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Abstract 

For a long time, chemotaxis in root-knot nematodes has received scant attention. 
In recent years, however, this topic has captured the attention of several 
researchers worldwide. Chemotaxis refers to the movement of living organisms 
towards or away from a chemical gradient. Second-stage juveniles (J2s) hatching 
from eggs are the only infective stage of Meloidogyne spp., and they locate their 
host through chemotaxis by sensing host-secreted chemoattractants. Despite its 
importance in the host location process, the structures and properties of 
compounds that are attractive to Meloidogyne spp. J2s are not well understood. 
This chapter will present a compilation of information on the attractiveness of 
volatile and non-volatile compounds identified in emissions from plant roots and 
microorganisms. The obstacles in chemotaxis studies, which include the charac-
terization of compounds that attract or repel, the limitations of in vitro 
methodologies, such as Petri dishes filled with agar and the challenges of studies 
using soil, will be presented. On the other hand, the advances achieved in the 
recent years and how chemotaxis can be manipulated to manage these important 
soil-borne pathogens will also be discussed. 
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3.1 Introduction 

Root-knot nematodes (Meloidogyne spp.) are the most widespread and damaging 
among the plant-parasitic nematodes. These pathogens cause losses in agriculture 
that are estimated to be around US$157 billion per year (Coyne et al. 2018). These 
nematodes are obligate biotrophic parasites that penetrate into the roots of host plants 
to obtain food. They molt once inside the eggs, and the second-stage juveniles (J2s) 
hatch and move through the soil to find suitable hosts before their energy reserves are 
depleted. They enter just behind the root tips and establish the feeding site at the 
vascular tissue, known as giant cells and the external symptom as gall or root-knot. 
The nematode feeds and molts three more times before it reaches maturity when 
females lay eggs in a gelatinous matrix. The eggs hatch, and J2s, the only infective 
stage, will spread in the soil again, searching for new penetration sites in the same 
host or new hosts. 

Molecules produced by one organism with the property of influencing the 
behaviour of other organisms are called semiochemicals or signaling molecules 
(Robinson and Perry 2006). When these interactions involve members of different 
species, they are named allelochemicals (Perry 1996). Semiochemicals influence all 
relationships among living organisms in nature. The process by which Meloidogyne 
spp. J2s follow chemical gradients to find a suitable host plant is known as chemo-
taxis. Nematodes use chemotaxis to locate food, for mating, to avoid predators and 
many other behavioural responses (Zuckerman and Jansson 1984). The most impor-
tant semiochemicals that attract or repel Meloidogyne spp. are the ones produced by 
plants (Kihika et al. 2017; Murungi et al. 2018; Sikder and Vestergård 2020). Factors 
such as the presence of microorganisms, root zone and age, soil composition and 
texture heavily influence the attractiveness to Meloidogyne spp. J2s (Perry 1996; 
Rocha et al. 2016). Water-soluble compounds are used for short distance, whereas 
volatile organic compounds (VOCs) are used in long range chemotaxis (Čepulytė 
et al. 2018; Wang et al. 2019; Sikder and Vestergård 2020). Chemotaxis in 
Meloidogyne spp. has been extensively studied since its first demonstration 
(Lindford 1939), but only recently, due to the use of modern techniques, the 
compounds that exert chemotaxis are being revealed (Van Dam and Bouwmeester 
2016). 

Our objective in this chapter is to review the information on chemotaxis in 
Meloidogyne spp. J2s towards or away from the emitting source, with emphasis on 
chemicals produced by plants and microorganisms. The possible applications of 
chemotaxis in managing these pathogens are also discussed. 

3.2 Perception of Environmental Stimuli by Meloidogyne spp. 

In order to find suitable hosts, nematodes need to assimilate information from their 
external environment via sensing organs or sensilla (Perry 1996), most of which are 
located in the anterior end of the nematode body. Of all the nematode sensilla, the 
amphids are considered to be the primary chemosensilla. These organs are situated



on either side of the nematode mouth, open to the exterior via a prominent pore 
(Bargmann 2006). Each amphid contains sensory cilia, dendrites of chemosensory 
neurons, that are exposed to the environment via a pore in the cuticle (Siddique et al. 
2022). Axonal processes from these neurons project into the circumpharyngeal nerve 
ring, the main mass of the nematode central nervous system, where much of the 
sensory integration takes place. Sensory organs in the tail region are known as 
phasmids, and they are similar in general structure to the amphids, each consisting 
of an external pore. Anatomy and chemosensation in functional studies implicate 
amphid and phasmid neurons in chemosensation (Robinson and Perry 2006). 
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Migration of the nematode is enabled by separate innervation of dorsal and 
ventral muscle trunks by their respective nerve chords along most of the body 
length. Innervation is achieved via somatic muscle arms that extend to and synapse 
only with their respective dorsal or ventral nerve chords (Robinson and Perry 2006). 

