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Nanotechnology is a rapidly growing scientific field and has attracted a great interest 
over the last few years because of its abundant applications in different fields like 
biology, physics and chemistry. This science deals with the production of minute 
particles called nanomaterials having dimensions between 1 and 100 nm which may 
serve as building blocks for various physical and biological systems. On the other 
hand, there is the class of smart materials where the material that can stimuli by 
external factors and results a new kind of functional properties. The combination of 
these two classes forms a new class of smart nanomaterials, which produces unique 
functional material properties and a great opportunity to larger span of applica-
tion. Smart nanomaterials have been employed by researchers to use it effectively in 
agricultural production, soil improvement, disease management, energy and environ-
ment, medical science, pharmaceuticals, engineering, food, animal husbandry and 
forestry sectors. 

This book series in Smart Nanomaterials Technology aims to comprehensively 
cover topics in the fabrication, synthesis and application of these materials for 
applications in the following fields:

• Energy Systems—Renewable energy, energy storage (supercapacitors and elec-
trochemical cells), hydrogen storage, photocatalytic water splitting for hydrogen 
production

• Biomedical—controlled release of drugs, treatment of various diseases, biosen-
sors,

• Agricultural—agricultural production, soil improvement, disease management, 
animal feed, egg, milk and meat production/processing,

• Forestry—wood preservation, protection, disease management
• Environment—wastewater treatment, separation of hazardous contaminants from 

wastewater, indoor air filters.
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Preface 

Nanotechnology has revolutionized the field of materials science, with the ability 
to manipulate and control matter at the nanoscale level. Nanomaterials, materials 
with dimensions in the nanometer range, exhibit unique properties that differ from 
their bulk counterparts. These unique properties have led to the development of a 
wide range of applications in various fields, including electronics, medicine, energy, 
and environmental remediation. This book, Nanomaterials: The Building Blocks of 
Modern Technology (Synthesis, Properties and Applications), provides a compre-
hensive overview of the current state of the art in the field of nanomaterials. It covers 
the synthesis and characterization of various nanomaterials, including metals, metal 
oxides, and carbon-based nanomaterials. The book also discusses the properties 
of nanomaterials and their applications in different fields. The book is organized 
into several chapters, with each chapter covering a specific aspect of nanomaterials. 
Chapter “Introduction to Nanomaterials and Their Features” introduces the basic 
concepts of nanomaterials, including their definition, properties, and classifications. 
Chapter “Synthesis, Characteristics, and Applications of Nanomaterials” covers 
the various synthesis methods for nanomaterials, including chemical, physical, and 
biological methods. Chapter “Soft Nanomaterials and Their Applications” discusses 
the characterization techniques for soft nanomaterials, including microscopy, spec-
troscopy, and thermal analysis. Chapters “Biological Nanomaterials and Their Devel-
opment”–“Antimicrobial Potential, Drug Delivery and Therapeutic Applications 
of Bio-nanoparticles in Medicine” cover the properties and applications of biolog-
ical nanomaterials in different fields, including electronics, medicine, and energy. 
Chapters “Composite Nanomaterials and Their Development”–“Advances in Hybrid 
Energy and Power Density-based Supercapatteries” focus on the composite-based 
nanomaterials and applications of nanomaterials, including supercapacitors. Chap-
ters “The World of Green Nanomaterials and Their Development”–“Green Nanotech-
nology: A Roadmap to Long-Term Applications in Biomedicine, Agriculture, Food, 
Green Buildings, Coatings, and Textile Sectors” focus on the green nanomaterials 
and their applications. Chapters “Carbon-Based Nanomaterials and Their Proper-
ties” and “Two-Dimensional Nanomaterials as Technology Marvels” provide an 
insight on some carbon-based nanomaterials and 2D nanomaterials including organic
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vi Preface

frameworks. Finally, chapter “Future Enabled by Nanomaterials: Editor Summary” 
discusses the future prospects of nanomaterials and their potential impact on various 
fields. The editors and authors of this book have worked hard to ensure the accuracy 
and quality of the information presented. However, given the rapid pace of research in 
the field of nanomaterials, some information may become outdated quickly. There-
fore, we encourage readers to consult the latest research articles and reviews for 
updated information. Overall, this book is a valuable resource for researchers, scien-
tists, and students interested in the field of nanomaterials. It provides a comprehen-
sive overview of the current state of the art in the field and highlights the potential of 
nanomaterials for various applications. We hope that this book will serve as a valu-
able reference and guide for researchers, students, and professionals in the field of 
nanomaterials and will inspire new ideas and innovations in this exciting and rapidly 
evolving field. We will keep updating this book in the subsequent editions. We thank 
all the authors who contributed to this book and who made our proposal come true. 
We also thank the Springer Nature, Singapore, for their help and support. 
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Introduction to Nanomaterials and Their 
Features 

M. Manikandan, Balbir Singh, and Tabrej Khan 

Abstract This chapter presents a comprehensive taxonomy of nanomaterials, based 
on their dimensions, shape, and composition. Nanomaterials are classified into three 
types, namely nanoparticles, nanotubes, and nanofilms, depending on their dimen-
sions. These materials may consist of a single element, such as metals or carbon, or 
a combination of components, such as metal oxides or composites. The chapter also 
highlights the commonly used nanomaterials, along with their morphologies. When 
a material is in nanoform, its physicochemical properties can differ significantly 
from those of its bulk counterpart, depending on the material type, size, shape, and 
functionalization. Therefore, the chapter examines the critical physicochemical char-
acteristics of nanomaterials, such as shape, dispersibility, crystalline phase, melting 
temperature, and magnetic properties. 

Keywords Nanomaterials classification · Nanoparticles · Nanomaterials 
physicochemical properties ·Magnetic properties of nanoparticles · Toxicity of 
nanoparticles ·Melting temperature of nanoparticles 

1 Introduction 

The origin of the term “nano” can be traced back to the Latin word “nanus” and the 
Greek word “v,” both of which refer to a person of short stature or a dwarf. However, in 
the context of modern science, the term “nano” is used as a prefix in the International
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2 M. Manikandan et al.

System of Units (SI) to denote one billionth (10–9) of a unit. For instance, nanometer 
represents one billionth of a meter, nanoliter represents one billionth of a liter, and 
nanogram represents one billionth of a gram. Contrary to its original meaning, the 
term “nano” does not typically refer to a person or object of exceptionally small size 
in scientific contexts. Instead, it is used to describe materials or structures that fall 
within the nanoscale range, which can vary depending on the field of study and the 
specific application [1]. It is important to note that the term “nano” does not exclu-
sively refer to materials or structures in the field of science. For example, a “nanostar” 
may refer to a star that has a mass similar to, or smaller than, that of our sun. However, 
in the context of nanomaterials, a simple and practical criterion for their definition 
is to consider their size. Nanomaterials are typically characterized as materials with 
dimensions falling within the range of 1–100 nm. This size range is commonly used 
to distinguish nanomaterials from bulk materials, which have much larger dimen-
sions [2]. Nanoparticles, as their name suggests, have all three dimensions within the 
nanometer range. On the other hand, nanoplates have only one dimension that falls 
below 100 nm, while the other two dimensions are larger than this size. Similarly, 
nanofibers have two dimensions in the nanoscale range but are considerably longer 
than nanoplates or nanoparticles [3]. However, it should be noted that the upper limit 
for a nanomaterial is not universally accepted to be 100 nm. Different organizations 
worldwide have set varying size limits for nanomaterials, although 100 nm remains 
the most commonly recognized limit. It is crucial to use appropriate methodologies 
for accurately determining the size of nano-objects. Table 3 summarizes the various 
methods currently available for measuring the size of objects within the nanometric 
range. To avoid incorrect results and classification, special attention should be given 
to (i) preparing a representative sample for analysis, (ii) following proper sample 
preparation procedures, (iii) utilizing the most appropriate mathematical analysis to 
obtain size distribution, and (iv) ensuring comparability among different laborato-
ries [4]. In 2014, the Joint Research Center (JRC) published a technical study that 
provided comprehensive guidelines for the preparation of samples for GMO anal-
ysis. As for the topic of this book, nanosponges are materials that possess pores or 
cavities in the nanometer scale within their macroscopic or microscopic outer dimen-
sions. Nanosponges may exist in various forms, including natural or artificial, organic 
or inorganic [5]. Figure 1 illustrates a simplified diagram of nanosponges based on 
cyclodextrin. This means that although the size of a given sample may exceed 100 nm 
in the x, y, and z dimensions, nanosponges are classified as nanomaterials because 
they contain a network of cavities in the nanometer scale within their bulk structure 
[2]. This interpretation suggests that nanosponges possess structural properties in 
the nanometer scale but are not necessarily considered nanoparticles. Due to their 
unique characteristics at the nanoscale, a hierarchical classification of nanomaterials 
has been proposed [6]. Figure 1 provides a visual representation and relevant specifi-
cations for nanosponges. Accurately determining the nanometer range of a material 
is crucial for ensuring safety and protecting health. According to the IUPAC Glossary 
of Toxicology Terms, a nanoparticle is a minute particle whose size is measured in 
nanometers, often limited to particles that are considered nanosized (NSPs) with an
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Fig. 1 Cyclodextrin nanosponge from cyclodextrin [35] 

aerodynamic diameter of 100 nm or less. They are also known as ultrafine particles. 
However, no specific definition of nanomaterial has been listed yet [7]. 

Nanomaterials can also be blended with other bulk materials to produce nanocom-
posites with outer dimensions exceeding 100 nm, while containing nanoparticles 
within the bulk. Although there is ongoing debate, these materials should still be 
regarded as nanoparticles [8]. This is evident in antibacterial materials made of 
dispersed nanoparticles in various media, such as textiles, plastics, chitosans, and 
others. Likewise, nanoparticles of reducing agents distributed in a hydrogel showed 
superior performance compared to molecular systems in reducing organic pigments. 
Polymers serve as an ideal matrix for dispersing nanoparticles [9]. PVDF membranes 
have the ability to incorporate TiO2 nanoparticles, leading to enhanced surface 
hydrophilicity and permeability, while reducing protein adsorption capacity. This 
highlights the antifouling properties of PVDF membranes that have been modified 
with TiO2 nanoparticles [10]. 

2 Uniqueness of a Nanomaterial 

Although the term “nanomaterials” has become increasingly popular in popular 
culture, it is important to recognize that many nanomaterials are naturally occur-
ring and widely present in the environment. Examples include dust released into the 
atmosphere, ocean spray, soot generated from forest fires, and volcanic eruptions [11]. 
Although some nanomaterials occur naturally, the majority of them are intention-
ally manufactured for particular applications. Engineered nanomaterials are increas-
ingly being used in a range of consumer products, including cosmetics, sporting 
equipment, electronics, tires, and medicine. Nanomaterials can aid in diagnostics 
and enhance the pharmacokinetics and bioavailability of medications in the field of 
medicine [12]. Despite the recent emergence of the term “nano,” several types of 
nanomaterials have been in use for many years. For instance, “carbon black” was 
first utilized to strengthen vehicle tires in 1915 and continues to be widely used 
today. It is estimated that the annual production of carbon black now exceeds 10
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million tons, with approximately 85% being employed in rubber-based industries. 
Fumed silica, titanium dioxide, zinc oxide, and, more recently, silver nanoparticles 
are other commercially available nanomaterials that are widely recognized [13]. The 
reason for the considerable interest in nanomaterials is due to the discovery that the 
essential properties of matter alter at the nanoscale level. In fact, reducing the size of 
particles has far-reaching implications for their characteristics [14]. An incomplete 
list of these implications encompasses heightened strength, hardness, and fracture 
ductility, reduced melting point, elevated heat capacity, decreased Debye temper-
ature, enhanced conductivity for nanometals, reduced Curie temperature, onset of 
nonlinear optical properties, heightened catalytic activity, altered solubility, and even 
variations in color as a function of particle size [15]. 

3 Nanomaterial Development 

Although many nanomaterial categories have an arbitrary, size restriction of 100 nm, 
it is commonly asserted and widely acknowledged that the maximum size for 
detecting size-dependent property changes through experimentation is 30 nm. This 
is because the significant increase in surface area and the emergence of unique 
quantum effects are the two primary factors that govern the behavior of nano-
materials [16]. Nanomaterials can be formed using either a single element or a 
combination of many elements, and all nanomaterials can be modified or function-
alized. The method of fabrication yields diverse results for nanomaterials with zero-
dimensional, one-dimensional, two-dimensional, and three-dimensional structures 
[17]. It is widely recognized that nanomaterials can be produced through physical, 
chemical, or bio-based processes. 

Figure 2 illustrates two primary manufacturing techniques. The first approach 
is known as the “top-down” method, and it typically involves milling the original 
large-sized material. This technique requires a significant amount of starting mate-
rial, resulting in significant material loss and substantial waste output [18]. The 
“top-down” approach is effective in producing metallic and ceramic nanoparticles. 
However, it is important to note that extended milling can subject the material to 
high heat stress. To alleviate this issue, cryogenic liquids are often used to aid 
the milling process and increase brittleness. Additionally, the milling process can 
lead to container abrasion and subsequent contamination [19]. The nanoparticles 
produced using the “top-down” approach often have a significant degree of poly-
dispersity and poor particle shape homogeneity. Other “top-down” methods include 
photolithography, anodization, and plasma etching. Alternatively, nanomaterials can 
be generated through the “bottom-up” approach, which involves assembling atoms 
or molecules to create the desired nanomaterial [20]. The “bottom-up” approach 
involves a reaction that can occur in both the gaseous and liquid phases, which can be 
time consuming, challenging, and costly. However, this method often results in more 
consistent particle size and shape. Examples of “bottom-up” techniques include sol– 
gel processing, gas-phase synthesis, flame-assisted ultrasonic spray pyrolysis, gas
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condensation processing, chemical vapor condensation, sputtered plasma processing, 
microwave plasma processing, and laser ablation [21]. Among the various techniques, 
gas-phase synthesis appears to be the most promising for industrial-scale production 
of nanomaterials in both powder and film forms. Fullerene and carbon nanotubes 
are the most well-known nanomaterials produced using this method. On the other 
hand, the liquid-phase process can be carried out at a lower temperature than the 
gas-phase process. Although nearly monodisperse nanomaterials can be obtained, 
significant polydispersity is often observed. It is worth noting that size distribution 
plays a crucial role in the classification of nanomaterials [22]. The categorization 
of nanomaterials can differ significantly based on whether the size distribution is 
based on the number of particles or the mass concentration. When it comes to safety, 
it is more beneficial to use the number distribution as a more conservative option. 
Through adhesion processes, the main particles of a given substance may form larger 
unit structures, such as agglomerates or more stable aggregates. The main difference 
between agglomerates and aggregates is that the overall surface area of agglomer-
ates does not change much compared to the area of single particles, while aggregates 
typically have a smaller total surface area than parent particles. Agglomerates can be 
easily separated into smaller agglomerates, for instance, by using ultrasound [23]. 

Fig. 2 Nanomaterial synthesis and development approaches [36]
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4 Nanomaterials and Associated Risks 

The popularity of nanomaterials is reflected in the vast number of publications 
covering the subject, which shows the number of papers published on selected 
keywords, including “nanomaterials” in the article title (source: www.scopus.com). 
The uses of nanomaterials continue to grow rapidly, with around one-third of all 
nanomaterials produced worldwide being utilized in cosmetic products, especially 
sunscreens [24]. Nanomaterials are utilized in a wide range of applications, including 
but not limited to: (1) cosmetic and personal care products, (2) paints and coatings, (3) 
household products, (4) catalysts and lubricants, (5) sports products, (6) textiles, (7) 
medical and healthcare products, (8) food and nutritional ingredients, (9) food pack-
aging, (10) agrochemicals, (11) veterinary medicines, (12) construction materials, 
(13) weapons and explosives, and (14) consumer electronics [25]. 

The broad and growing use of nanomaterials has raised concerns regarding their 
safety and potential health impacts for several reasons. First, nanomaterials are more 
reactive in solvents or condensed phases than molecular analogs. Second, their small 
size allows for easier migration in biological systems. And third, they can pass 
through biological membranes in the lung, gut, and even the brain, potentially causing 
damage to intracellular structures and cellular functions. The respiratory system is 
particularly vulnerable as it provides an easy pathway for nanoparticles to enter the 
body [26]. The unique structure of the lung with its 100 million alveoli and large 
surface area makes it highly susceptible to interactions with nanomaterials. However, 
the good news is that the majority of inhaled nanoparticles are cleared from the body 
quickly through mucociliary transport or by macrophages, especially for smaller 
particles. Only long-term or excessive exposure, such as that caused by smoking, 
has been found to pose a significant health risk [27]. According to studies, less than 
0.05% of the dose delivered via inhalation actually enters the circulation. Another 
possible pathway for nanoparticles to enter the body is through the olfactory nerve, 
which is more effective as it is directly connected to the brain. Despite the very low 
amount of nanoparticles that can reach the brain through this pathway, it can still 
allow the particles to enter the central nervous system. However, skin is an effective 
barrier against the entry of nanoparticles, especially non-lipophilic ones [28]. 

5 Policy/Legislations on Nanomaterials 

The EU approved a definition of a nanomaterial in 2011 (2011/696/EU) but recog-
nized the need for a revision “in light of experience and scientific and technological 
developments.” The review should focus on whether the 50% number size distribu-
tion criteria should be strengthened or weakened. The investigation was set to be 
completed by 2016 or shortly thereafter. According to the recommendation, “nano-
material” refers to a natural, accidental, or produced substance consisting of particles

http://www.scopus.com
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in an unbound state, as an aggregate, or as an agglomeration, where one or more exte-
rior dimensions are in the size range of 1–100 nm for 50% or more of the particles 
in the number size distribution. In specific cases or for competitiveness, the number 
size distribution criteria of 50% may be replaced by a threshold between 1 and 50%. 
Fullerenes, graphene flakes, and single-wall carbon nanotubes having one or more 
exterior dimensions less than 1 nm should be considered nanomaterials [29]. 

The primary purpose of the definition of nanomaterial is to identify materials 
that may require specific regulations, such as risk assessment or ingredient labeling. 
The definition itself does not include these requirements, as they are established 
by the laws and regulations in which the term is used. It is important to note that 
nanomaterials are not necessarily hazardous, but they may require additional consid-
erations in their risk assessment. Therefore, the definition aims to provide a clear and 
unambiguous criterion for identifying materials that require such evaluation. [29]. 
The purpose of the recommendation is to ensure consistency across legal domains 
regarding the use of nanomaterials, as the same materials may be used in different 
settings. Various pieces of EU law and technical guidelines exist that support legisla-
tive implementation and include specific references to nanoparticles. However, the 
ultimate determination of whether a nanomaterial is hazardous and requires addi-
tional action will depend on the findings of a risk assessment. Therefore, the recom-
mendation aims to provide a comprehensive and consistent reference for identifying 
nanomaterials to which specific concerns apply, regardless of the sector in which 
they are used [30]. 

6 Nanoparticle Applications 

Nanoparticles find applications in various fields. For instance, nanoparticles made 
of different compositions such as silver, zinc oxide, palladium, and carbon exhibit 
antibacterial properties against pathogens such as Staphylococcus aureus and 
Escherichia coli. Nanoparticles have a wide range of applications in industries such 
as cement, coatings, paints, and insulation materials. They are also used as electro-
catalysts for advanced energy conversion and storage, functionalized textiles, food 
contact materials, and in cosmeceutical treatments for conditions like photoaging, 
hyperpigmentation, and wrinkles. Additionally, theranostic nanoparticles have diag-
nostic and therapeutic properties that can be used in personalized treatment for a 
range of diseases [31]. Nanoparticles find applications in various biological fields, 
such as targeted drug delivery, imaging, and photothermal ablation of cancer cells. 
Magnetic nanoparticles hold the potential to be used in the detection and treat-
ment of Alzheimer’s disease, while gold nanoparticles can be used as theranostics. 
However, as the use of nanoparticles continues to expand, it is important to develop 
nanoparticle-specific legislation that takes into account their potential toxicity. It is 
difficult to predict which nanoparticles may be harmful and at what concentration, as 
their toxicity is determined by their physicochemical properties. Therefore, before 
using nanoparticles in various sectors, it is crucial to undertake screening and toxicity
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prediction of different nanoparticles. To address this issue, predictive toxicological 
techniques and screening technologies are currently being developed [32]. 

7 Nanomaterials and Their Production Approach 

In early 2017, the United States Environmental Protection Agency (EPA) released 
the first regulation for collecting information about the risks associated with the 
production and processing of nanoparticles. This regulation marked the culmination 
of a lengthy process that began in 2005 with the intention of creating a volun-
tary reporting scheme. The EPA included nanoscale materials in the broader Toxic 
Substances Control Act (TSCA). According to the TSCA, nanomaterials are defined 
as “chemical substances” with dimensions ranging from 1 to 100 nm that are expected 
to have different properties than the same chemical substance in bulk. These unique 
properties raise concerns about potential unpredictable and unknown behavior under 
certain conditions. The primary aim of the EPA’s comprehensive regulatory strategy 
is to reduce unreasonable risks to human health and the environment associated 
with the production and use of nanomaterials [33]. The EPA’s regulatory strategy for 
minimizing hazards associated with the production and use of nanomaterials involves 
two steps: premanufacture notifications for new nanomaterials and an information 
collection rule for both new and old nanomaterials. To determine what constitutes 
a “new” substance or chemical under TSCA, the EPA maintains a TSCA Inven-
tory of existing substances. Chemicals not listed in the inventory are considered 
“new.” The molecular identity is the fundamental criterion used to categorize chem-
icals as “new” or “existing,” as demonstrated in the study “TSCA Inventory Status 
of Nanoscale Substances: General Approach,” available for public download from 
the EPA website. Particle size is not a molecular identity parameter for the TSCA 
Inventory. The section of the cited text dealing with existing substances, either on a 
molecular or nanometric scale, is worth quoting [34]. 

8 Conclusions 

In summary, many nanoparticles have been found to be harmful to living organisms, 
and their toxicity is determined by various physicochemical properties whose relative 
importance is unclear. Nanoparticles have been linked to various disorders that can 
appear shortly after exposure or years later. Since it is difficult to predict the toxicity 
of a nanomaterial based on its bulk material properties, a case-by-case approach is 
required to identify hazardous nanomaterials. Therefore, caution must be exercised 
when handling and using nanoparticles in applications.
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Synthesis, Characteristics, 
and Applications of Nanomaterials 

Tabrej Khan, Balbir Singh, and M. Manikandan 

Abstract The field of nanotechnology is expanding rapidly and holds enormous 
potential for developing new materials and technologies. Nanomaterials, defined as 
materials with at least one dimension less than 100 nm, exhibit distinct physical, 
chemical, and biological properties that make them attractive for various applica-
tions. These applications range from electronics and energy to medicine and envi-
ronmental remediation. This chapter presents an overview of the synthesis methods 
of nanomaterials, including top-down and bottom-up approaches, and discusses the 
unique properties that arise from their small size and high surface area-to-volume 
ratio. Moreover, we describe some of the most promising applications of nanoma-
terials, such as drug delivery, catalysis, sensors, and energy storage, and emphasize 
some of the challenges that require attention to enable their widespread use. Finally, 
we conclude by discussing the ethical and safety concerns linked with the production 
and use of nanomaterials and suggest some possible directions for future research in 
this thrilling field. 
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1 Introduction 

Nanomaterials are a fascinating group of materials that have found numerous prac-
tical applications. They are defined as materials with at least one dimension in the 
range of 1–100 nm, with a nanometer being the length of ten hydrogen atoms or five 
silicon atoms lined up. Although it is difficult to pinpoint the exact history of human 
use of nanoscale materials, evidence suggests that they have been used for various 
applications for a long time. For instance, around four thousand years ago, asbestos 
nanofibers were utilized to reinforce ceramic blends, representing one of the earliest 
instances of unintentional nanomaterial use by humans [1]. Ag and Au nanoparti-
cles were present in the ancient Lycurgus Cup, created by the Romans in the fourth 
century A.D. This unique cup exhibits dichroism, appearing green in direct light and 
red in transmitted light. The color change is attributed to the size and distribution of 
the nanoparticles, which interact with the incident light and cause the cup to display 
different colors [2]. 

In 1914, Zsigmondy coined the term “nanometer.” In 1959, Feynman gave a 
talk on nanotechnology, titled “There’s Plenty of Room at the Bottom,” where he 
proposed creating smaller machines at the molecular level. He asked, “Why can’t 
we write the entire Encyclopedia Britannica on the head of a pin?” This was the first 
scholarly discussion on nanotechnology [3]. Feynman argued in this address that 
the rules of nature do not limit our capacity to operate at the atomic and molecular 
levels, but rather a lack of proper equipment and approaches. The notion of contem-
porary technology was thus planted. As a result, he is frequently referred to as the 
“Father of Modern Nanotechnology [4].” Norio Taniguchi is attributed as poten-
tially being the first person to use the term “nanotechnology” in 1974. According 
to Taniguchi, the field of nanotechnology primarily involves manipulating materials 
at the level of individual atoms or molecules through processes such as processing, 
separation, consolidation, and deformation. Although it was initially a topic of discus-
sion prior to the 1980s, the concept of nanotechnology was gradually introduced to 
researchers as a promising area for future development [5]. The advancement of 
various spectroscopic techniques has hastened the progress and innovation in the 
domain of nanotechnology. In the year 1982, IBM scientists introduced the tech-
nique of scanning tunneling microscopy (STM) which enabled visualizing single 
atoms on “flat” surfaces without using any probe tips. Subsequently, atomic force 
microscopy (AFM) was developed in 1986 and has now emerged as the principal 
technology for scanning probe microscopy [6]. The need for high-density hard disks 
has driven the exploration of electrostatic and magnetic forces, leading to the devel-
opment of Kelvin-probe, electrostatic, and magnetic force microscopy. The field of 
nanotechnology has rapidly expanded and now permeates almost every aspect of 
materials chemistry. With constant advancements, sophisticated techniques for char-
acterizing and synthesizing nanomaterials are now readily available, enabling the 
creation of nanomaterials with increasingly precise dimensions [7]. 

Nanotechnology is an excellent illustration of a developing technology that offers 
customized nanomaterials capable of producing high-performing products. These
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nanomaterials have already found commercial applications in a wide range of fields, 
including scratch-resistant paints, surface coatings, electronics, cosmetics, envi-
ronmental remediation, sports equipment, sensors, and energy storage devices [8]. 
The purpose of the chapter is to offer a comprehensive overview of nanomaterials, 
covering their basic concepts, latest developments, and emerging trends in a single 
platform. The discussion will delve into the synthesis techniques, properties, and 
potential applications of these materials, highlighting the vast and exciting prospects 
in this field [9]. While it is not feasible to encompass the entire body of litera-
ture on nanomaterials, the chapter presents a comprehensive summary of significant 
research conducted in the past and present. By gathering information on various types 
of nanomaterials in a single location, this study serves as a fundamental resource for 
researchers, providing them with an overview of accomplishments and characteristics 
in the field. 

Nanomaterials are complex to define as there is no agreed-upon, comprehensive 
definition. The absence of a clear definition allows for varying interpretations and 
classifications of nanoparticles. Some researchers define nanomaterials as particles 
with a size of a few nanometers or less, while others use the term to describe particles 
with a size less than a micrometer. The properties of nanomaterials are influenced 
by their composition, shape, and size [10]. The effects of nanomaterials on both 
health and the environment are influenced by various factors, including their size, 
shape, and other distinctive properties. Defining nanomaterials precisely has been a 
subject of intense debate within the scientific community, making it challenging to 
establish a universally accepted definition. Nevertheless, the terms used to describe 
nanomaterials are not fixed and instead reflect a general understanding drawn from 
available scientific literature [11]. 

2 Approaches for the Synthesis of Nanomaterials 

In the synthesis of nanomaterials, two techniques are utilised: (Fig. 1), top-down 
approaches and bottom-up approaches.

3 Top-Down Approaches 

Top-down techniques split bulk materials to make nanostructured materials. Mechan-
ical milling, laser ablation, etching, sputtering, and electro-explosion are examples 
of top-down processes. 

Mechanical milling. Mechanical milling is a cost-effective technique that can 
produce nanoscale products from bulk materials. It is particularly effective in creating 
phase blends and nanocomposites. The process typically involves ball milling, 
as depicted in Fig. 2. This method has been successfully employed to fabricate 
aluminum alloys reinforced with oxides and carbides, wear-resistant coatings, and
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Fig. 1 Nanomaterials’ synthesis approach: list of top-down and bottom-up approaches to synthesize 
nanomaterials. (a) Ball milling, (b) PVD, (c) CVD, (d) lithography, (e) sol–gel method, and (f) 
co-precipitation method [40]

nanoalloys of aluminum, nickel, magnesium, and copper. Furthermore, ball milling 
has been utilized to produce carbon-based nanomaterials, which have applications 
in environmental remediation, energy storage, and conversion. These nanomaterials 
are unique and versatile, making them an exciting area of research and development 
[12].

Electrospinning. Electrospinning is a fundamental top-down process that 
produces nanostructured materials, particularly nanofibers from polymers. One 
significant improvement in electrospinning is the development of coaxial electrospin-
ning, which utilizes a spinneret composed of two coaxial capillaries. This method 
allows for the creation of core–shell nanoarchitectures using two viscous liquids or a 
non-viscous liquid as the core and a viscous liquid as the shell, under an electric field. 
Coaxial electrospinning is a straightforward and efficient technique for producing 
large-scale core–shell ultrathin fibers that can reach lengths of several centimeters. 
This method has been used for developing various types of materials, including inor-
ganic, organic, and hybrid materials, as well as core–shell and hollow polymers. 
Figure 3 presents a schematic illustration of the typical electrospinning technique 
[13].

Lithography. Lithography is a useful technology for creating nanostructures by 
using a focused beam of light or electrons. There are two main types of lithography: 
masked and maskless. In masked lithography, a specific mask or template is used to 
transfer nanopatterns onto a large surface area. Photolithography, nanoimprint lithog-
raphy, and soft lithography are examples of masked lithography. In contrast, mask-
less lithography, such as scanning probe lithography, focused ion beam lithography,
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Fig. 2 Mechanical ball-milling process of graphite to graphene in a rotating jar. Reprinted with 
permission from ref. [39]. Copyright: © 2017, Elsevier B.V. All rights reserved

and electron-beam lithography, does not require a mask, enabling arbitrary nanopat-
tern printing. One approach for achieving 3D micro-nanofabrication is by using 
ion implantation with a focused ion beam, combined with wet-chemical etching, as 
shown in Fig. 4 [14].

Sputtering. Sputtering is a method used to produce nanomaterials by bombarding 
solid surfaces with high-energy particles such as gas or plasma. It is an efficient 
process for creating thin films of nanomaterials. The technique involves bombarding 
the target surface with energetic gaseous ions, resulting in the physical ejection of 
tiny clusters of atoms, which depends on the incident gaseous-ion energy, as shown 
in Fig. 5. Sputtering can be achieved using various methods, including magnetrons, 
radio-frequency diodes, and DC diode sputtering, typically conducted in an evacuated 
chamber where sputtering gas is delivered. By applying a high voltage to the cathode 
target, free electrons collide with the gas, producing gas ions. The positively charged 
ions are accelerated toward the cathode target in the electric field, repeatedly striking 
it, and causing the ejection of atoms from the target’s surface. To create WSe2-layered 
nanofilms on substrates like SiO2 and carbon paper, magnetron sputtering is utilized. 
This approach is intriguing because the sputtered nanomaterial composition is the 
same as the target material but with fewer contaminants, making it a less expensive 
alternative to electron-beam lithography [15].

The arc discharge method. The process of arc discharge can be utilized to 
produce a wide range of nanostructured materials, including carbon-based ones 
such as fullerenes, carbon nanohorns (CNHs), carbon nanotubes, few-layer graphene 
(FLG), and amorphous spherical carbon nanoparticles. The synthesis of fullerene
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Fig. 3 Nanomaterials’ electrospinning approach [32]

nanomaterials holds a particular significance in this method. To generate these mate-
rials, a chamber is prepared with two graphite rods, and helium gas is introduced and 
maintained at a specific pressure level. It is crucial to ensure that the chamber is filled 
with pure helium since the presence of moisture or oxygen can hinder the formation 
of fullerenes. By applying an arc discharge between the ends of the graphite rods, 
the carbon rods are vaporized, leading to the formation of the desired nanostructured 
materials [16] (Fig. 6).

Laser ablation. Laser ablation synthesis is a technique for producing nanopar-
ticles by subjecting the target material to a high-intensity laser beam. This process 
causes the precursor material to vaporize and subsequently form nanoparticles. As 
no stabilizing agents or other chemicals are necessary, laser ablation can be consid-
ered an eco-friendly method for producing noble metal nanoparticles. This process 
can be used to synthesize a diverse range of nanomaterials, including metal nanopar-
ticles, carbon nanomaterials, oxide composites, and ceramics. A novel method for 
producing monodisperse colloidal nanoparticle solutions without the use of surfac-
tants or ligands is pulsed laser ablation in liquids. The nanoparticle parameters, such 
as average size and distribution, can be modified by adjusting the fluence, wavelength, 
and laser salt addition. Figure 7 illustrates the TEM image of Tb2O3 nanopowder
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Fig. 4 Schematic diagram of the fabrication of 3D micro-nanostructures with an ion beam through 
bulk Si structuring. The implantation in Si is done through Ga FIB lithography. Reprinted with 
permission from ref. [33]. Copyright: ©2020, Elsevier B.V. All rights reserved

synthesized by the laser ablation method along with the histogram of particle size 
distribution [17].

4 Bottom-Up Approaches 

Chemical vapor deposition (CVD). Chemical vapor deposition (CVD) is a crucial 
technology for producing carbon-based nanomaterials. It involves the chemical reac-
tion of vapor-phase precursors, which results in a thin coating on the substrate surface. 
For a precursor to be ideal for CVD, it must meet several criteria such as high 
volatility, chemical purity, evaporation stability, low cost, non-hazardous nature, long 
shelf life and should not produce any leftover contaminants upon breakdown. For 
instance, the production of carbon nanotubes using CVD involves heating a substrate 
to high temperatures in an oven, followed by gradual injection of a carbon-containing 
gas (like hydrocarbons) as a precursor. At high temperatures, the gas breaks down, 
releasing carbon atoms that recombine to form carbon nanotubes on the substrate. 
However, the type of nanomaterial formed depends heavily on the catalyst used. 
For example, the use of Ni and Co catalysts results in the production of multilayer 
graphene in CVD-based graphene synthesis, while Cu catalysts produce monolayer 
graphene. CVD is a highly effective method for creating high-quality nanomaterials 
and is well-known for producing two-dimensional nanomaterials, as shown in Fig. 8 
[18].
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Fig. 5 DC magnetron sputtering process. Reprinted with permission from ref. [34]. Copyright: 
©2017, Elsevier Ltd. All rights reserved

Solvothermal and hydrothermal methods. The hydrothermal process is a widely 
used method for producing nanostructured materials. This technique involves a 
heterogeneous reaction in an aqueous medium at high pressure and temperature 
near the critical point in a sealed vessel. Similarly, the solvothermal approach is used 
to produce nanostructured materials but is performed in a non-aqueous liquid. Both 
hydrothermal and solvothermal procedures are typically used in closed systems. The 
microwave-assisted hydrothermal approach, which combines the advantages of both 
hydrothermal and microwave processes, is gaining popularity for engineering nano-
materials. These methods can create a variety of nanogeometries such as nanowires, 
nanorods, nanosheets, and nanospheres, making them fascinating and useful for 
producing diverse nanostructures [19]. 

The sol–gel method. The sol–gel method is a popular wet-chemical technique 
used for creating high-quality nanomaterials based on metal oxides. This method 
involves the conversion of liquid precursor into a sol during the production of metal-
oxide nanoparticles. Eventually, the sol is transformed into a network structure called 
a gel. Metal alkoxides are commonly used as precursors for this process. The sol–gel 
technique can be executed in multiple phases. In the first phase, the metal oxide is 
hydrolyzed in water or alcohol to produce a sol. Subsequently, condensation occurs,



Synthesis, Characteristics, and Applications of Nanomaterials 19

Fig. 6 DC arc discharge approach. Reprinted with permission from ref. [35]. Copyright: ©2019, 
Elsevier Ltd. All rights reserved

Fig. 7 TEM image of 
Tb2O3 nanopowder 
synthesized by the laser 
ablation method. The inset 
presents the histogram of 
particle size distribution [36]
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Fig. 8 Schematic diagram of thermal chemical vapor deposition (CVD) growth of graphene [37]

which increases the viscosity of the solvent and results in the formation of porous 
structures. These structures are then left to age [20]. During the process of conden-
sation or polycondensation, hydroxo-(M-OH-M) or oxo-(M-O-M) bridges can be 
formed, leading to the formation of metal-hydroxo- or metal-oxo-polymer in solu-
tion. This process can continue during aging, which can cause structural changes, 
altered characteristics, and reduced porosity. As the aging progresses, the porosity 
decreases, and the space between colloidal particles increases. Once the aging process 
is complete, the gel is subjected to drying, which eliminates water and organic 
solvents. Finally, nanoparticles are produced through calcination. 

The sol–gel process for creating films and powders, as shown in Fig. 9, is influ-
enced by various factors such as the precursor type, hydrolysis rate, aging duration, 
pH, and molar ratio of H2O to the precursor, which all play a role in determining the 
final product. One of the significant advantages of the sol–gel technique is its cost-
effectiveness, as well as the homogeneity of the resulting material, low processing 
temperature, and its simplicity in producing composites and intricate nanostructures 
[21].

Soft and hard templating methods. Nanoporous materials can be created 
through two widely used techniques, namely soft and hard template approaches. 
Among these, the soft template approach is a traditional and straightforward method 
for producing nanostructured materials. This technique has gained popularity due to 
its simplicity, low experimental requirements, and the ability to produce materials 
with diverse morphologies. Soft templates, which include block copolymers, flexible 
organic molecules, and anionic, cationic, and non-ionic surfactants, are employed 
in the soft template approach to generate nanoporous materials [21]. Soft templates 
play a crucial role in the formation of ordered mesoporous materials by facilitating 
the most prevalent interactions such as hydrogen bonding, van der Waals forces, and 
electrostatic forces between the templates and precursors. The 3D-structured liquid
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Fig. 9 Schematic of the sol–gel method of synthesis [38]

crystalline micelles are used as soft templates to create 3D-ordered mesoporous struc-
tures. Alkyltrimethylammonium surfactants are employed to generate different types 
of mesoporous solids, such as lamellar (MCM-50), cubic (MCM-48), and hexagonal 
(MCM-41) ordered mesoporous silicas. Two techniques, namely cooperative self-
assembly and “true” self-assembly, are generally employed to synthesize ordered 
mesoporous materials using a soft templating method [22]. 

5 Liquid–Crystal Templating is Adopted 

Reverse micelles can be used to produce nanoparticles of specific shapes and sizes. 
In a water-in-oil emulsion, the hydrophilic heads of the surfactant molecules are 
oriented toward a water-filled core, resulting in the formation of reverse micelles. 
This core acts as a nanoreactor for the creation of nanoparticles, serving as a reservoir 
for the development of nanomaterials. By adjusting the water-to-surfactant ratio, 
the size of these nanoreactors can be controlled, which in turn affects the size of 
the nanoparticles produced using this method. Decreasing the water concentration 
leads to the formation of smaller water droplets, resulting in the creation of smaller 
nanoparticles. Conversely, increasing the water concentration results in larger water 
droplets and larger nanoparticles [22]. 

6 Unique Nanomaterial Features 

The properties of matter at the nanoscale exhibit notable differences from their bulk 
counterparts. Size-dependent effects become more pronounced at this scale, leading 
to changes in the characteristics of materials. For instance, while Au (gold) appears 
yellow in bulk, it appears purple or crimson at the nanoscale. By varying the size
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of nanomaterials, their properties can be altered. Electrical characteristics, in partic-
ular, exhibit significant variations at the nanoscale, compared to bulk materials. For 
instance, boron, which is not considered a metal in its bulk form, can become an 
excellent 2D metal when arranged in a two-dimensional network of borophene. 
Additionally, nanomaterials possess enhanced mechanical properties as compared 
to their bulk equivalents due to improved crystal perfection or decreased crystallo-
graphic flaws [23]. Semiconductor electronic properties in the size range of 1–10 nm 
are governed by quantum mechanics, and this principle applies to nanospheres called 
quantum dots. The optical properties of nanomaterials, including quantum dots, are 
greatly influenced by their size and shape. The diameter of an exciton, which is an 
electron–hole pair generated by light, ranges from 1 to 10 nm. Therefore, by varying 
the size of nanoparticles within this range, absorption and emission of light by semi-
conductors can be controlled. In contrast, the electrical and optical effects in metals 
are expected to be observed in the 10–100 nm range due to the mean free path of 
electrons being in that range. The hue of metal nanoparticle aqueous solutions can 
be changed by altering their aspect ratio. For instance, aqueous solutions of Ag NPs 
exhibit different hues at varying aspect ratios, with an increase in aspect ratio leading 
to a red shift in the absorption band [24]. 

7 Carbon-Based Nanomaterials 

Carbon-based nanomaterials have been extensively investigated due to their remark-
able properties, making them a promising candidate for various applications. The 
exceptional properties of these nanomaterials, which can be tailored, have attracted 
the attention of many researchers, offering potential solutions to contemporary 
challenges in diverse fields. The carbon family encompasses a wide range of 
nanomaterials, including carbon nanotubes (CNTs), fullerenes, graphene, carbon 
nanohorns, carbon-based quantum dots, and many more. This section provides a 
concise overview of these nanomaterials, highlighting their primary characteristics 
and significance [25]. Here, we will discuss about fullerenes. The separate chapter 
is dedication to carbon-based nanomaterials in this book. 

Fullerenes, discovered in 1985, are a unique allotrope of carbon. These sp2-
hybridized carbon atom cages are highly symmetrical and distinct from other carbon 
allotropes because they consist of a specific number of carbon atoms. Fullerenes 
are available in different sizes based on the number of carbon atoms they contain, 
such as C60, C70, C72, C76, C84, and C100. Among these, the most well-known 
and commonly studied fullerene is C60. C60 fullerene has a hollow structure with 
60 carbon atoms arranged in 12 pentagons and 20 hexagons. The carbon atoms 
are bonded together through sp2-hybridized covalent bonds, and the structure has 
icosahedral symmetry. The five-membered rings of the fullerene are separated by 
six-membered rings. Due to its small size, spherical shape, and isotropic nature, C60 
fullerene is considered as a perfect zero-dimensional material. The spherical shape of
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fullerene is known to be one of the most stable structures in nature, and C60 fullerene 
is no exception [26]. 

Fullerenes, which were the first symmetric material among carbon-based nanoma-
terials, revolutionized the field of nanotechnology, paving the way for the discovery 
of other nanostructured materials such as carbon nanotubes and graphene. Their 
unique properties have made them a promising material for diverse applications. In 
addition to being found in nature and interstellar space, fullerenes were recognized 
as the “chemical of the year” in 1991 due to the significant research efforts dedicated 
to them. Unlike other carbon allotropes, fullerenes exhibit some solubility in various 
solvents, which sets them apart and enhances their potential for use in various sectors 
[27]. 

The chemical alteration of fullerenes, which improves their application efficacy, 
is an intriguing topic. There are two methods for modifying fullerenes: inner-space 
modification and outer-surface modification. 

The solitary pentagon rule is not always followed by endohedral fullerenes (IPR). 
Due to their valuable prospective uses, fullerene nanocages have garnered consid-
erable attention in the field of materials chemistry to date. In open space, neutral 
and charged single atoms are highly reactive and unstable. These reactive species 
can be stabilized in the limited environment of fullerenes; for example, the LaC60 
+ ion does not react with NH3, O2, H2, or NO [28]. Thus, reactive metals can 
be shielded from the environment by encasing them in fullerene cages. Endohedral 
fullerene containing lithium (Li@C60) is another new carbon nanomaterial. Because 
lithium metal is very reactive, it must be stored or used under strict environmental 
controls. In other words, lithium storage necessitates the use of secure buildings. 
Endohedral fullerene based on lithium exhibits novel solid-state characteristics [29, 
30]. Lithium atoms are protected from external influences due to their encapsula-
tion in fullerene. Endohedral fullerenes based on lithium have the potential to enable 
nanoscale lithium batteries. Larger fullerenes are often required for the production of 
endohedral metallofullerenes because they have big cages that can accept lanthanide 
and transition metal atoms more smoothly. Fullerene nanocages can be used to store 
gases. Fullerene is being considered as a hydrogen storage material [31]. Nanomate-
rials therefore are the building blocks of modern technology and are useful in many 
applications [41]. 

8 Conclusions 

Nanomaterials are materials that have at least one dimension between 1 and 100 nm, 
making them extremely small in size. They can have unique optical, electrical, ther-
mophysical, or mechanical properties. Nanomaterials come in various shapes and 
sizes, such as one-dimensional, two-dimensional, or three-dimensional, and can be 
spherical, tubular, irregular, solitary, fused, aggregated, or agglomerated. Some exam-
ples of nanomaterials include carbon nanotubes, fullerenes, metal oxides (such as zinc 
oxide, iron oxide, titanium dioxide, and cerium oxide), metals (such as gold, silver,
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and iron), and quantum dots (cadmium sulfide and cadmium selenide). Nanomaterials 
can be produced using gas- and liquid-phase techniques as well as photolithography 
methods. Imaging of nanomaterials is possible using microscopy methods such as 
TEM, AFM, and STM. Carbon nanotubes are notable for their high tensile strength, 
low density, high thermal conductivity, and flexible electrical activity. They also have 
a large surface area and high electron conductivity due to their “perfect” configu-
ration of carbon–carbon bonds. Nanocomposites are composite materials made up 
of at least one component on the nanoscale and can be used in various applications. 
For example, nanocomposite coatings can greatly decrease water vapor permeability, 
while inorganic–organic composites can be coated with strong and scratch-resistant 
coatings for glasses and lenses. Nanomaterials can also be found in nature, such as 
in lotus leaves and gecko feet, which inspire the development of clean and smooth 
fabrics, building exteriors, and the ability to move quickly on any surface. Nano-
materials have a wide range of applications in various industries, including the car 
industry, energy, the military, the environment, food and agriculture, cosmetics, and 
sports. 
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Soft Nanomaterials and Their 
Applications 

Sara Dua, Hilal Ahmed, and Najmul Arfin 

Abstract Soft nanomaterials have garnered significant attention in recent years 
due to their unique mechanical and chemical properties. This chapter provides 
an overview of the synthesis, characterization, and applications of soft nanoma-
terials, including hydrogels, liposomes, and self-assembled macro-molecules. We 
begin by discussing the properties and synthesis methods of these materials, such 
as solution mixing, emulsification, and self-assembly. The chapter also explores the 
various applications of soft nanomaterials, including in drug delivery, tissue engi-
neering, biosensors, and personal care products. Finally, the chapter concludes with 
a summary of the current state of research and suggests possible directions for future 
work in this exciting field. 

Keywords Soft matter · Nanomaterials · Synthesis · Classification ·
Applications · Drug delivery · Tissue engineering 

1 Introduction 

A nanomaterial can be defined as any material having at least one dimension in the 
range of 1–100 nm (nm) [1, 2]. Nanomaterials with varied morphological features, 
viz. spherical, cubical, triangular, rod-shaped, star-shaped, flower-shaped, sheets, 
etc., and with different compositions have been synthesized by various research 
groups [3]. The science that deals with the design, development, modification, 
characterization, and application of such materials is known as nanotechnology.
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2 Types of Nanomaterials 

Nanomaterials can be classified into different categories based on their size and 
dimensions: 

2.1 Size and Dimension 

On the basis of size and dimensions, nanomaterials can be categorized as zero dimen-
sional (0D), one dimensional (1D), two dimensional (2D), and three dimensional 
(3D) [1, 4–6]. The above categorization is pictorially depicted in Fig. 1. 

1. Zero-dimensional nanomaterials: Zero-dimensional nanomaterials are 
described as materials having all the three dimensions in the nano-range. This 
group of nanomaterials is represented by nanoparticles, fullerenes, quantum 
dots, etc. 

2. One-dimensional nanomaterials: One-dimensional nanomaterials possess only 
one direction larger than 100 nm with the other two dimensions being in 
nano-range. The common examples of this class include nanotubes, nanorods, 
nanowires, nanofibers, nanofilaments, and nanoribbons. These materials have an 
inherently high aspect ratio (ratio of the length to diameter). 

3. Two-dimensional nanomaterials: Two-dimensional nanomaterials have two 
dimensions beyond nano-range while the third dimension is confined within

Fig. 1 Different types of nanomaterials based on their dimensions
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the nano-range (1–100 nm). This category comprises of nanofilms, nanolayers, 
nanoplates, nanonetworks, nanosheets, and nano-coatings.

4. Three-dimensional nanomaterials: Three-dimensional nanomaterials are bulk 
materials that have no dimension in the nano-range, however, are composed of 
individual building blocks of zero, one-, or two-dimensional nanomaterials. They 
include multi-nanolayers, bundles of nanowires, polycrystals, etc. 

2.2 Origin 

Nanomaterials can also be classified into various categories—natural, incidental, 
engineered, and bioinspired, based on their origin. 

1. Natural nanomaterials: Naturally occurring nanomaterials are formed in the 
nature through physical, chemical, mechanical, and/or biogeochemical processes 
without the involvement of any human activity, such as halloysite nanotubes 
(HNT clay), montmorillonite (MMT clay) nanocellulose fibres, nanocellulose 
crystals, metal oxides, viral capsid and protein structures, milk colloids, blood 
colloids, etc. [7–9]. 

2. Incidental nanomaterials: Any nanomaterial produced unintentionally due to 
direct or indirect anthropogenic activities (mining, smelting, welding, agricul-
tural practices) is categorized as incidental nanomaterial, for example, welding 
fumes, soot, Magneli phases, nano plastics, fumed silica, pigments, etc. [7–9]. 

3. Synthetic/Engineered nanomaterials: Any nanomaterial produced intention-
ally by humans in the laboratory or industry is known as engineered nanoma-
terial, for example, carbon nanotubes, liposomes, laponite clay, quantum dots, 
metallic nanoparticles, etc. [7–9]. 

4. Bioinspired nanomaterials: Bioinspired nanomaterials are a type of engineered 
nanomaterials, nanoscale systems or device that are designed based on the prin-
ciples of biology and mimic natural nanomaterials and living matter [7, 10]. Such 
bioinspired or biomimetic nanomaterials with biological functions include smart 
robotic devices, organs-on-chips, soft, polymeric nanomaterials used for tissue 
engineering and bone implants, nanoscale biosensors, etc. [7, 11]. 

The incidental and engineered nanomaterials are grouped together as anthro-
pogenic nanomaterials [8]. 

2.3 Nature of Their Structural Components 

The nature of the nanomaterial components that construct their structure also affects 
the type of nanomaterial. 

1. Soft nanomaterials: Nanomaterials composed of organic materials, such as 
natural or synthetic polymers, proteins, DNA, lipid, and natural or synthetic clay,
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are known as soft nanomaterials. These are essentially rich in carbon compounds, 
or their self-assemblies are formed due to covalent or non-covalent interactions. 
Micelles, polymeric nanoparticles, lipid nanoparticles, liposomes, dendrimers, 
nanogels, and nanoclay particles are a few examples of this class [12, 13]. 

2. Hard nanomaterials: On the other hand, nanomaterials composed of inorganic 
materials, such as metals and silica, are known as hard nanomaterials. Metallic 
and bimetallic nanoparticles, metal oxide nanoparticles, magnetic nanoparticles, 
quantum dots, fullerenes, carbon nanotubes, and mesoporous silica nanoparticles 
fall under this category [14, 15]. 

3. Hybrid nanomaterials: Recently, researchers are combining the properties of 
organic and inorganic nanomaterials into new and smart hybrid organic–inorganic 
(soft-hard) nanomaterials with enhanced catalytic activity, biocompatibility, 
optical, mechanical, and thermal properties [14]. 

3 Methods of Synthesis of Nanomaterials 

The synthesis of engineered nanomaterials by different techniques falls under one of 
the two main approaches [7, 16, 17]: 

1. Top-down approach: It is the destructive method in which bulk material 
disintegrates into smaller fragments that transform into nanomaterials. 

2. Bottom-up approach: It is the constructive method in which nanomaterials 
are formed from the assembling of individual, relatively simpler atomic, and 
molecular components by nucleation and growth. 

These approaches include various physical, chemical, and biological methods, as 
listed in Fig. 2, for the synthesis of nanomaterials with different desired properties. 
The physical and chemical methods produce uniform-sized and stable nanomaterials; 
however, the physical methods require very high pressure and temperature condi-
tions while chemical methods use expensive and toxic materials, such as organic 
solvents and reducing materials. Therefore, nowadays, extensive research is being 
focused on the biological methods of synthesis due to several advantages, such as 
simplicity, safety, less use of toxic chemicals, energy-efficient, and use of inex-
pensive, easily available, and natural raw materials. Moreover, the nanomaterials 
synthesized using the biological methods are more biocompatible and useful for 
applications in medicine, cosmetics, food, and beverage industries [18, 19].

4 Properties of Nanomaterials 

The properties of nanomaterials are substantially different from their bulk counter-
parts owing to their small size. The smaller size of these materials contributes to their 
higher surface area to volume ratio and the presence of a large fraction of atoms on
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Fig. 2 Different methods of nanomaterial synthesis

the surface. This provides the materials with unique physicochemical properties, as 
discussed below. 

4.1 Catalytic Properties 

The smaller size of particles provides them with remarkable physical and chemical 
properties such as reactivity, catalytic, and absorbance activity. Additionally, elec-
tronic structure, number of surface atoms, and the presence of some crystallographic 
defects on the surface of nanoparticles which plays a key role in their degree of reac-
tivity and catalytic activity. Moreover, the presence/absence of surface charge on the 
nanomaterials, its nature, and magnitude substantially define their stability, aggre-
gation, agglomeration, colloidal behaviour, and affinity towards different functional 
groups and the environment. The higher the magnitude of charge (positive or nega-
tive), higher will be colloidal stability of the nanoparticles, thus lesser aggregation 
[4]. 

4.2 Quantum Confinement Effect 

Another peculiar feature associated with these materials is the quantum confinement 
effect. This effect refers to the physical confinement of electrons and holes into 
small space and the effect becomes more pronounced when the particle dimensions 
are extremely small or at the nanoscale dimension [3, 6, 16, 20]. This leads to unique
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optical, electrical, and magnetic behaviours when compared to their conventional 
counterparts [21]. 

4.3 Optical Properties 

Nanomaterials have exceptional linear and non-linear optical properties that differ 
significantly from their bulk counterparts [22]. The optical properties, such as absorp-
tion, adsorption, transmission, fluorescence, reflection, refraction, deflection, and 
emission of light, depend on the electronic structure of the nanomaterials. Increase 
in energy level spacing due to the quantum confinement effect and surface plasmon 
resonance is major contributors of the optical properties of materials at the nanoscale. 
For example, gold and silver nanoparticles with different morphologies produce 
different colours [4]. 

4.4 Electrical Properties 

Likewise, as the size of the material reaches nanoscale dimensions, the electrical 
properties, such as conductivity and resistance, of the bulk materials change signif-
icantly. Increase in the energy band gap due to reduced size and quantum effect 
is eminently responsible for the deviation in these properties of nanomaterials as 
compared to the bulk particles [4, 23, 24]. 

4.5 Magnetic Properties 

Furthermore, magnetism in nanomaterials is also greatly affected by the small size 
and surface effects (atoms at the surface have a low coordination number as compared 
to atoms in the bulk). In some instances, a change in magnetic behaviour of the 
bulk material may be observed when the dimensions are altered to the nanoscale. 
This can be witnessed in the case of magnetite (Fe3O4), where the bulk material is 
ferromagnetic while its nanoparticles show superparamagnetic-like-behaviour [25]. 
Some non-magnetic bulk materials such as platinum, palladium, and gold may exhibit 
magnetism in their nanoforms due to their small size and quantum confinement effect 
[20, 26].
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4.6 Mechanical Properties 

Nanomaterials also exhibit excellent mechanical properties, such as tensile strength, 
Young’s modulus, elasticity modulus, plasticity, fracture toughness, bending 
strength, hardness, fatigue strength, impact resistance, and rigidity due to their 
volume, surface, and quantum effects. To improve the mechanical characteristics 
of a nanomaterial, often nanoparticles with good mechanical properties are added to 
form a nanocomposite with improved strength, impact resistance, hardness, and other 
features. The key factors associated with mechanical properties of a nanomaterial 
include the production process, grain size, grain boundary structure, crystal defects 
(vacancies, triple junction, dislocation, twins, stacking faults), porosity, chemical 
composition, and functionalization [27–29]. The bond strength between atoms also 
affects the elasticity and melting temperature of the nanomaterials. They have lower 
elastic properties and melting point than bulk materials due to enhanced surface area, 
grain boundary area, and concentration of defects and decreased bonding energy 
between atoms [29]. 

5 Introduction to Soft Nanomaterials 

The principle of fabrication is what differentiates a soft nanomaterial from a hard 
nanomaterial. Hard nanomaterials are usually synthesized by the precipitation of 
inorganic salts, while the soft nanomaterials are primarily characterized by the self-
assembly of their building blocks (organic molecules) into more organized nanos-
tructures. This involves a combination of forces, namely hydrophobic interaction, 
electrostatic interaction, van der Waals forces, hydrogen bonding, π-π bonding, 
metal coordination, and host–guest recognition [30, 31]. The energy dissipated by the 
motion, fluctuations, and orientation of the molecules during their self-assembly into 
soft nanomaterials is comparable to the thermal energy. The later significantly affects 
these nanoscale materials due to breaking and re-forming of the weak interactions 
between the molecules and helps the system to attain thermodynamic equilibrium 
[32]. The two main types of building blocks of soft nanomaterials are polymer-based 
and amphiphilic materials. Additionally, biomolecules like lipids, viral proteins, 
enzymes, peptides, and oligonucleotides also have the property of self-assembling 
into bio-nanomaterials [31]. The other key features of soft nanomaterials are the 
presence of zwitter ionic entities, polar, and non-polar regions, the ability to encap-
sulate other molecules, and a dynamic character due to weak interactions between 
the building blocks [30]. The major types of soft nanomaterials have been briefly 
discussed in the following sections.



34 S. Dua et al.

5.1 Nanogels 

Nanogels are three-dimensional soft colloidal hydrogel materials with unique proper-
ties that differ greatly from the classic colloids [33, 34]. These hydrogels are typically 
composed of an organic hydrophilic polymer that is physically and/or chemically 
cross-linked via covalent or non-covalent interactions into gel networks. These gels 
swell up strongly in aqueous medium, and the high solvent content leads to fluid-like 
transport properties while their dimensional stability is attributed to the cross-linking 
in their structure [35]. 

5.2 Dendrimers 

Dendrimers are monodispersed, synthetic, polymer-based nanomaterials with an 
ordered and regular, highly branched, 3D structure. These soft materials have pecu-
liar traits, such as structural homogeneity, globular/ellipsoidal shape, high surface 
reactivity due to the presence of different chemical groups on their surface, and the 
nature of the internal cavities, that make them good candidates for applications in 
biosensors, drug delivery, bone and tissue engineering, etc. [36, 37]. 

5.3 Liposomes 

Liposomes are soft, spherical, lipid bilayer membrane constituting organic nano-
materials. They can either be unilamellar, having only a single lamella of 
membrane or multilamellar, having multiple lamellae of membranes. These parti-
cles have an aqueous interior compartment that can be loaded with water-soluble/ 
hydrophilic drugs while the water-insoluble/hydrophobic drugs can be loaded into 
the membranes. Thereby, liposomes act as good carriers for various drug delivery 
applications [38]. 

5.4 Polymeric Nanoparticles 

Polymeric nanoparticles are organic nanomaterials derived from natural (cellu-
lose, zein, starch, etc.), synthetic (polycaprolactone, polyethylene glycol, polyvinyl 
alcohol, etc.), or their combinations. These nanomaterials are widely studied and 
being researched for their extensive application as delivery vehicles. They can be 
categorized into nanospheres (matrix systems) and nanocapsules (reservoir systems)
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depending on the morphology of the nanoparticle. Nanospheres comprise a contin-
uous polymeric network in which molecules, such as drugs, can either be encapsu-
lated inside or attached onto the surface while nanocapsules comprise of an oily core 
surrounded by a polymeric membrane, where the drug is usually dissolved in the 
core or sometimes adsorbed onto the surface [38, 39]. 

