ferrihydrite-
mediated montmorillonite rich in Si-BC composite was effective in microbe-
mediated immobilization of As in soil.



12 Biomass-Based Engineered Materials for Soil Remediation 275

A nutrient-rich mineral known as struvite (NH4MgPO4) has long been used as a 
fertilizer. Struvite coprecipitated onto biochar may improve gradual liberation of 
PO3 

4- and favor metal immobilization (Li et al. 2020b) as well as improved fertility 
(Hu et al. 2019). Mineral additions can help lessen the potential toxicity of biochar 
made from waste materials, allowing for the productive use of a resource that might 
otherwise go to waste (Mumme et al. 2018). 

For adsorptive immobilization of Pb (II) and Cd (II) in soil, a hierarchical porous 
biochar (HA-HPB) tailored with Ca10(PO4)6(OH)2 (hydroxyapatite) was created. 
Through the use of molten salt to assist the pyrolysis process, rice husk was 
converted into hierarchical porous biochar (HPB). HA-HPBs lowered the bioavail-
ability of Pb and Cd up to 93% and 88%, respectively. Precipitation, complexation, 
ion exchange, and cation-cation interaction lead to the elimination of metals Pb 
(II) and Cd (II). Langmuir adsorption capacities for Pb (II) and Cd (II) were found to 
be 110.2 and 88.1 mg/g, respectively (Wu et al. 2022). 

To reduce soil Pb mobility and bio-accessibility, a study investigated on 
Pb-polluted soils using Bauxsol™, a modified bauxite refinery residue (MBRR) 
(Burton et al. 2022). Four soils that had been polluted with lead from paint waste, 
shooting range activity, and smelting were used in this study. At low Pb loadings, Pb 
was retained by MBRR by surface-assimilated Al and Fe (hydr)oxides, while high 
Pb loadings result in the formation of Pb3(CO3)2(OH)2 (hydrocerussite). 
Bio-accessibility of lead during the intestinal phase was decreased as a result of 
Bauxsol™. 

Elimination of pesticides in polluted land has become very crucial. Liu et al. 
(2022) used original BC (OBC), walnut shell BC, illite BC (IBC), montmorillonite-
tailored BC (MBC), and kaolinite (KBC) to investigate metolachlor (MET). 
According to the findings, MBC was most stable, with IBC, KBC, and IBC all 
having higher thermal and chemical stability than OBC. Adsorption mechanisms 
and outcome of the kinetic fitting demonstrated that adding minerals to BC improved 
MET’s physical adsorption. The main sorption processes were hydrophobic 
interactions, hydrogen bonds, and coordination bonds. 

Metal-Biochar Composites 
Iron species shows excellent improvement in the performance of biochar. The three 
main composite types are nZVI (nano-zerovalent iron)-biochar, FeO-biochar, and 
FeS-biochar. The mechanistic improvement, fabrication processes, and their 
applications have all been thoroughly explored in several literature (Lyu et al. 
2020). Improved electrostatic interactions, precipitation, and surface complexation 
of iron-biochar composites favor the adsorption and immobilization of heavy metals 
and organic pollutants (Alam et al. 2020; Vickers 2017). Out of all the iron species, 
nZVI-biochar and FeS-biochar are two forms of iron-biochar composites that have a 
strong reduction capacity for organic pollutants and Cr (VI) (Chen et al. 2021). 
Additionally, reactive oxygen species (ROS) can be produced by oxidants when 
iron-biochar composites are used to oxidize organic pollutants (Diao et al. 2021). 

The impact of FeS-based sludge BC on vanadium fractionation, mobility, 
bioaccumulation, and speciation in polluted land from mining place was investigated



by Aihemaiti et al. (2022); after ferrous sulfate modification, amorphous FeOOH 
gets functionalized on BC surface. Vanadium mobility in soil was significantly 
inhibited by ferrous sulfate-treated biochar. Proteobacteria leads to biotic conversion 
of V(V) to V(IV) in soil. 
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A new biochar nanocomposite with g-MoS2 coating was created by Yang et al. 
(2020) to treat ciprofloxacin. More π-electrons were provided by the composite than 
by the pristine biochar, improving the “π-π EDA interactions.” 

Yuan et al. (2022) created magnetic silicate composite biochar (MSCB) and 
silicate composite biochar (SCB) as a recoverable BC with the intent of reusing. 
The result showed that the prepared MSCB has strong magnetism and good hydrau-
lic properties; after three cycles of “application-separation-desorption-reuse,” the 
MSCB was used to remove Cd by either precipitation or pore interception up to 
30.32–38.80% in the soil, while the SCB can remove 28.30–35.78%. 

It is interesting that innovative trend to metal-co-doped biochar which inculcates 
phenomena like chemical-precipitation resulted in Mg-Al-biochar composites hav-
ing excellent phosphate adsorption capability (Zheng et al. 2020). 

Therefore, one of the simplest techniques for improving the characteristics of 
biochar is metal co-doping. The remediation of the environment with this technique 
has proven to be efficacious. To determine whether further applications are feasible, 
more research should be done. In many literatures, it has been proposed that nutrient 
(like Mg, Ca, and K) co-doped BC may directly boost fertility of soil and subse-
quently improve BC’s capacity to sequester carbon. Also, co-doped biochars, if 
created appropriately, could release nutrients while immobilizing metals in soil 
(Mašek et al. 2019). 

Carbonaceous Engineering Nano-Biochar Composites 
Composites made of graphene and carbon nanotubes (CNT) with biochar improve 
the adsorption of organic pollutants. These carbonaceous tailored nanocomposites’ 
exceptional adsorption performance is a result of the amount of π-electrons present 
in them. There are numerous organic dyes that contaminate groundwater and impair 
soil fertility. Carbonaceous designed nanocomposites may be utilized to adsorb and 
break down these organic dyes from the soil’s groundwater. 

Due to electrostatic interactions, composites of multiwalled carbon nanotube 
(MWCNT) and BC demonstrated high methylene blue adsorption capability (Inyang 
et al. 2014). It is interesting to note that a designed MWCNT-BC composite has a 
remarkable ability to encapsulate a phase transition material n-dodecane, for energy 
storage. BC composites had steady networks that encouraged surface tension and 
capillary forces to hold organic molecules in place (Atinafu et al. 2021). 

A study demonstrated the performance of a new adsorbent for zinc (Zn) and 
copper (Cu) using poultry litter BC and graphene oxide composite (PLB-GO). In 
addition, its fertilizing benefits on plant growth, nutrient utilization effectiveness, 
and effect on soil fertility were investigated. PLB-GO demonstrated Zn and Cu 
adsorption efficiency that was 17.7% and 16.2% higher than that of pure PLB, 
respectively (da Silva Carneiro et al. 2022). It is also worth mentioning that



according to Liu et al. (2016), cation interactions may also play a role in promoting 
CNT-BC and GO-BC composite for adsorption of pollutants. 
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Layered Double Hydroxide (LDH)-Biochar Composites 
“LDHs are anionic clay minerals made up of layers of positively charged metal 
hydroxide and anions for charge neutralization in the interlayer region.” Numerous 
LDH-BC composites with various M2+ and M3+ metal cations, such as Ni-Fe, Ca-Al, 
and Zn-Al, are employed extensively in pollutant adsorption (Wang and O’Hare 
2012). 

LDH composites are suitable materials that are frequently employed for the 
adsorption of pollutants because to their diverse features, which include high 
anion exchange capacity, improved coprecipitation, presence of hydroxyl groups 
for surface complexation, and hydrogen bonding. 

A porous Mg/Fe-LDH@biochar composite synthesized by Zhang et al. has 
signified an excellent reduction property of agricultural pollutants (Zhang et al. 
2018b). Following the inclusion of the composite, leaching of metals, NO3, and 
NH4 

+ fell by 90%, 40%, and 60%, respectively. 
It is essential to use highly effective amendments to reduce soil arsenic (III, V) in 

order to boost land quality and increase agricultural output. Using a straightforward 
coprecipitation technique, LDHs with three different M3+ like Cu, Zn, and Mg with 
M2+ as Al were functionalized using cornstalk BC. As a result, improved hydroxyl 
surface functionalities and thereby higher “anion exchange capacity” (AEC) by 
LDH@BCs were displayed for As (Gao et al. 2020). 

To decrease the uptake of lead and uranium(U) by Indian mustard in U-polluted 
land, a novel “phosphorus-modified bamboo BC” (PBC) composite with Mg-Al 
LDH, i.e., PBC@LDH, was developed by Yin et al. (2022). U contamination of soil 
poses a major threat to both human health and ecological stability that results from 
uranium mill tailing (UTM). Lead and uranium absorption and translocation by 
Indian mustard might be inhibited by stabilizers. Immobilization is a result of several 
reactions, including complexation, reduction, and others; therefore, the presence of 
stabilizer could hinder the development of complex containing U. 

Research has long been focused on developing materials, which could remove 
anionic and cationic heavy metal pollution. A simple coprecipitation method was 
employed to create a biochar-supported Fe-Mn-Mg@LDH composite that can 
concurrently treat As and Cu in land and water. It was shown that 1% of this 
composite dosage increases microbial activities, which helps for heavy metal pas-
sivation. These findings demonstrated that Fe-Mn-Mg@LDH considerably 
enhanced the soil quality (Shao et al. 2023). 

Microorganism-Biochar Composites 
In the light of soil treatment, microorganism-based biochar composite can be used in 
three different strategies to enhance biochar’s ability to remove pollutants. 

First off, inoculating a biochar with microorganisms that have a high capacity for 
degrading organic pollutants immediately improves the biodegradation process as a 
whole. Rice husk BC is infused with “bacterium Bacillus siamensis” for degrading



“dibutyl phthalate” (DBP) (Feng et al. 2020). A different work by Xiong et al. (2017) 
discovered that modified BC worked better than unmodified BC at degrading soil 
polycyclic aromatic hydrocarbons (PAHs). 
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Second, microbial cells contain amine, hydroxyl, and carbonyl groups, which 
makes them suitable to enhance BCs’ property for metal immobilization. Surface 
complexation can be used to immobilize Cu, Cd, and As (Ma et al. 2020; Lu Wang 
et al. 2021). 

Microbial agent (including Citrobacter sp., Bacillus cereus, Bacillus subtilis) 
incorporated BCs have shown superior performance in Cd and U removal. “Biochar-
based microbial agent” BMA boosted CEC, soil organic matter, fluorescein diacetate 
dehydrogenase activity, and fluorescein diacetate hydrolysis activity. In 
BMA-treated soil, the availability of Cd and U was dramatically fell by 54.2% and 
67.4%, respectively, limiting their accretion in crops. Vegetable growth was consid-
erably aided by BMA, which also drastically changed the composition and efficiency 
of rhizosphere soil microbial populations (Qi et al. 2022). 

Third, precipitation can also immobilize soil metals via the phosphate produced 
by the microbes (Tu et al. 2020). The capacity of microbial agents to liberate and fix 
N2 and PO4 

3- makes microorganism-biochar composites useful for enhancing soil 
fertility. 

12.7 Sorption Mechanism for Removal of Contaminants 

Despite having significant difference in the physicochemical properties in organic 
and inorganic pollutants, surface-modified BCs can mitigate both the pollutants. The 
mechanism followed for pollutant remediation by BCs is quite different. We can 
generally classify the remedial mechanism for organic and inorganic pollutants 
(Fig. 12.6). 

12.7.1 Adsorption Mechanism of Organic Pollutants 

Adsorption mechanism for organic pollutants includes various interactions like 
hydrogen bonding, hydrophobic interactions, pore filling, and electrostatic adsorp-
tion/chemisorption. 

Pollutant mitigation using hydrogen bonding mainly comprises the modification 
of surface functionalities of BCs by heteroatoms such as O, N, and F. These atoms 
are well known to form hydrogen bonding due to their electronegative 
characteristics, which can share a pair of electrons as hydrogen bond acceptor to 
form a bond stronger than van der Waals forces but weaker as compared to covalent 
bonds. As a result, BC’s O-containing functional groups may attract organic 
contaminants with electronegative elements via H bonding (Namgay et al. 2010). 
BCs produced by different starting feedstocks contain a number of O functional 
groups, which leads to the formation of H bonding (Dai et al. 2019).
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Fig. 12.6 Methods used and characteristics of BC-based composites used in soil remediation 

Hydrophobic interaction results in the formation of anhydrous domain that arises 
from entropic impact caused by the division of H bonding, which holds H2O 
molecules to the nonpolar solute in aqueous medium. Less energy is needed for 
hydrophobic interaction compared to partitioning mechanism (Ambaye et al. 2021). 
The adsorption of “perfluoro-octane sulfonate” (PFOS) on BC obtained from corn 
straw occurs through hydrophobic contact. The degradation of surface 
functionalities which are polar can increase the adsorption capacity of BCs towards 
organic pollutants (Chen et al. 2011). 

The presence of tiny mesopores (2–50 nm) and micropores in BCs can adsorb 
organic hazards by pore filling. This mechanism is heavily dependent on pore 
volume and size distribution present on the surface of biochar. According to the 
reports, pore filling process was mostly responsible for the carbaryl and dye adsorp-
tion on BCs made up of pig manure and rice husk (Yuan et al. 2017). 

The charge surface of BCs attracts ionizable organic contaminants through 
electrostatic interaction. The two crucial parameters that influence the interaction 
between adsorbent and adsorbate are ionic strength and pH of solution (Guo et al. 
2020). A study on methylene blue (MB) dye was carried out by Inyang and 
colleagues, which showed that an increase in ionic strength of the solution by 
NaCl decreased the total adsorption of MB on BC (Inyang et al. 2014). As opposite 
charge attracts, altering the charge on BCs by changing the pH can enhance 
adsorption.
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12.7.2 Immobilization Mechanism for Inorganic Pollutants 

The immobilization of inorganic pollutants, mainly heavy metals, can be removed 
by precipitation/reduction, complexation, and ion exchange processes. 

An important process to immobilize heavy metals on BCs is precipitation/reduc-
tion. According to reports, after applying BCs with alkaline substances, pH of land 
may rise which causes heavy metals to precipitate as hydroxide, phosphate, and 
carbonate salt (Fidel et al. 2018). It is the primary route for removing heavy metals in 
the form of solid precipitation. The biochar’s high pH and the presence of metals can 
help heavy metals precipitate out of solution and become trapped as solids inside the 
biochar matrix (Cao and Harris 2010; Koutcheiko et al. 2007). 

In complexation, the removal of inorganic contaminants is carried out by the 
formation of metal ligand bonds, which arises due to specific interactions created 
while complexation takes place (Mandal et al. 2021; Xu et al. 2013). Outer d-orbitals 
of heavy metals can interact with oxygen-containing functional groups during this 
process (Leng et al. 2015). Effectiveness of adsorption through complexation can be 
improved by increasing the O-functionalities on BC surface (Mandal et al. 2021). 
Heavy metals that had interacted with -OH, -COOH, etc. during complexation 
process get immobilized on BC composite surface, thereby getting eliminated 
from contaminated land. 

In ion exchange process, the heavy metals may get exchanged with ionic 
elements such as metals, which are found on BC composite’s surface that may 
have been present in biochar itself (Hamid et al. 2020; Liu et al. 2018; Zhang 
et al. 2019a). Depending on various parameters like charge differences, ionic radii, 
and bond properties, certain transition metals may get exchanged with alkali and 
alkaline earth metal such as Ca2+ and Na+ and also some nontoxic transition 
elements such as Fe2+ . In a study using hydroxyapatite/calcium silicate hydride 
with wood BC, a composite was created which was used to trap Pb2+ in hydroxyap-
atite matrix. The Ca2+ present on the BC composite got replaced by Pb2+ due to 
similar ionic radii (Chen et al. 2020a). 

12.8 Conclusion and Future Prospects 

Soil is considered to be one of the most crucial natural resources as the health of all 
the plants and animals is connected to the health of soil. Its degradation adversely 
affects all the life-forms on earth. The quality of soil controls the quality of the food 
we consume and the water we drink. However, various human activities, such as 
severe deforestation, excessive use of pesticides, fertilizers, reckless waste disposal, 
rapid industrialization, and mining, have radically altered the natural composition 
and properties of soil, thereby brutally deteriorating its inherent fertility. Therefore, 
the remediation and management of contaminated land have become a matter of 
major concern in recent years. 

In order to address this issue, a number of in situ as well as ex situ soil treatment 
techniques were developed. However, all these techniques have their own



advantages as well as drawbacks based on the geographical structures of land, soil 
conditions, and nature of contaminants. Thus, the applicability and choice of a 
suitable technology are governed by factors such as the cost of remediation, long-
term effectiveness, commercial viability, public acceptability, and physicochemical 
qualities such as toxicity, mobility, and volume of soil. The most frequently used 
physical remediation techniques include off-site landfilling, thermal desorption, 
steam extraction, and soil leaching. Chemical remediation techniques, like chemical 
leaching and immobilization, are being widely used to convert the pollutants in their 
less toxic forms that are safe to waterbodies, human beings, and plants. 
Phytoremediation technique utilizes green plants to remove pollutants from soil. 
Bioremediation method includes biodegradation of the hazardous materials by 
benign microorganisms present in soil. 
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Engineered biomass-based materials and their composites have been extensively 
studied for soil management and decontamination as the biomass-based hybrid 
materials exhibit huge application potential owing to their superior properties, like 
high chemical resistance, large surface area, high porosity, and greater sorption 
capacity. Biomasses are the plant-based organic matters synthesized via photosyn-
thesis to produce carbohydrates. They can meet the demands of nonrenewable 
resources and have diverse applications. A carbonaceous substance, biochar, is 
produced when biomass is gasified and subjected to pyrolysis. This abundant 
material possesses several unique properties, like resistance to degradation, negative 
surface charge, and large internal surface area, which makes it highly useful in soil 
remediation. It has been particularly effective in land remediation due to its property 
to adsorb heavy metals, like lead, zinc, and cadmium, and organic contaminants such 
as herbicides and pesticides from soil. 

Chemical and physical alteration of BC further enhances its physicochemical 
properties. Engineered biochar composites, such as mineral-BC composites, metal-
BC composites, carbonaceous BC nanocomposites, LDH-BC composites, and 
microorganism-BC composites, have shown improvement in soil qualities through 
carbon mitigation, nitrogen enrichment, increased microbial activities, and better 
sorption of toxic heavy metals. Here, we have discussed all these engineered biochar 
nanocomposites in detail. Moreover, the mechanism of their interaction with soil 
pollutants as well as the chemistry involved in those processes have also been 
elaborated. 

Biomass-based engineered nanomaterials undoubtedly hold enormous potential 
in improving the soil quality. However, the current scientific advancements in this 
domain of research are still not adequate to mitigate the burning issue of soil 
pollution fueled by widespread industrialization and chemical-assisted agricultural 
boom in the past few decades. This unprecedented rise in pollution is seemingly an 
inevitable side effect of our fast-growing modern civilization. The task at hand is 
further complicated by the diversity and novelty of the emerging soil contaminants. 
Thus, in the coming years, it is quite evident that issues like diminishing soil fertility, 
destruction of natural structure and composition of the soil, and pollution caused by 
heavy metals, pesticides, herbicides, and other toxic chemicals are bound to escalate, 
generating formidable challenges as well as scopes for the people working in the area



of soil remediation to design and develop novel materials capable of alleviating these 
issues in a greener way. 
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Abstract 

The bioremediation of Asa River sediment using agricultural wastes such as rice 
husk and abattoir effluent was investigated through characterization of the river 
sediment and agricultural wastes with the aim of finding a solution to Ilorin’s low 
soil fertility. The physicochemical characteristics of the sediment were evaluated. 
Using a serial dilution method, various fungi were isolated from the river 
sediment as well as the organic amendments. The isolated fungi were utilized 
for the bioremediation of the river sediment, and the biological activities (basal 
respiration, dehydrogenase activity, phytotoxicity, and microbial biomass) during 
the remediation process were studied. The ANOVA method was used to analyse 
the data obtained from the bioremediation experiments. The results showed that 
the sediment sample contains high concentrations of organic carbon, organic 
matter, and heavy metals, which were attributed to industrial wastes and agricul-
tural run-off. Results also showed that higher amounts of the metals present in the 
river sediment were very phytotoxic ( p < 0.05) and prevented crop germination. 
A total of 21 fungi were isolated from the sediment and agricultural wastes, and 
they significantly degraded the heavy metals in the sediment. Among the fungi, 
Aspergillus niger was the most effective in degrading most of the heavy metals, 
except for nickel, where Fusarium solani had the highest degradation. This study 
presents bioremediation as a low-cost and environmentally benign technique for 
remediating Asa River sediment. 

Keywords 

Abattoir effluent · Adsorption · Bioremediation · Heavy metal · Rice husk · River 
sediment 

13.1 Introduction 

For its considerable contribution to economic growth and human well-being, indus-
trialization is considered the cornerstone of development initiatives (Iloamaeke and 
Iwuozor 2018; Iwuozor et al. 2021b; Kartam et al. 2004). Industrialization fre-
quently results in pollution and degradation of the environment, just like many other 
anthropogenic activities that have an impact on the environment (Iwuozor 2019; 
Ogunfowora et al. 2021; Zhul-quarnain et al. 2018). Depending on the type of 
industry and the population that utilizes the product, industries produce waste that 
is unique in terms of composition and quantity. The continuous increase of industries



has resulted in a significant increase in the discharge of industrial waste into the 
environment, mostly soil and water, resulting in the deposition of various pollutants, 
particularly in metropolitan areas (Colombo et al. 2003; Iwuozor and Gold 2018). 
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Sediments, sometimes referred to as silt or alluvium, are made up of solid mineral 
and organic particles that are moved by water (Bruins et al. 2020; Yanin 2019). The 
sediment of a river serves as a sink for pollutants that enter the stream (Emenike et al. 
2022; Pak et al. 2021). Both the transport capacity of the flow and the supply of 
sediment determine the quantity of sediment transported in river systems. The 
suspended sediment load refers to fine sediment transported in suspension, which 
might include material collected from the river bed (suspended bed material) as well 
as material washed into the river from the surrounding land (wash load). The 
suspended bed material is frequently finer than the wash load. The “bed load”, on  
the other hand, consists of larger sediment particles carried along the river bed by 
rolling, sliding, or saltation. Depending on the flow conditions, most rivers will 
deliver silt in each of these load types (McKenzie et al. 2021; Sulaiman et al. 2021; 
Sumaiya et al. 2021). 

