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Abstract. High resolution is the eternal pursuit of remote sensing satellites. At
present, the highest resolution of American lock-eye satellite KH-12 has reached
10 cm, but due to the limitation of the diffraction limit of the remote sensing
satellite optical system, the development of a higher resolution remote sensing
satellite has encountered a bottleneck. The satellites in orbit, such as Pleiades-
NEO, have found another way to super-resolve 30 cm images to 15 cm image
products using super-resolution technology based on a convolutional neural net-
work. This method of restoring low-resolution images to high-resolution images
through image super-resolution techniques has attracted a lot of attention since the
middle and late 20th century. The physical continuous graphic signal is sampled
and quantized into discrete digital arrays by CCD or CMOS camera, while the
diffraction limit of the optical system and many other factors of degradation also
exacerbated this resolution degradation phenomenon. This paper writes from the
optical sampling imaging system to induce the model of remote sensing image
degradation and analyze the causes of resolution degradation from the source; Fur-
ther, this paper investigates the image super-resolution techniques of about the last
two decades and categorizes them into two categories: traditional algorithm-based,
and learning-based. This paper analyzes in detail the key algorithms in the history
of super-resolution, and focuses on today’s deep learning-based algorithms, clari-
fying the problems targeted by each type of algorithm, analyzing their design ideas
and implementation principles, and how these algorithms can be adapted for super-
resolution algorithms for remote sensing images. Then this paper compares the
basic features of the main remote sensing image super-resolution algorithms and
their advantages and disadvantages. It also introduces the currentmorewidely used
super-resolution effect evaluationmetrics. Finally, this paper lists and analyzes the
latest andmost complete various remote sensing super-resolution datasets publicly
available on the Internet, looks forward to the possible future development trends,
and points out that joined with imaging systems on satellites, unsupervised learn-
ing, and multi-source remote sensing image fusion are the development directions
of future remote sensing image super-resolution technologies.

Keywords: Remote Sensing Image · Super-Resolution · Degradation Model ·
Deep Learning

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. P. Urbach and H. Jiang (Eds.): ISSOIA 2022, SPPHY 295, pp. 207–228, 2023.
https://doi.org/10.1007/978-981-99-4098-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4098-1_19&domain=pdf
https://doi.org/10.1007/978-981-99-4098-1_19


208 L. Lan and C. Lu

1 Introduction

Since the 21st century, high-resolution remote sensing satellites have become a hot spot
for competition among space powers, and the current highest resolution of the U.S. lock-
eye satellite KH-12 has reached 10 cm [1]. However, the cost and risk of increasing the
resolution by reducing the orbital altitude and increasing the focal length of the optical
system are very huge. And large remote sensor equipment cannot be equipped in the cur-
rent popular nanosatellites, because of its small size and small weight limitation, which
means it is a luxury for remote sensing nanosatellites to obtain high-resolution images
directly. Therefore, a super-resolution (SR) image processing technique, which restores
low-resolution (LR) images into high-resolution images (HR) at the software level, has
gradually come into view. We counted the number of papers on remote sensing images
super-resolution on four bibliometrics (ScienceDirect, IEEE Xplore, CNKI database,
and Wanfang database) in the last 20 years, as shown in Fig. 1. It can be seen that this
software-level algorithm has received more and more attention and research. Harris [2]
is the first to propose the concept of super-resolution in the 1960s, and most of the early
techniques used simple interpolation, such as nearest-neighbor interpolation, bilinear
interpolation, and bicubic interpolation [3]. Into the 1990s, pioneering methods such as
multi-frame super-resolution based on sub-pixel shifts [4] andmulti-sensor image fusion
[5] were also proposed, and then super-resolution techniques began to develop rapidly.
Some super-resolution models based on probability theory, transform domain, machine
learning, and artificial neural networks were proposed and applied.

After 2008, super-resolution methods based on sparse coding became popular. Then
2012, because of the significant increase in hardware computing power, methods based
on deep artificial neural networks gained widespread attention because of their pow-
erful multi-layer feature learning and representation capabilities, And super-resolution
techniques are evolved into models such as SRCNN [6] based on convolutional neural
networks, SRGAN [7] based on generative adversarial networks, attention mechanisms,
and unsupervised models. Early super-resolution techniques were applied to natural
images before remote sensing image super-resolution (RSISR) techniques were devel-
oped. For single frame image super-resolution (SISR), the techniques for natural and
remotely sensed images are very similar, with the possible difference that remote sensing
images have more noise, as well as lower resolution and less texture information. For
the super-resolution of multi/hyperspectral images with multiple frames, there are more
changes to the SISR technique. In this paper, we will start from the sampling imaging
of optical remote sensing images, introduce the degradation model. Then we use the
degradation model as traction, discuss the mainstream SISR algorithms, and make some
comparisons, as well as the implementation of SR on remote sensing images. Finally,
we introduce the metrics to measure the processing results and the latest and most com-
prehensive remote sensing datasets, summarize the SR technology for remote sensing
images and make an outlook.
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Fig. 1. RSISR literature quantity trend chart

2 Sampling Imaging System and Degradation Model

Super-resolution originated from the study of natural images and was later extended to
remote sensing images. However, remote sensing images contain rich types of features,
many degradation factors such as sampling, deformation, degradation clarity and noise
on the imaging link as well as ground artifacts caused by cloud cover, terrain undulation,
haze and other lighting changes, whichmake the semantic information of remote sensing
images muchmore complex than natural images, and thus the super-resolution of remote
sensing images is more difficult.