5.5 Vesicles 

Vesicles can be defined as closed, spherical, and bilayer structures having dimen-
sions in the nanometre range. These can either be synthesized via self-assembly of 
amphiphilic molecules or by the polymerization of these self-assembled structures. 
Vesicles formed from block copolymers, such as poly(styrene)-b-poly(acrylic acid), 
poly(ethylene oxide)-b-polycaprolactone, and poly(ethylene oxide)—poly(styrene), 
are known as polymersomes [40]. Similarly, vesicles formed due to the self-
aggregation of amphiphilic metal complexes are termed as metallovesicles. They 
have the dual advantage of having small hydrophobic cavities acting as nanoreactors 
as well as the catalytic properties of metal ions [41]. Further, these particles assist 
in the selection of methods in which reactions can be performed in relatively mild 
conditions [42]. 

5.6 Micelles 

Micelles are spherical, amphiphilic, self-assembled, nanomaterials consisting of a 
water-soluble, polar, hydrophilic shell, a non-polar, and hydrophobic core. They 
generally range from 5 to 50 nm. Micelle formation takes place at certain concen-
tration (minimum micellar concentration) and temperature conditions; below this 
concentration, the amphiphiles exist as individual entities in the solution [38, 43, 
44]. These materials have immense application as carriers for targeted drug delivery. 
These structures provide a sustained and controlled release of drugs and other loaded 
macromolecules, provide them with chemical and physical stability, and improve 
their bioavailability, pharmacokinetics, and tissue distribution [43]. 

5.7 Microemulsions 

Microemulsions are transparent/translucent, homogenous, thermodynamically 
stable, and less viscous systems that are comprised of two immiscible solvents in the 
presence of an amphiphile, such as surfactants. The particle size of these emulsions 
ranges from 10 to 200 nm. Water-in-oil and oil-in-water microemulsions are the two 
types of microemulsion systems. The key factors determining the type of emulsion
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are the ratio of water and oil and the hydrophilic-lipophilic value of the surfactant. 
Water-in-oil microemulsions are characterized by the dispersion of water droplets 
in a non-polar solvent medium stabilized by a layer of surfactant. On the contrary, 
oil-in-water microemulsions are the systems in which oil (water-immiscible liquid) 
droplets are dispersed in an aqueous medium [45, 46]. 

5.8 Soft Matter Nanotubes 

Soft matter nanotubes are self-assembled organic tubular structures with one dimen-
sion in the nano-range. These nanotubes can be formed by bonding between particles 
belonging to either a single type of component or multiple components. Their size 
tunable property favours their formation into gels or liquid crystals, dispersion in the 
matrix, or hybridization with other components of the matrix. These materials have 
a wide array of applications in every field of science, for example, as nanoreactors, 
nanochannels, delivery vehicles, sensor, catalyst, energy device, etc. The building 
blocks of these nanotubes are amphiphiles, i.e. molecules having a hydrophilic 
head and a hydrophobic tail or bolaamphiphiles, i.e. amphiphilic molecules having 
two hydrophilic head groups and a hydrophobic tail group [47, 48]. A schematic 
representation of some of the soft nanomaterials is displayed in Fig. 3. 

(a) (b) (c) 

(d (e) (f) 

Fig. 3 Different types of soft nanomaterials. a Dendrimer, b polymeric nanocapsule, c polymeric 
nanosphere, d vesicle, e micelle, and f water-in-oil microemulsion
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Fig. 4 Applications of soft nanomaterials 

5.9 Applications of Soft Nanomaterials 

The applications of soft nanomaterials are spread to every field of science (Fig. 4). 
This can be attributed to their small size, large surface area to volume ratio, surface 
charge, composition, extraordinary physical, chemical, optical, electrical, magnetic, 
and mechanical properties. These properties of nanomaterials can be fine-tuned in 
accordance with the desired applications. In addition to this, soft nanomaterials are 
biocompatible and less toxic in nature and are therefore good candidates for biomed-
ical applications, such as nano carriers, drug delivery, therapeutics, bioimaging, 
biosensors, tissue regeneration, and cosmetics. These materials can also be applied 
in the fields of bioelectronics, food and agriculture, and environmental remedia-
tion. This chapter discusses the recent advances in the applications of different soft 
nanomaterials in various fields of science. 

5.10 Drug and Gene Delivery 

After administration, a drug must successfully reach its target site, without being 
degraded in or excreted from the body, to perform efficiently and effectively. There-
fore, a number of soft nanomaterials, including polymeric nanoparticles, liposomes,
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vesicles, metallovesicles, micelles, metallomicelles, and hydrogels, have been devel-
oped and studied as carriers for various drugs, genes, and proteins. Das et al. demon-
strated the use of chitosan nanoparticles for the efficient delivery of Mycobacterium 
tuberculosis lipid particles to trigger enhanced antibody and cell-mediated immune 
response against these particles [49]. Zhou et al. developed pH-sensitive charge-
reversal nanocomplex carriers based on the polymers, poly(β-L-malic acid), and 
polyethylenimine loaded with the anticancer drug and doxorubicin [50]. The complex 
was then conjugated with the cell penetrating transactivator of transcription (TAT) 
peptide and encapsulated within polyethylene glycolated 2,3-dimethylmaleic anhy-
dride. At blood pH, the complex is negatively charged with prolonged circulation 
time and reduced clearance of the nanoccomplex from the body. However, at the pH 
in the tumour microenvironment, the nanocomplex transforms from negatively to 
positively charged and can now be internalized by the tumours. Li et al. synthesized 
doxorubicin-loaded halloysite nanotube (HNT) encapsulated by soyabean phospho-
lipid for the efficient delivery of the drug, for both in vitro and in vivo treatment of 
gastric cancer [51]. A template-assisted synthesis method for poly(ethylene glycol) 
nanotubes for the delivery of anticancer drug to orthotopic breast tumours was 
demonstrated by Newland et al. [52]. This method of nanotube fabrication using 
an anodized aluminium oxide template helped the authors to tune the physical prop-
erties of the nanotubes, such as diameter in the range of 200–400 nm and stiffness 
in the range of 405–902 kPa. Rao et al. prepared gold nanoparticles using curcumin 
as an anticancer agent on the surface as well as in the lumen of HNTs followed by 
chitosan coating of the hybrid nanoparticles [53]. They evaluated the near-infrared 
responsive properties and the pH-responsive curcumin release of the HNT hybrid 
system and their application as cancer cell-targeted drug delivery agents. Injectable 
and porous cryogels of laponite using alginate and tetrazine-norbornene were devel-
oped for the delivery of various protein drugs, rGM-CSF, IL-2, IL-15, CCL20, 
and FIT3L [54]. Joshny et al. optimized the synthesis of liposomes for the topical 
delivery and sustained release of Lornoxicam [55]. A research group has synthesized 
coordination polymer metallovesicles using Zn(NO3)2, different non-steroidal anti-
inflammatory drugs (NSAIDs) (naproxen, flurbiprofen, ibuprofen, diclofenac, and 
mefenamic acid), and a bidentate linker [56]. The developed metallovesicles were 
then used for the loading of the anticancer drug, doxorubicin hydrochloride, and its 
in vitro delivery to MDA-MB-231 human breast cancer cells along with the NSAIDs. 
Fan et al. developed a multilamellar vaccine particle system for the efficient in vivo 
delivery of Ebola virus glycoproteins into C57BL/6 mice [57]. The nanovaccine 
system was composed of a lipid film (DOTAP + DOBAQ + DOPC) and a toll-like 
receptor 4 MPLA cross-linked with the biopolymer thiolated hyaluronic acid. The 
authors were able to achieve 80% protection rate against the virus after a single dose 
of vaccination. Maiorova et al. developed layer-by-layer polymeric nanocapsules 
[using poly(allylamine hydrochloride) and poly(styrene sulphonate) on a calcium 
carbonate template and a lipid nanovector (using amphiphilic phytantriol molecules 
and pluronic F-127 as stabilizer) for the encapsulation of vitamin B12 [58]. The 
developed nanosystems could further be used for the targeted delivery of the encap-
sulated hydrophilic molecule by internal or external magnetic stimuli. Similarly, an
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efficient carrier system based on boronic acid-modified polyamidoamine (PAMAM) 
dendrimers was synthesized for the delivery of 13 cargo proteins, including lysozyme, 
bovine serum albumin, horse radish peroxidase, Cas-9, trypsin, cytochrome c, etc., 
into the cytosol of the cells [59]. Further, Zhao et al. fabricated a pH-temperature 
dual sensitive liposome system, in which the octylamine grafted poly aspartic acid 
molecules anchored on the coat outside were pH-sensitive, while the self-assembled 
cholesterol/cationic bionic layer was sensitive to temperature [60]. The liposomes 
were used to study the targeted delivery of a model drug cytarabine to HepG2 cells. 
Qu et al. synthesized DNA nanocapsules composed of cytosine-phosphate-guanosine 
oligodeoxynucleotide vaccine adjuvants for their stabilization and the encapsulation 
and delivery of various cargo molecules, such as glycogen [61]. These nanocaspsules 
can induce immunogenic effects both as adjuvants and as delivery vehicles. Many 
research groups have developed zein-based nanomaterials, with or without modi-
fications, for the delivery of a large variety of phytochemicals, such as curcumin 
[62–64], quercetin [65–67], epigallocatechin gallate (EGCG) [68, 69], myricetin 
[70], resveratrol [71, 72], essential oils [73–76], and carotenoids [77, 78]. Chen et al. 
fabricated zein-carrageenan core–shell nanoparticles for the co-encapsulation and 
delivery of curcumin and piperine [79]. Their group has also developed zein-chitosan 
nanocomplexes for the co-encapsulation and delivery of curcumin and resveratrol 
[80]. 

5.11 Therapeutics 

Over the past few years, soft nanomaterials have gained immense popularity in 
the field of therapeutics as antimicrobial agents, cancer therapies, dental and oral 
medicine, etc. The key properties that come into play include tunable size and 
shape, composition, surface modifications, biocompatible, and less toxic nature. For 
example, Kurczweska et al. developed vancomycin-loaded HNT-Alginate nanocar-
riers [81]. The antibacterial activity of the system was tested on Staphylococci 
and Enterococci bacteria and in vivo toxicity studies on Acutodesmus acuminatus 
and Daphnia magna bacteria. Similarly, Zhentan et al. developed a vancomycin-
loaded poly (2, (dimethylamino) ethyl methacrylate) hydrogel by reversible addition-
fragmentation chain transfer (RAFT) polymerization to treat bacterial infections by 
Staphylococcus aureus [82]. The hydrogel released the antibiotic in response to pH 
and bacteria by degradation of the hydrogel. Another research group has devel-
oped an injectable, thermo-sensitive hydrogel formed by the self-assembly of ABA 
triblock copolymer, where A represented Catechol functionalized poly(ethylene 
glycol) and B represented poly{[2-(methacryloyloxy)-ethyl] trimethyl ammonium 
iodide} [83]. The hydrogel had antimicrobial and antifouling properties and had 
the ability to self-heal after any damages. Sandri et al. developed HNT-chitosan 
nanocomposite for the treatment of chronic wounds and evaluated its enhanced
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wound healing property in murine rat models [84]. Jiang et al. developed semicon-
ducting PDCDT polymeric nanoparticles as organic nanoagents with dual absorp-
tion peaks in NIR-I (650–950 nm) and NIR-II (1000–1700 nm) regions to be used 
for photothermal therapy [85]. Qin et al. synthesized poly(ethylene glycol)-grafted-
chitosan-modified poly(lactic-co-glycolide) nanoparticles for the loading and code-
livery of two anticancer drugs—paclitaxel and epirubicin—for synergistic therapy 
against breast cancer [86]. Another example of soft nanomaterials being used for ther-
apeutics was discussed by Wang et al. [87] They reported the study of a PAMAM 
dendrimer for the targeted delivery of a proteasome inhibitor drug, bortezomib, for 
metastatic bone tumours. A cyclic tripeptide sequence (Arg-Gly-Asp) was used as 
a targeting ligand, bifunctional polyethylene glycol chains were used to improve 
the blood circulation time, and catechol molecules were used to bind the drug onto 
the surface of the dendrimer. Drug release from the dendrimer was observed in 
response to change in tumour acidity (pH-responsive drug release). Yu et al. synthe-
sized poly(D,L,-lactide-co-glycolide) nanovesicles loaded with a nitric oxide donor 
as an inhibitor of respiration in tumour cells and a photosensitizer for photody-
namic therapy [88]. Pandya et al. developed chitosan-tetraphenylchlorin (polymer-
photosensitizer) nanoparticle conjugates for the encapsulation and delivery of cyto-
static drugs, cabazitaxel, or mertansine [89]. The nanoparticles displayed potential 
for combinatorial chemotherapy and photodynamic therapy and as contrast agents. 
Shinde et al. assessed the anticancer activity of carvacrol loaded zein nanoparticles 
stabilized by lecithin [90]. Similarly, ketoconazole-loaded lecithin-zein core–shell 
nanoparticles for the treatment of fungal skin infections have also been developed 
[91]. Chen et al. fabricated high internal phase pickering emulsions (HIPPEs) of enzy-
matic hydrolysis lignin with soyabean oil for the dispersion of the hydrophobic anti-
cancer compound and curcumin [92]. The emulsion was stabilized using composite 
nanoparticles composed of enzymatic hydrolysis lignin and chitosan oligosaccha-
ride developed for the loading of a hydrophilic cytarabine drug, Ara-c. The system 
was shown to co-encapsulate and release both the drug molecules in response to 
the pH of the tumour microenvironment to provide synergistic cancer therapy. Silk-
sericin coated zein nanoparticles embedded in curcumin for the topical delivery of 
curcumin into the dermis and to exert its anti-dermatitis effects have been fabricated 
by Zhu et al. [93]. Chen et al. assessed the therapeutic benefits, at the molecular level, 
of local delivery of chloroquine loaded zein particles for the treatment and manage-
ment of spinal cord injury [94]. Many research groups are also working on hyaluronic 
acid-based colloidal polyelectrolyte nanocomplexes as therapeutic agents for breast 
cancer [95–98], lung cancer [99–101], ovarian cancer [99, 102], colorectal cancer 
[103, 104], glioma [105], and liver cancer [106]. Shi et al. developed zein-hyaluronic 
acid nanoparticles to load, protect, and deliver resveratrol [107]. The encapsulated 
resveratrol was found to show higher antioxidant, antiproliferative, and antitumor 
activity than free resveratrol.



Soft Nanomaterials and Their Applications 41

5.12 As Nanoreactors 

Soft nanomaterials such as polyelectrolyte multilayers, microemulsions, micelles, 
reverse micelles, vesicles, liposomes, and nanogels can work as nanoreactors for 
the production of nanostructured materials. The type, direction, rate, and efficiency 
of the same reaction differ immensely when carried out in nanoreactors and bulk 
solutions. These systems act as reaction vessels in which the reaction volume to 
produce specific nanomaterials and the particle growth of the obtained nanoparticles 
can be controlled [35, 108, 109]. Polyelectrolyte multilayers can act as nanoreactors 
for the synthesis of core–shell colloids, hollow spheres, thin hybrid nanoparticulate 
films using metal ions, metal alkoxides, metal complexes, and polymer monomers. 
Wang et al. demonstrated the in situ fabrication of platinum nanoclusters embedded 
in poly(diallyldimethylammonium chloride) and poly(sodium styrene sulphonate) 
multilayer film [110]. Jiang et al. have described the synthesis of a polyelectrolyte 
multilayer-coated hollow mesoporous silica using chitosan and phosphorylated cellu-
lose via layer-by-layer assembly method [111]. The addition of the synthesized 
material to epoxy resin improved its flame-retarding and fire safety properties. Poly-
electrolyte multilayer films using polyacrylamide, polyacrylic acid, and a cationic 
β-cyclodextrin polymer as coatings on the surface of carboxylated paramagnetic 
polystyrene particles and ferromagnetic iron oxide (Fe3O4) nanoparticles have been 
synthesized [112]. Kovačević et al. used hydroxyapatite nanoparticles as templates to 
synthesize poly(allylamine) and poly(acrylic acid) multilayer capsules [113]. Char-
acterization of the synthesized particles confirmed the formation of stable, nano-sized 
capsules with thin flexible walls. Furthermore, these multilayer colloidal assemblies 
can also be used in the synthesis of 2D surface arrays as well as 3D microporous 
materials [114]. 

Another example of soft material nanoreactors is metallovesicles. Kaur et al. 
fabricated an amphiphilic surfactant-based copper metallovesicle and assessed its 
catalytic activity in the synthesis of benzimidazole derivatives in aqueous medium 
[41]. On the contrary, Shukla et al. developed surfactant-free copper nanoparticle 
metallovesicles to act as nanoreactors for the production of benzimidazoles via a 
cascade reaction [42]. Kulshrestha et al. have also synthesized metallovesicles using 
copper (II)-based amino acids, phenylalanine or valine, and ionic liquid surfactants 
and used them as nanoreactors for catalyzing the cross dehydrogenative coupling 
reaction in water [115]. 

Microemulsions can also be used as templates or nanoreactors for the synthesis 
of metallic nanoparticles, polymeric nanoparticles, solid-lipid nanoparticles, meso-
porous silica nanoparticles, etc. For instance, Tojo et al. synthesized bimetallic 
platinum–rhodium and platinum-gold nanoparticles using a flexible microemulsion 
system with a composition of isooctane/tergitol/water [116]. Chin et al. used water-
in-oil microemulsion system to synthesize size-controlled cellulose nanoparticles 
by nanoprecipitation method [117]. The nanoparticles were then used as carrier for 
the hydrophilic drug methylene blue. Ke et al. developed tumour acidity-responsive
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polyprodrug polymersome nanoreactors incorporating ultrasmall iron oxide nanopar-
ticles in the membranes and the enzyme glucose oxidase in the internal water cavities 
[118]. These nanoreactors activated tumour-responsive cascade reactions for coop-
erative cancer therapy. Another example of these materials has been demonstrated 
by Alqarni et al. [119]. They assessed the molecular weight of bis-thyminyl poly-
mers synthesized by photopolymerization using oil-in-water microemulsion, water-
in-oil microemulsion, and miniemulsion as nanoreactor systems. They reported that 
increasing the diameter of the nanoreactors could result in an increase in the molecular 
weight of the synthesized polymer. 

Liposomes are another group of soft nanomaterials that can be used as nanoreac-
tors. Mandal et al. developed a liposome-mimicking niosomal vesicle composed of 
cholesterol and Brij S-20 surfactant as a nanoreactor for gold nanoparticles [120]. 
These vesicles also served as an effective vessel for the encapsulation and storing of 
haemoglobin protein. 

5.13 Bone and Tissue Regeneration 

Soft nanomaterials have also found their way in the field of bone and tissue 
regeneration. Organic constituents are combined with other compounds, such as 
clays, polymers, and drugs to form scaffolds for regeneration. Bonifacio et al. 
have developed a tri-component hydrogel for soft tissue engineering applications 
consisting of HNT, polysaccharide gellan gum, and glycerol and studied its in vitro 
application for human fibroblasts [121]. Chen et al. developed a hyaluronic acid-
adipic dihyrazide-G4RGDS grafted oxidized pectin-based biomimetic and injectable 
hydrogel system for cartilage tissue regeneration [122]. Similarly, Sionkowska and 
Kaczmarek fabricated 3D porous nanocomposite blend from chitosan, hyaluronic 
acid, collagen, and nano-hydroxyapetite for the purpose of bone regeneration [123]. 
De Silva et al. incorporated cephalexin-loaded HNTs into electrospun alginate-
based nanofibrous membrane [124]. The membrane showed excellent antibacterial 
activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, 
and S. epidermis. Tocopherol acetate-loaded transfersome vesicles have been synthe-
sized and their in vitro biocompatibility to fibroblasts and keratinocytes, antioxidant 
activity, and their wound healing ability were demonstrated [125]. A large number 
of research groups have assessed the bone and tissue regeneration ability of chitin 
and chitosan nanofibers [126, 127]. For example, Duan et al. constructed hierachical 
structures composed of chitin nanofibers and hydroxyapatite crystals as materials for 
bone cell adhesion, bone healing, and osteoconduction [128]. Hamidabi et al. devel-
oped a nanofibrous mesh composed of chitosan, montmorilllonite, and poly(vinyl 
alcohol) to act as a template for the guided neuron-like differentiation of the stem 
cells of human dental pulp [129]. The synergistic effects of osteogenic rhBMP-2 
and angiogenic rhVEGF165 from composite hydrogels incorporating poly(lactide-co-
glycolide) and sulphated chitosan on bone regeneration were reported by Cao et al. 
[130]. Another group has synthesized nanoscaffolds composed of polycaprolactone
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and a chitosan derivative for bone replacement applications [131]. Luo et al. fabri-
cated silk fibroin-polycaprolactone blend nanofibers coupled with BMP-2 peptide 
conjugated polyglutamate with bone tissue regeneration ability and regeneration of 
calvarial defects [132]. Lee and Kim optimized the synthesis of 3-dimensional porous 
scaffold mesh composed of nanofibrous collagen struts and Pluronic F-127 for bone 
tissue engineering [133]. Similarly, Abazari et al. synthesized polyvinylidene fluo-
ride/collagen/platelet-rich plasma composite nanofibers with enhanced osteoinduc-
tivity and possible use as a bio-implant for application in bone and tissue engineering 
[134]. An HNT-TiO2-Chitosan-Hydroxyapatite composite membrane with enhanced 
osteoblast adhesion and proliferation properties for guided bone tissue regeneration 
has also been synthesized [135]. Avani et al. developed a vancomycin-loaded silk 
fibroin HNT composite scaffolds as a possible treatment for bone infection [136]. 
Tang et al. demonstrated the osteoporotic bone regeneration capacity, both in vitro 
and in vivo, of their fabricated scaffold [137]. The scaffold was formed by self-
assembling of polyelectrolyte multilayer film coating immobilized with calcitriol 
in biphasic calcium phosphate. Danti et al. have reviewed the potential of chitin 
nanofibrils and nanolignin as effective skin regeneration agents [138]. The develop-
ment of a Laponite hydrogel using TEMPO (2,2,6,6-Tetramethylpiperidine-1-oxyl)-
oxidized bacterial culture and sodium alginate for applications in drug delivery, tissue 
engineering, and biomedical devices has been reported by Wei et al. [139]. Peng 
et al. reported the preparation of polycaprolactone/gelatin core shell nanocellulose 
membranes incorporated with magnesium oxide nanoparticles and the application 
of the as-synthesized membranes for periodontal tissue regeneration [140]. 

5.14 Bioimaging and Biosensors 

Apart from drug delivery and therapeutics, soft nanomaterials have gained immense 
popularity in the field of bioimaging, such as photoacoustic imaging, fluores-
cence imaging, magnetic resonance imaging, ultrasound imaging, and as contrast 
agents for computed tomography. These nanomaterials have controllable dimen-
sions that can be easily tuned for permeability and retention in cells as well as 
can be easily modified by the grafting of a different ligands for effective binding 
with target molecules. These characteristics give them an advantage over other 
nanomaterials for application in bioimaging. Shao et al. synthesized a vitamin C 
sensing HNT-based composite by functionalizing HNT with the polymer Polyaniline 
(PANI) [141]. The porous structure enhances the electron transport and interactions 
between the PANI and Ascorbic acid (AA). Results claimed enhanced composite 
sensitivity and a low detection limit. Wan et al. developed a bright, organic, and 
nanofluorphore—pFE—for high performance in the second near-infrared (NIR-II) 
window [142]. The authors further used pFE for non-invasive in vivo blood flow 
tracking, 3-dimensional confocal imaging of vasculature, and colour fluorescence 
imaging for the visualization of tumours in mice. Another research group devel-
oped a theranostic nanoassembly with excellent dual MRI contrast activity [143].
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The MRI contrast activity in the prepared hyaluronic acid-stabilized redox sensitive 
polyethylenimine polyplex complex was due to the presence of green-synthesized 
Mn3O4 and Fe3O4 nanoparticles. Jeevarathinam et al. synthesized poly(lactic-co-
glycolic acid) (PLGA) nanoparticles loaded with paclitaxel-methylene blue conju-
gates [144]. These nanosystems were used to estimate in vitro and in vivo drug 
release via photoacoustic imaging. They were further used for the treatment of an 
orthotopic colon cancer model via luciferase positive CT26 cells. Xu et al. developed 
a catalytic hairpin assembly nanoprobe system composed of protamine sulphate with 
hyaluronic acid and SYL3C aptamer conjugated hyaluronic acid for the in situ detec-
tion of micro RNA-21 of living circulating tumour cells from whole blood [145]. 
Sim et al. fabricated hyaluronic acid, protamine, and ferumoxytol-based magnetic 
nanocomplexes for the labelling of natural killer cells [146]. These labelled cells, 
after activation, were used to provide MRI-guided natural killer cell therapy to treat 
solid hepatocellular carcinoma tumours. Furthermore, multifunctional Gadolinium-
Ruthenium ligand-based coordination polymer nanospherical multi-modal sensors 
for the detection of nitroaromatic explosives and trace water in organic solvents have 
also been synthesized [147]. These nanosensors enabled the simultaneous use of 
magnetic resonance and fluorescence sensors and can help to broaden the application 
of magnetic resonance relaxation. 

Furthermore, soft nanomaterials can be used either as transduction elements or for 
signalling and signal amplification in immunosensors. These are affinity or catalytic 
antibody-based biosensors which have a wide range of applications in biotechnology, 
research, forensics, defence, environmental monitoring, food safety, and agriculture 
[148]. For example, Shen et al. devised a gold nanoparticle-dendrimer conjugate for 
the voltametric immunoassay of α-fetoprotein in human serum [148]. They immo-
bilized the nanoparticle/dendrimer conjugate onto a chitosan treated gold electrode, 
followed by the immobilization of a ferrocene containing ionic liquid onto the elec-
trode via binding with the dendrimer (G4 polyamidoaminic dendrimer). The authors 
demonstrated it to be a stable, selective, and reproducible assay that can be used for 
the detection of cancer biomarkers as well. 

Soft nanomaterials can also be used to develop biosensors. The quantum confine-
ment effects acting in these nanomaterials enhance their sensor signals and sensi-
tivity. Further, these materials are thermally stable, have the intrinsic properties of 
bio inertness and biocompatibility, can themselves be employed as receptors and 
transducers, and can easily coordinate with metal complexes and form extraordinary 
details and porous framework, thereby making them a good choice for this application 
[149]. Zhang et al. devised a silver ion-electrospun alginate nanofibers membrane 
as a sensor to measure breaths during emotional changes, running, and exercising 
[150]. On similar lines, Doğaҫ et al. synthesized sodium ions-alginate nanofibers-
planer patterned polydimethylsiloxane-based wearable pressure sensor [151]. Liu 
et al. developed a Cobalt-porphyrin (TTPP) coordination polymer nanosheet for the 
fluorescence detection of DNA [152]. Sehit et al. have synthesized highly sensitive 
and selective biosensors composed of molecularly imprinted polymers decorated 
with gold nanoparticles for glucose sensing [153] and cancer biomarker detection in 
human serum samples [154].
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Many research groups are working on the application of organic nanomaterials, 
such as dendrimers, molecularly imprinted polymers, metal–organic frameworks, 
polymer nanoparticles, nanomachines, nanovesicles, in virus sensing, and tracking. 
For example, a research group has developed a dendrimer [2,2-bis(hydroxymethyl) 
propionic acid] doped silver chloride nanospheres via a reverse micelle method 
with silver ion-selective electrode as a potentiometric immune sensor for the detec-
tion of a ss-RNA virus, Enterovirus 71, from serum samples [155]. Barrios-Gumiel 
et al. synthesized carbosilane dendrons encapsulating magnetic nanoparticles for the 
detection of HIV-1 strains—R5 and X4 [156]. Nguyen et al. developed coumarin-
derived dendrimers as fluorophores targeting envelope 1 of Chikungunya virus for 
detection via fluorescence-linked immunosorbent assay [157]. Further, Zhang et al. 
developed a switchable electrochemiluminiscence RNA sensing platform for the 
detection of Zika virus [158]. The platform was composed of a metal–organic gel 
(in situ loading of graphite-like carbon nitride and post assembly of gold nanopar-
ticles) as the electrode matrix and metal–organic framework (zirconium-based) as 
the nanotag. Dimethylaminoethyl methacrylate and Material Institut Lavoisier-101 
(MIL-101)-based molecularly imprinted polymeric nanoprobes for the detection of 
Hepatitis A virus through resonance light scattering were designed by Luo et al. [159] 
Kim et al. developed Dengue virus (loaded with DiD dye)-polymersomes (encap-
sulating BODIPY-ceramide dye) hybrid nanovesicles for the real-time tracking of 
Dengue virus [160]. The DiD dye gave red signals in the endosomes, while the 
BODIPY gave green signals in the Golgi apparatus. 

5.15 Environmental Applications 

Human health, economy, and social progress are all connected to the quality of the 
environment. This necessitates the need to reduce harmful waste, use of biomass 
and fishery waste for different applications, development of environmental-friendly 
energy sources, along with reducing carbon emissions. A revolutionary way to adopt 
is nanotechnology. 

Many researchers are working in this field to develop nanomaterials for applica-
tions in water treatment, such as removal of dyes, heavy ions, and other wastes from 
water. For example, Mokhena et al. developed a membrane with electrospun alginate 
nanofibers and poly(ethylene oxide) blends for the removal of heavy metals, such 
as Cu(II), from water [161]. Nanofibrillated cellulose-based macroscopic 3D aero-
gels have also been synthesized for the removal of heavy metals from water [162]. 
Zhijiang et al. synthesized a nanofiltration membrane composed of electrospun poly-
hydroxybutyrate/carbon nanotubes coated with calcium alginate hydrogel for the 
removal of dyes from water [163]. A poly(hydroxyalkanoate) matrix entrapped with 
chitosan and nanocellulose was fabricated by Soon et al. for the removal of congo 
red from water [164]. Similarly, Derami et al. synthesized a bacterial nanocellulose 
composite matrix embedded with mesoporous dopamine nanoparticles and in situ 
growth of palladium nanoparticles [165]. The nanocomposite was found to be highly
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efficient in the removal of different types of dyes, across various concentration and 
pH factors, from water. Cellulose nanofibers-based aerogel membranes decorated 
with silver nanoparticles have also been developed for the catalytic discoloration of 
cationic and anionic organic dyes from aqueous solutions [166]. Sun et al. developed 
a silver nanoparticle-poly(amic acid) metallovesicle complex for the removal of dyes, 
heavy metals, and polycyclic aromatic hydrocarbons from water [167]. A research 
group has developed a water filtration membrane from bacterial nanocellulose and 
banana peel waste [168]. Yang et al. produced TEMPO-nanocellulose fibre-coated 
PAN membranes with antifouling activities with possible application in wastewater 
treatment [169]. Similarly, Hassan et al. have also synthesized thin-film ultrafiltration 
membranes from cellulose nanofibers for the removal of different pollutants from 
wastewater [170]. 

A few other environmental applications of soft nanomaterials have also been 
cited. Wang et al. devised a lithium chloride/nanofibrillated cellulose/graphene-based 
hygroscopic aerogel powered by solar energy as a novel strategy for harvesting 
atmospheric water [171]. Jahan et al. designed a nanocomposite membrane composed 
of crystalline nanocellulose and poly(vinyl alcohol) for the separation of methane 
and carbon dioxide [172]. Similarly, such membranes have also been prepared for 
the separation of carbon dioxide from nitrogen gases [173, 174]. 

Significant efforts are also being done in the development of nanomaterials from 
biological materials for the fabrication of novel electronic systems with applica-
tions in biomedical fields, wearable electronic devices, as well as generators of 
energy. Many research groups have synthesized triboelectric and piezoelectric nano-
generator devices based on natural polymers, such as cellulose [175, 176], chitin 
[177], silk [178–180], amino acid and peptides [181–183], collagen, and chitosan 
[184], for a variety of applications. Khalil et al. synthesized nanocomposite films 
composed of nanofibrillated cellulose, polyvinylpyrrolidone, and silver nanoparticles 
[185]. The films showed remarkable properties such as homogeneity, flexibility, good 
tensile strength, and electrical conductivity, thereby making them good candidates for 
future applications as sensitive electronic components. Sun et al. fabricated a trans-
parent, flexible, self-powered, user-interactive wearable triboelectric nanogenerator 
composed of leaf-moulded microstructured polydimethylsiloxane films and silver 
nanowires [186]. These nanogenerators can be used for a wide array of applications, 
including healthcare, energy conversion, environmental applications, and wearable 
electronics. A research group has developed peptide-based, piezoelectric, unidirec-
tionally polarized, horizontally aligned phenylalanine nanotubes as energy generators 
in the form of voltage, current, power, and force [187]. Bhakat et al. developed a 
nanocomposite with electrical properties based on gum arabic and iron oxide (Fe3O4) 
nanoparticles [188]. The conductivity behaviour of the developed bionanocomposite 
was found to be dependent on the content of the iron oxide nanoparticles. Wang 
et al. have reported the synthesis and application of an air flow-driven triboelectric 
nanogenerator composed of nanostructured polytetradluoroethylene thin films for 
the self-powered real-time monitoring of human respiratory signals [189]. Further, 
Šutka et al. have developed highly porous nanostructured films composed of ethyl
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cellulose as contact layer material for triboelectric nanogenerators [190]. These nano-
generator devices efficiently converted mechanical energy into electricity. Another 
research group has fabricated perovskite solar cells based on nanocellulose for appli-
cation as flexible next-generation electronics [191]. Liu et al. have produced a tribo-
electric nanogenerator formed by the coating of gold nanofilm on nanostructured 
poly(tetrafluoroethylene) layers for the development of a flexible and self-powered 
sensor for endocardial pressure [192]. The sensor can be employed in next-generation 
implantable sensors for cardiovascular diseases. Calcium chloride-complexed starch-
based bio-triboelectric nanogenerators with excellent electrical performance have 
been synthesized by Ccorahua et al. [193]. A self-powered piezoelectric nanogen-
erator sensor based on BZT-BCT-P(VDP-TrFE) nanofibers developed by Liu et al. 
[194]. 

5.16 Cosmetics 

The emerging trends and the increase in the use of cosmetic products have attracted 
a lot of attention from the field of nanotechnology. This has not only led to improved 
entrapment efficiency and dermal penetration of the active ingredient of the cosmetic 
formulation but also to controlled drug release from the products, improved phys-
ical stability, enhanced moisturizing capacity as well as better sun protection [195]. 
Castleberry et al. demonstrated the enhanced dermal accumulation and reduced 
inflammation at application site by delivering all-trans retinoic acid molecules via 
polyvinyl alcohol-based nanosystems in in vitro and in vivo studies [196]. Nanoemul-
sions of coenzyme Q10 have shown to protect against skin injury induced by UVB 
radiation [197] and improved skin permeability and anti-wrinkle activity [198]. Su 
et al. fabricated an oil-in-water nanoemulsion system based on octyldodecanol for 
the transdermal delivery of ceramide IIIB [199]. Chen et al. assessed the skincare 
applications of lipid nanoparticles encapsulating different antioxidants—resveratrol, 
vitamin E, and EGCG [200]. Similarly, EGCG and hyaluronic acid-loaded nano-
transferosomes have also been synthesized for their synergistic UV-protection, anti-
ageing, and antioxidant effects [201]. Muzzalupo et al. developed cationic niosomal 
systems derived from lysine-based gemini surfactants [202]. The niosomes acted as 
controlled delivery systems when administered parentally while enhanced the percu-
taneous permeation capacity of the drug when applied topically. A research group 
has synthesized PAMAM dendrimers for the increased solubility, stability, and skin 
penetration of resveratrol molecules [203]. Holmes et al. demonstrated increased 
the in vitro permeation of chlorhexidine digluconate into the skin pre-treated with 
PAMAM dendrimers [204]. Ki et al. have prepared a hybrid composite material 
composed of a fermented extract of natural products and calcium alginate nano-
sized hydrogel for application in hair growth [205]. Chitosan nanoparticles have 
been synthesized as carriers for the skin whitening agents, α- and β- arbutins [206]. 
Panchal et al. self-assembled halloysite clay into nanotubes (HNTs) and demon-
strated their use as carriers for hair dyes as alternatives to chemical hair colouring
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treatments [207]. Further, they also reported the use of these HNTs for the topical 
delivery of drugs onto hair surface. Researchers have also synthesized UV-protecting 
cosmetic emulsions of annato and saffron encapsulation within chitosan nanoparti-
cles [208]. Similarly, stable suspensions of organic UV-blocking sunscreen agents 
with polymeric nanocomposite particles have been fabricated [209]. Leon-Méndez 
et al. assessed the antioxidant activity of starch microemulsions encapsulating thyme 
oil, clove oil, and cinnamon oil [210]. Hatahet et al. studied the loading efficiency, 
delivery, cell interaction ability, antioxidant activity, and toxity of quercetin loaded 
liposomes, lipid nanocapsules, and smart crystals [211]. Tokudome et al. evaluated 
the delivery of hyaluronic acid nanoparticles into skin [212]. The nanoparticles were 
formed by the polyion complex method with cationic protamine polymer. A self-
nano-emulsifying nanovesicular drug delivery system was developed to enhance 
the topical absorption and antifungal activity of bifonazole [213]. Gupta et al. 
studied the anti-acne activity of glyceryl monostearate-based solid-lipid nanopar-
ticles loaded with isotretinoin and α-tocopherol acetate [214]. Researchers have also 
synthesized ascorbic acid hydroxyapatite nanocomposites [215], liposomes [216], 
and aspasomes [217] for skincare activities. Zhu et al. fabricated zein-hyaluronic 
acid colloidal nanoparticles encapsulating tetrahydrocurcumin for its topical appli-
cation to improve its cutaneous bioavailability and anti-photoaging activity [218]. 
In addition to this, zein nanoparticles encapsulating EGCG by nanoprecipitation 
method have also been developed [219]. The synthesized nanoparticles showed posi-
tive antioxidant, anti-tyrosinase, and photoprotective activities, thereby boosting the 
main biological properties associated with sun protection and skin pigmentation. 

5.17 Food Industry 

Nanotechnology is also being significantly used in the food industry as preserva-
tives, carriers of antimicrobial, antifungal, and antifouling agents, food packaging 
films, emulsifiers, stabilizers, bakery industry, dairy industry, and production of func-
tional foods. Several bio-based compounds and their derivatives, individually and/ 
or combined with other compounds, are being used in the food industry for the 
processing of these materials for food products. These materials are biodegradable, 
sustainable, biocompatible, economical, eco-friendly, and non-toxic. Additionally, 
they have improved properties as well as can be used as carriers for active ingredi-
ents [220]. The various biological materials being used in this regard include, but 
are not limited to, cellulose, lipids, waxes, chitosan, sorbitols, carrageenan, vitamins, 
proteins, phytochemicals, starch, and gum arabic, as discussed in Table 1.

Cellulose, chitosan, their nanoforms, and their derivatives from bacteria, plants, 
and animals are immensely used in the food industry in bakery [221–223], meat 
industry [224, 239, 240], edible coatings [225], packaging films [226–228, 235, 236], 
emulsion stabilizer [229, 230], for delivery of bioactive compounds [231, 232], as 
functional ingredients in foods [233, 234], and to improve the shelf-life of food 
products [237, 238]. Edible starch nanocomposites from different sources, such as
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Table 1 Nanoformulations of different biological materials and their application in food industry 

S. 
No 

Biomaterial Nanoform Application References 

1 Cellulose Microcrystalline 
cellulose 

Reduced fat content [222] 

2 Cellulose Carboxymethyl 
cellulose nanoform 

Edible coating for enhancing quality 
and extending postharvest life of 
avocado fruit 

[225] 

3 Cellulose Cellulose nanofibre Water resistant and antibacterial film 
for food contact packaging 

[226] 

4 Cellulose Nanocellulose Emulsion stabilizer [229, 230] 

5 Cellulose Nanofibrillated 
mangosteen cellulose 

Pickering emulsion for the 
encapsulation of vitamin D3 

[231] 

6 Cellulose Cellulose nanofibrils Structural components of ice cream [233] 

7 Chitosan Nanochitosan and/or 
chitosan nanoparticles 

Edible coatings on fruits, vegetables, 
and meat products and their 
preservation 

[235–240] 

8 Starch Cassava starch 
nanocrystals 

Preservation of Huanggan pears [241] 

9 Starch Starch nanoparticles Carrier of bioactive compounds [247–252] 

10 Starch Starch nanocrystals Stabilizers [253–255] 

11 Proteins Zein nanoparticles Carrier of bioactive compounds [256–262] 

12 Proteins Soy protein isolate Pickering nanoemulsion [263] 

13 Proteins Whey protein isolate 
nanofibers 

Coating for preservation on salted 
duck egg yolks 

[265] 

14 Proteins Casein nanoparticles Biopolymer-based bilayer film [267] 

15 Proteins Soy protein isolate 
nanoparticles 

Pickering emulsion stabilizer [269] 

16 Lipids Artemisia annua oil 
nanoliposome 

Edible  coating on cherry tomato [270] 

17 Lipids Candeuba wax 
solid-lipid 
nanoparticles 

Quality maintenance of guava fruit [271] 

18 Lipids Satruja plant essential 
oil nanoencapsulation 

Effect of coating on lamb meat [275] 

19 Lipids Betanin 
nanoliposomes 

Fresh beef preservation [276]

cassava [241, 242], mung beans [243], sugar palm [244], and potato [245, 246], have 
also been developed as packaging materials. In addition to this, starch nanomaterials 
have been used as carriers for various bioactive compounds [247–252] and as stabi-
lizing agents [253–255]. Moreover, many proteins and their nanostructures have been 
incorporated in the food industry. These proteins can be sourced from both plants as 
well as animals. For example, zein, an amphiphilic protein obtained from corn has
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been used as a carrier for many hydrophobic compounds and improved their antiox-
idant activities, including curcumin [256, 257], lutein [258], quercetin [259, 260], 
resveratrol [261], and fucoxanthin [262]. Similarly, Ju et al. synthesized a pickering 
emulsion based on soy protein isolate and anthocyanin complex nanoparticles for the 
efficient encapsulation and delivery of anthocyanin [263]. Other applications of these 
proteins can be found in the meat industry [264], dairy [265], cheese industry [266], 
and prevention of spoilage of foods [267–269]. Similarly, lipid-based nanoemul-
sion, nanoliposomes, and solid-lipid nanoparticles have been extensively used for 
the preservation and increasing the shelf-life of fruits and vegetables [270–274], 
meats [275–277], and dairy products. 

5.18 Agriculture 

To meet the growing needs of the population as well as to protect the environment, it 
is important to practice sustainable agriculture. This necessitates the use of greener 
compounds for crop improvement and protection, such as natural compounds, plant 
secondary metabolites, and biocompost, as alternatives to agrochemicals. Nanofor-
mulations of these compounds show improved stability, thereby providing better effi-
cacy and action on pests [278]. Working in this direction, researchers are developing 
soft nanomaterials such as polymeric nanocapsules, microemulsions, nanodisper-
sions as nanobiopesticides, nanofertilizers, or as carriers to be used in agriculture. 
For example, Pascual-Villalobos et al. assessed the activity of 10 different essential 
oils and their nanoemulsions against the bird cherry-oat aphid (Rhopalosiphum padi 
L.) [279]. The antifungal activity of carbendazim was found to be enhanced when 
released from chitosan-pectin nanoformulation as compared to pure compound [280]. 
Also, the nanoformulation of the fungicide was found to be safer for germination 
and root growth of seeds of various plants. Choudhary et al. fabricated copper-
chitosan nanoparticles and reported enhanced antioxidant, antifungal, growth, and 
disease resistance in maize plants [281]. Kottegoda et al. synthesized hydroxya-
patite nanoparticles as a source for the slow release of urea, to maintain yield 
and reduce the amount of urea being given [282]. Furthermore, the hydroxyapatite 
particles also acted as a source of phosphorus. Liang et al. developed poly(styrene-
methacrylic acid)-avermectin-catechol nanoparticles inspired by mussel avermectin 
as nanobiopesticides [283]. The developed nanoparticles showed remarkable adhe-
sive property on foliage and better indoor toxicity to pests, as assessed on cucumber 
and broccoli. Chauhan et al. synthesized chitosan nanocapsules for the encapsula-
tion and slow release of the fungicide, hexoconazole [284]. The nanoformulation 
was found to be less toxic as compared to the commercial pesticides. Guar gum-
based hydrogels were developed by Thombre et al. increased the water holding 
capacity and porosity of the soil and behaved as a good soil conditioning mate-
rial [285]. Chitosan nanoparticles have been reported to significantly improve the 
yield of barley plants while decreasing the drought stress [286]. Akalin and Pulat
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reported an increase in the performance of the wheatgrass plant after the applica-
tion of zinc-loaded carboxymethyl cellulose-carrageenan hydrogels, suggesting their 
use as controlled fertilizers in agriculture [287]. Khan et al. synthesized a fertilizer 
based on nanozeolites saturated with macronutrients and studied the nutrient uptake 
capacity and release study of the prepared nanofertilizers [288]. Hao et al. synthe-
sized and stabilized zein nanoparticles as carriers for hydrophobic pesticides [289]. 
Similarly, da Cruz Silva et al. synthesized oil-in-water nanoemulsions based on the 
essential oils, thymol, eugenol, geraniol, and methanone [290]. The antibacterial 
activity of these emulsions was assessed against Xanthomonas strains that cause the 
citrus canker disease. 

6 Conclusion 

Nanotechnology is an ever-growing field with a wide array of applications in every 
field of science. Soft nanotechnology deals with the design, synthesis, and applica-
tions of soft organic and organometallic nanomaterials. Their small size, high surface 
area to volume ratio, extraordinary physical, chemical, optical, and magnetic prop-
erties, biocompatibility, and less toxic nature make them valuable materials for the 
future. Soft nanomaterials are present abundantly in the nature, such as nano cellu-
lose, nanoclay, virus particles, vesicles, micelles, and liposomes. Synthetic soft nano-
materials derived from these natural particles, or mimicking them, or from synthetic 
components are also being produced, for example, polymeric nanoparticles, synthetic 
nanoclay particles, soft matter nanotubes, biomimicking micelles, vesicles, and lipo-
somes. These natural and synthetic nanomaterials have been employed in drug 
delivery, as carriers, therapeutics, bioimaging, biosensors, tissue engineering, envi-
ronmental applications, etc. However, with the growing advancements and research 
in technology, there is yet a lot more to understand and learn about these materials 
and to utilize them with their full potential. 
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113. Klačić T, Peranić N, Radatović B, Kovačević D (2022) Biocompatible hydroxyapatite 
nanoparticles as templates for the preparation of thin film polyelectrolyte multilayer capsules. 
Colloids Surf, A 648:129385. https://doi.org/10.1016/j.colsurfa.2022.129385 

114. Shi X, Shen M, Möhwald H (2004) Polyelectrolyte multilayer nanoreactors toward the 
synthesis of diverse nanostructured materials. Prog Polym Sci 29(10):987–1019. https://doi. 
org/10.1016/j.progpolymsci.2004.07.001 

115. Kulshrestha A, Kumar G, Kumar A (2022) Cu(II)-amino acid ionic liquid surfactants: 
metallovesicles as nano-catalytic reactors for cross degenerative coupling reaction in water. 
Chem Sel 7(16). https://doi.org/10.1002/slct.202200159 

116. Tojo C, Buceta D, López-Quintela MA (2018) Microemulsion as nanoreactors to obtain 
bimetallic nanoparticles. In: Mejuto JC (ed) Microemulsion—a chemical nanoreactor. 
IntechOpen. https://doi.org/10.5772/intechopen.80549 

117. Chin SF, Jimmy FB, Pang SC (2018) Size-controlled fabrication of cellulose nanoparticles 
for drug delivery applications. J Drug Deliv Sci Technol 43:262–266. https://doi.org/10.1016/ 
j.jddst.2017.10.021 

118. Ke W, Li J, Mohammed F, Wang Y, Tou K et al (2019) Therapeutic polymersome nanoreactors 
with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano 
13(2):2357–2369. https://doi.org/10.1021/acsnano.8b09082 

119. Alqarni Y, Ishizuka F, Bell TDM, Tabor RF, Zetterlund PB et al (2020) Confined polymer-
ization of bis-thyminyl monomers within nanoreactors: towards molecular weight control. 
Polym Chem 11(26):4326–4334. https://doi.org/10.1039/D0PY00523A 

120. Mandal RP, Sekh S, Mondal D, De S (2018) Multifunctional role of liposome-mimicking 
vesicles—potential nanoreactors and effective storehouses for haemoglobin. Colloids Surf, 
A 558:33–44. https://doi.org/10.1016/j.colsurfa.2018.08.048 

121. Bonifacio MA, Gentile P, Ferreira AM, Cometa S, de Giglio E (2017) Insight into halloysite 
nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohyd 
Polym 163:280–291. https://doi.org/10.1016/j.carbpol.2017.01.064 

122. Chen F, Ni Y, Liu B, Zhou T, Yu C et al (2017) Self-crosslinking and injectable hyaluronic 
acid/ RGD-grafted oxidized pectin hydrogel for cartilage tissue engineering. Carbohyd Polym 
166:31–44. https://doi.org/10.1016/j.carbpol.2017.02.059 

123. Sionkowska A, Kaczmarek B (2017) Preparation and characterization of composites based 
on blends of chitosan, collagen, and hyaluronic acid with nano-hydroxyapatite. Int J Biol 
Macromol 102:658–666. https://doi.org/10.1016/j.ijbiomac.2017.03.196 

124. De Silva RT, Dissanayake RK, Mantilaka MMMGPG, Wijesinghe WPSL, Kaleel SS et al 
(2018) Drug-loaded halloysite nanotube reinforced-electrospun alginate-based nanofibrous

https://doi.org/10.1002/jgm.2968
https://doi.org/10.1002/jgm.2968
https://doi.org/10.1002/fsn3.2302
https://doi.org/10.1002/fsn3.2302
https://doi.org/10.1039/B516442G
https://doi.org/10.1515/ijcre-2021-0069
https://doi.org/10.1515/ijcre-2021-0069
https://doi.org/10.1016/j.tsf.2018.05.051
https://doi.org/10.1016/j.tsf.2018.05.051
https://doi.org/10.1016/j.jhazmat.2017.09.001
https://doi.org/10.1007/s13233-021-9102-8
https://doi.org/10.1016/j.colsurfa.2022.129385
https://doi.org/10.1016/j.progpolymsci.2004.07.001
https://doi.org/10.1016/j.progpolymsci.2004.07.001
https://doi.org/10.1002/slct.202200159
https://doi.org/10.5772/intechopen.80549
https://doi.org/10.1016/j.jddst.2017.10.021
https://doi.org/10.1016/j.jddst.2017.10.021
https://doi.org/10.1021/acsnano.8b09082
https://doi.org/10.1039/D0PY00523A
https://doi.org/10.1016/j.colsurfa.2018.08.048
https://doi.org/10.1016/j.carbpol.2017.01.064
https://doi.org/10.1016/j.carbpol.2017.02.059
https://doi.org/10.1016/j.ijbiomac.2017.03.196


Soft Nanomaterials and Their Applications 59

scaffolds with sustained antimicrobial protection. ACS Appl Mater Interfaces 10(40):33913– 
33922. https://doi.org/10.1021/acsami.8b11013 

125. Caddeo C, Manca ML, Peris JE, Usach I, Diez-Sales O et al (2018) Tocopherol-loaded 
transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm 
551(1–2):34–41. https://doi.org/10.1016/j.ijpharm.2018.09.009 

126. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan-based nanofibers in bone 
tissue engineering. Int J Biol Macromol 104(B):1372–1382. https://doi.org/10.1016/j.ijb 
iomac.2016.12.046 

127. Tao F, Cheng Y, Shi X, Zheng H, Du Y et al (2019) Applications of chitin and chitosan 
nanofibers in bone regenerative engineering. Carbohyd Polym 230:115658. https://doi.org/ 
10.1016/j.carbpol.2019.115658 

128. Duan B, Shou K, Su X, Niu Y, Zheng G et al (2017) Hierarchical microspheres constructed 
from chitin nanofibers penetrated hydroxyapatite crystals for bone regeneration. Biomacromol 
18(7):2080–2089. https://doi.org/10.1021/acs.biomac.7b00408 

129. Hamidabadi HG, Rezvani Z, Bojnordi MN, Shirinzadeh H, Seifalian AM et al (2017) 
Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a guided platform 
for neuronlike differentiation of human dental pulp stem cells. Appl Mater Interfaces 
9(13):11392–11304. https://doi.org/10.1021/acsami.6b14283 

130. Cao L, Kong X, Lin S, Zhang S, Wang J et al (2018) Synergistic effects of dual growth 
factor delivery from composite hydrogels incorporating 2-n,6-o-sulphated chitosan on bone 
regeneration. Artifi Cells Nanomed Biotechnol 46(sup3):S1–S7. https://doi.org/10.1080/216 
91401.2018.1488721 

131. Seethalakshmi K, Venkatachalapathy B, Kaviya M, Mubeena S, Punnoose AM et al (2019) 
6-o-trityl chitosan reinforced polycaprolactone nano scaffolds for bone replacement appli-
cations: a physicochemical study. Mater Res Express 6(6):065308. https://doi.org/10.1088/ 
2053-1591/ab0bd0 

132. Luo J, Zhang H, Zhu J, Cui X, Gao J et al (2018) 3-D mineralized silk fibroin/polycaprolactone 
composite scaffold modified with polyglutamate conjugated with bmp-2 peptide for bone-
tissue engineering. Colloids Surf B 163:369–378. https://doi.org/10.1016/j.colsurfb.2017. 
12.043 

133. Lee JU, Kim GH (2018) Three-dimensional hierarchical nanofibrous collagen scaffold fabri-
cated using fibrillated collagen and Pluronic F-127 for regenerating bone tissue. ACS Appl 
Mater Interfaces 10(42):35801–35811. https://doi.org/10.1021/acsami.8b14088 

134. Abazari MF, Soleimanifar F, Faskhodi MA, Mansour RN, Mahabdi JA et al (2019) 
Improved osteogenic differentiation of human induced pluripotent stem cells cultured on 
polyvinylidene fluoride/collagen/platelet-rich plasma composite nanofibers. J Cell Physiol 
235(2):1155–1164. https://doi.org/10.1002/jcp.29029 

135. Khan S, Kumar V, Roy P, Kundu PP (2019) TiO2 doped chitosan/hydroxyapatite/halloysite 
nanotube membranes with enhanced mechanical properties and osteoblast-like cell response 
for application in bone tissue engineering. RSC Adv 9(68):39768–39779. https://doi.org/10. 
1039/C9RA08366A 

136. Avani F, Damoogh S, Mottaghitalab F, Karkhaneh A, Farokhi M (2019) Vancomycin loaded 
halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. 
Int J Polym Mater Polym Biomater 69(1):32–43. https://doi.org/10.1080/00914037.2019.161 
6201 

137. Tang Q, Hu Z, Jin H, Zheng G, Yu XF et al (2019) Microporous polysaccharide multilayer 
coated BCP composite scaffolds with immobilized calcitriol promote osteoporotic bone regen-
eration both in vitro and in vivo. Theranostics 9(4):1125–1143. https://doi.org/10.7150/thno. 
29566 

138. Danti S, Trombi L, Fusco A, Azimi B, Lazzeri A et al (2019) Chitin nanofibrils and nanolignin 
as functional agents in skin regeneration. Int J Mol Sci 20(11):2669. https://doi.org/10.3390/ 
ijms20112669 

139. Wei J, Wang B, Li Z, Wu Z, Zhang M et al (2020) A 3D-printable tempo/oxidized bacterial 
cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohyd 
Polym 238:116207. https://doi.org/10.1016/j.carbpol.2020.116207

https://doi.org/10.1021/acsami.8b11013
https://doi.org/10.1016/j.ijpharm.2018.09.009
https://doi.org/10.1016/j.ijbiomac.2016.12.046
https://doi.org/10.1016/j.ijbiomac.2016.12.046
https://doi.org/10.1016/j.carbpol.2019.115658
https://doi.org/10.1016/j.carbpol.2019.115658
https://doi.org/10.1021/acs.biomac.7b00408
https://doi.org/10.1021/acsami.6b14283
https://doi.org/10.1080/21691401.2018.1488721
https://doi.org/10.1080/21691401.2018.1488721
https://doi.org/10.1088/2053-1591/ab0bd0
https://doi.org/10.1088/2053-1591/ab0bd0
https://doi.org/10.1016/j.colsurfb.2017.12.043
https://doi.org/10.1016/j.colsurfb.2017.12.043
https://doi.org/10.1021/acsami.8b14088
https://doi.org/10.1002/jcp.29029
https://doi.org/10.1039/C9RA08366A
https://doi.org/10.1039/C9RA08366A
https://doi.org/10.1080/00914037.2019.1616201
https://doi.org/10.1080/00914037.2019.1616201
https://doi.org/10.7150/thno.29566
https://doi.org/10.7150/thno.29566
https://doi.org/10.3390/ijms20112669
https://doi.org/10.3390/ijms20112669
https://doi.org/10.1016/j.carbpol.2020.116207


60 S. Dua et al.

140. Peng W, Ren S, Zhang Y, Fan R, Zhou Y et al (2021) MgO nanoparticles-incorporated 
PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue 
regeneration. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.668428 

141. Shao L, Wang X, Yang B, Wang Q, Tian Q et al (2017) A highly sensitive ascorbic acid sensor 
based on hierarchical polyaniline coated halloysite nanotubes prepared by electrophoretic 
deposition. Electrochim Acta 225:286–297. https://doi.org/10.1016/j.electacta.2017.09.178 

142. Wan H, Yue J, Zhu S, Uno T, Zhang X et al (2018) A bright organic NIR-II nanofluorophore for 
three-dimensional imaging into biological tissues. Nat Commun 9. https://doi.org/10.1038/ 
s41467-018-03505-4 

143. Rajendrakumar SK, Venu A, Revuri V, Thomas RJ, Thirunavukkarasu GK et al (2019) 
Hyaluronan-stabilized redox-sensitive nanoassembly for chemogene therapy and dual T1/ 
T2 MR imaging in drug-resistant breast cancer cells. Mol Pharm 16(5):2226–2234. https:// 
doi.org/10.1021/acs.molpharmaceut.9b00189 

144. Jeevarathinam AS, Lemaster JE, Chen F, Zhao E, Jokerst JV (2020) Photoacoustic imaging 
quantifies drug release from nanocarriers via redox chemistry of dye-labelled cargo. Angew 
Chem Int Ed 59(12):4678–4683. https://doi.org/10.1002/anie.201914120 

145. Xu C, He XY, Ren XH, Cheng SX (2021) Direct detection of intracellular miRNA in living 
circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosens Bioelectron 
190:113401. https://doi.org/10.1016/j.bios.2021.113401 

146. Sim T, Choi B, Kwon SW, Kim KS, Choi H et al (2021) Magneto-activation and magnetic 
resonance imaging of natural killer cells labelled with magnetic nanocomplexes for the treat-
ment of solid tumors. ACS Nano 15(8):12780–12793. https://doi.org/10.1021/acsnano.1c0 
1889 

147. Wang YM, Xu Y, Yang ZR, Zhang X, Hu Y et al (2021) Multi-functional lanthanide coordina-
tion polymers for multi-modal detection of nitroaromatics and trace water in organic solvents. 
J Colloid Interface Sci 598:474–482. https://doi.org/10.1016/j.jcis.2021.04.045 

148. Shen Y, Shen G, Zhang Y (2018) Voltametric immunoassay for α-fetoprotein by using a gold 
nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid. Microchim Acta 185. 
https://doi.org/10.1007/s00604-018-2886-3 

149. Pirzada M, Altintas Z (2022) Nanomaterials for virus sensing and tracking. Chem Soc Rev 
51:5805–5841. https://doi.org/10.1039/D1CS01150B 

150. Hu WP, Zhang B, Zhang J, Luo WL, Guo Y et al (2017) Ag/ alginate nanofiber membrane for 
flexible electronic skin. Nanotechnology 28(44):445502. https://doi.org/10.1088/1361-6528/ 
aa8746 
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Abstract Biological nanomaterials, also known as biomaterials, are materials 
derived from or inspired by biological systems, such as proteins, nucleic acids, and 
viruses. This chapter provides an overview of the synthesis, characterization, and 
applications of biological nanomaterials. We begin by discussing the properties and 
synthesis methods of these materials, including genetic engineering, chemical modi-
fication, and self-assembly. Next, we describe their characterization techniques, such 
as electron microscopy, X-ray crystallography, and circular dichroism. The chapter 
also explores the various applications of biological nanomaterials, including in drug 
delivery, tissue engineering, biosensors, and biocatalysis. Moreover, we highlight the 
challenges associated with their large-scale production and commercialization, such 
as immunogenicity, stability, and regulatory issues. Finally, the chapter concludes 
with a summary of the current state of research and suggests possible directions for 
future work in this exciting field. 