Industrial pollution, overuse of water, ecosystem loss, and deterioration of aquatic 
habitats are all affecting river systems across the world (Haryani 2021; Iwuozor 
et al. 2021a; Marimuthu et al. 2020). As a result of pollution from atmospheric 
deposition, petrochemical spillage, coal combustion residues, wastewater irrigation, 
pesticides, sewage sludge, animal manures, land application of fertilizers, leaded 
gasoline and paints, disposal of high metal wastes, and rapidly expanding industrial 
areas, heavy metals and metalloids accumulate in dredged sediment (Iwuozor et al. 
2021c; Ogemdi 2019a; Ogemdi 2019b; Ogunlalu et al. 2021). Sediment can also be 
useful or harmful to the society or the environment, depending on local variables. 
From an economic, social, and environmental standpoint, effective sediment man-
agement in rivers is becoming increasingly vital. The global geochemical cycle relies 
heavily on sediment delivered by rivers (Al Masud et al. 2018; Lin et al. 2020; Zhang 
et al. 2021). A large quantity of soil nutrients (nitrogen, phosphorus, and potassium) 
and cations are also present in river sediments, making the sediment beneficial for 
agronomy operations (Offiong et al. 2021; Yu et al. 2020). Bioremediation is 
commonly preferred for the remediation of soil or river sediments due to its low 
cost in comparison to other conventional techniques, its use as a permanent solution, 
its non-invasive nature, and its ability to clean up contaminants even at low 
concentrations, which chemical and physical techniques may not be able to do 
(Fragkou et al. 2021; Fu et al. 2020; Perelo 2010). 

The Asa River runs south-north through Ilorin, splitting the plain into two parts: 
western and eastern. It is an important river in Ilorin, the capital city of Kwara State, 
with economic, environmental, and agricultural significance. The river covers 
around 303 hectares of land (Ighalo et al. 2021; Oladipo et al. 2020; Opasola et al. 
2019). This river is very susceptible to pollution due to its proximity to industrial 
congestion, which exposes it to misuse such as effluent receptacles, which can lead 
to contamination. It collects waste from industries placed along its path on a regular 
basis, in addition to domestic waste and other activities that contribute to pollution. 
When portable water is not easily accessible, residents living along the river’s



channel utilize the water for various domestic activities such as drinking, nursing wet 
vegetables, washing automobiles, and other household necessities (Ajala et al. 2018; 
Akinboro et al. 2021; Jimoh and Kolawole 2021). Local farmers use the sediment 
from the Asa River for agricultural cultivation in its existing form, without taking 
into account the level of contaminants present in the sediment. The bioremediation 
of the sediments could be implemented as a simple treatment to solve the problem of 
low soil fertility status in some areas of Ilorin. This presents an interesting novelty 
for the current investigation. 
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Some researchers have studied the characteristics and remediation of the sediment 
of the Asa River. Fawole et al. (2017) determined the physicochemical 
characteristics of the river sediment and also isolated six different fungal species 
from the river sediment. In different studies, the physicochemical properties of river 
sediment were also explored, and the heavy metals in the sediment were remediated 
with the use of abattoir effluent and poultry droppings (Adegbite et al. 2018; Augie 
et al. 2018). However, these studies were limited as they did not monitor the 
biological activities of the microbial isolates obtained from the wastes and utilized 
for the bioremediation process. The aim of this study was to bio-remediate Asa River 
sediment with the use of two agricultural by-products: rice husk and abattoir effluent. 
It involved the characterization of the river sediment together with the agricultural 
by-products, observation of biological activities (basal respiration, dehydrogenase 
activity, phytotoxicity, and microbial biomass) during the remediation process, and 
evaluation of the effects of individual fungal isolates on the detoxification of the 
river sediment. Given the need for eco-friendly and cost-effective strategies for 
sediment treatment, the relevance of this study is justified. 

13.2 Methodology 

13.2.1 Sample Collection 

The collection of sediment samples was obtained at the Asa River, located in Ilorin, 
North Central Nigeria (8° 28’N, 4° 38′E  to  8° 31’N, 4° 40′E), which receives 
effluent from major industries in the city of Ilorin. The sediment samples were 
collected from four different points on the river, Coca-Cola (an area that was not 
dredged), Unity (dredged), Post Office (dredged), and Amilegbe (dredged), and were 
properly labelled as C, U, P, and A, respectively. Samples were collected into clean 
polythene bags using a hand trowel and mixed to ensure uniformity, which was then 
dried in the air for 48 h and sieved through a 2 mm mesh. The organic amendments 
(rice husk and abattoir effluent) were collected from the National Cereals Research 
Institute Badeggi, Bida, and Ilorin Abattoir Centre, Ipata Market, Ilorin, respec-
tively, and were properly kept in clean containers to avoid contaminants.
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13.2.2 Physicochemical Properties of Sediment 

The sediment was analysed for particle size, pH, nitrogen, organic carbon, organic 
matter, acidity, available phosphorus, and cation exchangeable capacity, as 
described by Adegbite et al. (2018). Metals such as calcium, magnesium, sodium, 
potassium, lead, nickel, cadmium, chromium, cobalt, copper, zinc, manganese, and 
iron were analysed with the aid of an atomic absorption spectrophotometer (AAS) 
(Perkin Elmer 200 AAS). 

13.2.3 Microbial Analysis 

13.2.3.1 Fungi Isolation 
Fungi were isolated from the Asa River sediment and the two organic amendments 
(abattoir effluent and rice husk) using a serial dilution method. The sediment sample 
(10 g) was introduced into 90 mm of sterile water in a conical flask and shaken 
vigorously. Tenfold serial dilutions were thereafter carried out in sterile water. The 
10-3 dilution (1 mL) was plated out on sterilized potato dextrose agar (PDA) using 
the pour plate method. After 5 days, the fungal colonies growing on the plate were 
counted. Pure cultures of isolates were made on freshly prepared PDA and incubated 
at 28 ± 2 °C for another 5 days. Stock cultures were made on PDA slants in 
McCartney bottles and stored in the refrigerators for further microbial analysis. 
The same process was repeated for each of the organic wastes (abattoir effluent 
and rice husk). 

13.2.3.2 Identification of the Isolates 
Microscopic identification was confirmed at the Department of Crop Protection, 
International Institute of Tropical Agriculture (IITA). 

13.2.3.3 Morphology Characterization 
Colony and microscopic morphologies were employed for fungal isolates based on 
the colony appearance on the PDA. The cultural characteristics of fungal isolates, 
such as mycelia growth form, spore presence or absence, pigmentation, and back 
colour of colonies on PDA, were also recorded. 

13.2.3.4 Microscopic Features 
Each fungal isolate was mounted on a slide with a cotton blue lactophenol stain. 
Microscopic features were observed at × 40. 

13.2.4 Experimental Bioremediation 

As a method to collect sediment samples, the top 0.25 m of the river bed was dredged 
from the bottom of the Asa River. Laboratory-scale bioremediation tests were 
performed in a microcosm.
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13.2.4.1 Bioremediation Consortium for Microbes 
Soil samples were taken from a number of possible contamination sites along the 
Asa River’s industrial zone. The soil samples were mixed and cultured in a culture 
medium containing 2 g of NH4Cl, 0.25 g of NaCl, 0.2 g of sulphur, 0.2 g of 
MgSO4.7H2O, and 0.5 g of KH2PO4 in 1 L of H2O. Every 5–7 days, 250 mL of 
fresh medium was added to 2 mL of a fully established culture in an Erlenmeyer 
flask. The pollutants added during the acclimatization stage provided the carbon 
source. A rotary shaker with a temperature setting of 350 °C and 250 rpm was used 
to provide the microorganisms with the mineral nutrients they require to survive 
and grow. 

13.2.4.2 Procedure for Acclimation 
Roughly one millilitre of the culture was moved to a new solution after a 7-day 
interval. After that, 0.01 g of the sediment sample was placed in a 24-h culture at 
350 °C and 250 rotations per minute. A total of 0.5 g of sediment was added to the 
tank after 0.1 g of sediment was added at the expiration of the first day, which 
permitted the cell population to develop adequately. This process was repeated 
incrementally until 0.5 g of sediment had been added in total. The consortium was 
used in bioremediation studies after several enrichment steps (109 CFU/mL). It was 
also put to the test to see if it could use organic molecules in sediments under aerobic 
conditions. 

13.2.4.3 Developing an Experimental Design 
In six pans, each with a surface area of 498.1 cm2 and a capacity of 1785 cm3 , the 
sediment was agitated weekly with a sterile spatula to supply it with appropriate 
oxygen and air. To achieve a sediment moisture level of roughly 60% of the 
microcosms’ water retention, aluminium foil was placed over the pans and 
maintained at room temperature (28 ± 2 °C). Deionized water was then added 
every week until the sediment moisture content was achieved. 

All treatments were subject to these conditions. They were as follows:

• Treatment 1: A three-time autoclave at 121 °C for 30 min was used to sterilize the 
sediment in Pan 1 (control).

• Treatment 2: In Pan 2, no nutrients or culture supplements were applied. 
Biostimulation was performed with simple aeration.

• Treatment 3: It was determined if biostimulation could be achieved by aeration 
and addition of nutrients to Pan 3, which contains urea, (NH4)2SO4, and K2HPO4 

at a ratio of 100:10:1.
• Treatment 4: An experiment was conducted with bioaugmentation using aeration 

and nutrients for Pan 4, which was treated with nutrients and a 50 mL inoculum of 
3.2 × 109 CFU/mL of a previously enriched microbial consortium from toxic soil.

• Treatment 5: Pan 5 received 50 mL of abattoir effluent for bioaugmentation with 
aeration and abattoir effluent.

• Treatment 6: Pan 6 was evaluated with bioaugmentation using aeration and rice 
husk, which received 50 g of rice husk.
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13.2.5 Biological Activity in Different Treatments Was Measured 
Using Basal Respiration, Dehydrogenase Activity, Microbial 
Biomass, and Phytotoxicity 

Biological activity was assessed by measuring variables such as microbial biomass 
carbon, basal respiration, dehydrogenase activity, and dissolved oxygen content in 
the sediments of the treatment units at 0, 2, 4, 6, 8, and 12 weeks. To monitor the 
above-mentioned parameters, sample composites were collected from various parts 
of the microcosm, and the analytical procedures are listed below. 

13.2.5.1 Basal Respiration 
In order to measure the CO2 concentration in sediments, 2 g of sediment samples 
were collected from different treatment units and placed in sealed plastic vials inside 
1 L glass jars. The NaOH trap used in each jar contained 10 mL of 0.2 N NaOH to 
trap CO2 released as a result of substrate mineralization. The NaOH trap was 
periodically replaced. A titration with 0.1 N HCl was used to determine the amount 
of CO2 generated by each microcosm after adding 10 mL of BaCl2 to the NaOH trap. 

13.2.5.2 Dehydrogenase Activity 
The frequency of decrement of 2,3,5-triphenyltetrazolium chloride into 
triphenylformazan, as described by Alef (1995), was used to measure the dehydro-
genase activity. After 24 h, dehydrogenase activity was determined as micrograms of 
formazan per gram of soil and reported as a percentage of control activity (100%). 

13.2.5.3 Plant Toxicology 
To test the phytotoxicity of sediment on sorghum, the sediment extract was 
centrifuged (at 6000 rpm) and filtered with a No. 42 Whatman filter paper. The 
sediment extract was extracted by adding water to reach 85% moisture content. A 
diluted extract was made in distilled water and placed into six petri dishes with 
10,000 seeds of sorghum in each. Each dilution was incubated at 27 °C for 72 h in 
the dark. 

Equations (13.1–13.3) were used to calculate the GI based on the number of 
germinated seeds in the sample and the root elongation compared to the control: 

The relative seed germination percentage 

= 
Number of seeds germinated in the extract 
Number of seeds germinated in the control 

× 100 ð13:1Þ 

Elongation of roots relative to root length in control %ð  Þ  

= 
Root length in extract 
Root length in control 

× 100 ð13:2Þ



ð Þ ð Þ
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Germination index % = 
GsLs 
GcLc 

× 100 13:3 

Here, Gs and Gc are the average numbers of seeds that germinated in the sample 
and in the control replication, respectively, while Ls and Lc are the average amounts 
of root length in the sample and in the control replication. 

13.2.5.4 Microbial Biomass (Fumigation and Extraction) 
Microbial biomass carbon: ethanol-free chloroform was used. For each sample, two 
subsamples were made: one non-fumigated sample (10 g) for immediate extraction 
with 0.5 M K2SO4 and, in addition to the fumigated specimen (10 g), a 
non-fumigated subsample was placed for 3 days in a desiccator. 50 mL of 0.5 M 
K2SO4 was added to each subsample and then shaken for 30 min. After shaking, it 
was filtered through 0.5 M K2SO4 on pre-leached Whatman No. 1 filter paper, and 
the extract was stored in the freezer. 

In a vacuum desiccator, 50 mg of the fumigated sample was placed into 50 mL 
glass beakers, each marked with a pencil. Sharpe operates in chloroform, so the 
beakers were placed inside a vacuum desiccator. Beakers were stacked in the 
desiccator by layering them with a vented plate. After placing boiling chips in a 
50 mL scintillation vial and adding 30 mL of chloroform in the desiccator, the vial 
was evacuated and kept in darkness for 3 days (darkness prevents chloroform from 
breaking down). In each sample, 50 mL of K2SO4 was added, and it was shaken for 
30 min. Then each sample was filtered through 1.25 mm Whatman No. 1 filter paper 
that had been pre-leached with 0.5 M K2SO4. A wet oxidation method was used to 
determine the total organic carbon in the extract, as described by Sánchez-Monedero 
et al. (1996). 

13.2.5.5 Determination of the Rate at Which the Isolate Detoxifies Toxic 
Elements 

To ensure that the sediment was free of organisms, 100 g of sediment was measured 
into nine different glassware containers and autoclaved at 121 °C for 30 min at a 
pressure of 15 lbs. Three mycelial discs of each of the fungal isolates were inoculated 
into the sterilized sediment along with nutrients. It was moistened at 60% and 
properly covered with a plug. For 12 weeks, the experiment was kept at 282 °C. 

13.2.6 Analysis of Data 

The ANOVA method was used to analyse the data obtained from the bioremediation 
experiments. The treatment means were separated according to the LSD method at a 
5% probability level.
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13.3 Results and Discussion 

13.3.1 Physical and Chemical Analysis of the Sediment 

Table 13.1 shows some analysis of the physical and chemical characteristics of the 
Asa River sediment used for the study. The sediment had a high level of organic 
carbon, organic matter, nitrogen, and cation exchangeable capacity. The result 
obtained in the study indicates that the sediment is acidic. Ogunwale and Azeez 
(2000) attributed the pH values of sediment to the nature of the parent materials on 
which the sediment is developed. The high organic matter content can be attributed 
to sewage, industrial wastes, and agricultural chemicals such as fertilizers, 
pesticides, and minerals, which are the primary causes of surface water pollution. 
It is widely recognized that rivers can become contaminated by traces of metal from 
numerous and diverse sources, which makes them rich in soil nutrients required for 
plant uptake (Adekola and Eletta 2007). The ECEC (64.20 Cmol/kg), the overall 
value of sodium, calcium, magnesium, potassium, and exchangeable acidity (0.65 
Cmol/kg), present in the Asa River sediment was found to be high, which showed a 
high fertility status and its potential for agricultural use. However, anthropogenic 
activities, such as quarry sites and industrial effluents along the riverbank, still 
remain the principal cause of the increased amount of heavy metals that have been 
dumped into the water (Adekola et al. 2002), which have made the Asa River 
sediment a pool of heavy metals. 

Table 13.1 Physicochemical properties of sediment collected from Asa River sediment 

Parameter Values 

Particle size (%) 

Sand 75.96 

Silt 11.28 

Clay 12.76 

Textural class Sand 

pH in H2O 6.02 

pH in KCl 5.14 

Total organic carbon (%) 0.834 

Total organic matter (%) 1.441 

Total nitrogen (%) 0.37 

Available phosphorus (P) (mg/kg) 23.7 

Potassium (K) (Cmol/kg) 24.94 

Sodium (Na) (%) (Cmol/kg) 23.83 

Calcium (Ca) (Cmol/kg) 6.32 

Magnesium (Mg) (Cmol/kg) 8.46 

Exchangeable acidity (Cmol/kg) 0.65 

Effective cation exchangeable capacity (ECEC) (Cmol/kg) 64.20
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13.3.2 Microbial Analysis of Asa River Sediment and Organic 
Amendments 

The pH of Asa River sediment, its organic content, and water are the main factors 
affecting the fungal population and diversity in the sediment, which is similar to the 
report made by Yu et al. (2007) that physical-chemical properties had a great impact 
on the fungal population. Fungi require organic carbon, nitrogen, phosphorus, and 
potassium. Mould development and sporulation, in addition to those of other 
microbes, are severely impeded in the absence of any of these (Saksena et al. 
1995). According to reports, the monsoon (rainy) season, when soil moisture was 
noticeably high, was when the fungal population was at its highest level. According 
to Deka and Mishra (1984), the dispersion of mycoflora is significantly influenced by 
environmental parameters such as pH, moisture, temperature, organic carbon, 
organic nitrogen, and organic carbon. In the present study, 21 fungal species were 
observed (Fig. 13.1c). Ascomycotina and Zygomycotina had the highest number of 
fungal species observed. The report of the study shows that Aspergillus niger 
(15.4%), Aspergillus flavus (11.1%), Aspergillus sydowii (6.1%), Aspergillus terreus 
(4.7%), Aspergillus glaucus (4.1%), Trichoderma harzianum (7.6%), Penicillium 
notatum, and Trichoderma viride (4.5%) were the dominant species, and 
Botryodiplodia theobromae has the lowest occurrence (1.5%); they show vigorous 
growth and were found in large numbers. It was discovered that a variety of 
parameters, including temperature, humidity, vegetation, organic and inorganic 
materials, soil type, and texture, influence the frequency of mycoflora in various 
fields. Figure 13.1a depicts the proportion of fungus found in abattoir wastewater. 
There were 11 fungal species identified. Microsporum nanum had the highest rate of 
incidence (16.6%), whereas Aspergillus niger had the lowest rate (3.7%). 
Figure 13.1b depicts the frequency of occurrence of fungi identified from rice 
husk. A total of 14 fungus species were identified. Aspergillus flavus was the most 
common (14.6%), while Stachybotrys chartarum was the least common (2.2%). 

Table 13.2 shows some important features of isolated fungal species based on 
their macroscopic and microscopic appearances. Figures 13.2, 13.3, 13.4, and 13.5a 
depict some of the characteristics of the potato dextrose agar (PDA) plate. 
Figures 13.2, 13.3, 13.4, and  13.5b show the conventional method’s microscopic 
appearance at × 100. The morphology characterizations were done based on the 
colony’s appearance, colony form, elevation, colony margin, and colour. 

13.3.3 Bioremediation Experiment 

13.3.3.1 Respiratory Activity in Microcosms 
Figure 13.6a shows the rate at which the organisms present in each microcosm 
released CO2 during the respiration process. Treatment A (the control pan) had the 
least value, probably because it was autoclaved at a very high temperature, leaving 
no room for organisms to survive at the commencement of the study, but at week 
12, the value increased to 1.533, which may be attributed to exposure to
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Fig. 13.1 Occurrence of fungi in (a) abattoir effluent, (b) rice husk, (c) Asa River sediment



contamination from the air during the collection of sediment samples for analyses. 
The results of microbial activities in the different microcosms are shown in 
Fig. 13.6a. Treatments are shown comparing respiration rates in non-amended and 
modified sediment (amended) from the same location. Some trends can be observed: 
in almost all the treatments investigated, the respiration rate was higher in the 
modified sediment (biostimulation and bioaugmentation). This is probably due to 
increased organic nutrients from the microcosm, nutrient addition, or organic waste 
(rice husk and abattoir effluent) present in the pans. The reduction in CO2 released 
thereafter could be a result of a reduction in microbial activity. The microbial activity 
might have dropped due to nutritional limitations. Engelberg-Kulka and Hazan 
(2003) demonstrated that bacteria and fungi cells that have begun the sporulation 
process postpone endospore production by eliminating their peers and feasting on 
the resources released as a result. They discovered that under nutritional stress, fungi 
such as Aspergillus niger exhibit cannibalistic behaviours. It was also observed that 
organisms in treatment 5 (nutrients with abattoir effluent) released more CO2 than 
other treatments until the 10th week before dropping below treatments 6 and 4. The 
exception to this trend is the control, in which the respiration rate was 1.533 lower in 
the contaminated sediment. This may be due to the lack of aeration or addition of 
nutrients to reactivate the microbes present in the sediment. The action of the 
sediment microflora is indicated by basal respiration, which may be connected to 
the decomposition of the molecules in the sediment of the Asa River, which 
corresponds with the study by Bhattacharyya et al. (2001), where metabolic data
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Fig. 13.1 (continued)
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Table 13.2 Colony and microscopic morphology of fungal isolates 

ID Source Colony morphology Microscopic morphology 

A1 Sediment On PDA, the growth is 
rapid white aerial mycelia, 
which become tinged with 
purple colour and might be 
masked by cream to tan to 
orange sporodochia 

Microconidia abundant, 
generally single celled, 
oval to kidney shaped, 
macroconidia abundant, 
only slightly sickled 
shaped, thin walled, and 
have attenuated apical cell 

Fusarium 
oxysporum 

A2 Sediment Colonies on PDA at 27 °C 
attained a diameter of 
4–5 cm within 7 days, 
consisting of a compact 
white or yellow basal felt 
with a dense layer of dark 
brown to black 
conidiophores 

Conidia heads, black, 
radiate, tending to split into 
columns with age. 
Conidiophore stipes 
smooth-walled hyaline but 
also in brown colour. 
Phialides borne on metulae, 
7.0–9.5 × 3.5 μm, metulae 
brown often septate, 
15–25 × 4.5–6.0 μm. 
Conidia globose to 
subglobose 

Aspergillus 
niger 

B3 Abattoir 
effluents 

Colonies with loose white 
to yellow mycelium rapidly 
becoming dark brown to 
black on the development 
of conidia 

Conidial heads are large 
(3 mm by 15–20 μm in  
diameter), globose, dark 
brown, becoming radiate 
and tending to split into 
several loose columns with 
age. Conidial heads are 
biseriate with the phialides 
borne on brown, often 
septate 

Aspergillus 
niger 

A3 Sediment Growth rate: rapid, the 
texture is silky to coarsely 
fluffy, radial grooves, the 
colour is white and reverse 
is deep yellow. Variants are 
slow growing, heaped and 
folded, yellow surface, no 
reverse pigment, 
macroconidia absent; 
reverts to typical colony on 
rice grains 

Long, rough, thick-walled 
macroconidia with 
asymmetrical knob on end 
few pyriform microconidia, 
lateral racquet hyphae, 
nodular bodies 

Microsporum 
canis 

B4 Abattoir 
effluents 

Growth rate is slow and its 
texture is waxy or glabrous, 
heaped or flat, thallus 
colour is white, grey or 
yellow and the reverse is 
colourless, variants, flat, 
downy, grey-white 

