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1 Introduction 

Homeobox (homeodomain) protein NANOG is a transcription factor of the ANTP 
(Antennapedia) class and is conserved in vertebrates [1, 2]. NANOG expression is 
observed during the initial stages of mouse embryonic development and in primordial 
germ cells [3–8]. During mouse embryonic development, lack of NANOG expres-
sion in the inner cell mass failed to produce epiblast, and instead, formed parietal 
endoderm-like cells [4]. Thus, the expression of NANOG is crucial for the epiblast 
formation [4, 9, 10]. Furthermore, the mRNA level of NANOG is downregulated 
after implantation [3]. High expression of NANOG holds epiblast essence, whereas 
low expression promotes differentiation into primitive endoderm. In embryonic stem 
cells (ESCs), NANOG is a vital player in the transcriptional pluripotency regulatory 
network along with OCT4 and SOX2 [11–13]. Moreover, the role of NANOG in ESCs 
is to maintain self-renewal and pluripotency in a cytokine-independent fashion [3, 4]. 
Intriguingly, the deletion of NANOG did not disrupt the chimera formation potential 
of ESCs [3].
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Furthermore, ESCs are identical to induced pluripotent stem cells (iPSCs), and 
NANOG holds the potential for reprogramming due to the presence of the home-
odomain, which is functionally preserved among all vertebrates [2]. The dose of 
NANOG is critical in cell-fusion-mediated reprogramming, and its overexpression 
improved the efficiency of reprogramming by 200-fold [14]. Several studies have 
reported that NANOG overexpression can enhance and hasten iPSC generation [9, 
15]. Additionally, the role of NANOG in reprogramming is critical for reaching the 
pluripotent ground state by enabling the conversion of pre-induced pluripotent stem 
cells to bonafide iPSCs [9, 16]. Moreover, NANOG not only induces pluripotency but 
can also overcome reprogramming obstacles [17]. Inconsistent with these studies, a 
few studies have reported that including NANOG in the reprogramming cocktail does 
not improve reprogramming efficiency and is thus not critical for iPSC generation 
[18, 19]. Despite the deletion of the NANOG gene from somatic cells, these cells 
can be reprogrammed to form iPSCs and form teratomas and chimeras [19], indi-
cating their dispensability in the reprogramming process. Another study reported 
that, although the elimination of NANOG decreased reprogramming efficiency, it 
was not required for iPSC generation [20]. Thus, these studies indicate that other 
members of the transcriptional network of pluripotency can substitute for NANOG 
loss. However, the same studies have suggested that NANOG is essential during the 
final stage of the reprogramming process and that its depletion affects reprogramming 
efficiency [19, 20]. Numerous reports have demonstrated the generation of human 
iPSCs using NANOG via lentiviral transduction [21–24]. In addition, the derivation 
of mouse and human iPSCs has also been reported using retroviral vectors, which 
include NANOG in the reprogramming cocktail [25, 26]. It is noteworthy that the 
use of viral-based approaches showed high reprogramming efficiency but induces 
genomic alteration. To circumvent these limitations of including viral components, 
several other approaches, such as recombinant proteins, mRNA, Sendai virus and 
miRNAs, are favored [27, 28]. Among all the approaches for iPSC generation, the 
recombinant protein-based method is the safest [29]. 

Recombinant proteins are of great importance for industrial applications and clin-
ical research. The benefits of using bacterial systems, such as Escherichia coli (E. 
coli), for the production of recombinant proteins are easy genetic manipulation and 
low production costs. However, this system also has several unavoidable blockages, 
such as codon usage bias, weak expression, insoluble expression, complicated purifi-
cation protocols, protein misfolding and so forth. Thus, the expression of recombi-
nant proteins opens an avenue for the generation of iPSCs. These cells can serve 
as patient-specific cells for cell therapies. Herein, the generation of a recombinant 
human NANOG fusion protein along with its secondary structure determination 
is reported, which possesses cytoplasmic and nuclear translocation ability, and is 
demonstrated to be biologically active. This recombinant version of human NANOG 
can potentially be used in the cocktail of transcription factors for iPSC generation. 

