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Abstract Many natural processes in the universe occur in a rotational motion, such 
as the formation of drastic events including tornadoes and cyclones. For the past few 
decades, research has progressed to estimate the occurrence of such unpredictable 
small-scale meteorological events and their damage paths and to estimate the amount 
damage caused. In the case of short-lived yet disastrous tornadoes, it is possible to 
track the damage path. However, to estimate the damage through the Fujita Scale 
(F-Scale) or the Enhanced Fujita scale (EF-Scale), it is still necessary to rely on 
Radar Data Acquisition (RDA) systems working on Doppler effect to estimate the 
wind speed. For this, the equipment needs to be placed in the vicinity of where the 
tornadoes form, so they are often at risk of being damaged. Thus, in the current 
research, the tornado speed is estimated using video processing and AI techniques: 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 
conjointly. A video model of a rotating tornado (without translational motion) is 
artificially generated with a tracking object inside it. The wind speed is estimated by 
tracking the speed of this object caught in the tornado’s whirl. CNN in combination 
with LSTM effectively predicts the shift of the object in each frame of the video in 
comparison with a reference frame. 
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1 Introduction 

A tornado is a violently rotating column of air that extends from a thunderstorm 
and comes into contact with the ground taking a massive shape and creating a lot 
of damage along the traversed course. These strong winds occur across the world, 
including the USA which experiences it more often than other regions. Every year, 
the USA reports about 1300 tornadoes of varying intensities [1]. The intensity of a 
tornado is measured on Enhanced Fujita (EF) Scale [2], which takes in to account 28 
different damage indicators. The speed of tornado can describe tornadoes more accu-
rately. However, it is difficult to estimate the speed due to the massive damage it can 
cause to the equipment like anemometer that is used to measure wind speed. Radar-
based techniques [3], used by WSR-88D and Mobile Doppler Radar, provide some 
means for prediction and measurement of speed using Doppler effect. The WSR-
88D Doppler radar network obtains weather information (precipitation and wind) 
based upon returned energy generated and received at the Radar Data Acquisition 
(RDA) unit. This helps in forecasting tornadoes, but due to physical limitations such 
as beam spreading and radar horizons, the rotation as well as speed of tornado cannot 
be measured. Mobile Doppler Radars can be positioned close enough to the storm 
to resolve the rotation within the tornado itself. This method is still not widely used 
to measure speed. This project aims at using image and video processing techniques 
to estimate the speed of rotation of still tornadoes. The image processing systems in 
development and use today have become more robust, accurate, and less expensive 
with the advancement in digital camera technology. The low cost of development, use 
and maintenance of digital cameras, and related processing equipment make them 
widely used for image processing-based applications. Various such techniques are 
already in use for tracking and measuring the speed of objects in linear motion like 
vehicles in traffic. Such techniques require capturing of video at known frame rate 
and observing the motion. They can also be used for the linear path traversed by a 
tornado. Using similar techniques with modifications, the speed of rotation can be 
estimated. 

2 Methodology 

The speed of rotation of an object is calculated as number of rotations completed 
in unit time. For identifying a complete rotation, we mark a reference point on the 
rotating object that appears at the same location after certain amount of time. Since a 
tornado is composed of winds, it is difficult to mark a single or group of identifiable 
points to make the required observations. Therefore, we choose an object stuck in the 
tornado and observe its location to identify the speed at which it rotates or appears 
to rotate, which is assumed to be the speed of the tornado [4]. 

The proposed methodology follows the approach of tracking an object stuck in the 
tornado to calculate the speed. Video processing is used to identify the object and its
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position in each frame. First, the speed is calculated in terms of no. of frames traversed 
for unit rotation and then that is converted into the number of rotations per unit time 
based on the rate of frame capture. Furthermore, as the video obtained through a 
digital video camera is not continuous, we expect that the speed obtained through 
this process needs to be scaled to obtain the original speed. This scaling factor is 
obtained by first calculating the speed of a reference rotating object of known speed 
and comparing it with the actual speed. This scaling factor will be specific to camera 
frame rate and can be used to scale the speed obtained for the test object. 

In this work, we have used a rotating cone as a simplified model of a tornado and 
a certain pattern on the cone as the object under observation. This approach helps in 
simplifying the creation of desired relations that can later be extended to complex 
tornado simulations. 

