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Abstract. The carrier strike groups (CSGs) are the major components of the
national navy. The surveillance of CSG formation changes and other behaviors is
critical to identify the other party’s behavioral intentions and win the first oppor-
tunity in the battle field. As the spread range of a CSG is large, satellite remote
sensing imagery is the most effective way to capture the CSG behavior change.
However, due to the difference of satellite imaging angle of view, the appar-
ent characteristics of similar formation may vary greatly, which may lead to the
decline of formation change recognition performance. Inspired by the fact that
a CSG formation is usually composed of multiple basic units, which appears
a strong spatio-temporal relationship between each other, this paper proposes a
graph model based method to identify the formation changes of group targets.
Firstly, the graph model method is proposed to model the spatial structure rela-
tionship of the group targets. Secondly, multi-scale convolution kernel features
and spatio-temporal graph convolution features are calculated to capture the for-
mation sequential changes. Thirdly, a graph based, deep recursive convolution
neural network model is learned and used to recognize formation changes. In our
experiments, the formation transformation refers to the sequential transformation
between two of seven specified formations. Experimental results show that the
graph model and the spatio-temporal graph convolution feature representation
are efficient and robust, to describe formation trajectory of the simulated data.
Meanwhile, the recursive convolution neural network model greatly improves the
recognition performance of target formation change, which can provide necessary
technical support for correct decision-making and occupying the initiative in the
battlefield.

Keywords: Group Targets · Graph Model · Deep Learning

1 Introduction

Group behavior analysis and recognition has attracted more and more attention from
researchers [1–4]. With the continuous maturity of computer vision technology, the
research on this topic has been deepened [5–7]. Group targets can be divided into two
categories: one is dense target groups, such as crowds gathered in various occasions
such as shopping malls; the other is sparse target group, such as athletes on the stadium,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. P. Urbach and H. Jiang (Eds.): ISSOIA 2022, SPPHY 295, pp. 129–137, 2023.
https://doi.org/10.1007/978-981-99-4098-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4098-1_13&domain=pdf
https://doi.org/10.1007/978-981-99-4098-1_13


130 D. Wang et al.

carrier battle group on the sea, aircraft group in the air, satellite group in space, etc. This
paper focuses on the behavior analysis of sparse target groups, especially the formation
change of groups. Taking the carrier strike group as an example, it is a typical sparse
target group,which can be seen as composed of some discrete points. The change of array
formation often indicates the change of a certain battlefield situation, and is the basis for
identifying behavior intention of the enemy and winning the battlefield first opportunity
[8, 9]. Consequently, it is of great application value to study the identification method
of array formation changes.

2 Related Works

The CSGs are the main organization of national navy. By monitoring the CSG with
satellites, identifying its formation and change behavior, it can provide decision-making
support to military commanders, and even determine the outcome of a campaign. Due
to the wide spread range of CSGs, the most effective way to obtain the navigation of the
opposite CSGs in the actual battlefield is satellite imagery. However, the research work
on predicting formation changes based on satellite detection results is relatively limited.

Deng et al. [9] proposed MVC (Multi view Point Context) descriptor based on
Archimedes spiral for ship formation recognition, which introduced a probability den-
sity function of observation points, and proposed a similarity measurement method
to directly identify ship formation. However, the descriptors are lack of spatial and
temporal structure information. The paper [10] regarded the formation as a scene in
two-dimensional space, in which the known formation is assumed as a template, and
the tested ones can be recognized by calculating the scene similarity with the template.
The method requires target locations and less target positioning accuracy, but has poor
deformation resistance. The works in [1] and [11] mainly focus on the design of linear
formation. In [11], an algorithm for recognition of warship formation has been studied
based onHough transform technology.When the target information is seriously polluted,
the improved K-means clustering algorithm is further used to cluster the local peaks of
the accumulation matrix obtained by Hough transform. Finally, the parameters of the
formation are accurately extracted, according to the peak clustering results. However,
limited by the design of line detection, its adaptability is not strong. In addition, some
researchers use graph models composed of a series of key points to identify object types,
and even array formation.