In addition to the role of NANOG in iPSCs generation, anomalous NANOG 
expression has been shown in different types of human malignancies. Furthermore, 
ectopic expression of NANOG caused augmented proliferation and downregulation 
of tumor suppressors, however, it did not result in tumor formation. Therefore, unlike
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other reprogramming factors, NANOG cannot be considered an oncogene [30]. In 
stark contrast to earlier finding, several studies have reported NANOG expression 
in different tissues, including the breast, cervix and kidney [31–33]. Several such 
studies will provide a deeper understanding of molecular networks in cancer and 
help in prognosis and treatment. Thus, the recombinant version of human NANOG 
generated in this study can further be helpful to understand the biological role of 
NANOG in cancer. 

2 Materials and Methods 

2.1 Plasmids, Strains, Reagents and Cell Lines 

The personalized plasmids (pUC-HTN-GOI and pUC-GOI-NTH) were procured 
from GenScript. E. coli BL21 (DE3) cells were utilized as host for recombinant 
protein expression. Isopropyl β-D-1-thiogalactopyranoside (IPTG), Luria–Bertani 
broth, terrific broth, kanamycin, sodium phosphate mono/dibasic, sodium chloride 
and imidazole was purchased from HiMedia. Bradford reagent was purchased from 
Bio-Rad. Dulbecco’s Modified Eagle medium (DMEM), fetal bovine serum (FBS) 
and penicillin–streptomycin solution (P/S) were purchased from Invitrogen. 

Apart from this, two human cell lines, HeLa (NCCS, India) and human dermal 
fibroblasts [HDFs; HiMedia CL011-2XT25)], were cultured in a complete growth 
medium [DMEM, FBS (5%) and P/S (1%)]. 

2.2 Construction of Expression Vector and Optimization 
for Soluble NANOG Expression 

A schematic figure detailing the stepwise process from retrieval of gene sequence 
[codon-optimized coding sequence of NANOG along with a set of fusion tags (Table 
1) (gene inserts)] to cloning to confirmation of cloning of NANOG in desired vector is 
shown in Fig. 1. Furthermore, pET28a(+)-HTN-NANOG and pET28a(+)-NANOG-
NTH were transformed into BL21(DE3) cells using CaCl2 method. To identify the 
optimal expression, the same approach was used as designated earlier [34, 35]. The 
cells were lysed using the lysis buffer mentioned in Table 2.
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Table 1 Fusion tags used in the study 

Fusion tags DNA sequence (5’-3’) Protein sequence 

His (H) CATCATCACCACCATCACCATCAT HHHHHHHH 

TAT (T) GGTCGTAAAAAACGTCGTCAGCGTCGTCGTCCGCCT GRKKRRQRRRPP 

NLS (N) AAAAAAAAGCGCAAAGTG KKKRKV 

Fig. 1 Diagram representation of the codon optimization and cloning strategy used in this 
study. H, Histidine; T, TAT, Trans-activator of transcription; N, NLS, Nuclear localization sequence/ 
signal 

Table 2 List of buffers and their composition used for the purification 

Ingredients Lysis buffer Wash buffer 1 Wash buffer 2 Wash buffer 3 Elution buffer 

Phosphate buffer 
(mM) 

20 20 20 20 20 

Sodium chloride 
(mM) 

150 150 150 150 150 

Imidazole (mM) 20 50 100 200 500 

pH (room 
temperature) 

7.8 7.8 7.8 7.8 7.8 

2.3 One-Step Purification of NANOG Via Metal Affinity 
Chromatography 

To purify HTN-NANOG fusion protein, 1.2 L of lysate of the recombinant E. 
coli BL21(DE3) cells harboring pET28a(+)-HTN-NANOG were established as
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mentioned above. The resulting lysate was loaded onto the pre-equilibrated nickel-
NTA column, followed by complete washing with buffers and then eluted with elution 
buffer. The composition of all buffers for purification purpose is mentioned in Table 
2. 

After purification, size-exclusion chromatography of the eluted fractions was 
performed as previously described [34]. The collected protein fractions were 
quantified using the Bradford assay [36]. 

2.4 SDS-PAGE, Coomassie Staining and Western Blotting 
(Immunoblotting) Analysis 

SDS-PAGE, Coomassie staining and Western blotting (immunoblotting) was 
performed as previously described [35]. The primary antibodies [anti-His (BioB-
harati, BB-AB0010; 1:5000), anti-NANOG (Merck Millipore, AB9220; 1:5000)], 
anti-GAPDH (BioBharati, BB-AB0060; 1:5000), anti-H3 (BioBharati, BB-AB0055; 
1:5000), anti-p27 (Cell Signaling Technology, D69C12; 1:4000), β-actin (BioB-
harati, BB-AB0024); 1:5000], and secondary antibodies [anti-rabbit IgG antibody 
(Invitrogen, 31,460; 1:5000)] were used in the immunoblot analysis. 