Fig. 2. Remote sensing image imaging link and degradation process

The remote sensing imaging link can be briefly summarized as follows: the target
irradiance is captured by the remote sensor (CCDcamera) in the sky after being disturbed
by atmospheric and energy factors, then transmitted to the ground by the remote sensor
through compression, and finally displayed and image processed on the ground for
other applications. Among them, the continuous graphic signal of nature is quantified
into discrete digital array by CCD camera sampling, this process directly degrades the
continuous clear image into an image composed of one pixel, if the GSD of remote
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sensing satellite is 1 m, it represents the degradation of a square meter area of the ground
into the gray value of one pixel point, which greatly reduces the resolution, coupled with
the atmospheric interference of the earth, energy attenuation, noise, etc. impact, further
causing blurring of the image, making the image degraded from high resolution to low
resolution. This process is shown in Fig. 2.

In the actual image super-resolution process, we do not reconstruct the digital signal
into an analog signal, but generate more pixels to make the image clearer, that is, to
enlarge (recover) a low-resolution image LR into a high-resolution image HR, the
common magnification is 2, 3, 4, 8, etc. The formula can be expressed as Y = DBX
+ N, where Y is the low-resolution image we observe, X is the high-resolution image
we want to obtain, D is a down-sampling operation, B is a blurring filter, N is the noise.
After integrating D, B and N into Dm, the formula can be further abstracted to Y =
DmX, where Dm represents the degradation model. The essence of the super-resolution
algorithm is to find a suitable degenerate model Dm to ensure that the recovered X is
consistent with the input Y.

3 Traditional Algorithms

The traditional implementation idea of super-resolution is to reconstruct HR images
based on a custom degradation model with a priori constraints. In this paper, according
to the traditional algorithm development lineage and highlights, we focus on analyzing
only four types of these algorithms: interpolation method (with bicubic interpolation
[3] as an example), iterative back-projection method (IBP) [8], convex set projection
method (POCS) [9] and maximum a posteriori probability method (MAP) [10].

3.1 Bicubic Interpolation (BC)

The bicubic interpolation (BC) method proposed by Keys in 1981 [3] is the most com-
monly used interpolation method in two-dimensional space. The core idea is that the
pixel value of a certain interpolated point P is obtained by weighting the pixel values of
the surrounding 16 sampled points, and the 16 nearest neighboring points of point P are
selected by their relative positions as in Fig. 3. Keys constructed a bicubic function to
calculate the weights of the surrounding 16 points as follows.

W (x) =
⎧
⎨

⎩

x = (a + 2)|x|3 − (a + 3)|x|2 + 1
y = a|x|3 − 5a|x|2 + 8a|x| − 4a
z = 0

for |x| ≤ 1
for 1 < |x| < 2

otherwise
(1)

Here a is generally taken as −0.5. After getting to the weights, we just need to weight
up the pixel values of these 16 points, and the formula for interpolation is as follows.

f (x, y) =
∑3

i=0

∑3

j=0
f (xi, yj)W (x − xi)W (y − yj) (2)

It is important to note that the pixel values obtained by weighting are restricted to 0
to 255. Since the bicubic interpolation uses 16 points and a smoother cubic function, the
computation is more complicated than the previous nearest-neighbor interpolation and
bilinear interpolation, but the generated images are smoother and have better details.
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Fig. 3. Diagram of the bicubic interpolation method

3.2 Iterative Back-Projection (IBP)

Iterative back-projection (IBP) [8] was proposed by Irani and Peleg in 1991, and the
core idea is to iteratively eliminate the residuals between the observed LR image and
the simulated LR image to recover multiple LR images into one HR image. Which cus-
tomizes the degradation model H and the inverse degradation model HBP . The iterative
formula is as follows

f̂ n+1 = f̂ n − λ

p∑

i=1

HBP(
ŷni − yi

)
(3)

where: n is the number of iterations. f̂ n+1 and f̂ n denote the super-resolution images
obtained from the (n + 1)th and nth iterations. HBP is the inverse projection operator,
which can be obtained by synthesizing the matrix of translation, rotation, lucidity reduc-
tion, down-sampling and noise. ŷni is the simulated LR image, and ŷni = H f̂ n; p is the
number of frames of the LR image used for reconstruction. λ is the projection relaxation
factor.

The advantage of IBP is that the algorithm is simple and intuitively easy to under-
stand, but it is very sensitive to high frequency noise. The method has no unique solution
because the problem is inherently ill-posed. Themethod has some difficulties in choosing
HBP HBP , and it is more difficult to add a priori constraints.

3.3 Projections onto Convex Sets (POCS)

In order to solve the drawback of the IBP algorithm which is difficult to use a priori
information, in 1989, Stark et al. [9] applied the projections onto convex sets (POCS)
method to super-resolution. In this theory, constraints or prior knowledge (such as posi-
tivity, energy boundedness, observation consistency, and smoothness) can be defined as
convex sets in vector space (convex sets), and the solution space of the super-resolution
reconstruction problem is formed by intersecting these convex sets.