The various steps that are involved are explained as follows: 

2.1 Video Capturing 

The video of a tornado is captured from a high-resolution digital camera at a known 
frame rate. A higher frame rate will ensure that less rotations are skipped while 
capturing the motion and better accuracy is expected. 

2.2 Preprocessing 

The video is to be processed frame by frame. Each frame is converted from RGB to 
grayscale image for performing fast operations. 

2.3 Reference Object Selection 

A distinguishable object that was stuck in the tornado is selected from a frame of the 
video in initial run. The location of the object in the frame is noted. 

2.4 Reference Object Tracking 

As the tornado rotates, the object location in the subsequent frames also changes. 
On completion of a rotation, the location on the corresponding frame is expected 
to be same as that in the initial frame. The location will repeat again in further 
rotations. This seems straightforward for human observer; however, to perform this
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Fig. 1 LSTM internal structure 

task through video processing, an object tracking algorithm is used. The results of 
this step are then used in speed estimation, as explained in next subsection. 

The object tracking methodology used in this work makes use of CNN and LSTM 
that is explained as follows. 

A reference object stuck in tornado is selected and cropped from the first frame of the 
video. To track its position in the subsequent frame, the same set of pixels needs to be 
searched. Now, since an object may change its orientation and shape while rotating, 
we cannot directly search the cropped image with good accuracy. Hence, we use 
Convolutional Neural Network (CNN) to predict the location of cropped image in 
the subsequent frames [6–8]. The learning method used is Long Short-Term Memory 
(LSTM) [9, 10]. 

LSTM. In LSTM, a training set of first few frames is given to the network. It stores 
in its memory buffer, the information gained from each training frame. Based on the 
information stored, it can predict the next frame of a video, using backpropagation 
method. The block diagram of an LSTM network is shown in Fig. 1. Each rectangular 
box is a neuron/cell. The internal working of an LSTM network is described as follows 
from left to right direction. 

σ represents the sigmoid function which takes input as X t and H t-1. This sigmoid 
function is called as the forget gate. The task of the forget gate is to decide how much 
of the previous output data will be forgotten and how much of the previous data 
will be used in next steps. Both these inputs are multiplied with their corresponding 
weights and added and fed to the sigmoid function σ where the output could be in 
range of 0–1. 

The middle σ and tanh function together comprises the input gate and new memory 
cell. They decide what relevant information can be added from the current step. 
The inputs to the new memory cell are X t and H t-1. These inputs are taken and 
multiplied together with their corresponding weights and fed to sigmoid function. The 
multiplication output of input gate and new memory cell could be any value between 
0 and 1. The previous cell state input and the output from forget gate are multiplied 
and added with the total output of input gate and new memory cell calculated in the 
previous step to give the current cell state which would be given to the next cell [10]. 

The rightmost σ and tanh function together comprises the output gate. This gate 
tells the amount of relevant information to be taken from the cell state. The inputs X t
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and H t-1 are taken and multiplied together with their corresponding weights and fed 
to sigmoid function. The output of sigmoid function and the final value of cell state 
obtained from by passing the cell state through the tanh function are both taken and 
multiplied to produce the hidden state output which would be given to the next cell. 

2.5 Speed Estimation 

Let robs denote the number of rotations observed in f obs frames. This gives speed in 
terms of number of rotations per frame. Multiply this with frame rate fps (frames per 
second) to obtain the observed speed, sobs, in rotations per second, Eqs. (1 and 2). 

sobs = 
robs 
fobs 

× fps, (1) 

sobs = robs/sec. (2) 

Eq. (2) is called as the “observed speed”, as a camera setup with frame rate less 
than the actual speed of tornado can skip a few rotations. Thus, a scaling factor is 
calculated from a reference training video, which is used here to scale the observed 
speed into actual speed, Eq. (3). 

scale = 
ractual′/sec 
robs′/sec . (3) 

The scaling factor of Eq. (3) is obtained by first running the model on a video of 
an object of known speed. Then, we calculate the speed of rotation of desired object, 
scal, using  Eq. (4). 

scal = scale × sobs, (4) 

3 Experimental Setup and Results 

The proposed method was implemented in Python, on a video sequence of a tornado 
model represented by a rotating cone Fig. 2, simulated through VPython [4], a python-
based programming language to write programs that generate navigable real-time 3D 
animations.