2.5 Circular Dichroism (CD) Spectroscopy 

The full-length HTN-NANOG protein secondary structure was determined by CD 
spectroscopy [J-1500 spectropolarimeter (Jasco, MD, USA)] and further scrutinized 
by online tool BeStSel (Beta Structure Selection) [37, 38] as previously described 
[34, 35]. 

2.6 Stability of HTN-NANOG Protein 

Stability was performed as described previously [39] and clarified samples were then 
evaluated by immunoblotting using the NANOG antibody. 

2.7 Subcellular Fractionation 

HDFs cells (1 × 105) were seeded in a T-25 flask and incubated overnight with vehicle 
control or HTN-NANOG protein (400 nM). Subcellular fractionation was carried
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out as previously described [40] and analyzed by immunoblotting with specific 
antibodies. 

2.8 Cell Proliferation Assay 

HDFs (1 × 104 cells/well) were seeded in 24-well plates and were treated with 
HTN-NANOG (200 nM) or vehicle control. After reaching approximately 70–80% 
confluency, the cells were trypsinized. Cell counting was performed using a hemocy-
tometer [41]. A cell suspension was intermixed with exclusion dye solution (Bio-Rad) 
and loaded into the cell counting chamber. Later, the live cells within a specific area 
were counted and recorded. Because the chamber volume is well-defined (commonly 
0.1 mm3), the number of cells calculated per area multiplied by the dilution factor 
determines the number of live cells per mL. The data are presented with a graph of 
the cumulative cell number against days. 

2.9 Cell Migration (Scratch) Assay 

HeLa cells (0.6 × 105) were seeded in a 24-well plate in a growth medium. Scratch 
assay was performed as earlier [42]. The rate of cell migration was calculated as 
previously described [43]. 

2.10 RT-qPCR Analysis 

HeLa cells (1 × 105 cells per well) were seeded in a six-well plate and treated 
with vehicle control or HTN-NANOG protein (200 nM) for 3 consecutive days. 
RNA isolation, synthesis of complementary DNA and RT-qPCR were performed and 
analyzed as described previously [44]. The primers used in this study are mentioned 
in Table 3.

2.11 Statistical Analysis 

Data analysis (unpaired student’s t-test) were analyzed using GraphPad Prism 8 
software and presented as mean ± standard deviation (SD) of three independent 
experiments. Values of p < 0.05 (*p < 0.05; ***p < 0.001) were with statistical 
significance.
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Table 3 Primers used in this study 

Gene Primer sequence (5’–3’) Annealing 
temperature (°C) 

Product size 
(bp) 

GAPDH Reverse: 
ACCACCCTGTTGCTGTAGCCAA 

58 131 

Forward: 
GTCTCCTCTGACTTCAACAGCCAA 

P27 Reverse: CAAGCACCTCGGATTTT 52.6 101 

Forward: CTGCCCTCCCCAGTCTCTCT

3 Results 

3.1 Cloning and Expression Parameter Optimization 

The coding (codon-optimized) sequence of human NANOG was fused with three 
fusion tags as shown in Table 1, Fig.  1. The fused gene insert was cloned in pET28a(+) 
to generate two constructs as shown in Fig. 1. These genetic constructs were veri-
fied using restriction analysis using enzymes (Fig. 2) and DNA sequencing. These 
genetic constructs were transformed in E. coli strain BL21(DE3) for expression. 
Next, expression parameters were identified by screening different values (Table 4) 
for maximal soluble expression. 

Based on these observations, maximal soluble expression of NANOG fusion 
proteins was observed with the gene constructs (HTN-NANOG and NANOG-NTH) 
induced at 18 °C (Fig. 3). However, no soluble expression of HTN-NANOG was

Fig. 2 Cloning of gene inserts, HTN-NANOG and NANOG-NTH, in pET28a(+) expression 
vector. The  GOI was fused as per the schematic diagram (top) with human NANOG cDNA sequence 
to generate pET28a(+)-HTN-NANOG and pET28a(+)-NANOG-NTH. The resulting plasmids were 
then confirmed by restriction digestion using various restriction enzymes. GOI, Gene of interest; 
H, His; T, TAT and N, NLS
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Table 4 Summary of the 
optimal expression conditions 
to obtain maximal expression 
of the human HTN-NANOG 
fusion protein in E. coli 