Irregular hyphae with many 
terminal and intercalary 
chlamydospores. 
Chlamydospores are often 
in chains. The head of some 
hyphae is broad and club 
shaped, and occasionally 
divided. The occasional 
strains produce clavate to 
pyriform microconidia 

Trichophyton 
verrucosum



borne singly along the
hyphae

(continued)
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Table 13.2 (continued)

ID Source Colony morphology Microscopic morphology 

B8 Rice 
husk 

On potato dextrose agar, 
colonies are slow growing, 
small, button or disk 
shaped, white to cream 
coloured, with a suede-like 
to velvety surface, a raised 
centre, and flat periphery 
with some submerged 
growth. Reverse pigment 
may vary from 
non-pigmented to yellow 

Irregular hyphae with many 
terminal and intercalary 
chlamydospores. 
Chlamydospores are often 
in chains. The head of some 
hyphae is broad and club 
shaped, and occasionally 
divided. The occasional 
strains produce clavate to 
pyriform microconidia 
borne singly along the 
hyphae 

Trichophyton 
verrucosum 

A6 Sediment Very rapid rate of growth, 
maturing in about 3 days. 
Surface is greenish-yellow 
to olive and may have a 
white border, usually 
consisting of dense felt 
yellow-green 
conidiophores. Conidial 
heads typically radiate, 
later splitting into several 
loose columns. Texture is 
often floccose, especially 
near the centre, and overall 
can be velvety to woolly. 
Unremarkable cream to tan 
to yellowish reverse 

Conidiophores hyaline 
coarsely roughed, up to 
1.0 mn (some isolates are 
up to 2.5 mm) in length. 
Phialides borne directly on 
the vesicle or metulae, 
6–10 × 4.0–5.5 μm, 
metulae 6.5–10 × 3.5 μm. 
Conidia globose to 
subglobose 

Aspergillus 
flavus 

C2 Rice 
husk 

Colonies have fast-
growing, suede-like to 
downy, white with 
yellowish green conidial 
heads. Colonies become 
greyish-pink to brown with 
age 

Conidiophores are hyaline, 
smooth walled and bear 
terminal verticils of 3–5 
metulae, each bearing 3–7 
phialides. Conidia are 
globose to subglose, 
2–3 μm in diameter, 
smooth walled and are 
produced in basipetal 
succession from the 
phialides 

Penicillium 
marneffei 

A7 Sediment Growth rate is moderate. 
Colour is influenced by 
media. It has a blue-green 
to dark green to greyish-
turquoise. Colonies may 
have straw-coloured to 
reddish-brown shades with 
exudate. Reverse is 
maroon. Texture is lanose 
(woolly) 

The long, smooth-walled 
stipes which bear the 
conidiophores are hyaline 
generally. The vesicles 
(7.0–17 μm wide) may 
appear sub-spherical or 
clavate. Conidiogenous 
structures are biseriate with 
metulae (2-
3.5 μm × 4–6 μm) and 

Aspergillus 
sydowii



phialides (2-
3 μm × 5–7 μm) in size.
Conidia are spinose and are
about 2.5–4.0 μm in
diameter

(continued)
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Table 13.2 (continued)

ID Source Colony morphology Microscopic morphology 

B1 Abattoir 
effluents 

Colonies growing rapidly, 
4.5 cm in 4 days, aerial 
mycelium white, becoming 
purple with discrete orange 
sporidia present strains, 
reverse hyaline to dark 
purple 

Conidiophores are short, 
single, lateral 
monophialides in the aerial 
mycelium, later arranged in 
densely branched. 
Macroconidia are fusiform 
and slightly curved. The 
phialides are short and 
mostly non-septate 

Fusarium 
oxysporum 

A8 Sediment Colonies on PDA appeared 
as rapidly growing 
powdery colonies with a 
characteristic buff or 
cinnamon-brown colour on 
the surface and a yellow to 
beige-brown colour on the 
reverse 

Hyphae are septate and 
hyaline with conidial head 
formed of compact 
columnar and contain 
metulae, which supports 
the phialides (biseriate). 
The conidiophores are 
smooth walled, with length 
ranging from 50 to 320 μm 
long, and terminating in 
mostly globose vesicles; 
the conidia are globose, 
smooth and small with a 
size of 2–2.5 μm in  
diameter and the conidia 
are hyaline, globose, and 
sessile and are produced on 
submerge 

Aspergillus 
terreus 

A10 Sediment Growth is slow to 
moderate. Colony size 
expands rather slowly. 
Colony colouration is 
media dependent but is 
described as a dull to deep 
green to a greyish 
turquoise, with yellow to 
orange areas. The reverse is 
pale yellow to yellow 

The conidia head radiates 
to loosely columnar; the 
conidiophores are smooth 
walled, 15–30 μm; the 
upper portion of the vesicle 
is covered by septate, 
phialides, and hyaline; the 
vesicles are globose to sub 
globose, uniseriate with a 
3.5–6.5 μm 

Aspergillus 
glaucus 

B6 Rice 
husk 

Very rapid rate of growth, 
maturing in about 3 days. 
Surface is greenish-yellow 
to olive and may have a 
white border; it consists of 
dense felt yellow-green 
conidiophores. Conidial 
heads typically radiate, 
later splitting into several 

Conidiophores hyaline 
coarsely roughed, up to 
1.0 mn (some isolates is up 
2.5 mm) in length. 
Phialides borne directly on 
the vesicle or metulae, 
6–10 × 4.0–5.5 μm, 
metulae 6.5–10 × 3.5 μm. 

Aspergillus 
flavus



loose columns. Texture is
often floccose, especially
near the centre and overall
can be velvety to woolly.
Unremarkable cream to tan
to yellowish reverse

Conidia globose to
subglobose

(continued)
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Table 13.2 (continued)

ID Source Colony morphology Microscopic morphology 

A11 Sediment It is a rapidly growing 
mould which matures in 
3–5 days. Growth begins as 
fluffy white tufts, which 
then compact and appear 
woollier. Green tufts may 
develop within the colony 
due to the production of 
conidia. These often appear 
as concentric rings, 
typically starting at the 
edge of the colony. The 
reverse is typically a light 
tan to yellow or pale orange 

Conidiophores hyaline, 
much branched, not 
verticillate; phialides single 
or in groups; conidia 
(phialospores) hyaline, one 
celled, ovoid, borne in 
small terminal clusters; 
usually easily recognized 
by its rapid growth and 
green patches or cushions 
of conidia 

Trichoderma 
harzianum 

C7 Rice 
husk 

The surface growth is 
velvety, downy, or 
powdery, showing various 
shades of green, most 
commonly a blue-green to a 
grey-green with a narrow 
white border. The colour 
typically darkens with age. 
The reverse is white to tan 
to pale yellowish. 
Colouration or shade can 
be dependent on the media 
on which the fungus is 
cultured upon 

Hyphae are septate with 
smooth-walled 
conidiophores (usually less 
than 300 μm in length and 
5–10 μm wide) 

Aspergillus 
fumigates 

B5 Abattoir 
effluents 

Colonies growing rapidly, 
5–7 cm in 5 days, aerial 
mycelium white to cream, 
becoming bluish-brown 
when sporodochia are 
present 

It possesses 3–5 septate, 
fusiform, cylindrical, 
moderately curved, a short 
blunt apical cell, 
28–42 × 4–6 μm. 
Microconidia are usually 
abundant, cylindrical to 
oval, 1–2 celled and formed 
from long lateral phialides 
8–15 × 3–4.8 μm, 
chlamydospores are 
hyaline, globose. Smooth 
to rough walled 

Fusarium 
solani 

A13 Sediment The surface growth is 
velvety, downy, or 
powdery, showing various 

Hyphae are septate with 
smooth walled 
conidiophores (usually less 

Aspergillus 
fumigates



shades of green, most
commonly a blue-green to a
grey-green with a narrow
white border. The colour
typically darkens with age.
The reverse is white to tan
to pale yellowish.
Colouration or shade can
be dependent on the media
on which the fungus is
cultured upon

than 300 μm in length and
5–10 μm wide). Vesicles
are subclavate in shape,
roughly 20–30 μm in
width. Phialides are flask
shaped, uniseriate,
compact, usually forming
on the upper two-thirds of
the vesicle and mature
parallel to the axis of the
conidiophore. Conidia are
verrucose, (sub)spherical,
and about 2–3.5 μm in
diameter and develop in
chains

(continued)
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Table 13.2 (continued)

ID Source Colony morphology Microscopic morphology 

Colonies are flat, 
spreading, and white to 
cream coloured, with a 
dense cottony surface 
which show some radial 
grooves. Colonies usually 
have a bright golden yellow 
to brownish yellow reverse 
pigment 

Macroconidia are small 
typically spindle shaped 
with 5–10 cells, verrucose, 
thick walled and often have 
a terminal knob 

Microsporum 
canis 

A14 Sediment Colonies may show 
variation in surface colour 
from a yellowish brown to 
a drab olive with possible 
greys. They may show a 
lighter coloured outer edge, 
and droplets of purple 
exudate may appear on the 
surface of the maturing 
colony. The reverse is a 
yellowish brown colour. 
Texture was even and 
rather 

It produces septate hyphae 
from which smooth-walled 
conidiophore stipes extend. 
Stipes are short 
(130–300 μm). Vesicles, 
subspherical in shape, also 
were rather small (7-
15 μm diameter) from the 
vesicles, biseriate 
conidiogenous cells extend 
with the metulae being 
slightly shorter than the 
phialides. The 
conidiogenous cells 
produce round conidia 
(3.0–4.5 μm diameter) 
bearing a noticeably rough 
wall 

Aspergillus 
ustus 

B6 Abattoir 
effluents 

Colony grows fast on PDA, 
white-pinkish on surface 
and cream reverse 

Conidiophores arising from 
a single or less often 
synnemata branched near 
the apex, penicillate, 
ending in phialides: conidia 
hyaline, one celled, mostly 
globose or ovoid, in dry 
basipetal chains 

Penicillium 
viride
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Table 13.2 (continued)

ID Source Colony morphology Microscopic morphology 

A17 Sediment The colony is flat, downy to 
cottony, covered by 
greyish, short, aerial 
hyphae. The reverse side is 
typically brown to black 
due to pigment production 

It has a septate, dark hypha. 
Conidiophore is also 
septate and sometimes has 
a zigzag appearance. It 
bears simple or branched 
large conidia 
(8–16 × 23–50 μm), which 
have both transverse and 
longitudinal septations. 
These conidia are observed 
in acropetal chains and may 
produce germ tubes. They 
are ovoid to obclavate, 
darkly pigmented, 
muriform, and smooth. The 
end of the conidium nearest 
the conidiophore is round 
while it tapers towards the 
apex. This gives the typical 
beak or club-like 
appearance of the conidia 

Alternaria 
alternate 

A18 Light yellow, moist 
appearance, red with 
cottony and orange-brown 
mycelium, with light brown 
exudates; it grows between 
3 and 5 days on PDA 

It has a long, thin with 
about 100 μm or more 
phialide; it has a single or 
pairs of chlamydospore; the 
microconidia is 
8–16 × 2–4 μm with 
abundant, cylindrical, 
dorsal, and ventral surface 
parallel, 3–5 septa 
(35–55 × 4.5–6 μm) 

Fusarium 
solani 

BA 

Fig. 13.2 (a) Colony morphology and (b) microscopic structure of Aspergillus niger ×100
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A B 

Fig. 13.3 (a) Colony morphology and (b) microscopic structure of Aspergillus flavus ×100 

A B 

Fig. 13.4 (a) Colony morphology and (b) microscopic structure of Fusarium oxysporum ×100 

A B 

Fig. 13.5 (a) Colony morphology and (b) microscopic structure of Trichoderma harzianum ×100
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are used to estimate the amount and kind of substances that are amenable to 
mineralization as well as the biological growth in the sediment.
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Fig. 13.6 (continued) 

13.3.3.2 Dehydrogenase Activity (DHA) 
The relative activity of dehydrogenase throughout treatment is seen in Fig. 13.6b. 
Treatment 5 (nutrient and abattoir effluent) had the largest microbial activity, as 
shown by the elevated dehydrogenase activity as a result of sediment moisture



content; DHA is increased when the moisture is high, and water availability in the 
abattoir effluent strongly affects soil microbial activity and composition (Chander 
and Brookes 1991). This could be a major reason for the increase in microbial 
numbers (Bhattacharyya et al. 2001). Thus, the organic amendment increases the 
organic matter content, which directly increases the enzyme activity. By week 8, the 
incorporation of rice husk and an improved microbial community had raised the 
dehydrogenase activity from 15.4 to 152.4 μg INTF/gm dw. In treatment 6, which 
had nutrients and rice husk, the dehydrogenase activity increased from 13.5 to 
142.57 μg INTF/gm dw by week 8. Surprisingly, the quality of the OM in the soil 
is more significant than its quantity since OM impacts the energy source for 
microbial development and the manufacture of enzymes (Aoyama and Nagumo 
1997). The addition of an enriched microbial consortium in treatment 4 also had a 
great effect. Biostimulation with nutrient addition increased dehydrogenase activity, 
but at a lesser rate when compared to pan with a microbial consortium. The activity 
of the enzyme was enhanced by biostimulation with aeration alone (treatment 2), 
with a small rise in dehydrogenase activity. 
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DHA levels in all treatment units were observed to decrease after 8 weeks, most 
likely as a result of the degradation of labile organics. Bioaugmentation (pans D, E, 
and F) had a higher rate of dehydrogenase activity than the treatments with 
biostimulation (B and C) and control. The nutrients (energy) in pans D, E, and F 
revive the microbes present in them for optimum dehydrogenase activity. In this 
regard, Aoyama and Nagumo (1997), Nweke et al. (2006), and Nweke et al. (2007) 
established that little modification of the sediment increases the energetic metabo-
lism, which increases the enzymes’ activities. 

13.3.3.3 Phytotoxicity Assay 
Table 13.3 shows the results of sorghum seeds that germinated after 24, 48, and 72 h. 
It was observed that the germination average on all amended treatments is higher 
than that of the non-amended treatment (control). Figure 13.6c demonstrates that 
after the addition of an organic amendment and an enriched colony of 
microorganisms, the phytotoxicity degree in the sediment has been significantly 
lowered (treatments 5 and 6). This was soon followed by treatment 4, and a 
comparably lesser drop in phytotoxicity was found in treatment 3, which boosted 
indigenous microbial activity through the incorporation of oxygen and supplements. 
Treatment 2 got biostimulation with aeration only, which resulted in a slight rise in 
its germination index. Controls exhibited poor GI values that did not alter over 
treatment, but they also had low germination percent and root length when compared 
to treatments 5 and 6, where the microorganisms received nutrition for their energy 
metabolism. 

The observations were obvious after week 12, when the amendments had 
decomposed. Trace element levels were shown to have a considerable ( p < 0.05) 
phytotoxic impact on the germination index (Fig. 13.6c). The phytotoxicity of 
germination and root length improved considerably with a decrease in toxic element 
concentrations. The results of this finding indicated that heavy metals at levels above 
the required amount had significant phytotoxicity on sorghum seed germination
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characteristics. Toxic materials’ detrimental effect on shoot and root length is 
directly related to their toxicity on the sorghum germination index. This study’s 
results are in line with those of Radha et al. (2010) and Shaikh et al. (2013), who 
found that the phytotoxicity of toxic metals on GI was reduced at lower doses and 
rose at higher doses.
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All of the pollutants contained in the treatments significantly ( p < 0.05) impacted 
the GI of sorghum. Root lengths and germination rates were both negatively 
impacted by elevated heavy metal concentrations, and a significant drop was mostly 
seen at week 12 when concentrations were compared to the control treatment 
(Table 13.3). Excess salt deposition in the cell wall may reduce germination rates 
and root lengths by adversely altering metabolic functions and limiting cell wall 
flexibility (Naseer 2001). Along with causing chromosomal abnormalities and 
aberrant mitosis, heavy metals may also interfere with cell division, which would 
impede root growth (Bhattacharyya et al. 2001). According to other studies on the 
bioassay tests (Kapanen and Itävaara 2001), the results showed the same differences 
between the control, where the GI was lower, and the amended sediment 
(bioaugmentation and biostimulation), where the GI was highest. 

13.3.3.4 Microbial Biomass 
The microbial biomass carbon was determined after week 12. The result as seen in 
Fig. 13.6d showed that treatment A (sterile sediment) fluctuated at weeks 6, 8, 
10, and 12 most likely due to fluctuations in microbes generated by microbial 
succession. Organic wastes have the effect of the treatment increasing the Cmic 

values, which are significantly higher than those of biostimulation. Beyond week 
8, when the microbial biomass was seen to diminish more slowly than in treatment 
3, the effects of the microbial consortium and organic wastes were clearly obvious in 
treatments 4, 5, and 6. 

13.3.4 Chemical Analysis of Microcosm 

Figure 13.7a–i shows the chemical analysis of different microcosms. A significant 
decrease in the heavy metal concentration was observed in different treatment units 
(B, C, D, E, and F). During the 12 weeks of incubation, treatment E 
(bioaugmentation with abattoir wastewater) demonstrated the ability to eliminate 
the pollutant the most. However, some of the loss could have resulted from volatili-
zation, as shown in control samples. 

In all the figures: 
Pan A—control 
Pan B—simple aeration 
Pan C—biostimulation 
Pan D—bioaugmentation (consortium) 
Pan E—bioaugmentation (abattoir effluent) 
Pan F—bioaugmentation (rice husk)
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Fig. 13.7 (continued)
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13.3.5 Effect of Some Fungal Isolates on the Toxic Elements in Asa 
River Sediment 

Microorganisms isolated from Asa River sediment with substantial metal levels and 
organic waste show a strong resistance to these components. This resistance may be 
owing to some abiotic conditions or to the microorganism’s biochemical and genetic 
responses. Romero et al. (1999) observed that numerous microbes have been 
evaluated for their heavy metal adsorption ability, but those isolated from the Asa 
River sediment, where these pollutants are prevalent, are of particular relevance in 
this study. Fungi possess a very-well-known heavy metal sorption capacity. The 
result showed that some fungal species are commonly connected with substrates that 
have high concentrations of heavy metals and can even be regarded as heavy metal 
hyperaccumulators, as previously described by Gadd (1997). 

The Fusarium sp. showed good tolerance level behind Aspergillus niger of 
sediment samples. There was at least one isolate from each of the two major groups 
of fungi. Figure 13.8(a–i) illustrates Aspergillus sp. with varying degrees of metal 
tolerance, which was investigated in this study. The isolates from river sediment 
show that some fungi (Aspergillus sp., Penicillium, etc.) from heavy metal-
contaminated river sediment have higher resistance to heavy metals than others 
and might be used to mitigate these metals from solutions. Gadd (2007) remarked 
that due to their intracellular metal sorption nature and resistance to metals, filamen-
tous fungi are more fitted for this function than other microbes. Heavy metals may be 
amassed by various fungi by a variety of processes, such as polypeptide binding. 

Before inoculating samples with various fungal isolates, the sediment contained a 
high concentration of toxic elements. Figure 13.8a–i shows the differences in the 
value of heavy metals present before and after 12 weeks of inoculation. Aspergillus 
spp. was found to be among the most prevalent in the heavy metal-polluted sedi-
ment, which was similar to the results obtained by Ahmad et al. (2005) and Nweke 
et al. (2006). Various Aspergillus spp. such as A. niger, A. fumigatus, and A. flavus 
have been engaged in the sorption of heavy metals. Nweke et al. (2007) and Tunali 
et al. (2006) also observed similar results in their studies. Gadd (2007) investigated 
the elimination of hazardous elements by Aspergillus sp. from untreated wastewater. 
According to Nweke and Okpokwasili (2013), Cd, Cu, and Ni were the metals to 
which Aspergillus strains were most tolerant. As a result, A. tamarii, A. flavus, 
A. niger, and A. terreus were chosen to be studied in the current investigation. 
Aspergillus niger had a higher degradation for most of the heavy elements present in 
the sediment, except nickel, where Fusarium solani had the highest degradation. It 
was also observed that all the fungi significantly decreased the metal level when 
compared with the control. 

The sediment had a high content of toxic element before inoculating samples with 
different fungal isolates. Figure 13.8(a–i) shows the differences in the value of heavy 
metals present before and after 12 weeks of inoculation with varying fungal isolates. 
Aspergillus niger had a higher degradation for most of the heavy elements, except 
nickel, where Fusarium solani had the highest degradation. It was also observed that
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Figure 13.8a indicates that Mn is degraded in the following order: A. niger > A. 
ustus > A. terreus > A. sydowii > T. harzianum > F. solani > A. flavus > P. 
notatum. 

Figure 13.8b indicates that Fe is degraded in the following order: A. niger > A. 
sydowii > A. terreus > F. solani > A. ustus > P. notatum > A. flavus > T. 
harzianum. 

Figure 13.8c indicates that Cu is degraded in the following order: A. niger > F. 
solani > A. flavus > A. terreus > T. harzianum > A. sydowii > A. ustus > P. 
notatum. 

Figure 13.8d indicates that Zn is degraded in the following order: A. niger > T. 
harzianum > F. solani > A. sydowii > A. ustus > P. notatum > A. terreus A. flavus. 

Figure 13.8e indicates that Co is degraded in the following order: F. solani > A. 
flavus > P. notatum > T. harzianum > A. sydowii > A. niger > A. ustus > A. 
terreus. 

Figure 13.8f indicates that Cr is degraded in the following order: A. niger > F. 
solani > T. harzianum > A. terreus > A. flavus > P. notatum > A. ustus > A. 
sydowii. 

Figure 13.8g indicates that Cd is degraded in the following order: A. niger > F. 
solani > A. ustus > P. notatum > A. flavus > A. terreus > T. harzianum > A. 
sydowii. 

Figure 13.8h indicates that Pb is degraded in the following order: A. ustus > P. 
notatum > A. terreus > T. harzianum > A. flavus > F. solani > A. niger > A. 
sydowii. 

Figure 13.8i indicates that Ni is degraded in the following order Ni: A. niger > A. 
sydowii > A. terreus > A. flavus > T. harzianum > P. notatum > A. ustus > F. 
solani. 