Keywords Biological nanomaterials · Biocatalysis · Chitosan · Fibroin · Silica ·
Synthetic bionanomaterials · Nanocellulose 

1 Introduction 

The word ‘nanotechnology’ has its origin from the Greek word ‘nano’ meaning ‘tiny’ 
and is one thousand millionth of a meter. The technology that is related to the study of 
molecules that have range between 1 and 100 nm and makes it practically approach-
able and available is known as ‘nanotechnology.’ Richard Feynman, an American 
physicist and Nobel Prize laureate, was the first one who during a lecture introduced
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the concept of nanotechnology in 1959. For the first time, the word nanotechnology 
was used by Norio Taniguchi in 1974. 

The nanomaterials which have biological origin are continuously used in diverse 
fields as they have huge potential due to their being biocompatible, non-toxic, and 
biodegradable in nature. These nanomaterials which have biological origin are known 
as bio-nanomaterials. Bio-nanomaterials have diverse properties such as biological, 
chemical, mechanical, physical, and catalytic properties which can be detected using 
techniques such as microscopy and spectroscopy. 

The size of the bio-nanomaterials plays an important role in their functioning [1]. 
The bio-nanomaterials small size proves to be more efficient in different applications 
such as in drug delivering as the small size particle can travel more conveniently than 
large size particles. The small size bio-nanomaterials are being continuously designed 
as smaller size enhance the properties of the bio-nanomaterial. 

The recent advantages in the biological nanomaterials are the use of green-based 
approach for the synthesis of bio-nanomaterials. Microorganisms, plants, and agri-
cultural waste are being used for the synthesis of biological nanomaterials. The 
different plant organs (such as leaf, stem, seed, and root) have been used as these 
are environmental-friendly and have low toxicity levels. For example, the roots 
of coriander, Platycodon grandiflorum, were used for the production of Fe–Ag–Pt 
nanoparticles [2]. The extracts from the fruit of Chinese wolfberry have been used to 
produce Au–Ag [3]. The fungi when in vicinity of metal ions produce biomolecules 
such as anthraquinones or naphthoquinones used for creating metal particles [4]. The 
banana peels have been utilized for the production of CdS alloy [5], and Antigonon 
leptopus (a useless weed) has been utilized for the production of Au–Ag nanoparticles 
[6]. 

The bio-nanomaterials are classified as organic-based bio-nanomaterials, 
synthetic-based bio-nanomaterials, and biological nanomaterials on the basis 
of their source of origin. 

2 Organic Bio-nanomaterials 

Organic bio-nanomaterials are a class of nanomaterials that include nanoparticles 
made of polymers such as chitosan, silk fibroin, and poly (lactic-co-glycolic) acid 
(PLGA) with diverse use in biological fields. Organic bio-nanomaterials have been 
continuously under ongoing research due to their huge potential for various biomed-
ical use. Organic bio-nanomaterials are recently being used for diagnostic imaging 
techniques, cancer therapies, and sustainable drug administration. 

Polymeric-based, carbon-based, silica-based, and metallic-based are mostly used 
classes of organic bio-nanomaterials in diverse fields (Fig. 1).

(A) Polymeric-Based Organic Bio-nanomaterials 

Organic nanoparticles such as chitosan, silk fibroin, and PGLA are in continuous 
research and use as they have huge potential in the biomedical field due to their
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Fig. 1 Different class of organic bio-nanomaterials

non-toxic nature. The side effects caused by these polymers are minimum, so they 
are being continuously researched for their potential use in the biomedical field. 

(1) Chitosan 

Chitosan is one of the most abundant natural polymers and can be easily extracted and 
utilized in different domains. Being a biocompatible, biodegradable, and non-toxic 
polymer, it is considered to be very sustainable and renewable. Chitosan has been 
continuously used as a coating agent for a lot of metal nanoparticles. The chitosan 
coating of the metal nanoparticles has been useful as a carrier of drugs [7] and control 
release of the drugs [8]. 

The chitin deacetylation leads to the formation of glucosamine and n-acetyl 
glucosamine which constitutes the main structure of chitosan [9]. The key factors 
that have a major influence on the properties of chitosan are its molecular weight 
(MW) and degree of deacetylation (DDA) [10]. 

1(a) Properties of Chitosan 

(a) Antimicrobial property—Chitosan exhibits antimicrobial properties as during 
acidic conditions the positive charge chitosan interacts with the biomolecules’ 
negative charge residues on the bacterial cell’s surface [11]. This antimicrobial 
property of chitosan has been utilized in biomedical applications. The molecular 
weight of the chitosan determines its ability to penetrate the bacterial membrane 
as a low molecular weight chitosan has been effective to permeate the bacterial 
membrane better than a high molecular weight chitosan [12]. 

(b) Antioxidant property—Free radicals are molecules that are unstable and have 
high reactivity and are thus linked with a lot of health problems [13]. Chitosan 
mimics the antioxidants as a scavenging agent for free radicals and thus helps 
in the prevention of free radicals formation [14].
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(c) Tumor growth inhibiting property—Chitosan has been utilized as a tumor 
growth inhibitor [15]. Chitosan is effective to inhibit the tumor growth by 
preventing tumorigenesis, inducing tumor cell apoptosis, and inhibiting tumor 
metastasis. The molecular weight and the degree of deacetylation of the chitosan 
are important factors that are known to exhibit the anti-tumor activity of chitosan. 
The chitosan with a high degree of deacetylation and low molecular weight show 
better anti-cancerous activity [16]. 

(d) Biocompatible property—The chitosan affects the formation of the metal 
nanoparticles as the chitosan which is a cationic polymer electrostatically 
interact with nanoparticles which are negatively charged. The absorbance 
of the chitosan on the surface of nanoparticles enhances the ability of bio-
nanomaterials to carry the drugs and also enhances the biocompatible nature of 
the nanoparticles [17]. Chitosan has been shown to increase the formation of 
AgNPs as it was also observed that at high chitosan concentrations, the size of 
the AgNPs also decreased. 

1(b) Recent Applications of Chitosan in Drug Delivery System 

1. The drugs are entrapped to the chitosan coated metal nanoparticles for their effec-
tive delivery into the body system [18]. An example is the delivery of doxorubicin 
(DOX) using the chitosan-copper oxide (CS-CuO) nanoparticles into the cancer 
cells [19]. 

2. Gold nanoparticles (AuNPs) have been synthesized using the chitosan’s reducing 
ability. The chitosan-coated gold nanoparticles (CS-AuNPs) were able to effec-
tively load insulin, and this increases the insulin delivery into the body. The 
application of the CS-AuNPs in insulin delivery to the body shows potential for 
the control of the postprandial hyperglycemia [20]. 

3. The increase in resistance of different bacterial species to drugs has been a 
concerning issue since last decade. The CS-AuNPs have been effective as bacteri-
cidal molecules as these proved to be efficient in inhibiting bacterial strains [21]. 
The chitosan molecules being positively charged in nature interact efficiently 
with the negatively charged membrane of the bacteria (Fig. 2). 

(2) Silk Fibroin 

Silk fibroin is being used widely as a bio-nanomaterial due to its non-toxic properties. 
The silk fibroin is used extensively in the biomedical field due to efficiency as a safe

Fig. 2 Applications of chitosan in biomedicine 
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drug delivery system. Silk fibroin can be used at the nanoscales as nanoparticles and 
nanofibers. Sericin and fibroin are two proteins that are the main components of silk 
fibroin. The ability of silk fibroin to get shaped into different scaffolds has been used 
in drug delivery and the regeneration of skin and tissues. 

The structural unit of silk fibroin consists of two fibroin filaments with a covering 
of sericin [21]. The glycine (43%), alanine (30%), and serine (12%) constitute the 
most repetitive sequences in the primary structure of the silk fibroin with [22]. 
The Food and Drug Administration (FDA), USA, has given its approval for silk 
fibroin for use in the medicine. The sericin component of the silk fibroin is not 
used in the medicine as it has been related to generate immunogenic response after 
administration in the body [23]. 

The silk fibroin can be formed into a variety of materials at the nanoscales, micro-
scales, and macro-scales such as nanofibers, nanoparticles, hydrogels, microspheres, 
and silk fibroin sponges. The textile industry is the major consumer of silk as it 
contains properties such as luster, softness, and lightness. By combining the silk 
solution with a porogen (such as salt or sugar crystals, polymer or mineral beads), 
silk fibroin sponges can be created. Silk fibroin sponges can be used as scaffolds for 
bone tissue regeneration due to their macroporous properties that can be tuned to 
promote the development of new vascularized bone tissue [24]. 

Silk microspheres can be made in several ways. Encapsulation in fatty acids to 
form emulsions, phase separation of silk from another polymer such as poly (vinyl 
alcohol) (PVA) [23], or addition of potassium phosphate to aqueous silk solutions 
[25] are some of the ways to form silk microspheres. Silk microspheres has its 
application in the medication delivery system as silk microsphere has use in the 
controlled release of the contents, and this can be achieved by controlling the rate at 
which the encapsulating material breaks down its contents [26, 27]. 

The hydrogels have mechanical properties that makes it similar to soft tissues 
of the body. This is utilized in the field of regenerative medicine [28] and tissue 
engineering [29]. Silk has been used as an important substance for the fabrication 
of microneedle systems used in drug delivery, and for efficient drug delivery, other 
materials such as insulin [30] and vaccines [31] have been used to prepare these 
microneedles. 

2(a) Applications of Silk Fibroin 

Since silk is a foreign body, a mild inflammatory response is usually observed 
upon administration. This immunogenic response is associated with the presence of 
sericin in the material [32]. However, no immunogenicity was found when using 
materials composed of silk fibroin [33]. 

The applications of silk materials in the biomedicine are attributed to their biocom-
patible nature, biodegradable nature, and mechanical robustness. For the skin burn 
wounds, silk materials have been found to generate a rapid re-epitheliazation, and 
studies have revealed that improvement in wound healing was observed with electro-
spun silk materials functionalization with silver sulfadiazine and epidermal growth 
factor (EGF) [34]. The use of silk fibroin in drug delivery has been successful. The
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drug used as a treatment agent for age-related macular degeneration, bevacizumab 
has been used with silk hydrogels for its release at the target site [35]. 

The antibacterial application of the silk materials has been demonstrated by func-
tionalizing them with silver nanoparticles by using UV irradiation in silk solutions 
[36]. The bone regeneration has also been achieved with AgNPs loaded silk hydrogels 
[37]. 

3 Carbon-Based Organic Bio-nanomaterials 

Carbon-based nanomaterials have been in continuous use recently due to their various 
applications in the biomedical field. The various sources of carbon-based nano-
materials include graphene oxide (GO), carbon nanotubes (CNTs), fullerene, and 
graphene quantum dots (GQDs) as allotropes of carbon [38]. Graphene is the most 
common and popular allotrope of carbon, making it an ideal candidate for drug 
delivery due to properties such as its extremely high surface area and chemical purity 
[39]. Graphene shows good compatibility with different biological materials, fluo-
rescent dyes, and therapeutic agents. This makes it a potential candidate for diagnosis 
purposes of medical conditions such as cancer, and in vivo imaging. 

3.1 Applications of Carbo-Based Nanomaterials 

3.1.1 Carbon-Based Nanomaterials as Biosensors 

(a) Carbon-based nanotubes have been used as biosensors due to their high conduc-
tivity, sensitivity, chemical stability, and aspect ratio [40]. The electron-transfer 
rate of carbon-based nanotubes being fast in nature makes them have huge 
applications in biosensing [41]. 

An example of carbon-based nanotubes being used in medicine is the use of 
carbon nanotube non-woven fabrics (CNTFs). The CNTFs have been used as 
a sensor of glucose from a solution of glucose oxidase-impregnated polyvinyl 
alcohol [42]. Carbon-based nanotube-based electrochemical biosensors have 
been used for the detection of nitric oxide [43] and sensors of epinephrine [44]. 

(b) Graphene oxide-based nanoparticles have applications as biosensors [45] that 
can transduce a specific reaction to the target molecules due to fluores-
cence, electrochemical reactions, and Raman scattering. The single and double-
stranded DNA can be sensed using graphene oxide-based nanoparticles as 
elective electrochemical sensors [46, 47]. Graphene field effect transistors 
(GEFTs) have been used for the design of label-free DNA biosensors. These 
graphene field effect transistors functionalized with single-stranded probe DNA 
serve as sensitive biosensors with a detection limit of 1 fM for 60-mer DNA 
oligonucleotides [48].
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(c) Graphene quantum dots have been used as biosensors in the medical industry for 
disease diagnosis purposes. The graphene quantum dots show better sensitivity 
and selectivity for the detection of biological molecules such as DNA, proteins, 
glucose, and RNA due to their electrochemiluminescence, photoluminescence, 
and electrochemical properties [49, 50]. 

3.1.2 Carbon-Based Nanomaterials as Drug Delivery 

(a) Carbon-based nanotubes for drug delivery have been very efficient due to their 
dynamic properties such as their morphology that enables them to penetrate 
(non-invasive) into the biological membranes [51]. The carbon nanotubes’ 
inner hollow cavity is used for drug loading, and this method is ideal for drug 
release into the system as it has less impact from the physiological conditions. 
Examples of carbon-based nanotubes as efficient drug delivery vehicles include 
doxorubicin [52], paclitaxel [53], and oxaliplatin [54] for cancer treatments. 

(b) Graphene oxide-based nanoparticles for drug delivery 
The graphene-based nanoparticles are based on the properties of graphene 

such as the availability of π electrons in graphene and graphene’s large surface 
area. 

The doxorubicin (DOX) in high amounts has been loaded into graphene 
(phospholipid monolayer coated), and it was observed that acidic pH favored 
more release of doxorubicin in comparison to a basic pH [55]. Doxorubicin 
(hydrophilic) and indomethacin (hydrophobic) have been loaded on poly-N-
isopropyl acrylamide (PNIPAM) grafted GO (GPNM) via π–π interaction, H-
bonding, and hydrophobic interaction. The free radical polymerization process 
(FRPP) was used to covalently link PNIPAM with GO [56]. 

3.1.3 Graphene quantum dots as drug delivery 

The graphene quantum dots have been used for the delivery of drugs due to their 
oxygen-rich surface and a small lateral size single atomic layer. 

It makes it highly suitable for drug delivery loading and enhances its stability. 
The graphene quantum dots have a fluorescent property, and this property is utilized 
to trace the drugs delivered into the system [57]. A drug delivery system has been 
designed using graphene quantum dots-conjugated gemcitabine-loaded HSA nano-
formulation where albumin has been used to deliver gemcitabine into tumor cells 
[58]. Graphene quantum dots loaded with doxorubicin conjugated with Cy5.5 dye 
via a cathepsin D-responsive (P) peptide have been developed that showed enhanced 
penetration of the drug through tissues and the uptake of the drugs by the cells. Blue 
fluorescence was observed in the cells that were treated by GQD-P-Cy confirming 
the efficient drug delivery and confirming its biocompatible nature [59].
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4 Silica-Based Organic Bio-nanomaterials 

The applications of mesoporous materials as bio-nanomaterials have been increasing 
continuously due to their distinct pore sizes, pore volumes, and large surface area 
such as carriers for the controlled release of bioactive ingredients. The mesoporous 
silica materials show excellent drug-loading capacity and are also used to encapsulate 
molecules. The encapsulation of materials for safe use in medical applications shows 
its biocompatible nature [60]. 

The synthesis of mesoporous silica involves the incorporation of surfactants into 
silica precursors (such as tetraethyl orthosilicate—TEOS or sodium orthosilicate— 
Na2SiO6) under basic conditions in alcoholic solutions (NH4OH or NaOH). The 
alcoholic solution hydrolyzes the silicate and surrounds the spherical micelles which 
then undergo hydrothermal treatment so that the self-assembly of silicate micelles 
can take place in the form of cylinders [61]. 

The morphology of the mesoporous silica nanomaterials affects their biocompat-
ible nature as the dimensions of the mesoporous silica nanoparticles affects different 
biological parameters such as their distribution in the body. It has been researched 
that the smaller silica nanoparticles circulate in the blood for longer durations [62]. 

Silica nanoparticles with a size of 110 nm were administered from different routes 
(hypodermic, intravenous, oral administration, and intramuscular). This study aimed 
to check the effect of the mode of administration of the nanoparticle on its biodis-
tribution, elimination, and toxicity. The results showed that the intramuscular and 
hypodermal routes of administration showed slight inflammation at the site of injec-
tion while the target organs did not show any histopathological abnormalities on all 
four administration routes [63]. 

The toxicity levels of silica were also studied by different researchers. One such 
study was aimed to check the toxicity of silica nanoparticles in the dermal area. The 
study involved colloidal silica nanoparticles of 20 nm which were applied for 90 days 
on the skin to check their toxicity levels. The study also checked for internal organ 
damage (with a 2000 mg/kg dose of silica nanoparticles), and the results showed no 
damage in the internal organs and toxicity in the rats [64]. The toxicity levels of the 
silica nanoparticles can be reduced and the biocompatibility of the silica nanoparticles 
can be enhanced by optimizing the physiochemical factors such as particle sizes and 
surface charges. 

4.1 Applications of Silica-Based Nanomaterials 

The silica-based nanomaterials show a wide range of applications in the biomedical 
domain such as in drug delivery, vaccines, and in cell imaging. As drug delivery 
molecules, mesoporous silica nanomaterials are considered ideal as these can be used 
for the containment of drugs and their protection with successful drug delivery. An 
example of a mesoporous silica nanomaterial used for drug delivery is MCM-48 silica
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which is utilized for the fast transport of drugs. The drugs used with MCM-48 that 
have been successfully delivered to their target sites are ibuprofen and erythromycin 
[65]. It was also observed that the pore size when decreased resulted in a reduced 
release rate of the drug. 

The use of mesoporous silica nanomaterials in the diagnostic field has gained 
success due to their imaging susceptivity. A study showed that the functionalization of 
targeted ligands with mesoporous silica nanomaterials showed imaging susceptivity 
at the target site due to magnetic resonance contrast agents (nanomaterials-based) 
[66]. 

5 Metallic-Based Organic Nanomaterials 

The metallic-based organic nanomaterials in the form of metal or metal oxide-
supported nanomaterials have been on the rise due to their therapeutic properties. 
These nanomaterials can be categorized into 

(1) Metal-based nanomaterial (such as gold, copper, titanium, and silver-based 
nanoparticles). 

(2) Metal oxide-based nanomaterial (such as silver oxide, and titanium dioxide). 
(3) Metal oxides and metal-based doped nanomaterial (such as ZnO doped with 

Mg). 
(4) Metal–organic framework nanomaterials (such as Zn-based metallic organic 

frameworks). 
(5) Metal sulfides nanomaterials (such as AgS, CuS, FeS, and ZnS-based nanoma-

terials). 

Metal-based nanoparticles such as gold nanomaterials have gained more recogni-
tion lately due to their low toxicity levels. The gold-based nanomaterials also show a 
high attachment to biological molecules and can be easily prepared [67]. The silver 
nanoparticles show antimicrobial properties, and this is utilized against microbes 
and other viruses. This antimicrobial property of silver nanoparticles has made it a 
useful agent in the textile industry [68]. The metal oxide-based nanomaterials such 
as TiO2 are effective against different infectious disease transmission [69]. 

Metal-based nanomaterials such as zinc oxide-based nanomaterial exhibit safe 
properties that are utilized in photo-oxidation and photo-catalysis in a variety of 
biological fields [70]. 

The antimicrobial property of metal-based nanoparticles has been due to the 
positive surface charge on the metallic nanoparticle that interacts with the negative 
charges on the bacterial membrane surface. This results in the bactericidal ability 
exhibited by the metallic nanoparticles, and this antimicrobial property is strongly 
influenced by the shape of the nanoparticles [71].
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6 Synthetic Bio-nanomaterials 

The synthetic class of bio-nanomaterials includes the peptide nucleic acid (PNA). 
The PNA is synthesized by removing the phosphate backbone with a pseudopeptide 
backbone and has the ability to hybridize with neutral nucleic acids. The purines 
and pyrimidines in the PNA are connected to its N-(2-aminoethyl) glycine backbone 
by methyl carbonyl linkages [72]. This backbone allows the PNA to be resistant 
to the enzymatic degradation, and this structural property of PNA is utilized in the 
biomedicine [73]. 

The nanoparticles and PNA complexes have been used as biosensors. The surface-
coated fluorescent nanoparticles used as biosensors have been used for live imagining 
of the RNA molecules and a high surface to volume ratios of the PNA-nanoparticles 
complex increase the biosensor-based detection [74]. 

The ability of the PNAs to be able to bind to specific nucleic acids is utilized in 
cancer therapies. The PNAs can be designed as cancer drugs and used for nucleic 
acid delivery to the specific cells. For example, the microRNAs have been used 
cancer therapy as target nucleic acids for PNAs-based cancer drugs [75]. The silicon 
nanowires labeled with PNA have been used as biosensors for the detection of 
miRNAs in the cancer diagnostics [76]. 

7 Green-Based Bio-nanomaterial 

Green nanotechnology is the application of nanotechnology to improve the sustain-
ability of processes that have harmful environmental effects. It also refers to the usage 
of nanotechnology-related products to improve sustainability. Making environmen-
tally friendly nanoproducts and utilizing nanoproducts to promote sustainability are 
part of it. Green nanotechnology aims to create nanomaterials and products that don’t 
affect the environment or people’s health, as well as nanoproducts that solve envi-
ronmental issues. It creates nanomaterials and nanoproducts using already-existing 
principles of green chemistry and green engineering [77]. 

The phrase ‘green synthesis of nanomaterials’ describes the production of various 
metal nanoparticles using bioactive materials such as plant matter, microbes, and a 
variety of biowastes like vegetable waste, fruit peel waste, eggshell, agricultural trash, 
and so on. 

7.1 Classification of Green Nanomaterials 

The order of dimensions to which a nanomaterial’s structure extends determines its 
classification. The dimensions of an electron are limited to one, two, or three [78] 
(Fig. 3).
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Fig. 3 Classification of green nanomaterials 

(1) Zero-Dimensional (0D) Nanomaterial 

The most fundamental and symmetric shapes are those with zero dimensions, such 
as spheres and cubes, having nano-dimensions along all of the axes of x, y, and 
z and polygon. Examples of this include semiconductors like quantum dots and 
metallic nanoparticles like gold and silver class, with spherical shapes and dimensions 
between 1 and 50 nm. 

(2) One-Dimensional (1D) Nanomaterial 

These nanostructures will have one dimension that extends beyond the nanometer 
range, as seen in metal and metal oxide nanowires, nanorods, and nanotubes. 
Although these materials are only a few micrometers long, the diameter is measured 
in nanometers [79]. 

(3) Two-Dimensional (2D) Nanomaterial 

Nanosheets or nanofilms with two dimensions lie outside the nanometer range in 
nanomaterials like nanofilms and thin film multilayers. The surface area of nanoscale 
films could be many square micrometers, yet the thickness is still the same in 
nanoscale. In 2D, there are fewer forms and varieties of inorganic nano-objects class. 

(4) Three-Dimensional (3D) Nanomaterial 

Objects with a cumulative size in the micrometer or millimeter range but with nano-
metric characteristics like confinement on the nanoscale spaces, or those created 
by the regular assembly and arrangement of nanoscale components can be referred 
to as ‘3D nano-systems.’ With all dimensions greater than nano, they nonetheless 
have peculiar molecular and bulk characteristics that reveal their component parts. 
Nanocrystals with three dimensions are created by arranging 0D spheres, 1D rods, 
or 2D plates resulting in unique superstructures, like the box-shaped graphene or the 
platinum mesostructured films.
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7.2 Introduction to Green Synthesis 

Natural reducing agents, such as polysaccharides or plant extract, bacteria, and fungi 
are examples of biological microorganisms that can be employed for the synthesis 
of nanoparticles. 

7.3 Meaning of Biological Synthesis 

The environmentally friendly and green technique of biosynthesizing metallic 
nanoparticles from microorganisms like bacteria, actinomycetes, fungi, and algae. 
The combination of depending on the situation, nanoparticles may be intrinsic to the 
cell or a reaction from the outside where the nanoparticle product is located. 

7.4 Synthesis Based on Plant Extract 

The method for using plant extracts to create nanoparticles is straightforward, in that: 
The extract is combined with a metal salt solution at various temperatures and kept 
constantly moving and occasionally exposed to ultrasonic or microwave irradiation 
for a specified amount of time. Metal ion biogenic reduction to base takes place 
in a single step. Metal moves quickly and can operate at ambient temperature and 
pressure; therefore, that scaling up is simple to do. The reducing agents found are 
secondary plant chemicals [80]. 

The metabolites are chemically categorized as co-enzymes, alkaloids, tannins, 
and terpenoids. Various plant species’ extracts have been used to create synthetic; 
alternatively, to metallic nanoparticles, live plants have also been employed [81]. 

7.5 The Advantages of Green Synthesis When Compared 
to Conventional Process 

The environmentally friendly, more affordable, and simpler green synthesis of metal 
nanoparticles is a safe replacement for traditional chemical and physical processes 
that produce good results that don’t need sophisticated equipment or complicated 
reagents [82].
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7.6 Utilizing Green Synthesis to Create Metallic 
Nanoparticles 

According to a preliminary study, the following herbs (leaf and fruit) are abundant 
in biomolecules that can be used to create nanoparticles. 

7.6.1 Coconut Leaf 

The coconut plant, or Cocos Nucifera, has pinnate leaves that are 4–6 m, (13– 
20 ft) long, with pinnae measuring 60–90 cm. Its capacity for free radical scav-
enging, antioxidant, and antibiotic properties are all heavily researched. The coconut 
leaf extract’s total phenol content (TPC) ranges from 0.59 to 2.22 mg/g. Phenolic 
compounds have the ability to reduce in a green manner. 

7.6.2 Jackfruit Leaf 

Jackfruit, or Artocarpus heterophyllus, is a popular fruit in India, while some features 
such as having dark green, alternating, comparatively big, and oval-shaped leaves 
are characteristic of Southeast Asia, which have immature shoots that are strongly 
lobed. 

7.6.3 Indian Gooseberry Fruit 

Indian gooseberry (amla), also known as Phyllanthus emblica, was first discov-
ered in India. Amla fruit extract and each of its constituent components have been 
demonstrated to have an antioxidant effect. Vitamin C, a water-soluble antioxidant 
that scavenges free radicals, is abundant in amla. Amla includes a number of other 
active ingredients, including polyphenols, flavones, tannins, ellagic acid, derivatives, 
flavonols, and anthocyanins [83]. 

7.6.4 Night Flowering Jasmine Leaf 

The popular name for the Nyctanthes arborist is the night flowering jasmine tree. 
It is a medicinal plant with a broad range of biological activities, a leaf growing in 
India and other tropical and subtropical regions. Additionally, leaves contain an alka-
loid called acanthine. Mannitol, astringent, and resinous are also present in leaves. 
Leaves also contain components, including tannic acid, sugar, methyl salicylate, and 
a minuscule amount of volatile oils.
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8 Silver Nanoparticles 

Since they display a variety of bactericidal and fungicidal actions, silver nanoparti-
cles, which belong to the class of noble metal nanoparticles, have attracted attention. 
They are commonly used in a number of consumer items, including plastics, food, 
fabrics, pastes, soaps, and more. Typically, synthetic compounds used as reducing 
agents are used to create silver nanoparticles, which later, during the usage of the 
product, cause a variety of biological concerns due to their general toxicity, even at 
low concentrations of residual quantities. In biological compounds obtained from 
plant sources in the form of extracts and employed in ‘green synthesis,’ feasible, 
alternative, and superior reagents have been discovered. Aqueous leaf production of 
silver nanoparticles is one example. Azadirachta indica extract is used as a capping 
and reducing agent; it is well rounded, with a diameter of 34 nm, which is spher-
ically shaped. After 15 min of reduction without the use of hazardous chemicals, 
silver ions are produced. The silver nanoparticles were active against both Gram-
positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. 
Silver nanoparticles are created using a precursor called silver nitrate and leaves 
three plant extracts: Musa balbisiana (banana), A. indica (neem), and Ocimum tenui-
florum (black tulsi), as a reducing and stabilizing agent, have been achieved. E. coli 
and Bacillus sp. were significantly more resistant to the antibacterial effects of silver 
nanoparticles, in relation to both unprocessed plant extracts and silver nitrate. Silver 
nanoparticle-treated moong bean (Vigna radiata) and chickpea (Cicer arietinum) 
seeds demonstrated quicker and more effective germination, indicating silver’s low 
toxicity Nanoparticles [84]. 

9 Nanofibers Green Synthesis 

Due to their high surface area and membrane-like structure, nanofibers created 
utilizing environmentally friendly solvents or naturally occurring biodegradable 
polymers have found a niche application in medical devices for controlled drug 
release and wound healing structure. Electrospun nanofibers mats have been 
produced utilizing hydroxypropyl cellulose (HPC) alone or by addition of fiber-
forming polymer to improve the mechanical qualities of the nanofiber mats, using 
poly (vinyl alcohol) (PVA) or polyvinylpyrrolidone (PVP). Favorable character-
istics, such as heat stability and PVA or PVP’s aesthetic appeal and mechanical 
characteristics substantially improved and increased by the incorporation of HPC. 
Drug loading on these nanofibers enabled medication release that is sustained when 
assessed in vitro [85].
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10 Application and Sources of Green Synthesis and Green 
Nanomaterial 

The use of green nanotechnology and nanomaterials is extremely widespread. It is of 
immense importance as engineering and science advance into a new era. The vastness, 
inventiveness, and futuristic outlook of human civilization will all be the precursors 
to the real emancipation of science on a worldwide scale. The engineering field 
of green nanomaterials is currently undergoing extensive study and emancipation. 
Challenges in the fields of green nanotechnology, green nanomaterials, and the future 
of nanotechnology science are all pallbearers for a transformative period in science 
and engineering. Green nanoparticles come from a wide variety of sources. Plant 
extracts, biopolymers, vitamins, proteins, peptides (such as glutathione), sugars, and 
other plant-based compounds are only a few of the chemical compounds that nature 
gives us that work as reducing agents (e.g., glucose and fructose). Recently, the field 
of biomedical applications, such as medication and gene delivery, has emerged as an 
exciting prospect for forward-thinking research. Another class of natural resources 
utilized for the manufacture of metal nanoparticles is biopolymers. These polymeric 
carbohydrate molecules are accessible for the mass synthesis of nanoparticles since 
they have already been used in a variety of applications [86–91]. 

11 A Green Nanomaterial—the Nanocellulose 

Nanocellulose is cellulose with a nanoscale structure. This includes cellulose 
nanofibers, micro-fibrillated cellulose, nanocrystalline cellulose, and bacterial 
nanocellulose, all of which refer to cellulose with a nanostructure created by bacteria. 
A very promising field of science and technology today is the enzymatic processing 
of nanocellulose. Nanocellulose’s characteristic makes it a promising and signifi-
cant material for various uses, and it has the potential to create a thriving industry 
[86, 92, 93]. 

12 Scientific Advances in the Field of Green Nanomaterial 
and Green Nanotechnology 

The wonders of modern science and technology are green nanotechnology and green 
nanomaterials. Huge scientific changes are occurring in the fields of green engi-
neering, green chemistry, and nanotechnology. With a clear focus on the advancement 
and emancipation of science, technology, and engineering, the authors in this part 
explain the scientific and engineering success in the fields of green nanotechnology, 
green nanoengineering, and green nanomaterials [94–96].
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Glaser [97] provided an insightful discussion on green chemistry using nano-
catalysts. Since nanomaterials may be designed at the nanoscale, they are anticipated 
to be a potential area for green chemical catalysis. Since they have a greater surface 
area and have been proven to exhibit catalytic properties, nano-catalysts are highly 
valued as materials. New and innovative process candidates, nano-catalysts are hailed 
for their higher activity, improved stability, durability or recycling potential, and 
cost-effectiveness. 

Chemical catalysis and reaction engineering are currently undergoing new revi-
sions. These novel catalysts are potential clean energy choices for fuel cell appli-
cations, hydrogen generating applications, and hydrogen storage applications. The 
topic of green nanoparticles and how environmentally friendly they are as a biother-
apeutic approach was covered by Nath et al. [98]. Nanomaterials engineering and 
technology are moving quickly forward, crossing one bold boundary after another 
[98]. 

Due to their special qualities and potential uses in a variety of fields, including 
drug administration and therapy, green nanoparticles have received a great deal of 
interest in the scientific and engineering community for decades. Green nanotech-
nology offers ways to reduce the risk associated with manufacturing nanoparticles 
and employing them to reduce the creation of chemical intermediates. 

A relatively new and expanding field of inquiry is nanotechnology. It is the 
newest cutting-edge development in science and technology today. Nanotechnology 
is the study of materials at the nanoscale, between 1 and 100 nm, where special 
phenomena can be seen and new uses can be imagined. As nanotechnology advances 
into new fields and offers up more windows, technology, engineering, and science 
are enshrined and envisioned [99]. 

The use of plant extracts in the green synthesis of gold nanoparticles is one of the 
promising methods for producing environmentally friendly nanomaterials for appli-
cations for environmental preservation and biology. The chemistry of natural goods 
is a modern scientific miracle. Proanthocyanidins, or functionalized gold nanoparti-
cles, were created in this study using a hydrothermal process. UV and visible spec-
trophotometry were used to characterize the produced gold nanoparticles (UV–vis) 
[100]. 

Green nanotechnology and nanomaterials are currently on the cutting edge of 
tremendous scientific renewal. The worldwide scientific establishment is currently 
being destroyed by environmental catastrophes and global warming, leaving the 
globe in shock and awe [101]. 

Environmental biotechnology and chemical engineering both currently occupy 
the same space in the midst of profundity, prophecy, and revelation. This chapter 
emphasizes the complexity and breadth of the subject of environmental sustainability.
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Synthesis, Properties, 
and Characterization of Biological 
Nanomaterial 

Sarvat Zafar 

Abstract This chapter explored the various biological methods for creating nanos-
tructured materials, including their properties and characterization techniques. 
Biological approaches are gaining popularity in the synthesis of nanomaterials 
because of their sustainability, cost-effectiveness, speed, non-pathogenic nature, 
environmental friendliness, ease of scaling up for large-scale synthesis, and lack 
of need for high pressure, temperature, or toxic chemical components. Further-
more, these nano-sized materials are used safely and effectively for human ther-
apeutic purposes and have distinctive dimensions with a large surface area, chemical 
stability, and greater binding density, making them promising for applications in 
diverse areas such as food processing, drug delivery, cosmetics, pharmaceuticals, 
chemical industry, mechanics, wastewater purification, and catalytic properties. In 
addition, nanomaterials are characterized by their surface morphology and compo-
sitional structure using various techniques such as energy-dispersive X-ray spec-
troscopy (EDS), dynamic light scattering (DLS), atomic force microscopy (AFM), 
Raman spectroscopy (RS), Fourier transform infrared (FT-IR) spectroscopy, and 
scanning and transmission electron microscopy (SEM/TEM). 

Keywords Nanomaterials · Biological synthesis · Properties · Characterization 

1 Introduction 

The field of science and technology has witnessed remarkable advancements and 
innovative breakthroughs, leading to an encouraging potential among the interna-
tional scientific community to explore into new facets of nanotechnology. At its 
core, nanotechnology entails the manipulation of matter at the scale of nanometers 
(nm), where any one of its dimensions falls within the range of 1–100 nm [1]. Parti-
cles fabricated at the nanometer scale exhibit a variety of distinctive properties, such
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as optical, magnetic, and electrical characteristics, owing to wide-range surface area, 
high surface energy, and quantum confinement [2]. These unique physico-chemical 
attributes have led to the limitless application of nanoparticles in various fields, such 
as food industry [3], medicine [4], cosmetics [5], electronics [6], and the chemical 
industry [7]. The production of nanomaterials can be accomplished through a range 
of methods, such as physical, chemical, and biological techniques [8–10]. These 
physico-chemical and biological pathways for synthesizing nanoparticles (NPs) can 
be broadly categorized into two groups, namely the top-down approach and the 
bottom-up approach. The top-down approach encompasses processes that involve the 
production of nanoparticles by reducing their size, whereas the bottom-up approach 
involves creating nanoparticles from building blocks such as atoms and molecules 
[11, 12]. 

Several physical methods are commonly employed for synthesizing NPs, 
including inert gas condensation [13], laser ablation [14], electric arc discharge 
[15], and the radiofrequency plasma method [16]. Nevertheless, physical methods 
require a significant amount of time to achieve thermal stability, consume substan-
tial energy, increase the environmental temperature around the source material, and 
may also require large spaces for equipment such as tube furnaces [17]. Thus, 
physical synthesis routes are considered insufficient for producing nanoparticles. A 
major drawback of chemical synthesis methods for nanoparticles is their reliance on 
harsh reducing agents like sodium borohydride, sodium citrate, and organic solvents 
[18], which pose toxicity and environmental concerns [19]. Consequently, biological 
synthesis methods are favored over physical and chemical routes for synthesizing 
nanoparticles. The nanoparticles’ fabrication through biological method involves the 
utilization of various microorganisms, including bacteria [20], fungi [21], algae, and 
plants [22–24]. However, the use of microorganisms for this purpose is often hindered 
by two significant drawbacks. Firstly, the process is time-consuming, leading to low 
productivity rates. Secondly, the use of microorganisms for large-scale nanoparticle 
synthesis poses a potential pathogenic concerns, and the maintenance of such cultures 
can be a challenging task [25, 26]. 

Green synthesis of nanomaterials refers to the use of plant materials or compo-
nents to biologically reduce metal ions to their elemental form, producing nanopar-
ticles in the size range of 1–100 nm [2]. In comparison to alternative methodologies, 
the green synthesis technique is recognized for its elevated efficacy, simplicity, and 
economic viability. Furthermore, it possesses the added advantage of facile upscaling 
for larger-scale applications [27]. Moreover, unlike nanoparticle synthesis mediated 
by microorganisms, the green synthesis process obviates the need for maintaining 
large-scale cultures and eliminates the associated biohazard risk [28, 29]. The process 
of biological synthesis has been utilized to synthesize a diverse array of nanoma-
terials, such as Ag [30], Au [31], Pd [32], Fe [33], and ZnO [34]. Polyphenols, 
terpenoids, and polyols are phytocompounds that have been identified as the primary 
agents responsible for the reduction of metal ions to nanoparticles in plant extracts 
[10]. The nanomaterials synthesized through green approach exhibit notable prop-
erties, including antimicrobial activity [35], antioxidant potential [36], and catalytic 
activity [37], which are attributed to the phytocompounds involved in their reduction



Synthesis, Properties, and Characterization of Biological Nanomaterial 93

process. Due to their exceptional properties, they are applicable in a wide range of 
fields, such as pharmaceuticals [38], drug delivery [39], cosmetics [40], food [41], 
and enzyme industry [42]. Currently, the worldwide research community is actively 
exploring additional potential applications of nanoparticles. 

1.1 Methodology for the Biological Synthesis 
of Nanomaterial 

In 1959, the concept of advanced nanotechnology was first introduced by Richard 
Feynman [43]. This emerging technology focuses on the synthesis of materials at 
the nanoscale and exploring their distinct physico-chemical attributes. The field 
of nanotechnology has undergone a significant surge in development, which has 
paved the way for its utilization in numerous fields such as electronics [44], drug 
delivery systems [45], food packaging [46], pharmaceuticals [47], optics [48], chem-
ical industry [49], mechanics [50], solar energy capture [51], catalytic processes [10], 
wastewater purification [52], and hydrogen production [53]. 

The global research community is currently involved in the development of eco-
friendly methods for producing highly effective products that are also environmen-
tally sustainable. To achieve this goal, researchers are exploring the use of green 
nanotechnology and biotechnology [54, 55]. One-step synthesis of nanomaterials 
using green technology results in materials with enhanced stability, exceptional prop-
erties, and dimensions that eliminate the need for harsh reaction conditions such as 
high temperature, pressure, and pH levels. This approach to nanomaterial synthesis 
is considered environmentally friendly [56]. 

1.2 Techniques to Synthesize Nanoparticles 

The synthesis of nanomaterials can be accomplished through either the top-down or 
bottom-up methods. All methods for synthesizing nanoparticles, whether physical, 
chemical, or biological, can be classified into one of these two approaches. 

1.2.1 Top-Down 

The top-down method involves breaking down a bulk material into smaller particles 
by employing different lithographic techniques, including grinding, sputtering, and 
milling [14].
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1.2.2 Bottom-Up 

The bottom-up method involves the synthesis of nanoparticles by self-assembling 
atoms into nuclei, which then increase in size to form particles at the nanoscale 
through a range of chemical and biological techniques [57]. 

2 Approaches for Nanoparticle Synthesis 

2.1 Physical Approach 

Several physical strategies are commonly utilized for the fabrication of nanoparticles, 
including laser ablation [58], electrospraying [59], high-energy ball milling [60], 
laser pyrolysis [61], and evaporation–condensation [62]. Other physical methods 
include the atomization [63], arc discharge method [8], annealing [64], and metal 
sputtering [65]. Physical techniques such as evaporation–condensation have proven 
successful in synthesizing a variety of nanomaterials, including silver, Au, fullerene, 
and lead sulfide (PbS) [66]. The absence of solvent contamination in the prepared 
thin films and the uniform distribution of nanoparticles are advantages of physical 
approaches that differentiate them from chemical methods [67]. 

2.2 Chemical Approach 

Chemical approaches for nanoparticle synthesis are numerous and typically involve 
techniques such as the microemulsion, hydrothermal synthesis, sol–gel method, 
chemical vapor synthesis, and polyol synthesis. Chemical reduction is the most 
commonly employed method for synthesizing nanoparticles, utilizing both organic 
and inorganic reducing agents like NaBH4. Other reducing agents, including hydro-
quinone, sodium citrate, gallic acid, and elemental hydrogen, are also utilized in 
this process. The synthesis of nanoparticles through chemical reduction reactions 
is commonly carried out in a solution phase, resulting in colloidal properties of 
the product. The phenomenon of co-precipitation, which encompasses reduction, 
nucleation, growth, coarsening, and/or agglomeration, underlies these processes 
[68]. While chemical reduction is a widely used method for nanoparticle synthesis, 
its drawbacks include the toxicity of the reagents involved and the generation of 
non-eco-friendly by-products.
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2.3 Biological Approach 

The generation of NPs in an environmentally sustainable manner involves the use of 
biological approaches. This entails using bacteria, fungi, or plants and necessitates 
a solution containing metal ions and a biological reducing agent (Fig. 1) [69]. The 
stabilizing and capping agents are often present in cells as reducing agents and other 
components, thereby eliminating the need for external addition of these agents during 
nanoparticle synthesis via biological methods. These reducing agents are naturally 
occurring and widely distributed throughout biological systems. 

3 Synthesis of Nanoparticles Using Green Methods 

As previously noted, there are various methods for generating nanoparticles, such 
as physical, chemical, or biological routes. However, these approaches pose toxi-
city issues and environmental concerns. The physical method demands a signifi-
cant amount of space and generates substantial heat, resulting in elevated environ-
mental temperatures surrounding the source material. Likewise, chemical methods 
utilize hazardous chemicals and solvents that can result in significant harm to the 
environment. The requirement for an alternative method in nanoparticle synthesis 
led to the emergence of the concept of green nanotechnology. This eco-friendly 
and cost-efficient approach has gained considerable significance in recent times. 
Several nanoparticles produced using green nanotechnology have been successfully 
employed in diverse fields. 

Green nanotechnology refers to the utilization of biotechnological techniques 
and biological pathways involving bacteria, fungi, or plants, to produce nanoparti-
cles or nanomaterials that are environmentally friendly and free of toxic substances

Fig. 1 Different techniques for the synthesis of NPs 
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Fig. 2 Biological synthesis of nanoparticles using phyto-constituents 

(Fig. 2). This chapter will provide an in-depth examination of the different biological 
pathways employed in the generation of nanomaterials. 

3.1 Bacteria-Mediated Method 

Bacteria have emerged as a promising means of synthesizing metallic nanoparti-
cles, particularly silver and gold, due to their inherent ability to produce a range of 
inorganic materials both intra- and extracellularly. Despite the well-known biocidal 
properties of silver, certain bacterial strains have developed resistance to it, allowing 
them to accumulate substantial quantities of silver on their cell walls, accounting 
for up to 25% of their biomass by dry weight. These bacteria could potentially 
have industrial applications in the extraction of Ag from ores. The AG259 strain of 
Pseudomonas stutzeri, which was first discovered in a silver mine, was the first to 
exhibit the ability to produce silver nanoparticles through bacterial synthesis [70–72]. 
The current understanding of the biosynthesis mechanism for silver nanoparticles 
(AgNPs) involves the involvement of the nitrate reductase enzyme, which trans-
forms nitrate into nitrite. NADPH-dependent nitrate reductase present in bacteria 
can simplify the process of in vitro synthesis of Ag by eliminating the need for addi-
tional processing steps typically required in other methods [73]. In a study, it was 
found that E. coli DH5α mediated the intracellular biosynthesis of Au nanoparti-
cles from chloroauric acid. The resulting NPs displayed mostly spherical shape, as 
well as triangular and quasihexagonal shapes. These nanoparticles were also found
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on the surface of the bacterial cells, which facilitated the direct electrochemistry of 
hemoglobin and other proteins [74]. 

3.2 Algae-Mediated Method 

Numerous reports have shown that algae can be beneficial in the synthesis of nanopar-
ticles. One such example is the use of Spirulina platensis, a blue-green algae, for 
the production of gold nanoparticles mediated by proteins. The gold nanoparticles 
produced showed a homogeneous size distribution, with an average diameter of 
about 5 nm. Their antibacterial efficacy against Bacillus subtilis and Staphylococcus 
aureus was also tested [75]. A recent report has revealed that Sargassum wightii, a  
brown seaweed, can produce stable and evenly dispersed gold nanoparticles within 
the 8–12 nm size range. This was confirmed using multiple analytical techniques, 
including UV–visible spectroscopy, transmission electron microscopy, and X-ray 
diffraction analysis [76]. In addition, studies have reported the biosynthesis of gold 
nanoparticles, as well as EPS-Au and Si–Au bionanocomposites, using diatoms such 
as Navicula atomus and Diadesmis gallica [77]. 

3.3 Fungi-Mediated Method 

The utilization of fungi in the synthesis of metallic NPs has been reported due to their 
unique characteristics, including high tolerance toward metals, exceptional metal 
binding capacity, and a bioaccumulation ability that is comparable to that of bacteria 
[78–80]. Various fungal species, including Colletotrichum sp. [81], Fusarium sp. 
[82], and Phanerochaete chrysosporium [83], have been utilized for NPs synthesis, 
as reported in the literature. The use of fungi for nanoparticle generation holds 
certain advantages over other microorganisms, owing to the rapid growth and ease 
of handling and fabrication in laboratory settings. Moreover, the fungal mycelial 
network has been shown to withstand a range of conditions, including flow pressure 
and agitation in bioreactors. The biosynthesis mechanism of NPs in fungi differs from 
that of other microorganisms, as fungi secrete a substantial amount of enzymes that 
aid in the reduction of metal ions, thus enabling the formation of metallic nanoparti-
cles [84]. Recent reports suggest that extracellular enzymes, such as naphthoquinones 
and anthraquinones, may also contribute to the reduction process during nanoparticle 
synthesis [85, 86]. 

In a study by Syed et al. [86], extracellular NP fabrication was observed using the 
thermophilic fungus Humicola species. The researchers found that the cell filtrate 
is reacted with Ag+ ions, resulting in the catalytic bioreduction of Ag ions and 
subsequent nanoparticle generation.



98 S. Zafar

3.4 Yeast-Mediated Method 

Yeast, a unicellular eukaryotic microorganism, has been utilized primarily in the 
production of semiconductors. Specifically, the yeast species Candida glabrata was 
employed to synthesize monodispersed, spherical CdS quantum crystallites that 
were peptide-bound and measured 20 Å in size, while Schizosaccharomyces pombe 
produced wurtzite hexagonal CdS crystals that were approximately 1–1.5 nm in size 
during the mid-log phase [87]. Torulopsis sp. has also been identified as a promising 
candidate for the efficient intracellular production of lead sulfide (PbS) nanocrystal-
lites, with dimensions ranging from 2 to 5 nm, which are stored within the vacuoles 
of the organism. The nanoparticles synthesized using yeast have been employed in 
the fabrication of an ideal diode, highlighting their potential for practical applications 
[88, 89]. 

3.5 Engineering Nanoparticles Using Biomolecular 
Templates 

The potential use of viruses, nucleic acids, and cell membranes as templates for 
NPs’ fabrication has been extensively investigated. Of these biomolecules, DNA has 
emerged as a highly suitable template due to its strong affinity toward transition metal 
ions. Its biomolecular properties make it an excellent candidate for both nanoparticle 
synthesis and templating. In a recent study, DNA was employed as a template for 
the production of Au nanostructures using an electroless photolytic method. The 
nanoclusters obtained from the aforementioned study had dimensions ranging from 
10 to 40 nm, whereas the diameter of the nanostructure was between 40 and 70 nm. 
Additionally, the resulting nanostructure exhibited resistivity similar to that of pure 
metal. Electrical characterization revealed that the synthesized gold nanostructures 
exhibited continuous and Ohmic behavior with minimal contact resistance between 
the electrodes [90]. Biological membranes have been widely explored as templates 
for the synthesis and engineering of NPs, taking advantage of their ultrafine pores. 
One study reported the formation of AuNPs using a rubber membrane derived from 
Hevea brasiliensis as a preservative during the bioreduction of Au+3 in a solution 
maintained at 80 °C [91]. Using viruses as templates is an alternative approach to 
achieve consistent size and morphology of synthesized NPs, as the hollow cavities 
within their structures can be utilized for this purpose [92, 93]. Certainly, the utiliza-
tion of M13 bacteriophage as a template for the formation of ZnS and CdS quantum 
dots has been reported [94, 95].
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3.6 Plant-Mediated Method 

The utilization of aqueous extracts from various plants as both reducing and capping 
agents in the production of metallic NPs has been reported. This method has been 
deemed advantageous over microbial synthesis due to the ease of cell culturing and 
maintenance, faster reduction rates, and the production of stable NPs. Plants are 
widely regarded as a essential source of bio-green methodologies, particularly with 
regard to the synthesis of nanoparticles. Biological synthesis has gained consider-
able attention due to its many advantages, including cost-effectiveness, speed, non-
pathogenicity, environmental friendliness, and the ability to scale up for large-scale 
synthesis. This method involves the use of living organisms or their byproducts, 
such as enzymes, to synthesize various materials, including nanoparticles. Biolog-
ical synthesis offers numerous benefits over traditional methods, including the ability 
to use mild reaction conditions, which minimizes the usage of harmful chemicals and 
reduces the generation of hazardous waste. Additionally, this method can be easily 
scaled up to meet commercial demand. 

A wide variety of plants, including their different parts such as leaves [96], stems 
[97], flowers [98], fruits [99], roots [100], and seeds [101], have been employed in the 
biological synthesis of metallic NPs [57]. Plant extracts are rich in various secondary 
metabolites, including proteins, enzymes, amino acids, polysaccharides, saponins, 
phenolic intermediates, terpenoids, vitamins, and alkaloids as shown in Fig. 3. These 
phytocompounds can serve as effective reducing agents for the bioreduction of metal 
ions into metallic NPs. For instance, α-Fe2O3 NPs were synthesized using S. cordi-
folia [102] aqueous plant extract, while zirconia nanoparticles were synthesized from 
Euclea natalensis [103] plant extract.

Furthermore, Centella asiatica [104] plant extract was used for the biosynthesis 
of iron oxide NPs, and the leaf extract of Prosopis juliflora [105] was utilized to 
derive ZnO NPs. Additionally, Fumariae herba [106] extract was involved for the 
biosynthesis of platinum NPs, which demonstrated excellent catalytic activity toward 
organic dyes. Blumea eriantha [107] extract was used to derive silver and iron NPs, 
while Punica granatum [108] fruit peels’ extract was used to produce zinc oxide 
NPs, which showed significant cytotoxicity and antibacterial activities. Likewise, 
the tuber extract of Coccinia abyssinica [109] was utilized to produce zinc oxide 
nanoparticles, which displayed significant antimicrobial and antioxidant character-
istics. The research presented highlights the possibility of utilizing natural extracts 
as a viable and environmentally conscious alternative for producing nanoparticles in 
a sustainable manner [110].
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Fig. 3 Phytochemical constituents in the plant extract [10]

4 Factors Influencing the Biological Synthesis 
of Nanomaterials 

Various factors, such as pH, temperature, and reaction time, have a substantial 
impact on the formation and stabilization of nanoparticles utilizing plant-based enti-
ties. These factors are critical in determining the properties and characteristics of 
biogenically synthesized NPs. 

4.1 pH Level of the Reaction Medium 

The formation of nanoparticles is significantly influenced by the pH level of the 
reaction medium, as reported in various studies [111]. Variation in hydrogen ion 
concentration has been found to significantly impact the size and morphology of 
NPs. It has been observed that lower pH levels result in the production of larger 
particles, while higher pH values tend to yield smaller particles [112]. According 
to a study, Avena sativa produced large rod-shaped gold NPs at a pH of 2, whereas 
smaller NPs were formed at pH levels of 3 and 4 [113]. Likewise, the synthesis of 
spherical AgNPs using bark extract of C. zeylanicum was favored at higher pH values 
of 5 and above [114].
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4.2 Temperature of the Reaction Medium 

The synthesis of metallic NPs is notably affected by temperature, particularly in 
terms of the resulting size and shape of the NPs. For instance, the synthesis of 
AuNPs using leaf extract of Cymbopogon flexuosus indicated that the formation of 
nanotriangles was more favorable at lower reaction temperatures. Conversely, higher 
reaction temperatures led to the formation of more spherical nanoparticles alongside 
the nanotriangles [115]. 

4.3 Synthesis Methodology 

Numerous techniques exist for synthesizing NPs, including physical, chemical, 
and biological methods, each with its own unique set of benefits and limitations. 
Among these techniques, the biological approach is particularly attractive due to its 
eco-friendly and non-hazardous characteristics. As a result, nanoparticles produced 
through biological synthesis are often considered more desirable than those produced 
through other synthetic routes [1]. 

4.4 Pressure 

The impact of pressure on the size and shape of metallic NPs is a key parameter during 
synthesis. Studies have shown that under ambient pressure conditions, biochem-
ical agents can rapidly reduce metal ions, implying that pressure can significantly 
influence the synthesis of NPs [116]. 

4.5 Reaction Time 

Numerous studies have indicated that the duration of incubation in nanoparticle reac-
tion media is a crucial factor that significantly influences the quality and morphology 
of the synthesized nanomaterials [117, 118]. The properties of the nanoparticles 
can be significantly influenced by variations in the incubation time, as well as by 
factors such as light exposure, synthesis method, and storage conditions [119, 120]. 
Prolonged incubation times can lead to aggregation or shrinkage of nanoparticles, 
which may negatively impact their potential [121].
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5 Physico-chemical Properties 

As previously discussed, nanoparticles possess a range of physico-chemical proper-
ties that render them unique and well-suited for diverse applications. These proper-
ties include large surface area, optical activity, chemical reactivity, and mechanical 
strength. 

The subsequent section will provide a detailed explanation of the importance of 
these properties. 

5.1 Optical and Electronic Properties 

The optical and electronic properties of nanoparticles, particularly noble metal 
nanoparticles, are closely interconnected. These noble metal NPs exhibit size-
dependent optical attributes and demonstrate a distinct extinction band in the UV– 
visible spectrum, which is not observable in bulk metal. The phenomenon is primarily 
attributed to the localized surface plasmon resonance (LSPR) effect, resulting from 
the collective excitation of conduction electrons triggered by photons with a constant 
frequency. The maximum wavelength of the LSPR is influenced by several factors, 
such as the size, shape, and spacing of nanoparticles, as well as the dielectric proper-
ties of both the nanoparticles and their surrounding environment. This environment 
includes the substrate, solvents, and any adsorbates present [122]. The distinct colors 
observed in stained glass doors/windows can be attributed to the presence of gold 
colloidal NPs which impart a rusty appearance, while silver NPs generally appear 
yellow. These NPs possess free electrons on their surface, specifically d electrons in 
the case of Au and Ag, that are capable of facile transport within the nanomaterial. 
Interestingly, the mean free path for both Ag and Au is approximately 50 nm, which 
is larger than the size of the NPs for these materials. Consequently, scattering from 
the bulk is not expected upon interaction with light, instead these NPs undergo a 
standing resonance condition known as LSPR, which is accountable for the distinct 
colors observed in these materials [123]. 

5.2 Magnetic Properties 

Magnetic nanoparticles have attracted considerable interest among researchers in 
various fields, including magnetic fluids, data storage, heterogeneous and homo-
geneous catalysis, biomedicine, magnetic resonance imaging (MRI), and environ-
mental remediation, such as water decontamination. According to previous research, 
nanoparticles demonstrate superior performance when their size is less than a crit-
ical threshold of 10–20 nm [124]. At this size range, the magnetic characteristics
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of nanoparticles become dominant, making them extremely useful and applicable in 
various fields [125]. 

5.3 Mechanical Properties 

The unique mechanical characteristics exhibited by nanomaterials have sparked 
research on their potential uses in various essential fields, including tribology, surface 
engineering, nanofabrication, and nanomanufacturing. The mechanical characteris-
tics of nanoparticles can be precisely assessed by analyzing various parameters, such 
as stress, strain, elastic, modulus, hardness, friction, and adhesion. Additionally, the 
mechanical behavior of NPs is influenced by factors such as surface coating, coagula-
tion, and lubrication [126]. NPs exhibit distinct mechanical properties in comparison 
to microparticles and bulk materials. Attaining precise control over the mechan-
ical attributes of NPs and their surface interactions is crucial in enhancing material 
removal and improving surface quality. In order to achieve successful outcomes in 
various areas involving nanoparticles, it is crucial to have a comprehensive grasp of 
their fundamental mechanical characteristics. 

5.4 Thermal Properties 

Metal nanoparticles are highly regarded for their exceptional thermal conductivities, 
surpassing those of fluids in their solid states. At ambient temperature, copper exhibits 
a thermal conductivity that is approximately 700 times higher than water and 3000 
times greater than engine oil. Similarly, oxides like alumina display thermal conduc-
tivities greater than water. Consequently, suspensions of solid particles in fluids are 
anticipated to exhibit considerably improved thermal conductivities in comparison 
to traditional heat transfer fluids. Nanofluids are created by blending solid particles 
that are nanoscale in size with liquids like water, oils, or glycol. These fluids are 
anticipated to display enhanced characteristics in contrast to standard heat transfer 
fluids and fluids that comprise particles at the macroscopic scale. Particles possessing 
a substantial overall surface area are favored as heat transfer occurs predominantly 
at their surface. Additionally, a greater surface area contributes to the stability of 
the suspension. Recent studies have indicated that nanofluids comprising copper 
or alumina oxide NPs dispersed in ethylene glycol or H2O display considerably 
enhanced thermal conductivity [127, 128].
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6 Characterization 

Energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), 
atomic force microscopy (AFM), Raman spectroscopy (RS), Fourier transform 
infrared (FT-IR) spectroscopy, and scanning and transmission electron microscopy 
(SEM/TEM) are among the commonly employed techniques for characterizing 
nanoparticles. These techniques facilitate the investigation of crucial NPs charac-
teristics such as size, shape, structure, and surface morphologies [129]. 

6.1 Structural Characterizations 

The analysis of structural properties typically entails the utilization of various tech-
niques, including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy 
(EDX), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), Raman 
spectroscopy, Brunauer–Emmett–Teller (BET), zeta size analyzer, and surface area 
analysis. X-ray diffraction is a prominent technique used for characterizing nanopar-
ticles, especially with regard to their structural characteristics. XRD is capable of 
revealing crucial detail about the phase identification of the crystalline nanomate-
rials, as well as providing a rough estimate of their size through the application of 
the Debye–Scherrer formula. Notably, XRD has been successfully utilized for the 
identification of both single and multiphase nanoparticles. These findings have been 
corroborated in prior research by Khan et al. [130] and Ullah et al. [131]. 