Expression 
parameters 

Values screened Optimal value 

Inducer 
concentration 
(IPTG) (in mM) 

0.05, 0.1, 0.25, 0.50 0.1 

Induction cell 
density (OD600) 

~0.5, ~1.0, ~1.5 ~0.5 

Post-induction 
incubation time (in 
hours) 

2, 4, 8, 12 12 

Induction 
temperature (in °C) 

18, 37 18

induced at 37 °C, and many truncations were observed for NANOG-NTH (37 °C) 
(Fig. 3). Hence, these constructs were excluded from further analyses. Notably, in 
the case of NANOG, only N-terminally tagged NANOG (HTN-NANOG) induced 
at 18 °C showed the maximal soluble expression with no truncations. Hence, this 
gene construct (HTN-NANOG), induced at 18 °C with a post-induction incubation 
time of 12 h, was selected for further experiments (Fig. 3). These results demonstrate 
that the solubility of the protein was improved by reducing the temperature of the 
induced culture. Several studies have demonstrated the expression and purification 
of full-length and truncated recombinant NANOG proteins from several mammalian 
species [12, 45–51]. However, these studies only showed the interaction of NANOG 
with its consensus DNA binding sequence [12, 45, 49–51], however, the compre-
hensive demonstration of bioactivity of full-length human NANOG is still obscure. 
Thus, this study mainly focuses on the exploration of the bioactivity of full-length 
recombinant NANOG protein.

3.2 Purification and Secondary Structure Estimation 
of HTN-NANOG Protein 

After screening the parameters for soluble expression analysis, HTN-NANOG was 
expressed in soluble form when induced at 18 °C. Hence, we aimed to purify this 
protein using a simple and straightforward affinity chromatography-based purifica-
tion procedure. The HTN-NANOG protein band (~55 kDa) was observed in the 
elution fractions (Fig. 4). The purified HTN-NANOG protein was identified using 
SDS-PAGE (Fig. 4; top) and immunoblotting using a histidine antibody (Fig. 4; 
middle) and NANOG antibody (Fig. 4; bottom). Both antibodies detected all protein 
fragments, proving that there was no bacterial protein. Thus, we have demonstrated 
simple and straightforward native purification of the NANOG fusion protein.

The far-ultraviolet CD spectroscopic method is widely used to unveil the folding 
features of certain proteins where the secondary structure is obscure [52, 53]. Thus,
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Fig. 3 Identification of the optimal induction temperature to achieve maximal soluble expres-
sion of recombinant human NANOG fusion protein. E. coli BL21(DE3) strain was transformed 
with pET28a(+) vectors harboring the fusion gene inserts and the expression of both N-terminally 
tagged and C-terminally tagged recombinant NANOG protein was at two different temperatures: 
37 °C (post-incubation time of 2 h) and 18 °C (post-incubation time of 12 h). Then, the harvested 
cells were lysed to obtain the total cell lysate (L) fraction and further centrifuged to obtain a soluble/ 
supernatant (S) cell fraction and an insoluble/pellet (P). Protein samples (20 μg) were loaded on 12% 
SDS-PAGE gel and further verified by immunoblotting (bottom). M, Marker; UI, uninduced (total 
cell lysate); L, cell lysate; P, pellet portion; S, supernatant portion; kDa, kilodaltons; α, antibody. 
(n = 4) * Truncation of fusion proteins

Fig. 4 SDS-PAGE and 
immunoblot analysis of 
NANOG fusion protein 
purification by metal 
affinity chromatography. 
HTN-NANOG protein. M, 
Marker; L, Lysate; S, 
Supernatant portion; FT, 
Flow-through portion; W 
(1–3), Wash buffer (1–3); E, 
Elution portion; kDa, 
Kilodalton; α, Antibody
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(a) (b) 

Fig. 5 Determination of the secondary structure of the NANOG protein using far-UV CD 
spectroscopy. The purified NANOG protein was analyzed for its secondary structures using far-
UV CD spectroscopy. a The CD spectra were represented as delta epsilon (M − 1 cm  − 1; Y-axis) 
vs wavelength (nm; X-axis). b CD spectra were evaluated with the BeStSel online tool, and the 
resulting structural configuration (α-helix, β-sheets, turn and others) is represented using bar graphs 
(n = 3) 

the secondary structural conformation of purified recombinant HTN-NANOG was 
evaluated using CD (Fig. 5a). CD spectrum analysis using the BeStSel tool suggested 
that this fusion protein consisted primarily of random coils (~46%), followed by β-
sheets (~21%), turns (~18%) and α-helices (~15%) (Fig. 5b). The results account 
that purified recombinant HTN-NANOG protein has a secondary structure retained 
post-purification. 