13.4 Conclusion 

This work evaluated the use of agricultural wastes (rice husk and abattoir effluent) to 
bio-remediate the sediment of the Asa River. The physicochemical and heavy metal 
analyses revealed high concentrations of organic carbon, organic matter, and heavy 
metal concentrations, among others, in the river sediment. It was observed that 
higher concentrations of the metals were very phytotoxic ( p < 0.05) and prevented 
crop germination. This showed that human activities such as sewage disposal, 
industrial effluents, and chemicals from agricultural practices are the major causes 
of the river’s sediment and low soil fertility. A total of 21 fungi were isolated from 
the samples and the agricultural wastes, and they all successfully degraded the heavy 
metal concentrations, with Aspergillus niger being the most effective. This study 
presents bioremediation as a low-cost and environmentally benign technique for 
remediating Asa River sediment.
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Abstract 

Crude oil contamination is a serious matter as it contributes majorly towards 
environmental pollution all across the globe. The ever-increasing urbanization 
and industrialization have increased the demand for fossil fuel, which is the 
driving energy source. The different activities of oil industry lead to emancipation 
of a huge volume of hydrocarbon in the environment, which has adverse effect 
towards the ecosystem. Bioremediation is one of the most widely accepted 
technologies for remediation of crude oil-contaminated sites as it is cost effective 
and eco-friendly in nature, but it has limitations due to its slow rate as 
hydrocarbons are hydrophobic in nature. Upgradation of the bioremediation 
process by incorporating stimulating agents can be beneficial. Biochars are 
wonder bio-based components, which are drawing attention in the present day, 
as they can be used as biostimulant to enhance the efficiency of biodegradation 
process due to its attractive properties. The notion of this chapter is to discuss the 
importance and role of biochar in the remediation of hydrocarbon-contaminated 
sites. 

Keywords 

Crude oil · Environmental pollution · Bioremediation · Biostimulant · Biochar 

14.1 Introduction 

The rapidly growing urbanization and the ever-increasing demand for fossil fuel in 
order to meet the energy requirement lead to massive crude oil exploration. Although 
during the COVID-19 pandemic, the demand for crude oil decreased to 91 million 
barrels per day from 99.7 million barrels, it again increased to 96.5 million barrels in 
2021, and this is expected to rise further as the pandemic condition has gradually 
improved. The demand for petroleum is increasing day by day. The various activities 
in oil fields and refineries and the transportation of oil cause the accidental liberation 
of a huge amount of crude oil into the environment. Crude oil contamination is of 
global concern as it leads to the destruction of soil structure and alters its physico-
chemical properties, and also imposes adverse effect towards plant growth and 
existing life forms. The major constituents of petroleum hydrocarbon are carbon, 
hydrogen, and oxygen, although in some cases sulphur and nitrogen are also present. 
Either straight-chain or ring-shaped aliphatic hydrocarbons, aromatic hydrocarbons, 
and polyaromatic hydrocarbons or PAHs (consisting of two or more benzene rings) 
are present in petroleum hydrocarbons that are highly poisonous in nature due to



their carcinogenic and mutagenic properties (Zhang et al. 2019). Further, the transfer 
of hydrocarbons across the food chain can also lead to hazardous effect on humans. 
Thus, considering the negative impact of crude oil pollution, restoration and mitiga-
tion of crude oil-contaminated sites are of utmost necessity for a sustainable ecosys-
tem. Several treatment techniques are utilized for rehabilitation of crude 
oil-contaminated soil, such as solvent washing, electrochemical techniques, precipi-
tation, coagulation, incineration, flocculation, and adsorption; however, such 
techniques emancipate toxic products and gases that pollute the environment (Ali 
et al. 2020). Bioremediation is considered to be the most efficient, clean, and cost-
effective method. Some microorganisms possess the ability to take up and utilize 
hydrocarbon for their metabolism and degrade them to simpler forms, and even 
certain plants can accumulate and convert hydrocarbon to their intermediate forms. 
For instance, bacterial genera such as Bacillus, Rhodococcus, Burkholderia, Pseu-
domonas, Arthrobacter, Acinetobacter, Alteromonas, Mycobacterium, Kocuria, 
Enterobacter, Marinobacter, Streptococcus, Staphylococcus, and Achromobacter 
are known to degrade hydrocarbon components from polluted sites (Varjani and 
Gnansounou 2017; Xu et al. 2018). Bioremediation usually comprises two 
approaches: (1) bioaugmentation and (2) biostimulation (Wu et al. 2016a, b). In 
bioaugmentation, biological organisms are introduced in a contaminated environ-
ment for initiating the remediation approach, whereas in biostimulation, external 
nutrient and media are added for triggering or accelerating the degradation to be 
mediated by the indigenous microflora or vegetation. Although bioremediation is a 
widely acceptable technology, it has certain limitations. As hydrocarbon compounds 
are hydrophobic in nature, they are not easily bioavailable in nature, due to which the 
rate of bioremediation is slow (Makkar and Rockne 2003). Many studies have found 
that the combined approach of biostimulation and bioaugmentation leads to a better 
outcome of remediation experiments. The activity of indigenous soil flora or plants is 
enhanced by supplementation of biostimulants. A wide range of agricultural 
by-products such as peanut peel, rice straw, and biomasses can be applied as 
stimulating agents for enhancing the activity of the microorganisms dwelling in a 
contaminated site (Xue et al. 2019). New techniques and ideas for the development 
of advanced bioremediation are being incorporated to achieve better outcomes. 
Recently, biochar has been gaining importance as it has shown to improve soil 
quality and enhance microbial activity that performs the desirable degradation of 
hydrocarbons, as they use them for their metabolism and convert them to simple 
forms. Biochar is nothing but the carbon-rich material that is obtained by pyrolysis 
of organic matter. The biochar possesses a number of attractive properties such as 
high porosity, better adsorption, nutrient absorption ability, and enhanced stability as 
compared to other biological wastes (Ali et al. 2019). Biochar promotes microbial 
growth; it enhances the metabolism of microbes and increases its tolerance towards 
toxic pollutants in the environment (Xue et al. 2019). It improves soil fertility and 
soil enzyme activity that play a major role in determining the fate of remediation 
approaches (Wang et al. 2015; Zhang et al. 2019). Thus, amendment of biochar in 
hydrocarbon-contaminated sites can be promising in resolving the quandary caused
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by the crude oil pollution. In this chapter, we shall discuss about biochar and its role 
in triggering bioremediation of hydrocarbon-contaminated soils. 
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14.2 Negative Impact of Petroleum Hydrocarbon 

Crude oil has an adverse effect on the soil quality. It alters the physicochemical 
properties of the soil, as a result of which the vegetation in oil-polluted sites is 
adversely affected (Devatha et al. 2019). The crops cultivated in crude 
oil-contaminated sites show poor growth and yield, as the crude oil hampers its 
normal metabolism and uptake of nutrients from the soil. Certain components of 
crude oil, such as PAHs, can enter mammalian body including humans through 
different routes including inhalation, dermal contact, ingestion of contaminated food 
stuff, and smoking of tobacco cigarettes (Dong et al. 2012; Beyer et al. 2010). 
Contamination of water bodies by crude oil spillage affects aquatic organisms 
including fishes, planktons, microalgae, etc., and the sunlight- or UV-induced 
photooxidation of PAHs enhances their toxic effects (Björn 2015). The International 
Agency for Research on Cancer has classified certain PAHs as possible carcinogen 
against human. The Environment Protection Act (EPA) has classified seven PAHs, 
namely, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)-
fluoranthene, dibenz(ah)anthracene, indeno(1,2,3-cd)pyrene, and chrysene, as pos-
sible carcinogens for humans (EPA 2008). Usually, the PAHs trigger alteration of 
genetic makeup of an organism, which ultimately causes carcinogenic diseases 
(Luch 2005). Crude oil components also affect immunity as revealed from studies 
on rodents although the detailed mechanism of action is not known clearly. PAHs are 
even suspected to impose teratogenic effects as several studies observed birth defects 
and depletion in the weight of neonatal mice populations that were served with doses 
of PAHs during pregnancy period (Dejmek et al. 2000). 

Crude oil pollution also affects plant growth. They also interpreted that the total 
chlorophyll and carotenoid contents also decreased due to crude oil contamination. 
Crude oil contamination leads to a decrease in chlorophyll content in Cyperus 
brevifolius (Rottb). It was also found that the plant biomass was significantly 
reduced, and structural deformation in leaves and tissues was observed due to 
crude oil contamination (Patowary et al. 2017). The rice plant parts including the 
grains were found to accumulate hydrocarbon compounds, and it can be assumed 
that consumption of such adulterated cereals can lead to health issues. Our findings 
also suggest that it is necessary to investigate the quality of the soil before the land is 
utilized for other purposes, especially cultivation or animal rearing. 

14.3 What Is Biochar? 

Biochar is nothing but the carbon-rich product obtained by the thermal conversion of 
biomasses in low or absence of oxygen, i.e. pyrolysis. Biochar can be produced from 
different kinds of biomass, domestic or kitchen waste, and it can lead to better 
solution for waste management. Usually, a temperature of more than 350 °C  i



necessary for the conversion of the biomass to the biochar, although the temperature 
requirement may vary based upon the composition of the biomass utilized. The 
carbons present in the biochar are randomly arranged in aromatic rings, and the 
intensity of aromatization actually determines the stability of the biochar 
(Wiedemeier et al. 2015). Further, the stability of the biochar also depends on the 
biomass and the temperature applied for its preparation. Biochar can serve as a cost-
effective approach for waste management that can be widely applied to remediate 
contaminated environment. Amendment of biochar as a soil conditioner can lead to 
improvement of soil health and promote the growth of plants in contaminated or 
problem soil. 
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14.3.1 Properties of Biochar 

Biochar possesses a wide number attracting properties that make it a suitable 
candidate for application in remediation purposes. It has a high surface area and 
negative charge and is recalcitrant in nature. It has a high adsorption capacity 
compared to other sources and also has high porosity. The high adsorption capacity 
of the biochar allows adsorption of the contaminants from the contaminated envi-
ronment and prevents their leaching into the groundwater (Downie et al. 2009; Yang 
et al. 2016). The pores in the biochar are created during the thermochemical 
decomposition of the biomass, and based upon the size of the pore size (internal 
diameter), biochars are classified into three types: macropores (>50 nm), mesopores 
(2–50 nm), and micropores (<2 nm) (Mukherjee et al. 2011) (Fig. 14.1). The 
properties of biochar can be classified into three groups: 

Fig. 14.1 Schematic representation of porous structure of the biochar mentioning its porosity 
range
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14.3.1.1 Physical Properties 
The physical properties of biochar mainly include its density, pore structure, 
hydrophobicity, and surface area. Biochar generally has low bulk density, and its 
porosity largely depends on the pyrolysis temperature used to convert the biomass. 
As the temperature increases, the porosity of biochar increases. For instance, the 
porosity of biochar obtained from woodchips increases from 50% to 70% as the 
pyrolysis temperature increases from 300 to 850 °C (Somerville and Jahanshahi 
2015). Water-holding capacity of the biochar is dependent on the porosity of the 
biochar; the higher the porosity, the more the water-retaining capacity of it. The 
functional groups of the biochar also have an impact on the hydrophobicity. The 
increased pyrolysis temperature reduces the functional group present at the surface 
of the biochar, and this reduces the affinity of the biochar towards water (Pimchuai 
et al. 2010). 

14.3.1.2 Chemical Properties 
The chemical properties of biochar include pH, ionic exchange capacity, and 
composition. The increasing pyrolysis temperature enhances the pH and cationic 
exchange capacity of the biochar. The elemental composition of biochar also 
depends upon the pyrolysis temperature, as the composition undergoes various 
changes in forms and properties. The major elements present in the biochar are C, 
H, O, and N, and some amount of S, P, Si, Cu, Fe, Zn, and Mn in meagre amount, 
although the type of biomass utilized for biochar preparation determines its compo-
sition (Wu et al. 2016a, b). Thus, these minerals in the biochar aid in plant growth 
promotion and enhance microbial population that triggers the remediation of 
contaminated environment. The C is the backbone of the biochar and usually exists 
in carbonate and bicarbonate forms; H is the main building block, and it plays a 
major role in the sorption of molecules. During pyrolysis, the peptide bonds present 
in the biomass convert to N-heteroaromatic carbon compounds (Lian and Xing 
2017). 

14.3.1.3 Surface Functionality 
The surface of the biochar mediates its activity and interaction with other 
components. The surface charge, functional groups on the surface, and structure-
related functionality contribute to the activity of the biochar. With increasing 
pyrolysis temperature, the surface radicals on the biochar also change. The free 
radicals play an important role in mediating the degradation of organic contaminants 
from the environment as they can react with hydrogen peroxide and persulfate (Xiao 
et al. 2018). 

The biochar properties vary on account of different biomass used and the 
temperature at which it is prepared. Further different pyrolysis conditions such as 
pressure and gas also influence the biochar characteristic properties (Sohi et al. 2010; 
Shackley and Sohi 2010). Various sophisticated technologies such as scanning 
electron microscopy (SEM), transmission electron microscopy (TEM), X-ray dif-
fraction (XRD), Brunauer-Emmett-Teller (BET), and gas pycnometry can be used 
for the elucidation of physical structure and characteristic features of biochar. The



chemical properties can be determined by Fourier transform infrared spectroscopy 
(FTIR); proximate analysis to determine the ash, moisture, fixed carbon, volatile 
matter, etc. can be done by CHNS analyser; and to determine the aromaticity of the 
biochar, magnetic resonance spectroscopy (NMR) can be used. Mainly, the surface 
area and the porosity are two factors that determine the adsorption capacity of 
biochar. 
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14.4 Factors Affecting the Quality of Biochar 

The quality of biochar is a vital property that signifies its activity. The two main 
factors that contribute majorly to the quality of biochar produced are the biomass 
used for the biochar preparation and the condition in which the biochar is prepared. 
The temperature utilized to produce biochar determines the surface area of the 
biochar, and it has been observed that the higher the temperature applied, the more 
the surface area of the biochar formed. 

14.4.1 Biomass Utilized for Biochar Preparation 

The composition of biomass utilized for biochar produced determines its type and 
properties. The plant-based biomass usually consists of lignin, cellulose, and 
hemicelluloses, and depending upon the sources, the amount of these three 
constituents varies accordingly (Saini et al. 2015). The cellulose and hemicelluloses 
are easily volatile than lignin, and thus lignin requires a higher temperature for 
pyrolysis. Different agricultural by-products and plant materials are being involved 
for biochar production. 

14.4.2 Condition Used for Biochar Preparation 

The temperature that is used for biochar preparation determines the properties of the 
biochar formed. The aromaticity and the carbon content of the biochar increased on 
increasing heating and pyrolysis temperature, whereas the yield and surface func-
tional properties got reduced. The biochar produced at high temperature has more 
pronounced surface area, as the pores blocked in unpyrolyzed organic matter are 
opened up at high heating temperature (Zahed et al. 2021). The heating principle 
used for biochar preparation, that is, the conventional heating involving muffle 
furnace or advanced heating approaches by microwave heating, also contributes to 
the quality of the biochar.
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14.5 Benefit of Biochar Amendment in Remediation 
of Petroleum-Contaminated Soil 

The versatile properties of biochar make them a suitable biostimulating agent for 
remediation of pollutants from the environment. Application of biochar in environ-
mental remediation can serve for waste management, as biochar itself is prepared 
from biomass waste of different types and origin. Figure 14.2 has shown the 
mechanism by which biochar aids in the remediation of environmental polluted 
sites and leads to waste management. As biochar has high porosity, it can adsorb the 
pollutants and immobilize them, and on the other hand, biochar, as it is rich in 
nutrient components, leads to improvement of soil quality and enhances microbial 
activity and soil enzyme activity that mediate the remediation of contaminants from 
the polluted environment. The water-holding capacity of soil is enhanced by biochar 
incorporation, as a result of which more moisture is retained by the soil that aids 
vegetation to grow well in affected soils. It adsorbs contaminants from the environ-
ment, and this reduces the level of contaminants present, and the growth of 
microorganisms is enhanced. Biochar can adsorb both hydrophobic and hydrophilic 
compounds by electronic interactions (Trinh et al. 2017). The biochar promotes the 
redox reactions for degradation of organic pollutants due to the presence of graphite

Fig. 14.2 The role of biochar in the remediation of environmental contamination recycling of 
wastes



and quinine structures that can accept and donate electrons (Yu et al. 2019). The 
biochar incorporation moderates the various parameters that are vital for determining 
the fate of bioremediation of hydrocarbon-polluted environment. Table 14.1 sums up 
the different parameters that play an important role in mediating bioremediation and 
mentions the ways by which biochar moderates the parameter for efficient bioreme-
diation to occur. The activity of indigenous soil microflora is triggered by biochar 
amendment, which brings about the desired degradation of petroleum wastes. Thus, 
biochar amendment actually promotes plant growth and increases microbial popula-
tion in contaminated sites, and it provides an aesthetic condition for them to flourish 
and minimizes the toxicity of contaminants (Fig. 14.3). The microbes and the plants 
and mutual interactions actually bring about the desired remediation of the pollutant 
from the environment. There are several studies which have reported on the benefi-
cial role of biochar in the remediation of petroleum oil-contaminated environment. 
Table 14.2 sums up the research works where biochar has been applied for the 
restoration of crude oil-contaminated sites.
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14.6 Impact of Biochar on Soil Microorganisms 

The biochar plays an important role in the microbial community of a particular area. 
Biochar also changes the soil bacteria-to-fungal ratio and also soil enzyme activity 
that plays a major role in the remediation of contaminants from the environment 
(Ahmad et al. 2016; Nielsen et al. 2014). Several factors that are responsible for the 
impact of biochar on microbes are as follows: 

14.6.1 Nutrient Supplement for the Microbes 

The biochar can serve as nutrient sources for the soil microbes, as biochars are 
known to be rich in several nutrients such as Na, K, Mg, N, and P, and the attracting 
properties of biochar such as large surface area, high pore volume, and negative 
surface charges make the nutrients to be better adsorbed (Chathurika et al. 2016). 
The composition of nutrients present in biochar depends on the biomaterial used for 
its preparation and also the procedure adopted for its preparation. Biochar facilitates 
cation exchange capacity that results in higher nutrient retention and also prevents 
nutrient loss due to leaching, and this favours microbial activity (Lehmann 2007). 
Biochar also increases the availability of rhizobacteria that transform S and P present 
in the soil to its bioavailable form, and such a phenomenon enhances several groups 
of microbial growth. The carbon in the biochar can also serve as carbon sources for 
the microbes to carry out its metabolic activities, although the aromaticity of the 
biochar can sometimes hinder its proper usability. Application of biochar promotes 
the formation of macroaggregates, which favours the fungal growth rather than 
bacterial growth, which may be due to the hyphal networks in fungi that facilitates 
nutrient translocation (Ascough et al. 2010).
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Table 14.1 Summary of different parameters necessary for bioremediation and the action of 
biochar in regulating such parameters 

Action of biochar in 
regulating ambient 
condition 

Sl.
No.

1. Soil pH and 
oxygen 
availability 

The pH and oxygen 
availability are 
important factors that 
have impact on the 
activity of the microbes 
and plants that brings 
about the remediation 
of the polluted sites 

Biochar helps in 
regulation of soil pH 
and also helps to 
maintain aerobic 
condition in the soil due 
to its porous nature 

Yu et al. 
(2019) 

2. Temperature An optimum 
temperature (30–40 °C) 
is necessary for the 
microbial action for 
mediating the 
degradation of the oily 
components 

– Thamer et al. 
(2013) 

3. Oxidation and 
reduction 
potentiality 

The electron donors or 
acceptors and their 
ratios determine the 
pathway of the 
degradation 

Biochar due to its 
surface functionality 
alters the ionic property 
of the soil 

Yu et al. 
(2019) 

4. Water content Moisture content in the 
soil is important for the 
vitality of the soil. It 
promotes plant growth 
and also enhances the 
soil microbial activity 

The increased porosity 
of the biochar leads to 
enhanced water-holding 
capacity of the soil 

Basso et al. 
(2013) 

5. Nutrient 
availability 

Nutrients are important 
for the microbes and 
plants for their growth 
and metabolism 

Biochar amendment 
provides nutritional 
components in the soil 
that promotes microbial 
and also plant growth 
that ultimately leads to 
better degradation of 
the contaminants 

Nikolopoulou 
et al. (2013); 
Yu et al. 2019 

6. Type of 
pollutant 

The composition and 
type of hydrocarbon 
(for instance, aliphatic 
chain is more easily 
degradable than 
aromatic rings) and 
saturated and 
unsaturated 
hydrocarbon chains 
determine the efficiency 

– Semple et al. 
(2004)



No. Parameters Effect in remediation

of the remediation
process
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Table 14.1 (continued)

Sl. 
Action of biochar in 
regulating ambient 
condition References 

7. Presence of 
co-contaminant 
in the site 

Co-contaminants can 
affect and alter the 
properties of the 
principal contaminants 
and hence change its 
degradation scope 

Biochar with high 
adsorption capacity 
leads to the adsorption 
of many components 
present in the soil 

– 

8. Microbial 
community 

The microbial 
community present in 
the contamination site 
determines the fate of 
degradation of oily 
contaminants 

Biochar enhances the 
activity of microbes and 
also increases its 
population 

Zhu et al. 
(2017) 

9. Soil enzyme 
activity 

The soil enzyme plays 
an important role in 
mediating the 
degradation of 
petroleum 
hydrocarbons from the 
soil 

Biochar enhances the 
activity of the soil 
enzymes 

Zimmerman 
and Ahn 
(2010) 

Fig. 14.3 The role of biochar in promoting plant growth and enhancing microbial count
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Table 14.2 Application of biochar for remediation of crude oil-contaminated environment 

Biomass 
used for 
biochar 
preparation 

1. – Chitosan-biochar 
composite was applied to 
immobilize microbial 
agent (Pseudomonas 
aeruginosa and Bacillus 
licheniformis) for 
remediating crude 
oil-contaminated soil 

The remediation of the oily 
components increased 
drastically. The microbial 
count in the soil was also 
found to be increased 

Liu et al. 
(2023) 

2. Coconut 
shell 

Biochar and graphite 
carbon nitride were applied 
for treatment of crude 
oil-contaminated soil 

The removal rates of nC13– 
nC35 were above 90%. 
Both adsorption and 
photocatalysis phenomena 
actually enhanced the 
removal of the 
hydrocarbon 

Lin et al. 
(2022) 

3. Rice, sewage 
sludge, 
petroleum 
coke 

Rhamnolipid-modified 
biochar was applied for 
treatment of crude 
oil-contaminated soil 

Biochar amendment was 
found to be effective in 
regard to degradation of 
TPHs and increased 
microbial diversity 

Zhen et al. 
(2021) 

5. Sugarcane 
fibre 

Artificial crude oil 
contamination (1%) in 
microcosm study 
(Erlenmeyer flask), where 
biochar was applied in 
combination with 
biosurfactant and nitrogen 
source 

80.9% remediation was 
achieved 

Wei et al. 
(2020) 

6. Sugarcane 
leaves 

Remediation of wetland 
soil was carried out at 
microcosm scale. Biochar 
+biosurfactant mixture was 
applied 

Biochar amendment 
reduces ecotoxicity of oil 
in the contaminated 
environment and thereby 
enhances the activity of 
plants and microbes for 
mediating the remediation 

Wei et al. 
(2020) 

7. Sugarcane 
bagasse 

Biochar, Enterobacteria 
MN17, was added in 
artificial diesel-
contaminated soil where 
mung bean has been sowed 

It was found that biochar 
amendment significantly 
enhanced petroleum 
hydrocarbon (PHC) 
removal and enhanced the 
growth of mung bean 

Ali et al. 
(2020) 

8. Spent 
mushroom 
substrate 

Petroleum-degrading 
bacteria were immobilized 
on biochar and applied for 
treatment of total 
petroleum hydrocarbon 
(TPH)-contaminated soil 

The immobilization of 
bacteria on the biochar 
enhances its activity, and 
better remediation was 
obtained in contrast to the 
bacteria alone 

Zhang 
et al. 
(2019)
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Table 14.2 (continued)

Biomass 
used for 
biochar 
preparation 

9. Green garden 
waste 

Biochar+compost 
+bacterial consortium was 
applied in ryegrass-planted 
area contaminated with 
crude oil 

Highest degradation of 
TPH (85%) was obtained 
in the soil where the soil 
was amended by all of the 
three components. The 
organic amendment 
enhanced ryegrass growth 
and also bacterial count in 
the rhizosphere area 

Hussain 
et al. 
(2018) 

10. Bulrush 
straw 

Biochar and nutrients 
(N and P) were 
supplemented in 
oil-contaminated soil at 
laboratory scale 

It was observed that the 
combination of biochar 
and nutrients has a 
beneficial effect on the 
removal of TPH 

Wang 
et al. 
(2017) 

11. Wheat straws Ryegrass was used as a 
phytoremediation 
candidate for treatment of 
crude oil-contaminated 
soil, and biochar was 
amended in the soil 

Biochar amendment was 
not found to be effective 
for phytoremediation of 
crude oil-contaminated oil 
by ryegrass 

Han et al. 
(2016) 

12. Rice straw Biochar was amended in 
petroleum-contaminated 
soil in a microcosm-scale 
study 

It was observed that 
biochar amendment had a 
positive effect on the 
degradation of TPHs. 
Additionally, it was found 
that the amendment of 
biochar at later phase of the 
study showed more better 
outcome than the biochar 
added at the beginning of 
the study 

Qin et al. 
(2013) 

14.6.2 Modification of Microbial Habitat by Biochar 

Biochar aids in improving soil physical properties, and the porosity of biochar can 
lead to the reduction of soil density and enhance soil aeration, which promotes 
microbial growth. The amendment of biochar in soil allows more retention of water 
and prevents moisture loss in the dry season, and this helps in maintaining a stable 
microbial population. Biochar also serves as a potential liming agent to neutralize the 
soil pH.
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14.6.3 Reduction of Toxicity Impact Imposed by Soil Contaminants 

The amelioration of biochar in soil allows better adaptability of microbes in 
contaminated environment. The biochar leads to immobilization of the soil 
contaminants as it sequesters them in their porous structures, and this alleviates the 
associated risks caused by the contaminants (Zielinska and Oleszczuk 2016; 
Seneviratne et al. 2017). The microbial mortality is reduced in contaminated envi-
ronment on introduction of biochar (Koltowski et al. 2017). The interaction of the 
microbes and biochar also plays a major role in reducing the toxic effect by the 
contaminants. 