For m prior knowledge, there will be m corresponding closed convex sets Ci , i =
1, 2, · · ·m. Stark and Oskoui define a convex set projection operator Pi for each convex

set Ci. Then the high-resolution image is f ∈ C0 = m∩
i=1

CiPi, where C0 is a nonempty

closed convex set, and the iterative formula for the high-resolution image fk+1 is as
follows.

fk+1 = TmTm−1 · · ·T1fk , k = 1, 2 · · · · · · (4)
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where Ti = (1−λi)I +λiPi, and 0 < λi < 2 is the relaxed projection operator, meaning
fk+1 weakly converges to a feasible solution at the C0. Any element in the intersection
set C0 is one that satisfies all the prior knowledge or constraints, so the feasible solution
obtained by the POCS method is generally not unique.

The POCS algorithm has remarkable features such as simple and direct and powerful
image prior knowledge embedding capability, but it also has some disadvantages as
follows: 1) non-uniqueness of the solution, 2) dependence on the initial estimate, order
of each projection operator, 3) higher computational complexity, but less than MAP
algorithm.

3.4 The Maximum a Posteriori Probability (MAP)

The maximum a posteriori probability (MAP) method belongs to statistical estima-
tion methods. The MAP algorithm in super-resolution reconstruction [10] refers to
the maximization of the posterior probability of the occurrence of a high-resolution
image given a known sequence of low-resolution images. The ideal high-resolution
image is A and the observed low-resolution image is B. According to Bayes’ prob-
ability theorem, the posterior probability of the synthesized high-resolution image is
P(A|B) = P(A) · P(B|A)

/
P(B). Where P(B|A) is the conditional probability of a

sequence of low-resolution images given an ideal high-resolution image; P(A) is the
prior probability of an ideal high-resolution image. In comparing the posterior prob-
ability P(A|B), P(B) is the same and can be deleted, so the optimization equation is
AMAP = argmax

A

[
logP(A) + logP(B|A)

]
. The conditional probability P(B|A) gener-

ally uses a Gaussian model. The prior probability P(A) uses different models in different
algorithms, such as the Markov random field model and the Gibbs random field model.

4 Learning-Based Algorithms

The learning-based method is a data-driven approach, where the learned data is divided
into labeled data (supervised learning) and unlabeled data (unsupervised learning). Ide-
ally, the larger the number of dataset and model, the more information can be learned,
and the better the final result can be. Of course, the actual learning, due to hardware
and time constraints, the experimenter should choose the right amount of data, as well
as optimize the model size. Learning-based super-resolution algorithms are essentially
based on big data, learning the mapping of low-resolution images to high-resolution
images, or learning an inverse degradation model. In this section, the learning-based
single-frame image super-resolution algorithms are divided into four methods based on
sparse coding, based onCNN, based onGANand based on attention, ofwhich the former
belongs to traditional machine algorithms and the latter three belong to deep learning
algorithms. In addition, since unsupervised is the development trend of deep learning,
we also analyze the current single-frame image super-resolution algorithms based on
unsupervised deep learning.
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4.1 Based on Sparse Coding

Sparse Coding (SC). The sparse coding (called sparse representation also) wants to
express most or all of the original signal with a linear combination of fewer basic signals,
just as we can remember a person’s face based on a small number of features. Where
the original signal is an N*1-dimensional vector that can be flattened from a 2D image
patch which in general is dense, i.e., most elements are not 0. These basic signals are
called atoms, one atom is a vector (N*1), K atoms form an under-determined dictionary
D (N*K), and the under-determined dictionary means K > > N. In general the bases of
the under-determined bases are redundant, making the image representation under the
under-determined basis more sparse than the determined orthogonal basis, and the clean
part of the image can be linearly represented using a small number of non-zero sparse
representation coefficients.

Fig. 4. Sparse representation

A sparse coding means finding a coefficient vector αi (K*1) and a dictionary matrix
D (N*K) such that Dαi as close as possible to xi and αi is as sparse as possible, αi is the
sparse representation of xi, and the formula is Dαi = xi, as shown in Fig. 4. Expressed
as an optimization problem, the simplest form of the sparse coding is

min
D,αi

m∑

i=1

‖xi − Dαi‖2 + λ

m∑

i=1

‖αi‖2 (5)

where xi is the ith sample, D is the dictionary matrix, αi is the sparse representation of
xi, and λ is a penalty factor greater than 0 (used to make αi more sparse). The specific
methods for finding b and solving the dictionary D are not expanded in detail due to
space limitations.

ApplicationofSparseCoding in ImageSuper-Resolution. The super-resolution tech-
nique based on sparse coding can be understood from the perspective of degradation
model, let X represent HR image and Y represent LR image, both X and Y can be used
for sparse coding, corresponding to under-determined dictionaries as DH and DL , then
DHαX = X , DLαY = Y ; if αX = αY , then X = (DH )−1DLY = DmY , (DH )−1 is the
pseudo-inverse,Dm is the degradation model we are looking for. Yang et al. [11] did just
that, and Yang first proposed a super-resolution reconstruction method based on sparse
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coding in 2008. Yang establishes the underdetermined dictionariesDL andDH for high-
and low-resolution image patches, respectively, while assuming that the sparse represen-
tation α of the low-resolution image patches is the same as the sparse representation α

of the corresponding high-resolution image patches, and further synthesizes DL andDH

as D, transforming the problem into a solution Eq. 6 For better results, in addition to the
standard steps mentioned above, subsequent global constraints, etc., are often required.
In the testing stage, we synthesize HR image using DH and the sparse representation α

of LR image, as shown in Fig. 5.