3.3 Stability and Transduction Ability of HTN-NANOG 
Fusion Protein 

Further, the protein stability of the purified NANOG protein was studied. This 
fusion protein was found to be stable for at least 24 h, which was identified using 
immunoblotting with the NANOG antibody (Fig. 6a, b).

Next, we demonstrated the transduction ability of HTN-NANOG fusion protein 
in HDFs using subcellular fractionation. HDFs have no endogenous expression of 
NANOG; therefore, these cells were used in this study. Similar to immunofluores-
cence staining, subcellular fractionation can also be used to know the protein local-
ization in a cell [40, 54]. Moreover, subcellular localization is vital for proper protein 
function. The fractions (nuclear and cytoplasmic) of the human cell lines were sepa-
rated by centrifugation. These fractions were further analyzed by immunoblotting. 
In this study, GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) and Histone 
H3 were used as internal loading controls for the cytoplasmic (GAPDH) and nuclear 
(H3) fractions (Fig. 6c), respectively. Immunoblotting analysis exhibited that the 
majority of the HTN-NANOG fusion proteins were present in the nuclear fraction
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(a) 

(b) 

(c) 

Fig. 6 Stability and localization of HTN-NANOG protein determined with a subcellular frac-
tionation assay. a Stability of purified recombinant proteins under standard cell culture conditions 
was analyzed by immunoblotting. b Densitometric analysis of data from (a) and  (c) representative 
immunoblot showing cytoplasmic (C) and nuclear (N) fractions of NANOG fusion protein-treated 
or untreated (vehicle control) HDFs cells using NANOG, GAPDH and Histone H3 antibodies. M, 
Marker; C, Cytosolic portion; N, Nuclear portion

of cells treated with NANOG. This implied that the fusion tag nuclear localization 
signal (NLS) is responsible for the efficient nuclear translocation of the recombinant 
fusion protein. The homeodomain in human NANOG tends to be localized in the 
nucleus, implying that it has a NLS [55]. The presence of a stretch of six amino acids 
[YKQVKT (136–141 aa)] in the homeobox is responsible for nuclear localization 
[56]. Adding an extra NLS to NANOG sequence has further enabled efficient nuclear 
delivery of the purified recombinant NANOG protein. 

3.4 Effect of the Recombinant HTN-NANOG Protein on Cell 
Proliferation of HDFs 

Several studies have reported that exogenous expression of NANOG in ESCs and 
fibroblasts resulted in increased cell proliferation [57, 58]. In view of this, we also 
explored the effect of NANOG on human fibroblast (HDF) cells. To investigate cell 
proliferation, we counted the cells using a hemocytometer at different time intervals 
and observed augmented cell proliferation of HDFs. The data was analyzed and are 
shown in Fig.  7. The results of our study are in concordant with prior studies [57, 
58]. Hence, our study provides evidence that NANOG plays a proliferative role in 
HDFs and is bioactive.
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Fig. 7 Effect of purified 
HTN-NANOG protein on 
cell proliferation. Cell  
proliferation was assessed 
via cell counting. Y-axis 
signifies the cumulative cell 
number, and the X-axis 
signifies days of treatment (n 
= 3) 

3.5 Effect of the Recombinant HTN-NANOG Protein 
on the Migration of HeLa Cells 

The oncogenic potential of NANOG is well established and its presence has been 
detected in cervical cancer [33, 59, 60]. Forced NANOG expression has been reported 
to result in increased migration, invasion and tumorigenesis in HeLa cells [61]. 
Thus, to confirm that the purified HTN-NANOG fusion protein was biologically 
active, the migration rate of HeLa cells was evaluated using an in vitro scratch assay. 
Based on the observation of the effect of HTN-NANOG protein transduction in HeLa 
cells, NANOG protein-treated wells showed faster cell migration compared to the 
wells treated with the vehicle control (Fig. 8a, b; ***p < 0.001). These results were 
consistent with previously published results [61]. An earlier study used NANOG 
mRNA, but we used NANOG as a recombinant protein in our study for functional 
investigation. Thus, this study demonstrated that the HTN-NANOG fusion protein 
facilitated the migration of HeLa cells and was bioactive.