14.6.4 Influence in Microbial Communication 

The biochar is responsible for modification of microbial cell communication as it 
adsorbs the signalling molecules that mediate microbial communications. It has been 
reported that biochar leads to hydrolysis of AHL (N-acyl homoserine lactone), 
which is the main signalling molecule responsible for gene regulation in most of 
the bacterial population (Masiello et al. 2013; Gao et al. 2016). Biochar can also 
affect microbe-plant interactions. It has been found that biochar application reduces 
the action of plant pathogens that cause various plant diseases. Such an action of 
biochar can be due to increased interactions of plant roots and plant growth-
promoting rhizobacteria (PGPR) and even arbuscular mycorrhizal fungi, or negative 
impacts of biochar on the plant pathogens (Graber et al. 2010). Thus, in-depth study 
in this particular area can be fruitful to develop some biopesticides from the biochar. 

14.6.5 Alteration of Soil Enzyme Activity 

Soil enzyme activity is a vital phenomenon that determines the fate of remediation of 
pollutants from the environment. It is indeed an indicator of biological changes 
imposed by pollutants in a particular environment or soil quality (Bandick and Dick 
1999). Biochar adsorbs soil enzymes, and they also block their active sites as a result 
of which they cannot appropriately bind to their substrate. Biochar also alters 
enzyme activity by changing soil pH, and it has been reported that the biochar 
components might also act as allosteric regulators of enzymes (Bailey et al. 2011). 

14.7 Biochar for Plant Growth Promotion 

The biochar helps in plant growth promotion in problem soil that is contaminated 
with different kinds of pollutants. The quality of soil actually determines the fate of 
plant growth in a particular area. Due to its organic nature (60–80%), attractive 
properties, and attractive functionality, biochar plays an important role in improving 
the quality of soil. Amendment of biochar increases the soil bulk density, increases



soil porosity, and enhances root biomass and water-holding capacity of soil, i.e. the 
ability to retain moisture, which helps in plant growth (Zhang et al. 2012; Xiang et al. 
2017). The strength of roots is necessary for the growth of plants, and biochar allows 
better establishment of roots. The biochar also leads to regulation of soil pH, which 
is another vital characteristic important for plant growth and sustainability. The 
release of industrial wastes, chemicals, leads to alteration of soil pH, and this affects 
the growth of plants in contaminated sites (Amin and Eissa 2017). 
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The deprivation of nutrient components in the soil disrupts the plant growth in a 
variety of ways, starting from cessation of roots, disruption of cell membranes, and 
reduced metabolism, ultimately leading to death of plants (Hodges and Constable 
2010). Biochar also adds nutrient to the soil. It improves growth of plants in lesser 
fertile soil, by adding nutrient components, improving better utilization of soil 
substrates by plants, and enhancing rhizospheric activity (Alloway 2013; Maru 
et al. 2015). The application of biochar has also been recognized to reduce salt stress 
and improve plant growth in salt-affected soil. The biochar might adsorb or entrap 
Na from the soil and also provide nutrients to the plants to grow properly and combat 
with the stressed situation (Dahlawi et al. 2018). Thus, amendment of biochar in 
contaminated soil can be a state-of-the-art technology to improve the quality of the 
soil that ultimately leads to the rehabilitation of contaminated sites. 

14.8 Techniques Adopted for Application of Biochar 

There are various ways in which biochars are applied for the treatment of a 
contaminated environment (Sizmur et al. 2016). Biochar can be applied in sophisti-
cated and controlled laboratory-scale microcosm level to field scale. Various experi-
mental approaches that can be used for biochar application are as follows: 

14.8.1 Batch Sorption Studies 

Here, biochar is blended with an artificially contaminated environment under stan-
dard condition, and the amount of contaminants removed by the biochar is estimated. 
Usually, a known concentration of contaminants is applied so that the amount 
removed by the biochar application can be calculated easily. 

14.8.2 Biochar-Soil Incubation 

In this approach, the biochar is mixed with contaminated soil, and then the mixer is 
chemically extracted to measure the bioavailability of the contaminants. This method 
is more advantageous, as it offers information on both desorption and adsorption of 
the contaminant. Here also, the conditions are properly controlled so that the findings 
can be replicated.
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14.8.3 Bioassays 

In this method, a biological organism is included in addition to the amendment of 
biochar in a contaminated site. The uptake, toxicity towards the organism, and 
changes in the concentration of the contaminant are assessed. Bioassays provide 
more efficient outcomes and provide information on desorption and adsorption of 
contaminants, uptake of contaminants by the organism, and transport of 
contaminants. 

14.8.4 Field Experiments 

The biochar is applied to specific contaminated site/plot, and the effect of biochar 
can be estimated by the change in soil properties and observing the viability of plants 
in the site. This approach provides the ultimate or realistic effect of biochar on a 
particular contaminated environment. 

14.9 Conclusion and Future Perspective 

Petroleum is the most important source of energy that contributes majorly to meet 
the energy demand of the growing population, in spite of increasing emphasis being 
given on the use of renewable and clean sources of energy. The various activities of 
the petroleum industry starting from exploration and excavation to refining leads to 
the release of a huge amount of oil in the environment that leads to environmental 
pollution. The crude contamination has a negative impact on the environment, as it 
changes soil properties and deliberate toxic effect on life forms. Crude oil contami-
nation is a global problem that has been drawing much more attention in the recent 
years. Thus, to resolve such quandary due to the oil pollution, effective treatment 
technology is needed to be adopted for rehabilitation of the oil-polluted sites. 
Advanced bioremediation can be an efficient and cost-effective and clean technology 
to restore crude oil-contaminated sites. Biochar, as discussed in the chapter, can be a 
suitable organic substrate that can be used as a biostimulant for enhancing the 
remediation of oil-polluted sites. The attractive physical properties of biochar such 
as high porosity and pronounced water-holding capacity and the nutritional value 
make the biochar a potent adjuvant that enhances the microbial as well as 
phytoremediation efficiency of plants. However, limited studies have been 
conducted on the application of biochar in environmental remediation experiments; 
thus, more studies including field trial studies in the future are needed to validate the 
action of biochar in mediating remediation of contaminated sites. Detailed investi-
gation on the action of biochar, its synergistic effect with microbes and plants, and 
ionic interaction of biochar and biological entities is necessary for proper under-
standing of the phenomena by which biochar enhances the bioremediation of the 
contaminated sites. Utilization of biochar in remediation study can also lead to 
increasing biowaste management. Molecular approaches, next-generation



sequencing, and other biotechnological tools can aid in providing useful information 
on the impact of biochar on the microorganisms. Further, metagenomic studies can 
reveal information on biochar-microbe interactions and effect on microbial commu-
nity structure in a contaminated environment. Further, intertwining nanostructures 
and biochar component can actually enhance the effect of nanoparticles in mediating 
desirable removal studies, as the adsorption capacity might get enhanced on account 
of such initiatives. Biochar has also been known to sequester the C-emission in the 
environment and hence play a vital role in managing climate change as a result of 
global warming; thus, in-depth study in this particular area of research can be fruitful 
in developing new techniques for environmental management. In contrast to the 
positive effect of biochar, the negative impact incurred by biochar on the environ-
ment is also needed to be investigated. Detailed ecotoxicity studies of biochar can 
provide such kind of information, which is actually very essential for long-term and 
wide-scale application of biochar for environmental restoration. Further, minimiza-
tion of cost and energy for biochar production is another challenging criterion that is 
also needed to be focused for increasing the opportunities of commercial application 
of biochar. 
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Abstract 

Low-density polyethylene (LDPE) is a synthetic plastic used globally in 
quantities ranging from 57 million tonnes per year. The increasing accumulation 
rate and non-biodegradability are wreaking havoc on the organism and the 
environment. The biodegradation method can be used in a more environmentally 
friendly way to eliminate plastics from the soil. The microbial population is 
primarily involved in biodegradation because it is capable of secreting specific 
enzymes that cleave higher molecular weight molecules in LDPE, increasing the 
rate of biodegradation and eliminating them from the environment. This chapter 
focuses on the steps involved in the biodegradation process, like biodeterioration, 
biofragmentation, bioassimilation, and mineralization. Several other factors have 
contributed to the process’s speeding up. The exposure circumstances (abiotic— 
moisture, pH, temperature, nutrients; biotic—microbe exposure) on LDPE, as 
well as polymer characteristics (molecular weight, hydrophobicity, size, shape, 
functional groups, additives) of an LDPE, have a significant impact in this regard. 
Nanoparticles (SPION, NBT, fullerene-60) and other pretreatments 
(UV treatment, prooxidants, photocatalysis) are promising techniques for com-
bining with bacteria to increase biodegradation results. 

Keywords 

LDPE · Hydrophobic · Enzyme · Nanoparticles · Microbes · Microplastics 

15.1 Introduction 

Plastic is one of the most harmful and persistent pollutants. The word “plastics” 
comes from the Greek word “plastikos,” a material that can be molded into any shape 
(Ghosh et al. 2013). Chewing gums, shellac, rubber, and nitrocellulose were some of 
the naturally occurring compounds that inspired the creation of synthetic plastics 
because of their similarity to plastic in appearance and behavior (Millet et al. 2018). 
The first known use of polymers dates back to approximately 1600 BC when the 
ancient Mesoamericans prepared balls, figures, and bands out of natural rubber, 
which was the beginning of the polymer uses in the society (Hosler et al. 1999). 
Nowadays, the polymer industry synthesizes two types of plastics that can be 
differentiated based on their tendency to biodegrade: nonbiodegradable plastics 
and degradable plastics (Ahmed et al. 2018). 

Plastics that are not biodegradable are made of a combination of molecules 
derived from fossil fuels and compounds derived from biological sources. However, 
the majority of synthetically created nonbiodegradable plastics are fossil based. 
These polymers are formed from hydrocarbon and petroleum and have a very high 
molecular weight due to long chains of hydrocarbon monomer units (Ghosh et al.



2013). Polyethylene terephthalate (PET), polyester, polyvinyl alcohol, polypropyl-
ene (PP), polyethylene (PE), nylon, polyethylene succinate, and polycaprolactone 
are examples of fossil-based polymers (PCL). In addition, some polymer mixes, 
such as starch and polyvinyl chloride (PVC), are commonly utilized in commercial 
and industrial applications today (Ahmed et al. 2018). This synthetic plastic is being 
used on such a vast scale that around 380 million tonnes of plastics are manufactured 
worldwide yearly. However, less than 20% of that amount is routinely recycled, 
contributing significantly to global trash and environmental damage (Zhao et al. 
2022). Since having good utility in daily life, scientists are now developing friendly 
biodegradable plastics. Polyhydroxyalkanoate (PHA), polylactic acid, and 
polylactide (PLA) are examples of bio-based polymers. The use of biodegradable 
plastics in specific applications, such as packaging, agriculture, and the health 
industry, is the most creative and environmentally safe solution to address issues 
linked to the disposal of plastic waste created from various sources. If used, bio- and 
fossil-based biodegradable polymers efficiently break down in the environment, 
within cells, or in well-maintained industrial settings (Ahmed et al. 2018). 
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This chapter discusses biodegradation processes of polyethylene (PE) such as 
biodeterioration, biofragmentation, bioassimilation, and mineralization. PE is, gen-
erally, the fossil-based polymer that was first discovered by two research chemists, 
Reginald Gibson and Eric Fawcett, in March 1933 at ICI’s Winnington Laboratory 
in the UK, which was first synthesized as a low-density polyethylene (LDPE). PE is 
considered the second most used resin class, while polypropylene (PP) remains the 
first. According to the average density of the resin, PE has been classified into 
different grades: linear low-density polyethylene (LLDPE), 0.925 g cm-3 ; 
low-density polyethylene (LDPE), 0.930–0.935 g cm-3 ; medium-density polyethyl-
ene (MDPE), 0.93–0.945 g cm-3 ; and high-density polyethylene (HDPE), 
0.945–0.965 g cm-3 (Andrady and Neal 2009). 

LDPE, however, is very dispersive everywhere in the environment, from a single 
plastic bag to beautiful colorful straws. They are accumulating in the environment at 
a very high speed over time due to poor waste maintenance and littering by 
humankind (Sharma et al. 2016). The way of exposure in nature is becoming a 
threat to the environment and living organisms as well. Long-term exposure to the 
soil leads to decrease in soil fertility, microbial ecology, and many other health 
problems. Additionally, the ocean’s plastic increase is six times that of the existing 
phytoplankton, which adversely affects the marine ecosystem. Humans also face 
many health problems regarding this (Ahmed et al. 2018). Therefore, eliminating 
these persistent pollutants from nature is very important to restore the ecosystem, 
which can be done in various ways. 

Remediation of LDPE and other plastics involves photo-, chemical, thermal, and 
biological degradation (Muthukumar and Veerappapillai 2015). The traditional 
mechanical, chemical, and thermal degradation (Komal et al. 2018; Mumtaz et al. 
2009) procedures typically employed to address these pollutants have limited effi-
cacy and are also expensive. Therefore, developing methods for treating hazardous 
wastes has much potential to benefit from biotechnology. The use of bioprocesses to 
treat hazardous wastes is a technology that shows promise because it is both



affordable and capable of eliminating the danger and mineralizing it. In addition, the 
process by which organic/inorganic material is broken down into nutrients that other 
species can utilize is known as biodegradation. These intrinsic biodegradation 
process can diminish or eliminate certain environmental pollutants (Eskander and 
Saleh 2017). 

354 S. Shyam and H. Sarma

LDPE sheets can undergo both biotic and abiotic degradation. The biotic ones 
consist of biodegradation and bio-oxidation. On the other hand, abiotic ones are 
photo- and oxidative degradation (Mumtaz et al. 2010). In order to accelerate the 
bioremediation process, pretreatments are anticipated to be a crucial component of 
plastics’ biodegradation as part of a circular economy strategy. Furthermore, oxida-
tion and surface modifications on the plastics speed up biodegradation and increase 
biogas production (Mat Yasin et al. 2022). 

Without ignoring the involvement of abiotic forces, biodegradation is thought to 
occur through following stages: biodeterioration (Zhang et al. 2022), 
biofragmentation, bioassimilation, and mineralization (Kumar Sen and Raut 2015; 
Remya et al. 2022). In a study, it was anticipated that Bacillus sp. strain BP4 
showing similarity of 99.72% with Bacillus anthracis strain X11 and strain BP6 
showing a similarity of 99.93% with Bacillus paramycoides strain 8929 were seen to 
release enzymes that can break down LDPE plastic into monomers, which are then 
taken up by bacterial cells and undergo natural decomposition, serving as a carbon 
source for bacterial development. Bacterial extracellular enzymes break down com-
plicated polymers to create smaller oligomers, dimers, and monomers. These carbon-
and energy-rich short-chain molecules can be mined to create CO2, H2O, or CH4 as 
the final by-product (Fibriarti et al. 2021). Fungal genera such as Acremonium, 
Cladosporium, Debaryomyces, Emericellopsis, Eupenicillium, Fusarium, Mucor, 
Paecilomyces, Penicillium, Pullularia, Rhodosporidium, Verticillium, Aspergillus, 
Aureobasidium, Chaetomium, Cryptococcus, Rhizopus, Thermoascus, Penicillium 
roqueforti, and Tritirachium album and bacterial genera such as Brevibacillus, 
Streptomyces, Amycolatopsis, Clostridium, Schlegelella, and Pseudomonas have 
been known to degrade various types of plastics (Ghosh et al. 2013). 

In addition to microbial consortia, nanoparticles are being investigated for their 
potential to speed up biodegradation. According to specific theories, nanoparticles, 
which typically vary in size from 1 to 100 nm, have more surface area per unit 
weight than larger particles, making them more receptive to other molecules. These 
particles may improve biodegradation by speeding up microbial growth and 
magnifying the synthesis of hydrolytic enzymes (Cada et al. 2019). Some potentially 
used nanoparticles in LDPE biodegradation include nanobarium titanate, fullerene-
60 nanoparticles, supermagnetic iron oxide nanoparticles, and doped and undoped 
TiO2 with LDPE (Bhatia et al. 2013).
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15.2 Chemical Composition of LDPE and Its Impact 
on Organisms 

PE is made up of a linear saturated C-C backbone (- [CH2-CH2] n-) (Zhang et al. 
2022). Using gas chromatography and mass spectroscopy (GC-MS) to analyze the 
chemical makeup of LDPE films, researchers discovered the presence of alkanes, 
aromatic hydrocarbons, chlorocarbons, saturated fatty acids, unsaturated fatty acids, 
and other unidentified compounds (Kyaw et al. 2012). Low-density polyethylene 
(LDPE) is a strong and malleable polymer with long branches that do not pack 
tightly into crystallites (Jordan et al. 2016). It has reduced intermolecular tensions, 
lowered tensile strength, and more resilience. Due to its side branches, it has fewer 
crystalline and closely packed molecules. This could result in a reduced density of 
LDPE. Carbon and hydrogen are two components found in LDPE. Excellent resis-
tance to dilute and concentrated acids, alcohols, bases, and esters; good resistance to 
aldehydes, ketones, and vegetable oils; poor resistance to aliphatic and aromatic 
hydrocarbons, mineral oils, and oxidizing agents; and not advised for use with 
halogenated hydrocarbons are some of its other characteristics (R. Pramila 2011). 
LDPE with a thickness greater than 5 mm sometimes breaks and gets converted into 
microplastics later. Microplastics are bits of plastic less than 5 mm in size that can 
potentially break apart when entering the marine environment. The term 
“microplastics (MP)” typically refers to particles with a size between 50 nm and 
5 mm. Because they are used in more significant quantities and have smaller particle 
sizes, this plastic group is thought to generate more pollution overall (Hahladakis 
et al. 2018). Microplastics could grow in all natural resources derived from the 
oceans, such as salt if plastic debris is not removed from water bodies such as rivers 
and oceans. 

More than 90% of the brands of salt that were randomly sampled did contain 
microplastics, with Asia being the primary source. Salt eaters are particularly 
vulnerable to this microplastic issue, which also harms the food chain and marine 
biota (Novarini et al. 2021). Over 800 animal species were found to have been 
contaminated with plastic through ingestion or entanglement, according to a 2016 
UN report. This number is 69% more than a 1977 review, which estimated only 
247 infected species. 220 of these 800 species have been discovered to consume 
microplastic waste naturally (Murray and Cowie 2011; Smith et al. 2018). Due to 
microplastics in products, foods, and the air, exposure can occur through ingestion, 
inhalation, and skin contact. Microplastic exposure can potentially generate particle 
toxicity in all biological systems, oxidative stress, inflammatory lesions, and 
enhanced absorption or translocation. The immune system’s failure to eliminate 
artificial particles may cause persistent inflammation and raise the risk of neoplasia. 
Additionally, pathogenic organisms, pollutants that have been adsorbed, and 
elements of microplastics may be released (Prata et al. 2020). Due to their small 
size, aquatic organism at the lower trophic levels, such as plankton and filter feeders, 
may unintentionally consume microplastics. The most significant concentrations of 
MPs will be found in organisms at higher trophic levels, including mollusks, where 
these compounds can accumulate along the food chain (Sarma et al. 2022).