Zheng et al. [12]. First applied the sparse coding to the super-resolution of remote
sensing images. For the problem that remote sensing images contain more noise, he
proposed that the previous super-resolution technique of early denoising may bring
more interference to the later super-resolution, so he used K-SVD [13] and OMP [14]
to solve the sparse coefficients while suppressing the noise. Further, Dong et al. [15]
generated multiple sub-dictionaries by clustering image patches so that a given patch
of images could select sub-dictionaries adaptively, and imposed adaptive regularization
constraints on the optimization equations to make the super-resolution reconstruction
more accurate; Zhang et al. [16] used the initial sparse dictionary and the residual sparse
dictionary to significantly improve the resolution of remote sensing images, with the
former dictionary reconstructing LR images as the initial HR image, and the latter
dictionary repairs the detail information lost in the initial HR image.

Fig. 5. Sparse coding for super-resolution reconstruction

4.2 Based on CNN

In order to solve the problem of losing spatial information by expanding images into
vectors for processing in previous fully connected neural networks, convolutional neural
networks use 2-D convolution operators to process images in 2-D directly (Fig. 6), which
not only retains spatial information but also reduces the parameters of the network, and
at the same time, the randomness of rounding off information also makes CNNs enter
the overfitting state more slowly and improves the generalization performance of CNNs.
CNNs containing 2-D convolution operator, pooling, dropout, and batch-normalization
processes have opened a new era of deep learning image processing.
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Fig. 6. Fully connected neural networks vs. convolutional neural networks

SRCNN. Dong et al. [5] proposed SRCNN (Super Resolution Convolutional Neu-
ral Network) in 2015, which kicked off the convolutional neural network for super-
resolution. The network structure of SRCNN is shown in Fig. 7, where a LR_image
(1*256*256) is input, which passes through convolution_kernel_1 (1,9,9,64) to get
feature_map_1 (64*248*248), then passes through convolution_kernel_2 (64*1*1*32)
to get feature_map_2 (32*248*248), and finally passes through convolution_kernel_3
(32*5*5 *1) to output the HR_image (1*244*244). When input is a color image, the
input image is the Y channel in the YCbCr color space; and the input low-resolution
image is pre-interpolated by bicubic interpolation and scaled up to a high-resolution size.
The experiment shows that the high-resolution image recovered by CNN is significantly
better than generated by bicubic interpolation.

The whole process from data to learning is: original HR image X → bicubic inter-
polation down-sampling → LR Y1 → bicubic interpolation up-sampling → immature
HR Y2 → CNN → generated HR Y. Where the CNN network learns the best convo-
lutional kernel parameters in CNN by optimizing the mean square error of X and Y
by SGD method. In fact, CNN has a great similarity with the idea of sparse coding,
as shown in Fig. 7. Convolution_kernel_1 is like a dictionary of low-resolution image
patches, transforming each low-resolution image patch into a representation on the fea-
ture map, although not sparse. Convolution_kernel_2, on the other hand, represents a
nonlinear mapping that maps the low-resolution representation into a representation of
the high-resolution image patch. Convolution_kernel_3 is a dictionary of high-resolution
image patches, which eventually reconstructs the representations of the high-resolution
patches into a high-resolution image.However, these are implicitly implemented through
the convolution kernel.

Fig. 7. The framework of SRCNN [5]
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super-resolution is only applied on the luminance channel (Y channel in YCbCr
color space). so c = 1 in the first/last layer, and performance (e.g., PSNR and SSIM) is
evaluated on the Y channel.

Remote Sensing Images Super-Resolution onCNN. Since remote sensing images are
missing local detail information, and the common deep CNN super-resolution methods
using large perceptual fields tend to ignore local information, Lei et al. [17] designed
a Local-Global Combined-Network (LGCnet) to address this problem. The network is
designed to learn the multi-scale representation of remote sensing images by combining
the convolution results of different layers to better perform RSISR.

Pan et al. [18] proposed amethod based on residual dense networks (Residual DBPN,
RDBPN) inspired by the Deep Back-Projection Networks (DBPN) proposed by Haris
et al. [19]. The method adds dense skip connections to the DBPN projection units to
construct global and local residuals, and provides information for high magnification
through feature reuse, thus making it show better performance at high magnification.

4.3 Based on GAN

Deep learning models can be divided into discriminative models and generative models.
Due to the invention of algorithms such as back propagation (BP), discriminative models
(e.g., BP networks, CNNs, RNNs, etc.) have been developed rapidly. However, the
development of generative models was slow until 2014, when Goodfellow et al. [20]
proposed the most successful generative model, the Generative Adversarial Network
(GAN), and generative models exploded.

Fig. 8. The framework of GAN network

GAN consists of a generator and a discriminator, as shown in Fig. 8. Latent Space
is a random hidden variable of fixed size, often obeying Gaussian distribution, and the
Generator tries to generate fake samples from the hidden variable. The Discriminator
learns the real samples to obtain the ability to identify the real and fake samples. In



Starting from the Sampling Imaging System 217

this way, through the continuous learning and confrontation between the Discriminator
and the Generator, the Generator is finally able to generate fake samples that are highly
similar to the real samples, causing theDiscriminator to be unable to judge, whichmeans
that the Generator has successfully modeled the process of producing real samples.