Energy-dispersive X-ray spectroscopy is frequently employed in conjunction with 
TEM for determining the elemental composition of nanoparticles, providing an 
approximate percentage by weight. In practice, EDX is utilized by focusing an elec-
tron beam on a single nanoparticle via SEM or TEM, thereby enabling the acquisition 
of insightful information regarding the nanoparticle under observation [132]. 

X-ray photoelectron spectroscopy (XPS) is widely regarded as a highly sensi-
tive technique for determining the precise elemental ratios and bonding nature of 
elements within nanoparticle materials. The surface sensitivity of XPS makes it a 
valuable tool for conducting comprehensive profiling studies, which aim to evaluate 
the composition and variations in composition throughout the depth of a material. 
As such, XPS is an important tool for characterizing nanoparticle materials and 
provides valuable insights into their structural and compositional properties. Wang 
et al. [133] employed X-ray photoelectron spectroscopy and scanning transmission 
electron microscopy (STEM) spectroscopies, aided by SESSA software, to quantify 
the coating of nanoparticles. 

According to [134], surface-enhanced Raman spectroscopy has become a highly 
effective method for analyzing vibrational conformations due to its ability to enhance 
signals through the surface plasmon resonance phenomenon. In a related study, Ma 
et al. [135] utilized the SERS method to investigate the vibrational properties and
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phonon modes in nano-sized and quantum dots of TiO2, PbS, and zinc oxide nanopar-
ticles. The researchers assumed that the enhanced spectra observed in semiconductor 
systems could be ascribed to the plasmonic resonances present within the nanopar-
ticles. This underscores the potential of SERS as a valuable tool for characterizing 
the vibrational properties of nanoparticles. 

6.2 Particle Size and Surface Area Characterizations 

Various approaches are available for elucidating the size of nano-sized materials, 
including XRD, SEM, TEM, atomic force microscopy (AFM), and dynamic light 
scattering (DLS). While SEM, TEM, XRD, and AFM are capable of providing precise 
information on particle size [136], the zeta potential size analyzer and dynamic light 
scattering can be particularly useful for determining NPs size at extremely low levels. 
Thus, a combination of techniques may be necessary to obtain a comprehensive 
understanding of the size of NPs in a given sample. 

In addition to differential scanning calorimetry (DSC), nanoparticle tracking anal-
ysis (NTA) represents a relatively novel and specialized technique that can prove 
helpful for biological components, such as proteins and DNA. Through the NTA 
approach, nanoparticles in liquid media can be visualized and analyzed by relating 
their Brownian motion rate to particle size. This technique offers the advantage of 
determining size distribution profiles for NPs within a size range of 10–1000 nm 
in a liquid phase [137]. Consequently, NTA can serve as a valuable complement 
to other nanoparticle size characterization techniques, particularly when applied to 
biological samples. Due to the significant surface area of nanomaterials, various 
applications have been proposed. To assess this area, the Brunauer–Emmett–Teller 
(BET) has emerged as the most appropriate method. This approach operates on the 
fundamentals of adsorption and desorption, as well as the BET theorem, in order 
to quantify the surface area of NP materials [138]. By determining the surface area 
of nanomaterials, the BET technique can provide valuable information about their 
properties and potential applications. 

6.3 Optical Characterizations 

In the investigation of photocatalytic applications, the characterization of optical 
properties is a crucial aspect, and photochemists have invested significant efforts 
toward developing a thorough understanding of this technique to elucidate the funda-
mental mechanisms of photochemical processes. The characterizations primarily rely 
on the established Beer–Lambert law and fundamental principles of light, both of 
which are widely accepted within the field of photochemistry [139]. Optical tech-
niques provide valuable insights into the absorption, reflectance, luminescence, and 
phosphorescence attributes of NPs. The fact that metallic and semiconductor NPs
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exhibit unique colors is widely recognized, making them highly suitable for photo-
related applications. Optical instruments such as ultraviolet–visible (UV–Vis) spec-
troscopy, photoluminescence (PL), and the null ellipsometer are widely used in the 
study of the optical properties of NP materials. The UV/vis-diffuse reflectance spec-
trometer (DRS) is a highly versatile device that enables the measurement of key 
optical properties, including absorption, transmittance, and reflectance. Although 
absorption and transmittance are often considered complementary techniques, DRS 
is especially valuable for solid samples. This method is widely accepted for its 
accuracy in determining the bandgap of various nanomaterials, including NPs [140]. 

Besides UV spectroscopy, photoluminescence (PL) is an invaluable method for 
investigating the optical properties of photoactive nanomaterials. This method offers 
complementary insights into the absorption or emission traits of the materials. As 
such, it can provide important insights into charge recombination and the half-life of 
excited materials in their conductance band, making it beneficial for various imaging 
and photo-related approaches [141]. Furthermore, the PL technique has demonstrated 
efficacy in determining several key properties of NPs, including layer thickness [142], 
doping levels [143], and the presence of defects and oxygen vacancies [144]. These 
capabilities make it a versatile and valuable tool for study nanomaterials, particularly 
in the context of their optical properties. 

6.4 Morphological Characterizations 

The investigation of the morphological features of NPs is a key aspect of their char-
acterization since morphology strongly influences many of their properties. The 
morphology of NPs can be investigated using various techniques, but among them, 
TEM, SEM, and polarized optical microscopy (POM) are considered the most impor-
tant. This microscopic techniques enable the determination of critical parameters 
including shape, size, and surface properties of NPs, making them essential tools in 
the study of nanomaterials. 

The SEM operates on the principle of electron scanning and offers a wealth 
of information on NPs at the nanoscale level. Numerous studies in the litera-
ture have demonstrated the utility of this technique not just for examining the 
morphology of nanomaterials, but also for evaluating the dispersion of NPs in bulk or 
matrix. The dispersion of single-walled carbon nanotubes in the matrix comprising 
poly(butylene) terephthalate and nylon-6 was investigated using the SEM technique 
[145]. This study has demonstrated the ability of SEM to reveal information about 
the distribution of nanomaterials within the matrix, including the extent of their 
dispersion. 

TEM is another electron-based technique that offers valuable insights into the 
morphological features of NPs at various magnifications, providing information 
on bulk materials. This method has been broadly used to inspect the different 
morphologies of gold NPs. Figure 4 displays TEM micrographs depicting silver 
NPs morphologies obtained from date fruit extract [30].



Synthesis, Properties, and Characterization of Biological Nanomaterial 107

Fig. 4 TEM images of nanoparticles using date fruit extract, highlighting the different morpholo-
gies of the nanoparticles [30] 

7 Conclusion 

This chapter has explored the various biological approaches for synthesizing nanos-
tructured materials and highlighted their unique properties and characterization 
techniques. The increasing popularity of biological approaches for nanomaterial 
synthesis is driven by their sustainability, cost-effectiveness, non-pathogenic nature, 
environmental friendliness, and ease of scaling up for large-scale synthesis, making 
them an attractive alternative to traditional methods. Additionally, these nano-sized 
materials possess unique attributes such as a large surface area, higher binding 
density, and chemical stability, which make them promising for various applica-
tions, including food processing, cosmetics, drug delivery, pharmaceuticals, chem-
ical industry, mechanics, wastewater purification, and catalytic properties. Overall, 
this chapter provides valuable insights into the rapidly growing field of biological 
methods for the synthesis and characterization of nanomaterials.
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Antimicrobial Potential, Drug Delivery 
and Therapeutic Applications 
of Bio-nanoparticles in Medicine 

Rizwan Asif, Riffat Yasmin, Madiha Mustafa, Jaweria Nisar, Ana Ambreen, 
Abdul Rehman, and Shehla Unmbreen 

Abstract A nanoparticle (NP) is a tiny particle with ranging in size from 10 to 
100 nm. Bionanomaterials have a remarkable potential as ‘magic bullets’ mainly 
produced from plants, bacteria, fungi, etc. Green synthesized of nanomaterials are 
powerful and significant tool defending from the unsafe effects of medicine in addi-
tion to overcoming the obstacles to access of the drug in targeted tissues and dealing 
with drug resistance effectively. In recent era, the designing of bio-nanoparticles and 
extensive use in numerous biomedical applications like as anti-cancerous, antibac-
terial, and site-specific drug delivery systems has become the top-priority research 
goal. Nanoparticles are used in the field of medicine as a powerful weapon due to 
their stability, inert nature, high dispersity, non-cytotoxicity, and biocompatibility. 
The current chapter specifically emphasizes the applications of bio-nanoparticles in 
the field of medicine. 

Keywords Bio-nanoparticle · Green synthesis · Antimicrobial · Anti-cancerous ·
Drug discovery 

1 Introduction 

Nanotechnology is an interdisciplinary field that bridges various disciplines like 
biological and physical sciences that result in the development of new technolog-
ical era. Nanotechnology is an emerging scientific areas which playing a vital role 
in our daily lives and have a wide ranging multiple applications such as medicine,
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drug delivery, environmental remediation, information technology, energy conver-
sion, and agriculture [1]. Nanomaterials (usually ranging 1–100 nm) are attaining 
great importance in the field of science and technology and with advancement in 
medical expertise role of nanoparticles also expanded. Nanomaterials have resourced 
curiosity in the field of applied sciences from material science to biotechnology [2]. 
Nanotechnology is alteration of materials in which other ingredients are incorpo-
rated using different techniques like chemical, biological, and physical methods. 
The purpose of alteration of material is to make new substance which can be applied 
in different fields with enhanced characteristics and specialized functionalities. 

As conventional methods chemical and physical methods are commonly used 
methods for synthesis of nanomaterial but these methods are expensive and are 
not environment friendly well as due to production of cluster of hazards material/ 
products [3]. Therefore, it’s urgently required to develop new methods for synthesis 
of nanomaterials. Currently, biosynthesis of nanoparticles is recognized as feasible 
and facile alternative methods and acknowledged as a safe, environment friendly, 
and economically cheap alternative methodology. For this scientists moved toward 
biological synthesis and various organisms like unicellular and multicellular are used 
to generate nanomaterial both intracellularly and extracellularly [4]. This significance 
has led to the need to progress in the development of environment friendly, sustainable 
and safe nanomaterials by incorporating the principles of green chemistry during their 
synthesis and in their applications [5]. Nanomedicine is the branch of medicine which 
uses to cure and prevent various illness using nanoscale materials. The nanoscale 
medicine use in different applications such as diagnosis, drug delivery, sensory, 
and actuation purposes in a living being [6]. The existing chemotherapeutic agents 
are broadly used worldwide, but they are eliminated due to expensiveness, high 
toxicity, various incidental effects, rise of drug resistance, and poor specificity. So, 
it is imperative to learn substitute therapies, tools, and medicine to overcome the 
current challenges [7]. Nanomedicine is the most significant field of nanotechnology 
using the molecular knowledge of human body and applied for diagnosis, prevention, 
and treatment of various diseases. The outline of this discussion majorly focuses the 
role of bio nanoparticles in medicine. 

Globally, food borne diseases are an alarming threat caused by different 
pathogenic bacteria, and nearly 30% people of industrial countries are suffered in 
food borne diseases every year. These diseases are result of intake of contaminated 
food by bacteria, fungus, or toxins. During handling, process like harvesting and 
transportation food can be adulterated. Escherichia coli, Salmonella sp., Campy-
lobacter sp., Listeria sp., and Clostridia are most dominant bacteria responsible for 
food borne diseases [8].
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Fig. 1 Synthesis methods of nanoparticles 

2 Synthesis Techniques for Nanoparticles 

Nanomaterials are widely synthesized and studied because of their outstanding 
medicinal properties in different fields like cancer and antimicrobial. Nanoparti-
cles remarkable potential influenced by their structural shape has been extensively 
investigated, and many studies have done to synthesize nanoparticles using different 
techniques like biological, chemical, and physical [9]. The biological methods of 
bio-nanoparticle have benefit utilizing microorganisms, plants, and plants extract 
over other methods because of environmentally friendly, energy efficient, and cost-
effective. For example, microorganisms are referred as promising bio-factories for 
bionanomaterial production and their precise physicochemical features make them a 
new generation antibacterial agent. For synthesis of bionanomaterials green material 
act as both stabilizing and reducing agents [10]. 

Globally, green synthesis of nanoparticles from plants extract or plants products is 
getting huge importance due to a cluster of bioactive reducing metabolites and their 
abundant aptitudes. Especially, plants are more prefer for synthesis of nanoparticles 
compared to algae and bacteria because plants are more renitent to metal toxicity. 
So, biological source offers a great alternative for synthesis of nanoparticles [11] 
(Fig. 1). 

3 Role of Bio-nanomaterials Against Microorganisms 

At the turn of the twentieth century, infectious diseases were the leading cause of 
death across the globe. The widespread use of antibiotics during the past century 
has greatly contributed to the decline in infectious disease-related mortality and 
morbidity. But antibiotic resistance has reached a crisis point in recent years; 
rendering many of the most essential antimicrobial drugs currently used in the clinic



118 R. Asif et al.

are ineffective. The problem of bacteria acquiring resistance to antimicrobials has 
prompted numerous attempts to either find novel medicines or chemically change 
existing antimicrobial treatments. The creation of resistance among microbiolog-
ical pathogens is occurring at an alarming rate, and there is no guarantee that new 
antimicrobial treatments will be created soon enough to keep up [12, 13]. 

Recent developments in nanoscience and nanotechnologies have allowed for the 
incorporation of nanoparticles into the design of antibacterial and antibiofilm agents. 
To speed up the delivery of drugs and antibiotics, “nanocarriers” made from nanos-
tructured materials can be used. Antibacterial and antibiofilm capabilities have been 
found in many different types of nanomaterials. In the presence of nanoparticles, 
synergistic systems can arise that combine two or more antimicrobial drugs, and 
smart on-demand treatment modalities can be constructed. This is due to the fact that 
nanoparticles themselves may be antibacterial or possess other useful properties [14, 
15]. Because of their extensive applicability, sustainability, and low cost, nanoparti-
cles manufactured from renewable resources (bionanomaterials) continue to garner 
interest from academics and business. Oxygen barrier, Young modulus, biodegrad-
ability, tensile strength, water swelling capacity, and compatibility with other mate-
rials like viscocifier and emulsifier are only few of the many useful qualities of 
bionanomaterials [16]. 

Antibacterial applications of nanotechnology have shown remarkable success, 
offering encouraging hope for the future of antibiotic-free methods. Because of 
their unique structures, nanomaterials can be used for a wide range of applica-
tions. Bionanomaterials’ physiochemical properties can be precisely controlled, 
including their size, surface chemistry, and shape. Aside from their inherent antibac-
terial activity (through cell membrane destruction or nutritional scarcity), the 
resulting functional materials also exhibit light-assisted antibacterial action and 
immunomodulation [17]. 

Second natural compounds for bacterial suppression or as adjuvants in vaccine 
formulations can be more effectively delivered via bionanomaterials due to the 
improved permeability, controlled release, and targeted bacterial absorption that 
these materials provide. Last but not least, bionanomaterials can be tailored to have 
a wide range of bactericidal capabilities, reducing the possibility that bacteria would 
develop resistance to them. In order to create viable antibiotic alternatives, it is crit-
ical to understand how the physiochemical properties of nanomaterials affect their 
antibacterial efficacy and mechanism [18]. 

Nanomaterials have been labeled as a promising new class of antibacterial agents 
due to research into and proof of their ability to suppress infections in vitro and 
in vivo. There may be no short-term or immediate risks associated with antibiotic 
NPs, but the question of whether or not they pose long-term dangers remains open 
[19]. Recently, the creation of new nanomaterials having antibacterial properties has 
been a hot topic of discussion. Whether it be on specific types of nanomaterials like 
carbon, metal/metal oxide, liposome, and polymer-based materials, or on specific 
antibacterial applications like antibacterial coatings, biofilm inhibition, and fighting
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antibiotic-resistant pathogens, there are a number of excellent reviews that summa-
rize the antibacterial properties and corresponding bacterial killing mechanisms of 
nanomaterials [20, 21]. 

The focus of scientific inquiry has switched over the past decade from the preven-
tion of antibiotic resistance to the discovery of new medicines for prevalent bacte-
rial diseases. Clearly, antibiotic-free alternatives offer a fresh perspective on how 
to address the issues of antibiotic overuse and resistance. But most information on 
alternatives to antibiotics comes from a medical or biological perspective. Relying 
on multifunctional nanomaterials to disseminate the antibiotic-free concept has been 
given little consideration [22]. 

Antimicrobial resistance (AMR) has emerged as a major threat in healthcare 
settings and beyond. Antibiotic-resistant bacterial infections are expected to increase 
by about 9% worldwide in 2020 compared to 2019 according to a report published 
by the World Health Organization. The global prevalence of antimicrobial resistance 
(AMR) has prompted calls for novel approaches to drug delivery and the identification 
of additional antimicrobial drugs that can be used to combat drug-resistant bacteria 
and halt the spread of AMR [23] (Fig. 2). 

Synthetic chemistry, the multichannel device (iChip), and artificial intelligence 
have all contributed to the development of novel antibiotics, allowing for the devel-
opment of potent treatments that can kill off even the most drug-resistant bacteria. 
A breakthrough in antibiotic development has been thwarted by a number of factors, 
including the potential for toxicity, a decrease in financing, and the risk of drug 
resistance [24]. Currently, various well-known pathogenic bacteria like S. aureus,

Fig. 2 Role of bio-nanoparticles against bacteria 
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K. pneumonia, E. coli, and Pseudomonas spp. are reported against most commonly 
used antibiotics agents. Silver nanoparticles were synthesized from extract of wild 
ginger plant and found to be very effective against multidrug resistant oral bacteria 
[25]. 

Discovering new, effective antibacterial medications that work in a way that 
is different from existing antibiotics is, thus, a challenging yet appealing task. 
Significant effort has been put into the study of and development of antimicrobial 
peptides, bacteriophages, probiotics, and nanomaterials for the treatment and preven-
tion of potentially fatal bacterial infections. It’s crucial to find ways to combat the 
growth of AMR while also preventing the current AMR process from rendering new 
antibacterial medications useless [26]. 

As our understanding of nanoscience and technology has grown, we have found 
that certain nanoparticles (NPs) exhibit higher efficacy in antibacterial characteris-
tics than antibiotics primarily derived from microorganisms or natural sources. For 
instance, NPs’ enhanced interaction and permeability to bacterial cell membranes 
may lead to a wide variety of antibacterial effects, including bactericidal efficiency 
[9]. Nanotechnology offers the possibility of engineering the structure and activity 
of NPs, leading to potentially increased bactericidal ability with reduced biotoxicity. 
The fact that some antibacterial nanoparticles can actually cause bacterial drug resis-
tance is reason enough to keep looking for effective antibacterial nanomaterials that 
don’t produce drug resistance and are instead based on a unique antibacterial action 
mode [27, 28] (Table 1).

4 Role of Bionanomaterials in Vaccine 

The use of nanotechnology has increased significantly in recent years across many 
fields. The application of nanoproducts has also received attention from various fields 
of medicine and healthcare [29]. A biological procedure known as vaccination uses 
antigenic materials to stimulate a person’s immune system to produce antibodies 
against a particular infection. The best method for preventing infectious infections 
and conditions that can lead to cancer is vaccination [30]. It has been demonstrated 
that nanomaterials can help in viral infection prevention, diagnosis, and therapy [31]. 
Nanomaterials with antimicrobial or self-sterilizing capabilities have received the 
most attention in research on the viral transmission prevention through the cleaning 
of surfaces, such as protective equipment. Silver and copper, which are naturally 
antimicrobial substances, have been proven to be effective against SARS-CoV-2 
[32, 33]. Nanotechnology platforms are extremely useful in the design of contempo-
rary vaccinations and have accelerated the development of novel candidate vaccines 
for clinical testing. In order to overcome lymph nodes, mucosal barriers, tissue, 
and epithelial barriers (gastrointestinal, airway, nasal, etc.), nanoparticles can be 
given via intramuscular, intranasal, oral, and subcutaneous routes [34, 35] mRNA  
and DNA vaccines can be delivered by nanoparticles into cells, where they cause 
antigens expression. In subunit vaccinations, nanoparticles can also target immune
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Table 1 Source of origin and antimicrobial potential of bio-nanoparticles 

Bionanomaterial Organism Origin References 

CuO-Cum i. Escherichia coli 
ii. Staphylococcus aureus 
iii. Shigella dysenteriae 
iv. Streptococcus 
pneumoniae 

Curcuma longa 

AgNPs Escherichia coli Moringa oleifera leaves Asif et al. [8] 

AuNPs SARS-CoV-2 Antibody Ghaemi et al. [42] 

ZnO-MPs E. coli 
P. aeruginosa 

Micelles Wang et al. [22] 

TiO2-NPs/MPs i. E. coli 
(O157:H7) 
ii. S. aureus 
iii. Pseudomonas 
fluorescens 
iv. Listeria monocytogenes 

Curcumin 

Al2O3-NPs i. Microalgae 
ii. Chlorella sp. 
iii. B. subtilis 
iv. E. coli 
v. Pseudomonas 
aurigenosa 

Muntingia Calabura 

CuO-Cum—Copper oxide-curcumin nanomaterials 
AgNPs—Silver nanoparticles 
AuNPs—Gold nanoparticles 
CM-NPs—Cell membrane-camouflaged nanoparticles 
ZnO-NPs/MPs—Zinc microparticles/nanoparticles 
ZnO-NPs—Zinc nanoparticles 
TiO2-NPs/MPs—Titanium dioxide nanoparticles 
Al2O3-NPs—Alumina bio-nanoparticles

cells selectively to deliver antigens directly. The wide range of antigenic variations 
that may be packed into nanoparticles (via encapsulation, chemical conjugation, or 
physical trapping), combined with an adequate antigenic demonstration, gives them 
a viable alternative to conventional methods in vaccine development [36, 37]. In the 
nanosystem, the virus antigen can either be encapsulated during vaccine production 
or conjugated to the nanocarriers surfaces for delivery alongside adjuvant [38, 39]. 
An adjuvant, which can boost immune responses, provide better protection against 
pathogens, and decrease the amount of antigens required for protective immunity, is 
essentially added to the vaccine formulation because many recombinant and synthetic 
antigens are not very immunogenic [30]. The primary benefit of vaccine nanocarriers 
is that they are on the same size scale as many biological systems, such as viruses, 
and are therefore more effective (including SARS-CoV-2). 

Because of the COVID-19 pandemic, mRNA vaccines have gained prominence 
in the biotechnology and pharmaceutical sectors. The lipid nanoparticle delivery
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systems development, which serve roles as adjuvants and in the vaccine reacto-
genicity as well as efficiently expressing the mRNA-encoded immunogen following 
intramuscular administration, is in part responsible for the current success of mRNA 
vaccines in SARS-CoV-2 clinical trials [40]. The nanotechnology industry can make 
a substantial contribution to the fight against coronavirus illness in 2019. The strate-
gies that have been studied to inactivate coronavirus often involve the contact of the 
virus’s outer layer with nanomaterials, resulting by a reduction in virus infection or 
complete eradication of the virus. When this occurs, a nanomaterial with antiviral and 
hydrophobic properties can interact with the surface of the virus [41]. Nanomaterials 
made of carbon play a substantial and active part in the fight against COVID-19. 
These nanomaterials, which have excellent antimicrobial, and antiviral properties in 
particular, are the best options against COVID-19 in biosensors for diagnosis, drug 
delivery, airborne virus filtration, antiviral coating, and facemasks. They also include 
carbon quantum dots, fullerene, grapheme, graphene oxide, and carbon nanotubes 
[42, 43]. One of the most important nanomaterials with successful biomedical appli-
cations are metal-based nanoparticles because they can act as efficient drug delivery 
systems and allow for the observation of stimuli-responsive properties and distinctive 
abilities of some kinds (for example, gold or magnetic nanoparticles) after in vivo 
organization to the human body utilizing noninvasive clinical imaging [44]. Despite 
extensive preclinical and clinical research on metal-based nanoparticles (NP) for the 
detection, diagnosis, and treatment of different infections, certain worries about the 
applications’ safety in medicine are still being raised [45]. Due to their harmless qual-
ities, functionalized metal-based nanoparticles with various types of biocompatible 
materials are being researched as a potential solution to this issue. 

Synthesis and natural polymer-based nanoparticles with exceptional attributes, 
such as adjustable properties, practical synthetic procedures, and strong biocom-
patibility, make promising candidates for biomedical applications [46, 47]. In vivo 
delivery, viral delivery systems, and controlled viral vaccines release are only a few 
biological applications that make use of these sorts of nanomaterials with biosafety 
features [47, 48]. It is possible to provide viral vaccinations in the form of DNA, 
mRNA, or protein, all of which are quickly enzymatically destroyed once they enter 
the bloodstream [49–51]. However, several nanoparticles have been used for effec-
tive nucleic acid delivery; among these, lipid nanoparticles (LNPs) are a therapeu-
tically advanced one that has received FDA approval [52]. The versatility of the 
platform and the quick manufacturing capabilities of mRNA-LNP vaccines are its 
main advantages. However, there are several options to consider when creating the 
ideal mRNA-LNP vaccination in terms of efficacy, stability, and toxicity [53] (Fig. 3).

5 Nano-based Drug Delivery Systems 

Currently, various latest techniques have been emerged to ensure maximum avail-
ability of natural-based active compounds and therapeutic agents to its site of target 
against several diseases [54]. However, there is need to address various challenges to
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Fig. 3 Application of bio-nanoparticles in medicine

synthesize latest technology like nano-based drug delivery systems to facilitate effec-
tive delivery of medicine to its target location. With progression of drug designing and 
drug delivery system and development of nanomedicine, different traditional clin-
ical diagnostic and therapeutic procedures have been explored to enhance the drug 
specificity. With the passage of time, different routes of drug administration have 
been discovered to ensure the delivery of drugs at specific location which decrease 
the toxicity and increase the bioavailability of drugs [55]. 

Nanomedicine has become most fascinating area of research and previously in 
last two decades a lot of research has led to the filling of 1500 patents with comple-
tion of several clinical trials. The selection of bionanomaterials for delivery of drug 
relies on the physical and chemical features of drugs. Recently, nanoparticles and 
natural bioactive compounds use in combination has become very captivating and 
growing rapidly. Especially, its role is very appealing and has several benefits when 
natural bioactive compounds used for treatment of several diseases like cancer. For 
example, in case of caffeine and curcumin autophagy whereas cinnamaldehyde, 
carvacrol, curcumin, and eugenol showed the antimicrobial properties [56]. The 
incorporating nanoparticles increase bioavailability, targeting, and controlled release 
of drug. For example, encapsulation of thymoquinone (Nigella sativa bioactive 
compound) with lipid nanocarrier increases its sixfold bioavailability in comparison 
to free thymoquinone. 

6 Applications of Nanomaterial in Treatment of Cancer 

Cancer is a chronic disease that accompanies many complications that indicate a 
dire need of development of anticancer treatment which can target individual and 
bulk tumor cells. In modern time’s prevalence of this lethal disease is increasing 
tremendously, hence it is important to invent targeted drugs to control cancer disease. 
Nanoparticles have been used effectively in treating different cancers like lung cancer,
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breast cancer, and prostate gland cancer. Nanoparticles have ability of attachment 
with metals, minerals that proves effective against the deadly cancerous tissue. Cancer 
is an alarming disease and recent treatment options proving ineffective due to toxicity 
effect [57]. 

NPs exert their action by absorbing light energy and converting into heat that 
further target and kill definite cancerous cells. Usually, chemotherapy is considered 
as the major therapy in treatment process of cancer however targeted NPs has been 
proven to be more effective in delivering chemotherapeutic drugs by increasing drug 
delivery and overcoming the adverse effects allied with orthodox chemotherapy. 
Cancer cells in liver carcinoma of human can be destroyed even via minute concen-
trations of TiO2 NPs by involving the mechanism of by oxidative damage of DNA 
damage and apoptosis [58]. 

Gold nanoparticles are getting the prime intention for their use in treatment of 
cancer as they have many properties. They possess property of adhering with many 
proteins and drugs. Gold nanoparticles possess strong potential to target cancer cells 
through over expressions of receptors on the cell surface. Drugs loaded with NPs 
have greater tendency of penetration that also surge the therapeutic concentrations 
of chemotherapeutic agents in brain cancer [59]. 

Along with treatment NPs are equally effective in diagnostics of tumor cells [60]. 
AgNPs were synthesized from leaves of T. officinale and aqueous extract of orange 
peel, which found to therapeutically active against liver cancer (HepG2) and rat glial 
tumor C6 cells, respectively [57, 61]. 

Many side effects are associated with anticancer drugs like patients taking anastro-
zole, usually use for breast cancer, mostly experience osteoporosis and bone fracture, 
and these side effects can be prevented by giving this drug in conjugation with SeNPs 
that exhibit the strong potential of NPS synthesized through green method in cancer 
treatment [62]. There is a strong need of developing the drugs that are hydrophilic 
in nature with minimum adverse effects and development of a carrier drug delivery 
system to deliver higher concentrations of anticancer drugs at target site. However, 
with such advancement in research still limitations are found in treating cancer. To 
overwhelm these hurdles, effective target drug delivery systems may be appropriate 
solution [63]. 

Ginsenoside possesses many therapeutic properties; desolvation method was used 
to prepare BSA–CK nanoparticles by entrapping ginsenoside with bovine serum 
albumin (BSA). The resultant synthesized BSA–CK nanoparticles (NPs) showed 
higher hydrophilicity and stability as well as anti-inflammatory effects. Cytotoxic 
effects of the BSA–CK NPs and standard CK were also evaluated against different 
cell lines HaCaT, skin cell line, A549, lung cancer cell line, HepG2, liver carcinoma 
cell line and the HT29, colon cancer cell line where the BSA–CK NPs presented 
significant therapeutic activity in vitro. It can be considered as a potential drug carrier 
in cancer treatment [64]. Multidrug resistance phenomenon is a major obstacle in 
chemotherapy. Currently, identified zinc oxide nanoparticles inhibit proliferation of 
cancer and able to target many types of cancers. Green synthesized doxorubicin 
loaded zinc oxide nanoparticles regulate Bax and Bcl-2 expression in breast and 
colon carcinoma [63].
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Flavone base natural anticancer Chrysin (ChR) was synthesized from AgNPs and 
AuNPs in a greener route without addition of toxic excipients. Synthesized NPs from 
ChR had strong potential of reducing Ag+ and Au3+ into their nano-forms that showed 
size and shape uniformity, along with improved surface chemistry. Significant cyto-
toxicity was reported with green synthesized nanoparticles than ChR alone against 
two different breast carcinoma cell lines (MDA-MB-231 and MDA-MB-468) [65]. 
Exopolysaccharides obtained from fish-intestine-associated bacterial strain reported 
to be have remarkable ability of reducing materials of iron base and converting them 
to iron oxide nanoparticles (FeONPs), hence increasing their cytotoxic potential in 
human epidermoid carcinoma cells [66]. Potential applications of green nanomate-
rials include magnetically responsive drug delivery in cancer therapy, bio-imaging, 
and photo-thermal therapy [67]. 

In spite of many applications, there are many challenges that need to be overcome. 
Many amino acids, polysaccharides, flavonoids, alkaloids, vitamins that are used in 
the metal NPs’ medium method, their residues remain stick to surface of metal, 
even after washing and purification. Similarly, in microbial synthesis, there lot of 
microorganisms involving saprophytes and even pathogenic microbes such as E. 
coli are utilized as a bio-source for preparation of metal NPs have various health 
hazards. Aspergillus niger, Aspergillus flavus, and Fusarium solani have also been 
used in biosynthesis of metal NPs [68, 69]. Another drawback is the protein corona 
effect, when the nanoparticle enters the biological system, adsorption of proteins 
on the colloidal NPs’ surface occurs which can alter biological fate of NPs. Green 
nanomaterials could emerge as trending agents in near future for cancer therapeutics 
and diagnostics [70]. 

7 Role of Nanoparticles in Food Industry 

World population expansion is occurring abruptly in last few decades which lead to 
revolutionized in the field of food industry. Recently, bio-nanotechnology has arisen 
as an emerging technology in the field of food industry and role of nanoparticles in 
food industry has been demanded globally. The role of bio-nanoparticles has become 
appealing due to non-toxic nature and stability in high temperature and pressure. The 
use of nanoparticle contributes to maintain the shelf life, quality, and freshness of 
food especially incorporation during packaging [71]. Nanoparticles in food industry 
work into food nanosensing contributed in food processing and food packaging to 
prevent from microbial growth and food nanostructured improved food quality and 
safety by preventing from environment contamination. Various kind of nanoparticles 
like Ag, TiO2, ZnO, magnesium oxide (MgO) etc., are used in food industry to stop 
unwanted growth of bacteria [72, 73] (Fig. 4).
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Fig. 4 Role of nanoparticles in food industry 

8 Conclusion 

Due to continuous innovative research and abundant use, biotechnology has emerged 
as a revolutionary field over the last decade and the rise in nanotechnology has 
increased its popularity in science and technology. Recently, due to low cost, short 
production time and safety makes biological products like plants and microorganisms 
an appealing platform for nanoparticle synthesis. The great biocompatibility and 
unique role of bionanomaterials make them ideal candidate in the field of medicine 
like diagnosis, drug delivery systems, anti-cancerous, and antimicrobial potential. 
The cooperation of dissimilar disciplines is required to develop novel biomaterial-
based approaches, and this innovation may lead to the invention of something new in 
future with remarkable potential for the prevention and treatment incurable diseases. 
It can be inferred on the base of research conducted in last decade that in future, 
nano-biotechnology will become an indispensable phase of our daily life. Lastly, 
although nanoparticles have very important therapeutic applications in medicine, 
but toxicity studies acquire a greater understanding of this captivating and capable 
technology [74]. It would be fair to say that in the future nano-biotechnology will
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play an excellent and unique role in the treatment of human diseases and the study 
of human physiology. 
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Composite Nanomaterials and Their 
Development 

M. A. Umarfarooq and Balbir Singh 

Abstract Composite nanomaterials, consisting of two or more different materials, 
have gained significant attention in recent years due to their enhanced physical, chem-
ical, and mechanical properties. This chapter provides an overview of different types 
of nanocomposites and their synthesis and potential uses. We begin by discussing the 
properties and synthesis methods of these materials, including chemical synthesis, 
physical mixing, and in situ growth. The chapter also explores the various appli-
cations of composite nanomaterials, including in catalysis, energy storage, sensors, 
and environmental remediation. Furthermore, we highlight the challenges associated 
with their large-scale production and commercialization, such as scalability, repro-
ducibility, and cost-effectiveness. Finally, the chapter concludes with a summary of 
the current state of research and suggests possible directions for future work in this 
exciting field. 

Keywords Nanocomposites · Polymer-based nanocomposites ·Metal-based 
nanocomposites · Coating applications · Ceramic-based nanocomposites 

1 Introduction 

Composite nanomaterials are a class of materials that consist of two or more distinct 
materials combined at the nanoscale [1]. The combination of different materials 
at the nanoscale leads to unique properties that are not found in the individual 
components. Composite nanomaterials can be classified into several categories based
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on their structure, composition, and properties. One of the most common types of 
composite nanomaterials is the polymer-based nanocomposites. In these materials, 
nanoparticles such as clay or carbon nanotubes are dispersed in a polymer matrix to 
enhance the mechanical, thermal, or electrical properties of the polymer [2]. Another 
type of composite nanomaterial is the metal oxide-based nanocomposites, where 
metal oxides such as titanium dioxide or zinc oxide are combined with other mate-
rials to create novel properties such as photocatalytic activity or high surface area 
[3]. Carbon-based nanomaterials such as carbon nanotubes and graphene are also 
commonly used in composite nanomaterials. These materials have high strength, 
thermal, and electrical conductivity and can be used to reinforce other materials or to 
create new properties such as increased conductivity in polymers. Composite nano-
materials have a wide range of applications in various fields, including energy storage, 
catalysis, biomedical engineering, and environmental remediation. For example, 
composite nanomaterials can be used to create lightweight and durable materials 
for use in aerospace and automotive applications, or to develop new catalysts for 
more efficient and sustainable chemical reactions [4]. In biomedical engineering, 
composite nanomaterials can be used to create drug delivery systems with improved 
efficacy and reduced toxicity. Overall, composite nanomaterials represent a rapidly 
evolving field of research with immense potential for new materials and applications. 
Composite nanomaterials are materials composed of two or more distinct materials 
at the nanoscale, where at least one of the components has a dimension less than 
100 nm. These materials can be made by combining nanoparticles or nanofibers of 
different materials to create a material with unique properties that are different from 
the individual components [5]. 

The properties of composite nanomaterials can be tailored to meet specific appli-
cation requirements by adjusting the composition, size, and shape of the constituent 
materials. The combination of different materials can lead to novel properties such 
as increased strength, flexibility, and electrical conductivity, and improved thermal 
stability, and optical properties. Composite nanomaterials have a wide range of appli-
cations in various fields, including electronics, energy, health care, aerospace, and 
construction. For example, composite nanomaterials can be used as high strength 
and lightweight materials in the aerospace industry, as highly conductive materials 
in the electronics industry, and as drug delivery vehicles in the healthcare industry. 
The development of composite nanomaterials requires a multidisciplinary approach 
that combines knowledge and techniques from chemistry, physics, materials science, 
and engineering [6]. Researchers need to understand the properties of the individual 
components, the interactions between them, and the mechanisms that govern their 
behavior at the nanoscale. Overall, composite nanomaterials have the potential to 
revolutionize various fields by enabling the development of new and innovative mate-
rials with tailored properties. However, there are also challenges associated with the 
production, characterization, and application of these materials, which require further 
research and development [7]. Nanocomposites can be classified as polymer-based 
or non-polymer-based nanocomposites as shown in Fig. 1.
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Fig. 1 Classification of nanocomposites into different categories [8] 

2 Polymer Nanocomposites 

Polymer-based nanocomposites are a class of materials that have received significant 
attention over the past few decades due to their unique properties and potential 
applications. These materials are composed of a polymer matrix, which can be a 
thermoplastic or a thermoset polymer and nanoparticles that are typically less than 
100 nm in size. The nanoparticles used in polymer-based nanocomposites can be 
inorganic materials such as clays, silica, metal oxides, or carbon-based materials such 
as carbon nanotubes, graphene, or fullerenes [9]. These nanoparticles have unique 
physical and chemical properties that can be exploited to enhance the properties of 
the polymer matrix. The preparation of polymer-based nanocomposites involves the 
dispersion of the nanoparticles within the polymer matrix. This can be achieved using 
various methods such as melt mixing, solution mixing, and in situ polymerization. 
In melt mixing, the nanoparticles and polymer matrix are melted together and mixed 
to disperse the nanoparticles uniformly. In solution mixing, the nanoparticles are 
dispersed in a solvent, which is then mixed with the polymer matrix. In in situ 
polymerization, the polymer matrix is formed in the presence of the nanoparticles 
[10]. 

The addition of nanoparticles to the polymer matrix can improve the mechan-
ical, thermal, and electrical properties of the resulting nanocomposite. For example, 
the addition of clay nanoparticles to a polymer matrix can increase its stiffness and 
strength, while the addition of carbon nanotubes can increase its electrical conduc-
tivity. The improvement in properties is due to several factors, including the high 
surface area of nanoparticles, the large aspect ratio of some nanoparticles, and the
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strong interfacial interactions between the nanoparticles and the polymer matrix [12]. 
Polymer-based nanocomposites have a wide range of applications in various indus-
tries. In the aerospace industry, they can be used to produce lightweight and strong 
materials for airplane components. In the automotive industry, they can be used as 
high-performance tires, brake pads, and engine parts. In the packaging industry, they 
can be used as gas barrier films and coatings to improve the shelf life of food prod-
ucts. In the biomedical industry, they can be used as scaffolds for tissue engineering 
and drug delivery systems [13]. 

However, there are also some challenges associated with the production and use of 
polymer-based nanocomposites. One of the major challenges is achieving a uniform 
dispersion of nanoparticles within the polymer matrix as shown in Fig 2. Poor disper-
sion can lead to uneven properties and reduced performance. Another challenge is the 
potential toxicity of some nanoparticles, which can be harmful to human health and 
the environment. Careful consideration must be given to the selection and handling of 
nanoparticles to minimize their impact on health and the environment [14]. Finally, 
polymer-based nanocomposites are a promising class of materials that offer unique 
properties and potential applications in various industries. The development of effi-
cient and scalable methods for the preparation of these materials, along with careful 
consideration of their potential impact on health and the environment, will enable 
their successful commercialization and widespread use in the future. 

Fig. 2 Polymer nanocomposite consists of a polymer matrix (black lines) and any other substance 
as reinforcement material or filler (blue symbols) [11]
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3 Non-polymer Nanocomposites 

Bimetallic nanoparticles have been extensively studied in the form of either alloy 
or core–shell structures, as they exhibit improved catalytic properties and advance-
ments in optical properties related to individual and differentiated metals [15]. These 
nanoparticles possess various unique characteristics, including superplasticity, lower 
melting points, increased strength and hardness, improved magnetic properties, 
increased electrical resistivity, and more. Non-polymer-based nanocomposites are 
another type of material that can be classified into metal/metal nanocomposites, 
such as Pt-Ru nanocomposites. 

On the other hand, ceramic-based nanocomposites are defined as composites 
with more than one solid phase, where at least one phase has dimensions in the 
nanoscale range (<50–100 nm). These composites exhibit combined magnetic, chem-
ical, optical, and mechanical properties and are exemplified by hydroxyapatite/ 
titania nanocomposites. These types of nanocomposites are characterized by better 
toughness, increased ductility, increased strength, and hardness [16–18]. Figure 3 
shows the oxide and non-oxide sol–gel processes for synthesis of polysiloxane and 
polysilylcarbodiimides, respectively.

4 Ceramic–Ceramic-Based Nanocomposites 

The non-polymer-based nanocomposites can be also classified as ceramic/ceramic 
nanocomposites which can be used in the area of artificial joint implants for fracture 
failures and it could promptly reduce the cost of surgery and would extend the 
mobility of the patient. The life spam would increase by 30 years, if the use of 
zirconia-toughened alumina nanocomposite implants is used effectively. The other 
example of ceramic/ceramic nanocomposites is calcium sulfate-biomimetic apatite 
nanocomposites [20]. 

The most promising prospects of both metal-based nanocomposites and ceramic-
based nanocomposites are in the application of areas in dentistry in which the non-
polymer-based nanocomposites or the inorganic materials that is metal or ceramics 
such as calcium phosphate, hydroxyapatite, and bioactive glass nanoparticles are 
very advantageous in alveolar bone regeneration and enamel substitution [21]. 

The development of composite nanomaterials involves several steps, including 
the selection of materials, synthesis, and characterization of the composite material. 
Here is an overview of the typical process:
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Fig. 3 Comparison between the non-oxide sol–gel process for the synthesis of polysilylcarbodi-
imides and the oxide sol–gel process for the synthesis of polysiloxane [19]

5 Material Selection and Development 

The first step in developing composite nanomaterials is to select the appropriate 
materials that will be used as the constituents of the composite material. The proper-
ties of the materials should complement each other and result in desirable properties 
for the composite material. 

5.1 Synthesis 

There are various methods for synthesizing composite nanomaterials, including phys-
ical mixing, chemical deposition, and in situ growth. The synthesis method chosen 
will depend on the materials being used and the desired properties of the composite 
material. For example, physical mixing can be used to create a composite material
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by mixing two different types of nanoparticles together [22]. On the other hand, 
chemical deposition can be used to grow one material onto the surface of another 
material to create a composite material. 

5.2 Characterization 

Once the composite nanomaterial has been synthesized, it needs to be characterized to 
understand its properties. Common characterization techniques for composite nano-
materials include electron microscopy, X-ray diffraction, and spectroscopy. These 
techniques can provide information about the size, morphology, and crystal structure 
of the composite material [23]. 

5.3 Property Optimization 

After the composite material has been synthesized and characterized, it may be 
necessary to optimize its properties for a specific application. This can be achieved 
by modifying the composition or structure of the composite material. 

5.4 Application Development 

Finally, the composite nanomaterial can be used in various applications depending 
on its properties. For example, a composite nanomaterial with high electrical conduc-
tivity could be used in electronics, while a composite nanomaterial with high strength 
and stiffness could be used in aerospace. 

Overall, the development of composite nanomaterials requires a multidisciplinary 
approach that combines knowledge and techniques from chemistry, physics, mate-
rials science, and engineering. The process can be time-consuming and complex, but 
the potential benefits of composite nanomaterials make it an area of active research 
and development. There are several methods for synthesizing composite nanomate-
rials, each with its advantages and limitations [24]. Here are some of the common 
methods used for synthesizing composite nanomaterials: 

5.5 Chemical Co-Precipitation 

In this method, the nanoparticles are synthesized in situ by co-precipitation from a 
solution containing precursors of the different materials. The resulting nanoparticles 
are then mixed together to form a composite material. This method can result in a
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homogenous distribution of nanoparticles, but it may also result in the formation of 
unwanted phases [25]. 

5.6 Electrospinning 

This method is used to create nanofibers by electrostatically spinning a solution of 
polymers and nanoparticles. The resulting nanofibers can be collected and used as a 
composite material. This method can create a homogenous distribution of nanopar-
ticles, and the resulting nanofibers can be used in various applications, including 
filtration and tissue engineering. 

5.7 Sol–gel Method 

This method involves the formation of a gel from a solution of precursors that are then 
dried to create a solid material. The addition of nanoparticles to the precursor solution 
can result in a composite material. This method can be used to create complex shapes 
and structures, and it can result in a homogenous distribution of nanoparticles. 

5.8 Chemical Vapor Deposition 

In this method, one material is deposited onto the surface of another material 
through chemical reactions in a vapor phase. This method can create a homoge-
nous distribution of nanoparticles, and it can be used to create thin films and coatings 
[26]. 

Overall, the synthesis of composite nanomaterials requires careful consideration 
of the properties of the individual materials, the desired properties of the composite 
material, and the method used to synthesize the material. The resulting composite 
material can have unique and tailored properties that can be used in various appli-
cations. The synthesis of composite nanomaterials involves combining two or more 
different types of nanomaterials to create a material with unique properties. There 
are some more methods for synthesizing composite nanomaterials, including phys-
ical mixing, in situ growth, and surface modification. Here is an overview of these 
methods.
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5.9 Physical Mixing 

Physical mixing involves the simple mixing of two or more types of nanomaterials 
to create a composite. The resulting composite will have a heterogeneous structure, 
with the individual components dispersed throughout the material. Physical mixing 
is a relatively simple and low-cost method, but it can be challenging to control the 
distribution and interaction of the different components within the composite [27]. 

5.10 In Situ Growth 

In situ growth involves growing one type of nanomaterial onto the surface of another 
type of nanomaterial. This can be achieved through a variety of methods, such 
as chemical vapor deposition, electrochemical deposition, and sol–gel techniques. 
In situ growth can produce a more homogeneous composite structure, with the 
two components intimately intertwined. However, it can be challenging to control 
the growth process, and the resulting composite may have limited compositional 
flexibility. 

5.11 Surface Modification 

Surface modification involves modifying the surface of one type of nanomaterial to 
enable the attachment of another type of nanomaterial. For example, the surface of 
a metal nanoparticle can be modified to enable the attachment of a semiconductor 
nanoparticle. Surface modification can provide precise control over the composition 
and structure of the resulting composite, but it can be challenging to achieve a high 
degree of control over the attachment process [28]. 

Overall, the choice of synthesis method will depend on the specific requirements 
of the composite nanomaterial, such as composition, structure, and properties. The 
development of composite nanomaterials requires a multidisciplinary approach that 
combines knowledge and techniques from chemistry, physics, materials science, and 
engineering. 

6 Potential Uses of Nanocomposites 

Nanocomposites have been gaining momentum in recent years, and their applica-
tions are growing rapidly, according to research [8]. It is expected that within the 
next 10 years, the worldwide production of nanocomposites will surpass 600,000 
tons. This growth is expected to occur in various regions and can be attributed to
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their numerous benefits and applications in different fields. Specifically, nanocom-
posites are expected to see growth in six key areas, including superior strength fibers 
and films, UV protection gels, drug delivery systems, new fire retardant materials, 
anti-corrosion barrier coatings, and lubricant and stretch paints. These applications 
demonstrate the versatility and potential of nanocomposites in various industries, 
and their increasing production and use is a testament to their potential to enhance 
performance and improve products across different sectors. 

7 Conclusions 

The field of nanocomposites has become increasingly important in the development 
of new materials for advanced applications, thanks to the rapid growth of nanotech-
nology in recent years. Nanocomposites are a versatile class of materials that offer 
a high level of integrated association, making them suitable to fulfill the growing 
needs of multifunctional materials. The creation of macroscopic engineered mate-
rials obtained through nanolevel structures is a multidisciplinary field that combines 
scientific knowledge with technological aspects. These materials are well-suited to 
meet the emerging demands arising from scientific and technological advances. The 
outstanding potential of nanocomposites can be seen in the massive investments made 
by many companies and governments throughout the world. As a result, nanocom-
posites are expected to have a significant impact on the world economy and business, 
benefiting industrial sectors like electronics and electrical industry, chemical industry, 
transportation sectors, healthcare organizations, and above all, the protection of the 
environment. Nanoparticles can be treated with green agents to modify their surface 
properties for specific applications, resulting in improved microstructural proper-
ties such as exfoliation, compatibility, and thermal stability. The optimization of 
polymerization conditions during the preparation of nanocomposites is essential to 
maximize output while minimizing cost. The effect of nanocomposite composition 
on developed microstructures during preparation activities should also be studied in 
detail. Nanocomposites can be prepared using materials like polymer blends along 
with melt blending technologies, allowing the advantages of the individual materials’ 
properties and their coaction to be developed. Flexible batteries can be made using 
nanocomposites. 
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Abstract Synthesis of semiconductor nanocrystals through solution-based 
approaches has turned out huge interest among researchers. Out of other methods, 
preparation of colloidal semiconductor nanocrystals through hot-injection method 
is intensively investigated owing to its versatility. Importantly, the structure, shape 
and size of the nanocrystals can be precisely tuned with respect to the precursors 
and temperature. This influence a lot on the composition, physical, and chemical 
properties of the synthesized nanocrystals. Using hot-injection synthesis approach, 
the nanocrystals are prepared either in aqueous medium or in organic solvents. The 
acidic or basic nature of surface metal atoms integrate the ligand interaction and 
hence stability of the nanocrystals in solution is governed. Furthermore, with respect 
to the reaction time intervals and type of precursors, the absorption and emission 
spectra of the nanocrystals can be tuned. Diverse range of inorganic nanocrystals 
such as metallic nanostructures (ex: Ag, Au, Pt, Pd) metal-chalcogenide semicon-
ductor nanocrystals (ex: CdS, ZnS, CdTe, CdSe), metal-oxide nanocrystals (ex: TiO2, 
CeO2), metal phosphides, metal nitrides and metal halide perovskite nanocrystals 
(RNH3PbX3 and CsPbX3, where R = alkyl group and X = Cl, Br and I) are prepared 
using this method and their structural, optical and morphological properties are eval-
uated. Interesting features such as polytyphism, different phase formation, surface 
charge and ligand metal interaction are dealt with respect to the reaction conditions. 
In this view, this chapter discuss about the advancements of hot-injection approach in 
synthesizing different group semiconductor nanocrystals, challenges and it’s future 
perspectives.
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1 Introduction 

Inorganic semiconductor nanocrystals (NCs) or quantum dots (QDs) are intensively 
studied in the last four decades due to their exciting structural optical properties 
when they are reduced to smaller size [1–5]. Hence, synthesizing semiconductor 
NCs using appropriate methodologies is also governed with different aspects. Out of 
others, solution-phase synthesis of inorganic semiconductor NCs has reached new 
dimension in the recent years [6–9]. Although several ways are possible to carry out 
the synthesis in solution, it is important to know how the NCs are functionally modi-
fied. Through modification on the NCs surface using different organic molecules and 
inorganic compounds, it is possible to apply the NCs for several kind of applications. 
Depending on the functionalization, the NCs are fabricated as thin films to harvest 
photons from ultraviolet (UV) to near-infrared (NIR) region for the optoelectronic 
applications. In order to efficiently manage the carrier transport, it is essential to 
fabricate the NC films as well-ordered assembly with very good inter-connectivity. 
When we fabricate the NC films, several factors are affecting the assembly such as 
method of deposition, solvent, concentration of ligands, nature of ligand molecules 
and effect of annealing. In order to fabricate high quality NC films, it is essential 
to concentrate on the synthesis method which result in highly crystalline NCs with 
narrow size distribution. In this point of view, synthesizing semiconductor NCs in 
solution is interested because of the easy approach and possibilities for the large 
scale production. The experimental space, equipment, time and other required utili-
ties for the solution-based synthesis are quite simple and convenient. Methods such 
as hydrothermal [10], sol–gel [11], solvothermal [12], co-precipitation [13], sono-
chemical [14] and colloidal approach [15] are generally used to prepare the semicon-
ductor nanocrystalline materials in solution. Several kind of precursors, from ionic 
to covalent compounds are investigated in all these methods to prepare the nanocrys-
talline materials with specific functionality. Despite the preparation method, control 
of growth, morphology, size, and functionality of the NCs for different applications 
are the essential parameters. In this view, colloidal hot-injection method has emerged 
as one of the successful approaches to synthesis of narrow size, single crystalline NCs 
[16–18]. From moderate temperature (~ 100 °C) to extremely higher temperature (up 
to ~ 300 °C), this method is extensively used to prepare inorganic semiconductor NCs 
with different structure, morphology and functionality. Importantly, UV harvesting 
metal-oxide NCs (ex: TiO2, ZnO), visible light sensitive metal-chalcogenide NCs 
(ex: CdTe, CdSe), near-infrared (NIR) harvesting QDs (NIR QDs) (ex: PbS, PbSe) 
could be prepared using this method. Also, the prepared NCs in this method could 
be deposited on the conducting substrates through methods such as spin-coating, 
dip-coating, spray-deposition, layer-by-layer deposition (LBL) and doctor blade 
method. Different group inorganic compounds such as metallic nanostructures [19],
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metal-oxides [20], metal-chalcogenide nanostructures [21], metal halide perovskite 
NCs [22] and their alloyed/core–shell nanostructures are prepared by colloidal hot-
injection method. Also, fabrication of perovskite, metal-chalcogenide nanostruc-
tures with polymer is also achieved through hot-injection method [23, 24]. More-
over, different sectors such as bio, magnetic, optoelectronic and thermoelectric are 
enriched with the nanomaterials developed through hot-injection method. In order to 
stabilize the prepared NCs, organic molecules called ‘ligands (or) organic linkers (or) 
capping agents’ are used to passivate (or) adhere the NCs surface. These ligands are 
typically long, short-chain and having different polarity in order to interact with the 
NC surface [25–27]. The interaction between surface atoms and ligands and also the 
solvent atmosphere are the most important parameters for the stability and other phys-
ical, chemical properties of the dispersed NCs. Besides, purification of the prepared 
NCs is an important stage to achieve excess ligand-free NCs and their assembly. 
It is possible to prepare strongly quantum-confined semiconductor NCs [i.e. QDs] 
through hot-injection method. The influence of physical parameters, ligands, polarity 
of the solvents used for the purification and surface modification on the NCs lattice 
is quite sensitive on the final assembly of the prepared NCs. Other advantages such 
as upscaling nanomaterials, fabrication of core–shell assembly, phase transfer from 
aqueous to organic medium, wavelength tuning by external doping are possible in 
hot-injection method. Thus, a very good controllability with reproducibility can be 
achieved through hot-injection synthesis method and this could be used for several 
kind of applications. Here, the gradual addition of the precursors at high (or) low 
temperature concisely arrange the atoms and with respect to the synthetic condi-
tions, the properties of the NCs are tuned. From the spherical shaped NCs, different 
morphologies such as nanorods, nanowires, nanoplatelets, nanosheets, cuboctahedra 
and hierarchical shaped nanostructures can be achieved through this method. Impor-
tantly, the size of all these morphologies could be precisely managed through control-
ling reaction parameters. Thus, colloidal hot-injection method has become an indis-
pensable synthetic approach in the nanochemistry research area. In this regard, this 
chapter work discussing about the achievements and challenges in the synthesis 
of semiconductor nanocrystals through colloidal hot-injection method. The funda-
mental principle, experimental scheme and reactor assembly of this method are 
analysed. Furthermore, the developments in colloidally synthesized different class 
metal chalcogenide nanostructures, metal-oxide nanocrystals and recently developed 
all-inorganic perovskite nanostructures are discussed in detail.
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2 Hot-Injection Method—Basic Principle 
and Experimental Assembly 

The synthetic revolution in II-IV, I-III-VI2 and III-V group semiconductor NCs and 
newly emerged metal halide perovskite NCs is excellently achieved through hot-
injection method and lot of scientific innovations are demonstrated accordingly [28– 
30]. In hot-injection method, the precursors in solvent(s) are rapidly injected into 
the another precursor in hot-coordinating solvents. The nucleation burst takes place 
once the precursors are injected into the solution and depending on the concen-
tration of the precursors, the growth kinetics differs. The stabilization of NCs is 
achieved either through electrostatic or by steric interaction. In this method, the 
growth of the NCs is explained through La-Mer plot which describes the NCs 
growth after nucleation [31, 32] (Fig. 1). According to this model, upon injection 
of the precursor, the nucleation burst generate atoms in solution and this immedi-
ately tend to nucleation. Nucleation at this stage lead to formation of ultra-small 
size NCs which further guide towards NCs growth. At this stage, growth of the NCs 
begins through a diffusion process. Here, the NCs attain a critical size called ‘magic 
size’ in which the precisely arranged smaller number of atoms of NCs show supe-
rior stability [33–35]. The formation mechanism of magic size clusters is described 
through several possible concepts namely, (a) fusion (b) template-assisted growth and 
(c) layer-by-layer assembly [33]. The consequent growth of NCs takes place through 
Ostwald ripening, in which the exploitation of smaller NCs leads to bigger size during 
prolonged reaction period [36, 37]. To achieve the monodisperse from the polydis-
persity, NCs undergo another process, called digestive ripening [38]. Hence, the NCs 
growth is achieved through three stages namely, (i) supersaturation, (ii) nucleation 
and (iii) growth through diffusion. Teunis et al. have proposed that together with 
these three steps, surface ligation, i.e. adsorption of ligand molecules on the NCs 
surface also the fourth step in the growth [33]. A recent study on the growth of metal 
halide perovskite NCs also confirms this surface ligation stage [39]. Although La-Mer 
model fit for the most of the semiconductor NCs, highly ionic semiconductor NCs, 
for example metal halide perovskite NCs are seems to be an exceptional. Because 
of their extreme ionicity and rapid chemical reaction, the formation mechanism of 
the cesium lead halide perovskite NCs, i.e. CsPbX3 NCs (where X = Cl, Br and 
I) and hybrid lead halide perovskite NCs, i.e. CH3NH3PbX3 NCs (where X = Cl, 
Br and I) is not much explored. The next important step after the preparation of 
NCs is purification. Because most of the NCs are synthesized in the presence of 
highly unsaturated fatty acids and higher boiling point solvents, the excess ligands 
and solvents and the by-products formed in the reaction should be removed. The 
selection of solvent for the purification is on the basis of the interaction of surface 
ligands. Solvents with different kind of polarity are used for the precipitation of the 
prepared NCs [40, 41]. In addition, with polarity, the solvent also influences on the 
final assembly and optical properties of the NCs. For instance, if the excess surface 
ligands are removed by the purifying solvent, the surface may lose some of the 
ligands. In such case, the optical properties, in particular the photoluminescent (PL)
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Fig. 1 La-Mer model describing the growth of NCs. Reprinted with permission from Ref. [31] 
Copyright 1950@American Chemical Society 

properties [PL intensity, photoluminescent quantum yield (PLQY)] of the prepared 
NCs are severely affected and luminescence is quenched [42, 43]. The quenching in 
PL properties can be recovered by surface treatment process or by forming a shell. 
When a bad solvent is added into the nanoparticles solution, the precipitation takes 
place and the NCs are separated out through centrifugation. With respect to the type 
and chain length of the purifying solvent, the resultant NCs may have influence on 
the device performance. 