Generally, there are several basic types of fleet formation, based on unit structures
of fleet groups. By analyzing the basic units in the formation and inferring the formation
composition, the goal of identifying the formation can be achieved. It is difficult to find a
unified approach to recognize group targets, when they are rotated, scaled and deformed.
Thus some scholars have utilized deformation ability of graph models to build target
recognition algorithms. In this paper, a graph based deep network learning method
is proposed. By combining the graph model and deep convolution neural networks,
we proposed an efficient and robust graph feature representation method for feature
extraction and analysis of large-scale formation trajectory data. Robust dynamic graph
prediction method is also used to achieve dynamic real-time prediction and analysis of
formation trajectory data.
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In this paper, the typical sparse group of target carrier strike group is taken as an
example to study two aspects: (1) Extraction both of static features and dynamic spatio-
temporal changes of the carrier strike group formation; (2) Identification and analysis of
aircraft carrier strike group formation change. Since the ship formation is usually com-
posed of multiple basic units, there is a strong spatial relationship between ships. There-
fore, a graphmodel based on spatiotemporal trajectory data is constructed to describe the
spatio-temporal correlation and dependency between the formation change data, which
has a strong anti deformation ability. By establishing the recursive convolution neural
network (RCNN) model of dynamic graph, the problem of joint modeling of tempo-
ral motion and spatial structure is solved, and the recognition accuracy of group target
formation changes is improved.

3 Proposed Method

3.1 Graph Model Construction of Group Targets

Given a remote sensing image, a triplet can be constructed according to the ship group
attributes in the image, which represents the graph model G = (V,X,A) where V
represents the set of nodes, X represents the node features and A represents the adja-
cency matrix. In the node set V = {v1, . . . , vn}(|V| = n), we assume each ship as a
node and extract features according to the node attributes, including the ship position,
speed, dwell time etc. Formally, xi = f (x, vi) ∈ R

n×d , where xi represents the i-th
node, f represents the feature extractor, and d represents the data dimension. By con-
catenating node features, we can get the feature matrix composed of all node features:
X = [xT1 ; xT2 ; . . . .;xTn ] ∈ R

n×d. For simplicity, Xi and xi will not be distinguished later,
which represent the i-th row in characteristic matrix or i-th node features, with the same
meaning.

Assume the edge set ε consists of the edges connecting all nodes in graphG. The edge
construction depends on the spatial, semantic or other potential influence factors between
nodes.We formally define the edge between vi and vj node as eij = �ε(K

(
vi, vj

)
), where

�ε(·) is the indicator function with the threshold ε, andK is the similaritymeasurements,
such as Euclidean distance. For example, the edge value is 1, if the distance K between
vi and vj is greater than the threshold value ε, otherwise it is 0. All connection node
pairs form an edge set ε = {(vi, vj)|eij = 1, vi, vj ∈ ε}(|ε| = m), which can also be
represented as an unweighted adjacency matrix A ∈ R

n×n,

A = (eij)n×n, eij =
{
1,

(
vi, vj

) ∈ E;
0, otherwise.

In addition, for the relationship with edges connected, we use features to enhance
edge information. The most commonmethod is to introduce weighted edges. The higher
the correlation between two nodes, the greater the corresponding edge weight. We can
use measurement function K to define Aij = eij × K(vi, vj). For example, only the
adjacent edges have non-zero weights, so the adjacency matrix A not only records the
adjacency of nodes, but also describes the correlation degree of adjacent nodes.
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Based on adjacency matrix A, Laplacian matrix can be constructed as a matrix
representation of node relationships in the graph. Given a graph model G = (V,X,A),
its Laplace matrix can be defined as

L = D − A,

where D is the degree matrix of the graph, expressed as a diagonal matrix D =
diag[d1, d2, . . . , dn] and di = ∑

jAij.

3.2 Spatial-Temporal Graph Convolution (STGC) Model Based Group Target
Formation Change Recognition

In this paper, the ship formation is modeled as an undirected attribute graph G =
(V,A,X), with a set ofN verticesV = {νn}Nn=1, a weighted adjacencymatrixA ∈ R

N×N

is, and a signal matrix on the vertices X ∈ R
N×d . So the formation graph sequence with

the length of T can be represented as (G1,G2, . . . ,GT ), where Gk = (Vk ,Ak ,Xk) repre-
sents the formation on the k-th slice. Next, we will introduce the Spatial Temporal Graph
Convolution (STGC) model for dynamic graph sequence analysis.