3.3 Rhizosphere Gradients 

Meloidogyne species chemotaxis can be defined as the migration oriented with 
respect to a chemical stimulus gradient. The soil volume affected by roots—the 
rhizosphere—establishes several chemical gradients that affect the Meloidogyne spp. 
J2 movement (Fig. 3.1). It is certain that some of these gradients constitute cues that 
allow the migration of nematodes towards the root region. 

Several authors have shown that most gradients in the rhizosphere extent for 
0.5–4 mm, but gases may exceed this limit (Kuzyakov and Razavi 2019). The 
following are some of the gradients formed in the rhizosphere that are thought to 
help J2s find roots and establish a feeding site before their energy reserves are 
completely depleted (Rocha et al. 2010). 

3.3.1 Carbon dioxide (CO2) 

The most frequently suggested attractant for plant-parasitic nematodes has been CO2 

(Klingler 1965; Pline and Dusenbery 1987). Carbon dioxide was long regarded as 
the most common and potent nematode attractant in nature (Robinson and Perry 
2006). 

By using planar optodes, a non-destructive visualization technique, gradients of 
CO2 were clearly visible around root tips but less pronounced around mature root 
parts, probably due to high root respiration and microbial activity around the tips 
(Holz et al. 2020). The mean CO2 concentration at the root center of young roots was 
0.26 μmol L-1 , which was higher than in bulk soil. This CO2-sensitive sensor 
revealed a CO2 rhizosphere range of 1.5–3 mm (Holz et al. 2020). This seems to 
be a relatively short distance considering the gaseous nature of carbon dioxide. It is 
important to note that Meloidogyne spp. J2s only penetrate at a region just after the 
root tip.



m

88 W. C. Terra et al.

Fig. 3.1 Gradients in the rhizosphere that affect the chemotaxis of second-stage juvenile (J2s) of 
Meloidogyne spp. towards the root system. These gradients include root exudates, volatile organic 
compounds (VOCs), organic compounds, CO2 and pH, all of them under the influence of the 
microbes inhabiting the rhizosphere 

3.3.2 pH 

The release of H+ by roots into slightly acidic, neutral and alkaline soils (without N 
fertilization) is one of the dominant mechanisms of plants to mobilize nutrients and 
maintain the electrochemical potential on the root surface (Kuzyakov and Razavi 
2019). The common distance of root-induced pH changes is about 2–3 m  
(Blossfeld et al. 2010). 

Meloidogyne hapla was shown to be attracted to pH gradients between 4.5 and 
5.4 formed by acetic acid and several other Brønsted acids (Wang et al. 2009). This 
observation is consistent with the idea that low pH is an attractant for nematodes. As 
mentioned above, root-knot nematodes have been reported to be attracted to CO2; 
however, the study suggested that this attraction may be due to CO2-acidified 
solutions rather than to CO2 itself.
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3.3.3 Organic Compounds 

The organic compounds released by living roots into the soil are collectively referred 
to as rhizodeposits. It is estimated that approximately 3% of the assimilated C is 
released by plants as rhizodeposits, including the continuously and passively 
released exudates and the dynamically and actively released mucilage, secretions 
and enzymes from various root zones (Pausch and Kuzyakov 2018). Most root 
exudation takes place at the root tips, and two main mechanisms decrease the 
concentration of organic compounds in soil solution: (1) microbial uptake and 
utilization/modification and (2) sorption on surfaces of minerals or organic matter 
(Kuzyakov and Razavi 2019). The rhizosphere extent measured by 14 C imaging of 
exudates is usually only 2–3 mm (Holz et al. 2018). 

In recent years, a variety of volatile and non-volatile organic compounds released 
by roots of host plants have been identified as attractants or repellents to 
Meloidogyne spp. J2s (Kirwa et al. 2018; Tsai et al. 2021). Oota et al. (2019), 
using cryo time-of-flight secondary ion mass spectrometry/scanning electron 
microscopy (cryo-TOF-SIMS/SEM) analyzes, techniques used to visualize the dis-
tribution of water-soluble compounds in freeze-fixed samples at microscopic reso-
lution level, demonstrated that propane-1,3-diamine, putrescine and especially 
cadaverine (Fig. 3.2), are potent attractants to J2s of M. incognita. These compounds 
are produced and released by soybean root tips and form a gradient up to 250 μm 
from the root surface. 