Hazardous seafood items that finally make it to human consumers may arise from 
such bioaccumulation of MPs, which may contain hazardous chemicals (Cole et al. 
2011; Katyal et al. 2020; Revel et al. 2018). After ingesting the microplastics, the 
staghorn coral (Acropora formosa) experienced bleaching and necrosis, which 
coincided with the release of zooxanthellae. The overall findings supported the 
hypothesis that coral health is impacted by MPs produced by LDPE (Syakti et al. 
2019). 
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Many of the chemicals that are frequently used to create plastics are harmful. The 
endocrine disruptors bisphenol A (BPA), phthalates, and some of the brominated 
flame retardants used to produce home goods and food packaging LDPE have been 
shown to be harmful to humans if consumed or inhaled (Ingale et al. 2021) 
(Campanale et al. 2020). BPA is a well-known endocrine disruptor; studies in the 
lab have shown that it binds to estrogen receptors and has estrogenic effects. 
Although BPA has been found to have a lower affinity for nuclear estrogen receptors 
relative to 17-beta-estradiol (E2), its estrogenic potency is equal to E2 for responses 
mediated by nonnuclear estrogen receptors (Rochester 2013). During formative 
phases, it can harm the thyroid gland, the brain, and the reproductive system. Most 
recently, it has also been connected to the emergence of human cancer (Chouhan 
et al. 2013). Phthalates and their by-products have been scrutinized over the past few 
decades, especially in products marketed to children or pregnant women (Giuliani 
et al. 2020). Phthalates cause cryptorchidism, hypospadias, a decline in adult sperm 
count, a reduction in testosterone, and a drop in Insl3 production (Lottrup et al. 
2006). Humans from fetal life to adulthood are exposed when brominated flame 
retardants (BFRs) leak from consumer products. Fish, mainly farmed fish, and crude 
fish oil intended for human consumption, may contain significant BFRs, and infants 
and toddlers who regularly consume these items may consume more than is safe. 
This suggests that fish and fish oil pose a risk to human health. Additionally, 
exposure to other sources of this intake is included (breast milk, other food, and 
house dust) (Lyche et al. 2015). 

15.3 Factors Affecting the Biodegradation Rate 

Plastics’ characteristics and biodegradability are related. Plastics’ chemical and 
physical characteristics impact how they degrade biologically—the characteristics 
of the surface (surface area, hydrophilic, and hydrophobic traits). The first-order 
structures of polymers—chemical structure, molecular weight, and molecular weight 
distribution—as well as the high-order structures of those same polymers—glass 
transition temperature, melting temperature, modulus of elasticity, crystallinity, and 
crystal structure—all play significant roles in the biodegradation processes (Tokiwa 
et al. 2009). One of the elements influencing the biodegradation of plastics is 
molecular weight. Biodegradation is favored by low molecular weight. Enzymatic 
degradability is significantly influenced by a polymer’s melting temperature (Tm). In 
general, polyester biodegradability tends to decrease with increasing melting points. 
With passing time, enzymatic degradability reduces. The degradability of the



polymer was reduced by higher order structure characteristics, including crystallinity 
and modulus of elasticity (Kale et al. 2014). Many elements, including temperature, 
moisture, oxygen, sunlight, stress, living things, and pollutants, can cause a polymer 
to degrade (Muthukumar and Veerappapillai 2015; Shah et al. 2008). Some of the 
main factors of biodegradation are discussed below: 
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15.4 Exposure Conditions 

15.4.1 Abiotic Factors 

15.4.1.1 Moisture 
Moisture aids in bacterial polymer breakdown since bacteria require water to grow 
and multiply, so moisture can have various consequences on biodegradation. For 
quick microbial action, polymer degradation speed is increased in the presence of 
enough moisture (Ahmed et al. 2018). In an experiment, the amount of banana starch 
was used to determine how much moisture the LDPE sheets would absorb. The films 
with 20% banana starch absorbed up to 4.5% moisture (Aht-Ong and 
Charoenkongthum 2022). Sago starch-filled linear low-density polyethylene 
(LLDPE) composites appear to be hydrolyzed enzymatically using surface starch 
granules; embedded granules are difficult to access due to the matrix’s weak 
moisture absorption or transmission properties. As a result, composites absorbed 
more moisture as the starch concentration and immersion time rose (Danjaji et al. 
2002). 

15.4.2 pH and Temperature 

pH, as well as temperature, plays a significant role in promoting the biodegradation 
process. An optimum range is essential for a microbe to thrive and perform its 
metabolic processes. Therefore, the investigation of pH fluctuations is utilized to 
confirm any metabolic activity of the bacterial isolates in supplemented media 
because metabolism demonstrated by microbial cells may substantially support the 
evidence of breakdown (Hussein et al. 2015). For example, researchers 
experimented at temperatures ranging across 25, 30, and 35 °C and pH levels of 
5, 7, and 9. The most significant amount of LDPE was removed at pH 7 and 30 °C. 
With a tolerance of 2–7% for 30 days, mixed cultures of Thiobacillus sp. and 
Clostridium sp. were able to degrade LDPE plastic gravimetrically (Islami et al. 
2019). 

15.4.3 Nutrients 

Plasticizers and other additives added to plastics provide nutrition for the growth of 
microbes (Mohanan et al. 2020). By providing optimum enhancers, additives like



various carbon sources, the substrate’s nutrition increases instantly and promotes 
biodegradation. For example, under minimal nutritional circumstances, LDPE and 
sucrose were used as carbon sources to observe LDPE deterioration. Weight loss of 
up to 30% was achieved by Aspergillus niger and Aspergillus terreus (Sáenz et al. 
2019). 
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15.4.4 Biotic Factors 

15.4.4.1 Microbes 
Exposing LDPE to microbes starts to degrade by producing enzymes and 
biosurfactants. Therefore, these two factors are essential to balance to achieve the 
best results. Enzyme adsorption on the polymer surface and hydro-peroxidation/ 
hydrolysis of the bonds are the two stages of the enzymatic degradation process. The 
sources of enzymes that break down plastic include microorganisms from various 
environments and the intestines of some invertebrates. Therefore, to depolymerize 
waste petro-plastics into polymer monomers for recycling or converting waste 
plastics into higher value bioproducts, such as biodegradable polymers via minerali-
zation, microbial and enzymatic degradation of waste petro-plastics is a promising 
strategy (Mohanan et al. 2020). 

Biosurfactants can be used as facilitators for the biodegradation process of LDPE. 
In a biodegradation study, isolated soil bacteria, Bacillus subtilis and Pseudomonas 
aeruginosa, were combined with pure cultures of the organisms to produce 
biosurfactants. The high biosurfactant concentration produced under static 
circumstances at 25 °C was 0.84 mg/mL. During a 30-day incubation period, adding 
biosurfactants boosted the biodegradation effectiveness by at least 1.2% compared to 
employing the bacteria alone (Nnaji et al. 2021). 

15.5 Polymer Characteristics 

15.5.1 Molecular Weight 

Microorganisms play a crucial role in assimilating carboxylic acids and low-
molecular-weight polyethylene chains from the high-molecular-weight compounds 
in the biotic environment. The lack of carboxylic acids in the biotic samples further 
supports the assimilation of the low-molecular-weight compounds. This could also 
be enhanced with starch and prooxidant for excellent output. Thus, it is confirmed 
that biodegradation acceleration is better if the molecular weight of a polymer is low 
(Albertsson et al. 1998).
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15.5.2 Hydrophobicity 

Surface hydrophobicity, associated with bacterial solid adhesion on the polymer 
surface, is thought to affect the rate at which organic materials degrade under 
composting conditions. Hydrophobicity and hard segment formation are believed 
to help polyethylenes fend off enzymatic and hydrolytic breakdown (Kim and Kim 
1998). High levels of LDPE biodegradation are produced by bacteria that maintain 
increased cell surface hydrophobicity (Das and Kumar 2013). 

15.5.3 Shape and Size 

The degradation process is significantly influenced by the polymer’s characteristics, 
such as its size and form. For example, compared to polymers with a limited surface 
area, those with an enormous surface area can deteriorate more quickly (Ahmed et al. 
2018; Kijchavengkul and Auras 2008). 

15.5.4 Functional Groups 

Functional groups on the surface of PE are hypothesized to be significant because 
oxidized groups improve hydrophilicity, which leads to efficient microbial adhesion 
to the PE surface and promotes biodegradation (Albertsson et al. 1995; Ghatge et al. 
2020; Tribedi and Sil 2013). 

In an experiment, photooxidation of LDPE was expedited by prooxidant treat-
ment prior to UV exposure. This caused functional groups to be formed in the 
polyethylene film, which led to biodegradation since Aspergillus oryzae consumed 
the carbonyl and carboxylic groups, which is shown by a decrease in carbonyl peak 
intensity (Konduri et al. 2011). 

15.5.5 Additives 

The capacity to degrade LDPE is impacted by non-polymeric impurities such as 
colors (waste or debris of catalysts employed for the polymerization and additive 
conversion products) or filler. According to specific reports, as the amount of 
lignocellulosic filler in a sample grows, the thermal stability decreases, followed 
by an increase in the ash content. The primary determinants of the composite 
system’s heat stability are the thermoplastic polymer and lignocellulosic filler’s 
dispersion and interfacial adhesion (Ahmed et al. 2018). Prooxidant additives 
potentially answer the polyethylene film litter contaminating the environment. 
Prooxidants speed up photo- and thermo-oxidation, leading to polymer chain cleav-
age and an apparent increase in the product’s susceptibility to biodegradation 
(Koutny et al. 2006).
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15.6 Different Types of Pretreatments 

By breaking down macromolecules on the substrate, oxygen causes oxidation 
degradation. This results in modifications to the chemical structure and a decrease 
in molecular weight, which alters the polymer’s brittleness, cross-linking, and 
temperature of disintegration (Artham et al. 2009; Jawaid and Khan 2018). PE 
degradation in the environment is accelerated by the combined effects of photo-
and thermo-oxidative degradation and biological activity (i.e., microorganisms). 
Alkanes, alkenes, ketones, aldehydes, alcohols, carboxylic acids, keto acids, dicar-
boxylic acids, lactones, and esters are just a few of the compounds that are liberated 
when PE is thermo- and photooxidized. When PE is blended with additives, auto-
oxidation is typically enhanced, the polymer’s molecular weight is decreased, and 
microorganisms more easily degrade the low-molecular-weight components. Unfor-
tunately, the biodegradability with microorganisms on the PE side of the blends is 
still relatively poor, despite all these efforts to improve the biodegradation of PE 
blends (Tokiwa et al. 2009). 

The development of oxidized functional macromolecules was one of the signifi-
cant impacts of abiotic aging on LLDPE/LDPE film, which was more pronounced in 
natural weathering settings than thermal aging. Additionally, as evidenced by 
elevated carbonyl peaks in the ATR-FTIR spectra, the enrichment cultures may 
have been able to raise the oxidation level of the naturally worn film. Additionally, 
the reduction in water contact angle (WCA) that arises from biotic aging is evidence 
of the degeneration of the surface property of LLDPE/LDPE film (Jaiswal et al. 
2022). 

15.6.1 Treatment with Prooxidants 

Prooxidant additives potentially answer the polyethylene film litter contaminating 
the environment. Prooxidants speed up photo- and thermo-oxidation, leading to 
polymer chain cleavage and an apparent increase in the product’s susceptibility to 
biodegradation (Konduri et al. 2011). Manganese, iron, cobalt (Fontanella et al. 
2010), manganese stearate (Konduri et al. 2011), calcium, and iron stearates are 
some of the potential prooxidants that enhance LDPE degradation by rapidly 
forming biofilms on the surfaces of the polymer after microbial treatment onto it 
(Abrusci et al. 2011). A multistep process begins as soon as bacteria adhere to a 
surface and produce a complex adherent microbial population known as a “biofilm.” 
Surface adherence is necessary for bacteria to arrange themselves positively in their 
environment (Das and Kumar 2013). Polyethylene can be made sensitive to micro-
bial breakdown by including starch and a prooxidant. To create biodegradable 
polyethylene, they are employed. The starch enhances the hydrophilic properties 
of polyethylene, enabling amylase enzymes to catalyze the reaction. Microbes easily 
break down this component. Degradation is preceded by photodegradation and 
chemical degradation when a prooxidant is added to polyethylene (Muthukumar 
and Veerappapillai 2015). In the presence of three well-defined enriched microbial



strains, Bacillus pumilus, Bacillus halodenitrificans, and Bacillus cereus, in basal 
salt medium, the degradation of abiotically aged low-density polyethylene (LDPE) 
films containing trace amounts of a representative prooxidant (cobalt stearate) was 
investigated. According to GC-MS analyses, the abiotic treatment created 
unoxidized low-molecular-weight hydrocarbons and extractable oxygenated 
molecules (A. C. Albertsson et al. 1995; Roy et al. 2008). 
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15.6.2 Thermo-UV Pretreatment (Photooxidation) 

UV radiation from the sun is a plentiful source, and polymer waste discharged in the 
open is subject to this photoinitiation process. Radiation is formed as a result of 
photooxidation, which is governed by the intensity of the light. As a result of these 
radicals diffusing throughout the polymer and producing new radicals, the polymer 
becomes more reactive. The polymer’s average molecular weight is reduced due to 
this processing. Carboxylic groups and other functions like esters, ketones, alcohols, 
and double bonds are often used to end cleaved chains. A crucial part of the 
photoinitiation process that results in the homolytic cleavage of the chain is played 
by peroxides and hydroperoxides, which absorb UV light with weak UV absorption 
in the wavelength range of 290–400 nm (Chr Albertsson et al. 1993; Arkatkar et al. 
2009). 

When exposed to environmental and mechanical stressors, the plastic becomes 
brittle and weakened due to photooxidation and fragments. For example, weakened 
plastics are broken down in the ocean by wave action, swelling-deswelling, abrasion 
with sand, and contact with marine creatures (Andrady et al. 2022). In addition, the 
chemical structure of LDPE film is impacted by weathering conditions, particularly 
solar irradiation in the 290–400 nm wavelength region, which influences its mechan-
ical and physical properties (Briassoulis et al. 2004). 

Pretreatments like UV radiation and chopping can also speed up the breakdown 
of LDPE plastic. The plastic will be broken up into smaller pieces during 
pretreatment, hastening biodegradation. Other tests, such as an examination of 
changes in the plastic surface and an analysis of changes in biochemical 
components, are required to evaluate the biodegradation of plastics in addition to 
reducing the weight of the plastic (Fibriarti et al. 2021). UV irradiation accelerated 
B. borstelensis biodegradation (measured as dry weight loss) compared to nonirra-
diated HDPE samples. It was discovered that 60 h of ultraviolet exposure before the 
bacterium’s incubation improved the biodegradation of LDPE by about 39%. Addi-
tionally, a 25% drop in the dry weight of B. borstelensis strain 707 on nonirradiated 
LDPE demonstrated that it could thrive there (Hadad et al. 2005). 

15.6.3 Photocatalysis 

A photocatalyst semiconductor accelerates the reaction rate by its presence (Ameta 
et al. 2018). TiO2 is a photocatalyst that absorbs UV radiation while being



environmentally benign. Consequently, UV radiation is effectively absorbed by 
polymer films that include TiO2. In photocatalysis mediated by TiO2, photons of 
the right energy are absorbed, resulting in the creation of electrons and holes that 
encourage the formation of free radicals, which then causes the polymer to oxidize 
and degrade (Ghatge et al. 2020; Zan et al. 2004). 
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The LDPE films containing nano-sized rutile-TiO2 and nano-sized anatase-TiO2 

(1% w/w) decreased the film tensile strength by 32% and 55%, respectively, during 
shortwave UV irradiation for 72 h. On the other hand, only 7–10% less commercial 
TiO2 in the form of micron-sized particles affects the film’s tensile strength 
(Shawaphun et al. 2010). 

15.7 Nanoparticles as an Enhancer for LDPE Degradation 

Nanoparticles possess distinctive potentiality in polymer degradation by enhancing 
the degradation process by influencing the growth of suitable microorganisms and 
being great catalysts for the degradation or transformation process (David et al. 
2021). According to a literature assessment, these particles could accelerate biodeg-
radation by speeding up microbial growth and boosting the generation of 
exoenzymes, hydrolytic enzymes, acids, and organic acids (Ali et al. 2020). Several 
nanoparticles improve biodegradability, mechanical and physiochemical stability, 
and growth cycle. By creating claylike nanocomposites with an extremely high 
surface area-to-volume ratio using nanoparticles, nanoclays are created. When 
used as fillers, nanoparticles promote the material’s characteristics and deterioration 
(Chrissafis et al. 2007; Pandey et al. 2015). With the substantial buildup of plastic 
garbage and ineffective strategies to control it, LDPE degradation has become a 
significant problem to be resolved. Specific applications of microbial decomposition 
have been demonstrated to be successful. The researchers have therefore discovered 
the ability of microbial degradation to be enhanced by nanoparticles, which has been 
given in Table 15.1. It has been demonstrated that LDPE can be broken down by 
nanobarium titanate, fullerene-60, and supermagnetic iron oxide nanoparticles 
(SPIONs) with increased microbial activity. While doping helps to shift the absorp-
tion range, enabling photocatalytic degradation to occur in the presence of visible 
light, undoped TiO2 and doped TiO2 nanoparticles have been embedded in the 
LDPE matrix to enhance degradation by the known photocatalytic activity of 
TiO2 that occurs in the presence of UV light (Bhatia et al. 2013). Significant 
alterations, such as a reduction of the lag phase and an extension of the exponential 
and stationary growth phases, respectively, might be used to identify the 
pro-bacterial effects of the nanoparticles, which ultimately boosts the biodegradation 
efficiency (Kapri et al. 2009).
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15.7.1 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) 

Due to their exceptional magnetic characteristics, chemical stability, and biocom-
patibility, superparamagnetic iron oxide nanoparticles (SPIONs) have recently been 
used widely in LDPE biodegradation. However, different physicochemical and 
synthetic parameters impact SPIONs’ magnetic characteristics (Kandasamy and 
Maity 2015). With a size range of 10.6–37.8 nm, superparamagnetic iron oxide 
nanoparticles (SPIONs) were created and studied using XRD, FT-IR spectra, simul-
taneous TG-DTG-DTA, vibrational sample magnetometry (VSM), and transmission 
electron microscopy (TEM). In minimal broth Davis medium without iron and 
dextrose, the impact of SPION size variants on the growth profile of the 
low-density polyethylene (LDPE)-degrading microbial consortium composed of 
Microbacterium sp., Pseudomonas putida, and Bacterium Te68R was observed. 
These nanoparticles accelerated bacterial growth and increased exponential phase 
durability by 36 h. Changes in the lag phase and cumulative effects of sonication on 
growth profiling were also documented. FT-IR, simultaneous thermogravimetric-
differential thermogravimetry-differential thermal analysis, λ-max shifts, and 
SPION of size 10.6 nm all showed that the SPION considerably increased the 
biodegradation efficiency of the consortium (TG-DTG-DTA). This work 
emphasizes the importance of interactions between bacteria and nanoparticles, 
which can significantly affect metabolic processes like biodegradation (Kapri et al. 
2010). 

15.7.2 Nanobarium Titanate (NBT) 

In order to change the growth profiles of the low-density polyethylene (LDPE)-
degrading consortia, nanobarium titanate (NBT) supplementation in the minimum 
broth is mainly investigated. Studies on in vitro biodegradation showed that LDPE 
dissolved more readily in the presence of NBT than in the absence of it. The 
breakdown and creation of bonds in the polymer backbone were confirmed (Kapri 
et al. 2009). This is because NBT was created with little broth and can regulate the 
growth of bacteria that break down low-density polyethylene (LDPE). Decreasing 
the delay step period and increasing the fixed and phase spread impact the time 
delay, increasing phase, and stationary phase. NBT supports the rapid evolution of 
bacterial consortiums by providing nutrients, which enables the consortia to digest 
plastic pollution (Remya et al. 2022). 

15.7.3 Fullerene-60 

Fullerene had no detrimental effects on the consortia growth at a concentration of 
0.01% (w/v) in minimum broth devoid of dextrose. At greater concentrations 
(0.25%, 0.5%, and 1%), fullerene was discovered to be harmful to bacterial devel-
opment. Although adding 0.01% fullerene to biodegradation experiments containing



5 mg/mL LDPE drastically reduced growth curves, further examination of the 
degraded products showed that biodegradation had increased (Sah 2010). λ-Max 
shifts to 209, 220, and 223 nm for 2, 3, and 4 days, respectively, due to the polymeric 
shape change are brought on by the absence of fullerene-60 NPs. On the other hand, 
fullerene-60 max in fullerene samples increased from 209 to 224.97 nm on day 
1, indicating a greater degradation rate (Remya et al. 2022). 
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15.8 Steps Involved in Biodegradation Process of a 
Typical LDPE 

There have been several identified microbes that can grow on polyethylene. The 
impacts of these microorganisms on the physiochemical characteristics of this 
polymer, such as changes in crystallinity, molecular weight, sample topography, 
and functional groups on the surface, have been documented. Plastics can deteriorate 
chemically, thermally, visually, or biologically. Any physical (such as sample 
weight loss or tensile strength) or chemical (such as carbon dioxide generation) 
changes in the substance hint at biological degradation caused by microbes 
(Muthukumar and Veerappapillai 2015). A list of potential microorganisms involved 
in LDPE biodegradation, based on successful research, is briefly cited in Table 15.2. 
Numerous studies have shown that polyethylene is biodegradable and deteriorates 
over time. It is crucial to realize that biodegradation is rarely 100% effective, 
meaning that the polymer will rarely degrade to 100%. Even if the destruction of 
plastics by microbes is not conceivable, it has been seen in multiple trials that there is 
a 98% drop in mechanical qualities (Nowak et al. 2011). This is because a small 
amount of the polymer was incorporated into the microbial biomass, humus, or other 
natural products (Shah et al. 2008). Given the chemical similarity between polyeth-
ylene and olefins, it has been proposed that the metabolic pathways for the degrada-
tion of hydrocarbons can be used once the size of polyethylene molecules decreases 
to an acceptable range for enzyme action. Nevertheless, it is recognized that both 
enzymatic and abiotic factors (such as UV light) can mediate the initial oxidation of 
polyethylene chains (typically from 10 to 50 carbons) (Restrepo-Flórez et al. 2014). 
It is essential to look into the population and distribution of bacteria that break down 
polymers in different ecosystems. The main mechanisms involved in the microbial 
degradation of plastics typically entail the adhesion of microbes to the material’s 
surface, followed by the colonization of the exposed surface. Enzymes bind to the 
polymer substrate in the first step of the enzymatic breakdown of plastics by 
hydrolysis before catalyzing the hydrolytic cleavage. The breakdown of polymers 
through enzymes results in low-molecular-weight oligomers, dimers, and 
monomers, which are then mineralized to produce CO2 and H2O (Alshehrei 2017; 
Tokiwa et al. 2009). For example, in a study, Aspergillus clavatus JASK1 growing 
on LDPE surface showed changes in the surface causing the material to undergo 
minor cracks, physical weakness, and wrinkles after 90 days of incubation 
(Fig. 15.1). The biodegradation process is generally described in four main pro-
cesses: biodeterioration, biofragmentation, bioassimilation, and mineralization.
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Fig. 15.1 After 90 days of incubation, scanning electron microscopy of Aspergillus clavatus 
JASK1 growing on the surface of LDPE films reveals the presence of physically weak, tiny 
fractures and wrinkles on the surface of LDPE films (Source: Open access: Gajendiran et al. 2016) 

15.8.1 Biodeterioration 

Biodeterioration is described as carbonyl groups created by oxidative enzymes 
secreted by microbes or brought on by abiotic factors, such as exposure to sunshine 
(ultraviolet). The quantity of carbonyl groups is decreased by further oxidation, 
which produces carboxylic acids (Mohanan et al. 2020). For the bacteria to carry out 
the breakdown process, they use enzymes such as monooxygenase, dioxygenase, 
and dehydrogenase. The first phase in biodegradation is microbial oxidation caused 
by the enzymes involved. Additionally, UV radiation causes photocatalytic oxida-
tion, which speeds up the biodegradation process in soil (Bhatia et al. 2014). 
Polystyrene (PS) is resistant to biodegradation in natural conditions because it shares 
the same C-C backbone as PE. Therefore, a mix of biotic and abiotic forces is a 
workable strategy for disintegrating PS polymers. The primary or side-chain cleav-
age can initiate degradation, leading to various degradation pathways (Zhang et al. 
2022). 