3.2.1 Multiscale Graph Convolution Kernel

Since the image has a grid structure, the receptive field of standard convolutional neural
network (CNN) on the image can be easily defined as a local rectangular region. So
convolution filtering on regular structured data is easy to operate. On the contrary, it
is relatively difficult to construct convolution kernels on irregular structured graphs,
mainly because homogeneous graph structures correspond to the same filtering response.
Inspired by graph theory, with the help of the adjacency matrix A, which represents the
connection relationship between the vertices of a graph.Ak accurately records the vertices
that can be reached by k step by step connection on the graph. Therefore, the receptive
field of k neighborhood ψk(A) can be constructed by defining k order polynomial of A.
The simplest strategy is adopted here, ψk(A) = Ak. In practice, the Laplacian matrix
L of the graph can be used instead of A to avoid being affected by the scale of matrix
norm in recursive reasoning. Therefore, for the local receptive field with a scale of K,
the following multi-scale convolution filtering is defined:

Z = G∗f =
∑K−1

k=0
ψk(L)XV k ,

where ψk(L) represents the receptive field of k scale, Vk ∈ R
d×d ′ is the corresponding

signal transformation matrix. The vertex information in all the k scale receptive fields
is weighted and synthesized by calculating ψk(L)X . Consequently, for the graph, its
filtering response is homogeneous and invariant.

3.2.2 Spatio-Temporal Graph Convolution

Base on the above multi-scale graph convolution kernel, and further inspired by the
design concept of Auto Regressive Moving Average (ARMA) model, the following
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spatio-temporal graph convolution model is built:

Yt+1 =
∑K1−1

k=0
ψk(L)YtWk + XtV0,

Ot+1 = Yt+1 +
∑K2−1

k=1
ψk(L)XtVk ,

where, ψk(·) is the receptive field function of k-th scale, {Wk ∈ R
d′×d′

, Vk ∈ R
d×d′

}
is the signal transformation matrix of the k-th scale,. In the above model, Y = [y1,
y2, …, yd′] and O= [o1, o2, …, od′] can be regarded as hidden state and output state
respectively. Along the time dimension, the signal Yt+1 is regressed recursively by the
local convolution kernel in the above equation, so that the dynamic changes can be
serialized and encoded.

The output signalOt+1 in the above equation integrates the spatial graph convolution
signal and the dynamic sequential signal, and each output signal oi depends on all input
signals {x1, x2, …, xd}. In particular, when signals are independent and the spatial-
temporal convolutional filter operates on the signal channel respectively, the dynamic
graph convolutional model can be written as:

Yt+1 = ∑K1−1
k=0 ψk(L) Ytdiag(wk) + Xtdiag(v0),

Ot+1 = Yt+1 + ∑K2−1
k=1 ψk(L)Xtdiag(vk),

where wk = [wk1, wk2, …, wkd]T and vk = [vk1, vk2, …, vkd]T are mapping parameters,
and wki and vki is related to k-th scale of the i-th signal. Note that it is assumed that the
number of output dimensions is the same as the one of the input. In the case of signal
independence, it is easy to expand to d′ �= d.

3.2.3 Construction of Deep Graph Convolution Neural Network Model

The above recursive convolutional model can be easily extended to the deep structures.
Specifically, the recursive model is used as a basic layer to stack into a multi-layer
network architecture, where the output signal O of the bottom layer is used as the input
of the top layer. Formally,

Y (l)
t+1 = ∑K1−1

k=0 ψk(L)Y (l)
t W (l)

k + O(l−1)
t V (l)

0 ,

O(l)
t+1 = Y (l)

t+1 + ∑K2−1
k=1 ψk(L)O(l−1)

t V (l)
k ,

where l represents the number of network layers. With the increasing number of layers,
the receptive field scale of the convolution kernel can become larger, so the top layer
can extract more global information. In other words, the recursive model is regarded as
a basic neural network layer, and a multi-layer network structure is formed by stacking
more layers. The output signal of the current layer can be used as the input signal
of the next layer. As the number of network layers increases, the receptive field of
convolution kernels becomes larger, so that the top layer of the network can capture
global information. The framework is shown in the figure below (Fig. 1).