The evaluation of rhizosphere extent and shape are more complicated for signal-
ling compounds like secondary metabolites and other chemoattractants because most 
of them are volatile and are not strongly absorbed by soil minerals. Consequently,

Fig. 3.2 Chemical structures of semiochemicals shown to influence Meloidogyne spp. chemotaxis. 
(a) Diamines produced by soybean roots that attract J2s of M. incognita. (b) Chemical structures of 
heterocyclic organic compounds produced by microorganisms. (c) Ascarosides produced by 
Meloidogyne spp. affect chemotaxis towards plant roots and nematode-trapping fungi



the travel distances and concentration gradients of some signalling compounds are 
very dynamic and dependent on soil properties (Kuzyakov and Razavi 2019).
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3.4 Distances Root-Knot Nematodes Move 

After hatching from the egg, Meloidogyne spp. J2s have to find a suitable host plant 
root to penetrate, otherwise, they will starve to death in approximately 7 days (Rocha 
et al. 2010; Campos et al. 2011). After the perception of chemical signals through the 
sensory organs, J2s start moving towards attractive gradients or in the opposite 
direction of repellent gradients. An issue still not well understood is the distance that 
J2s can migrate before losing their infective capacity. 

Studies on the distances Meloidogyne spp. J2s move have generated a wide range 
of results. While some studies indicated that Meloidogyne spp. J2s were able to 
migrate more than 50 cm and infect the host plant; other studies showed a drastic 
reduction in migration and infectivity when J2s were placed 5 cm away from the host 
(Prot 1976; Rocha et al. 2016). 

Nematode migration depends on the relation between pore size and J2 body 
diameter and the thickness of water films adhered to soil particles (Wallace 1968), 
among many other factors. Soil moisture has been kept close to ideal for the 
nematode movement in migration studies. On the other hand, soil texture and the 
three-dimensional environment in which J2s are inserted have varied. Vertical and 
horizontal migration of Meloidogyne spp. J2s have been studied mainly in three-
dimensional systems using columns filled with sand (Prot 1976; Prot and van Gundy 
1981; Pinkerton et al. 1987; Oliveira et al. 2020; Leitão et al. 2021a, b). In these 
apparatuses, the test nematode is placed at one end of the column and a bait plant at 
the opposite end, where J2s can migrate over different distances and periods of time 
(Leitão et al. 2021a). 

Using columns with a diameter of 1.2 cm, Prot (1976) observed that J2s of 
M. javanica placed 75 cm vertically and 50 cm horizontally from tomato plants 
were capable of penetrating the roots in large numbers. Using the same apparatus, 
Prot and Van Gundy (1981) reported that up to 34% of M. incognita J2s were able to 
penetrate tomato roots after migrating 20 cm from the infestation point. Probably the 
small diameter used in these studies restricted nematode horizontal dispersal and 
imposed a vertical migration. In vertical columns with 4 cm of diameter assembled 
with metal or PVC rings, approximately 40% of M. enterolobii (Oliveira et al. 2020), 
5% of the M. floridensis (Leitão et al. 2021b) and 1.6% of M. incognita (Leitão et al. 
2021a) J2s were able to migrate 13 cm upwards after 9 days of infestation. By using 
a similar apparatus, Eo et al. (2007) reported that less than 10% of the M. incognita 
J2s migrated more than 7.5 cm 10 days after soil infestation. On the other hand, 
Pinkerton et al. (1987), using columns with a larger diameter (8.25 cm), filled with 
soil containing 16% clay plus silt, observed that less than 0.1% of the J2s of 
M. chitwoodii were able to migrate 45 cm and penetrate tomato roots. 

After reaching the roots, only a small percentage will effectively penetrate and 
this percentage is highly dependent on the energy reserves. For example, when J2s of



M. javanica were placed 7.5 cm away from soybean roots in plastic pots, only 0.2% 
of them were able to penetrate the roots in a period of 5 days (L. Andrade-Souza, 
unpublished data). 
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These studies were performed with different set-ups, nematode species and soil 
characteristics and therefore are difficult to compare. Species such as M. marylandi 
and M. javanica are more motile than M. incognita (Oka 2020; Leitão et al. 2021b) 
and are expected to move longer distances. Nematodes appear to move longer 
distances in clayey than in sandy soils (Rocha et al. 2016). In addition to the 
Meloidogyne species and soil textures, migration distances are also influenced by 
the presence of bait plants, soil humidity, nutrients and salts, microorganisms and the 
amount of lipid reserves in the J2 body (Rocha et al. 2010, 2016). Probably, although 
there is no information on this topic, the amounts of reserves influence the capacity 
of these J2s to perceive and respond to chemical cues. 