SRGAN. GANnetwork is applied bySRGAN [7] for super-resolution algorithm recon-
struction for the first time. SRGAN added ResNet to the Generator, which enables to
train deeper network and improve the network accuracy. SRGAN proposed perceptual
loss function, which can generate images more in line with human visual perception and
the loss is an effective guarantee for the algorithm. The perceptual loss can be split into
content loss and adversarial loss, and the content loss is a great innovation. The previous
MSE loss can improve the PSNR, but it also loses some high-frequency information,
resulting in blurred images. The content loss is calculated on the VGG’s feature map by
passing the true and false samples through the VGG network, which can greatly improve
the blurring problem caused by MSE loss.

Remote Sensing Images Super-Resolution on GAN. The degradation process of
remote sensing images often contains more noise, and the original GAN-based method
is more sensitive to noise, which generates high-frequency noise independent of the
input image. In response, Jiang et al. [21] proposed EEGAN (Edge-Enhanced GAN)
from the perspective of edge enhancement. The Edge-Enhanced Sub-Network (EESN),
constructed by Laplacian operator, fuses the SR reference images and their edges to
generate HR remote sensing images with clear edges, so as to alleviate the problem of
blurred edges in remote sensing images.

It is found through statistical analysis that there are more low-frequency components
(flat regions) in the remotely sensed images than in the natural images.When usingGAN
for RSISR, it is difficult for the Discriminator in the network to determine whether these
low-frequency regions are generated from the real HR remote sensing images, which
leads to the quality of the generatedHR images to be affected. In this regard, Lei et al. [22]
designed a Coupled-Discriminate GAN network (CDGAN). The two-channel network
in the coupled discriminator joins the features extracted from the real HR image and the
generated HR image and input them into the subsequent layers, and a dedicated coupled
loss function is constructed to update the network parameters. The model improves the
GAN-based image SR method in processing low-frequency image regions with blurred
resolution.

4.4 Remote Sensing Images Super-Resolution on Attention

Although CNNs have made significant achievements in deep learning, there are some
problems, such as sliding weight windows applied to all spatial channels or spectral
channels of the feature map equally when performing convolutional computation, and
this uniform computationmakes it difficult to extract the part of features that need special
attention. As a result, attention mechanisms came into the vision of researchers, Hu et al.
[23] proposed the Squeeze-and-Excitation network SENet based on channel attention
module (CAM), andWoo et al. [24] proposed the spatial attention module (SAM)-based
convolutional block attention module (CBAM), like Fig. 9. On the whole, CAM means
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generating a weight vector MC with the same number of channels as the input feature
map, and the size of the weights corresponds to whether a channel in the feature map is
more important. SAM means generating a weight matrix MS with the same height and
width dimensions as the input feature map, and the size of the weights corresponds to
whether a pixel in the feature map is more important. These two attention models can be
used independently ormixed, andmore attentionmodels have been developed later. Also
the attention mechanism can be used not only in CNNs but also in other deep learning
networks, and later it has been developed into the transformer [25] module which is very
popular nowadays.

Fig. 9. Channel Attention Module and Spatial Attention Module [24]

The Attention module was first introduced into image super-resolution processing
by Zhang et al. [26], who proposed a deep residual channel attention network (RCAN).
Zhang utilized the channel attention module to adaptively adjust the channel features.
Later, based on the idea of RCAN [26], Huat et al. [27] proposed RSRCAN network
to introduce channel attention module into remote sensing image super-resolution. Huat
pointed out that the current deep learning super-resolutionmodel is difficult to train due to
its own complexity and the lack of important training data, which becomes an important
limitation for satellite remote sensing image super-resolution. Moreover, most CNN-
based super-resolution algorithms for remote sensing images default to equal importance
of all features extracted from LR input images, which may lead to a lack of flexibility in
analyzing the presence of different types of features in remote sensing images.Moreover,
remotely sensed image data suffers some degradation during its acquisition, and this
usually introduces a lot of noise and variability in the data (in addition to the rich low-
frequency information), soHuat uses the channel attentionmodule to focus on the surface
features that require finer HR detail by enhancing the high-frequency information of the
image and suppressing the low-frequency information, thus allowing themodel’s to learn
more about the mapping relationships between the high-frequency components. Since
texture information varies greatly with different remote sensing images, but most SR
methods use the same learning model for all scenes, the existing SR methods have poor
generalization capability. To be able to adaptively adjust the network according to the
input images, Jia et al. [28] proposed a multi-attentive remote sensing super-resolution
reconstruction network (MA-GAN). The main body of MA-GAN [28] contains three
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modules: a pyramidal convolutional residual dense (PCRD) block, an attention-based
up-sampling (AUP) block, and an attention-based fusion (AF) block. The PCRD block
combines multi-scale convolution and channel attention to automatically learn and scale
the residuals for better representation, the AUP block uses pixel attention to perform
arbitrary scale up-sampling, and the AF block uses branch attention to integrate the
up-sampled low-resolution images with high-level features.