The number of rotations to be simulated were manually given, and based on the 
time taken for the completion of simulation, the speed was calculated in rotations 
per second (rps) [5]. This gives ‘actual speed’ or ‘known speed’ [9]. Since the idea is 
to identify complete rotations of the cone, a texture was applied to the cone image.
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Fig. 2 Frame of simulated cone

The texture consisted of an inverted map of the Earth, on which any known and 
distinguishable place could be identified in each frame. Screen recorder was used to 
obtain the video of the rotating cone. The ‘frame rate’ of the screen recorder was 
taken to be 30 fps.  

The reference object image chosen is an inverted map of Australia, Fig. 3. 
The location of image and frame number is noted and compared. The difference 

between the first two frames that contain the reference image at almost the same 
location as the first frame is calculated, and subsequent frame numbers are estimated.

Fig. 3 Reference object 
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Fig. 4 Dataset for training 

3.1 Results for LSTM Network Next Frame Prediction 
Computation 

A dataset is created by taking 6000 image frames from a sample video. Out of these, 
20 images are taken as training dataset, Fig. 4. 

After the model has been trained, all the weights of trained model are then provided 
as the input to the prediction module. The LSTM model is tested for the next frame 
prediction. And, the next frame prediction is done with a frame rate of 5 fps as shown 
in Fig. 5.

3.2 Scale Calculation from Video of Known Speed 

The model was first run on a rotating cone with speed = 4 rps. Figure 6 shows a 
frame where the reference object is marked.

Table 1 shows the estimated and actual values of frame numbers along with the 
location of the reference image.

Each row in the table corresponds to a calculated rotation of the object image 
which is identified with position. From Table 1, we observe that though the first 
rotation takes about 14 frames per observed rotation the subsequent rows show an 
average of about 15 frames per observed rotation. Using this value and frame rate of 
30 fps in Eq. (2), we get
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Fig. 5 Predicting the next video frames using dataset for the trained model

Fig. 6 Reference object 
identified and marked
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Table 1 Predicted and actual values of frame numbers along with the location of the reference 
image (for reference video) 

S No. Frame No. x-location Frame difference Remarks 

Predicted Actual 

1 – 8 251 – 

2 – 22 253 14 

3 36 37 198 15 

4 50 52 241 15 x-location to far to be 
considered as complete 
rotation 

5 64 60 214 8 

6 78 76 255 16 

7 92 91 249 15 

8 106 106 243 15 

9 120 121 237 15

s ′
obs = 2 rps. (5) 

We use this value and the actual speed of 4 rps in Eq. (4) to obtain scaling factor, 
Eq. (6): 

scale = 
4 rps  

2 rps  
= 2. (6) 

Thus, one calculated rotation at a frame rate of 30 fps is equivalent to two actual 
rotations. We used this factor to estimate the speed of another rotating object. 

3.3 Speed Estimation for Video 2 

A rotating cone was again simulated with a speed of rotation = 2.11 rps. This was 
captured as a video at 30 fps. Table 2 shows the various values of frame location for 
each match of reference object image.

Following the procedure mentioned earlier, we obtained estimated speed ≈ 2.14 
rps. This shows that our model estimates the speed with about 98.6% accuracy.
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Table 2 Predicted and actual values of frame numbers along with the location of the reference 
image (for test video) 

S No. Frame No. x-location Frame difference 

Predicted Actual 

1 – 7 212 – 

2 – 33 205 14 

3 59 63 198 15 

4 85 78 220 15 

5 111 108 214 8 

6 137 138 207 16

4 Conclusion 

The proposed method can be used to measure the rotational speed of a tornado from 
a video sequence. The method works quite well for simulated models of tornado and 
can be extended to tornados in real world, with constraint of objects stuck in the 
tornado being identifiable by the code. Since models are usually of lesser speed as 
compared to the actual tornados, videos captured at higher frame rate can be helpful. 
This work does not consider the orientation and position changes of the reference 
object and the hiding and unhiding of the object that happens in real tornado. A more 
robust object tracking can be used to enhance the results on real tornados. 
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