The preliminary work on colloidal hot-injection method was reported during the 
year 1993 by Brus and Bawendi for the preparation of cadmium chalcogenide NCs 
(CdX, where X = S, Se and Te) using organometallic solvents [44]. Strongly coor-
dinating trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO) were used 
in this experiment to achieve smaller size nanocrystallites with narrow size distri-
bution. This report laid a foundation for the further developments in synthesizing 
different class of semiconductor NCs using hot-injection method. The experimental 
arrangement of synthesizing NCs using hot-injection approach is typically a Schlenk 
line setup, which consists of a three-neck flask, a condenser, a nitrogen cylinder 
and a vacuum pump system. At first, the flask is degassed completely and circu-
lated with nitrogen (N2) or argon (Ar) for an inert atmosphere. This help to avoid 
oxidation with the air-sensitive precursors and to carry out the reaction without any 
issues. Then, the precursor in hot-coordinating solvent(s) is injected rapidly into the 
solvent(s) which consists of anionic (or) cationic precursor to form NCs in solu-
tion. In general, a transformation of colour is often observed as an indication of 
NCs formation. Temperature play key role in decomposing the precursors at the 
critical point, which also control the growth and shape of the resultant NCs in solu-
tion. For the solvents, amines with different chain length are mostly exploited for
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the preparation of semiconductor NCs and they critically influence on the optical 
properties [45]. Although phosphine group compounds such as TOPO and TOP 
were dominating initially, phosphine-free solvents and ligands are currently used to 
prepare numerous type of nanocrystalline materials. Specifically, different class of 
NCs are prepared through oleylamine (OAm), octadecylamine (ODAm), and hexade-
cylamine (HDAm) [28]. Since amines are having high boiling point, their ability to 
form highly crystalline NCs through decomposition is much interested. Further-
more, they also influence on the NCs surface through their binding ability which 
critically influence on the morphological properties. Similarly, oleic acid (OA), a 
long-chain aliphatic fatty acid is the widely used carboxylic acid compound along 
with amines in hot-injection method [46]. Along with OA and OAm, an additional 
non-coordinating solvent, 1-octadecene (1-ODE) is always preferred. 1-ODE is a 
highly stable, low-cost solvent and with low-hazardness, this solvent also help to 
dissolve most of the precursors at high temperature. However, it is found that 1-ODE 
could polymerize at high temperature and form poly(1-octadecene) which cannot be 
removed through typical purification methods [47]. The growth of NCs is generally 
monitored through spectral position of the absorption and emission spectra. For this, 
aliquots of the sample are taken at different time intervals and analysed. Recently, 
there is a significant development in the analysis of NCs growth in solution. For 
example, it is possible to monitor the growth of NCs through in situ diffraction 
measurements. For example, the experimental arrangement for the in situ moni-
toring of growth of the Cu2ZnSnS4 NCs is given in Fig. 2 [48]. In the case of 
aqueous synthesis, short-chain thiols such as thioglycolic acid (TGA) and mercap-
topropionic acid (MPA), quaternary ammonium salts such as hexadecyl ammonium 
bromide (HTAB) and cetyltrimethyl ammonium bromide (CTAB) are widely used 
[49, 50]. These ligands not only stabilize the NCs, but also influence on the NCs 
assembly and charge transport properties. Although most of the preparation proce-
dures are dealing halide and oxide kind of precursors, there are some experimental 
evidences using single-source precursors [51]. The decomposition of these precur-
sors at high temperature leads to the formation of ultra-small NCs, which further 
allow the growth. Thus, careful selection in precursors and ligands for a reaction 
could accelerate to achieve high quality NCs with excellent optical properties. Based 
on the discussed growth mechanism, several group nanocrystalline semiconductors 
are prepared using hot-injection synthetic strategy. Specifically, luminescent nano-
materials belong to cadmium chalcogenides (ex: CdSe, CdTe), cadmium-free chalco-
genides (ex: InP, ZnS), cesium lead halide perovskite NCs (CsPbX3, X = Cl, Br, I)) , 
hybrid lead halide perovskite NCs (R3NH3PbX3, R = alkyl cation, X = Cl, Br, I) are 
synthesized using hot-injection method. The optical properties could be precisely 
tuned by optimizing the reaction conditions and we can synthesis NCs with emission 
from ultraviolet (UV) to near-infrared (NIR) region. This indeed helpful to achieve 
luminescent NCs for light emitting diodes (LEDs) and solar window applications.
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Fig. 2 Experimental arrangement of the in situ monitoring of the growth of the colloidal 
Cu2ZnSnS4 NCs through SAXS. Reprinted from Ref. [48] Copyright 2021@American Chemical 
Society 

3 Synthesis of Inorganic Semiconductor Nanocrystals 
by Hot-Injection Method 

3.1 Role of Ligands and Solvents in Morphological Evolution 

As discussed, ligands (or) capping agents are adhering on the NCs surface and 
depending on their interaction, the growth direction is restricted. Further, organic 
ligands and solvents are playing important role in the decomposition of precursors 
to controlling the size, shape and phase of the NCs [52–54]. It is important to wisely 
select the suitable ligands and solvents to synthesis NCs with narrow distribution. The 
solvents used in hot-injection method are belongs coordinating and non-coordinating 
category. Most of the non-aqueous-based synthesis of NCs in this method carries use 
of coordinating solvents such as OAm, OA and a non-coordinating solvent, 1-ODE 
[55–57]. These solvents decompose the precursors at high temperature to form NC 
lattice. Apart from the growth, solvents/ligands influence a lot on the phase forma-
tion of the NCs [58]. Here, the ligands sterically influence on the growth of the NCs 
which result in different phase and morphologies. For instance, colloidally prepared 
copper selenide (Cu2Se) NCs using TOP resulted mixture of two phases while with 
OAm only one phase [50]. While in the case of aqueous synthesis of semiconductor 
NCs, the stability of the resultant NCs relies on the type of surface ligands. Generally, 
water soluble short-chain ligands are used during the NCs preparation and they are 
useful for solution-processed applications. Some ligands are also used as precursor 
for the NC formation. Thiols with longer chain length are serving this role and they 
are helpful in synthesizing sulphide NCs. For example, 1-dodecanethiol (1-DDT), a
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long-chain thiol which also serve as ligand is used to synthesis binary, ternary and 
quaternary copper chalcogenide NCs [28, 60]. At higher temperature, decomposi-
tion of 1-DDT generate sulphide (S2−), which essentially lead to the formation of 
metal-sulphide NCs [61, 62]. In addition to passivation, ligands and solvents may also 
undergo an isomeric transformation and can form a shell to passivate the surface [63]. 
With respect to the nature of binding, ligands are classified as L-, X- and Z-type. The 
elaborative discussion about these ligands could be seen elsewhere [25, 64]. Some-
time, the by-product formed in the reaction may act as a ligand. It is observed that in 
the presence of OAm, carboxylic acid formed in the reaction could serve as a ligand 
[63]. The generally applied selection rule in the NCs synthesis is Pearson’s rule of 
hard soft acid base theory (HSAB). According to this rule, soft acids will prefer to 
bind towards soft base while hard acids will prefer to bind with hard base [65, 66]. 

Although organic ligands are proved as versatile for the capping purpose, inorganic 
ligands have also been investigated to achieve colloidal NCs with excellent properties. 
Halides, psuedohalides, halometallates such as NaCl, NH4I, NaN3 and molecular 
metal-chalcogenide complexes (MCCs) are found to be useful in stabilizing colloidal 
NCs and maintaining superior optical properties [67–69]. Kovalenko et al. have found 
that negatively charged MCCs, such as (SnS4 4−, Sn2S6 4−, SnTe4 2−,AsS3 3−,MoS4 2−) 
are useful in removing the ligands of core/shell CdSe/ZnS NCs and metallic Au NCs 
[70]. Importantly, MCC (here, Na4Sn2S6) capped Au NCs showed high conductivity 
over f > 1000 S cm−1, which show the promising direction of this approach. The same 
research group further demonstrated use of hydrogen selenides (HSe−), hydrogen 
telluride (HTe−) and their elemental ligands (Se2−, Te2−) to cap CdSe and CdSe/ZnS 
core/shell NCs [71]. Besides, the short-chain thiocyanate (SCN−), chloride (Cl−) 
and sulphide (S2−) ligands are quite useful in improving carrier transport of Cu2−xSe 
NC films [72]. They are indeed quite useful in achieving NC films with excellent 
electrical properties. When inorganic ligands are used in the reaction, the cationic or 
anionic species could influence on the growth as observed in the case of cadmium 
chalcogenide [73, 74] and copper chalcogenide NCs [75, 76]. These species sterically 
influence on the growth pattern of the NCs and control their thickness or size/shape. 
Usually, this inorganic ligand capping strategy is achieved through ligand-exchange, 
which is discussed in this chapter separately. The schematic diagram of inorganic 
ligand passivation using HBF4 treatment in the case of CdSe and CdSe/ZnS core/ 
shell NCs and their corresponding UV–visible, PL and IR spectra are represented in 
Fig. 3.

3.2 Influence of Precursors in the Reaction 

Precursors play remarkable role in hot-injection method to synthesize NCs with 
excellent structural and optical properties. By carefully choosing or designing 
the precursor, the properties of the NCs can be modified. Most of the reports 
in hot-injection synthesis of semiconductor NCs are halides, nitrates and
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Fig. 3 a Schematic representation of removal of organic ligands from the CdSe NCs using HBF4 
treatment b UV–visible and PL spectra of the ligand-free CdSe and CdSe/ZnS core/shell NCs and 
c FTIR spectra of the HBF4 treated and untreated CdSe NCs. Reprinted with permission from Ref. 
[71]. Copyright 2011@American Chemical Society

acetates based precursors. By changing or modifying the ratio between the precur-
sors, it is possible to tune the phase, structure and morphology of the NCs. In the 
case of ZrO2, it is found that when zirconium (IV) bromide is used as the precursor, 
very smaller NCs are obtained compared with the NCs obtained using zirconium 
chloride (ZrCl2) precursor [77]. Similar kind of size variation is also observed 
in the case of PbS, ZnS, CdS and MnS NCs [78]. Apart from molecular halides 
and covalent compounds, single-source precursors are playing vital role in synthe-
sizing monodispersed NCs through hot-injection method. Here, dithiocarbamates, 
xanthates, diselenophosphinates, semicarbazones are the widely used metal-complex 
single-source precursors. These single-source precursors are quite useful in synthe-
sizing metal phosphides and selenides such as CoP, Co9S8 [79], Sb2Se3 nanorods, 
SnSe nanosheets [81] and BaTiS3 nanorods [82]. Out of other metal-complexes, 
dithiocarbamates are the leading complex ligands in the preparation of metal-sulphide 
NCs through hot-injection method. Shen et al. used metal-dithiocarbamate complex 
to synthesize several kind of metal-sulphide NCs such as Ag2S, ZnS, CdS QDs 
and SnS nanosheets, Bi2S3 and Fe7S8 nanoplates [83]. By modifying the reac-
tion temperature and solvents/precursors ratio, the authors cleverly tuned the size
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Fig. 4 a Schematic diagram of continuous injection of InAs clusters into the InAs seeds b diffusion 
dynamics controlled growth of InAs QDs. Reprinted from Ref. [86] 

and morphology of the prepared products. Depending on the precursor type, the 
spectral position of the NCs is influenced. For instance, it is observed that use of 
gallium oleate (Ga-oleate) precursor to synthesize InP QDs lead to red shift in UV– 
visible (450–525 nm) and PL spectra due to the formation of core/shell (i.e. InP/ 
GaP) assembly whereas blue shift is observed when Ga(acac)3 is used [84]. This is 
because of the formation of alloyed InGaP nanostructures shift the spectral position 
towards blue. This show that selection of suitable precursor is important to achieve 
semiconductor NCs with excellent properties. Zhao et al. used InCl3 and pnictogen 
chloride (As, Sb)-OAm as precursors to prepare InAs, InAs1-xSbx and InSb QDs 
[85]. The authors achieved QDs with precise control in size with the controlled stoi-
chiometry. Importantly, the reaction temperature is extremely lower here (3 °C per 
minute) and this approach seems to be a favourable to synthesize III-V group QDs. 
Kim et al. explored that it is the concentration gradient between the solution and 
QDs which determines the size of the InAs QDs [86]. The schematic representation 
of the precursor injection in hot-injection method to synthesize InAs QDs is given 
in Fig. 4. 

3.3 Influence of Physical and Chemical Parameters 

Physical and chemical properties are hardly influencing in hot-injection 
synthesis method. By modifying temperature, pH, reaction time, precursor injec-
tion time interval, volume of the solvent, amount of the ligands and ratio between the 
precursors, it is possible to control the reaction, phase, morphology and size of the 
NCs. Unlike other methods, control of physical and chemical properties through hot-
injection synthetic approach is more feasible. Even a small variation in the reaction 
could be recorded and their influence on the NCs can be measured. The size of the 
NCs could be precisely tuned in this method by simply altering physical and chemical 
parameters. Also, it is possible to achieve different morphologies from nanodots to 
nanosheets through controlling the reaction conditions. For example, in the case of
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halide perovskite NCs, the high temperature (∼ 270 °C) results in nanocubes whereas 
same amount of precursors at low temperature (∼ 120 °C) results in nanoplatelets 
[87–89]. Ou et al. precisely tuned the spectra and composition of the Cu2ZnSnS4 NCs 
through incorporating selenium (Se) [90]. The monodispersed Cu2ZnSn(SxSe1−x)4 
NCs obtained in this approach possessed nearly spherical shape with the band gap 
1-1.5 eV. Similar kind of spectral alteration is possible in other ternary chalcogenide 
nano-semiconductors such as CuInS2, CuInSe2, AgInS2 and AgInSe2. Similarly, 
the ratio between the precursors significantly influence on the morphology of the 
NCs. Joo et al. varied ratio of the precursors to prepare CdS, PbS, MnS and ZnS NCs 
[83]. Here, the authors achieved different morphologies which includes rods, bipods 
and tripods (CdS NCs), and bullet shape (MnS NCs). In this study, it is found that 
the size of the CdS NCs could be varied (6, 8 and 9 nm) by simply varying the ratio 
between PbCl2 and sulphur. Similar to this, instead of OAm, Wang et al. used ODAm 
as solvent and successfully achieved different kind of metal-sulphide nanomaterials 
[91]. Here, in the case of ZnxCd1-xS NCs, by increasing the concentration of Cd2+, 
the emission was tuned from blue to red. Moreover, variation in ratio between Cd2+ 

and S2− resulted in NCs with different morphologies (nanoneedles, nanotripods and 
nanorectables). Instead of injecting sulphur in OAm, a one-pot approach is adopted 
to synthesize wide-variety of metal-sulphide NCs and this strategy is usually carried 
out in the presence of a long-chain alkanethiol [92, 93]. 

3.4 Purification of Colloidal Semiconductor Nanocrystals 

Purification plays important role in achieving semiconductor NCs with excellent 
properties and stability. Since hot-injection method involves with solvents and 
ligands, it is necessary to eliminate the excess ligands and solvents after the comple-
tion of reaction. In order to remove the excess ligands, solvents and by-products, 
purification is carried out in the presence of anti-solvents. Ligands can rely on the 
NCs surface through either physisorbed or surface bound state depending on the 
surface metal atoms. The excess organic ligands on the NCs and the by-products 
formed during the reaction are effectively removed using suitable anti-solvents. Here, 
depending on the size, the bigger NCs are precipitated at first and smaller NCs remains 
in the mother solution. This is collected through another cycle of purification and the 
resultant solid is recovered through centrifugation. This is further redispersed in a 
suitable solvent and the cycle is continued until the excess ligands are fully removed. 
It is important to reduce the physisorbed ligand density using multiple cycles without 
affecting the PL properties. Among the purification strategies, ‘size-selective precip-
itation’ is quite familiar where extremely smaller size NCs (often called as ‘QDs’) are 
extracted [94, 95]. The selectivity and volume of the anti-solvent for the purification, 
centrifugation speed, ligands interaction with the NC surface, pH of the medium 
and polarity of the anti-solvent are critically influencing on the purification and final 
assembly of the NCs. With different innovative approaches, recently, remarkable
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developments have been achieved in the purification of NCs. Other than ultracentrifu-
gation, separation of NCs is carried out through membrane-based dialysis techniques 
[40]. Here, the excess ligands are allowed to pass through a membrane from a higher 
concentration area to lower concentration area and the resultant solution would have 
purified NCs. Chromatographic techniques such as size-exclusion chromatography 
and gel-permeation chromatography (GPC) are widely used to separate the NCs 
from solution [96–98]. Once the NCs are purified, they are redispersed in a suitable 
polar (or) non-polar solvent and the stability of the resultant colloidal solution is 
monitored. Depends on the polarity of the solvent, pH and dielectric constant of 
the medium, the NCs stability is affected [99]. Since multiple purification influence 
on the optical properties of the NCs due to the removal of ligands, it is essential to 
monitor the absorption and emission spectra in order to understand the intensity vari-
ation. In general, purification cycle partially (or) completely removes conventional 
OAm and OA ligands and due to the strong binding ability of phosphine ligands, it 
is less influenced. Since phosphine ligands are L-type ligands, multiple purification 
could affect their bonding with the NCs. It is found that methanol deteriorate CdSe 
QDs surface during multiple washing and reduce the PL properties while ethanol 
helps to retain the PL properties [42]. In this case, it is identified that the removal 
of TOPO from the surface is faster than the removal of stearic acid (X-type ligand). 
This implies that role of purifying solvent is different with respect to the type of 
ligand. In the case of metal halide perovskite NCs, purification significantly affect 
the PL properties. Among the solvents with different polarity, methyl acetate, methyl 
acetate and tertiary-butanol are found to be efficient in the removal of excess ligands 
and further stabilization of the halide perovskite NCs [100–102]. A pictorial repre-
sentation of influence of different solvents on the purification of CsPbBr3 NCs and 
PL properties is given in Fig. 5.

Other than anti-solvent-based purification, ligands removal can also be achieved 
through methods such as calcination and plasma treatment. Calcination is a process 
where the NCs are heated at high temperature to evaporate the organic content. 
For this purpose, thermally degradable ligands are used [103]. However, thermal 
treatment of removing ligands leaves organic carbon residue and this hinders the 
charge transport properties [104]. Also, plasma treatment of NC films is found to 
be eliminating the organic ligands from the NC surface. Plasma treatment is depend 
on the size of the ligands which makes the interparticle distance closer or far away. 
When plasma treatment is carried out, care should be taken on the type of the gas used 
for the plasma. It is observed that degradation of ligands with Co–Pt NC assembly 
takes place when plasma is generated through nitrogen and hydrogen whereas it is 
preserved when plasma is generated by oxygen [105]. When plasma is carried out in 
the presence of Ar, OAm and OA ligands could undergo polymerization and because 
of this, the stability of the NC films increases [106, 107]. In few cases, it is observed 
that the thermal treatment of removing ligands affect the catalytic properties of the 
NCs [108, 109]. Recently, gel permeation chromatography (GPC) has emerged as 
potential approach to purify colloidal NCs. In this approach, the NCs are allowed 
through a column of the packing medium (ex: polystyrene beads), which remove 
the ligands efficiently. This is because the highly porous polystyrene is useful for
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Fig. 5 a Schematic representation of surface treatment of CsPbBr3 NCs using didodecyl dimethyl 
ammonium bromide (DDAB) and b influence of solvents in PLQY of CsPbBr3 NCs with 
respect to the dielectric constant value. Reprinted with permission from Ref. [102]. Copyright 
2018@American Chemical Society

the absorption of excessive ligands which are ultimately collected. Kessler et al. 
used undec-10-ene-1-thiol (UDT) ligand to treat PbS NCs [110]. Here, the surface 
treated NCs were purified using GPC and corresponding properties were analysed. 
The authors found that GPC method was efficient in removing free UDT and native 
oleate ligands. The characteristics of this method and the schematic representation 
of the purification process is given in Fig. 6.

4 Influence of Hot-Injection Method on the Synthesis 
of Metal-Oxide, Metal-Chalcogenide Semiconductor 
Nanocrystals 

Although metal-oxides posses complicated surface chemistry, synthesizing metal-
oxide nanomaterials through hot-injection approach has been identified as suitable 
for the solution-processed device fabrication applications. Here, the high tempera-
ture synthesis is carried out through non-hydrolytic sol–gel approach and generally 
OAm, OA and TOPO are employed as solvents. Cozzoli et al. prepared colloidal 
TiO2 nanorods using OA as solvent in the presence of titanium-tetra-isopropoxide
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Fig. 6 a Bound UDT, free oleate, bound oleate ligands integrated from NMR spectra b bound 
UDT to free oleate ligands ratio calculated from number of each ligand c schematic representation 
of purification of UDT treated NCs using GPC and d characterization techniques used to analyse 
the NCs eluent and free ligand eluent. Reprinted with permission from Ref. [110]. Copyright 
2022@American Chemical Society

(TTIP) [111]. Here, the nanorods were prepared at 110oC. Interestingly, when TiF4 
is mixed with TiCl4 and used as a source, depending on the ratio, it is observed 
that the resultant TiO2 NCs phase varies. Gordon et al. adopted this approach and 
prepared TiO2 NCs with different morphologies (size from 10 to 100 nm) [112]. 
Here, the authors achieved blue coloured TiO2 owing to the deficiency of the Ti3+. 
Since these insulating ligands are often problematic for charge transport, they are 
usually removed through facile ligand-exchange to fabricate NC films. Basina et al. 
have observed that depending on the injection temperature, the size of the Fe/Fe3O4 

core/shell nanomaterials is found to be varied [113]. Usually, a high temperature is 
required to decompose the precursor for the formation of metal-oxide NCs through 
hot-injection method. Jana et al. prepared Fe3O4 NCs through decomposition of 
iron-oleate metal-complex at 300 °C [114]. By altering the reaction conditions, the 
authors achieved Fe3O4 NCs with 8–30 nm size. Also, extension of this approach to 
MnO, NiO, Co3O4, ZnO NCs resulted in interesting morphologies with control of 
size. 

For the metal-chalcogenides, aqueous synthesis of cadmium chalcogenide nano-
materials, CdS, CdSe and CdTe are much studied for several promising applications 
such as optoelectronics, fabrication of polymer nanocomposites, bio-imaging and 
counterfeit currency identification [115, 116]. Synthesis of cadmium chalcogenide 
nanomaterials through hot-injection method was firstly carried out through toxic 
phosphine solvents [44] but after the development of aqueous strategy, use of short-
chain thiol ligands are found to be useful to achieve highly crystalline, monodis-
persed NCs [117]. From the literature, it is known that CdTe NCs are prepared
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using NaHTe as tellurium precursor and this method has produced very smaller 
size (below ∼10 nm) NCs under controlled conditions [118]. In this case, thiol 
ligands TGA, MPA, mercaptosuccinic acid (MSA) and glutathione are found to be 
efficient in providing long-term stability in water [119, 120]. Similar to cadmium 
chalcogenides, binary sulphide compounds such as bismuth sulphide (Bi2S3), iron 
sulphide (FeS2), nickel sulphide (NiS2), manganese sulphide (MnS2) and their corre-
sponding selenides are prepared and characterized. In some of the binary sulphides, 
for ex: Cu2-xS, FeS2, the phase and composition of the NCs are found to be strongly 
dependent on the reaction conditions [121, 122]. Joo et al. prepared different class 
of metal-sulphide NCs by injecting sulphur in OAm into the metal-oleate complex 
[78]. Also, quaternary copper chalcogenides belong to the kesterite group such as 
Cu2ZnSnS4 and Cu2ZnSnSe4 NCs are synthesized using hot-injection method and 
their dispersion in various organic solvents is found to be useful for the optoelectronic 
device fabrication. Here, a high temperature reaction of Cu, Zn and Sn precursors in 
the presence of OAm and 1-ODE ultimately result in a metal-oleate complex forma-
tion [55, 56, 123–125]. In most of the cases, sulphur in OAm is used to generate 
suphide (S2−) which is injected into the metal-oleate mixture [126, 127]. In some 
cases, bis-trimethyl silyl halides are also used to prepare sulphide-based NCs by 
hot-injection method [128, 129]. The schematic representation of the synthesis of 
Cu2ZnSnS4 NCs by hot-injection method is given in Fig. 7. 

Fig. 7 Schematic diagram of the preparation steps of colloidal Cu2ZnSnS4 NCs through hot-
injection method. Reprinted from Ref. [127]
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5 Significance of Hot-Injection Method on the Synthesis 
of Metal Halide Perovskite NCs 

Metal halide perovskite NCs with the general formula APbX3 (A = Cs+, CH3NH3 
+ 

and X = Cl, Br and I) are the currently examined promising materials for the 
future generation optoelectronic devices. Compared with traditional semiconductor 
nanocrystalline materials, the luminescence characteristics of these nanomaterials are 
found to be superior and posessing high PLQY [130, 131]. Research on metal halide 
perovskite NCs has reached its zenith within the short duration due to the impres-
sive development in synthetic approaches. Specifically, hot-injection approach has 
proved as potential method to synthesis different class metal halide perovskite 
nanomaterials. In this view, compared with hybrid lead halide perovskite NCs, 
all-inorganic lead halide perovskite NCs (ex: CsPbX3) have attracted much atten-
tion. Remarkable synthetic achievements have been made in the synthesis of halide 
perovskite nanomaterials using this method. During the year 2015, synthesis of 
CsPbX3 NCs through hot-injection method was reported [132] and shortly after 
that seminal work, several works were demonstrated to prepare CsPbX3 NCs with 
different morphologies such as nanocoubes, nanoplatelets, nanowires, nanorods and 
nanosheets [133–135]. Because of the ionic surface, selection of ligands and control-
ling physical parameters are important in synthesizing metal halide perovskite NCs. 
Most of the synthesis routes describe that by altering the chain length of the organic 
ligands, varying the reaction conditions, and modifying precursor ratio, it is possible 
to synthesis these morphologies [136]. The ionic CsPbX3 NCs are highly sensi-
tive with ligands, solvents, atmosphere and externally added compounds. Because 
of this, the traditionally used OAm and OA ligands are critically influencing on 
the phase, morphology of the CsPbX3 NCs. Although through hot-injection method 
we could able to synthesis wide variety of nanocrystalline perovskite materials, the 
exact formation mechanism of these NCs is not much explored due to the extreme 
fast reaction time (in secs). Because of the weak binding ability with CsPbX3 NCs, 
OAm and OA are easily removed during purification and so surface treatment help to 
achieve high PL properties [137–139]. Investigations are firmly confirming that the 
carrier life-time and PLQY of these NCs is highly improved after surface treatment. 
Although several ligands and solvents are attempted, OAm and OA are dominating 
in preparing these ionic compound NCs by hot-injection method. Recently, it is 
inferred that phosphine compounds are imparting high stability over OAm and OA 
ligands in metal halide perovskite NCs [140, 141]. Other than CsPbBr3 NCs, their 
counterparts such as Cs4PbBr6 and Cs2PbBr5 NCs are also synthesized through 
hot-injection method and their physical and chemical properties are evaluated [142]. 
Together with lead halide perovskite NCs, significant milestones have achieved in the 
synthesis of lead-free halide perovskite NCs through hot-injection method. Specif-
ically, layered perovskite nanostructures based on Cs3Sb2I9, Rb3Sb2I9 are showing 
promising results [143]. In specific, colloidally prepared lead-free halide perovskite 
nanomaterials such as CsCu2I3 and Cs3Sb2Br9 are showing excellent photolumines-
cence properties and delivering promising results for the fabrication of optoelectronic
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devices [144, 145]. Nanomaterials of other perovskite compounds such as CsEuCl3, 
Cs4SnBr6, Cs3Bi2X9 (X = Cl, Br, I) have also emerged as potential candidates for 
diverse applications [146]. Besides, hot-injection synthetic method based lead-free 
double perovskite nanocrystals with different morphologies are also showing inter-
esting structural and optical properties which could be used for several purposes. 
These analyses are featuring that hot-injection method is playing a major role in 
the preparation of different group metal halide perovskite nanomaterials and their 
counterparts for potential applications. 

6 Post-treatment (or) Surface Passivation, Core/Shell 
Nanostructures, Ligand-Exchange, Ion-Exchange 
and Doping Strategies of Semiconductor Nanocrystals 
Prepared by Hot-Injection Method 

While purifying the as-synthesized NCs, they usually lose some ligands due to the 
polarity of purifying solvent and so lose in PL properties is observed. This is common 
in all kind of semiconductor NCs and the physical and chemical characteristics of 
the luminescent NCs are degraded with multiple purification. The loss of ligands 
mainly cause surface traps on the NCs and so the luminescent properties are severely 
affected [147]. It is imperative to maintain the PL properties of QDs in order to apply 
them for potential lighting devices, for example, LEDs. Other than losing ligands, 
the NCs would obviously have unsatisfied bonds (called ‘dangling bonds’) on the 
surface. To maintain the luminescent properties in NCs, it is essential to carry out 
surface treatment which recover or improve the PL properties. This surface treat-
ment is generally carried out by organic molecules, incorporation of metal ions, and 
by ionic compounds. Surface passivation of the colloidally prepared NCs could be 
achieved through facile treatment approaches. By passivating selective sites on the 
NCs surface, the optical properties of the NCs can be improved. This is realized 
in chalcogenide as well as metal halide perovskite NCs [148, 149]. Passivation of 
metal halide perovskite NCs using different compounds is studied by several research 
groups since because of the ionic nature, the surface ligands easily lose and hence 
the surface treatment is essential to fabricate defect-free metal halide perovskite NC 
films. Several kind of halides, ionic compounds and organic molecules are exploited 
for the surface treatment and they are useful to improve the functional characteristics 
of the NC films [139, 150]. In the case of PbS NC films, lot of reports are describing 
about the surface treatment using molecular halides to improve the carrier trans-
port properties for solar cell applications [151, 152]. Similarly, halides and organic 
molecules treated CsPbX3 NC films are resulting in high PLQY. For example, when 
CsPbBr3 NC films are treated by PbBr2, the PLQY reach to near-unity [153]. Like-
wise, 1-DDT treated colloidal CsPbBr3 NCs solution show near-unity PLQY [154] 
due to the formation and consequent passivation of thiolate and thioethers. These 
investigations clearly reveal about the promising avenue of the surface treatment
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processes on the colloidally synthesized NCs. In the case of InP QDs, it is found that 
surface etching with fluoride significantly improve the PLQY [155]. Here, instead 
of corrosive HF, use of ionic liquid compounds such as BF4−, PF6− are found to 
be efficient in enhancing the PL properties. This is because of the surface dangling 
bonds are passivated by fluoride (F−) ions. These fluoride compounds are also found 
to be effective with metal halide perovskite NCs and improving the PLQY signifi-
cantly [156]. Other than these, metal ion passivation on the colloidally prepared NCs 
also incredibly improve the optical properties. 

Ligand exchange is a facile, efficient process where the long-chain insulating 
ligands of the NCs are replaced by highly conductive, short-chain ligands. This 
process is also used to transfer the NCs from aqueous to organic medium and vice-
versa. In hot-injection method, most of the synthesis protocols are based on the use 
of highly unsaturated, poorly conductive or insulating ligands such as OAm, OA, 
1-ODE. To fabricate efficient NC films for charge transport, it is necessary to replace 
the long-chain ligands by short-chain ligands. These ligands may either completely 
or partially exchanged in liquid or in the solid-state. For this, the short-chain ligands 
are dissolved in a solvent and the fabricated NC film is dipped for some time to 
exchange the native ligands and this process is repeated for several times. It is impor-
tant to note that preservation of NCs shape, size and structural integration should be 
undertaken while exchanging the native ligands. This process ultimately eliminates 
the insulating ligands and the NCs are fabricated with the conductive, short-chain 
ligands. This impact on the carrier transport of the NCs and in particular for solar 
cells, this process is highly efficient [58]. Ligand exchange is usually carried out in 
solution or in solid-state. In solution, the aqueous synthesized NCs could be trans-
ferred to organic medium through a facile phase transfer ligand exchange process. 
For example, aqueous synthesized thioglycolic acid (TGA) capped CdSe nanopar-
ticles can be transferred to organic medium through an exchange ligand, 1-DDT 
[157]. Despite multiple purification, removal of OAm from the NCs surface is found 
to be difficult when it is bonded with Cd2+ and Pb2+. In contrast, removal of 1-DDT 
and poly-vinyl pyrrolidine (PVP) from the Pd NPs surface is found to be difficult 
compared with the OAm capped NPs [158]. In this case, the ligand exchange is 
claimed as partial one. For the lead chalcogenide nanocrystalline materials, ligand 
exchange is carried out in the presence of mercapto propionic acid (MPA) and 1,2-
ethanedithiol. Several reports deal about the use of these ligands to treat PbX2 

(X=S,Se) QD films and its critical influence on the performance of the quantum-dot 
sensitized solar cells (QDSSCs) [159]. Other than organic short-chain ligands, inor-
ganic ligands like thiocyanate (SCN−), tetrafluoro borate (BF4−) [160], S2− [161], 
HS–, Se2−, HSe–, Te2−, HTe–, TeS3 2−, OH–, NH2 

– [71], oxoanions such as PO4 
3−, 

MoO4 
2− [162], metal-chalcogenide complex (ex: Cu7S4 –) [68, 70], and alkali metal-

chalcogenide complexes (ex: K2S, K2Te and Na2S) [163] are found to be efficient 
in stabilizing the NCs in solution. In few cases, it is found that depends on the NC-
ligand combination, the conductivity (p-type or n-type) is determined. Jiang et al. 
carried out an interesting approach to prepare ternary semiconductor chalcogenide 
selenide and sulphide NC films [164]. The authors prepared Cu2-xSe and CuInSe2 
NCs (∼ 16 nm size) by capping molecular chalcogenide complexes In2Se4 2– and
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{In2Cu2Se4S3}3–− and upon annealing at 500 °C, the corresponding ternary and 
quaternary metal-chalcogenide NC films are formed. Although metal-chalcogenide 
complexes are doing efficient passivation, they unfortunately create a high defect 
density on the NCs surface, which is a demerit for the lighting applications. Another 
potential method to remove the NC surface ligands is ‘ligand-stripping’. In this 
approach, a stripping agent is used to remove the ligands. This stripping agent desta-
bilize the NCs by removing the native ligands and induce the aggregation activity. Out 
of others, tetrafluoroborate (BF4−) ions are the widely studied ligand-stripping agent 
for the colloidal NCs prepared by hot-injection method [160]. Researchers have 
also demonstrated the active role of Meerwein’s salt and trialkyloxonium salts in 
removing native ligands of colloidal NCs [165]. However, ligand-stripping approach 
is successful only with few systems and so careful selection of ligands would be 
beneficial for the fabrication of efficient NC array. 

Self-assembly is one of the salient characteristics of the solution-processed semi-
conductor NCs. Here, NCs self-assemble in solution or in films through electrostatic 
interaction of ligands. Self-assembly in semiconductor NCs is motivated through 
ligands, light, solvents and deposition methodologies. In specific, excess ligands, 
electrostatic interaction of ligands and self-organization of ligands are the ways to 
induce the NC superlattice structures [166]. The interaction between two NCs influ-
ence on the energy level and so optical properties are varied. Here, the distance 
between one NC to another is usually determined by the length of the ligand. 
Depending on the ligand, i.e. short-chain or long-chain, the self-assembled NC array 
is influenced and so different structures can be achieved. Self-assembly has been 
realized in different kind of chalcogenide, metal-oxide and halide perovskite NCs 
[167–169]. The key requirement of self-assembly is monodispersity in NCs and so 
hot-injection method plays vital role in forming superlattice structures. Readers are 
advised to go through some of the potential review articles in order to understand 
about the principle and applications of the self-assembly of the colloidally prepared 
NCs [170–172]. 

Ion-exchange is a commonly used strategy in hot-injection prepared II-VI, III-
V, I-III-VI group semiconductor NCs [173, 174]. Here, the cations in a NC are 
ligated with the ions present in the solution, resulting different optical and structural, 
morphological properties. Compared with the bulk solids, the exchange rate in the 
nanoscale is so rapid, hence influencing a lot on the composition and properties of 
the NCs. Also, this process is reversible with respect to reaction conditions. Reduced 
activation barrier, preferential solvation of the incoming ion, difference in the lattice 
stability are influencing cation-exchange severely. Son et al. investigated the effect 
of cation-exchange in CdSe NCs [175]. Here, the ion-exchange is carried out in 
the presence of AgNO3 to achieve Ag2Se NCs. The instantaneous colour change 
implies the rapid ion-exchange and the reverse conversion is achieved in the presence 
of Cd(NO3)2. Interestingly, here the authors observed that the crystal structure and 
morphology of the ion-exchanged NCs are dependent on the size and shape of the 
synthesized NCs. Similar to the cation-exchange, recently, metal halide perovskite 
NCs are executed with anion-exchange in which the halide is replaced by another 
halide in solution or in solid-state [176, 177]. As a result, the structural and optical
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properties are varied and this is much useful for the spectral management. Cation-
exchange of CsX to CsPbX3 NCs has been observed in metal halide perovskite NCs 
and this implies the comfortability of perovskite lattice for ion-exchange [178]. This 
ultimately result in a change in the peak position of absorption and PL spectrum, 
which is useful for the fabrication of LEDs and solar cells. 

Formation of core/shell assembly is one of the important strategies to improve the 
PL properties of semiconductor NCs. As we know, the as-synthesized NCs will have 
surface defects due to the incomplete passivation of ligand molecules. These defects 
can be removed or minimized through organic or inorganic passivation. In core/shell 
structure, NC surface is passivated by a nanoscale layer of another semiconductor to 
improve the PL properties. The growth of this shell layer is monitored through the 
UV–visible and PL spectra, which generally show a red shift under growth. Core/ 
shell NC assembly is achieved in different class of semiconductor NCs, and especially 
in the II-VI and III-V group nanocrystalline semiconductors it is much investigated 
[179, 180]. When CdS NCs are additionally passivated by CdTe NCs, their PL prop-
erties are greatly improved [181]. Similarly, it is observed that when InP QDs are 
passivated through zinc sulphide (ZnS) by hot-injection method, the luminescence 
properties are found to be improved. Likewise, the same kind of approach is found to 
be resulting an improved PLQY in CuInS2/ZnS core–shell NC assembly [182, 183]. 
In few cases, ternary layer passivation such as InP/ZnSe/ZnS [184] and InP/GaP/ 
ZnS [185] are also attempted and excellent stability with improved PL properties are 
achieved. Through this multishell growth, PLQY even reached to 92% (for the InP/ 
ZnSe/ZnSe) which is much useful for the wide colour gamut display applications. 
The preparation steps associated with the formation of InP/GaP/ZnS core/shell NCs 
are schematically given in the Fig. 8. Recently, without any passivation, such impres-
sive PLQY has been achieved in metal halide perovskite NCs through hot-injection 
synthesis method.

Doping with the metal ions generally help to improve the optical properties of the 
semiconductor NCs [186]. Other than optical properties, doping generally influence 
on the structural and magnetic properties. Doping in semiconductor NCs is generally 
carried out in the presence of transition metal ions, noble metals and rare earth ions 
[187]. Compared with other elements, doping with manganese (Mn) and copper 
(Cu) is widely studied in traditional semiconductor and metal halide perovskite NCs 
owing to their strong influence on the physicochemical properties [188, 189]. Other 
than modifying spectral position, metal ions can also influence on the morphology 
of the NCs. For example, Li et al. used aluminium salt, Al(NO3)3·9H2O during the 
preparation of Cu2−xSe nanocubes [190]. It is found that the addition of this salt 
influence on the morphology of the prepared nanocubes without diffusing into the 
lattice. The authors concluded that the Al3+ ions promote the crystal growth of Cu3Se2 
nanocubes in a specified direction. In few cases, it is observed that the metal ions 
passivate the NCs and improve the PLQY. Doping is found to be useful in metal halide 
perovskite NCs since transition metal ions and rare earth ions doping are found to be 
helpful to achieve near-unity PLQY [191]. For example, CsPbI3 NCs doped with Ni2+ 

ions deliver near-unity PLQY [192]. Here, the dopants are added in synthesis once
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Fig. 8 Preparation steps followed in the core–shell structured InP/GaP/ZnP nanoparticles through 
hot-injection method. Reproduced from Ref. [185], Nanomaterials, published by MDPI, Switzer-
land, 2020. Link: https://doi.org/10.3390/nano10112171

the NC lattice formation takes place. These results are predicting that it is possible 
to achieve the desired properties through doping by means of hot-injection method. 

7 Upscaling in Hot-Injection Method 

Large scale synthesis of semiconductor NCs through hot-injection route is impor-
tant for the industrial applications. Carefully designed glass apparatus with special 
inert gas circulation arrangement is used for the gram scale preparation of the NCs. 
It is possible to achieve semiconductor NCs in gram scale and a typical exper-
imental arrangement for the preparation of CdSe NCs and CdSe/CdS/ZnS core/ 
shell NCs and their corresponding morphological and optical analysis are given in 
Fig. 9 [193]. By injecting selenium precursor in 1-ODE into the metal-carboxylate/ 
1-ODE mixture, Flamee et al. achieved high reaction yield (80–85%) in the case of 
CdSe, CdSe/CdS and ZnSe NCs [194]. Similarly, diphenylphosphine (DPP)/1-ODE 
assisted synthesis resulted in highest yield (23.5 g) in the case of PbSe QDs [195]. 
Although phosphine ligands are dominating in hot-injection method, phosphine-free 
solvents are also showing promising directions. These kind of solvents are typically 
used for a non-injection-type ‘one-pot’ synthesis approach [196]. Recently, there 
are promising experimental results have come out in developing perovskite QDs 
for the future generation lighting devices [197, 198]. Specifically, the AI-guided

https://doi.org/10.3390/nano10112171
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modular manufacturing of lead halide perovskite QDs has shown promising direction 
in commercializing these materials for future applications [199]. For the large scale 
production, automated or continuous flow synthesis approach is followed in industry. 
There are few initiatives undertaken to establish the industrial upscaling of QDs in 
the private sectors like Nanoco technologies (U.K), Quantum Science (U.K), UbiQD 
Inc (USA), Avantama (Switzerland), etc. and their use for the commercial applica-
tions such as Quantum dot light emitting device (QLED) television technology, crop 
growth is demonstrated. These developments are indicating the potential pathway of 
hot-injection method for the development of modern electronic devices.

Upscaling colloidal hot-injection method for the industrial purpose is generally 
carried out through microfluidic reactor arrangement. This field is currently growing 
in different directions and interesting results are explored in different group of semi-
conductor NCs. Importantly, microfluidic reactor has more control over traditional 
method in achieving the good quality NCs. Here, the NCs are synthesized through 
heaters and fluid control arrangement which essentially result in finely tuned NCs. 
The important feature of microfluidic synthesis is achieving NCs through continuous 
flow reactor through continuous feeding of the precursors. The size of the synthe-
sized NCs or QDs in this method is varied by controlling the reaction time. Here, an 
immiscible carrier phase is introduced with the reaction phase where the liquid-to-
liquid flow production takes place [200]. Advantages such as efficient mixing, high 
heat and mass transfer, high surface-to-volume ratio, temperature control, varying 
the composition of the NCs through continuous injection, efficient injection and 
mixing of precursors to achieve homogeneity, continuous production of NCs and low-
reagent consumption emphasis are making this method as more efficient to prepare 
several kind of compound NCs [201, 202]. The typical experimental arrangement of 
a multichannel droplet reactor is given in Fig. 10 [203].

8 Challenges in Synthesizing Semiconductor NCs Using 
Hot-Injection Method 

The discussion in this chapter clearly reveal about the promising results in achieving 
highly monodispersed semiconductor NCs through hot-injection method. Although 
this method has proved to be a potential approach in synthesizing semiconductor 
NCs under controlled conditions, there are few existing challenges could be seen. 
Since this synthetic approach is carried out in the presence of organic ligands, the 
possibility of oxidation is quite high and this hurdle the fabrication of NC layers 
for the long-term applications. The steric hindrance provided by these ligands is an 
another issue and due to this, the space between the ligands create voids on the NC 
surface, which act as the defect centres. This ultimately reduces the optical perfor-
mance of the NCs and so the device performance is affected. Furthermore, these 
organic ligands may direct crack formation in NC films which deteriorate the device 
performance. Also, influence of such ligands on the different facets of NCs for the
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Fig. 9 a Experimental arrangement for the gram scale synthesis of CdSe NCs b appearance of 
CdSe/CdS/ZnS core/shell/shell NCs in the 2 L reactor c purification assembly of the prepared NCs 
and d–i corresponding morphological and optical analysis of the NCs. Reprinted from Ref. [193]
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Fig. 10 Schematic diagram of the multichannel droplet reactor to synthesis semiconductor 
nanocrystals. Reprinted with permission from Ref. [203]

large scale preparation is not yet explored. Moreover, the reaction mechanism of 
semiconductor NCs of all classes is not well established and it should be discussed 
in order to understand critical concepts. Especially, the growth mechanism of halide 
perovskite NCs is still lacking and this may hamper their future generation optoelec-
tronic device applications. Additionally, controlling the phase conversion in different 
kind of the chalcogenide NCs is still need to be much studied. The theoretical aspects 
of colloidal semiconductor NCs in accordance with experimental results are still 
lacking and considerable attention should be paid in this view. In the case of metal 
halide perovskite NCs, although hot-injection synthesis provides different morpholo-
gies, it is still challenge to prepare NCs with monodispersity. Besides, solubility of the 
selenide and telluride precursors in aqueous medium is challenging compared with 
the sulphide precursors and this limit the preparation of water soluble NCs in a large 
scale. The large scale synthesis of highly monodispersed NCs is another challenge 
and this still need further analysis. Preparation of large scale core/shell assembly is 
another challenging issue to achieve high quality, highly luminescent semiconductor 
NCs. Also, high volume purification of semiconductor NCs is appeared as critical in 
handling the wastes and also several cycles of purification are required to remove the 
excess ligands. This is challenging in terms of mass production but advancements in 
the synthetic protocols are expected to deliver a fruitful solution. Although hetero-
structures of semiconductor NCs are showing outstanding optical properties, it is 
challenging to understand the interface and it still prevents further progress in this 
area. Still, advanced characterization studies in colloidal semiconductor NCs are in 
their preliminary stage and future developments are expected to pave a way for the 
further improvement in this area.
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9 Other Solution-Based Synthetic Approaches 
of Semiconductor NCs 

Other than hot-injection method, semiconductor NCs could be prepared through 
hydrothermal, solvothermal, co-precipitation and sol–gel methods. Synthesizing 
NCs using all these methods under optimized conditions result in monodispersed 
NCs with different functionalities in the presence of organic ligands. In the case 
of hydrothermal and solvothermal methods, the reactions are carried out under the 
controlled atmosphere, normally at high pressure. In the case of solvothermal method, 
amine and polyols (ethylene glycol, glycerol, etc.)-based solvents are widely used to 
integrate the NCs assembly and to redisperse the NCs in different solvents. Several 
kind of morphologies are achieved through these methods and their applications 
for the energy devices are studied. In the case of sol–gel method, mostly semicon-
ductor metal-oxides are studied especially titanium-di-oxide (TiO2) and Zinc oxide 
(ZnO). Several research articles are dealing about the sol–gel synthesis of TiO2 and 
ZnO NCs at room temperature for the photovoltaic and photocatalytic applications. 
Strategies such as sensitization of organic dyes and QDs and doping with transi-
tion elements are helping to expand the spectrum of these metal-oxide NC layer for 
PV applications. Similarly, co-precipitation method also helps us to achieve semi-
conductor NCs at room temperature. Oxide nanomaterials such as Fe2O3, SnO2 are 
mostly prepared using co-precipitation technique. Here, the precipitation of metal in 
the form of hydroxide takes place with the help of a base. This method is highly 
productive with high yield and hence applicable for the large scale production. 
However, challenges such as controlling the size, shape and crystallinity limit this 
method for other applications. 
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Abstract The utilization of renewable resources can only be feasible to today’s 
advance electronics when equipped with apt energy storage devices. The batteries 
and supercapacitors have captured the energy market, but the run for smart electronics 
still challenging. The issues like high energy storage capacity of electrodes, capacity 
retention, chemical and mechanical stability during long term cycling of charge/ 
discharge have been limiting utilization of supercapacitors. While shortcomings in 
batteries are high cost, unsafe, leakage, low power density. To overcome these issues 
in batteries and supercapacitors are assembled in a single platform. In this context, 
researchers or industries are focusing on the advance the supercapatteries with high 
energy and power densities. Recently, a wide range of nanomaterials are explored 
for the application as electrode in hybrid energy storage devices due to their unique 
features. Such electrodes and electrolytes in supercapatteries will be discussed in this 
chapter. An extensive survey will be done to summarize on operational parameters 
for better electrochemical performances of the supercapatteries to be implemented 
in the consumer electronics. 

Keywords Batteries · Supercapacitors · Supercapatteries · Electrodes ·
Electrolytes · Hybrid energy storage device
H. T. Das (B) · N. Das 
Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar, 
Odisha, India 
e-mail: himadridas@utkaluniversity.ac.in 

S. Dutta 
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 
Knoxville, TN 37996, USA 

T. Elango Balaji 
Department of Chemical Engineering, National Taiwan University of Science & Technology, 
Taipei City 106335, Taiwan 

P. Das 
CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India 

N. Das 
Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
T. Khan et al. (eds.), Nanomaterials: The Building Blocks of Modern Technology, Smart  
Nanomaterials Technology, https://doi.org/10.1007/978-981-99-4149-0_9 

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4149-0_9&domain=pdf
mailto:himadridas@utkaluniversity.ac.in
https://doi.org/10.1007/978-981-99-4149-0_9


182 H. T. Das et al.

1 Introduction 

Over the decades, global energy scenario has been evolved gradually. However, in 
recent years energy demands has been increased due to high economic growth as well 
as expansion of energy intensive industrialization. Fossil fuel depletion is another 
major reason due to which is why meeting the energy demand became problem-
atic; as a result, dependency on renewable energy sources is keep increasing day 
by day. Production of energy from such clean and effective energy sources is not 
the only point of concern but also developing and maintaining the storage system is 
required to continue the uninterrupted supply. Scientific communities from different 
part of the world are focusing on constructing high performance energy storage as 
it has enormous application scope in applications such as electric vehicles, laptops, 
tablets, mobiles phones, and various electronic devices. Utilization of electrochem-
ical energy storage devices has shown promising outcomes existing electrochemical 
energy storage devices such as supercapacitors (SCs), batteries, and fuel cells that 
have shown remarkable effectiveness and reliability when integrated with renew-
able energy sources [1–3]. Researchers are putting efforts to improve the perfor-
mance of these devices by modifying the designs and raw materials of the device. 
However, several drawbacks of these systems still remained. For example, batteries 
have demonstrated high specific energy densities, but they have failed to ensure 
adequate power densities and thermal stability. In addition, increased flammability, 
electrolyte, and electrode damage are other problems that have been raised. On the 
other hand, SCs are the devices which have shown high specific power, promising 
lifespans cycle, and swift charging and discharging rate capability-like benefits [4– 
6]. However, insufficient energy density is been observed in SCs which has restricted 
their utilization in different applications. So, to bridge the performance gap between 
SCs and batteries, a hybrid energy storage device named supercapattery is introduced. 

Supercapatteries is a battery–supercapacitor (as shown in Fig. 1) hybrid device 
which is generally developed using a high energy density battery-type electrode as 
positive electrode and a high-power capacitive non-Faradaic (EDLC) electrode used 
as the negative electrode. The particular aim to construct the device is to study combi-
national effect of the non-capacitive and capacitive charge storage mechanisms in a 
single device. So, it can be easily inferred that to evaluate the performance of super-
capattery, significant experimentation is required to study the activities of electrode 
materials [7–13]. Parameters such as economical synthesis, porosity, strong redox 
activity, number of electrochemically active sites, chemical and thermal stability, 
are the crucial ones to consider when employing particular electrodes in superca-
pattery devices. For instance, carbon-based materials, transition metal phosphates, 
phosphides, sulfides, oxides, hydroxides, and metal–organic frameworks, etc., are 
frequently utilized electrodes which we will elaborately discuss in upcoming sections 
of this chapter. Apart from electrode materials, electrolytes also have crucial role to 
study the supercapattery performance. The interaction of electrode and electrolyte 
in terms of charge movements has important impact on the device stability as well as 
on the resulted energy and power densities. Usage and electrochemical effect along
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Fig. 1 a Merging of battery and supercapacitor technology, b Ragone plot demonstrating the 
comparison among different energy storing devices. Reproduced from Ref. [14]. Copyrights 
(Elsevier, 2022) 

with stability of popular electrolytes like Na2SO4, K2SO4, KOH, etc., will also be 
included in the further discussion of this chapter. In this chapter, we will be focusing 
on the basic working of supercapattery and the electrode–electrolyte combinations 
suggested in different studies. Additionally, we will illustrate the device performances 
reported in literatures to briefly portray the current state of supercapattery research 
which will indeed be a useful approach for the upcoming researchers. 

2 Electrodes in Supercapatteries 

2.1 Methods and Materials of Electrodes in Supercapattery 

2.1.1 Sonochemical Method 

The sonochemical technique is a facile cost-effective process through which the 
synthesis of the high surface area nanostructures can be efficiently obtained. Using 
either volatile or non-volatile precursors, the synthesis of materials can be done 
using sonochemistry, through different mechanisms. In this technique, very high heat 
treatment can be avoided, to prevent declining of the surface area [15]. Basically, 
in this process, precursor materials are stroked by sound waves, and bubbles are 
formed due to the associated energy developed during the interaction between the 
sound wave and precursors in the reaction mixture. Because of the acoustic cavitation, 
these bubbles grow and break immediately. Variation in temperature and pressure is 
observed due to this formation and disintegration of the bubbles which eventually 
generates materials with enormously short-timed crystallization. It is important to 
understand that precursor materials gain kinetic energy in the reaction which leads
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to interaction between reacting molecules, and hence, different morphologies with 
uniformly distributed nanostructures are formed depending on the intensities of sound 
waves. 

Iqbal et al. employed the simple sonochemical technique to synthesize strontium 
phosphide [16]. Strontium carbonate and disodium hydrogen monophosphate were 
utilized in the study to prepare the material. In the strontium carbonate solution, 
disodium hydrogen monophosphate was added dropwise under continuous sonica-
tion along with the usage of distilled water. Afterward, at 25 °C for 1 h 30 min, 
the sonication process was properly maintained where the ultrasonic wave level 
was set at 30%. Finally, through centrifugation and multiple times distilled water 
washing, strontium phosphide was obtained and composited with polyaniline via 
physical blending, used as an electrode. In a few more studies, Iqbal et al. utilized an 
almost similar synthesis route with little modification to prepare the strontium phos-
phide and used it as a supercapattery electrode [17, 18]. Duraisamy et al. prepared 
anisotropic nano/micro rectangular shape Co3(PO4)2 using sonochemical synthesis 
where disodium hydrogen phosphate anhydrous and cobalt (II) chloride hexahydrate 
was used as starting material [19]. However, in this study, the sonication amplitude 
was high comparatively (70%), and the reaction temperature was maintained between 
~ 55 and 65 °C for four separate time periods of sonication (10, 60, 120, and 180 min). 
Sonicated samples for 10 and 60 min exhibited more irregular shapes compared to the 
samples sonicated for higher time periods (120 and 180 min). Similarly, the synthesis 
of supercapattery electrode materials like MoSe2 nanosheets, manganese tungstate 
(MnWO4) microflowers, etc., is done using sonochemical synthesis [20, 21]. 

2.1.2 Hydrothermal Method 

Hydrothermal synthesis, a solution reaction-based technique, is one of the most 
frequently employed synthesis procedures. This technique has numerous bene-
fits such as a wide range of operating temperatures and pressures, adequate yield 
(minimum loss of materials), stable operation, economical approach, etc. Due 
to its inexpensive nature and optimum production, this technique can be easily 
scaled up. Morphologies like nanotubes, nanorods, nanosheets, nanoparticles, hollow 
nanospheres, etc., have been achieved using this synthesis method [22]. Apart from 
the conventional hydrothermal, a combination of microwave, sol–gel, mechanochem-
ical, electrochemical, etc., techniques individually with hydrothermal processing was 
found to be much faster, cleaner, and more precise to explore different morphology 
of diverse range of materials [23]. Recent studies have modified this method by 
altering different parameters to make the operational systems more efficient and 
obtain favorable outcomes. 

Arunpandiyan et al. reported BiVO4/FeVO4:rGO synthesized via hydrothermal 
method using Bi(NO3)3 · 5H2O and Fe(NO3)3 · 9H2O as precursors which were 
allowed to stir for 30 min and then NH4VO3, 1 g of urea, and 2 mL of polyethy-
lene glycol were allowed to mix for 30 min under stirring. The resulting solution 
was transferred to an autoclave and reacted at 180 °C for 24 h the precipitate was
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collected and washed with deionized water and dried overnight. Finally, the resulting 
powder was calcined at 500 °C for 4 h, the as-synthesized material was utilized as the 
cathode material for supercapacitor using redox active electrolyte as shown in Fig. 2a. 
The electrochemical performance showed a significant increase in energy density 
and power density (Fig. 2b). Sankar et al. synthesized carbon-coated cobalt ferrite 
(CoFe2O4) spherical nanoparticles by using cobalt chloride, iron(III) chloride-like 
precursors and using two-step hydrothermal approach [24]. Precursors mixed with 
distilled water and sodium hydroxide were autoclaved and kept for 12 h at 180 °C. 
Later it was washed with distilled water and ethanol and dried. Afterward, to form 
the carbon-coated form CoFe2O4, a particular amount of glucose solution (CoFe2O4 

to glucose ratio 2:1) was utilized to disperse CoFe2O4 and again autoclaved and kept 
for 12 h at 150 °C. Lastly, washed, dried, and carbonized for 180 min at 450 °C under 
an argon atmosphere to obtain the final product. Raghavendra et al. hydrothermally 
treated the mixture of starting materials such as cobalt (II) acetate, Thioacetamide, 
and Copper Chloride Dihydrate at 120 °C for 12 h to synthesize CuS/CoS [25]. Along 
with the starting materials, ultrasonicated Ni foam, Urea, and Acetic Acid were used 
which actually formed Ni foams deposited with CuS/Co, and then the resultant 
was dehydrated, dried, and annealed for 180 min at 250 °C. Nano-petal or packed 
sheets-like morphology was observed in the formed CuS/Co, and such electrode 
morphology is suitable to obtain high access to the electrolyte. Manikandan et al. 
[26] developed NiS2@NiV2S4 nanoflakes (2D polycrystalline phase) using NH4VO3 

and NiCl at 180 °C for 16 h. Then, via centrifuging black precipitate was obtained, 
and it was dried at 70 °C for 12 h. To obtain the final composition, the dried substance 
was annealed at 400 °C for 180 min under an argon atmosphere. MXene became a 
popular material for energy storage in recent times. Liu et al. [27] carried out etching 
Al atomic layer of Ti3AlC2 to prepare MXene (Ti3C2Tx) and then mixed nickel 
chloride, thiourea, and ammonia to synthesize MXene/NiS composite through the 
hydrothermal method at 180 °C for 12 h. The composite was prepared with different 
NiCl2 ratios (0.8, 0.4, and 1.1 mmol) where different morphologies were observed. 
The important feature to notice in the composite formed is that NiS did prevent 
MXene sheets from being stacked and collapsed which eventually acted favorably to 
achieve better electrochemical performance in the assembled supercapattery device. 
Other than that, hydrothermal synthesis is also utilized for the synthesis of silver 
cobalt sulfide, nickel phosphide-polyaniline, and nickel silver sulfide (NiAg2S) like 
binary composites which were utilized as supercapattery electrodes [28–30].

2.1.3 Sol–Gel 

Owing to the ability to produce unique characteristics and properties, the sol–gel 
technique is utilized to synthesize high-quality structures with wide size variations 
[31]. This bottom-up technique can be easily used to obtain narrow particle size 
distribution and pure structures. It has been seen that nanosized porosity can be 
achieved through this method by optimizing the drying conditions of the gel which 
finally resulted in a larger specific surface area. Basically, through several steps,
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Fig. 2 a Schematic representation of the deposition of WS2 via magnetron sputtering, b specific 
energy and power delivered via device compared previously reported work. Reproduced from Ref. 
[37, 38]. Copyrights (Elsevier, 2022) (ACS, 2022)

this technique can be used to form compounds/composites which are homogeneous 
solution preparation, sol formation, and gel formation. Additionally, this method is 
useful in preparing complex shapes, high-purity products, low-temperature synthesis, 
uniform compound formation, high reactivity, etc. 