4.5 Unsupervised Algorithms

Supervised deep neural networks often require HR-LR image pairs during training,
and the LR images used are generally obtained from HR images by custom downsam-
pling algorithms (e.g., bicubic interpolation). However, in reality, high-resolution remote
sensing images are usually difficult to obtain, and there are still differences between the
images obtained by custom degradation and the actual low-resolution remote sensing
images.

Haut et al. [29] constructed a CNN-based deep generative network (ANDGN) for
RSISR from an unsupervised perspective. The method first uses a CNN to expand the
random noise to the target HR dimension, then downsamples [30] the generated HR
results to obtain the generated LR image. The loss is calculated by generated LR image
and original LR image and minimized through iterations until the final desired HR
remote sensing image is generated. The unsupervised aspect of ANDGN are reflected in
the fact that only LR images are used.Wang et al. [31] proposed an unsupervised learning
network CycleCNN for SR of remote sensing images based on CycleGAN [32], which
contains a cyclic network composed of image degradation network and image super-
resolution network. The HR image selected in the paper is a panchromatic image with
GSD of 1m/pixel in GaoFen-2, and the HR image is single-frame of multispectral image
with GSD of 4 m/pixel in GaoFen-2. The LR image undergoes the cycle process of
super-resolution and degradation in the network, and the HR image undergoes the cycle
process of super-resolution and degradation in the network. Wang then constructs cycle
loss and identity loss functions to enable the degraded network to degrade more realistic
low-resolution images and improve the performance of the super-resolution network.
The unsupervised nature of CycleCNN is reflected in the fact that no HR-LR image
pairs are used. Considering that high-resolution remote sensing images are difficult
to obtain, Zhang et al. [33] in 2022 proposed an unsupervised visible image-guided
remote sensing image super-resolution network (UVRSR) by guiding low-resolution
(LR) remote sensing images through HR visible natural images, which was successfully
established.

5 Comparison and Discussion

5.1 Comparison of Algorithms

The comparison of traditional algorithms is shown in Table 1, and it can be seen that
since the bicubic interpolation method is a typical mathematical violence interpolation
method, which is relatively fixed and not good for improvement, although it is simple
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and intuitive. The later appearing super-resolution algorithms (IBP, POCS, MAP, etc.)
have more data, theoretical support and more priori information making them much
superior to the bicubic interpolation method in terms of image super-resolution, which
is now basically used to appear as a comparisonmethod in the paper. Specifically, the IBP
algorithm obtains the inverse projection operator based on a custom degradation model,
which is used for iterative optimization to obtain super-resolved images. However, this
prevents the introduction of a priori information such as, for example, positivity, energy
boundedness, observation consistency, and smoothness, which is compensated by the
MAP and POCS methods, where the MAP method goes further and uses the statistical
laws of a large amount of data to hyper-segment the image, and also lays the foundation
for later data-driven models based on them.

Table 2 shows the improvement of learning-based super-resolution techniques for
remote sensing images compared to bicubic interpolation on PSNR and SSIM, using
data from the original papers of the relevant methods. SC in Table 2 is the traditional
machine learning algorithm, and the others are deep learning algorithms. Overall, dif-
ferent learning-based algorithms have slight advantages at different magnifications or
different evaluation metrics, for example, RDBPN, MA-GAN and UVRSR still have
good results at 8 times. The latter emerged methods have better image quality com-
pared to the former usually, but it also tends to mean that their networks also become
more complex and require more hardware resources. Specifically for deep learning-
based super-resolution methods, the network in the algorithm only targets a specific
magnification and the size of the input image. If the image size is larger than the set
network input size, it is often super-resolved by cropping and then stitched into a large
super-resolved image. If the image size is smaller than the set network input size, it is
generally not recommended to select this network for super-resolution, or to up-sample
the magnification to the network input size first. In the case of end-to-end pure convolu-
tional networks, in principle, images of various sizes can be input, but in practice, it is
limited by hardware resources as well as image quality requirements. Different networks
need to be trained for different magnifications, which means that deep learning-based
methods have high hardware requirements and are currently difficult to be used directly
for Onboard processing.

It shows the performance of the previously mentioned methods on the road test set
of UC Merced with a super-resolution factor of 4 and an objective evaluation metric
of PSNR, with data and images from the papers of ANDGN [27] and RSRCAN [29]
in Fig. 10. ANDGN is the unsupervised method and the remaining six are supervised
methods. From the figure, we can roughly see that the super-resolution techniques have
been developed over the years and the results that can be presented are getting better
and better. For the current public dataset, the supervised methods may yield somewhat
better results than the unsupervised ones, but unsupervised methods are still the future
direction of development.
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Table 1. Comparison of traditional super-resolution algorithms

