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Abstract Although air quality prediction is a crucial tool for weather forecasting and
air quality management, algorithms for making predictions that are based on a single
model are prone to overfitting. In order to address the complexity of air quality predic-
tion, a prediction approach based on integrated dual long short-term memory (LSTM)
models was developed in this study. The model takes into account the variables that
affect air quality such as nearby station data and weather information. Finally, two
models are integrated using the eXtreme Gradient Boosting (XGBoosting) tree. The
ultimate results of the prediction may be obtained by summing the predicted values
of the ideal subtree nodes. The proposed method was tested and examined using
five evaluation techniques. The accuracy of the prediction data in our model has
significantly increased when compared with other models.

Keywords XGBoosting + LSTM - Accuracy - Prediction

1 Introduction

The amount of exhaust gas produced by several factories and automobiles continues
to climb as industrialisation levels rise, substantially increasing air pollution. People’s
daily lives are significantly impacted by air quality. Accurate air quality forecasting
has emerged as a key strategy for reducing pollution and raising air quality. Data
on air quality has caused great worry throughout the world. For predicting air
quality, time series data prediction techniques are frequently employed, along with
time series prediction models and conventional machine learning techniques. Some
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methods imitate the temporal and geographical dependency of air quality data concur-
rently. However, commonly used machine learning techniques frequently exhibit
considerable performance variability under various conditions. Numerous variables,
including temperature, wind speed, and geographical arrangement have an impact
on air quality. As a result, it is challenging to produce certain and precise prediction
results using the popular single model prediction method. Our thoughts in this paper
are based on a strategy that has recently been discussed in the literature: integrating
various models to predict air quality. When compared with current models, the inte-
grated model can greatly increase the ability to forecast. But there is still much to
learn about how to combine the benefits of several models depending on the features
of the data collection.

2 Literature Survey

Petr H4jek et al. in [1] genetic algorithms optimise the input variable sets for each
forecast of an air pollutant. Based on information gathered by the Pardubice city
monitoring station in the Czech Republic, models are developed to predict the specific
air quality indices for each air pollutant. The results show that when the root mean
squared error is taken into consideration, individual prediction model compositions
outperform single forecasts of the common air quality index. As aresult, these models
can be used to produce air quality index predictions that are more accurate one day
in advance.

In order to avoid air pollution in urban areas and improve the quality of life for
city dwellers, Kang et al. [2] highlighted the importance of conducting work on
city air quality forecasting. Following that, AQI prediction models based on back
propagation (BP) neural networks, genetic algorithm optimisation, and genetic simu-
lated annealing algorithm optimisation are established. Comparing and evaluating
the prediction outcomes reveal that the BP neural network based on genetic simulated
annealing method has a higher accuracy rate, excellent generalisation capacity, and
global search ability.

According to Wang et al. [3], who found that air pollution was becoming more
severe, the most significant air pollutant, PM2.5 in aerosols, had a negative impact
on people’s regular output, way of life, and employment, as well as their health. As
a result, the forecasting of PM2.5 concentration has taken on significant practical
importance. The study selects real-time air quality data that is released, collects
historical monitoring data of air environmental contaminants, normalises the data,
and then splits the sample data into the two sets in a suitable ratio to form the training
dataset and test dataset.

A key component of a smart city is a system for measuring and forecasting air
quality, Mahajan et al. [5]. Making a forecast system with great accuracy and a
reasonable calculation time is one of the biggest challenges. In this study, we demon-
strate that a variety of clustering algorithms may be used to forecast fine particu-
late matter (PM2.5) concentrations reliably and quickly. We cluster the monitoring
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stations depending on their geographic proximity using a grid-based methodology.
Data from 557 stations that have been distributed throughout Taiwan’s Airbox device
network is used in the tests and evaluation. The accuracy and processing time of the
various clustering algorithms are compared in a final study.

3 Existing System

Commonly used machine learning techniques frequently exhibit considerable perfor-
mance variability under various conditions. Numerous variables, including temper-
ature, wind speed, and geographical arrangement have an impact on air quality. As
a result, it is challenging to produce certain and precise prediction results using the
popular single model prediction method.

4 Proposed System

In this work, a prediction approach based on integrated dual long short-term memory
(LSTM) models was created to handle the complexity of air quality prediction.
First, a single-factor prediction model that can independently forecast the value of
each component in air quality data is created using sequence to sequence (Seq2Seq)
technology. The multi-factor prediction model is then the LSTM model plus the
attention mechanism. The model takes into account the air quality parameters such
as the data from nearby stations and the weather. The two models are then combined
using the eXtreme Gradient Boosting (XGBoosting) tree.