Ramasubbu et al., [32] reported Co-MOF (Co3(BTC)2 (BTC—1, 3, 5 benzen-
etricarboxylic acid)), Titanium(IV) isopropoxide to produce TiO2 aerogel/Co-MOF 
composites. In short, glacial acetic acid was mixed with titanium (IV) isopropoxide 
and hydrolyzed, and the synthesized MOF was added which was then kept under stir-
ring for a whole day. Afterward, the whole sol solution was gelatinized after being 
exposed to ammonia vapors for 30 min. The wet gel was immersed in DI water at 
50 °C for 24 h. In the composite formation, the authors assumed that MOF particles 
may attach to the surface of TiO2 aerogel matrix or it may occupy the aerogel pores. 
In another study, Elumalai and the group explored a modified sol–gel technique to 
synthesize nanostructured spinel cobalt oxide (Co3O4) [33]. In the preparation, cobalt 
nitrate was used as a major precursor and as a complexing agent cetyltrimethyl ammo-
nium bromide (CTAB) surfactant was used. The solution was mixed with distilled 
water and urea was sonicated and kept stirring at 55 °C for 240 min until gel is formed 
and then dried it overnight. To obtain the final compound, the dried outcome from the 
oven was annealed in a muffle furnace at 350 °C in the air for 240 min. From the SEM,
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it was revealed that the grains (of average size ~ 150 nm) are highly agglomerated 
with nearly spherical shapes. Similarly, sol–gel was utilized to produce CeNiO3, 
γ-KCoPO4 nanocrystals, and different layered double hydroxides to enhance the 
supercapattery performances [34–36]. Alam et al. prepared WS2 through a different 
approach of magnetron sputter coating as shown in Fig. 2c, through this method 
highly pure (99.99%) WS2 was synthesized due to the high purity, the electrochem-
ical performance was much high even when compared to bimetallic sulfides (Fig. 2d). 
Other than these wet chemical approaches, co-precipitation, soft template, sacrificial 
template routes, additive-free synthesis etc., are also utilized for the supercapat-
tery electrode preparation. However mostly due to simple and inexpensive benefits, 
hydrothermal has been the most explored route. 

2.2 Mechanism in Performance of Supercapatteries 

The capacity of charge storage for an electrode is one of the most critical parameters 
to evaluate an electrode material over a potential window. Generally, this can be used 
to correlate the electrochemical performances of various device. The researchers 
in the field of energy storage are actively looking for new electro-active electrode 
materials for enhancing the charge storage ability of the device. The charge storage 
in the conventional capacitors is temporary polarization induced in the dielectric 
itself. In the EDLC, dielectric medium is replaced by the electrolyte which follows 
charge accumulation via electrostatic force. The use of electrolytes turns the super-
capacitors by providing ion rich solution and improving conduction of both ions 
and electrons. The surface charge storing of the EDLC electrode is estimated in 
specific capacitance (Cf). The porous carbon-based materials are usually used as 
EDLC electrode materials, providing channel for an uneven surface distribution 
of ions and enlarges the surface area. Thus, the porosity aids physical absorption 
process at electrode/electrolyte interfaces. The chemical adsorption, predominantly 
a Faradic reaction takes in charge transfer between the active electrode materials and 
ions depending on the potentials. Even carbon-based materials in the form of sheets 
(graphene, reduced graphene oxide), nanotubes (multiwalled/single walled carbon 
nanotube), amorphous (carbon aerogel, carbon sponge) etc., are also explored. The 
most striking work is recycling wastes to carbon-based materials and developing high 
yield devices. Unlike the EDLC materials, the charge storage for pseudocapacitors 
with redox peaks and battery-type electrode are analyzed in terms of specific capacity 
(Cs). The intrinsic energy storage for electrode is usually standardized by mass (gravi-
metric capacitance), area (areal capacitance), or volume (volumetric capacitance). It 
has been perceived that the charge storage is highly affected by electrode material 
loading on current collector, thickness of active material, dimension of the device, 
nature of electrolyte used. The chemical absorption in a pseudocapacitor differs from 
the redox reaction of the battery-type electrode in degree of intercalation and activa-
tion energy of electrode material. The slow interaction in battery-type material stores 
higher energy than a fast intercalation process. The valuation of specific capacity of
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the electrodes benefits in choosing a proper electrode material for impeccable hybrid 
energy storage devices. 

3 Various Designed Supercapatteries 

Fascinatingly, the supercapatteries can be designed as per the necessities to power 
consumer electronics. The devices can be of various forms such as working elec-
trodes, current collectors, and separators. To realize the scaling feasibility for 
fabrication of hybrid device in certain aspects such as cost, size, electrochemical 
performance and eco friendliness, the following approaches are being in the market. 

3.1 Compact/Non-stretchable Devices 

Owing to the provisions of energy storage devices in compact electronics, there is 
a quest for non-stretchable, solid and eco-friendly power sources engineered in a 
cost-effective manner. The flexible device fabrication is mainly altered by quality of 
current collector (solid and mechanically strong such as stainless steel or carbon rod), 
attachment of electrode materials to the current collector by deposition or coating, 
and separator with electrolyte between two electrodes. There is a scope to design 
various types of compact devices such as flat, cylindrical or box configuration, among 
others. Certain challenges the compact devices have to face are corrosion/reaction of 
current collector with electrolyte, leakage of electrolytes, and limit of size to power 
output ratio, packaging of device components, issues to overcome. 

3.2 Flexible/Stretchable Devices 

The flexible/stretchable devices appear as a solution for the aforementioned issues; 
moreover they fit into the wearable electronics. It allows for flexible, lightweight, 
stretchable, and eco-friendly power sources engineered in a cost-effective manner. 
The flexible device fabrication is mainly altered by flexible current collector such as 
carbon cloth or thin films and separator with few drops of electrolyte or gel electrolyte 
between two electrodes. There is a scope to design various types of flexible devices 
such as paper-like configuration, porous-/sponge-like configuration, and textile-like 
configuration. 

Among the battery-type electrodes involving intercalation/deintercalation mech-
anism, metal oxides have been widely explored not only because of the intrinsic 
properties of it but also due to the less cost of transition metals and simple synthesis 
method. Direct growth of iron oxide on graphene sheets was reported by Qu et al. 
which provides the composite with highly active sites. Compared to other metal
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oxides, Fe3O4 possesses high negative potential which makes it suitable for using as 
anode material for supercapacitors and combined with the graphene which possess 
high surface area and conductivity, the composite exhibits excellent electrochemical 
performance. The calculated energy density based on the weight of the cathode and 
anode was 31 W h kg−1 (assuming 50% of the total weight might account for the 
electrodes) which is higher when compared to any commercial EDLC or lead acid 
batteries and Ni-MH battery [39]. 

Chang et al. proposed an asymmetric supercapacitor with two different materials 
with high and low work function as positive and negative electrodes. Since MnO2 

has the high work function, it is chosen as positive electrode and MoO3 with lower 
work function as negative electrode this extends the operating potential window up to 
1.9 V. The asymmetric supercapacitor shows a high energy density of 42.6 W h kg−1 

at a power density of 276 W kg−1 which is higher than any other asymmetric super-
capacitors reported. Also the device exhibited good electrochemical performance 
even at higher current density [40]. Following the work of Qu et al. [39], Guan et al. 
reported a similar work with Fe2O3 decorated on carbon nanotube framework (CNT) 
supported on graphite foam (GF). The three electrode tests performed shows pseu-
docapacitive behavior. With a areal capacitance of 470.5 mF cm−2 which is higher 
than the GF-CNT, this is also due to the coating of Fe2O3 by atomic layer deposition 
method (ALD). The full cell was assembled using GF-CNT@Fe2O3//GF-CoMoO4 

which exhibits an energy density of 74.7 W h kg−1 at a power density of 1.4 kW kg−1 

with a very high cycling stability of 95.4% retention after 50,000 cycles at a high 
current density of 7 A g−1 [41]. 

Even though single metal oxide provides good performance, there are some 
disadvantages for each metal, to overcome this bimetallic oxides were reported by 
combining two metal oxides and gaining a new property through synergistic effect. 
Vijayakumar et al. reported a spinel-type CuCo2O4 supported on Ni foam synthesized 
through facile hydrothermal approach. The as-synthesized sample exhibited flower-
like morphology which enhanced the specific capacity up to 645 C g−1. Also the  
initial capacity retention was about 109% after 2000 cycles. Due to these properties, 
this material might be a suitable candidate for positive electrode in supercapaci-
tors [42]. Further to enhance the synergetic effect, Huang et al. reported a ternary 
metal oxide NixCoyMozO with the ratio of 1:2:2 synthesized through hydrothermal 
method and the material exhibits high areal capacitance of 2.94 F cm−2 also a hybrid 
device was assembled using the as-prepared material as positive electrode an acti-
vated carbon as negative electrode. The device shows a wider potential window of 
1.8 V with high energy density of 22.02 W h kg−1 at a power density of 3.50 W kg−1 

[43]. Following this work, the group also reported a quaternary metal oxide using 
metal as Ni, Co, Mo, and Cu. The as-prepared material exhibited high capacity of 
0.78 mA h cm−2 and the assembled hybrid device showed a maximum energy density 
of 4.60 W h kg−1 at a power density of 0.21 kW kg−1 [44]. 

Since the conductivity of metal oxides are less, materials with better conductivity 
was needed. Pawar et al. reported a mixed metal sulfide with Cu2S–Ag2S synthe-
sized through successive ionic layer adsorption and reaction technique (SILAR). 
The as-prepared electrode exhibited high specific capacity of 772 C g−1 and good
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electrochemical stability of 89% capacity retention after 2000 cycles. The assem-
bled device exhibited good specific energy of 0.241 kW h kg−1 at a specific power 
of 5.357 kW kg−1 [45]. Wang et al. reported Ni3S4 synthesized through simple 
two-step hydrothermal technique the compound had a spinel structure with rose-
like morphology. The three electrode cell showed a high specific capacitance of 
1797.5 F g−1 with 22.66% of the performance attributing to the capacitive behavior. 
A hybrid device was assembled using the electrodes as Ni3S4//AC which shows high 
energy density of 18.625 W h kg−1 at a power density of 1500.2 W kg−1 also the 
device maintained high retention of 93% over 5000 cycles [46]. 

Liu et al. reported different metal sulfides coated on NiCo2S4 in a core–shell 
morphology. The metal sulfides being Co, Cu, Ni, and Mo were grown in situ on 
carbon cloth. Among them Co9S8–NiCo2S4 shows better energy storage capabilities 
with high specific capacity of 337.78 mA h g−1 among which 27.4% is contributed to 
the capacitive behavior as shown in Fig. 3a. Subsequently, a flexible solid state hybrid 
supercapacitor was assembled for the same material using gel electrolyte as shown 
in Fig. 3b which exhibits a high specific energy of 56.44 W h kg−1 and high specific 
power of 8153 W kg−1 [47]. To further increase the active sites by incorporating 
heterostructured material, NiCoP@CoS the performance was increased, Xu et al. 
reported this 3D tree-like core shell nanoarrays grown on nickel foam which exhibited 
high specific capacitance of 1796 F g−1 with an exceptionally high stability of 91.4% 
after 5000 cycles at higher current density of 10 A g−1. Further, the assembled 
asymmetric supercapacitor with activated carbon as negative electrode achieved high 
energy density of 35.8 W h kg−1 at a power density of 748.9 W kg−1 [49].

Since the chalcogenides showed excellent electrical conductivity theoretically, 
the focus of research toward chalcogenides increased. Ye et al. reported a mixed 
phase of NiSe and ZnSe. This hybrid structure was prepared by coelectrodeposition 
method on nickel foam making it binder free electrode. The electrode exhibited high 
specific capacity of 651.5 mA h g−1 at 1 A g−1 and the capacity dropped quickly 
with increase in current density as shown in Fig. 3c, d. The asymmetric device was 
assembled using the active material as positive electrode and activated carbon as 
negative electrode. The device delivered a high energy density of 44.4 W h kg−1 

at a power density of 800 W kg−1 which is high compared with previous literature 
(Fig. 3e) [48]. Further, Zardkhoshoui et al. reported CuCo selenide synthesized via 
a simple hydrothermal method. The as-prepared material showed a hollow sphere-
like morphology which showed a high capacitance of 1775.4 F g−1 which is higher 
than the CuCo oxide. The material was further used as positive electrode for hybrid 
supercapacitor with negative electrode as activated carbon which delivers a high 
energy and power density of 53.86 W h kg−1 and 800 W kg−1 [50]. 

Even though electrode material plays a critical role in determining the specific 
capacitance and stability, some other factors like ionic conductivity, potential window 
also relies on the electrolyte being used. Zhang et al. reported a hybrid supercapacitor 
with a high energy density by different approaches like optimizing the electrodes 
as well as adding a redox mediator in the electrolyte to provide more capacity. 
K3Fe(CN)6 was added in neutral aqueous Na2SO4 electrolyte. The device exhibited 
high energy density of 62.9 W h kg−1 at a power density of 984 W kg−1. The device
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Fig. 3 a CV curves with the capacitive fraction shown by the shade region, b schematic diagrams 
of the hybrid supercapacitor based on the Co9S8@NiCo2S4//activate carbon (AC) electrodes and 
PDMS films, c specific capacity of the NZSe hybrid electrode with various Ni/Zn ratios, d GCD 
curves of the NZSe-3 hybrid electrode, f comparison of Ragone plots with literature. Reproduced 
from Ref. [47, 48]. Copyrights (ACS, 2020) (Elsevier, 2020)

exhibited high cycling stability of 96.8% retention after 10,000 cycles with a wider 
potential window of 2.4 V [51]. 

Wong et al. reported ionic liquid-based electrolyte using EMIMBF4/AN, the ionic 
conductivity decreased with the increase in the concentration. The assembled EDLC 
device showed high energy density 74.2 W h kg−1 and a maximum power density of 
17.5 kW kg−1. Wu et al. reported EMIMBF4 electrolyte using high porous carbon 
which shows high energy density of 107 W h kg−1 at a power density of 94 W kg−1 

also an all solid state symmetric supercapacitor shows high specific capacitance 
for 180 F g−1 using EMIMBF4/PVDF-HFP gel polymer electrolyte. Huang et al. 
reported a self-healable hydrogel electrolyte suitable for flexible high energy density 
supercapacitor. The ionic conductive hydrogel used was SPMA-Zn:ZnSO4/sodium 
alginate/polymethyl-acrylic acid which shows a working voltage of 0–2.2 V with high 
energy density of 164.13 W h kg−1 with a power density of 1283.44 W h kg−1 with 
a good cyclic stability of 95.3% retention after 5000 cycles at high current density 
of 10 A g−1 [52]. Sandhiya et al. reported Na2MoO4 incorporated gel polymer elec-
trolyte which shows higher capacitance of 714 F g−1 which is 2.4 times higher than 
the normal electrolyte using H2SO4 the symmetric supercapacitor device exhibited 
high energy density of 23 W h kg−1 [53]. Han et al. reported zwitterionic natural 
polymer hydrogel electrolyte for zinc ion hybrid supercapacitor which shows a wider 
potential window of 2.4 V with high energy density of 286.6 W h kg−1 at a power 
density of 220 W kg−1 [54]. Yang et al. reported a flexible quasi solid state zinc



192 H. T. Das et al.

ion hybrid supercapacitor using poly(vinyl alcohol)/montmorillonite/Zn(ClO4)2 gel 
electrolyte which operates at wider temperature ranges from − 50 to 80 °C and 
also it delivers a ultrahigh energy density of 190.3 W h kg−1 at a power density of 
89.8 W kg−1 [55]. Park et al. reported a water in salt electrolyte with redox active 
mediators which widens the potential window up to 3 V also the device reached 
a maximum energy density of 36.7 W h kg−1 and a maximum power density of 
26.5 kW kg−1 [56]. 

4 Challenges in Supercapatteries 

Despite of a series of progress made in supercapacitors since the nineteenth century, 
it has been challenging task to provide a unfailing application for the advance tech-
nology for energy storage devices [57–60]. Looking into past records of supercapac-
itor developments and its practical usage, in 1957 the first electrochemical capacitor 
was developed by General Electric’s H. I. Becker and then by Robert A. Right-
mire came with new technology patented by a Japanese company Nippon Electric 
Company (NEC). In 1975 NEC first commercialized the electrochemical capacitors 
in market. PSCap (9 in., 2 feet, 200 V, energy up to 45 kJ) was started for diesel 
locomotives engines in mid of 1990s. Later, Panasonic designed many models such 
as Goldcap for solar-based wristwatch, spirally wound capacitor UpCap (2000 F, 
2.3 V) for hybrid electric vehicles. In current era, the market ecosystem consisting 
Maxwell, Tecate, CA-XX, ELNA Co. LTD., and Murata are seriously involved in 
developing the hybrid energy storage devices for automotive industry, rail system, 
grid units, emergency door-openings, spacecraft, wearable technologies, etc. Even 
the supercapacitors are engineered in combination with fuel cells and LiBs which 
afford the peak power and reduced an energy pressure on fuel cell or LiBs. The 
graphene-based lightweight supercapacitors (specific capacitance of 150–550 F/g) 
were designed for rapid charging/discharging in a wearable electronics. Concurrently, 
the cost of production per farad of supercapacitors was dragging its usage in small 
electronics. But in current survey, it is found that the cost has been drastically reduced, 
i.e., 3 kF ultracapacitor ($5000/10 years ago) is now fixed at only $50. By 2022, the 
supercapacitor market is projected to USD 2.18 billion, at a compound annual growth 
rate (CAGR). It is also reported that the hybrid capacitors are estimated to develop 
with highest CAGR during forecast period. The growth toward low-cost, low resis-
tance, high voltage, and capacity deemed possible supercapacitors for applications in 
various sectors, but penetrating to a wide range of today’s industrial domains is quite 
difficult. The market demands a solution for abating energy and power density and an 
evident charge storage. The manufactures are struggling in voltage management with 
stacking of device prototypes, apropos durability of the device, hasty self-discharge 
rates, and power implementation with the size of device. In fact, tangible issues arise 
when transfer from laboratory to the industry level productions, i.e., development of 
supercapacitors system sizing (stack in parallel or series) the device to add up current 
or voltage. A voltage drop due to resistance is often overlooked that consequence in
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low performance of the device. It is noteworthy that high operating potential window 
of hybrid energy storage device reduces the cost as well as boosts the outcome for 
various applications. Further, intrinsic technology of hybrid energy storage devices 
demands hybrid electrode with high surface area, metal oxides with high storage 
capacity, long cyclability, and fast current response to meet the goal. The powering 
in short-long term devices can only be come by combined contribution of appropriate 
electrode, electrolyte, and separator usage. The potential electrode materials can be 
one of feasibilities to achieve the benchmark of 100% sustainable energy. The major 
advantage of fabricating NiO-based device is easy tuning of its properties and high 
storage ability as aforementioned. In various researches, it has been revealed that the 
NiO-based devices delivered a high energy and power densities with reliable stability 
and safety in handling for commercial electronics. 

5 Summary 

Supercapatteries are promising hybrid energy storage devices which have great 
potential for large-scale applications. This combinational assembly of battery and 
supercapacitor can deliver adequate level of energy and power densities which is 
comparably high than the individual electrochemical devices (batteries and SCs). In 
this chapter, we discussed about different electrode materials and their versatile char-
acteristics such as electrical conductivity, excellent surface area, short ion/electron 
diffusion length, porous structure. These properties greatly impacted the fabricated 
supercapattery devices. Especially, employing nanostructured carbon materials and 
metal oxides have shown great electrochemical activities for such devices. In addi-
tion, we have also discussed about several electrolytes utilized for supercapatteries. 
Better redox activity of such electrolytes can favor the electrodes to achieve higher 
performances. That is why equal importance must be provided for selecting both 
the electrodes and electrolytes to create an efficient and compatible system. In the 
previous sections we have mentioned the complete mechanism involved in superca-
pattery to illustrate the role of both electrodes and electrolytes. With examples of 
different recent studies and pinpointing their energy and power capacities, a clear 
picture of the ongoing research approaches was portrayed. Although, this technology 
has been enhanced over the past few years, still creative strategies are required to 
develop, to make this system eco-friendlier, cost efficient and achieve better perfor-
mance, so that we can implement such technology in commercial scale. Additionally, 
large-scale development of supercapatteries using existing equipment for commer-
cial supercapacitors and batteries is another idea which might be possible and more 
consideration needs to be given upon that.



194 H. T. Das et al.

6 Future Scope 

With the combination of high-power non-Faradaic electrodes and hybridization of 
high energy Faradaic electrodes, supercapatteries are generally developed which 
have shown an excellent balanced output of power density as well as energy density. 
So, the role of electrode in supercapattery is one of the major factors required to be 
consider, as further modifying its structure and properties will be useful to get effi-
cient and stable device performances. In recent years, nanoscale electrode materials 
are frequently recommended by researchers as using such materials exhibits excellent 
surface area, porosity, and diffusion length for electrolyte ions get shorter. Addition-
ally, several nanoscale materials have demonstrated great conductivity which in turns 
proven favorable to achieve great electrochemical activity. Thus, utilizing efficient 
and cost-effective synthesis and application of nanoscale materials can enhance the 
performance of supercapatteries. Carbon-based materials can be an efficient choice 
as electrodes. Significant electrochemical performance improvement can be obtained 
using hybridization of nanostructured carbon materials with redox-based electrodes. 
So, investigating different hybrid/composite materials in the device will be effica-
cious. Exploring waste biomass materials for producing carbon or other promising 
materials is another attractive aspect which can be used for supercapattery electrodes. 
Already there are several studies which used biomass feedstocks like, plant/animal 
residues and even functionalized the derived materials for favorable applications in 
battery and SCs electrodes. Apart from electrodes, to enhance the electrochemical 
performance of supercapatteries, choice of electrolytes has a great influence. Excel-
lent ionic conductivity of electrolytes can lead to stable activity, higher energy and 
power densities under relatively higher humid environment and under broad oper-
ating temperature range (from− 40 to 85 °C) [2, 10]. Novel choices like water-in-salt, 
hydrate-melt electrolytes can be used in supercapatteries which could result in safer 
workability of device as well as excellent operating potential. So, it is important 
to consider every part of supercapatteries as appropriate device arrangement will be 
useful in developing flexible, lightweight, and cost-efficient device which can impact 
the future electronics devices and also larger applications such as EVs. 
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The World of Green Nanomaterials 
and Their Development 

Tamer A. Sebaey and Tabrej Khan 

Abstract Nanotechnology is a highly versatile and innovative scientific field that 
has vast applications in various domains such as medicine, electronics, and modern 
manufacturing. It holds tremendous potential to revolutionize our lives, society, and 
the global economy. However, most of the materials and techniques currently used 
in this technology are nonrenewable and generate harmful waste. To address these 
challenges, green chemistry and green technology approaches can significantly influ-
ence the future development of nanotechnology. Several researchers have extensively 
explored the use of natural materials, nanoparticles, and the development of natu-
rally harmless synthetic processes. While many green nanomaterials are already in 
use, from laboratory to commercial scales, they still face significant challenges. The 
pressing demands of today’s world call for the development of sustainable and eco-
friendly practices in green chemistry, green nanotechnology, and green engineering. 
This chapter delves into the recent advancements and challenges in the application 
of green nanomaterials. It emphasizes the concept of sustainability science and how 
it intersects with green nanotechnology and green nanomaterial applications. The 
authors’ well-researched efforts are sure to open up new avenues of knowledge in 
the fields of green nanomaterials, nanoscience, nanotechnology, and green chemistry 
over the next few decades. 
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1 Introduction 

Green nanotechnology and organic chemistry are poised for a new era of scien-
tific innovation and progress. As climate change, global warming, and dwindling 
fossil fuel reserves present significant challenges to environmental and petroleum 
engineering, novel approaches are required. Unfortunately, the technology currently 
available offers limited solutions to the complex scientific issues associated with 
heavy metal toxicity in drinking water, which affects people in both developed and 
developing nations worldwide. Therefore, environmentally friendly chemicals, green 
nanotechnology, and environmental nanomaterials are increasingly crucial [1]. At 
this crucial juncture in history, the fields of nanotechnology, green chemistry, and 
green engineering have immense potential to address global scientific challenges. 
As science and technology continue to progress, it is imperative that we rise to 
meet these challenges. Currently, nanotechnology and green engineering are often 
viewed as opposing forces. However, it is becoming increasingly clear that they can 
work hand in hand to create sustainable solutions. One such pressing concern is 
environmental remediation, which has garnered significant attention in the scientific 
community. As we face the devastating consequences of environmental degrada-
tion, it is essential to leverage the power of nanotechnology and green engineering to 
develop effective and sustainable strategies for remediation. By embracing the syner-
gies between nanotechnology, green chemistry, and green engineering, we can tackle 
significant global challenges and create a better future for all [2]. The tremendous 
scientific determination, passion, and understanding of human needs, coupled with 
the potential of nanotechnology, will play a crucial role in advancing science and 
technology globally. This article aims to define scientific innovation in the areas of 
nanotechnology, green nanomaterials, and green chemistry. Additionally, the author 
emphasizes the significance of comprehending water and wastewater treatment, as 
well as other aspects of industrial pollution control. As civilization continues to 
evolve and grow, it is vital to leverage the latest scientific advancements and tech-
nologies to improve our quality of life sustainably. The fields of nanotechnology, 
green nanomaterials, and green chemistry hold immense potential to contribute to 
this goal. However, it is equally critical to address the pressing concerns surrounding 
water and wastewater treatment and the broader issue of industrial pollution control 
[3]. 

This volume highlights recent breakthroughs in nanotechnology, environmental 
nanomaterials, and eco-friendly chemistry, aimed at expanding the boundaries of 
science and technology, in contrast to idealistic approaches that are being overtaken 
by the rapid pace of scientific progress [4]. Science and engineering are at a critical 
juncture, where innovation, vision, and scientific divination intersect. Nanotech-
nology and green engineering offer promising solutions to complex scientific chal-
lenges, including global warming, environmental engineering, and petroleum engi-
neering obstacles [5]. The main goal of this section is to pave the way for future 
breakthroughs in green nanotechnology, as well as explore topics such as heavy 
metal poisoning and environmental sustainability. However, global warming poses
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a serious threat to scientific progress and human civilization. Environmental disas-
ters, such as arsenic-contaminated drinking water in developing and industrialized 
nations, continue to occur worldwide. Material science is a remarkable achievement 
of modern civilization [6]. 

As a result, there is a critical need for global research initiatives in water tech-
nology and green nanotechnology, as well as a long-term plan for deploying green 
nanomaterials. Engineering and science are being pushed to their limits by nanotech-
nology, space technology, and nuclear technology [7]. Environmental and energy 
sustainability are critical as society advances [8]. The author highlights the signifi-
cance of the field of nanotechnology environmental engineering and science, and 
alternative energy technology in the true resolution of science and technology 
research challenges in this chapter. This chapter is a call to action for the coming 
generations of engineers, scientists, and citizens [9]. 

2 Green Nanomaterial Sources 

With science and engineering advancing into a new era, the importance of utilizing 
green nanomaterials and green nanotechnology cannot be overstated. Human civi-
lization’s vastness, ingenuity, and futuristic vision of material science will lead to 
true scientific liberation. Currently, green nanomaterials are undergoing significant 
engineering research and development [2]. The challenges of green nanotechnology, 
green nanomaterials, and the future of nanoscience herald a new era in science 
and engineering. Green nanoparticles may be obtained from a number of different 
sources. Natural sources such as plant extracts, biopolymers, vitamins, proteins, 
peptides (e.g., glutathione), and sugars (e.g., glucose, fructose) can serve as reducing 
agents for green nanoparticles. Among these, plant derivatives have received the 
most attention [10]. A significant scientific breakthrough has been the use of plant 
extracts, biopolymers, and other natural substances as reducing agents to produce 
metal nanoparticles. These nanoparticles have a range of applications in electronics 
and medicine, including medication and gene transfer. Biopolymers, which are poly-
meric carbohydrate molecules, have already been used in various applications and 
are ideal for large-scale nanoparticle production [11]. 

3 A Green Nanomaterial 

Let us take an example of nanocellulose, a nanostructured cellulose, is a promising 
material for various applications, with cellulose nanofibers, microfibrillated cellu-
lose, nanocrystalline cellulose, and bacterial nanocellulose being the primary types. 
Enzymatic treatment during its production is a rapidly developing area of study and 
technology. The unique properties of nanocellulose make it a valuable material with 
the potential to contribute to a thriving industry [12] (Fig. 1).
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Fig. 1 Cellulose contained in plants or trees has a hierarchical structure from the meter to the 
nanometer scale, as shown in (a). A schematic diagram of the reaction between cellulose and strong 
acid to obtain nanocellulose is shown in (b). Bionanocellulose cultured from cellulose-synthesizing 
bacteria is shown in (c) [13] 

4 Green Nanomaterial Processing Systems 

Green engineering, green chemistry, and green nanotechnology are urgently needed 
as environmental processing systems undergo extensive renovation. With the world 
facing the consequences of global warming and the depletion of fossil fuel sources, 
science and technology must rise to the challenge of these massive scientific 
disasters [14]. To meet critical demands such as freshwater purification, water 
consumption, subsurface treatment, and integrated water resource management, the 
scientific community requires visionary and ingenious solutions. Green chemistry 
and nanotechnology are two emerging fields that offer potential solutions. Green 
nanotechnology encompasses both green chemistry and green engineering, and it 
aims to predict and maintain sustainability in the environment, particularly through 
nanoscience and nanotechnology [8]. The chemical industry plays a crucial role 
in the global economy and anticipates advancements in science for new materials, 
renewable energy, environmental protection, and energy-efficient processes. Green 
chemistry is at the forefront of this movement, offering environmentally friendly 
products, life-saving drugs, sustainable agricultural chemicals, renewable energy 
solutions, efficient chemical engineering, and innovative materials [6]. Scientists
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and engineers have recognized that sustainable management of natural resources is 
crucial to meet future development and economic needs, driven by humanity’s rapid 
and innovative accomplishments in the twentieth and twenty-first centuries [15]. 
Green processing methods are revolutionizing the course of scientific advancement, 
particularly in the field of green chemistry. The importance of green nanotechnology 
in global scientific development is emphasized in this chapter. The authors highlight 
the significance of green process engineering and systems, which will pave the way 
for new scientific advancements and the realization of environmentally sustainable 
chemistry and nanotechnology [16]. 

5 Green Nanomaterials and Green Nanotechnology 

Nanotechnology that is environmentally friendly and environmental nanomaterials 
are the scientific and technical marvels of the day. Significant scientific breakthroughs 
are taking place in the fields of nanotechnology, green engineering, and green chem-
istry. In this section, the authors elaborate on the scientific and technological accom-
plishments in the fields of green nanotechnologies, green nanoengineering, and green 
nanomaterials, with the single goal of advancing and liberating the fields of science, 
technology, and engineering [2]. The use of green chemistry with nanotechnology 
catalysts has been thoroughly investigated. Nanomaterials are substances that are 
expected to be a viable topic for green chemical catalysis due to their ability to be 
engineered at the nanoscale. Nanocatalysts are highly prized materials because of 
their increased surface area and catalytic capabilities. Because of their enhanced 
activity, greater stability, durability, recycling potential, and cost-effectiveness, tiny 
catalysts are being promoted as novel and unique procedure options [17]. Chemical 
catalysis and reaction engineering are being revitalized. These innovative catalysts 
might be employed in renewable energy applications such as hydrogen synthesis, 
hydrogen storage, and fuel cell applications. Plastic cycle conversion technology, 
biofuels for transportation, reaction kinetics in the pharmaceutical industry, the future 
of green chemistry, the relevance of the green innovation index, and stratospheric 
chemistry technologies are all discussed by the author [18]. In this study, the author 
also emphasized the present quantity of publications in the disciplines of the field of 
nanotechnology, including nanomaterials, nanoenergy, and green chemistry. Green 
nanoparticles and their environmental friendliness as a biotherapeutic therapy, nano-
materials technology, and engineering are all rapidly evolving, leapfrogging one 
novel boundary after another. 

As nanotechnology progresses into new sectors and opens up additional scientific 
doors in the next few years, technology, engineering, and science are being insti-
tutionalized and envisioned. In exchange for making nanomanufacturing processes 
less energy- and resource-intensive, the basic principles of green chemistry applied 
to nanoscience and nanotechnology require, if at all feasible, the use of renewable 
energy sources. (a) the use of cost-effective precursors, (b) the minimization of 
carcinogenic reagents and solvents, (c) the reduction of experiments that are highly
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risky, (d) the use of a small number of reagents, (e) the minimization of reaction steps 
that lead to waste [19]. Green nanotechnology and therapies, green nanomaterials in 
therapeutic usage, therapeutic nanoparticle platforms, inorganic nanoparticles, and 
the broad field of green nanoparticles were all thoroughly covered by the writers. 
The world of nanoparticle technology and engineering will be completely reimagined 
as the use of nanoparticles in biological sciences, medical science, and biomedical 
engineering expands into new knowledge dimensions. The European Commission 
Report (2009) went into great length on the problems, prospects, and goals of green 
nanotechnology applications. This study deliberates and discusses in minute detail 
a critical assessment of possibilities and hazards. Materials created using nanotech-
nologies are beginning to be used and reimagined in many sectors of human life 
(cosmetics, textiles, fabrics, paints, packaging, meals, and so on) [20]. Mankind’s 
vast intellectual capacity, tenacity, and determination will all pave the way for the true 
freedom of nanotechnology today. Nanotechnology, biological sciences, and biotech-
nology are all linked these days. Many supporters of nanoscale research believe that 
as its uses expand, this industry will become greener and more sustainable. Environ-
mental science and technology, as well as energy sustainability, are at the peak of 
scientific investigation right now. Nanotechnology and sustainability are intricately 
intertwined nowadays. At this important juncture of vision and innovation, civic 
society must gather knowledge on many aspects of rising nanotechnology growth 
and development, notably green engineering, and environmentally friendly tech-
nology [21]. The accomplishments of environmentally friendly science, the rigorous 
academia of nanotechnology, and the needs of human society are true forerunners 
toward a new visionary age in technology and engineering (European Commission 
Report 2009). The following topics are carefully outlined by the authors of this study: 
Green nanotechnology application challenges, goals, and possibilities. 

(i) Environmental, health, and safety studies, as well as hazardous waste manage-
ment. 

(ii) Regulatory status (European Commission Report 2009). 
(iii) NGO guidelines on sustainability assessment of nanotechnologies. 

The writers of this work thoroughly investigated the vision of nanotechnology 
applications in the ever-expanding accomplishments of science and engineering. 
Today’s scientific wonders include nanotechnology and nanoengineering. The 
authors of this paper looked at water purification, renewable energy generation, 
waste management, and environmental rehabilitation [22]. The use of nanotechnolo-
gies and materials, as well as their implications on biodiversity, ecosystems, and 
human health, were also considered in this research (European Commission Report 
2009). This study also investigates regulatory regimes and options for guaranteeing 
the safe and responsible future of nanotechnologies, with an emphasis on green 
nanotechnologies. The environmental and health effects of nanomaterials are funda-
mental pillars of this well-researched work (European Commission Report 2009). 
The twenty-first century’s environmental concerns are broad and varied. Climate 
change, overdependence on fossil fuel supply, excessive harvesting of resources that 
are renewable, and the consequences of Western economies are the most pressing
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environmental engineering challenges today. Similarly, as science moves toward a 
new scientific period and a new knowledge dimension, two fields are being exten-
sively emphasized: chemical technology and petroleum engineering. (2009 European 
Commission Report) [23]. Nanotechnology is the next revolution in technology. 
This study’s authors comprehensively discuss the success, originality, and scientific 
feasibility of nanotechnology applications to human civilization. With scientific fore-
sight, the green synthesis of gold nanoparticles was carefully investigated. The green 
manufacturing of gold nanoparticles using plant extracts is one of the viable ways for 
developing environmentally friendly nanomaterials for biological applications and 
environmental protection applications. The chemistry of natural products is a modern 
scientific marvel [24]. This study used a hydrothermal approach to create proantho-
cyanidins, which are functionalized gold nanoparticles. The gold nanoparticles that 
were generated were characterized using UV–vis spectrophotometry. The findings 
demonstrated that functionalized gold nanoparticles had high removal rates for heavy 
metal ions and dye. Gold nanoparticles are among the most intensively explored 
nanoparticles of noble metals due to their multiple applications in catalysis, elec-
trical devices, medicine, and physical chemistry [25]. In this study, the researchers 
investigated the use of pomegranate peel water extract as both a reducing agent 
and a capping agent in the hydrothermal synthesis of gold nanoparticles. The vast 
domains of scientific confirmation and technical vision are important for nanopar-
ticle applications in human civilization. The authors of this paper extensively explain 
why nanoparticles and environmental engineering are crucial for future scientific 
growth [26]. Green nanoparticles and their research and development ventures into 
a sustainable future with great scientific knowledge. Nanotechnology is one of the 
most significant technological discoveries of the twenty-first century. In terms of the 
application of nanoparticles to human civilization today, the technological and scien-
tific perspective is vast. Nanomaterials and artificial nanomaterials are true scientific 
triumphs in modern civilization. Nanotechnology has the scientific ability to signif-
icantly modify lives and the overall economic condition of the human race, with 
applications ranging from electronics to biomedical engineering, improved indus-
trial technologies, and cosmetics. However, present nanomaterials and techniques are 
not only reliant on nonrenewable technologies but also create hazardous byproducts 
[27]. As a consequence, there is a higher demand for sustainability in the environment 
and a better grasp of environmental science and engineering. This research looks at 
present advancements and future opportunities in green nanotechnology and green 
nanomaterials. The challenges and vision of nanomaterials and artificial nanomate-
rials are novel, and they must be imagined and explored as science progresses. In the 
past few decades, nanomaterials have shown incredible improvement in performance 
in a wide variety of applications, including medical, energy, the environment, and 
engineering for manufacturing. Advanced manufacturing tools, human factor engi-
neering, and technology management are required in today’s science, engineering, 
and technology [28]. The research’s researchers highlight the accomplishments of 
green nanomaterials as well as the scientific creativity of nanomaterials applications 
in green nanomaterials and green customized nanomaterials applications. Chemical 
engineering, process technology, and environmental engineering are now related to
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nanotechnology in a variety of scientific domains. Current green nanotechnology 
techniques usually involve the use of natural sources, nonhazardous solvents, and 
energy-efficient tools in the synthesis of nanomaterials. This chapter goes into great 
detail regarding the scientific issues surrounding nanotechnology [29]. 

6 Management of the Environment, Sustainability, 
and a Visionary Future 

The broad domains associated with environmental engineering and management 
are increasingly vital for scientific progress and academic quality. Today, the gover-
nance of the environment and sustainable development are intricately connected. The 
visionary views of Dr. Gro Harlem Brundtland, former Prime Minister of Norway, on 
“sustainability” must be reimagined and modified as time passes. Management of the 
environment for long-term growth based on scientific and technological knowledge 
[30]. Environmental management is a large and fast-growing scientific and techno-
logical topic. Today, human scientific advancement is at a crossroads of vision and 
scientific innovation. Today, academic rigor is defined by environmental manage-
ment and sustainable development. Barrow aims to provide a comprehensive and 
comprehensible introduction. In modern human society, basic human needs such as 
water, electricity, food, and shelter are greatly ignored. Environmental engineering 
and management are rapidly evolving; they are becoming increasingly important 
in an expanding number of human activity sectors and are crucial to the achieve-
ment of environmentally friendly growth. The provision of basic human needs like 
water and energy is vital to the growth of human civilization and the accuracy 
of science. [31]. Water purification and wastewater treatment are currently being 
approached with extreme prudence, scientific innovation, and scientific fortitude. 
Environmental management in general assumes a multidisciplinary approach, which 
might be difficult to achieve in an orderly manner because appropriate enabling 
frameworks are still being developed. In this book, the author defines environmental 
management theory, principles, and essential ideas, the management of the envi-
ronment approaches—standards, monitoring, modeling, auditing, and framework 
cooperation—are all covered. In the quest for science and technology, the author 
was fully aware of the needs of environmental management as well as environmental 
and energy sustainability [32]. 

7 Nanotechnology and Sustainability 

Today, the science of “sustainability” is beset by technical hurdles and immense 
scientific challenges. Today’s futuristic research questions are in nanoscience and 
nanotechnology. The pallbearers of a new visionary period in nanotechnology and
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green engineering are scientific articulation and inventiveness [8]. Environmental 
protection, as well as a deep scientific vision of environmental engineering and 
chemical engineering, will all play a significant role in uncovering the scientific truth 
of nanoscience and nanotechnology. As society and science advance, the provision 
of essential human necessities such as food, water, energy, electricity, and shelter 
becomes increasingly important [33]. The field of nanotechnology is a scientific 
marvel. In a similar vein, water purification research is being put to the test as 
nations throughout the world confront the wrath of heavy metal drinking water and 
groundwater pollution. As a result, a collaborative effort by scientists, engineers, and 
civil society is required. With the passing of history and time, the visionary remarks of 
Dr. Gro Harlem Brundtland, former Prime Minister of Norway, on sustainability must 
be readdressed and reenvisaged. Green engineering and environmental engineering 
science are now inextricably connected. As a result, there is an enormous demand 
for green nanomaterials and sustainable solutions in modern human civilization. 
Nuclear science and space technology are rapidly advancing, crossing one threshold 
after another. Similarly, nanotechnology is on the verge of a new beginning [34]. 

8 Green Nanomaterials, Nanotechnology, 
and Sustainability: Future Research Directions 

Nanotechnology is green, and its potential uses are rapidly evolving. The scientific 
endeavor and comprehensive reflection in the field of green nanotechnology must be 
reformed with the march of civilization and rigorous academia. Future green nano-
materials research should concentrate on more inventive applications of sustainable 
green nanomaterials as well as the proper implementation of the preservation of 
the environment for the advancement of humanity [35]. Environmental protection is 
today at an intersection between catastrophic tragedy and profound scientific thought. 
The supply of clean drinking water has gotten much too little attention in investiga-
tions. As a result, green nanotechnology and green nanomaterial applications in water 
purification are the way of the future. With frequent natural disasters, global warming, 
and the depletion of fossil fuel sources, the human environment is both demanding 
and, in some eyes, terribly dismal. As a result, as civilization advances, chemical 
process engineering, environmental engineering, and petroleum engineering must be 
restructured [36]. Future nanotechnology study and development initiatives should 
be aimed toward improved energy liberation and environmental sustainability. Water 
purification and industrial wastewater treatment are present and future requirements 
of human society. As a result, long-term and practical solutions to human scientific 
and academic rigor are urgently required. Future research should concentrate on 
increasing environmental sustainability applications for greater emancipation and 
greater realization of infrastructure development and holistic sustainable develop-
ment. Pollution control, heavy metal pollution mitigation in groundwater, and catas-
trophe mitigation are critical scientific imperatives for human society’s growth [37].
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Sustainability and nanotechnology research directions must be sound and environ-
mentally safe in today’s scientific world. Human factor engineering, reliability engi-
neering, and systems science should be investigated alongside green nanomaterials 
and applications for nanotechnology. Nanomaterials’ science of the environment 
problems face a wide range of challenges today. Environmental sustainability and 
industrial hazard management are presented as issues. The authors go deeply into 
these essential issues of environmental engineering and green nanomaterial applica-
tions. The focus of research should be commercial-scale production. Then there will 
be more scientific truth and more profound scientific judgment [38]. The condition of 
sophisticated substance and green materials research is promising and far-reaching. 
Green materials and sustainability will intersect to develop new intelligent substances 
and nanomaterials. The research program and its vast scientific imagination must 
be reformed in order to perform breakthrough green materials research. The key 
thrust area of vision is the utilization of green nanomaterials in the development of 
humanity. This chapter will surely usher in a new era in the study of green materials. 
Scientific understanding will reach new heights if sustainability is integrated with 
new domains of environmentally conscious technology [39]. 

9 Conclusions 

Today, the intersection of society, scientific advancements, and research endeavors 
presents profound thoughts and scientific challenges. Green nanotechnology, green 
nanomaterials, and the field of green engineering are approaching scientific maturity, 
as the world’s ecology is threatened by advancing science and engineering. Heavy 
metal toxicity in drinking water remains a massive problem with limited techno-
logical solutions, and green nanomaterials must be employed to address this issue. 
Sustainable development in energy, environment, society, and economy is crucial, 
as humanity moves toward a new economic system with long-term development and 
provision of basic human needs such as water, food, energy, power, housing, and 
education. Water research and technology are essential for achieving these goals 
and will drive new ideas in the fields of nanoscience and nanotechnology. The real 
redemption of science and engineering today will rely on human determination, 
enlightenment, and ambition, along with the urgent needs of sustainability. This will 
herald a new beginning, a new chapter, and the development of a new scientific and 
technological era for humanity. 

References 

1. Hannigan J (2022) Environmental sociology. Taylor & Francis 
2. Palit S, Hussain CM (2020) Green nanomaterials: a sustainable perspective. In: Green 

nanomaterials: processing, properties, and applications, pp 23–41



The World of Green Nanomaterials and Their Development 209

3. Palit S, Hussain CM (2020) Nanomaterials for environmental engineering and energy appli-
cations. In: Handbook of nanomaterials and nanocomposites for energy and environmental 
applications, pp 1–24 

4. Palit S (2021) Nanomechanics, recent advancements in nanotechnology, and the visionary 
future. In: Green materials and environmental chemistry. Apple Academic Press, pp 125–144 

5. Palit S (2019) Nanocomposites for environmental protection: technological vision and the next-
generation environmental engineering technique. In: Composite materials engineering. Apple 
Academic Press, pp 75–96 

6. Abdur Rahman M, Haque S, Athikesavan MM, Kamaludeen MB (2023) A review of envi-
ronmental friendly green composites: production methods, current progresses, and challenges. 
Environ Sci Pollut Res, pp 1–25 

7. Juni F, Bashir MJ, Haider Jaffari Z, Sethupathi S, Wong JW, Zhao J (2023) Recent advance-
ments in the treatment of emerging contaminants using activated persulfate oxidation process. 
Separations 10(3):154 

8. Palit S, Das P, Basak P (2023) Application of nanotechnology in water and wastewater treatment 
and the vast vision for the future. In: 3D printing technology for water treatment applications. 
Elsevier, pp 157–179 

9. Sheikholeslam M (2023) Nanotechnology applications for solar energy systems 
10. Palit S, Hussain CM (2021) Green polymer nanocomposites, biocompatible nanopolymers, 

and the environmental pollution control: a far-reaching review. In: Handbook of polymer and 
ceramic nanotechnology, pp 3–23 

11. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: 
current challenges and perspectives in drug delivery systems. Emergent Mater, pp 1–23 

12. Illa MP, Adepu S, Khandelwal M (2022) Industrial-scale fabrication and functionalization of 
nanocellulose. In: Nanocellulose materials. Elsevier, pp 21–42 

13. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH (2020) 
Nanocellulose: from fundamentals to advanced applications. Front Chem, vol 8. https://doi. 
org/10.3389/fchem.2020.00392 

14. Palit S, Hussain CM (2021) Minerals and metal industry in the global scenario and 
environmental sustainability. In: Sustainable resource management. Elsevier, pp 163–177 

15. Sivaranjanee R, Kumar PS, Saravanan R, Govarthanan M (2022) Electrochemical sensing 
system for the analysis of emerging contaminants in aquatic environment: a review. Chemo-
sphere, p 133779 

16. Garg MC, Jain H, Singh N, Dhupar R (2022) Application of emerging nanomaterials in water 
and wastewater treatment. In: Current directions in water scarcity research, vol 6. Elsevier, pp 
319–340 

17. Palit S, Hussain CM (2020) Nanotechnology as a clean technology and a vision for the future. 
In: Materials physics and chemistry. Apple Academic Press, pp 215–233 

18. Haris M et al (2023) Nanotechnology–a new frontier of nano-farming in agricultural and food 
production and its development. Sci Total Environ 857:159639 

19. Khan S et al (2022) A review on nanotechnology: properties, applications, and mechanistic 
insights of cellular uptake mechanisms. J Mol Liq 348:118008 

20. Aziz T et al (2022) Manufactures of bio-degradable and bio-based polymers for bio-materials 
in the pharmaceutical field. J Appl Polym Sci 139(29):e52624 

21. Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK (2021) Nanotechnology based 
drug delivery system: current strategies and emerging therapeutic potential for medical science. 
J Drug Delivery Sci Technol 63:102487 

22. Grumezescu A, Holban AM (2019) Nanoengineering in the beverage industry: volume 20: the 
science of beverages. Academic Press 

23. Maja MM, Ayano SF (2021) The impact of population growth on natural resources and farmers’ 
capacity to adapt to climate change in low-income countries. Earth Syst Environ 5:271–283 

24. Malik S, Muhammad K, Waheed Y (2023) Nanotechnology: a revolution in modern industry. 
Molecules 28(2):661

https://doi.org/10.3389/fchem.2020.00392
https://doi.org/10.3389/fchem.2020.00392


210 T. A. Sebaey and T. Khan

25. Wani MY et al (2023) Nanotechnology future in food using carbohydrate macromolecules: a 
state-of-the-art review. Int J Biol Macromol, p 124350 

26. Subhan MA, Choudhury KP, Neogi N (2021) Advances with molecular nanomaterials in 
industrial manufacturing applications. Nanomanufacturing 1(2):75–97 

27. Sohail MI et al (2019) Environmental application of nanomaterials: a promise to sustainable 
future. In: Comprehensive analytical chemistry, vol 87. Elsevier, pp 1–54 

28. Trandafir LM et al (2022) Tackling dyslipidemia in obesity from a nanotechnology perspective. 
Nutrients 14(18):3774 

29. Mikolajczyk A et al (2023) Retrosynthesis from transforms to predictive sustainable chemistry 
and nanotechnology: a brief tutorial review. Green Chem 

30. Sarkis J, Ibrahim S (2022) Building knowledge beyond our experience: integrating sustainable 
development goals into IJPR’s research future. Int J Prod Res 60(24):7301–7318 

31. Palit S, Hussain C (2021) Green sustainability and the application of polymer nanocompos-
ites—a vast vision for the future. In: Handbook of polymer nanocomposites for industrial 
applications. Elsevier, pp 733–747 

32. Brodny J, Tutak M (2022) Challenges of the polish coal mining industry on its way to innovative 
and sustainable development. J Clean Prod 375:134061 

33. Tiza TM, Kpur G, Ogunleye E, Sharma S, Singh SK, Likassa DM (2023) The potency of 
functionalized nanomaterials for industrial applications. Mater Today: Proc 

34. Palit S (2019) Water purification and nanotechnology: a critical overview and a vision for the 
future. In: Advances in nanotechnology and the environmental sciences, pp 53–84 

35. Ahmad S et al (2019) Green nanotechnology: a review on green synthesis of silver 
nanoparticles—an ecofriendly approach. Int J Nanomed, pp 5087–5107 

36. El-Saadony MT, Sitohy MZ, Ramadan MF, Saad AM (2021) Green nanotechnology for 
preserving and enriching yogurt with biologically available iron (II). Innov Food Sci Emerg 
Technol 69:102645 

37. Bartolucci C et al (2020) Green nanomaterials fostering agrifood sustainability. TrAC, Trends 
Anal Chem 125:115840 

38. Khan SH (2020) Green nanotechnology for the environment and sustainable development. In: 
Green materials for wastewater treatment, pp 13–46 

39. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology 
in plant growth and crop protection: a review. Molecules 24(14):2558 

40. Palit S, Hussain CM, Mallakpour S (2022) Sustainable future with nanoproducts. In: Handbook 
of consumer nanoproducts. Springer, pp 1409–1431 

41. Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: production, 
characterization and applications. vol 12, ed: MDPI, p 31



Available Synthesis Methods of Green 
Nanomaterials, Their Properties, 
and Characterization 

Sourav Sutradhar, Somnath Mondal, and Biswa Nath Ghosh 

Abstract Metal nanoparticle synthesis has recently gained significant attention due 
to its unique physical and chemical properties such as mechanical strengths, high 
surface area, optical properties, low melting point, surface plasmon resonance, good 
antibacterial properties, and magnetic properties. It thus has broad applications in 
photography, biotechnology, anticancer, catalysis, antimicrobial agents, and agricul-
ture. Green synthesis is recognized as the most significant approach for the purpose 
of our environment, and green nanotechnology is gaining relevance in recent times 
as an alternative cost-effective, eco-friendly, efficient, and non-toxic method. Many 
natural capping and reducing agents, such as plants, fungi, and algae, are employed 
to manufacture these environmentally benign nanoparticles. The green synthesis of 
nanoparticles using plant extracts is cost-effective, offers reducing agents and natural 
capping, provides stability. The unique approach for producing green nanoparticles 
and their characterization is briefly discussed in this book chapter. 

Keywords Green nanoparticles · Characterization · Synthesis · Plant ·
Microorganism · Properties 

1 Introduction 

The field of nanoscience and nanotechnology has become one of the most rapidly 
developing research topics in multidisciplinary fields. A few examples include elec-
tronics, cancer treatment, biotechnology, catalysis [1], cosmetics, environmental 
remediation [2], the space industry, drug delivery [3], anticancer medication delivery, 
and materials science [4]. Nanotechnology is an emerging interdisciplinary field 
bridging the disciplines of biology, chemistry, pharmaceutics, physics, material
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science, medicine, and engineering [5]. In addition, nanoparticles have attracted 
considerable interest due to their unusual physicochemical and morphological prop-
erties, such as shape, ultra-small size, and size distribution. In addition, they have 
interesting thermal, magnetic, optical, and mechanical properties. For the synthesis 
of various nanomaterials, a variety of conventional and traditional techniques have 
been reported. Two primary techniques (i.e., bottom-up and top-down) and several 
chemical and physical strategies have been reported for the manufacturing of nano-
materials. Chemical processes reported for the synthesis of nanomaterials involved 
the use of harmful reducing agents such as NaBH4 and N2H4 · H2O [6]. In addi-
tion, due to a complicated degradation mechanism, many harmful chemicals used 
for the synthesis of nanomaterials remain in the environment for many years [7]. On 
the other hand, physical processes for the synthesis of nanomaterials require high 
temperature and pressure. In order to solve all of these issues, scientists have devel-
oped a new field of study promoting sustainable development: green nanotechnology. 
Green nanotechnology refers to the ability of natural substances to minimize risks to 
the environment and the health of living organisms, and it involves the replacement 
of existing products with new nanomaterials that are more cost-effective and eco-
friendly [8]. Between 2004 and 2013, the use of environmentally friendly nanotech-
nology resulted in a 7% reduction in the release of hazardous waste, including methyl 
isobutyl ketone, hydrochloric acid, and trichloroethylene [9]. There are many appli-
cations for nanoparticles that are indirectly related to green nanotechnology. Some 
examples of these applications include the use of nanocomposites to reduce the 
weight of vehicles, the creation of self-cleaning nanoscale surface coatings, the exten-
sion of the life of batteries, and the creation of self-cleaning light-emitting diodes, etc. 
[10]. Microorganisms, biodegradable polymers, vitamins, carbohydrates, and plant 
extracts have served as reductants and capping agents in the biosynthesis technique 
for production of nanomaterials [11]. In addition to being economical, biocompat-
ible, and green, the biosynthesis technique is also environmentally friendly [12]. Also, 
plant-based nanomaterial synthesis is utilized on a global basis. During the manufac-
ture of nanoparticles, phytochemicals such as alkaloids, terpenoids, saponins, and 
polyphenols found in various plant parts serve as surfactants or reducing agents. 
As a result of the presence of natural organic components in the plant extract, green 
nanoparticles have a stronger adsorption effectiveness than chemically manufactured 
nanoparticles. In addition to plants, bacteria and fungi have been employed for the 
synthesis of nanomaterials. Microorganisms and fungi are gaininig favor as nanofac-
tories due to their ability to reduce metal cations into metallic nanoparticles [13]. 
Metallic nanoparticle with different structures and sizes have been effectively synthe-
sized by altering the reaction parameters, such as temperature, pressure, oxygena-
tion, pH, and incubation time [14, 15]. Using microorganisms, various kinds of metal 
nanoparticles such as Ag, Au [16] and Cd [14, 15] and metal oxides of ZnO [17] 
and CeO2 [18] have been investigated. Different types of characterization techniques 
are used to obtain structural information about nanomaterials, such as FT-IR, SEM, 
TEM, XRD, AFM, XPS, EDAX, and DLS. This chapter will provide the reader with a 
complete overview of green nanotechnology and green synthesis techniques. Various
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types of eco-friendly nanomaterials and their characterization methodologies have 
also been covered. 

2 Plant and Plant Derivative-Based Synthesis 

Many researchers are interested in plant-based approaches because of the advantages 
of employing plant materials to biosynthesize nanoparticles, such as their avail-
ability, variability, eco-friendliness, and sustainable methodologies [19, 20]. Plants 
are capable of absorbing, hyperaccumulating, and degrading metallic oxides present 
in the environment [21]. Recently, certain organic chemicals found in plants have 
been used as practical biological factories to reduce environmental contamination. 
However, it is essential to find a balance between scalability, cost, and applica-
bility when fabricating nanoparticles. Fabricate nanomaterials using plant extracts 
as reducing agents provides an economical pathway. Different parts of the plants, 
such as flowers, roots, leaves, stems, calluses, seeds, and peels, can be used for 
the fabrication of nanomaterials [22–24]. The plant extracts’ source influences the 
nanoparticle’s properties due to the fact that different extracts contain different 
organic reducing agents. Alkaloids, terpenoids, and phenolic chemicals are only 
a few examples of water-soluble plant metabolites which can act as reducing agent. 
In phenolic compounds, hydroxyl and ketonic groups have chelation properties that 
enable them to bind to metals. Eco-friendly nanoparticles offer improved control 
over size, shape, and stability (Fig. 1).

3 Microorganism-Based Synthesis 

The ecologically friendly nature of microorganism-based nanoparticle synthesis 
attracts significant attention in comparison to conventional techniques. The eco-
friendly processes involve the use of both prokaryotic and eukaryotic microorgan-
isms. Nanoparticles ontaining metal and metal oxide can be generated utilizing either 
extracellular or intracellular methods. To produce nanoparticles, a variety of microor-
ganisms, including bacteria, fungi, and yeast, are utilized. Intracellular nanoparticles 
are more likely to be monodisperse than extracellular ones. Optoelectronic, sensor, 
and bioimaging are only a few of the commercial applications that heavily rely on 
extracellular nanoparticle. By using an intracellular process, nanoparticles inside the 
surface of cells are generated using metal ions trapped on their surfaces. Enzymes 
found in the cytoplasmic membrane, a component of the cell wall, are used in reduc-
tion processes. Although nanoparticle recovery is highly expensive, it is feasible to 
control the size and structure of nanoparticles via intracellular processes. The inter-
cellular approach requires the use of cell lysis to release nanoparticles from microor-
ganisms, unlike the extracellular method. Consequently, it takes longer time and
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Fig. 1 Structures of various bioactive compounds present in the different parts of plant

expensive than the extracellular phenomena. A room temperature is used in microor-
ganism based nanomaterial synthesis and consequently it is more effective, employs 
fewer hazardous chemicals, and is readily accessible [25]. Proteins, peptides, and 
genes are examples of natural capping agents which are used to prevent nanoma-
terials to agglomerate, thus helps to provide stability of nanomaterials [26]. In the 
extracellular environment, enzymes play a significant role in the reduction of metal 
ions that are electrostatically bonded to the surfaces of microorganisms. On the 
other hand, metal ions diffused within the cell and reacted with enzymes to generate 
nanoparticles in the intracellular process [27] (Tables 1 and 2).
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4 Microwave-Based Synthesis 

During microwave synthesis, a sample is exposed to electromagnetic (microwave) 
irradiation. Microwave irradiation enables greener and faster heating of nanomate-
rials since it requires less energy. In order to carry out a microwave-assisted synthesis, 
the samples are to be synthesized in a microwave reactor at frequencies ranging 
from 300 to 900 MHz. The microwave uses less energy and enables faster heating 
for nanoparticle formation. The microwave method provides greater control over 
morphology, size, and dispersion than other techniques [28]. Using the aqueous 
extract of the plant Salvia aegyptiaca and microwave-assisted techniques, the ZnO 
nanoparticles were synthesized with a size of less than 80 nm [29]. The biggest issue 
with the microwave method is that it makes minimal product due to small size of the 
reaction vessel. Multi-mode microwave units are needed to improve the microwave-
based method so that it can be used on a large scale. Iron oxide nanoparticle with 
yield more than 80% was synthesized from a solution of Fe(acac)3 in anhydrous 
benzyl alcohol, through microwave-based synthetic method [30]. In order to improve 
the quality of biodiesel, zinc nanoparticles were manufactured using banana com 
extract [31]. Microwave-assisted technique also reported synthesis of Ag nanoparti-
cles using aqueous leaf extract of Melia azedarach. The production of the spherical 
gold nanoparticle was accomplished through the use of a microwave process that 
used the peel extract of Annona squamosa L [32]. These technologies are used a lot 
to make a wide range of nanomaterials, and they have an exciting future ahead of 
them. 