15.8.2 Biofragmentation 

Biofragmentation, mediated by enzymes released by microorganisms, involves 
hydrolysis or fragmentation of the polymer carbon chains and release of intermediate 
products (Mohanan et al. 2020). In an experiment, extracellular lipase—one of the 
primary enzymes responsible for polymer degradation—was discovered. According 
to computational docking studies, the plastics’ polyethylene glycol and polystyrene



content may interact well with microbial lipase, forming stable binding and 
interacting forces that may be one of the causes of the degradative mechanisms 
(Skariyachan et al. 2015). 
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15.8.3 Bioassimilation 

In the bioassimilation step, hydrolyzed molecules transport and integrate into the 
microbial metabolism that occurs in the cytoplasm (Miller et al. 2009; Mohanan 
et al. 2020). The initial breakdown of the polymer into oligomers with 10–50 carbon 
atoms that can be incorporated into the cell for additional metabolism in microbes 
explains bioassimilation in LDPE (Ghatge et al. 2020). 

15.8.4 Mineralization 

Mineralization is the transfer of hydrolysis products inside the cell wall, and the 
intracellular conversion of hydrolysis products into microbial biomass with a 
corresponding release of carbon dioxide and water expelled out of the cell is an 
example of this process (Ammala et al. 2011). The release of carbon dioxide or 
oxygen consumption is the final indicator of aerobic biodegradation (de Villalobos 
et al. 2022). Phenols, alcohols, ketones, and other minor compounds formed in the 
degraded LDPE indicated that the branched plastic had broken down (Jayaprakash 
and Palempalli 2019). 

15.9 Conclusion and Future Perspectives 

According to the literature review, plastic materials are unavoidable to suit our daily 
demands. Plastics are in ever-increasing demand and application. This procedure 
must be favorably associated with waste management, litter reduction, and using 
biobased and fossil-based biodegradable materials in specific applications for long-
term environmental safety. The simplicity with which microbial treatment 
approaches can be used for polluted materials makes them more effective than 
many other conventional methods and offers significant cost savings in cleanup 
and disposal. From the perspective of creating new materials, biodegradable plastic 
is a creative way to address the issue of disposing of plastic. According to studies, 
nanoparticles can improve the capacity of microbes to degrade materials. The 
degradation of LDPE with enhanced microbial activity has been described for 
nanobarium titanate (NBT), fullerene-60, and supermagnetic iron oxide nanoparticle 
(SPION). Since it deals with the growth profiles of microorganisms, nanoparticles 
are a new subject in the development of research connected to biodegradation.
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Abstract 

Endocrine disruptors (EDs) are chemical substances of natural (phytoestrogens) 
or artificial (pesticides, flame retardants, polycyclic aromatic hydrocarbons, 
dioxins, etc.) origin, which can hamper the normal functioning of the endocrine 
system in organisms and thus induce various adverse effects, including decreased 
sperm quality, hormone-sensitive cancers, teratogenic defects, genomic 
mutations, etc. The sources of the exposure of the organisms to EDs are mainly 
water and food, but also air and soil. Thus, the need to eliminate them from the 
environment is of great importance to reduce their threat to living organisms. 
Biological processes offer a potential solution for the effective and eco-friendly 
removal of EDs from the soil through biodegradation, which involves different 
metabolic pathways. This chapter provides an overview of the recent advances in 
using microorganisms and their catabolic enzymes to partially or totally degrade 
and counter the toxicity of some of the most currently encountered EDs in 
the soil. 

Keywords 

Biodegradation · Endocrine disruptors · Microorganisms · Mineralization · Soil · 
Toxicity 

16.1 Introduction 

Increasing and diversifying anthropic activities worldwide have generated levels of 
pollution never reached before. Despite tremendous financial efforts aiming to 
reduce the impacts of pollutants on the different ecosystems on Earth, their threat 
remains very serious. 

Endocrine-disrupting chemicals, also called endocrine disruptors (EDs), are a 
group of polluting compounds found in daily used products. People are exposed to 
EDs mainly through cosmetics, furniture, food packaging, and food contaminated 
with toxic compounds such as pesticides and dioxins. EDs consist of a wide range of 
diverse natural and artificial chemicals, including phytoestrogens, dioxins, 
pesticides, flame retardants, polycyclic aromatic hydrocarbons, pharmaceuticals, 
metals, etc., which are potentially related to a variety of diseases of different degrees 
of severity that go from obesity to reproductive disorders and certain cancers (Yang 
et al. 2020) whose economical costs are huge. These compounds act on the endo-
crine system by interfering with its normal functioning through different 
mechanisms of action, including hormone antagonism, hormone mimicry, and 
disruption of the normal interaction between the hormones and their receptors 
(Kumar et al. 2020; Marlatt et al. 2022). 

Soil pollution is a worldwide problem that profoundly affects the physicochemi-
cal and biological qualities of the soil itself, food that grows on it, water, and air. EDs 
are responsible for a large proportion of soil pollution through agricultural activities



and industrial and urban waste disposal. Because of the threat related to ED pollution 
in the environment, it is urgent to find a solution to prevent and reduce their toxic 
effects efficiently and cost-effectively. One of the remediating solutions in vogue 
today is bioremediation, which emerges as an efficient and eco-friendly process 
using prokaryotic or eukaryotic microorganisms or plants to degrade/neutralize 
either organic or inorganic pollutants (Salah-Tazdaït and Tazdaït 2022). The con-
centration of contaminants in the different environmental media deeply influences 
their microbial biodegradation. The biodegradation of a given contaminant can occur 
only from a particular concentration called minimum substrate concentration (Smin). 
In this case, the contaminant would serve as a growth substrate (Becker and Seagren 
2010). In the case of inorganic pollutants such as heavy metals, and depending on the 
microbial species, the microorganisms involved in their bioremediation act mainly 
by two mechanisms: (1) biosorption through either complexation or ion exchange 
mediated by different functional groups (phosphoryl, carbonyl, etc.) present on the 
cell surface and (2) bioreduction, which is a metabolically dependent mechanism 
involving specific enzymes that reduce the solubility of toxic metals by lowering 
their redox state, thus preventing their dispersion in the environment. The microbial 
mechanisms involved in the biodegradation of organic pollutants include minerali-
zation and biotransformation. Mineralization refers to a series of metabolic reactions 
that leads to the complete degradation of organic pollutants yielding simple mineral 
compounds (H2O, CO2, NH3, SO4 

2-, etc.) without generating any toxic intermediate 
(Tazdaït et al. 2013; Kaur and Goyal 2019). In this case, the degraded pollutant, 
called primary substrate, serves as a nutrient (carbon, nitrogen, sulfur, phosphorus) 
and/or energy source, thus supporting biomass production. Biotransformation is a 
process that occurs in pure cultures during which the contaminant undergoes minor 
chemical modifications and does not serve as a growth substrate. It is thus called a 
secondary substrate. This process requires the presence of simple (glucose, acetate, 
glycerol, citrate, etc.) or complex (whey, syrup date, molasses, etc.) growth 
substrates and generates metabolites that have the same or even more toxicity than 
the parent contaminant (Tazdaït et al. 2015; Salah-Tazdaït et al. 2018; Tazdaït and 
Salah 2021). Thus, it is important to pay much attention to the biodegradation 
reactions that take place during the bioremediation process by identifying the end 
metabolites of the contaminants and ensuring their harmlessness. 
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There are a number of research and review articles that have focused on the 
identification and characterization of microbial strains or their catabolic enzymes 
capable of partially or completely degrading various classes of EDs and their 
potential application in the bioremediation of ED-contaminated environmental 
media (Wu et al. 2011; Chen et al. 2015; Eltoukhy et al. 2020; Moreira et al. 
2021; Li et al. 2022; Werkneh et al. 2022). 

This chapter provides an overview on the ability and efficiency of microbial 
species to interact with and degrade some EDs of great concern present in the soil.
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16.2 Endocrine Disruptors (EDs): General Considerations 

There are wide varieties of endocrine disruptors, with more than a hundred identified 
to date and about 500 suspected. They are traditionally grouped into families 
according to their uses. The major groups of endocrine disruptors are pesticides, 
pharmaceutical products, natural hormones, combustion products, dietary 
antioxidants, plasticizers, detergents, and flame retardants. 

These endocrine disruptors are found in human, animal, or industrial waste. 
Substances from different sources are therefore mixed in the media, which induce 
polyexposure of living organisms in contact with their environment. 

Generally, the sources of contamination are grouped as follows:

● Outside air
● Indoor air and dust
● Waters 

– Feed
● Household objects and clothes, toys 

– Cosmetic products
● Maintenance products 

– Medical material 
– Pharmaceutical products 

Contamination of the population has been widely proven in numerous studies. 
There is variability depending on individual eating habits. For example, the levels of 
organophosphate pesticides, such as malathion and chlorpyrifos, found in children 
fed a traditional diet are significant. However, they decrease to undetectable levels in 
children fed an “organic” diet. 

Food seems to be the primary source of contamination for certain pesticides such 
as malathion. 

Children ingest more pesticides than adults relative to the body weight. Indeed, a 
child consumes six times more fruits, two times more vegetables, and three to five 
times more cereals than an adult. Food is, therefore, a significant source of contami-
nation by a large number of pesticides, and there is variability in exposure depending 
on the eating habits of populations. In addition, some pesticides can accumulate in 
the body. They are thus found in the blood of individuals at levels known to cause 
abnormalities in humans and animals. 

It should be noted that the contamination persists in foods prepared from fresh 
produce. Pesticide residues are even found in baby foods prepared from fruits. 
Pesticides are not found only in plant foods. Thus, milk, eggs, and meat contain 
traces of persistent pesticides, such as organochlorine pesticides, which have been 
used illegally for many years (De Coster and van Larebeke 2012; Akash et al. 2021).
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16.2.1 Physical and Chemical Characteristics of EDs and Their 
Sources 

Around a hundred substances have been identified as endocrine disruptors, including 
natural substances: 

16.2.1.1 Natural or Synthetic Hormones 
Natural hormones include estrogen, progesterone, and testosterone, naturally present 
in the body of humans and animals, but also phytoestrogens produced by certain 
plants such as alfalfa and soybeans. Synthetic hormones are designed to act specifi-
cally on the endocrine system and modulate it. These are oral contraceptives, 
hormone replacement therapy, and animal feed additives. Phytoestrogens are 
hormones naturally present in certain plants; they have an activity similar to that 
of estrogens once present in the human organism. These compounds are similar in 
structure and/or action to mammalian estrogens. The main source of phytoestrogens 
for humans is food. Four classes of phytoestrogens exist: they are isoflavonoids, 
lignans, stilbenes, and coumestans. For humans, these are xenoestrogens. The 
human body rapidly absorbs and excretes these substances, which do not accumulate 
in the tissues. However, high consumption of foods containing these substances 
induces a non-negligible exposure (Sweeney et al. 2015; Kumar et al. 2020; 
Guarnotta et al. 2022). 

16.2.1.2 Pesticides 
The term pesticide refers to substances used to prevent, control, or eliminate 
undesirable organisms (plants, animals, or bacteria). Pesticides do not only refer to 
products for agricultural use but also concern domestic and urban uses. These are 
numerous substances (more than 40,000 existing compounds) and diverse in their 
chemical formulas and modes of action. The modes of action are classified into four 
groups:

● Action on the invertebrates: insecticides, molluscicides, and nematicides
● Action on the vertebrates: rodenticides, avicides, piscicides, and repellents
● Action on the plants: herbicides, growth regulators, defoliants, and desiccants
● Action on the microorganisms: disinfectants and bactericides, fungicides, and 

algaecides 

In the context of their professional practice, farmers are a population particularly 
exposed to pesticides. If the human population is exposed, it is not the only one. 
There is also the problem of the impacts of these substances on animal species, 
which leads to a decline in biodiversity. Over 120 pesticides have now been 
identified as having endocrine-disrupting properties (McKinlay et al. 2008; 
Jabłońska-Trypuć et al. 2017; Ghosh et al. 2022). 

Several pesticides that are now generally prohibited (DDT, chlordane, methoxy-
chlor) are still present in the environment, as they are very persistent. Part of the 
pesticides used are dispersed in the environment compartments (air, soil, and water).



Various complex mechanisms are involved in these dispersal phenomena, the main 
ones being transfer, retention in soils, and physical or biological degradation. 
Therefore, soil constitutes a storage compartment for pesticides, a compartment 
from which they can return to the air or the aquatic environment. Many uncertainties 
remain as to pesticide fate in the soil because it varies from one pesticide to another 
(physicochemical properties, biodegradability, adjuvants of commercial 
formulations), but also according to the composition of the soil itself. However, 
there is a risk of accumulation in soils and sediments and subsequent release from 
these two poorly understood phenomena. Likewise, their persistence (or remanence) 
in these environments is probable. Their half-life in the soil varies from 20 to 
100 days, but for some pesticides studied, the residual quantity of pesticide after 
1 year is greater than 10% of the initial amount. Organochlorine pesticides are 
particularly persistent; soil pollution by the chlordecone used in the West Indies 
from 1972 to 1993 could last for several centuries. Therefore, soil and sediments 
constitute a reservoir, liable to contaminate other compartments of the environment, 
such as water and air (Ali et al. 2017; Combarnous 2017; Leemans et al. 2019). 
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16.2.1.3 Combustion Products: Dioxins and Furans 
Dioxins are derivatives of benzene, an aromatic hydrocarbon, which form two 
families of compounds: polychlorinated dibenzo-para-dioxins (PCDD) and 
polychlorinated dibenzo-furans (PCDF). There are 75 members of the PCDD 
family—including 2,3,7,8-TCDD, known as Seveso dioxin—and 135 members of 
the PCDF family. 

These compounds have never been produced intentionally; they are released into 
the environment during natural or thermal processes (any combustion in the presence 
of hydrogen, oxygen, carbon, and chlorine generates dioxins) related to human 
activities. Today, it is mainly industrial activities that produce dioxins: incineration 
of domestic waste and metallurgy. 

Efforts to reduce dioxin emissions have led to a significant reduction in human 
exposure. Still, their presence in the environment (particularly in sediments and soil), 
resulting from past activities, persists and leads to food chain contamination. Food is 
the major source of human exposure. PCDDs and PCDFs are strongly absorbed into 
the air, water, and soil particles and are persistent in the environment. These 
compounds are not very volatile, which makes their dispersion in gaseous form 
negligible, even if their dispersion by air is possible in the event of absorption of 
these compounds in particles. Dioxins are also hydrophobic and therefore poorly 
soluble in water. Their lipophilicity allows these organochlorine compounds to cross 
cell membranes and accumulate in living organisms, particularly in fatty tissue. They 
are poorly biodegradable and are classified as persistent organic pollutants (POPs) 
(Fernández-González et al. 2015; González and Domingo 2021). 

16.2.1.4 Plasticizers and Plastics: Phthalates and Bisphenol A 
Artificial plastics cover an extensive range of polymeric materials and are composed 
of a polymer, which is added as plasticizers, additives, and adjuvants. Their number 
has increased considerably, as well as their uses, due to their interesting properties



(transparency, shock resistance). Phthalates are therefore widely produced and can 
be released into the environment by products containing them, during their industrial 
production, use, and disposal. Bisphenol A (BPA) is an aromatic organic chemical 
compound derived from the reaction of phenol and acetone, used in the plastics 
industry (Filardi et al. 2020; Martínez-Ibarra et al. 2021). 
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16.2.1.5 Flame Retardants (PCB and PBDE) 
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are 
persistent organic pollutants (POPs), such as organochlorine pesticides, dioxins, and 
furans. Polychlorinated biphenyls (PCBs) are a family of 209 chlorinated organic 
compounds produced by the chemical industry. No natural source of PCB is known. 
They are used as flame retardants (paints, plastics, adhesives, lubricants, sealants, 
heat transfer fluids, capacitors, transformers, vacuum pumps, and gas transition 
turbines) or as insulators in very-high-voltage environments. PCBs are thermally 
stable and only decompose at temperatures above 1000 °C. PCBs persist in soils. 
They are incorporated into living organisms and accumulate throughout the food 
chain, particularly in animal and mammal organs or fatty tissues. PBDEs are 
brominated chemical compounds used as plastic and textile flame retardants in a 
wide variety of consumer goods. Generally, the less brominated PBDEs (1–5 
bromine atoms) are considered potentially more dangerous to health. PBDEs are 
volatile and easily airborne. They are poorly soluble in water but have a high affinity 
for organic matter. They are also fat soluble. They are resistant to acids and bases, as 
well as to light and heat, and redox compounds (Dishaw et al. 2014; Eskenazi et al. 
2017). 

16.2.1.6 Detergents: Nonylphenol 
The term nonylphenol encompasses a large number of isomers, with the molecular 
formula C6H4(OH)C9H19. It is a phenol substituted with a 9-carbon alkyl group. The 
alkyl group can theoretically be linear or branched in various ways and located at the 
ortho, meta, or para position. In practice, four nonylphenols correspond to a mixture 
of NPs substituted in the para position on the phenol and represent 80% of the 
nonylphenols in commercial mixtures. Other isomers are present as impurities. 
Nonylphenols are nonionic surfactants used in detergents, pesticides, biocides, 
cosmetics, and pharmaceuticals. They have estrogenic activity, which can cause 
reproduction problems in aquatic organisms, but their toxicity to humans has not 
been determined (De Coster and van Larebeke 2012). 

16.2.2 Toxicity of EDs 

Endocrine disruptors are suspected to be responsible for several disorders observed 
in humans. Thus, they can cause reproductive disorders, hormone-dependent 
cancers, or metabolic and developmental disorders.
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16.2.2.1 Reproductive Disorders 
The three main health effects mentioned in the context of exposure to EDs in humans 
are generally:

● Deterioration of reproductive functions, which is manifested by a reduction in the 
quality of sperm and causes fertility problems

● Disruption of the development of the male fetus leading to a malformation of the 
urogenital tract: non-descent of the testicles (cryptorchidism) or abnormal posi-
tioning of the opening of the urethra (hypospadias)

● Testicular germ cell cancer 

In women, many dysfunctions of the reproductive system are suspected to be due 
to exposure to EDs. They can:

● Cause precocious puberty
● Disturb the duration of the cycle
● Cause polycystic ovary syndrome
● Induce spontaneous abortions
● Lead to fetal death, premature delivery, or low birth weight
● Cause endometriosis (Costa et al. 2014; Laws et al. 2021) 

16.2.2.2 Metabolic and Developmental Disorders 
Neurological dysfunctions could be explained by endocrine dysfunction, particularly 
involving thyroid hormones, due to their established role in development in general, 
development of the brain and the cerebellum, and development of the retina and the 
cochlea. Normal neurological development can also rely on estrogen and androgen 
hormones because steroid receptors are present in the brain. This toxicity is observed 
in particular at the level of:

● Cognition, learning, and memory
● Neurodevelopmental disorders such as autism, attention deficit disorder, mental 

retardation, or cerebral palsy
● Reduced motor functions, memory loss, and subtle behavioral changes
● Movement disorders (hypotonia, hyporeflexia, motor development), general 

slowness, and significant intelligence quotient deficits
● Sensory deficits (ototoxicity and visual defect) (Frye et al. 2012) 

16.3 Biochemical Mechanisms for the Microbial Degradation 
of EDs 

Following regular application and/or high concentration of different pollutants, soil 
bacteria have acquired and/or developed the ability to metabolize and use them as a 
nutrient source in an environment where nutrients are scarce. Thus, bacteria can 
mineralize these molecules either via a single strain or by organizing themselves into



bacterial consortia. This adaptation of bacteria to xenobiotic molecules takes place 
via different events:

● Induction or derepression of specific enzymes that were absent (or present at a 
low level) in the population before exposure to the contaminant.

● Selection of new metabolic capacities following genetic rearrangements involv-
ing mutation events: The short generation times and the high plasticity of their 
genomes allow bacteria to generate new genes at relatively high frequencies. This 
plasticity is also linked to homologous recombination events at the origin of DNA 
rearrangements and increased genetic content.

● Acquisition of this genetic information by horizontal gene transfer: Thus, the 
genes involved in the degradation of xenobiotic molecules are often associated 
with transposition elements and insertion sequences. They are also frequently 
located on plasmids.

● Increase in the number of organisms capable of catalyzing the reaction 
(s) involved. 
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Thanks to these adaptation processes, the bacteria best able to resist or degrade 
xenobiotic molecules will be selected. They will gradually represent a more signifi-
cant fraction of the total microbial population than before the presence of the 
xenobiotic. 

The degradative enzymes involved in the degradation of pesticides can possess a 
broad specificity making possible cross-acclimatization of bacteria. That is to say 
that the degradation of a molecule in soil may be due to the prior application of 
another pesticide belonging to the same chemical group. Moreover, the strong 
homology between certain pollutants and secondary plant metabolites (exudates), 
which are metabolized by soil bacteria, seems to have an essential role in developing 
enzymes degrading organic pollutants. 

Although no longer in contact with the molecule, soil bacteria can retain the 
ability to degrade it thanks to: 

1. The formation of spores or other forms of resistance that allows them to survive 
for long periods in less-than-optimal conditions 

2. The low concentrations of pesticides, which slowly desorb from the soil, 
constituting a continuous substrate source for degrading bacteria 

3. The presence of other genes on the plasmid involved in the degradation, which 
under another selection pressure allows the conservation of the plasmid 

4. The fact that the bacteria involved are maintained at a sufficiently large popula-
tion level thanks to the use of other nutrient sources. 