method bicubic
interpolation

IBP MAP POCS

Applicable theory Single Limited Lots of Limited

priori information no no Prior probability
density function

Convex sets,
simple and
efficient

Super-resolution
optimal solution

Existing and
unique

Not unique,
cannot be
constrained a
priori

Existence and
uniqueness,
MAP optimal
estimation

Not unique, within
the intersection of
constrained sets

Optimization
method

No iteration Iterative
projection
method

Standard
iterative
algorithm

Iterative
projection method

Convergence speed Fast Slow Slow Slow

Convergence
stability

High Relatively low High Relatively low

Calculation volume Relatively low Relatively high High Relatively high

Complexity Medium Definition of
the projection
operator

Optimization
under
non-convex a
priori
information

Definition of the
projection
operator

Noise reduction
capability

Relatively low Relatively low High Relatively low

Image smoothing
control capability

No Relaxation
factor
coefficient

A priori model,
regularization
factor

Relaxation factor
coefficient

Edge preservation
capability

Medium Relaxation
factor
coefficient

Medium High

Number of pictures
needed / piece

1 > = 1 > = 1 > = 1

5.2 Evaluation Metrics

There is not yet a unified metric for evaluating super-resolution-generated images,
because it is not like object detection, image segmentation, etc., where only two options
of right or wrong are evaluated on pixels that have already existed. Super-resolution is
achieved by adding pixels, and whether the added pixels satisfy the requirements is often
subjective and objective criteria are difficult to unify. Therefore, new evaluation metrics
have also been continuously proposed by researchers, and the commonly used metrics
are as: 1) Mean Square Error (MSE). MSE is the average of the difference between the
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Fig. 10. PSNR of the UC Merced road test image considering a 4 × scaling factor. [27, 29]

pixel values of two images, the smaller the value, the smaller the difference between the
two images, but it focuses too much on the comparison of individual pixels, ignoring
the overall visual perception of the image. 2) Normalized mean square error (PSNR).
PSNR is one of the most commonly used image quality evaluation metrics, which com-
bines MSE with the dynamic range of the whole image, and has a more holistic sense
compared to MSE. The larger the PSNR value, the more similar the image is. 3) Struc-
tural similarity (SSIM) [35], another popular objective assessment metric, is a global
perceptual model using luminance, contrast, and structure. The higher the SSIM value,
the more similar the two signals are. 4) Natural Image Quality Evaluator (NIQE) [36],
NIQE neither seeks a priori information about distorted images nor relies on any human
opinion scores, and a smaller NIQE value indicates better visual quality. 5) Perceptual
Index (PI) [37], pi value represents the subjective perceptual quality of an image and is
also a popular evaluation metric. Often, the lower the pi value, the better the perceptual
quality of the image, which is the opposite of the PSNR value. 6) Learned Perceptual
Image Patch Similarity (LPIPS) [38], LPIPS is more consistent with human perception
than traditional methods (than PSNR, SSIM). a lower value of LPIPS indicates that the
two images are more similar, and vice versa, the greater the difference. In addition, other
metrics, which will not be continued in this paper.

5.3 Datasets

The common datasets of deep learning-based methods for super-resolution reconstruc-
tion of remote sensing images are as follows.

1) UC Merced [39]. It is a dataset used to study land use, with a total of 2,100 images
containing 21 categories of scenes, 100 images per category, and the pixel size of
each image is 256 × 256.

2) RSCNN7 [40]. A total of 2800 remote sensing images from 7 different scene
categories, each category contains 400 images.
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Table 2. Learning-based methods relative to bicubic linear interpolation for PSNR and SSIM
enhancement

method dataset metrics enlarge factor

x2 x3 x4 x8

SC [34] Google Earth PSNR – 3.99% – –

SSIM – 3.80% – –

LGCNet [17] UC Merced PSNR 8.84% 6.63% 14.15% –

SSIM 5.19% 7.95% 22.50% –

RDBPN [18] UC Merced PSNR – – 9.64% 5.15%

SSIM – – 16.94% 16.10%

EEGAN [21] UC Merced PSNR 14.14% 14.15% 13.38% –

SSIM 3.73% 7.59% 11.14% –

CDGAN [22] UC Merced PSNR – – 1.95% –

SSIM – – – –

RSRCAN [27] UC Merced PSNR 11.74% 10.20% 8.69% –

SSIM 5.77% 11.48% 14.60% –

ANDGN [29] UC Merced RSCNN7
WHU-RS19

PSNR 8.75% – 6.87% –

SSIM 5.12% – 11.69% –

CycleCNN [31] GaoFen-2 PSNR – – 4.66% –

SSIM – – 1.27% –

MA-GAN [28] NWPU-RESISC45 PSNR 11.59% – 12.16% 10.80%

SSIM 5.31% – 16.64% 14.73%

UVRSR [33] UC Merced PSNR 7.08% – 4.74% 18.17%

SSIM – – – –

3) NWPU-RESISC45 [41]. From Northwestern Polytechnic University, it contains a
total of 31,500 images divided into 45 scene categories with 700 images in each
category, and the pixel size of each image is 256 × 256.

4) Kaggle open source dataset [42]. This dataset consists of more than 1000 VHR
aerial photographs collected in southern California, USA. It contains 350 images
for training and 1370 images for testing.

5) Sentinel-2 dataset, which is one of the Sentinel series, the data is free of charge, and
the main payload is a multispectral imager with 13 bands in the spectrum from 0.4
to 2.4 m, covering visible, near-infrared and short-wave infrared, and this dataset is
increasingly used as a complement to Landsat in the field of Earth observation.

6) AID [43]. This dataset was released by Wuhan University in 2012. The data source
is Google Earth and includes 30 types of remotely sensed scenes such as parks,
airports, mountains, and churches. Each type has 200 to 400 images, and all images
are 600 × 600 pixels in size. The spatial resolution is 0.58 m/pixel
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7) PatternNet. This dataset was published by Wuhan University in 2018. The data
source is Google Maps and includes 38 types of remotely sensed scenes, such as
forests, highways, railroads, shipyards, and soccer fields. There are 800 images for
each category. The size of all images is 256 × 256 pixels with a spatial resolution
of 0.064.7m/pixel.