5 Solvent-Based Synthesis 

Synthetic processes that use solvents are an important part for the synthesis of 
nanomaterials. Water is thought to be the best and most effective and easily acces-
sible solvent for synthesis procedures [33]. Sheldon’s comment is referred to as “the 
selected solvent is not a solvent, and if a solvent is significantly more valuable than 
water, then it can be considered ideal.” Water has been used as the finest solvent for 
nanomaterial synthesis due to widespread interest in nanoscience and technology. 
For example, at room temperature, bi-functional chemical agents such as gallic acid 
are used to prepare Ag and Au nanoparticles [34]. The green route technique is 
made up of two mechanics. As a solvent, either natural extract or water may be 
preferred. In this context, both routes have been explained. The discussed contents 
provide greater insight into green routes, toxic and non-toxic components, and the 
utilization of non-conventional resources obtained from nature. Ionic and supercrit-
ical liquids are examples of such developing bases. Ionic liquids include ions with a 
sharp melting point of less than 100 °C. Ionic liquids were used to create a variety of 
metallic nanoparticles such as Ag, Au, and Pt. The capacity of an ionic solution to act
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as both a protecting reagent and a reducing agent, simplifies the process of nanomate-
rial synthesis [35]. These can either have a hydrophobic nature or a hydrophilic one, 
depending on the cations or anions that are involved. If a component has a propen-
sity to exhibit ionic tendency, then it will also function as a catalyst in the reaction. 
The features stated below comprise the advantages of ionic solvents over other solu-
tions. (i) Numerous organic polar chemicals, metal catalysts, and gases dissolve 
readily in ionic solutions. (ii) Ionic solutions are thermally stable, allowing them to 
operate across a larger temperature range. Most solutions melt at room temperature 
and break down above 400 °C because they can endure a range of temperatures. 
(iii) The miscibility properties can be altered by altering the nature of the anions 
and cations occluded with them and (iv) non-coordinating polar alcohols/solvents 
[36]. Regardless, their polarity was comparable to alcohol. (v) The vapor pressure 
of ionic solutions is much lower than that of volatile solvents, so they do not evap-
orate at ambient temperatures as volatile solvents do. (vi) Ionic liquids have a dual 
character due to the presence of both anions and cations. Ionic solutions’ biodegrad-
ability makes them unsuitable for metallic nanomaterial production. A biodegradable 
novel and ionic solution was developed to overcome these disadvantages. A common 
solvent liquid can also become a supercritical liquid at pressures and temperatures 
above its critical point. In the case of a supercritical liquid, solvent characteristics 
such as density, viscosity, and thermal conductivity are correspondingly altered. CO2 

is the most available supercritical, non-toxic, inert fluid. Since water has a critical 
temperature of 646 K and a pressure of 22 MPa, it may also be an effective solvent 
for various reactions.

6 Properties of Green Nanoparticles 

It has been shown on several occasions that the incorporation of plant 
extracts for the preparation of nanoparticles results in a process that is non-detrimental 
to the natural environment [83–86]. Nanoparticles are an excellent choice for its use 
in the field of therapeutics, which prioritizes the use of materials that are clean and 
devoid of hazardous impurities. It has been noted that the size and morpholgy of the 
particles may be controlled by the minerals, vitamins, carbohydrates, proteins, and 
amino acids that are present in the plant extract [87]. Despite this, the nanoparticles 
that were generated from the plant extract are being tested for a limited number 
of applications. In contrast to their counterparts which were generated physically 
or chemically, nanoparticles prepared through green methods have shown superior 
performance in a variety of tests. Photosynthesized nanoparticles are now being 
considered for various investigations in different fields of study. Biocatalysis, anti-
viral action, anticancer activity, antimicrobial activity, DNA labeling, molecular 
imaging, food additives, biosensors, drug delivery, agriculture, cosmetics, coatings, 
and other applications are among the most common uses of the green nanoparticles.
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Table 1 Synthetic methods of nanoparticles from different plant extracts 

S. No. Nanoparticle Plant origin Size (nm) Morphology References 

1. Silver Acalypha 
indica 

21–30 Spherical [37] 

2. Silver Brassica 
junicea 

5–35 Spherical [38] 

3. Silver Citrus limon < 50 Spherical/ 
Spheroidal 

[39] 

4. Silver Carica papaya 65–80 Spherical [40] 

5. Gold Avena sativa 10–20 Rod shaped [41] 

6. Gold Coriandrum 
sativum 

7–58 Triangular, 
truncated 
triangular, 
decahedral, 
spherical 

[36] 

7. Gold Cymbopogan 
flexuosus 

201–500 Spherical/ 
Triangular 

[42] 

8. Iron oxide Medicago 
sativa 

5–10 Crystalline [43] 

9. Zinc oxide Sedum alfredii 50–55 Hexagonal, 
pseudospherical 

[44] 

10. Tin oxide Lycopersicon 
esculentum 

4–5 Spherical [45] 

11. Palladium Cotton balls 10–15 Spherical [46] 

12. Cerium oxide Datura metel L. 5–15 Spherical [47] 

13. Copper oxide C. paniculatus 2–10 Spherical [48] 

14. Iron Cinnamomum 
verum bark 

20–50 Spherical [49] 

15. Copper Ginkgo biloba 15–20 Spherical [50] 

16. Zinc oxide Prosopis 
julifora 

31.80–32.39 Irregular [51] 

17. Platinum Nigella sativa 
L. 

1–6 Spherical [52] 

18. Platinum Prosopis farcta 
fruits 

3.5 Irregular [53] 

19. Titanium oxide Mentha 
arvensis 

20–70 Spherical [54] 

20. Titanium oxide Syzygium 
cumini 

11 Spherical [55] 

21. Nickel oxide Tamarix 
serotina 

10–14 Cubic [56] 

22. Nickel oxide Raphnus 
sativus 

13–52 Cubic [57]

(continued)
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Table 1 (continued)

S. No. Nanoparticle Plant origin Size (nm) Morphology References

23. Cobalt oxide Citrus limon 46–56 Pyramid like [58] 

24. Cobalt oxide Fenugreek 6–20 Spherical [59] 

25. Selenium Aloe vera 7–48 Spherical [60]

6.1 Biological Properties 

6.1.1 Antibacterial Properties 

Jakub Siegel and colleagues carried out studies on the antibacterial effects of green-
produced AgNPs. When compared to the control samples, which consist of bacteria 
that had been incubated in glycerol or physiological saline solution for either 6 or 
24 h, the growth of Staphylococcus epidermidis and Escherichia coli were completely 
inhibited in the presence of AgNP4–6 after 24 h (for both 6 and 24 h incubated 
samples). The fact that AgNP4–6 was able to sustain its ability to limit the devel-
opment of both bacterial strains even after 30 and 48 h of growth which confirm 
the potent bactericidal action of AgNPs. During the course of the experiment, no sign 
of growth inhibition of E. coli in the presence of AuNP4–6 or AuNP9–12 for any 
of these compounds. When compared to the control samples, it was discovered that 
AuNP4–6, but not AuNP9–12, was able to limit the development of S. epidermidis, 
and the effect lasted for the whole 48 h testing period. Throughout the course of the 
experiment, any growth inhibition of E. coli occured regardless of the size of the 
AuNPs. On the other hand, AuNP4–6 was successful in preventing S. epidermidis 
from expanding its population [88]. 

Asem A. Mohamed and his colleagues used a technique known as the micro-
bial reduction percentage method to evaluate the antibacterial activity of cotton 
textiles which were loaded with various forms of ZnO-NPs. Although the deposition 
ratio of nanorods on cotton fabrics was lower than that of hexagonal ZnO-NPs, the 
results showed that the antibacterial activity generated from cotton fabrics coated 
with nanorods was higher than that obtained from hexagonal ZnO-NPs. In the case 
of cotton textiles loaded with hexagonal and nanorod ZnO-NPs, the decrease in the 
bacterial viability were found to be in the ranges of 72.4–79.7% and 76.3–84.3%, 
respectively. There is a correlation between the morphology of the ZnO-NPs and 
their antibacterial activity [89]. 

6.1.2 Antifungal Properties 

Javed Iqbal and his colleagues explored the antifungal potentials of iron oxide nano 
particles (IONPs) by testing them against various fungal strains by utilizing disk-
diffusion techniques. The results of their research were positive for the antifungal 
properties of the IONPs. After being grown in 100 mL flasks containing sabouraud
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Table 2 Synthetic methods of nanoparticles from different microorganisms 

S. 
No. 

Nanoparticle Origin Size (nm) Morphology References 

1. Silver Bacillus brevis (NCIM 
2533) 

41–68 Spherical [61] 

2. Silver Lactobacillus casei 
WK2G-3A 

0.7–10 Spherical [62] 

3. Silver Lactobacillus fermentum 
E10-15 

1.4–10 Spherical [62] 

4. Gold Paracoccus haeundaensis 
BC74171T 

20.93 ± 3.46 Spherical [63] 

5. Gold Escherichia coli ~ 10 Spherical [64] 

6. Palladium Citrobacter bacterial 
species 

11–16 Dendritic 
shaped 

[65] 

7. Palladium Cupriavidus 
metallidurans CH34 

20–40 Dendritic 
shaped 

[66] 

8. Magnesium 
oxide 

Burkholderia rinojensis 26.7 Spherical 
granular shape 

[67] 

9. Copper Shewanella loihica 10–16 Spherical [68] 

10. Copper Botryococcus braunii 10–70 Elongated 
spherical and 
cubic 

[69] 

11. Copper oxide Lactobacillus casei 
subspecies 

30–75 Spherical [70] 

12. Copper oxide Streptomyces 
pseudogriseolus Acv-11 
and S. zaimyceticus Oc-5 

78 Spherical [71] 

13. Titanium 
oxide 

Streptomyces species HC1 43–67 Spherical [72] 

14. Titanium 
oxide 

Halomonas elongata 104.63 Spherical [73] 

15. Iron oxide Lactobacillus fermentum 10–15 Spherical [74] 

16. Iron oxide Bacillus cereus strain 
HMH1 

29.3 Spherical [75] 

17. Zinc oxide Pseudomonas putida 25–45 Spherical [76] 

18. Zinc oxide Xylaria acuta 40–55 Hexagonal [77] 

19. Platinum Fusarium oxysporum ~ 25 – [78] 

20. Platinum Botryococcus braunii 86.96 Monodisperse [79] 

21. Iron Trichoderma species and 
Rhizopus stolonifera 

100 – [80] 

22. Cerium oxide Fusarium solani 20–30 Spherical [81] 

23. Cerium oxide Aspergillus niger 5–20 Cubical and 
spherical 

[82]
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dextrose liquid medium, the various fungal spores were placed in a shaking incubator 
at 37 °C for a period of 24 h. The optical density of the liquid cultures was brought up 
to 0.5. After the preparation of the samples, the SDA medium was then autoclaved 
before being put onto Petri dishes that had already been sanitized. Using an autoclaved 
cotton swab, fifty milliliters of broth culture were distributed on a petri plate with 
SDA medium in order to produce a homogeneous lawn of fungal strains. Each disk 
had 10 mL of IONPs loaded onto it. Amp B was used as the positive control, while 
DMSO was used as the negative control. In addition, fungal plates were subjected 
to an incubation period of 24 h at 37 °C, during which time zones of inhibition were 
noted at regular intervals. Different concentrations of IONPs ranging from 46.875 to 
1500 mg/mL were used in the experiments [90]. 

6.1.3 Anticancer Properties 

The HepG2 cells were subjected to various dosages of IONPs ranging from 5.47 
to 700 mg/mL for a period of about 24 h, which resulted in inhibitions of HepG2 
cells that were dose-dependent. The effects of Rhamnella gilgitica-mediated IONPs 
on the HepG2 cancer cell line revealed a high potential for anticancer activity, as 
shown by our research. At a dosage of 700 mg/mL, the IONPs caused a death rate of 
89%; however, the anticancer impact of the IONPs decreased as the concentration of 
the compound decreased. The IC50 value that was found was 14.30 mg/mL, which 
indicated a high level of potency [90]. 

6.2 Physical Properties 

6.2.1 Antioxidant Properties 

The antioxidant activities of IONPs were investigated, and the antioxidant nature of 
IONPs was assessed at concentrations ranging from 1 to 200 mg/mL. At a concentra-
tion of 200 mg/mL, the highest levels of total antioxidants, measured in terms of the 
ascorbic acid equivalents per mg, were found. The total anti-oxidant capacity (TAC) 
has shown that IONPs possess a strong antioxidant nature in relation to reactive 
oxygen species (ROS), due to the fact that the leaf extract of R. gilgitica was used in 
this investigation as a powerful reducing and capping agent. It is well accepted that 
some flavonoids can scavenge ROS that are present on the surface of IONPs. The 
antioxidant potential of the IONPs discovered in R. gilgitica was found to be quite 
high and was shown to be concentration dependent. As the concentrations decreased, 
the reducing power also did as well. At a 200 mg/mL concentration, the reducing 
power was measured to be at its highest point (59%). At a 200 mg/mL concentra-
tion, IONPs were observed to have a strong capacity for DPPH radical scavenging, 
with a percentage of 78.36%. It is possible to conclude that the use of R. gilgitica
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results in the reduction and stabilization of IONPs due to the presence of some kind 
of antioxidant ingredient [90]. 

6.3 Optical Properties 

Silver nanoparticles were synthesized using an environmentally friendly process. R. 
Sarkar and his colleagues discovered that the matching nanoparticle exhibited some 
optical characteristics. It has been discovered that the colloidal silver nanoparticles 
that were generated emit photoluminescence at room temperature [91]. 

The optical sensor was used to determine the level of copper sensitivity shown 
by these biosynthesized nanoparticles. It was determined that the sensitivity of the 
medium toward the concentration of copper ions was 0.249/mM for D2 and 0.624/ 
mM for D8, respectively. Therefore, as a result of the obtained antimicrobial and 
optical properties, it is suggested that obtained AgNPs, which were synthesized by 
M. R. Bindhu and co-workers, be utilized in water purification for the purpose of 
inhibiting the growth of bacteria and determining the concentration of heavy metals 
in water [92]. 

6.3.1 Electrochemical Properties 

Voltammetric methods, namely CV and SWV, were used to analyze the reversibility 
of electron transfer and assess the electro-catalytic capabilities of ZnO nanoparticle 
films deposited on a glassy carbon electrode. The ZnO nanoparticles display excel-
lent electrochemical behavior and are thus regarded to be a potential electrocatalyst 
for use in electrochemical applications. This was the finding that N. Matinise and 
his colleagues investigated. The influence of scan rate (v) on the electrochemistry 
of ZnO-NPs was investigated, and the electrochemical performance of the material 
is determined by analyzing the peak current during a cathodic and anodic scan, 
respectively. The decreased peak current has been shown to grow linearly with 
scan rate, indicating a diffusion-controlled electrolyte ion transport kinetic at the 
interface and nanoparticle stability [93].
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7 Characterization of Green Nanoparticles 

The physicochemical properties of green nanoparticles are chemical compo-
sition, size, morphology, molecular weight, stability, purity, and solubility. These 
physicochemical properties are characterized by different spectroscopic techniques, 
such as UV–Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier trans-
form infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), X-ray 
photoelectron spectroscopy (XPS), atomic force microscopy (AFM), etc. 

UV–Vis spectroscopy is used to characterize the optical properties of metal oxides 
and bioconjugates of inorganic and organic nanoparticles. The absorbance spectra are 
useful to identify the optical behavior of the nanoparticles in the UV–Vis region. It can 
be used as a primary method to determine the concentration and size of nanoparticles. 

The dynamic light scattering technique involves scattering of light by nanoarchi-
tectures with a low concentration of materials in order to avoid multiple scattering 
effects. It is used to analyze nanoparticles with a size of 0.1 to 10 nm. DLS can be 
used to determine the aggregation state and hydrodynamic diameter of nanoparticles 
in solution.
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FT-IR is used to detect the functional group in organic compounds, which gives 
information on how the rotation and vibration of molecules are affected by infrared 
radiation. From the FT-IR spectra, researchers are able to obtain information about 
the intensity of the adsorption as well as the wavelength of the molecule. 

XRD is an excellent tool and gives information about the lattice parameters, 
particle size, crystalline structure, and the nature of the phase of nanoparticles. 
Comparing the peaks with reference patterns available at the International Centre 
for Diffraction Data (ICDD) can provide information about the sample composition. 
There are two types of XRD present; one is the powder diffraction method using 
a wavelength-independent angle of diffraction that alters the angle of diffraction. 
Second is the Laue method, in which the wavelength of the X-ray does not change 
but the angle of diffraction is. 

By using transmission electron microscopy (TEM) and scanning electron 
microscopy (SEM), nanoparticles can be characterized by their morphology and 
size. The TEM and SEM techniques are fundamentally distinct from one another 
due to the fact that the former determines internal morphology in addition to diffrac-
tion patterns, while the latter provides information about the surface morphology of 
a material. With either methods, we get a two-dimensional image of the samples that 
shows the size and orientation of the particles. 

The composition of nanoparticles is determined with the use of an X-ray non-
destructive technique known as EDS. An electron microscopic technique is used to 
determine the material’s composition, microstructure, and elemental spectra through 
SEM and TEM. 

XPS is primarily employed to analyze the surface properties of nanoparticles. 
This can include using the binding energy and intensity of the photoelectron peak to 
figure out the composition and oxidation state of the elements. 

In thermogravimetric analysis (TGA), nanoparticles are tested for their thermal 
stability, moisture content, and volatile substances on their surfaces. 

Selected area electron diffraction (SAED) is an electron diffraction technique that 
is used inside a TEM to study nanoparticles defects and crystal structure. 

The atomic force microscopy (AFM) is a scanning probe microscopy technique 
that provides information about roughness, size, surface texture, morphology, surface 
area, and volume distribution. Because the AFM image is a three-dimensional picture, 
we can use it to figure out the width of the nanoparticles. 
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72. Ağçeli GK, Hammachi H, Kodal SP, Cihangir N, Aksu Z (2020) A novel approach to synthesize 
TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. J Inorg Organomet Polym 
Mater 30(8):3221–3229. https://doi.org/10.1007/s10904-020-01486-w 

73. Taran M, Rad M, Alavi M (2018) Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas 
elongata IBRC-M 10214 in different conditions of medium. BioImpacts BI 8(2):81. https:// 
doi.org/10.15171/bi.2018.10 

74. Fani M, Ghandehari F, Rezaee M (2018) Biosynthesis of iron oxide nanoparticles by 
cytoplasmic extract of bacteria Lactobacillus fermentum. J Med Chem Sci 1(2):28–30 

75. Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F (2018) Extracellular biosyn-
thesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization 
and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 270:1–11. https:/ 
/doi.org/10.1016/j.jbiotec.2018.01.021 

76. Jayabalan J, Mani G, Krishnan N, Pernabas J, Devadoss JM, Jang HT (2019) Green biogenic 
synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibac-
terial and anti-biofilm activity. Biocatal Agric Biotechnol 21:101327. https://doi.org/10.1016/ 
j.bcab.2019.101327 

77. Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B et al 
(2020) Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and 
its nanoantibiotic potential. Int J Nanomed 15:8519. https://doi.org/10.2147/IJN.S271743 

78. Gupta K, Chundawat TS (2019) Bio-inspired synthesis of platinum nanoparticles from fungus 
Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic 
activities. Mater Res Express 6(10):1050d6. https://doi.org/10.1088/2053-1591/ab4219 

79. Anju ARYA, Gupta K, Chundawat TS (2020) In vitro antimicrobial and antioxidant activity of 
biogenically synthesized palladium and platinum nanoparticles using Botryococcus braunii. 
Turk J Pharm Sci 17(3):299. https://doi.org/10.4274/tjps.galenos.2019.94103 

80. Kareem SO, Adeleye TM, Ojo RO (2020) Effects of pH, temperature and agitation on the 
biosynthesis of iron nanoparticles produced by Trichoderma species. IOP Conf Ser Mater Sci 
Eng 805(1):012036. https://doi.org/10.1088/1757-899X/805/1/012036 

81. Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, Ilangovan R 
(2016) Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and 
antibiofilm activity. RSC Adv 6(48):42720–42729. https://doi.org/10.1039/C6RA05003D 

82. Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A (2015) Mycogenesis 
of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications 
for antibacterial and larvicidal activities. J Nanostruct Chem 5(3):295–303. https://doi.org/10. 
1007/s40097-015-0161-2 

83. Banerjee UC, Mittal AK, Chisti Y (2013) Research review paper: synthesis of metallic nanopar-
ticles using plant extract. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv. 
2013.01.003 

84. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver 
nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45(7):1272–1291 

85. Suwarnkar MB, Kadam AN, Khade GV, Gavade NL, Garadkar KM (2016) Modification of 
TiO2 nanoparticles by HZSM-5 for the enhancement in photodegradation of Acid Green 25. J 
Mater Sci Mater Electron 27(1):843–851. https://doi.org/10.1080/21691401.2016.1241792

https://doi.org/10.1155/2018/7879403
https://doi.org/10.2174/1573413715666190318155801
https://doi.org/10.2174/1573413715666190318155801
https://doi.org/10.1007/s00775-019-01654-5
https://doi.org/10.1007/s10904-020-01486-w
https://doi.org/10.15171/bi.2018.10
https://doi.org/10.15171/bi.2018.10
https://doi.org/10.1016/j.jbiotec.2018.01.021
https://doi.org/10.1016/j.bcab.2019.101327
https://doi.org/10.1016/j.bcab.2019.101327
https://doi.org/10.2147/IJN.S271743
https://doi.org/10.1088/2053-1591/ab4219
https://doi.org/10.4274/tjps.galenos.2019.94103
https://doi.org/10.1088/1757-899X/805/1/012036
https://doi.org/10.1039/C6RA05003D
https://doi.org/10.1007/s40097-015-0161-2
https://doi.org/10.1007/s40097-015-0161-2
https://doi.org/10.1016/j.biotechadv.2013.01.003
https://doi.org/10.1016/j.biotechadv.2013.01.003
https://doi.org/10.1080/21691401.2016.1241792


Available Synthesis Methods of Green Nanomaterials, Their Properties … 229

86. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. 
Nanomed Nanotechnol Boil Med 6(2):257–262. https://doi.org/10.1016/j.nano.2009.07.002 

87. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis 
of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28. 
https://doi.org/10.1016/j.jare.2015.02.007 
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Abstract As the result of the growing world population, the availability of resources 
is decreasing. Creating new non-polluting technologies is essential for the long-term 
prosperity of human society. Eco-friendly and sustainable technologies can be devel-
oped with nanotechnology, which will benefit humans and the environment. In green 
nanotechnology (biosynthesis), nanomaterials and nanoparticles are formed through 
biogenesis. Biomedical, nutrition, environmental remediation, coating, textile, and 
agricultural fields are some of the many applications of green nanotechnology. Many 
regulatory processes rely on green nanotechnology due to its small size. Better biolog-
ical diagnosis, better quality of food, agriculture input reductions, better absorption 
of soil nanoscale nutrients, environmental cleanliness, and clean energy supply are 
some of the many potential benefits of green nanotechnology. Green nanoscience and 
technology can address current and future problems in the biomedical and food indus-
tries as well as society. These include issues of sustainability, sensitivity, and human 
welfare. The areas discussed in this chapter include biomedical, food, environmental 
remediation, coatings, textiles, and agriculture.
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1 Introduction 

According to Bhainsa and D’souza [27] and Shahverdi et al. [192], nanotechnology is 
primarily concerned with objects, materials, and devices that have a diameter of less 
than 100 nm (nm). Nanomaterials have gained prominence over the past decade in 
medical, pharmaceuticals, agriculture, coating industries, energy production, nanos-
tructured electrodes in batteries, communication technology devices, and food and 
textile industries [43, 49, 186]. 

Despite the many applications and benefits of synthetic nanoparticles, their 
synthesis is expensive and their by-products are environmental hazards [132]. 
Therefore, scientists and researchers are showing keen interest in green nanopar-
ticle synthesis [153]. A green nanotechnology is an approach that uses renewable 
resources as opposed to physical and chemical nanotechnology [6, 117, 164], because 
it is less expensive, less energy-consuming, eco-friendly and causes no harm to 
humans [5, 10, 98, 205] (Fig. 1). Biological materials are used in the production of 
nanomaterials in green nanotechnology [16, 26, 63, 163, 195, 198, 205] (Fig. 1). 

The field of green nanotechnology is an important subset of green chemistry and 
green engineering. This minimizes power and fuel consumption wherever possible 
[220]. In green chemistry, there are 12 principles (Fig. 2) which are being used by 
Scientists, engineers, and chemists worldwide because they produce less harmful 
chemical products and by-products [11, 12, 124, 148]. Aside from synthesizing 
sustainable nanoparticles [155], green nanobiotechnology also saves raw materials, 
energy, and water, reduces greenhouse gases, stops adverse effects before they occur, 
and contributes significantly to environmental and climate protection [103, 220, 242].

Fig. 1 Main goals and 
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Fig. 2 Green chemistry 
principles for green 
nanotechnology
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Figure 3 shows green nanotechnology applications which may involve in 
cosmetics, nanofabrication, bioengineering, energy production, green building 
constructions, medicines and drugs, nanobiotechnology, optical engineering, agricul-
ture, food and coating industries, etc. [220]. To make a conclusive assessment, green 
nanotechnology requires a complete process assessment like any other industrially 
manufactured product [18, 25]. 

To eliminate or greatly reduce pollution, as well as to foresee and lessen the envi-
ronmental repercussions of the manufacturing chain, green nanotechnology relies on 
the design and use of non-toxic nanomaterials [104, 204]. Other applications of green 
nanotechnology include photocatalysis, solar cells, fuel/bio-fuel cells, and cleaner 
production [78, 96, 168]. Furthermore, green nanotechnology applications include 
the conversion of diesel soot into carbon nanomaterials which can be used to recycle 
industrial wastes [30, 142]. In this chapter, we have elaborated the applications of 
green nanotechnology in different fields.

Green 
nanotechnology 

Food & 
Agricultural 
Applications 

Biomedical & 
Pharmaceutical 
Applications 

Cosmetics & 
Nanofabrication 

Applications 

Energy 
Applications 

Optical & 
Bioengineering 

Applications 

Industrial & 
Green building 
Applications 

Fig. 3 Applications of green nanotechnology in various sectors 
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2 Green Nanotechnology and Its Applications 

According to Anastas and Warner [11, 12] and Karn and Bergeson [112], green 
nanotechnology aims to develop and produce goods that are environmentally sustain-
able. Its primary objective is to inform readers about nanoparticles and their numerous 
useful and potentially harmful properties. Furthermore, negative impact on health 
and ecosystem can be reduced through nanotechnology, which has a wider societal 
benefit. Thus, green nanotechnology contributes from selection of raw materials to 
safer release to the environment [202]. 

2.1 Green Nanotechnology in Biomedical Applications 

Treatment and prevention of many diseases could be revolutionized by biomedical 
nanotechnology [143]. Opportunities in the near future include the discovery of 
infectious microorganisms and viruses and the detection of molecules that are asso-
ciated to the development of many diseases like cancer, diabetes, and neurological 
diseases. Nanoparticles with the ability to react to external stimuli would be useful 
in the delivery of cancer medications [7, 20, 47, 64, 88, 126, 134, 167, 174, 183]. In 
addition to medical implants, biomaterials can be used to create scaffolds for grafts. 
Non-specific macromolecules could be prevented from adhering to nanostructured 
surfaces created by this method. Biocompatibility of materials can be improved by 
controlling surface characteristics at the nanoscale. 

There is currently a paucity of information on the pharmacological dangers linked 
with this technique, despite it is being widely available. Structures can take on entirely 
new features when scaled down to the nanoscale. A particle’s aggressive or kidney-
damaging actions appear to be best predicted by its minuscule size, which is mostly 
determined by its chemical composition. All medical technology applications (Fig. 4) 
must have a risk management plan in place. Afterward, we will take a look at some 
of the possible medical applications of nanomaterials and nanoparticles. Biocompat-
ibility, implants, cardiology, cancer [42, 102, 158, 199], and theranostics are just a 
few of the many diagnostic and therapeutic uses for “nanorobots” and other forms 
of nanomedicine. Last but not least, the dangers to human health and ethical issues 
are discussed in detail [170, 171, 175].

In the field of drug delivery, nanomaterials and nanoparticles are useful tools. 
There are a number of nanomaterials that can be used to destroy cancer cells because 
of their unique mechanical, electrical, electronic, thermal, and optical properties [176, 
202]. Due to their extraordinary size, optical and electrical capabilities, and compara-
tively low cost and ease of manufacturing, quantum dots have found utility in medical 
imaging applications. Physicochemical and biological properties of dendrimers can 
be enhanced through their small size (5 nm) and can pass via cell membranes, tissues,
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Fig. 4 Biomedical applications of green nanotechnology

and vascular pores. Nanomaterials can be used in protein, RNA, and DNA struc-
ture detection by using fluorescent markers for resonance imaging improvements 
[194, 202]. 

2.2 Agricultural Applications of Green Nanotechnology 

The food and feed sectors have always relied on agriculture for supply and generation 
of raw materials. Population growth and the scarcity of natural resources (such as 
farmland and water) encourage agricultural development that is more profitable and 
environmentally friendly [109, 149, 236]. 

It is essential for the elimination of poverty and hunger that agricultural devel-
opment takes place. As a result, we must take a risk in order to advance agricul-
tural growth. This global mainstream has people living in poverty and in rural areas 
where agricultural expansion is less effective [166]. More recently, food and nutrition 
security have become a central part of cutting-edge scientific research. The objec-
tives of agricultural development should include factors such as social inclusion, 
health, climate change, energy, ecosystem processes, natural resources, and good
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governance, [236]. As a result, sustainable agriculture increases the likelihood of 
eliminating poverty and hunger in the real world [213]. 

Incontrovertibly, the future of agriculture depends on the implementation of 
cutting-edge techniques like nanotechnology. In agricultural systems, the increasing 
use of smart nanotools has the potential for revolutionizing agricultural practices and 
reducing or eliminating their environmental impact [133, 189]. 

Nanotechnology plays a crucial role in sustainable agriculture by regulating nutri-
ents and productivity via water quality [91, 149] and pesticide monitoring [165]. A 
general assessment of the health and environmental hazards posed by nanomaterials 
is impossible due to their wide range of properties and activities [165]. In agricul-
ture, nanotechnology research also influences sustainable development. Soil fertility 
can be maintained, agricultural resources can be effectively managed, drugs can be 
effectively delivered, and this technology has proven to be effective. Risk assessments 
are continuing in several fields, including those dealing with biomass and agricul-
tural wastes, food processing and packaging, and more [76]. It has recently become 
common practice to use nanosensors for environmental monitoring in agriculture 
because of their robustness and speed [106]. 

Microorganisms use nanoparticles to direct catalyze the destruction of toxic chem-
icals and waste products, making the process more effective. Hazardous compounds 
and toxins are broken down by organisms in agricultural soils and waters. Biore-
mediation (using beneficial microorganisms), phytoremediation (using plants), and 
mycoremediation are other commonly used terms (fungi and mushrooms). As a 
result, bioremediation can be used to safely and effectively remove heavy metals from 
soil and water using microorganisms [60]. As a result, agricultural bioremediation 
encourages long-term approaches to remediation that restore soil to its natural state. 
Consider using the nano–nano interaction to improve agricultural soil sustainability 
by removing potentially harmful components [60, 106]. Microbes are undeniably 
important in sustaining soil health, the environment, and agricultural productivity 
[145]. As a result, the introduction of modified NPs (chemical or green) should 
constantly be evaluated on a regular basis to ensure environmental stewardship in 
the agricultural sector (Fig. 5).

Although nanofertilizers (Table 1) have been widely available on the market 
in the past decade, the majority of agricultural fertilizers have not been devel-
oped by major chemical companies. Several types of nanofertilizers are available, 
including “nanozinc, silica, iron, titanium dioxide, core–shell quantum dots, and 
gold nanorods.” Its quality is further enhanced by the fact that it was released under 
strict supervision. Over the past decade, researchers [59, 239] have focused on the 
potential benefits of using metal oxide nanoparticles in agriculture. As a result of 
zinc deficiency in alkaline soils, agricultural productivity has been limited [180].

In the near future, nanomaterials will be used to protect crops and produce food. 
In agricultural fields, NPs play a crucial role in controlling insect pests and host 
pathogens [121]. The development of a novel nanoencapsulated pesticide formula-
tion with slow release properties has been reported recently [29]. Increasing the effec-
tiveness of active ingredients by preventing their premature degradation for longer 
periods of time is the primary way to achieve crop protection due to the development
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Fig. 5 Applications of green nanotechnology on sustainable agriculture [166]

Table 1 List of nanofertilizers and their composition [166] 

Nanofertilizers Composition 

Nano-Gro™ Plant growth regulator and immunity enhancer 

Nano-green Extracts of corn, grain, soybeans, potatoes, coconut, and palm 

Nano-Ag Answer Microorganism, sea kelp, and mineral electrolyte 

Biozar nanofertilizer Combination of organic materials, micronutrients, and 
macromolecules 

Nano max NPK fertilizer Multiple organic acids chelated with major nutrients, amino 
acids, organic carbon, organic micro nutrients/trace elements, 
vitamins, and probiotic 

Master nano chitosan organic 
fertilizer 

Water soluble liquid chitosan, organic acid and salicylic acids, 
phenolic compounds 

TAG NANO (NPK, PhoS, 
Zinc, Cal, etc.) fertilizers 

Proteino-lacto-gluconate chelated with micronutrients, vitamins, 
probiotics, seaweed extracts, humic acid

of environmentally friendly nanoencapsulated insecticides [160], which has resulted 
in a decrease in pesticide doses and human exposure. There is a growing interest 
in developing non-toxic and environmentally friendly pesticide delivery systems in 
order to improve global food production and minimize the adverse effects on the 
environment [29, 55, 90, 110].
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The quality of chemicals delivered to biological processes can be improved using 
nanoencapsulation, which is similar to microencapsulation. Nanoscale pesticides 
have recently been marketed as “microencapsulated pesticides” by some chem-
ical companies [89]. Microencapsulated pesticides from Syngenta (Switzerland), 
“Subdew MAXX Karate ZEON, Ospreay’ Chyella, Penncap-M, and BASF” are all 
suitable for use at the nanometer scale. “Primo MAXX, Banner MAXX, and Subdue 
MAXX” are all Syngenta products sold in Australia. These are nanoscale emulsions, 
despite the fact that they are commonly referred to as microemulsions in the market-
place. As a result, the distinction between microemulsion and nanoemulsion is kept 
as thin as possible. Agrochemicals and organic NPs are commonly formulated using 
this method [89]. 

Biosensor development will continue to be influenced by nanotechnology because 
of its many advantages. The unique properties of nanomaterials can greatly enhance 
the performance and sensitivity of biosensors [77], but it has also prompted the devel-
opment of numerous new transduction technologies [190]. Utilizing nanomaterials 
streamlines the development of numerous (bio)sensors, including nanosensors and 
other nanosystems essential for biochemical analysis [77, 190, 221]. Mycotoxins, 
which are present in many different foods, can be detected fast and easily with 
(bio)sensors help [190]. 

2.3 Green Nanotechnology in Food Industry 

Future food production will be significantly affected by nanotechnology. Food addi-
tives and food packaging are the primary uses of nanoparticles in the food industry. 
The most important differences between the two types of packaging are that additives 
can be used to enhance the flavor or texture of food, while packaging can help to 
prevent rotting and increase the quality of the product by minimizing gas flow during 
packaging [157]. 

Antimicrobial food contact surfaces, including containers, cutting boards, and 
freezers, are now being manufactured commercially using nanotechnology [210]. 
Sugars and proteins serve as a target recognition group for nanostructures used in food 
biosensors [38]. Foodborne pathogens and other contaminants can be detected and 
tracked using these biosensors. Environmentally protective encapsulation systems 
can benefit from nanotechnology as well. As a flavor and an antioxidant, it can be 
used in the formulation of food products as well [105]. While reducing the concen-
tration of these substances, the goal is to increase their activity and efficiency [95]. 
Nutraceutical delivery systems and controlled release mechanisms are increasingly 
being investigated as the practice of adding new ingredients to foods [135]. All food 
production and processing could benefit from nanotechnology, but many of the tech-
niques are prohibitively expensive or impossible to put into practice commercially. 
New functional materials and food formulations, as well as micro and nanoscale 
processing, product development, and storage development, are all areas in the food 
industry that can benefit from nanoscale techniques [156].
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Fig. 6 Applications of green nanotechnology in food processing and technology [171] 

A reduction in the risk of certain diseases, such as cancer, may be one of the physi-
ological benefits of bioactive chemicals present in some foods. In the gastrointestinal 
system, nanotechnology is capable of improving transport characteristics, solubility, 
and long-term absorption by reducing particle size [41]. Ingredients like “omega-3 
and omega-6 fatty acids, probiotics, prebiotics, vitamins, and minerals” are used 
in food nanotechnology [223]. A number of nanoparticles have been developed to 
ensure the safety of food products, including “micelles, liposomes, nanoemulsions, 
biopolymeric nanoparticles, and cubosomes” [71, 131, 152, 232]. Nanotechnology’s 
applications in the food industry are illustrated in Fig. 6. 

As of today, most of the nanotechnology research is concentrated in the fields of 
electronics, medicine, and automation. The topic of nanoparticles being unintention-
ally or purposefully introduced into food is a common one when discussing nanotech-
nology and food [39, 177, 216, 219]. Risks and benefits of using nanoparticles are 
that very little is known about their bioaccumulation and toxicity [97]. 

There are numerous applications for the incorporation of nanoparticles into food 
contact materials. TiO2 pigment nanoparticles remain UV absorbent after becoming 
transparent. The absorption of UV radiation must be minimized in transparent wraps, 
films, or plastic containers. By using nanoclays, gas diffusion can be reduced and 
shelf life can be extended. 

Additionally, food preservation is critical to the food industry’s success. When 
exposed to foodborne pathogens, nanosensors, such as a system composed of 
hundreds of fluorescent nanoparticles, can fluoresce in a various forms of colors, 
allowing in order to detect food spoilage. By using nanosensors, it is possible to 
detect pathogens in hours or minutes rather than days [28], given the vital neces-
sity of time in food microbiology. In packaging materials, nanosensors can be used
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as “electronic tongues” or “noses,” detecting the compounds that are emitted when 
food is spoiled [82, 125]. Microfluidic nanosensors [17] can also be used to detect 
infections quickly and accurately in real time and with great sensitivity. 

Devices with nanometer- to millimeter-scale moving parts, known as NEMS 
(nanoelectromechanical systems), are already being employed in the food analysis 
sector as development tools for food preservation technology. One of the numerous 
benefits of using micro and nanotechnologies (MNTs) in food technology is the 
ability to carry about instruments that respond quickly, are inexpensive, and can 
communicate intelligently at multiple frequency levels. MNTs are ideal for food 
safety and quality since they are able to identify and manage any contamination 
packing or storage conditions [34]. 

The food industry’s nanotechnology R&D is heavily focused on food packaging 
and regulation [31]. In spite of public concerns about nanotechnology, the food pack-
aging industry continues to develop products utilizing this technology. According to 
Fletcher [75], the global market for food and beverage packaging nanotech products 
will reach $20.4 billion by 2010. Despite increased marketing, researchers have found 
success in the realm of food and food products by applying nanotechnology [39]. 
Due to concerns around prospective food labeling and consumer health, nanotech-
nology has not yet been applied to the realm of food. Researchers in the Netherlands 
have developed nanopackaging, which detects when food is going bad and releases 
a preservative to extend its shelf life. One of the most fascinating emerging trends in 
the food sector is the use of nanopackaging to both improve food safety and lengthen 
its shelf life. The world has already adopted other, less dramatic (but more useful) 
innovations in nanopackaging [17, 32, 33]. 

2.4 Green Nanotechnology in Environmental Applications 

Nanomaterials have been utilized to clean contaminated water, which includes heavy 
metal ions, organic and inorganic solvents, and a wide range of microorganisms 
[14, 123]. The affinity of nanomaterials for non-degradable pollutants has led to 
the development of nanomaterials for environmental cleanup and site remediation. 
Adopting eco-friendly building principles can reduce or eliminate environmental 
pollutants [8]. All forms of water contamination can be effectively removed by using 
nano-adsorbents such as “clay, zeolites, metals, metal oxides, polymeric membranes, 
porous nanofibers, and zero-valent iron” [188, 224]. As part of their irradiation-
based degrading and mineralizing process, AOPs rely on semiconductor-based 
photocatalysts (natural and artificial) that are ecologically safe [215]. 

Nano-treatment reduces the amount of pollutants in the environment compared 
to earlier cleanup procedures [22]. Health and environmental problems can be 
prevented, reduced, and mitigated using nanotechnology [99]. As nanotechnology 
advances in environmental protection technologies, new solutions will be available 
to manage and remove pollutants in the atmosphere, groundwater supply, and surface
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water. Traditional techniques of cleansing will also benefit from this advancement 
[193]. 

In situ treatment with nanotechnology is a time and money-saving alternative 
to traditional methods [58]. Treatment of polluted areas with nano-based remedi-
ation technology can cut costs, speed cleaning, and virtually remove the need to 
dispose of or treat contaminated soils [85, 86]. Advanced research and develop-
ment are looking into the possibility of using nanomaterials to efficiently filter out 
environmentally harmful contaminants [203, 237]. Recently, many nanomaterials, 
such as “nanoscale zeolites, metal–metal oxides, carbon nanotubes, dendrimers, and 
metal-polymer doped nanoparticles,” have been studied for potential applications in 
nanotechnology [22, 161]. Nanomaterial oxides used on site, in addition to surface 
and groundwater cleanup, are effective for cleaning up non-aqueous phase fluid 
(NAPL) spills from subterranean oil tanks [50, 65, 94, 179]. 

Environmentally friendly products and processes can be developed using 
nanotechnology, which is central to green nanotechnology [62]. According to Maksi-
movic and Omanovic-Miklicanin [140], these technologies are primarily designed to 
be environmentally friendly and have a minimal impact on human health and the envi-
ronment. Wastewater treatment using catalysts, adsorbents, and membranes based on 
nanotechnology is more environmentally friendly [214]. A high surface-to-volume 
ratio (SVR) makes nanoparticles promising for use in environmental purification and 
restoration [57]. Many researchers are working to create novel nanomaterials with 
enhanced selectivity, efficiency, and effectiveness for use in wastewater treatment. 
Nanotechnology for water treatment is the key to ensuring the safety and cleanliness 
of water supplies worldwide. Table 2 summarizes the nanotechnology applications 
which can be used to treat wastewater. 

Nanotechnology-based remediation techniques are safer, more cost-effective, and 
more effective than conventional methods. Pollutant sensing and detection, cleaning,

Table 2 Applications of green nanotechnology in soil and water treatment [119] 

Nanomaterials Properties Applications 

Metal and metal 
oxides 

Photocatalytic Largely used for environmental remediation 

Nontoxic Slurry reactors 

Green chemistry-based Heavy metal, dyes, industrial effluent 
treatment 

Adsorbents Higher surface area Removal of heavy metals 

Higher SVR Dyes 

Higher adsorption rates Pesticide degradation 

Easy to modify Removal of organic pollutants, bacteria 

Membrane and 
processes 

Reliable Treatment of water and wastewater 

Most trusted Purification 

Widely used Desalination 

Automated process All fields of water and wastewater treatment 
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and pollution control are all potential applications for nanomaterials [115]. The nano-
material’s high SVR makes them ideal for water treatment and purification. Semi-
conductor nanomaterials are layered on top of conventional membrane treatments 
for purification and to create unique photocatalytic membranes [122]. Nanofiltra-
tion, photocatalytic processes, and adsorption are some of the methods used to solve 
wastewater treatment problems [13, 182]. 

Nanoparticles, nanomembranes, and other nanomaterials can be used for the 
detection and removal of a wide variety of chemical and biological pollutants [2, 9, 
118, 120, 154]. Both filtration and photocatalysis can be accomplished with the use of 
membrane processes and nano-based materials [3, 141]. The use of environmentally 
friendly wastewater treatment solutions has become increasingly important due to 
sustainability concerns. Through the use of green chemistry to synthesize nanoma-
terials for environmental cleanup, hazardous waste generation can be reduced and 
toxic end products eliminated. 

2.5 Green Nanotechnology in Renewable Energy Generation 

The primary focus of this research is to develop green chemistry-based nano-enabled 
solar cells. Solar-absorbing polymers such as quantum dots, titanium dioxide, and 
cadmium telluride (CdT) are among them [92]. Compared to existing solar cells, 
these nano-based solar cells are much more cost-effective [222]. The effective-
ness of solar cells is being improved by a number of efforts in this area. For the 
design of environmentally friendly products in the future, other techniques such 
as the deposition of nano-crystals, the use of nanowires, and the development of 
a very durable lamination layer that covers solar cells are also being investigated 
[150]. Energy storage devices for renewable energy have also been developed using 
nanotechnology research. The performance and cost benefits of solar devices based 
on nanotechnology are significant [212]. 

2.6 Green Nanotechnology in Green Building Constructions 

Nanotechnology is an important technology in the field of green manufacturing as it 
has the potential to contribute to environmental sustainability. The services provided 
by green building professionals, engineers, and architects are directly affected by 
the innovations [51, 52]. Due to advances in nanotechnology, suitable materials with 
unique properties are now available. In the past, designers had to rely on a limited 
number of standard materials. The design and construction of buildings will be 
directly affected by nanotechnology due to its impact on information technology, 
sustainability, and the development of novel materials and uses [129]. The value 
chain established by nanotechnology in building design and construction is depicted 
in Fig. 7. This value chain was developed using a comprehensive strategy and deep
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Fig. 7 Value chain created by nanotechnologies [51] 

integration of state-of-the-art technologies via nanotechnology in green building 
design. Considerations of aesthetics, utility or functional performance, life-cycle 
cost, and sustainability from the user’s point of view are at the heart of the most 
realistic and practical applications of nanotechnology [53]. 

All aspects of the project, material or product, and service must be questioned 
in a green building project. Teams working on buildings are urged to employ life-
cycle thinking when calculating the environmental implications of the structure as a 
whole, rather than just its components. “Life-cycle assessment (LCA) and life-cycle 
costing (LCC)” are two methods used to determine total cost of ownership (TCO). 
Fuel, installation, operation, maintenance, disposal, financing, and replacement are 
all parts of LCC, which is used to evaluate each proposed technology and method 
for the project’s environmental and economic viability [46]. 

As part of the green building lifecycle, it is essential to maximize the use of 
materials and energy. Green building design ideally has a fully closed-loop lifecycle. 
The objective is to minimize garbage leftover after a product has served its useful 
purpose. To ensure long-term viability, the material must be durable [54]. To last, 
a material must be structurally and aesthetically strong. There are various many 
advantages to designing for disassembly. It helps to increase the life of building 
components and systems, making them easier to repair or modernize. It also helps 
in recycling construction materials and rebuilding entire parts. Conventional energy 
sources such as “coal, oil and gas” have limited supplies and emit greenhouse gases 
into the atmosphere. “To improve our quality of life while preserving the planet’s 
ability to support us, we must transition to renewable energy and design for energy 
efficiency.” Reducing dependence on finite fossil fuel supplies and avoiding the
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effects of air pollution and climate change are just two of the environmental and 
social benefits of renewable energy [54]. 

Eco-friendly buildings are more efficient than buildings that are not. Environmen-
tally friendly management refers to an organization that aims to reduce costs and 
improve operational efficiency by implementing sustainable practices in its build-
ings. The total cost of the facility is explained as follows: Only 10% of the time is 
spent on the building; 90% of the time is spent on building operating and maintaining 
the facility. Clearly, a great way to reduce costs and increase revenue is to have tight 
control over facility operating costs. A large portion of the company’s budget is paid 
for fuel and other necessities. The organization/company can only achieve sustain-
ability if it provides a work environment free of harmful air, chemicals, and materials 
[225]. 

Nanotechnology has the potential to greatly improve sustainability in a variety of 
ways, including material and energy efficiency, process efficiency, and productivity. 
Titanium dioxide (TiO2) nanoparticles are being tested, for instance, by scientists 
in Hong Kong and Japan as a means of reducing air pollution [54]. Up to 90% of 
nitrogen oxides were removed in the experiments, suggesting that dusty cities could 
face major health risks by embedding these nanoparticles in roads and structures. 
TiO2 is also used by the Japanese company Toto as a coating for the manufacture of 
tiles. Indoor air quality can be improved with the use of certain nanomaterials. This is 
possible by coating the concrete with a thin layer of TiO2 nanoparticles that consume 
pollution. This catalytic action degrades pollutants in contact with the surface [54]. 

Surface applications add new functionality to the texture of new materials, 
improving the quality of structures. Many companies are experimenting with 
nanotechnology to improve the properties of various materials. Currently, materials 
and coatings improve the health and safety of buildings and homes, as well as increase 
their energy efficiency by storing the sun’s rays for later use. Nanomaterials are also 
used in air quality monitoring, air filtration, and energy-efficient air-conditioning 
systems [54]. 

2.7 Green Nanotechnology in Coating Industry Applications 

Coating technology is widely used in many areas of our daily lives. Coating mate-
rials are manufactured for a variety of purposes, from food and pharmaceuticals 
to wearable and consumer goods, industry and machinery, and auto and construc-
tion components [84]. A film of coating material is often applied to the surface or 
bulk material of an object to protect, enhance, or provide additional capabilities and 
properties. This can be achieved by using coating technologies that help to protect 
surfaces from degradation caused by exposure to environmental factors such as mois-
ture, UV rays, as well as preventing or reducing fouling and biofouling [241]. They 
can reduce chemical and structural degradation as well as wear and tear. Antimi-
crobial properties used for self-cleaning properties, such as super-hydrophobicity or 
super-hydrophilicity, are added to surfaces by coating methods [84]. Also, in food and
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medicine, functional coatings can be used to mask taste and smell, protect and stabi-
lize the physical environment, and release specific amounts into the body. As a result 
of the strong demand for functional coating materials and technologies resulting in 
economic value, more time and effort are devoted to research and development [241]. 

Functional coating technology mainly focuses on the development of coating 
materials and deposition processes for various applications. Inorganic nanoparticles 
and organic polymers can be used as functional coating materials based on their 
specific properties and functions [81]. There has been a meteoric rise in the creation 
of novel nanotechnology-based coatings in the last few years. 

Nanotechnology has led to new advances in coated materials such as antifouling, 
anti-reflective, and fire-retardant coatings [101, 138, 227] (Fig. 8). Several silicone 
resin polymer foam composites have been used, including “silicone resin polymer 
foam composites [226], polydimethylsiloxane/graphene foam nanocomposites [35], 
water-based clay/graphene oxide nanoribbon networks [234] and composites of 
graphene oxide and melamine sponge” [36]. Tang’s team created several types of 
fire-proof coatings and alarm coatings based on the GO Network [37, 229]. However, 
Lejars et al. [128], Banerjee et al. [19], and Detty et al. [56] provide in-depth studies of 
the use of sol–gel technology to antifouling coatings, surface design, and alterations to 
thwart biofouling growth. Raut et al. [169] summarizes anti-reflective coatings made 
of silicon and TiO2, functionalized polymers, and gallium as well as their production 
methods. Coating materials can benefit from the introduction of nanotechnology, 
which provides new features and functionalities that can be used to improve the 
performance of coating materials. 

Fig. 8 Green nanotechnology in coating applications [84]
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Generally, functional coating materials based on nano-composite chemistry are 
synthesized and then applied to surfaces [24, 151, 243]. Instead, deposition tech-
niques are used to create or change the surface structures of coating materials at 
the nanometer level. There are several methods of coating application, including 
spraying and drop-casting, as well as dip coating and cast coating [15, 73, 93, 116]. 

In contrast, functional coatings play a crucial role in green construction. The most 
common type of coating is undoubtedly paint, which provides a variety of benefits 
including aesthetics and solar reflection [201, 209]. Other functional coatings such as 
self-cleaning, solar filtering, light and temperature control can be applied to external 
aspects of structures such as walls, ceilings, and windows [209]. 

Using nanotechnology for green building design and construction to improve 
properties and performance. Some examples are photocatalytic coatings, coatings 
that reduce surface solar radiation, and PCM coatings. These functional coatings are 
being developed by researchers around the world to reduce the carbon footprint of 
green building components. As a result of the self-cleaning and anti-icing capabili-
ties of superhydrophobic coatings applied to building exteriors or civil engineering 
materials, additional resources and efforts are not required to successively clean, 
defrost, or repair worn or torn and cracked building components [228]. In addition, 
they contribute to the breathability of the wall, reduce thermal conductivity, and 
improve the resilience of the wall to biological agents such as bacteria [238]. As a 
result of the large surface area covered by water and the photocatalytic degradation 
of dirt and impurities under sunlight, the self-cleaning property reduces the effort 
and resources required for cleaning [159]. The anti-microbial [130] and moisture-
controlling properties [61] of the hydrophilic coating have also been described. Solar 
reduction coatings, on the other hand, limit heat absorbed from the sun by using less 
energy to maintain a comfortable temperature inside the building [240]. Effectively 
reducing the temperature inside a building using phase change material coatings is 
a great way to save money on energy costs [111]. 

2.8 Green Nanotechnology in Cosmetic Applications 

As defined by the Food and Drug Administration (FDA), cosmetic products are 
products designed “to enhance, promote, or alter the human body or any part thereof”. 
A cosmetic is any item used to enhance the skin’s natural beauty and cleanliness 
[83]. The worldwide demand for cosmetics has climbed by 4.5% each year in the 
twenty-first century, with yearly growth rates ranging from 3.0 to 5.5% [67, 181]. 

In the cosmetics industry, a product is considered to be “cosmetic” if it contains 
physiologically active substances that have a therapeutic impact on people [67, 136, 
181]. Cosmetics possess bioactive components with quantifiable therapeutic prop-
erties that make them an excellent choice between pharmaceuticals and cosmetics. 
These ingredients are useful for treating a wide variety of issues, such as skin aging, 
hair loss, dryness, pigmentation, dark spots [114, 136] (Fig. 9).
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Fig. 9 Green nanotechnology in cosmetic applications [185] 

As one of the most promising new technologies of the twenty-first century, 
nanotechnology is closely monitored by the cosmetics industry. It is possible to 
improve the delivery of bioactive chemicals with the use of nanotechnology in 
nanocosmeceutical formulations [100, 114]. Nanoparticles of cosmetic compounds 
can be prepared using this technology, which results in increased production effi-
ciency and better skin damage repair due to the compounds’ smaller size and higher 
absorption rate [197]. 

It has been shown that various types of nanoparticles can be used to enhance 
cosmetics, including “liposomes [206], niosomes [231], solid lipid nanoparticles 
[208], nanocapsules [178], micelles [235], dendrimers [147] and metal nanoparti-
cles [137].” This process allows us to develop fragrances with extended longevity, 
cosmetics with enhanced UV protection, and effective anti-aging remedies (Fig. 9). 
The use of nanocarriers can reduce the size of bioactive ingredients in cosmetics, 
increasing their therapeutic potential [136]. 

The use of micellar nanoparticles in skin washing products is widely regarded as 
one of the most significant and cutting-edge breakthroughs in the field of cosmetics 
based on nanotechnology [40, 66, 79, 146]. Using nanotechnology, lipophilic bioac-
tive ingredients can be incorporated into cosmetic formulations that possess a variety 
of physical and chemical properties. Nanoparticle size, encapsulation efficiency, and 
fabrication cost of micellar nanotechnology are superior to liposomes and niosomes 
[127, 207]. Many global and local cosmetics companies use micellar nanotechnology 
in their cleanser formulations to claim that their micellar nanotechnology-infused 
facial cleanser is the most effective on the market. With micellar nanotechnology, 
these brands have performed well. These cosmetics can benefit from using this 
process.
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2.9 Green Nanotechnology in Textile Industry Applications 

The textile industry is a leading user of nanotechnology, and numerous nanotex-
tiles—including a wide range of consumer goods that employ nanoparticles—are 
currently on the market [1, 48, 68, 108, 113, 173, 187, 233]. Some of these high-tech 
textiles have built-in safety characteristics like being resistant to fire, dirt, water, and 
even ultraviolet light [4, 69, 70, 230]. The possibilities for textile applications are 
being broadened by the use of nanocoatings and nanofinishings [21, 74, 87, 107, 162]. 
High-performance textile coatings made from different nanomaterials can help a lot 
[23, 139, 172, 191, 196, 218]. Recent research on textile modification and charac-
terization has focused on plasma and nano-pretreatment [200]. Fabrics created with 
nanotechnology are displayed in Fig. 10. Nanomaterials are able to offer greater func-
tionality in textiles, despite their small size and large surface area. Commonly used 
carbon-based nanomaterials in textiles include “metal oxides, metal and nanoclay 
nanoparticles, core–shell nanoparticles, composite nanomaterials, hybrid nanomate-
rials, and polymeric nanomaterials such as graphene, carbon nanofibers, and carbon 
nanotubes.” 

Fig. 10 Applications of nanotechnology in textiles [184]
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3 Limitations of Green Nanotechnology 

A new field of study, green nanotechnology, has its limits and limitations to overcome. 
The ACS Green Chemistry Institute (ACS GCI) reports on the main problems of green 
nanotechnology: Managing issues related to the toxicity of nanomaterials must also 
overcome economic and technical challenges. (1) Nanomanufacturing processes are 
subjected to regulatory procedures, (2) implementation of scale-up methods, (3) cycle 
of life aspects. 

Green and sustainable development must take into account all of the above 
factors. Although green nanotechnology can reduce pollution and improve the envi-
ronment, the expense and dangers of nano-based product manufacture are impor-
tant limits. However, even if green nanotechnology has made progress, the level of 
sustainability has always been a challenge. However, upstream processing of green 
nanotechnology-based materials remains an important concern [44]. 

Green nanoproducts are now being investigated for their synthesis and application, 
although very few products have been developed in the commercial market so far 
[45]. The consensus is that the commercial potential of green nanotechnology is 
expected to be fully understood within a few years. 

4 Conclusions 

Using nanotechnology, we can solve the world’s most serious issues. The term green 
nanotechnology refers to a technology that has a green advantage, as its name implies. 
Green chemistry is being thought about more and more in the context of nanotech-
nology because it provides a framework. Many benefits have been found through the 
studies, but some drawbacks and issues also need to be addressed. By using green 
nanotechnology, we can help solve the environmental crisis and promote sustain-
able development. For nanotechnology to be environmentally sustainable, life-cycle 
considerations must be included in the analysis of nanoproducts. New nanoprod-
ucts created through the nano-manufacturing process undergo life-cycle assessments 
before being released into commerce to fully assess their potential contribution 
to green development. However, there is always opportunity for development in 
bringing green chemistry ideas to nanotechnology. 
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Carbon-Based Nanomaterials and Their 
Properties 

Alhassan Yakubu Abare 

Abstract Carbon-based nanomaterials have attracted significant attention in recent 
years due to their unique electronic, mechanical, and thermal properties. This chapter 
provides an overview of the synthesis, characterization, and applications of carbon-
based nanomaterials, including carbon nanotubes, graphene, and fullerenes. The 
chapter begins by discussing the properties and synthesis methods of these materials, 
including chemical vapor deposition, arc discharge, and laser ablation. The chapter 
also explores the various applications of carbon-based nanomaterials, including in 
electronics, energy storage, catalysis, and biomedical applications. Furthermore, we 
highlight the challenges associated with the large-scale production and commercial-
ization of these materials, as well as the environmental and health impacts of their 
use. Finally, the chapter concludes with a summary of the current state of research 
and suggests possible directions for future work in this exciting field. 