16.3.1 Natural and Synthetic Hormones 

Several studies have addressed natural and synthetic hormones’ aerobic and anaero-
bic biodegradation. Estrogens are a group of naturally occurring steroid hormones,



including estrone (E1), 17-estradiol (E2), and estriol (E3). 17α-Ethynylestradiol 
(EE2) is a synthetic estrogen. Certain bacteria, isolated from soil, sand, sea, compost, 
or activated sludge, have proven to be capable of degrading natural or synthetic 
hormones. For example, Novosphingobium tardaugens, Nocardia sp., and 
Sphingomonas sp. can transform 17-estradiol (E2) in estrone (E1) by dehydrogena-
tion of ring D in carbon 17. This reaction is performed by 3β, 17β-hydroxysteroid 
dehydrogenase. E1 can be transformed to 4-hydroxy estrone (4-OHE1) by E1 
4-hydrolase. In Novosphingobium tardaugens NBRC 16725, a succession of 
reactions makes it possible to obtain the 3aα-H-4α(3′-propanoate)-
7a-β-methylhexahydro-1,5-indanedione (HIP), which will also be degraded thereaf-
ter (Yu et al. 2013; Chen et al. 2018; Ibero et al. 2020). However, the synthetic 
estrogen 17α-ethynylestradiol (EE2) is transformed into estrone (E1) by the bacteria 
Sphingobacterium sp. JCR 5 (Haiyan et al. 2007). Also, Phoma sp. UHH 5-1-03 is a 
fungus able to adsorb large amounts of the synthetic hormone EE2 on chitin and 
chitosan present in their surface (Olicón-Hernández et al. 2017). 
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Lignans are a class of phytoestrogens found in flax, composed of over 95% of 
secoisolariciresinol diglucoside (SDG). The deglycosylation of SDG can be 
catalyzed by Bacteroides distasonis, Bacteroides fragilis, Bacteroides ovatus, Clos-
tridium cocleatum, and Clostridium saccharogumia. The demethylation of its agly-
cone can be catalyzed by Butyribacterium methylotrophicum, Eubacterium 
callanderi, Eubacterium limosum, Blautia producta, and Peptostreptococcus 
productus (Ionescu et al. 2021). 

16.3.2 Pesticides 

Pesticide degradation pathways depend on the pesticide itself and the 
microorganisms involved in its degradation. For example, the degradation of atra-
zine (herbicide belonging to the chemical family of triazines) in the soil is due to the 
adaptation of certain soil bacteria, which use this pesticide as carbon and/or nitrogen 
sources. These degrading bacteria and the degradation pathways involved have been 
widely studied. Thus, many bacteria have been isolated, and degradation pathways 
have been elucidated, involving different functional genes. Bacillus licheniformis 
and Bacillus megaterium are aerobic atrazine-degrading bacteria. Methanogenic 
bacteria can degrade atrazine under anaerobic conditions. Atrazine is first converted 
to hydroxyatrazine by atrazine chlorohydrolase. The latter is produced from the atzA 
and trzN genes. The hydroxyatrazine obtained is transformed into 
N-isopropylammelide by hydroxide chloroatrazine ethylaminohydrolase. This 
enzyme is produced from the atzB gene. N-isopropylammelide is transformed into 
cyanuric acid by N-isopropylammelide isopropylaminohydrolase. This enzyme is 
encoded by atzC gene. Cyanuric acid aminohydrolase will convert cyanuric acid into 
carboxybiuret. Cyanuric acid aminohydrolase is produced from the atzD and trzD 
genes. The carboxy biuret will be transformed into dicarboxyurea by 
1-carboxybiuret hydrolase. This last enzyme is produced from the atzEG gene. By 
an unclear mechanism, the dicarboxyurea will be transformed into allophanate.
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Finally, allophanate is converted into carbon dioxide and ammonium by allophanate 
hydrolase produced from the atzF gene (Fig. 16.1) (Ghosh and Philip 2004; 
Solomon et al. 2013; Billet et al. 2019; Zhu et al. 2019; Espín et al. 2020).
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Fungi have special properties allowing them to detoxify soil polluted with 
pesticides. These strategies include nonenzymatic processes such as biosorption 
and the synthesis and secretion of surfactants capable of reducing surface tensions 
and allowing the increase of interactions between molecules (Olicón-Hernández 
et al. 2017). 

16.3.3 Combustion Products: Dioxins and Furans 

In the case of aerobic biodegradation of dioxins (PCDD) and furans (PCDF), the 
reaction mechanism, named angular deoxygenation, is based on selective 
dioxygenation by dioxygenases capable of degrading dioxins by simultaneously 
hydrolyzing the carbon bearing an ether bond and an adjacent unsubstituted carbon 
(angular carbon) using oxygen as an electron acceptor. For example, the bacterial 
biodegradation of dibenzo-p-dioxin by the angular dioxygenase system successively 
generates 1,10a-dihydroxy-1-hydrodibenzo-p-dioxin and 2,2′,3-trihydroxydiphenyl 
ether. The latter will be transformed into 2-hydroxy-6-oxo-6-(2-hydroxyphenoxy)-
hexa-2,4-dienoate (HOHPDA) by 2,2′,3-trihydroxybiphenyl dioxygenase. The 
product of this last reaction will serve as a substrate for 2-hydroxy-6-oxo-6-
phenylhexa-2,4-dienoate hydrolase and generate catechol and 2-hydroxymuconate. 
In anaerobic conditions, Dehalococcoides can degrade dioxins. However, in aerobic 
conditions, Sphingomonas, Pseudomonas, and Burkholderia can degrade dioxins 
(Chang 2008; Saibu et al. 2020; Nguyen et al. 2021). 

Dioxins can also be degraded by fungi. In this case, the first degradation reaction 
is breaking ether bonds at the ring level, forming a hemiacetal (Nakamiya et al. 
2005). 

Furans metabolization in fungi proceeds by reduction of furans to the less toxic 
furfuryl alcohol, and a furoic acid is obtained after oxidation. Also, 2-oxoglutarate 
and tricarboxylic acid are obtained after several enzymatic steps (Zanellati et al. 
2021). 

16.3.4 Plasticizers and Plastics: Phthalates and Bisphenol A 

The biodegradation of phthalates by aerobic bacteria has demonstrated the existence 
of several biodegradation pathways depending on the bacteria studied and the type of 
phthalate. As an example, the biodegradation of dimethyl phthalate (DMP) will 
successively generate monomethyl phthalate (MMP), phthalic acid (PA), 
dihydroxyphthalic acid, catechol, muconic acid semialdehyde, muconic acid, 
succinic acid, and acetic acid (Wu et al. 2007; Tang et al. 2017). 

In anaerobic conditions, Thauera chlorobenzoica, Aromatoleum aromaticum, 
and Aromatoleum evansii can biodegrade phthalates (Boll et al. 2020).
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Fungal degradation of dibutyl phthalates (DBPs) produces phthalic acid anhy-
dride (PAA), diethyl phthalate (DEP), monobutyl phthalate (MBuP), 
a-hydroxyphenylacetic acid, o-hydroxyphenylacetic acid, and benzyl alcohol (Luo 
et al. 2012). 

The biodegradation mechanisms of bisphenol A by bacteria are divided into two 
pathways. The first, so-called major route would represent 85% of the biodegrada-
tion of bisphenol A. This pathway consists of the first oxidation of bisphenol A and 
then a metabolization leading to the production of 4-hydroxybenzaldehyde 
(4-HBAL) and 4-hydroxyacetophenone (4-HAP). 4-HBAL then undergoes oxida-
tion to become 4-hydroxybenzoic acid (4-HBA). 4-HBA and 4-HAP can be 
metabolized by bacteria and transformed into CO2 and biomass. The second path-
way, characterized as “minority” with 15% biodegradation, begins with the 
metabolization of bisphenol A to give 2,2-bis(4-hydroxyphenyl) propan-1-ol. This 
compound will also be able to either oxidize by transforming into 2,2-bis 
(4-hydroxyphenyl) propanoic acid (10%) or metabolize into 2,3-bis 
(4-hydroxyphenyl) propan-1,2-diol (90%). The propanediol chain of the latter can 
be separated to give either HBA or 4-hydroxyphenacyl alcohol (Eltoukhy et al. 
2020; Wang et al. 2020). Aerobic degradation of bisphenol A can be done by 
Achromobacter xylosoxidans (Zhang et al. 2007). Under anaerobic conditions, 
Bacillus sp., a facultative anaerobic bacterium, can biodegrade bisphenol A 
(Hardegen et al. 2021). 

Fungi can adsorb large amounts of bisphenol A on their surfaces thanks to the 
particular composition of the wall, rich in chitosan or chitin (Olicón-Hernández et al. 
2017). 

16.3.5 Flame Retardants: PCB and PBDE 

Several bacteria are known to degrade PCBs under aerobic conditions. Degradation 
most often takes place by double oxygenation on the less chlorinated part of the 
biphenyl nucleus by the enzyme 2,3-biphenyl dioxygenase and then by 
2,3-dihydroxy-biphenyl dioxygenase. This step results in the cracking of the target 
phenolic ring. The formation of chlorobenzoic acid and 2-ketopenta-4-enoic acid is 
then observed. Chlorobenzoic acid will then undergo a similar attack 
(dioxygenation). 2-Keto-penta-4-enoic acid is transformed into acetaldehyde and 
pyruvic acid, which are involved in cell metabolism (for example: synthesis of 
acetyl-CoA). The chlorine will be discharged as Cl- (Jing et al. 2018; Bako et al. 
2021). 

Fungi can degrade PCBs through laccases, manganese-dependent peroxidase, 
aryl-alcohol oxidase, and cytochrome P450 (Šrédlová et al. 2021). 

Under aerobic conditions, Pseudomonas stutzeri, Bacillus sp., and Sphingomonas 
sp. can biodegrade certain PBDEs into smaller congeners. However, under anaerobic 
conditions, Sulfurospirillum multivorans, Dehalococcoides ethenogenes, 
Anaeromyxobacter, Bacillus, Brevibacillus, Burkholderia, Clostridium,



Mycobacterium, Pseudomonas, Rhodobacter, Sedimentibacter, and Shewanella can 
degrade deca-brominated diphenyl ether (DBDE) (Sahu et al. 2021). 
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Fungal biodegradation of PBDEs, by Trametes versicolor, implies the intracellu-
lar enzyme cytochrome P450 and produces hydroxylated PBDEs with different 
degrees of bromination, 4-bromocatechol, and 2-hydroxymuconic acid (Vilaplana 
et al. 2012). 

16.3.6 Detergents: Nonylphenol 

In aerobic conditions, there are two ways of biotransformation of 4-NP 
(nonylphenol) according to the substitution of carbon in α of the cycle. In the first 
case, the alkyl chain has a quaternary carbon at the α of the cycle. Biodegradation 
begins with an ipso-substitution of a hydrogen atom by an OH group on carbon 4 of 
the phenol ring. This ipso-substitution leads to a rearrangement of the distribution of 
electrons. The rearrangement leads to the detachment of the alkyl chain, which 
becomes a carbocation. This detachment is only possible if the carbon at α of the 
cycle is quaternary, allowing the substituents (CH3 or C2H5) to compensate for 
creating the positive charge. The carbocation then reacts with a water molecule to 
give quaternary alcohol. On the other hand, the phenol ring undergoes 
rearomatization giving the final product hydroquinone (benzene-1,4-diol). In the 
second case, the hydrogen on carbon 4 of the phenol ring is replaced by an OH group 
by ipso-substitution. Then, a rearrangement of the electrons will lead to the migra-
tion of the alkyl chain to the neighboring carbon. In this case, the alkyl chain cannot 
detach because the carbocation that would be formed would not be stable enough. 
This instability comes from the fact that the alkyl chain does not contain a quaternary 
carbon in the α of the cycle. A final rearomatization of the molecule will give the 
final product of this biotransformation of 2-nonyl-benzene-1,4-diol or 2-nonyl-
hydroquinone (Gabriel et al. 2008). 

Anaerobic degradation of nonylphenol can be achieved, by a sulfate-reducing 
bacteria, isolated from soil relatively close to Bacillus niacini (Chang et al. 2007). 

Fungal degradation of nonylphenol by Trametes versicolor shows complete 
mineralization (Mallerman et al. 2019). 

16.4 ED-Degrading Microorganisms in the Soil 

Despite being greatly affected by all sorts of pollution, soils have an excellent 
potential to neutralize and attenuate the adverse effects of pollutants. The richness 
of soils in microorganisms provides an extraordinary natural reservoir from which 
microbial strains capable of efficiently degrading virtually every organic pollutant, 
including EDs, could be isolated, characterized, and used as decontaminating agents. 
Thus, an important body of studies dealing with isolating and characterizing 
ED-degrading microorganisms from different soils is available. Some examples of 
newly isolated microbial strains from soils are exposed below. In a study by



Eltoukhy et al. (2020), an isolate of Pseudomonas putida strain YC-AE1 was 
isolated from soil samples collected in the vicinity of an area polluted by electronic 
wastes by selective culture technique. The bacterial strain exhibited a high level of 
tolerance against high BPA concentrations (bisphenol A) (up to 1000 mg/L) and 
reached complete removal of the pollutant within 72 h for initial concentrations 
ranging from 50 to 500 mg/L in liquid medium under aerobic conditions. On the 
other hand, it was evidenced that the strain was also capable of degrading six other 
organic pollutants (bisphenol F, bisphenol S, bisphenol B, diethylhexyl phthalate, 
diethyl phthalate, and dibutyl phthalate) among which bisphenol F and B were the 
best degraded with removal percents of 67% and 60%, respectively. Besides, the 
authors proposed two metabolic pathways, both suggesting that Pseudomonas 
putida YC-AE1 could degrade BPA by mineralizing it and using it as a growth 
substrate. In another study, two species of the genus Bacillus, namely Bacillus 
thuringiensis and Bacillus cereus, isolated from agricultural soil, were tested sepa-
rately or in a consortium for their ability to degrade a mixture of three phthalic acid 
esters (diethyl phthalate, dibutyl phthalate, dimethyl phthalate, and dipropyl phthal-
ate) in liquid medium. When tested separately, the two strains showed better 
degradative performances against diethyl, dibutyl, and dimethyl phthalate at 
50 mg/L. Of the two strains, Bacillus thuringiensis was the best in removing the 
four toxic compounds, with a maximum degradation rate of 76% observed for 
dimethyl phthalate. Besides, the authors noted that Bacillus thuringiensis reached 
a maximum degradation rate of 96% for dimethyl phthalate within 80 h for an initial 
concentration of the contaminant mixture of 400 mg/L (Surhio et al. 2017). In their 
study, Gao et al. (2014) showed that a strain of Stenotrophomonas maltophilia 
isolated from soil contaminated by high levels of toxic compounds (heavy metals, 
polycyclic aromatic hydrocarbons, organotins, etc.) collected at Guiyu in 
Guangdong Province (China) effectively degraded the pesticide triphenyltin. The 
pesticide is first adsorbed on the strain and then transported into the cell compart-
ment, where it is degraded, yielding diphenyltin and monophenyltin. A removal 
efficiency of 86.2% was obtained with triphenyltin tested at 0.5 mg/L and 0.3 g/L 
inoculum concentration within an incubation period of 10 days. The biodegradation 
of another endocrine disruptor herbicide, namely alachlor (2-chloro-N-
(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), has recently been reported by 
using four soil-isolated strains (Aspergillus niger, Aspergillus flavus, Penicillium 
chrysogenum, and Xanthomonas axonopodis). Among the three fungal strains, 
Aspergillus niger exhibited the best biodegradation potential (72.6%) within 
35 days for an initial alachlor concentration of 10 mg/L. Xanthomonas axonopodis 
gave a better biodegradation percent of 82.1% after the same incubation period. It 
should be mentioned here that none of the microbial strains tested achieved mineral-
ization of alachlor, but acted by a biotransformation process, which resulted in the 
formation of different metabolites such as N-(2,6-diethylphenyl)-methyleneamine; 
7-ethyl-N-methylindole; 1-chloroacetyl, 2,3-dihydro-7-ethylindole; and 
chloroacetate, chiefly through hydrolysis and oxidation (Ahmad 2020). As another 
example of a pesticide with hormone-disrupting activities, diazinon at a high con-
centration (775 mg/L) was shown to be co-metabolically degraded in the presence of
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glucose (2.25 g/L) by Candida pseudolambica isolated from a soil contaminated 
with pesticides collected in Babol (Iran). The yeast strain was capable of a removal 
rate of 69.6% attained within 24 h only. However, the strain achieved a degradation 
rate of 34% in the presence of diazinon (500 mg/L) as the sole source of carbon 
(Ebadi et al. 2022). In a study by Janicki et al. (2016), the soil filamentous fungus 
Umbelopsis isabellina was assessed for its ability to degrade separately three 
estrogen-mimicking compounds (4-tert-octylphenol and 4-cumylphenol, 
nonylphenol) in batch experiments. The non-ligninolytic fungal species was able 
to degrade 90% of the initial concentration of the three contaminants (25 mg/L) after 
12 h of cultivation and achieved their complete degradation within 24 h. Further-
more, the study revealed that biotransformation was the only metabolic process 
through which the three contaminants were degraded and that the produced 
metabolites turned out to be less toxic than the parent molecules. Some other 
examples of microorganism-degrading EDs isolated from the soil are shown in 
Table 16.1. 
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The soil’s complex character makes applying and assessing the microbial-based 
biodegradation approach difficult. Despite that, many reported studies have 
investigated the biodegradation performances of microorganisms in treating differ-
ent soils that are artificially contaminated with EDs. Hence, Sharma et al. (2021) 
demonstrated that the application of Acinetobacter sp. 33F in pristine agricultural 
soil was very efficient in removing the commonly used plasticizer dibutyl phthalate. 
The experiments were conducted in plastic pots containing autoclaved soil 
supplemented with dibutyl phthalate at different concentrations (100–2000 mg/ 
kg). The pots were then inoculated with Acinetobacter sp. 33F at 108 CFU/mL 
and incubated for 10 days. The obtained results revealed that the growth of 
Acinetobacter sp. 33F was negatively affected by dibutyl phthalate concentrations 
beyond 1000 mg/L. Regarding dibutyl phthalate biodegradation, Acinetobacter 
sp. 33F permitted a degradation rate of approximately 50% for all the concentrations 
tested after 144 h of incubation, yet a similar inhibitory effect on the biodegradation 
activity of the strain from 1000 mg/L dibutyl phthalate was observed which was not 
the case in the experiments conducted in liquid media. The involvement of some 
inhibitory compounds present in the tested soil was suggested. Also, the authors 
showed that the bacterial strain used was efficient in eliminating other dibutyl 
phthalate derivatives (monobutyl phthalate, diethyl phthalate, benzyl butyl phthal-
ate, di-decyl phthalate, and di-octyl phthalate) by using them as the sole source of 
carbon. In another study, Chen et al. (2017) applied an ultrasonic treatment at 30 W 
to the biodegradation, in soil, of four estrogens (estrone, estriol, estradiol, and 
17α-ethinylestradiol) and bisphenol A by Pseudomonas putida. A central composite 
design was applied to optimize three parameters (amount of inoculum, 
ultrasonication time, and concentration of rhamnolipid) inherent to the biodegrada-
tion process of the EDs under study. Very high biodegradation rates of 96.56%, 
94.86%, 94.56%, 94.9%, and 100% for bisphenol A, estradiol, estriol, 17-
α-ethinylestradiol, and estrone, respectively, were achieved within 7 days under 
the following optimized conditions: 3 min, 8 mL, and 100 mg/L for ultrasonication 
time, amount of inoculum, and rhamnolipid concentration, respectively. Moreover,
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the authors demonstrated that the higher the polar surface area of the estrogens 
tested, the lower the biodegradation process. In their recent study, Annamalai and 
Vasudevan (2020) investigated the degradation in liquid medium of 
di-(2-ethylhexyl) phthalate using the aerobic bacterial strain Rhodococcus jostii 
PEVJ9 isolated from plastic-contaminated soil collected at Marina Beach, Chennai 
(India), in combination with biogenic monolayered silver nanoparticles. This 
approach significantly enhanced the biodegradation potential of the strain, allowing 
it to completely degrade the plasticizer (1, 10, and 100 μg/L initial concentrations) 
after 72 h of incubation. It was suggested that the biogenic silver particles acted by 
improving di-(2-ethylhexyl) phthalate bioavailability to Rhodococcus jostii PEVJ9. 
In another study, Kamaraj et al. (2022) experimented with biodegradation of 
di-(2-ethylhexyl) phthalate (0.53 mg/Kg), already present in a paddy field soil in 
Peruvarappur village (India), by the strain Rhodococcus sp. PFS1 (at 1 × 107 cells/ 
mL), isolated from the same soil. It was found that the isolated strain successfully 
degraded (87.66%) di-(2-ethylhexyl) phthalate in sterilized soil. Further, the plasti-
cizer was better degraded by the strain (94.66%) in non-sterilized soil, which is a 
clear indication of the involvement of the indigenous soil flora in the biodegradation 
process. Besides, the strain PFS1 was also capable of degrading other phthalate 
esters, including dipropyl phthalate, diethyl phthalate, dibutyl phthalate, 
dicyclohexyl phthalate, di-n-octyl phthalate mono-(2-ethylhexyl) phthalate, phthalic 
acid, di-n-heptylphthalate, and butylbenzyl phthalate with removal efficiencies 
exceeding 90%. Moreover, it was demonstrated that this ED was completely 
mineralized and utilized by Rhodococcus sp. PFS1 as growth substrate.
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The use of microbial enzymes, either wild or recombinant, for ED removal from 
different environmental media has gained significant interest in the recent past. 
However, many of them have been performed on synthetic ED solutions. The use 
of microbial enzymes such as laccases and esterases for treating EDs has been 
actively researched for many years (Koyani and Vazquez-Duhalt 2016; Sungkeeree 
et al. 2016; Li et al. 2022). However, the use of purified microbial enzymes in real 
environmental situations is limited by some drawbacks, such as their sensitivity to 
numerous environmental factors, which could interfere with their catalytic activities 
through reversible or irreversible inhibition. Moreover, the indigenous flora in the 
soil to be decontaminated can negatively affect the enzymes involved in the degra-
dation of pesticides by secreting extracellular enzymes, such as proteases (Rao et al. 
2010). 

16.5 Conclusion 

EDs are found virtually everywhere, and most originate from human activities, 
mainly agricultural and industrial ones. New molecules of EDs are continuously 
released into the environment. The exploration of efficient and eco-friendly solutions 
to eliminate these hazardous compounds is of immense importance. Among all 
recognized and potential solutions, microbial remediation offers a good solution. 
The body of studies on ED biotreatment clearly underlined the potential of microbial



bioremediation as an effective and handy method to be applied more widely in the 
detoxification strategies of ED-contaminated soil environments. In fact, many 
authors have succeeded in screening and identifying highly efficient ED-degrading 
microbial strains from different soils. These microorganisms are phylogenetically 
diverse, and many are able to mineralize EDs and use them as a source of carbon 
and/or energy for growth. Besides, it was evidenced that mixed cultures were more 
effective in degrading many ED-contaminated soils than single cultures. However, 
efforts should be continued to screen new and more effective microbial strains from 
different natural habitats capable of tolerating and degrading high levels of EDs in 
soils and landfill sites. 
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