Different basic features in the graph are extracted by constructing multi-channel
local convolution kernels, while higher level features are extracted by designingmultiple
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Fig. 1. Spatio-Temporal Dynamic Graph Network Framwork

convolutional layers. Gradient descent method is adopted to learn the model parameters.
By using k-neighborhood local filters, the learning complexity is independent of the
number of input samples andonly depends onO(k).Weconsider of themaximumpooling
operation, local average pooling, or constructing a binary tree according to some rules,
to merge some similar vertices for down sampling. Finally, with a full connection layer,
the learned feature representation is mapped into the sample label space, to classify the
traveling trajectory.

4 Experiments

4.1 Dataset

The formation change in this paper refers to the sequence transformation between two
of seven formations, thus there are 42 transformation types of sequences. Each sequence
has 100 frames; the pixel difference between adjacent frames is the average difference of
the formation distance between the two ends of the sequence. During the experiments,
4200 sequences of training set and 4200 sequences of test set are simulately generated,
that is, 100 sequences of each formation change in training set and test set respectively.
Among them, several formation transformation diagrams are shown in Fig. 2.

4.2 Comparisons

The proposed STGC model is experimentally compared with the latest methods. The
experimental results are shown in Table 1. Among them, P-LSTM is a model for emo-
tion classification based on short-termmemory recurrent neural network. Comparatively,
STGC has greatly improved the recognition accuracy (5.5%). Cov-RP proposed a new
region feature descriptor, the covariance matrix feature, to represent the region of inter-
est, which is applied to target detection and texture classification. Ker-RP proposes an
open framework, which uses the kernel matrix on feature dimension as a universal rep-
resentation, and explores a more appropriate representation based on symmetric positive



A General Recognition Approach for Formation Change 135

Fig. 2. Example of formation change. From left to right, transforms are shown in columns. (a)
from columns to rows, (b) from right echelon to left echelon, (c) from V-shaped echelon to
wedge-shaped echelon, (d) from V-shaped echelon to interlaced echelon, (e) from right echelon
to interlaced echelon, (f) from left echelon to rows.

definite matrix, to obtain better recognition performance. RSR-ML can deal with high
dimensional symmetric positive definite matrices, by constructing a low dimensional
and more discriminative symmetric positive definite manifold. Thus it adopts standard
orthogonal projection to model the mapping from high-dimensional symmetric posi-
tive definite manifold to low dimensional positive definite manifold, to improve the
recognition accuracy.

Table 1. Comparison results of STGC model

Methods Recognition rates

P-LSTM 92.6%

Cov-RP 92.4%

Ker-RP 95.2%

RSR-ML 96.8%

STGC 98.1%
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Based on the above experiments, we extract 75%, 50% and 25% sequence fragments
from each complete sequence as a new test set and use the complete sequence fragments
in the training set. Comparisons are shown below, which realizes the sequence type
prediction, according to incomplete sequence frames.

Table 2. Recognition rate of observed sequence data with different proportion

Proportion of observed sequences Recognition rate

25% 87.5%

50% 92.4%

75% 97.8%

100% 98.1%

Table 2 shows, it will bring a great reduction 9.6% on the accuracy of the final
prediction, when using only the first 25% of the full sequence, while it will bring less
impact on the results, when using more than 75% of the full sequence. It demonstrates
the robustness of the proposed model.

5 Conclusion

This paper proposes an effective graph structured modeling method for the formation
change of group targets, based on the deep graph network model. By comprehensively
considers the spatio-temporal data information of the dynamic change of group targets,
we focus on the problem of efficient and robust graph feature representation. A spatio-
temporal graph convolution method is proposed to extract features from large-scale
formation trajectory data,which greatly improves the discrimination ability and accuracy
of the deep graph network. Finally the dynamic identification and analysis of formation
change data of ship group targets and experimental results demonstrate the effectiveness
of the proposed method.
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