Keywords Carbon nanomaterials · Fullerenes · Nanotubes · Nanodiamonds ·
Quantum dots 

1 Introduction 

Carbon-based nanomaterials have been extensively researched for various applica-
tions due to their remarkable features. The exceptional properties of tunable carbon-
based nanomaterials have garnered significant interest for their potential use in new 
technologies and addressing contemporary challenges. [1, 2] The carbon family 
comprises a range of distinct nanomaterials, including CNTs, fullerenes, graphene, 
carbon nanohorns, carbon-based quantum dots, and more. This section briefly 
outlines these nanomaterials, detailing their primary characteristics and significance.
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2 Fullerenes 

Fullerenes are a class of carbon-based nanomaterials that were first discovered in 
1985 by Harold Kroto, Richard Smalley, and Robert Curl. They are also known as 
“buckyballs” due to their spherical shape, which resembles a soccer ball or a geodesic 
dome. Fullerenes are composed entirely of carbon atoms, arranged in a closed shell 
structure. They are composed entirely of carbon atoms arranged in a unique three-
dimensional structure, resembling a hollow sphere, ellipsoid, or tube. Fullerenes can 
be thought of as molecules made of carbon atoms that are bonded together in a highly 
symmetrical pattern. The most commonly known fullerene is C60, which consists of 
60 carbon atoms arranged in a soccer ball-like structure composed of 20 hexagons 
and 12 pentagons. There are also other types of fullerenes with different numbers of 
carbon atoms, such as C70, C76, C84, and so on as shown in Fig. 1 [3, 4]. 

The unique features of small size, spherical shape, and isotropy make fullerene 
(C60) a highly desirable zero-dimensional material [6]. As the first symmetric mate-
rial in the carbon-based nanomaterial family, fullerenes have played a crucial role in 
expanding our understanding of nanomaterials. This breakthrough has paved the way 
for the discovery of other carbon-based nanostructures, including carbon nanotubes

Fig. 1 Few of the fullerene analogues [5] 
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and graphene [7]. Furthermore, fullerenes have been found both in nature and in 
interstellar space [8]. Fullerenes possess unique physical and chemical properties that 
make them useful in a wide range of applications. They are highly stable and have high 
melting and boiling points. They are also good conductors of electricity and have high 
tensile strength, making them useful for strengthening materials [9–11]. Fullerenes 
also have a variety of potential medical applications. For example, they can be used 
as drug delivery systems, as they can encapsulate drugs and deliver them directly 
to target cells. The water-soluble cationic fullerene, tetra(piperazino) [12] fullerene 
epoxide (TPFE), has been employed to deliver DNA and siRNA specifically to the 
lungs, targeting diseases affecting this organ [13]. For effective treatment of lung or 
other organ diseases, active agents must be delivered to the precise location within the 
organ. However, the accumulation of carrier vehicles in the lungs, which can be in the 
micrometer size range, can cause embolization and inflammation, complicating lung-
selective delivery. To overcome this challenge, size-controlled blood vessel carrier 
vehicles utilizing TPFE have been developed. In the bloodstream, TPFE and siRNA 
agglutinate with plasma proteins, forming micrometer-sized particles that clog lung 
capillaries and deliver siRNA to lung cells. After siRNA delivery, the micrometer-
sized particles are swiftly cleared from the lungs [14]. They can also be used in 
photodynamic therapy, where they are activated by light to produce reactive oxygen 
species that can kill cancer cells. Another important application of fullerenes is in 
the field of electronics. They have been used to create thin films and coatings that 
can protect electronic devices from corrosion and oxidation. They can also be used 
as semiconductors in electronic devices such as transistors. 

One of the most important properties of fullerenes is their ability to act as excellent 
electron acceptors and donors, allowing them to participate in a wide range of chem-
ical reactions. They can form stable complexes with various molecules, including 
metals, organic compounds, and biological molecules. This makes fullerenes useful 
for applications such as drug delivery, catalysis, and electronic devices. Fullerenes 
also have interesting optical properties. They are highly fluorescent, meaning they 
emit light when excited by a light source. This property has been exploited for various 
applications, including biological imaging and photodynamic therapy. Fullerenes 
are a class of carbon-based nanomaterials that have unique physical, chemical, and 
optical properties. Their applications include drug delivery, catalysis, electronics, 
and biological imaging, among others. Fullerenes and their derivatives have diverse 
applications in the field of lubrication. They are utilized as modifiers for both greases 
and individual solid lubricants, leading to the development of advanced lubricants 
[15]. Additionally, fullerenes possess remarkable medicinal properties, including 
anticancer, antioxidant, anti-bacterial, and anti-viral activities, making them highly 
significant in the medical field [5].
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3 CNTs 

Carbon nanotubes (CNTs) are a class of carbon-based nanomaterials that were first 
discovered in 1991 by Sumio Iijima [16]. They are cylindrical in shape and consist of 
rolled-up sheets of graphene, a single layer of carbon atoms arranged in a hexagonal 
lattice [17]. Carbon nanotubes are cylindrical tubes composed of a single layer of 
sp2-hybridized carbon atoms that are rolled into a seamless structure. The surfaces 
of these tubes are made up of hexagonally arranged sp2-hybridized carbon atoms 
[18]. 

CNTs can be single walled (SWCNTs), consisting of a single sheet of graphene 
rolled up into a tube, or multi-walled (MWCNTs), consisting of multiple sheets of 
graphene rolled up into concentric tubes. They can range in diameter from less than 
a nanometer to several micrometers and in length from a few nanometers to several 
centimeters. CNTs can be single walled or multi-walled, with single-walled CNTs 
(SWCNTs) having a diameter of about 1–2 nm and multi-walled CNTs (MWCNTs) 
having a diameter of about 5–20 nm as shown in Fig. 2. CNTs can be hundreds 
of times stronger than steel, while being much lighter and more flexible [19–21]. 
There are several methods for synthesizing carbon nanotubes, including chemical 
vapor deposition [22], laser ablation [23], arc discharge [16], and gas-phase catalytic 
growth [24]. 

CNTs have several unique properties that make them attractive for various appli-
cations. They are incredibly strong and stiff, with a tensile strength that is orders 
of magnitude greater than steel, yet they are lightweight and flexible. They also

Fig. 2 Carbon nanotubes single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) 
[25]
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Fig. 3 Crystal structures of different allotropes of carbon: graphite (3D); graphene (2D); nanotubes 
(1D); and fullerene (buckyballs) (0D) [26]

have high thermal and electrical conductivity, making them useful in electronics 
and thermal management applications [27, 28]. CNTs have unique mechanical, elec-
trical, and thermal properties making them useful for various applications such as 
reinforcing materials in composites, producing lightweight and strong materials, and 
building new types of nanoscale electronic devices. 

One of the most significant challenges in working with CNTs is their tendency to 
form clumps or bundles, which can limit their usefulness in applications. However, 
various techniques, such as chemical functionalization, have been developed to 
disperse CNTs and improve their solubility in various solvents and polymers [29, 30]. 

CNTs have been explored for numerous applications, including electronics, 
energy storage, sensing, and drug delivery. They have been used to create flex-
ible and transparent conductive films, high-performance transistors, and efficient 
energy storage devices. CNT-based sensors have been developed for detecting 
gases, biomolecules, and environmental pollutants, among other applications. CNTs 
also have excellent electrical conductivity, allowing them to be used as conduc-
tive elements in electronic devices such as transistors, sensors, and nanoelectronic
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circuits. They also have excellent thermal conductivity, which makes them useful for 
applications such as heat dissipation in electronic devices [29]. 

CNTs have been explored for numerous applications, including biomedical appli-
cations, energy storage, and water purification. In biomedical applications, CNTs 
have been studied for drug delivery, imaging, and tissue engineering. They have also 
been used in energy storage devices such as batteries and supercapacitors due to their 
high surface area and excellent electrical conductivity. CNTs can also act as a catalyst 
in chemical reactions, which can be useful in a variety of industrial processes. There-
fore, carbon nanotubes are a class of carbon-based nanomaterials with unique phys-
ical and chemical properties. Their applications include electronics, energy storage, 
sensing, and drug delivery, among others. Ongoing research and development in 
this field may unlock new opportunities for utilizing these remarkable materials in 
various technological and scientific applications. 

4 Graphene 

Graphene is a two-dimensional carbon-based nanomaterial that consists of a single 
layer of carbon atoms arranged in a hexagonal lattice structure. It was first isolated 
and studied in 2004 by Andre Geim and Konstantin Novoselov, who were awarded 
the Nobel Prize in Physics in 2010 for their work. Graphene is incredibly strong, 
flexible, and lightweight. It has a tensile strength of over 130 gigapascals, making 
it one of the strongest materials known. Graphene is also transparent, with a high 
electrical conductivity and excellent thermal conductivity [31–33]. Graphene is the 
thinnest and strongest material known to exist, with a thickness of only one atom 
and a tensile strength of over 130 gigapascals [34]. It is also highly conductive, with 
an electrical conductivity that is orders of magnitude higher than copper. Graphene’s 
high surface area and ability to form strong chemical bonds make it useful for a wide 
range of applications [35]. Graphene has many unique properties that make it useful 
for various applications. Its high electrical conductivity and transparency make it 
an excellent material for use in touchscreens, flexible electronics, and solar cells. Its 
high thermal conductivity makes it useful for heat management in electronic devices. 
Graphene is also being explored for use in water filtration and desalination due to 
its ability to selectively filter out ions and other contaminants. Its strong mechanical 
properties make it useful for use in composite materials, such as those used in the 
construction of airplanes and automobiles [36]. 

In biomedical applications, graphene has shown potential as a drug delivery 
vehicle, biosensor, and tissue engineering scaffold. Graphene has also been studied 
for use in energy storage devices such as batteries and supercapacitors due to its high 
surface area and electrical conductivity [37, 38]. Graphene’s unique properties have 
made it an attractive material for electronic devices such as transistors, sensors, and 
flexible electronics. It has also been explored for energy applications such as solar 
cells, batteries, and supercapacitors. Its high surface area and strong chemical bonds 
make it useful for catalysis and water purification. Graphene is also being studied
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for biomedical applications such as drug delivery, biosensing, and tissue engineering 
[39, 40]. 

In addition to its exceptional properties, graphene can be easily produced in large 
quantities using a variety of methods such as chemical vapor deposition and exfo-
liation. However, challenges still exist in scaling up the production of high-quality 
graphene and integrating it into practical applications. In conclusion, graphene is 
a unique carbon-based nanomaterial with exceptional electronic, mechanical, and 
thermal properties. Its applications are diverse and include electronic devices, energy 
applications, catalysis, water purification, and biomedical applications. While chal-
lenges still exist in scaling up production and integrating it into practical applications, 
graphene holds great promise for the future of materials science and technology. 

5 Nanodiamonds 

Nanodiamonds are a type of carbon-based nanomaterial that are formed from 
diamond particles with sizes typically ranging from 2 to 10 nm. They can be synthe-
sized from various sources, such as high-pressure and high-temperature treatment of 
graphite, detonation of explosives, or from diamond polishing waste. Nanodiamonds 
are a type of carbon-based material that possess a wide range of attractive properties 
for various applications. They were first discovered in the 1960s during explosives 
research in the USSR [41], but their potential was not fully recognized until the late 
1990s [42]. Nanodiamonds are defined as monocrystalline diamonds with a particle 
size of less than 100 nm [43], and they consist of sp3-hybridized carbon nanoparticles 
as shown in Fig. 4. They have exceptional optical and mechanical properties, high 
specific surface areas, and rich surface structures. Nanodiamonds can be synthesized 
using various methods such as ion irradiation of graphite [44], high-energy ball 
milling [45], carbide chlorination [46], chemical vapor deposition [47], and laser 
ablation [48]. They possess a core–shell structure and have rich surface chemistry 
with numerous functional groups, such as amide, aldehyde, ketone, carboxylic acid, 
alkene, hydroperoxide, nitroso, carbonate ester, and alcohol groups, which allow for 
further functionalization for specific applications [49].

Nanodiamonds have unique properties that make them useful for a wide range of 
applications. They are extremely hard and wear resistant, with a high thermal conduc-
tivity and a low coefficient of friction. They are also biocompatible and non-toxic, 
which makes them useful for biomedical applications. One of the most promising 
applications of nanodiamonds is in biomedical imaging and drug delivery. Nanodia-
monds can be functionalized with various biomolecules, such as antibodies, peptides, 
or nucleic acids, and used as targeted drug delivery vehicles. They can also act as 
fluorescent probes for biomedical imaging, as they have unique optical properties 
that make them easily detectable. 

Nanodiamonds have also been studied for their mechanical properties, partic-
ularly as a reinforcement material for composites. Their high hardness and wear 
resistance make them useful in applications where abrasion and wear are a concern,



270 A. Y. Abare

Fig. 4 NDs and their interaction with water [50]

such as cutting tools, polishing materials, and coatings. In addition, nanodiamonds 
can be used as a lubricant additive, as they have a low coefficient of friction and can 
reduce wear and tear on machinery. They can also be used in thermal management 
applications, due to their high thermal conductivity [51]. 

Nanodiamonds can also be functionalized with a variety of molecules, making 
them useful for applications such as biosensing and drug delivery. Their small size 
allows them to easily cross cell membranes and penetrate tissues, making them ideal 
for targeted drug delivery applications [52]. In addition, nanodiamonds have been 
explored for applications in electronics, photonics, and quantum computing. They 
have been used to create high-performance electronic devices and as a platform for 
single-photon sources and quantum sensors. Nanodiamonds are also being studied 
for their potential use in water purification, as they can adsorb a wide range of 
contaminants and heavy metals due to their high surface area and unique surface 
chemistry. In conclusion, nanodiamonds are a unique class of carbon-based nano-
materials with exceptional mechanical, thermal, and biocompatible properties. Their 
applications are diverse and include cutting tools, thermal management, biomedical 
applications, electronics, photonics, quantum computing, and water purification [53– 
56]. As research into nanodiamonds continues, they hold promise for a wide range 
of future applications.
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6 Carbon-Based Quantum Dots 

Carbon-based quantum dots (CQDs) are a type of carbon-based nanomaterials that 
are typically less than 10 nm in size. They are composed of graphene, carbon 
nanotubes, or other carbon-based materials and have unique optical and electronic 
properties that make them attractive for various applications. Carbon-based quantum 
dots (CQDs) are a class of carbon-based nanomaterials that have emerged as a 
promising alternative to traditional semiconductor-based quantum dots [57–59]. 

CQDs have a tunable bandgap, which allows them to absorb and emit light in 
a controllable manner. This makes them useful in optoelectronic applications such 
as solar cells, sensors, and light-emitting devices. They can also be used as fluo-
rescent probes in biological imaging and drug delivery applications. CQDs can be 
synthesized using a variety of methods, including chemical vapor deposition, elec-
trochemical synthesis, and laser ablation. They can be surface functionalized with 
different molecules, making them useful for applications such as biosensing and drug 
delivery. CQDs have also been studied for their potential use in quantum computing 
and information processing. They can be used as qubits, which are the basic building 
blocks of quantum computers [60–63]. Figure 5 shows the typical synthesis processes 
of these carbon quantum dots. 

In addition, CQDs have been explored for energy storage applications such as 
supercapacitors and batteries. Their small size and high surface area make them ideal

Fig. 5 Typical synthesis process of CQDs [64] 
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for energy storage and conversion applications. CQDs have also been investigated 
for their potential use in water purification and environmental remediation. They can 
be used as adsorbents for heavy metal ions and organic pollutants due to their unique 
surface chemistry and high surface area. CQDs have high surface area and high 
surface energy, which makes them suitable for applications such as catalysis, energy 
storage, and water purification. They have also been explored for biomedical applica-
tions such as drug delivery and bioimaging, due to their biocompatibility and low toxi-
city. CQDs can be synthesized using various methods, including chemical synthesis, 
microwave irradiation, and electrochemical synthesis. The properties of CQDs can 
be tuned by adjusting the synthesis conditions, such as the precursor materials and 
the reaction temperature. CQDs have several advantages over traditional semicon-
ductor quantum dots, including their lower toxicity, biocompatibility, and lower cost. 
They are also environmentally friendly, as they can be synthesized from renew-
able resources such as biomass [59, 65, 66]. In conclusion, carbon-based quantum 
dots are a promising class of carbon-based nanomaterials with unique optical and 
electronic properties. Their applications are diverse and include sensing, imaging, 
lighting, catalysis, energy storage, water purification, and biomedical applications. 
As research into CQDs continues, they hold great potential for the development of 
new technologies in various fields. 

7 Carbon Nanohorns/Nanocones 

Carbon nanohorns (CNHs) and carbon nanocones (CNCs) are two related types of 
carbon-based nanomaterials that have a conical or horn-shaped structure. CNHs and 
CNCs are typically synthesized through a combination of arc discharge and laser 
ablation methods, which allow for the controlled synthesis of these complex struc-
tures. Carbon nanohorns are carbon-based nanostructures with lengths of approx-
imately 40–50 nm and diameters ranging from 2 to 5 nm [67]. The assembly of 
thousands of single-walled carbon nanohorns (SWNHs) results in the formation of 
nanohorn aggregates with a diameter of around 80–100 nm [68]. Aggregation of 
carbon nanohorns can be observed [69]. Three types of carbon nanohorns have been 
identified, including dahlia-like CNHs, bud-like CNHs, and seed-like CNHs [70]. 
One significant advantage of carbon nanohorns over carbon nanotubes is that they 
can be synthesized without toxic metal catalysts and at room temperature, making 
large-scale production more feasible. In contrast, carbon nanotube synthesis requires 
metal particles, and harsh conditions, such as the use of strong acids, are necessary to 
remove metallic catalysts. CNHs and CNCs have been studied for various biomed-
ical applications, including drug delivery, bioimaging, and tissue engineering. They 
have been shown to have low cytotoxicity and high biocompatibility, making them 
suitable for use in biomedical applications. 

In addition, CNHs and CNCs have been explored for energy storage and conver-
sion applications. They have high surface area and high electrical conductivity, 
making them useful for energy storage applications such as supercapacitors and
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batteries. They have also been studied for use in solar cells and fuel cells, due to 
their unique electrical and mechanical properties. CNHs and CNCs are also being 
investigated for their potential use in water purification and environmental reme-
diation. Their high surface area and unique surface chemistry make them effective 
at adsorbing and removing various contaminants from water and soil. In nutshell, 
carbon nanohorns and nanocones are a unique class of carbon-based nanomaterials 
with exceptional mechanical, electrical, and surface properties. Their applications 
are diverse and include drug delivery, sensing, catalysis, energy storage and conver-
sion, water purification, and environmental remediation. As research into CNHs and 
CNCs continues, they hold great promise for the development of new technologies 
in various fields [70–73]. 

8 Conclusions 

Carbon-based nanomaterials are a diverse and promising class of materials that 
have attracted significant attention in recent years due to their unique properties and 
potential applications. These materials, which include fullerenes, carbon nanotubes, 
graphene, nanodiamonds, carbon-based quantum dots, carbon nanohorns, and carbon 
nanocones, offer exceptional mechanical, thermal, electrical, and optical proper-
ties, making them suitable for a wide range of applications in fields such as elec-
tronics, energy, biomedicine, and environmental remediation. Carbon-based nano-
materials are highly customizable, with their properties being highly tunable through 
synthesis, functionalization, and structural manipulation. This makes them highly 
attractive for various applications. For example, carbon nanotubes are highly conduc-
tive and strong, making them useful for electrical and mechanical applications, while 
graphene’s unique electronic and optical properties make it an ideal candidate for 
applications such as sensors and optoelectronics. Despite the significant potential 
of carbon-based nanomaterials, there are also concerns regarding their safety and 
environmental impact. As with any emerging technology, it is important to care-
fully assess the potential risks and benefits of carbon-based nanomaterials before 
widespread deployment. Overall, carbon-based nanomaterials hold great promise 
for the development of new technologies and the advancement of various fields. 
Ongoing research and development efforts in this area are expected to continue to 
drive innovation and progress in the years to come. 
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Abstract Two-dimensional (2D) nanomaterials have emerged as a new class of 
materials with unique properties and potential applications in various fields, such as 
electronics, energy, and medicine. This chapter provides precisely an overview of 
the synthesis, properties, and applications of 2D nanomaterials, including graphene, 
transition metal dichalcogenides, and black phosphorus. We begin by discussing the 
each of these 2D materials, their methods to synthesize, such as mechanical exfolia-
tion, chemical vapor deposition, and liquid-phase exfoliation etc. Next, we describe 
their remarkable properties, such as high electrical conductivity, large surface area, 
and tunable bandgap that make them suitable for diverse applications. We then 
explore their various applications, including in flexible electronics, energy storage 
and conversion, sensing, and biomedicine inside each material description. More-
over, we highlight some of the challenges and limitations that need to be addressed for 
their commercialization and large-scale production. Finally, the chapter concludes 
with a summary of the current state of research and suggests possible directions for 
future work in this exciting field. 
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1 Introduction 

Two-dimensional (2D) nanomaterials are a class of materials that have a thickness 
of only a few atomic or molecular layers, while their other two dimensions extend to 
macroscopic scales. These materials are also known as 2D materials, ultrathin mate-
rials, or nanosheets. Two-dimensional (2D) nanomaterials are a class of materials 
that are characterized by their ultrathin and flat nature, with thicknesses typically 
measured in the nanometer scale [1, 2]. They possess unique physical, chemical, and 
mechanical properties that differ from their bulk counterparts, making them highly 
attractive for a wide range of applications in various fields such as electronics, opto-
electronics, catalysis, energy, and biomedicine [3]. Graphene, a single layer of carbon 
atoms arranged in a honeycomb lattice, is the most well-known 2D material [3, 4]. 
However, there are many other 2D materials, including transition metal dichalco-
genides (TMDs) such as molybdenum disulfide (MoS2), boron nitride (BN), and 
black phosphorus (BP), among others. 2D materials have unique physical and chem-
ical properties compared to their bulk counterparts. Due to their large surface area to 
volume ratio, they exhibit enhanced surface reactivity and catalytic activity. In addi-
tion, they have high mechanical strength and flexibility, which makes them attractive 
for use in electronic and optoelectronic devices, as well as in nanocomposites and 
energy storage applications [5]. 

One of the most promising applications of 2D materials is in electronics, where 
they can be used to create faster, more efficient, and more compact devices. For 
example, graphene is an excellent conductor of electricity and has been used to make 
high-speed transistors and flexible, transparent conductive films. TMDs, on the other 
hand, have a bandgap, which allows them to be used in optoelectronic devices such as 
photodetectors and solar cells. Graphene, a single layer of carbon atoms arranged in 
a hexagonal lattice, is the most well-known 2D nanomaterial. However, over the past 
decade, there has been a rapid development of new 2D materials, including transition 
metal dichalcogenides (TMDs), boron nitride (BN), black phosphorus (BP), and 
many others as shown in Fig. 1a and b.

TMDs, such as MoS2 and WSe2, are composed of a transition metal layer sand-
wiched between two chalcogenide layers. They exhibit excellent electronic and 
optical properties, making them promising for applications in transistors, photode-
tectors, and solar cells. BN, which has a similar structure to graphene, consists of 
boron and nitrogen atoms arranged in a hexagonal lattice. It possesses high thermal 
and chemical stability, making it an ideal insulator for electronics and photonics 
applications. BP, which consists of a single layer of phosphorus atoms arranged in a 
puckered honeycomb lattice, has attracted much attention due to its excellent elec-
tronic and optoelectronic properties. It has been explored for applications in solar 
cells, sensors, and transistors. Other 2D materials that have been extensively studied 
include transition metal carbides and nitrides (MXenes), metal–organic frameworks 
(MOFs), and perovskites. Overall, 2D nanomaterials offer tremendous potential for 
a variety of applications due to their unique properties, and their further development 
and exploration is an active area of research in materials science and engineering.
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(a) (b) 

Fig. 1 Transmission electron microscopic images of a crumpled grapheme and b two relatively 
large centrally overlapped BNNSs [6]

2 Silicene 

Silicene is a 2D material that consists of a single layer of silicon atoms arranged in 
a honeycomb lattice, similar to graphene. It was first proposed theoretically in 1994, 
but it was not until 2010 that researchers were able to synthesize it for the first time, 
using a silver substrate to stabilize the silicon atoms. Silicene is a 2D allotrope of 
silicon, which is composed of a single layer of silicon atoms arranged in a honeycomb 
lattice. It is analogous to graphene, which is composed of a single layer of carbon 
atoms arranged in a similar lattice. Silicene was first predicted to exist in 1994 by 
Takeda and Shiraishi, but it was not until 2010 that it was successfully synthesized 
by researchers in Germany [7, 8]. 

Silicene has a number of unique properties that make it highly attractive for poten-
tial applications. Like graphene, it is highly flexible, strong, and lightweight, and it 
exhibits excellent electrical conductivity. However, unlike graphene, silicene is a 
semiconductor, with a bandgap that can be tuned by controlling the size and shape 
of the lattice. Silicene has a number of unique physical and electronic properties, 
including high electron mobility, a tunable bandgap, and strong spin–orbit coupling. 
These properties make it a promising candidate for use in electronics and optoelec-
tronics applications. Unlike graphene, silicene has a buckled structure, which gives 
it a distinct electronic structure with two different types of silicon atoms [9]. 

Figure 2 reveals the energy-crystal wave vector (E–k) dispersion of silicone. 
Silicene can be synthesized by a number of methods, including molecular beam 
epitaxy (MBE) and chemical vapor deposition (CVD). In MBE, silicon atoms are 
deposited onto a substrate in a high vacuum environment, where they arrange them-
selves into a silicene lattice. In CVD, silicon-containing gases are passed over a
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substrate at high temperatures, where they react to form a silicene layer. Silicene 
has been proposed for a range of potential applications, including in electronics, 
optoelectronics, and energy storage. For example, silicene-based transistors could 
potentially offer better performance than traditional silicon-based transistors due to 
their superior electron mobility. Additionally, silicene could be used as a catalyst for 
various chemical reactions due to its high surface area and reactivity. Silicene has 
potential applications in a variety of fields, including electronics, optoelectronics, 
and energy storage. It could be used to create more efficient transistors and sensors, 
as well as to create new types of solar cells and batteries. Its unique properties also 
make it a promising candidate for use in quantum computing. 

However, there are also several challenges that need to be addressed before silicene 
can be widely used in practical applications. One major issue is the difficulty of 
synthesizing and stabilizing silicene in a controlled manner, since it is highly reactive 
and tends to form clusters or even revert back to bulk silicon. Another challenge is 
the lack of large-area, high-quality silicene samples, which limits the ability to study 
its properties and develop practical devices. One of the main challenges in the use 
of silicene is its stability. Unlike graphene, which is stable under normal conditions, 
silicene is highly reactive and can easily oxidize in air. This limits its potential use in 
practical applications, and researchers are working to develop methods to stabilize 
it. In addition, the synthesis of silicene is still a challenging process, and further 
research is needed to develop more efficient and scalable methods of synthesis. In 
conclusion, silicene is a promising 2D material with unique electronic and physical 
properties that make it attractive for a range of applications. While there are still 
challenges to be addressed in its synthesis and stability, ongoing research is expected 
to yield new insights into its properties and potential uses [7–9, 11–31].

Fig. 2 (5 × 5 × 1 Supercell) of the monolayer silicene/germanene and its energy-crystal wave 
vector (E–k) dispersion [10] 
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3 MXenes  

MXenes are a family of two-dimensional materials that are composed of transition 
metal carbides, nitrides, and carbonitrides. MXenes were first discovered in 2011 by 
researchers at Drexel University in Philadelphia, who were studying the synthesis of 
MAX phases. MAX phases are ternary compounds that are composed of a transition 
metal, a group A element, and carbon or nitrogen. MXenes are produced by selec-
tively etching the A element layer from the MAX phase, leaving behind a layered 
two-dimensional structure. MXenes are a relatively new class of 2D materials that 
have attracted a lot of attention due to their unique properties and potential appli-
cations in a variety of fields. MXenes are transition metal carbides or nitrides that 
are produced by selectively etching the A layers of MAX phases, which are layered 
materials composed of a transition metal (M), a Group IIIA or IVA element (A), and 
carbon and/or nitrogen (X) arranged in a layered structure. MXenes have a number 
of unique properties that make them attractive for various applications. For example, 
they have high electrical conductivity, high surface area, and excellent mechanical 
properties. 

MXenes are also hydrophilic, meaning they can be dispersed in water, making 
them easy to process. MXenes have a number of unique properties that make them 
promising candidates for a wide range of applications, including high electrical 
conductivity, high mechanical strength, and excellent thermal stability. They also 
exhibit tunable surface chemistry, which can be modified by changing the nature of 
the A element or by functionalizing the surface with organic or inorganic molecules. 
MXenes can be synthesized by a two-step process that involves etching the A layers of 
a MAX phase using a strong acid, followed by washing and delaminating the resulting 
material to produce MXene sheets. There are many different types of MXenes, each 
with unique properties, depending on the transition metal, the A layer element, and the 
etching conditions used in the synthesis. MXenes can be synthesized using a variety 
of methods, including chemical etching, electrochemical etching, and hydrothermal 
synthesis shown in Fig. 3. The most common method is chemical etching, which 
involves the use of strong acids such as hydrofluoric acid (HF) or hydrochloric acid 
(HCl) to selectively remove the A element layer from the MAX phase. Electrochem-
ical etching involves using an electrical current to selectively etch the A element layer, 
while hydrothermal synthesis involves the use of high temperatures and pressures to 
synthesize MXenes from precursors.

MXenes have potential applications in a wide range of fields, including energy 
storage, catalysis, and sensors. In energy storage, MXenes have been explored as 
anode materials for lithium-ion batteries, as well as for supercapacitors, due to their 
high conductivity and high surface area. In catalysis, MXenes have been shown to 
have excellent activity for a variety of reactions, including hydrogen evolution and 
oxygen reduction. In sensors, MXenes have been used for gas sensing and biosensing 
applications, due to their high surface area and ease of functionalization. MXenes
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Fig. 3 Steps in the synthesis of MXene nanomaterials by top-down method from precursor to 
etching; bottom-up techniques are shown schematically in b [32]

have potential applications in a wide range of fields, including energy storage, catal-
ysis, sensors, and electronics. They have been studied as electrode materials for super-
capacitors and batteries due to their high electrical conductivity and large surface 
area. MXenes have also been explored as catalysts for hydrogen evolution reactions 
and as sensors for the detection of gases and biomolecules. Their high mechanical 
strength and thermal stability make them promising candidates for use in electronic 
devices such as flexible displays and touch screens. 

One of the main challenges in the use of MXenes is their tendency to oxidize in air, 
which can affect their properties and limit their stability. Researchers are working to
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develop methods to stabilize MXenes and improve their performance under ambient 
conditions. In addition, the synthesis of MXenes can be a complex process, and 
there is a need for further research to develop more efficient and scalable methods of 
synthesis. One of the main challenges in the use of MXenes is their stability. MXenes 
are highly reactive and can easily oxidize in air, which can limit their potential use 
in practical applications. Researchers are working to develop methods to stabilize 
MXenes, such as by using protective coatings or by functionalizing the surface with 
molecules that can inhibit oxidation. In addition, the synthesis of MXenes is still 
a challenging process, and further research is needed to develop more efficient and 
scalable methods of synthesis. In conclusion, MXenes are a promising class of 2D 
materials with unique properties and potential applications in a wide range of fields. 
While there are still challenges to be addressed in their synthesis and stability, ongoing 
research is expected to yield new insights into their properties and potential uses. In 
conclusion, MXenes are a promising class of 2D materials that offer a wide range of 
properties and potential applications. While there are still challenges to be addressed 
in their synthesis and stability, ongoing research is expected to yield new insights 
into their properties and potential uses [33–51]. 

4 2D Metal–Organic Framework Nanosheets (2D MOFs) 

Two-dimensional metal–organic framework (MOF) nanosheets are a class of crys-
talline materials composed of metal ions or clusters coordinated to organic ligands. 
They have a layered structure, with a thickness of only a few nanometers, and can 
be synthesized through a variety of methods. Two-dimensional (2D) metal–organic 
framework (MOF) nanosheets are a type of 2D nanomaterial composed of metal ions 
or clusters linked by organic ligands. MOFs are typically three-dimensional mate-
rials, but the use of specific ligands and metal ions can result in the formation of 2D 
MOF nanosheets. 

2D MOF nanosheets have a number of unique properties, including high surface 
area, tunable porosity, and catalytic activity. They can be functionalized with a variety 
of functional groups, making them versatile materials for a range of applications. 
The porosity of MOFs allows for the incorporation of guest molecules within the 
structure, making them ideal for gas separation, storage, and sensing applications. 
2D MOF nanosheets have a number of unique properties, including a high surface 
area, porosity, and tunable chemical and electronic properties. The porosity of these 
materials makes them attractive for applications such as gas storage and separation, 
catalysis, and sensing. Their tunable properties make them attractive for applications 
such as electronic and optical devices. 

2D MOF nanosheets can be synthesized through a variety of methods, including 
solvent-assisted exfoliation, surfactant-assisted exfoliation, and liquid-phase exfoli-
ation as shown in Fig. 4a–d. In solvent-assisted exfoliation, MOFs are dispersed in a 
solvent, and sonication is used to exfoliate the material into nanosheets. Surfactant-
assisted exfoliation involves the use of surfactants to stabilize the nanosheets in
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a solvent. Liquid-phase exfoliation is a more recent method that involves the 
use of high-pressure homogenization to exfoliate the MOFs in a liquid medium. 
2D MOF nanosheets can be synthesized using a variety of methods, including 
solvothermal synthesis, liquid-phase exfoliation, and chemical vapor deposition 
(CVD). In solvothermal synthesis, metal ions or clusters and organic ligands are 
combined in a solvent and heated under high pressure to form 2D MOF nanosheets. In 
liquid-phase exfoliation, bulk MOF crystals are dispersed in a solvent and sonicated to 
produce 2D nanosheets. CVD involves the deposition of metal and organic precursors 
onto a substrate, followed by thermal treatment to form a 2D MOF nanosheet. 

2D MOF nanosheets have a wide range of applications in areas such as gas storage, 
catalysis, and sensing. Due to their high surface area and tunable porosity, they can be 
used as efficient adsorbents for the separation and storage of gases such as CO2 and 
H2. They have also been studied as catalysts for various chemical reactions, including 
the reduction of CO2 to produce valuable chemicals such as methanol. In addition, 
their unique properties make them promising candidates for use in electronic and 
photonic devices. 2D MOF nanosheets have potential applications in a wide range 
of fields, including gas storage and separation, catalysis, sensing, and electronics. 
Their high surface area and porosity make them attractive for use in gas storage and 
separation applications, such as carbon capture and storage. They also have potential 
as catalysts for chemical reactions, due to their tunable chemical properties. 2D 
MOF nanosheets have also been explored as sensors for the detection of gases and 
biomolecules, and as electronic devices such as field-effect transistors. 

One of the main challenges in the use of 2D MOF nanosheets is their stability. 
MOFs are sensitive to moisture and can degrade over time, which can limit their

Fig. 4 a Synthetic procedure and crystal structure of Cu-MOF nanosheets (schematic). 
b Photographs of the color changes of two immiscible phases before and after the reaction. c Optical 
image of a Cu-MOF membrane. d PXRD spectra of a Cu-MOF membrane and Cu-MOF bulk 
counterparts [52] 
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potential use in practical applications. Researchers are working to develop methods 
to stabilize MOFs, such as by using protective coatings or by modifying the struc-
ture of the material. In addition, the synthesis of MOF nanosheets is still a chal-
lenging process, and further research is needed to develop more efficient and scalable 
methods of synthesis. One of the main challenges in the use of 2D MOF nanosheets 
is their stability. Like other 2D materials, they can be prone to oxidation and degra-
dation in air and water. Researchers are working to develop methods to stabilize 
2D MOF nanosheets, such as by using protective coatings or by functionalizing the 
surface with molecules that can inhibit degradation. In addition, the synthesis of 
2D MOF nanosheets is still a challenging process, and further research is needed to 
develop more efficient and scalable methods of synthesis. 2D MOF nanosheets are 
a promising class of materials with a wide range of properties and potential applica-
tions. While there are still challenges to be addressed in their stability and synthesis, 
ongoing research is expected to yield new insights into their properties and potential 
uses. In conclusion, 2D MOF nanosheets are a promising class of 2D materials with 
unique properties and potential applications in a wide range of fields. While there 
are still challenges to be addressed in their stability and synthesis, ongoing research 
is expected to yield new insights into their properties and potential uses [53–57]. 

5 Metal Nanostructured Materials 

Metal-based nanomaterials have gained attention for various applications due to 
their promising properties [58, 59]. One important area of research is the develop-
ment of nanoscale catalysts, which exhibit exceptional catalytic activity and offer 
more efficient and effective reactions. At the nanoscale level, these materials have 
a large surface area, numerous binding sites, and favorable thermodynamics and 
kinetics for heterogeneous reactions [60], making them highly desirable for catal-
ysis. They are also being explored for creating artificial enzymes [61]. Researchers 
are now focusing on designing specific nano-architectures to improve their perfor-
mance. There are several synthesis methods available for creating these materials, 
including hydrothermal, solvothermal, sol–gel, electroless, electrochemical, and 
physical methods. 

Due to the growing demand for alternative, clean, and renewable energy sources, 
metal-based nanostructured materials are being extensively studied for the production 
of robust electrodes that can be used in water splitting, batteries, and solar cells [60]. 
Researchers are striving to improve the performance of existing lithium-ion batteries 
by improving their safety, lifetime, and size [62]. Nanostructured metal-oxide-based 
materials show promise as electrode materials for high-performance charge storage 
devices, and metal-based nanostructured electrodes are being evaluated for use as 
both anodes and cathodes to overcome the challenges of conventional electrodes 
[63].
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6 Nanoparticles with Core–shell 

Nanoparticles can be classified into three categories based on their composition: 
simple, composite, or core–shell. Simple nanoparticles are made up of a single mate-
rial, while composite and core–shell nanoparticles consist of two or more materials. 
Core–shell nanoparticles consist of an inner material (the core) and an outer mate-
rial (the shell). Different combinations of materials can be used to create core–shell 
nanoparticles, including organic/organic, inorganic/organic, inorganic/inorganic, and 
organic/inorganic materials [64]. 

Spherical core–shell nanoparticles are a practical way to introduce multiple func-
tionalities on a nanoscopic scale [65]. The properties of the core and shell can be 
controlled by adjusting the ratio of the constituent materials, and their shape, size, 
and composition are critical factors in determining their properties. The shell mate-
rial can improve the chemical and thermal stabilities of the core material, making it 
more durable [66]. The core–shell design is particularly useful when an inexpensive 
material is unstable or easily oxidizable. For example, magnetic nanoparticles are 
sensitive to air, acids, and bases, but coating them with organic or inorganic shells 
can protect them from degradation [67]. 

7 Conclusions 

In conclusion, 2D nanomaterials have emerged as a fascinating area of research in 
nanoscience and nanotechnology due to their unique and extraordinary properties. 
Graphene, the first 2D material discovered, has opened up new possibilities for a wide 
range of applications in electronics, energy storage, and biomedicine. Other 2D mate-
rials such as transition metal dichalcogenides, black phosphorus, and boron nitride 
have also shown promise for various applications. The synthesis and functionaliza-
tion of 2D nanomaterials have advanced significantly in recent years, enabling the 
development of new devices with improved performance. Although challenges such 
as scalability and commercial viability still exist, 2D nanomaterials hold tremendous 
potential for future technological advancements. 
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Balbir Singh, Tabrej Khan, Mohammad Jawaid, 
and Kamarul Arifin Ahmad 

Abstract This chapter presents a summary of the exciting potential and challenges 
of nanomaterials, as discussed in the various contributions to the book. The chapter 
begins with an overview of the unique properties of nanomaterials, which arise 
from their small size and large surface area. The authors then discuss the various 
applications of nanomaterials in fields such as medicine, energy, and electronics, as 
well as their potential for environmental remediation. The chapter highlights some 
of the key themes that emerged from the book, such as the need for interdisciplinary 
collaboration to drive innovation, the importance of responsible development and 
deployment of nanomaterials, and the potential risks and uncertainties associated 
with their use. The authors also discuss some of the challenges facing the field, such 
as the need for standardized characterization and safety testing of nanomaterials, 
as well as the high-end equipment and software used for the characterization of 
these materials. The chapter concludes by emphasizing the importance of continued 
research and development in the field of nanomaterials to ensure their safe and 
sustainable use, as well as their potential to revolutionize various industries and 
benefit society as a whole. Overall, this chapter provides a concise summary of the
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various contributions to the book, highlighting the exciting potential and challenges 
of nanomaterials and their future. 

Keywords Green nanotechnology · Soft nanomaterials · Nanocomposites ·
Bio-nanomaterials · Carbon-based nanomaterials · 2D nanomaterials 

1  Editor Note or Summary  

Nanomaterials have the potential to revolutionize a wide range of industries and 
fields in the future, thanks to their unique properties and applications. Here are some 
ways in which nanomaterials could enable a more advanced future: It is difficult to 
predict the exact advancements that will be made with nanomaterials by 2050, but it 
is likely that there will be significant progress and breakthroughs in this field. Here 
are some possible developments. 

Nanomaterials could be used to create personalized medicine, where drugs are 
tailored to an individual’s specific genetic makeup. This could improve the effec-
tiveness of treatments and reduce side effects. Nanomaterials could also be used 
to create more advanced prosthetics and implants that are more biocompatible and 
durable. Nanomaterials have revolutionized the field of health care with their unique 
properties such as high surface area to volume ratio, small size, and tunable physical 
and chemical properties. These properties make them ideal for various applications 
such as drug delivery, imaging, diagnosis, and therapy. In drug delivery, nanomate-
rials have been used to enhance the bioavailability and efficacy of drugs. They can 
target specific tissues and cells, release drugs in a controlled manner, and reduce 
the toxicity of drugs. Nanoparticles such as liposomes, dendrimers, and polymeric 
nanoparticles have been used in pre-clinical and clinical trials for drug delivery. In 
imaging, nanomaterials have been used as contrast agents for various imaging modal-
ities such as magnetic resonance imaging (MRI), computed tomography (CT), and 
ultrasound. These contrast agents enhance the sensitivity and specificity of imaging, 
leading to better diagnosis and treatment. In diagnosis, nanomaterials have been 
used as biosensors for the detection of various biomolecules such as proteins, DNA, 
and RNA. They can detect these biomolecules with high sensitivity and specificity, 
leading to early diagnosis of diseases. In therapy, nanomaterials have been used for 
targeted therapy such as photodynamic therapy, gene therapy, and immunotherapy. 
These therapies can target specific cells and tissues, leading to better outcomes 
with reduced toxicity. The future of nanomaterials in health care is promising, with 
ongoing research focused on developing new nanomaterials and applications. Some 
of the areas of research include nano-enabled tissue engineering: Nanomaterials can 
be used to create scaffolds for tissue engineering, leading to the development of 
functional tissues and organs. Nanorobotics: Nanomaterials can be used to develop 
nanorobots that can perform targeted drug delivery, imaging, and diagnosis. Person-
alized medicine: Nanomaterials can be used to develop personalized medicine, where
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drugs are tailored to individual patients based on their genetic makeup. Nanomate-
rials can be used in nanopore sequencing, a new sequencing technology that can 
sequence DNA in real time. In conclusion, nanomaterials have the potential to trans-
form health care with their unique properties and applications. Ongoing research in 
this area is likely to lead to new and innovative nanomaterials and applications that 
will improve the diagnosis and treatment of diseases. 

2 Applications of Nanomaterials 

2.1 Health Care 

Nanomaterials such as liposomes, dendrimers, and nanoparticles can be used as 
carriers for drugs to improve their bioavailability, stability, and targeted delivery to 
specific cells or tissues. Nanomaterials such as quantum dots, carbon nanotubes, and 
gold nanoparticles can be used as contrast agents for various imaging techniques 
such as magnetic resonance imaging (MRI), computed tomography (CT), and fluo-
rescence imaging. Nanomaterials such as biosensors and nanochips can be used for 
the detection of disease biomarkers and other analytes in biological samples with high 
sensitivity and specificity. Nanomaterials such as nanofibers and hydrogels can be 
used as scaffolds for tissue engineering and regenerative medicine applications. The 
future of nanomaterials in health care is promising, with ongoing research focused 
on developing new nanomaterials and applications. Some of the areas of research 
nanomaterials can be used in the development of personalized medicine approaches 
that take into account the individual variability in disease susceptibility and drug 
response. Nanomaterials can be used in the development of targeted cancer thera-
pies that selectively deliver drugs or other therapeutic agents to tumor cells while 
minimizing toxicity to normal cells. 

Nanomaterials can be used in the development of gene therapy approaches for 
the treatment of genetic diseases and other disorders. Nanomaterials can be used in 
the development of immunotherapy approaches that enhance the immune response 
to cancer and other diseases. 

So, nanomaterials have the potential to revolutionize health care by enabling the 
development of new diagnostic and therapeutic technologies with improved sensi-
tivity, specificity, and targeted delivery. Ongoing research in this area is likely to lead 
to new and innovative nanomaterials and applications that will address some of the 
major challenges faced by health care such as personalized medicine, cancer therapy, 
gene therapy, and immunotherapy. However, it is important to consider the potential 
risks and ethical implications associated with the use of nanomaterials in health care.
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2.2 Applications of Nanomaterials in Energy Sector 

Nanomaterials could enable the development of more efficient and cost-effective 
solar cells and batteries. This could lead to widespread adoption of renewable energy 
sources and a significant reduction in greenhouse gas emissions. Nanomaterials have 
the potential to revolutionize the energy sector by improving the efficiency of energy 
production, storage, and usage. The unique properties of nanomaterials such as high 
surface area to volume ratio, tunable physical and chemical properties, and quantum 
confinement effect have made them ideal for various applications in the energy sector. 

Some of the applications of nanomaterials in the energy sector include nanomate-
rials such as quantum dots, nanowires, and nanotubes that can be used to improve the 
efficiency of solar cells by enhancing light absorption and charge separation. Nano-
materials such as nanowires, nanotubes, and nanoparticles can be used to increase 
the energy density and cycle life of batteries by improving the electrode materials. 
Nanomaterials can be used as catalysts in fuel cells to improve their efficiency and 
reduce the cost. Nanomaterials can be used as supercapacitors and nanocapacitors 
for energy storage due to their high surface area and high capacitance. 

Nanomaterials such as thermoelectric materials can be used to convert waste heat 
into electrical energy. The future of nanomaterials in the energy sector is promising, 
with ongoing research focused on developing new nanomaterials and applications. 
Some of the areas of research include nanomaterials that can be used to develop 
nanogenerators that can harvest energy from the environment such as mechanical 
energy, thermal energy, and solar energy. Nanomaterials such as nanocrystals can be 
used in smart windows that can selectively reflect or absorb sunlight to regulate the 
temperature of buildings. Nanomaterials can be used in nanosensors for monitoring 
energy usage and efficiency in buildings and transportation. Nanomaterials such as 
quantum dots can be used in energy-efficient lighting such as LED lights. Nanoma-
terials can be used in the development of artificial photosynthesis systems that can 
mimic the process of natural photosynthesis to convert sunlight into fuels such as 
hydrogen. Nanomaterials can be used in the development of advanced energy storage 
devices such as supercapacitors and flow batteries. Nanomaterials such as metal– 
organic frameworks (MOFs) and carbon nanotubes can be used in the development 
of carbon capture and storage (CCS) systems for reducing greenhouse gas emissions. 
Nanomaterials can be used in the development of sensors and other devices for smart 
grid applications such as real-time monitoring and control of energy production and 
consumption. They have the potential to improve the efficiency and sustainability 
of energy production, storage, and usage. Ongoing research in this area is likely to 
lead to new and innovative nanomaterials and applications that will revolutionize the 
energy sector.
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2.3 Applications in Electronics 

Nanomaterials could be used to develop even more advanced electronics, such as 
quantum computers and high-performance sensors. This could lead to significant 
improvements in fields such as communication, transportation, and medicine. Nano-
materials have the potential to revolutionize the electronics industry by enabling the 
development of new devices with improved performance, functionality, and miniatur-
ization. The unique properties of nanomaterials such as high surface area to volume 
ratio, tunable physical and chemical properties, and quantum confinement effect have 
made them ideal for various applications in electronics. Some of the applications of 
nanomaterials in electronics include nanomaterials such as carbon nanotubes and 
graphene that can be used to develop high-performance transistors that are faster and 
more energy efficient than traditional transistors. Nanomaterials such as nanowires, 
nanoparticles, and quantum dots can be used to develop highly sensitive and selective 
sensors for various applications such as chemical and biological sensing. 

Nanomaterials such as quantum dots and nanowires can be used in displays to 
improve color accuracy, contrast, and energy efficiency. Nanomaterials such as phase-
change materials and magnetic nanoparticles can be used in memory devices to 
improve data storage density and speed. The future of nanomaterials in electronics 
is promising, with ongoing research focused on developing new nanomaterials and 
applications. Some of the areas of research include nanomaterials that can be used 
to develop nanophotonic devices such as optical switches, modulators, and detectors 
that can enable high-speed data transmission and processing. Nanomaterials such 
as memristors can be used in neuromorphic computing to develop artificial intelli-
gence systems that can mimic the human brain. Flexible and wearable electronics: 
Nanomaterials such as nanowires and graphene can be used in flexible and wearable 
electronics that can conform to the shape of the body and enable new applications 
such as health monitoring and human–machine interfaces. Nanomaterials could be 
used to develop new materials and processes for pollution control and environmental 
remediation. This could help address some of the most pressing environmental chal-
lenges, such as air and water pollution, and climate change. Nanomaterials have the 
potential to address some of the major environmental challenges faced by humanity, 
including pollution, water scarcity, and climate change. The unique properties of 
nanomaterials such as high surface area to volume ratio, tunable physical and chem-
ical properties, and reactive surface chemistry have made them ideal for various 
applications in environmental remediation. 

2.4 Applications in Environment 

Nanomaterials such as graphene oxide, nanocellulose, and carbon nanotubes can 
be used to remove contaminants from water such as heavy metals, bacteria, and 
organic compounds. Nanomaterials such as titanium dioxide and zinc oxide can be
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used to remove pollutants from the air such as volatile organic compounds, nitrogen 
oxides, and particulate matter. Nanomaterials such as zero-valent iron and iron oxide 
nanoparticles can be used to remediate contaminated soil by degrading pollutants 
such as pesticides and hydrocarbons. Nanomaterials can be used in desalination 
processes to improve energy efficiency and reduce costs. The future of nanomaterials 
in the environment is promising, with ongoing research focused on developing new 
nanomaterials and applications. Some of the areas of research include nanosensors 
for environmental monitoring such as detecting pollutants in air, water, and soil. 
Nanomaterials such as metal–organic frameworks and carbon nanotubes can be used 
to capture carbon dioxide from industrial processes and power plants. 

Nanomaterials can be used in agriculture to improve soil quality, increase 
crop yield, and reduce the use of fertilizers and pesticides. Nanomaterials can be 
used to enhance the effectiveness of bioremediation processes for environmental 
remediation. 

Nanomaterials have the potential to revolutionize the environmental industry by 
enabling the development of new technologies for pollution control, environmental 
remediation, and sustainable energy generation. The unique properties of nanoma-
terials such as high surface area to volume ratio, tunable physical and chemical 
properties, and quantum confinement effect have made them ideal for various appli-
cations in the environmental sector. The future of nanomaterials in the environment 
is promising, with ongoing research focused on developing new nanomaterials and 
applications. Some of the areas of research include nanomaterials that can be used in 
the development of nanobiosensors for real-time monitoring of environmental pollu-
tants. Nanomaterials can be used in the development of nanorobots that can perform 
tasks such as environmental monitoring and pollutant removal. Nanomaterials such 
as carbon nanotubes and graphene can be used as high-capacity adsorbents for the 
removal of pollutants from water and air. Nanomaterials such as metal nanoparticles 
can be used as efficient catalysts for the degradation of pollutants. 

2.5 Applications in Materials Science 

Nanomaterials could enable the development of new materials with unprecedented 
properties, such as super-strength, self-healing, and shape-shifting. These mate-
rials could be used in a wide range of applications, from aerospace and defense 
to consumer products and architecture. Nanomaterials have the potential to revolu-
tionize material science by enabling the development of new materials with improved 
properties such as mechanical strength, electrical conductivity, and thermal stability. 
The unique properties of nanomaterials such as high surface area to volume ratio, 
quantum confinement effect, and tunable physical and chemical properties have 
made them ideal for various applications in material science. Some of the appli-
cations of nanomaterials in material science are nanomaterials such as nanocom-
posites, nanoceramics, and nanometals that can be used to develop materials with 
improved mechanical strength, toughness, and wear resistance. Nanomaterials such



Future Enabled by Nanomaterials: Editor Summary 299

as nanowires, nanoparticles, and nanotubes can be used in energy storage and conver-
sion devices such as batteries, supercapacitors, and fuel cells. Nanomaterials can 
be used to develop coatings and surfaces with improved properties such as anti-
corrosion, antifouling, and self-cleaning. Nanomaterials can be used as catalysts 
for various chemical reactions with improved efficiency, selectivity, and durability. 
The future of nanomaterials in material science is promising, with ongoing research 
focused on developing new nanomaterials and applications. Nanomaterials can be 
used to develop smart materials that can respond to changes in temperature, pressure, 
and other environmental stimuli. Nanomaterials can be used in the development of 
biomaterials such as tissue scaffolds, drug delivery systems, and biosensors. Nano-
materials can be used in the development of nanorobots that can perform various 
tasks such as drug delivery, sensing, and actuation. Nanomaterials can be used in the 
development of sustainable materials such as biodegradable plastics and recyclable 
composites. Nanomaterials can be used in 3D printing to develop new materials with 
improved properties and functionality. Nanomaterials can be used in the develop-
ment of self-healing materials that can repair damage and extend the lifespan of 
materials. Nanomaterials can be used in the development of new electronic materials 
and devices with improved performance and functionality. Nanomaterials can be 
used to develop materials that mimic the properties and functionality of biological 
materials such as bone, skin, and muscle. 

2.6 Applications in Construction Industry 

Nanomaterials can be used to develop stronger, more durable, and lighter construc-
tion materials, such as concrete and steel. They can also be used to create self-healing 
materials that can repair cracks and other damage on their own. Nanomaterials have 
the potential to transform the construction industry by enabling the development of 
new materials with improved properties and performance. The unique properties of 
nanomaterials such as high surface area to volume ratio, tunable physical and chem-
ical properties, and improved mechanical and thermal stability have made them ideal 
for various applications in construction. Some of the applications of nanomaterials 
in construction are: Nanomaterials such as carbon nanotubes and nanoparticles can 
be used to enhance the mechanical properties of concrete, increase its durability, 
and reduce its environmental impact. Nanomaterials such as aerogels can be used 
as insulation materials due to their low thermal conductivity and high surface area. 
Nanomaterials can be used in coatings to improve the durability, water resistance, 
and UV stability of building materials such as glass and metals. Nanomaterials such 
as titanium dioxide nanoparticles can be used to develop self-cleaning surfaces that 
can break down organic matter and prevent the growth of microorganisms. 

The future of nanomaterials in construction is promising, with ongoing research 
focused on developing new nanomaterials and applications. Some of the areas of 
research include nanomaterials can be used in the development of smart materials 
that can sense and respond to environmental stimuli such as temperature, humidity,
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and light. Nanomaterials can be used to develop advanced coatings that can reduce the 
need for cleaning and maintenance, improve energy efficiency, and provide additional 
protection against environmental factors. Nanomaterials can be used to develop new 
types of cement with improved strength, durability, and sustainability. Nanomaterials 
can be used in the development of sensors that can monitor the structural integrity 
of buildings and detect changes in temperature, humidity, and other environmental 
factors. 

In conclusion, nanomaterials have the potential to revolutionize the construction 
industry by enabling the development of new materials with improved properties 
and performance. Ongoing research in this area is likely to lead to new and innova-
tive nanomaterials and applications that will improve the efficiency, sustainability, 
and safety of buildings and infrastructure. However, it is important to consider the 
potential risks and ethical implications associated with the use of nanomaterials 
in construction. Nanomaterials have the potential to revolutionize the construction 
industry by enabling the development of new materials with improved properties and 
functionality. The unique properties of nanomaterials such as high surface area to 
volume ratio, tunable physical and chemical properties, and quantum confinement 
effect have made them ideal for various applications in construction. 

3 High-End Equipment and Software Used 
for Characterization 

Of course, with any new technology, there will also be potential risks and challenges 
associated with the widespread use of nanomaterials. It will be important to care-
fully evaluate and mitigate any potential risks to ensure their safe and responsible 
use in the future. The synthesis and fabrication of nanomaterials require advanced 
scientific equipment and software. Here are some examples of high-end equipment 
and software commonly used in this field. 

Transmission electron microscopy (TEM): TEM is a powerful imaging technique 
that allows scientists to visualize the structure and morphology of nanomaterials at the 
atomic level. This information is crucial for understanding the properties and behavior 
of nanomaterials and for optimizing their synthesis and fabrication processes. 

Scanning electron microscopy (SEM): SEM is another imaging technique that is 
commonly used to visualize the surface morphology of nanomaterials. It can also 
be used for elemental analysis and mapping, which provides information about the 
chemical composition of nanomaterials. 

X-ray diffraction (XRD): XRD is a technique that is used to analyze the crystal 
structure of nanomaterials. It provides information about the lattice structure and 
orientation of nanomaterials, which is important for understanding their electronic 
and mechanical properties. 

Atomic force microscopy (AFM): AFM is a high-resolution imaging technique 
that can be used to visualize the surface topography of nanomaterials. It is particularly
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useful for studying the mechanical properties of nanomaterials, such as their stiffness 
and elasticity. 

Chemical vapor deposition (CVD) systems: CVD systems are commonly used 
for the synthesis of nanomaterials, particularly for the fabrication of thin films and 
coatings. These systems use a gas-phase reaction to deposit atoms or molecules onto 
a substrate, resulting in the formation of a nanomaterial layer. 

Molecular modeling software: Molecular modeling software, such as density 
functional theory (DFT) software, is used to simulate and predict the properties 
and behavior of nanomaterials at the atomic level. These simulations are crucial for 
designing and optimizing nanomaterials for specific applications. 

Laser systems: Laser systems are often used in the fabrication of nanomaterials, 
such as in the process of laser ablation or lithography. They can also be used to study 
the optical properties of nanomaterials. 

Overall, the synthesis and fabrication of nanomaterials require a multidisciplinary 
approach that integrates advanced scientific equipment and software from various 
fields, including physics, chemistry, and materials science. 

4 Editor Outlook 

As we continue to advance in the field of nanotechnology, the potential of nanoma-
terials to revolutionize various industries and benefit society as a whole becomes 
increasingly evident. However, it is crucial to ensure the safe and sustainable use of 
nanomaterials by continuing to invest in research and development. Nanomaterials 
have unique properties that make them highly attractive for a range of applications, 
from medicine to energy production. However, due to their small size, they can pose 
risks to human health and the environment if not properly controlled. To ensure their 
safe and sustainable use, it is crucial to invest in ongoing research and development 
that can provide insights into the risks and benefits of nanomaterials and guide the 
development of regulations and guidelines for their use. 

Furthermore, continued research and development in the field of nanomaterials 
can lead to the discovery of new and innovative applications that can benefit society 
as a whole. For example, nanomaterials can be used to create more efficient and cost-
effective solar panels, improve the efficiency of energy storage devices, and enhance 
the performance of medical implants. In conclusion, investing in ongoing research 
and development in the field of nanomaterials is critical to ensure their safe and 
sustainable use and to unlock their full potential to revolutionize various industries 
and benefit society as a whole. Let us continue to work toward a future where nanoma-
terials can be used to their fullest potential, while ensuring the safety and well-being 
of our planet and its inhabitants. The book provides a comprehensive overview of the 
exciting potential and challenges of nanomaterials ranging from soft to biological 
to green and so on. The various contributions cover a wide range of topics, from 
the synthesis and characterization of nanomaterials to their applications in medicine, 
energy production, and electronics. The book emphasizes the need for continued
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research and development to ensure the safe and sustainable use of nanomaterials, 
while also highlighting their potential to revolutionize various industries and benefit 
society as a whole. Overall, the book presents a hopeful outlook for the future of 
nanomaterials, while acknowledging the challenges like potential environmental and 
health risks, cost and scalability of production, and regulatory challenges associated 
with the use that must be overcome to realize their full potential. The field of nanoma-
terials offers immense potential and requires further investigation. One fascinating 
area to explore is 2D materials and their diverse applications in fields such as wear-
ables and energy. We encourage readers to delve into the upcoming three-volume 
book series, authored by the same group, which extensively covers the topics of 2D 
materials, metal, and covalent organic frameworks and their applications.
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