5 System Architecture

See Fig. 1.

6 Flow Chart

See Fig. 2.
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Fig. 1 System architecture

7 Results

Single-factor model is subsequently improved using the ATTENTION layer to create
a multi-factor (combination of LSTM, sequence 2 sequence, and attention). In order
to combine both models and improve prediction accuracy, features from the multi-
model are extracted and retrained using XGBOOST.

The screen below displays information from the air quality dataset, which was
used to construct this project.

The first row of the dataset’s screen in Fig. 3 shows its column names, while the
following rows show its values. As the training features, we used PM values, the
target variable, and others.
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End Process

All three models—single-factor LSTM, multi-factor LSTM with attention, and
multi-factor integrated with XGBOOST—have been coded by our team. Below are
the code and output screens for all the models we coded in the Jupyter notebook.
You can see BLUE colour comments in each screen to learn about code (Figs. 4, 5,

6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18 and 19).
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Fig. 3 Air quality dataset
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Fig. 4 Above screen we are loading required Python classes, LSTM, attention and XGBOOST
class
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Fig. 5 Above screen we define function to calculate MAPE and to normalise values and then
reading and displaying dataset values
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Fig. 6 Above screen we are processing dataset and then removing irrelevant columns and then
splitting dataset into train and test and for testing we used 50 values which considers 1 test data per
second for next one hour. These test values you can see in blue colour text
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creen we are defining function to calculate RMSE, MAE, and MAPE values and
data air quality and predicted air quality graph
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creen we are training single-factor LSTM model and below is the LSTM model
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Fig. 9 Above summary you can see that in single-factor LSTM there is no attention layer and in
below screen we can see single-factor model prediction output
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Fig. 10 Above screen we can see single-factor test data quality and predicted air quality for next
50 records
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Fig. 11 Above screen with single factor we got RMSE as 27 and MAE as 17, and MAPE as 39 and

then in graph x-a

xis represents 50 min and y-axis represents air quality values, red line represents

TEST data actual values, and green line represents predicted air quality and we can see both lines
are overlapping with little difference. In below screen we can see LSTM with attention
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creen we are defining multi-model by combining LSTM and attention layer and

below is the multi-model summary
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Fig. 13 Above screen LSTM is combined with attention and below is the multi-model predicted
output
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Fig. 14 Above screen we can see test data and multi-model predicted air quality for next 50 s
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Fig. 15 Above screen with multi-model we got RMSE as 23 and MAE as 13 and MAPE as 37,
and we can see both test data and predicted air quality in graph. Above model RMSE, MAE, and
MAPE is lesser than single model. In below screen showing integrated model with XGBOOST
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Fig. 16 Above screen showing result of integrated XGBOOST
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Fig. 17 Above screen with integrated model we got RMSE as 24 and MAE as 12, and MAPE as
31 and we can see predicted and actual test values in graph. In integrated model we got RMSE as
high but MAE and MAPE is lesser than single and multi-model. In below screen showing graph of
all algorithms
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Fig. 18 Represents values where each different colour bar represents different metric such as
RMSE, MAE, and MAPE and in above graph we can see integrated XGBOOST got less MAE and
MAPE compared with all other algorithms and same output we can see in below tabular format
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Fig. 19 Above table we can see metric values of all algorithms and integrated XGBOOST got
better result with low error rate

8 Conclusion

We suggested a prediction model based on integrated dual LSTM model method to
increase the precision of air quality data prediction. The integrated model’s realisation
procedure and impact can be summed up as follows. The air quality characteristics
in the model are taken into consideration, together with meteorological information
and data from surrounding stations. The method tree is then used to integrate the
two models. First, single-factor models for each factor in the temporal dimension
were made. To obtain the forecasted outcomes, the temporal dimension’s attributes
are employed. The projected value and weight of each leaf node are put together to
provide the ideal expected value. Since the technique outlined in this study is based
on analysing the experimental data using five evaluation indicators, it can result in
predictions that are more accurate.

In order to improve the accuracy of by integrating the advantages of various
models, the integrated dual LSTM model technique will be expanded in the next
phase of the study. Although our model’s outputs have very low probability, we have
also found certain prediction results with outlier values. The examination of this sort
of outlier value is one of the concerns that has to be addressed in the feature scope.
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