3.6 Effect of the Recombinant HTN-NANOG Protein 
on the Cell Cycle Inhibitor P27 Gene 

To further explore the functional characteristics of NANOG, we investigated the 
effect of NANOG on cell cycle factor p27 (CDKN1B). Furthermore, p27Kip1 

is a tumor suppressor and inhibitor of Cyclin/Cyclin-Dependent Kinase (CDK) 
complexes. Thus, p27 plays a vital role in the regulation of the cell cycle. Transient 
activation of NANOG in fibroblasts is linked to the downregulation of p27 [62]. 
Hence, we also attempted to examine the effect of HTN-NANOG on p27 mRNA and 
protein levels in HeLa cells. Cells were harvested for RNA isolation and complemen-
tary DNA (cDNA) synthesis was carried out from total RNA. Quantitative real-time
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(a) (b) 

Fig. 8 Effect of purified HTN-NANOG protein on the migration of HeLa cells. a Scratch assay 
of HeLa cells. Cell migration was induced in the presence of HTN-NANOG. Scale bar: 100 μm. 
b Graphical representation of the changes in migration rate following treatment with vehicle control 
or NANOG protein. Quantitative data are expressed as the mean ± SD (n = 3). ***p < 0.0001

PCR (RT-qPCR) was performed using GAPDH as a reference. The data indicated a 
significant decrease in the p27 at RNA level (Fig. 9a; *p < 0.05). To further validate 
this at the protein level, we performed immunoblotting using β-actin as a loading 
control for normalization (Fig. 9b). Immunoblotting analysis showed that the expres-
sion of p27 was downregulated at the protein level in the presence of HTN-NANOG. 
These data demonstrate that the downregulation of the p27 (at RNA and protein level) 
in the presence of protein is in line with an earlier reported study [62]. Hence, this 
confirms that the purified recombinant HTN-NANOG protein is bioactive.

4 Discussion 

Human NANOG (915 bp) contains four exons and three introns. The human NANOG 
protein is a long chain of 305 amino acids and has N-terminal, homeobox domain and 
C-terminal region. The N-terminal region (94 aa) is abundant in serine, proline and 
threonine and is responsible for governing the transcription of NANOG. The home-
obox domain (60 aa) binds to the DNA core region. The C-terminal region (151 aa)
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Fig. 9 Effect of the 
purified HTN-NANOG 
fusion protein on p27 levels 
in HeLa cells. a Relative 
expression of the p27 mRNA 
in vehicle control and 
HTN-NANOG analyzed by 
RT-qPCR. Quantitative 
statistics are shown as the 
mean ± SD (n = 3). *p < 
0.05. b Immunoblot analysis 
of p27 protein expression in 
the presence of the vehicle 
control and NANOG protein 
(n = 3)

(a) (b)

is tryptophan-rich, and investigations have shown that this region is responsible for 
homodimerization. Thus, NANOG acts as a transcription factor by controlling tran-
scription through interactions with the promoters of myriad genes via these domains 
[55, 56, 63]. NANOG is a transcriptional activator that binds to the 5’–TAAT–3’ 
essential regions of the DNA sequence [64, 65]. A triad of transcription factors, 
including OCT4, SOX2 and NANOG, appear to be at the heart of pluripotency [11]. 
Unlike OCT4 and SOX2, solitary NANOG cells conserve pluripotency in the absence 
of pluripotency maintenance signals. Knockdown studies have revealed the crucial 
role of NANOG in embryogenesis staging. NANOG is important for the maintenance 
of self-renewal and pluripotency. These properties prevent the ESCs and iPSCs from 
differentiation [11]. 

Additionally, NANOG facilitates pre-iPS cells to attain ground-state pluripotency 
(iPSCs), which is crucial in the process of molecular reprogramming [9]. During the 
reprogramming of somatic cells, NANOG plays a critical role in inducing pluripo-
tency [9]. NANOG boosts the activation of STAT3; hence, the synergistic action 
between them promotes the establishment of naive pluripotency in ESCs and during 
the initial stages of reprogramming [66]. iPSCs that are deficient in NANOG are 
identical to wild-type iPSCs in transcriptional status; and upon further exploration, 
teratomas and chimeric formation are underpinned. Hence, this study demonstrates 
that NANOG is dispensable for iPSC formation [19]. A recent study has demon-
strated the distinctive ability of human NANOG to initiate prion-like clusters. These 
assemblies could act as a means for delivering DNA elements for their interactions 
with others, which is essential for the re-organization of chromatin structures and 
activation of ground-state pluripotency in a dose-dependent manner [67]. 