8) WHU-RS19 [44].WHU-RS19 contains 19 different land classes. Fifty VHR images
for each category were obtained from Google Earth with a size of 600× 600 pixels.

9) IEEE Data Fusion Contest (DFC) 2019 [45]. The DFC (2019) dataset consists of
2783 multi-date satellite images captured by the WV-3 satellite for training and 50
images for testing. The size of the sample image blocks is 1024 × 1024 pixels.

10) SpaceNet dataset (AWS2018) [46]. SpaceNet is another large-scale satellite image
dataset, acquired exclusively from the VHR WV-3 satellite.

11) GeoEye-1 dataset. GeoEye-1 satellite is a commercial satellite launched by the
United States on September 6, 2008 from Vandenberg Air Force Base, California,
to acquire quad-band (blue, green, red, and near-infrared) multispectral images with
a spatial resolution of 0.41 m and a spatial resolution of 1.65 m.

12) SPOT-6 dataset. SPOT-6 satellite was launched on September 9, 2012, with a spatial
resolution of 1.5 m for panchromatic images and 6 m for multispectral images,
including blue, green, red and near infrared.

13) Gaofen2 dataset. Launched on August 19, 2014, the Gaofen 2 satellite has a spatial
resolution better than 1m. It is equippedwith two cameras, HR for 1mpanchromatic
imaging and 4 m multispectral imaging.

14) DOTA [47]. DOTA is a large-scale benchmark dataset based on aerial imagery
generated for target detection tasks. The dataset contains 2806 images collected from
Google Earth, GF-2 and JL-1 satellites and aerial images provided by CycloMedia
B.V.

15) Multi-sensor Remote Sensing Dataset (MSRSD) [48]. This dataset consists mainly
of VHR satellite images acquired by Pleiades 1A/1B, GeoEye-1, QuickBird2, WV-
2, WV-3, and DEIMOS satellites and most of them are publicly available. MSRSD
includes satellite images from seven different satellites, from different geographic
locations and various landscape conditions to simplify the transferability of the
model globally and universality, it is a common and rich dataset.

6 Conclusion

Super-resolution processing has been a hot topic in the field of image processing, espe-
cially in the field of remote sensing, which has very important application value. This
paper reviews image super-resolution processing techniques in remote sensing, catego-
rizing them into traditional methods and learning-based methods, among which, deep
learning-based methods are the hot topic nowadays, and more pages are spent on that
part in this paper. To facilitate the introduction of RSISR techniques, many methods
are categorized in this paper, but there are actually many methods that do not belong
to one of these categories, and they integrate many classes of methods as a sub-method
to form one method that works better. For example, SWCGAN [49], which integrates
CNN, GAN, and Swin Transformer [50] together. For single image super-resolution
(SISR), the techniques based on natural images are easy to migrate to remote sensing
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images, but because the resolution of remote sensing images is much lower than that of
natural images, thus causing much less detailed texture information, these images also
contain more noise, so blindly performing remote sensing image super-resolution may
result in a large amount of false information, which instead reduces the image quality.
Therefore, in order to improve the quality of remote sensing image super-resolution, it
is suggested that the original resolution of single frame satellite remote sensing image
utilized by super-resolution technique is often above 2 m, and preferably higher than 1
m. In addition, during this literature research, the author considers the following main
development directions of optical remote sensing image super-resolution technology.

1) Research on the evaluation metric of super-resolution algorithm. As mentioned in
Sect. 5.1, super-resolution is intuitively expressed as an increase in the number of
pixels, while whether the image meets the requirements after the increase of pixels
often needs to be evaluated by the human eye, and objective evaluation metrics
cannot be formed yet. Therefore, the image quality evaluation metrics applicable to
super-resolution processing still need further research.

2) Research on unsupervised learning of super-resolution reconstruction method for
remote sensing images. It is difficult to obtain remote sensing images with different
resolutions in the same scene, so there is a lack of training samples, and the low-
resolution samples in current supervised algorithms are usually obtained by artificial
down-sampling, which cannot simulate the image degradation model well and can
hardly cope with the super-resolution reconstruction tasks of some actual scenes, so
unsupervised super-resolution reconstruction models of remote sensing images have
important research values.

3) Research on the special neural network structure for remote sensing image charac-
teristics. Although the existing methods of super-resolution reconstruction of remote
sensing images based on deep learning have achieved good results, remote sens-
ing images are characterized by scale diversity, viewpoint specificity, multi-direction
and high background complexity, so it is still a question worth exploring how to
use existing technologies (such as attention mechanism, multi-scale feature fusion,
reinforcement learning, etc.) to build a more efficient and super-resolution network
adapted to the characteristics of remote sensing images problem.

4) Jointly with the imaging system on the satellite. For example, the algorithm proposed
by CNES to enhance the resolution of PAN SPOT5 using a quincunx sampling mode,
which uses twoCCDdetectors shifted in the focal plane in order to acquire two images
with a resolution of 5 m, resulting in a synthetic resolution of about 2.5 m images
[53]
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