We successfully purified HTN-NANOG from a soluble fraction of E. coli cultures 
using affinity chromatography. Based on these observations, the soluble protein 
expression was relatively low (purity >90%) and might be due to its aggregation 
property when induced at larger volumes. Additionally, another study reported the
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purification of human NANOG, in which, among all the domains, the C-terminal 
domain has limited solubility. In contrast, the homeodomain and N-terminal domains 
are favorably soluble [51]. Strikingly, another study also showed the expression of 
full-length human NANOG protein along with 17 kDa protein (Skp) chaperone [51]. 
The role of Skp is to aid the folding of outer membrane proteins and their entry into 
membranes. Furthermore, Skp is well established to enhance the folding of recombi-
nant proteins and further, directs the cargo to the periplasm of E. coli [68]. In agree-
ment with the preceding evidence, the wild-type NANOG-GB1 fusion protein was 
also expressed and found to be soluble when co-expressed with the Skp chaperone. 
This study reasoned that the Skp chaperone is equipped with a hydrophobic cage that 
encases wild-type NANOG and further co-operates with tryptophan residues upon 
exposure [67]. In addition, human NANOG, by virtue of its C-terminal domain, is 
apt for aggregation, which accounts for the limited biophysical characterization of 
the protein and its individual domains [67]. Therefore, we aimed to determine the 
secondary structure of the full-length NANOG fusion protein. 

The crystal structure of homeodomain NANOG has been documented as a struc-
tural scaffold formed by three helices in both mice and humans [45, 69]. A recent 
study showed that the CD spectra of each domain individually, the N-terminal 
domain of human NANOG, comprises intrinsically disordered regions responsible 
for displaying a random-coil signature in NMR spectra and are further found in line 
with the computational prediction [67]. In contrast, the far-UV CD spectra of the 
C-terminal domain revealed β-sheets and resulted in a reduced number of β-sheets 
in the mutated version of human NANOG [67]. According to available data, our 
study showed that the secondary structure of the full-length HTN-NANOG protein 
is retained and is likely to be bioactive. 

A multitude of studies has been reported on the generation of reprogramming 
factors, namely, OCT4, SOX2, NANOG, PDX1, NGN3, GLIS1, GATA4, TBX5, 
HAND2, ETS2, MEF2C and MESP1, in E. coli using similar approaches [35, 40, 42, 
44, 58, 62, 70–78]. These investigations also revealed the utility of NLS in proteins 
that facilitate the delivery of recombinant proteins to the nucleus in human cells. 
Several reports have observed that the fusion tags [post protein delivery into cells 
(via TAT) and their nucleus (via NLS)] do not hamper the bioactivity of recombinant 
proteins [35, 39, 40, 44, 58, 62, 70–73, 78]. Thus, cytoplasmic and nuclear transport 
of reprogramming factors can be attained via TAT and NLS fusion without requiring 
additional transduction reagents. For this, we demonstrated that the protein is stable 
under standard cell culture conditions and has the ability to enter the nucleus using 
a subnuclear fractionation assay. 

Additionally, our study highlights the proliferative effect of recombinant NANOG 
on human dermal fibroblasts, emphasizing its role in malignancy. Next, we analyzed 
the impact of exogenously delivered NANOG fusion proteins on HeLa cell migration. 
Thus, we revealed that the stem cell-linked factor NANOG possesses tumorigenic 
properties in cervical cancer. Furthermore, we observed the downregulation of p27 
in HeLa cells in the presence of NANOG at the mRNA and protein levels. This study 
provides evidence that tagging the protein at either terminal does not hinder its bioac-
tivity. The generation of biologically active NANOG might trigger the endogenous
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expression of NANOG and may also participate in the auto- and inter-regulatory loops 
of pluripotency during the induction of iPSCs. The proliferative effect of NANOG 
on cells may offer an excellent platform for the expansion of mature cells in vitro. 
From a cancer perspective, it may act as a molecular marker for prognosis and cure. 
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