3.5 Compounds that Influence Meloidogyne Chemotaxis 

The search for attractants and repellents to phytonematodes has been an ongoing 
endeavour. The chemical composition and identity of the plant-derived compounds 
that elicit nematode responses are mostly unknown. However, the precise and high-
throughput detection and identification of semiochemicals from soils and 
rhizospheres have improved in recent times due to the development and higher 
sensitivity of scientific instrumentation (Torto et al. 2018). Interest in such molecules 
has increased with the need for new technologies to control nematodes (Oka 2021). 

3.5.1 Plant Exudates 

The main source of chemoattractants are exudates released by plants and metabolites 
secreted by microorganisms. Exudates are composed of high-molecular-weight 
polysaccharides and lower-molecular-weight organic compounds such as sugars, 
amino acids, flavonoids, tannins and other phenolic compounds, enzymes, fatty 
acids, growth regulators, nucleotides, carbohydrates, steroids, terpenes, alkaloids, 
polyacetylenes and vitamins (Bertin et al. 2003). They are released as a product of 
the interaction of the plant or microorganism with the environment that surrounds 
them (Kihika et al. 2017; Oota et al. 2019). The molecules perceived by nematodes 
include carbohydrates, amino acids, flavonoids, thiazoles, benzoxazinoids, 
terpenoids, alkaloids and many others (Sikder and Vestergård 2020; Sikder et al. 
2021; Tsai et al. 2021). 

Studies on the attractiveness and repellence of chemical compounds require 
specific tools. In vitro studies are carried out in Petri plates (Fig. 3.3), using water 
agar, agarose or pluronic F-127 gel (Williamson et al. 2009; Shivakumara et al. 
2018; Liu et al. 2019; Oota et al. 2019; Oka 2020) or in adapted olfactometers filled 
with sand (Reynolds et al. 2011; Kihika et al. 2017; Murungi et al. 2018; Kirwa et al.
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2018; Torto et al. 2018). Evaluations include most commonly counting the number 
of J2s that migrate to determined zones in the plates or olfactometers (Pacheco et al. 
2021), number of stylet thrusts in selected specimens (Dutta et al. 2012; Kirwa et al. 
2018) and time-lapse photographic evaluations of nematode tracks (Wuyts et al. 
2006). Experiments with plants are generally carried out using pots connected by 
tubes (Kihika et al. 2017; Wang et al. 2019; Pacheco et al. 2021; Fig. 3.3), where 
recovery of nematodes from soil or sand may be challenging due to the low efficacy 
of the extraction methods.
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VOCs are among the metabolites that compose exudates and are currently one of 
the most explored. They have up to 20 carbon atoms in their chemical structures and 
tend to present high vapour pressure, being easily released and dispersed in the 
environment (Dudareva et al. 2006). Several VOCs from different chemical groups 
had their toxicity to nematodes verified, and recently their attractiveness and 
repellence potential have been studied (Murungi et al. 2018; Oka 2021; Pacheco 
et al. 2021). 

Nematode responses to plants are complex, and to illustrate this point, Wang et al. 
(2018a) measured the attractiveness of root tips, root exudates and extracts of 
marigold, a known trap plant and of soybean and pepper. They found that the root 
tips of all three species attracted M. incognita J2s, but only soybean root tips 
attracted Heterodera glycines. On the other hand, these three species’ root exudates 
and root extracts attracted H. glycines, but repelled M. incognita. Although the 
chemoattractants were fractionated and found to be polar in their chemical nature, 
they were not identified. Similar species-dependent responses were also found for 
root border cells of different plant species to M. incognita (Zhao et al. 2000). 

Susceptible and resistant cultivars of Capsicum annum and tomato showed that 
root exudates and VOCs emitted by susceptible plants are more attractive to 
M. incognita J2s than those emitted by resistant cultivars (Yang et al. 2016; Kihika 
et al. 2017). In addition to VOCs, some carbohydrates and proteins were related to 
the attractiveness of root-knot nematodes. Arabidopsis seeds attract M. incognita 
J2s, but it was dependent on the composition and presence of the seed-coat mucilage. 
Mutants that did not produce mucilage did not attract. Mucilage itself was not able to 
attract J2s, other components, such as carbohydrates and proteins, were determinant 
(Tsai et al. 2019). 

3.5.2 Pure Chemical Compounds 

Root-knot nematode species are among the most used in chemotaxis studies, espe-
cially M. incognita. A common approach adopted by many authors is the detection 
and identification of plant-derived chemicals by different techniques, such as gas 
chromatography (GC) coupled with mass spectrometry (MS) for volatiles and high-
performance liquid chromatography (HPLC) coupled with MS for non-volatiles, 
followed by testing the pure chemicals in chemotaxis bioassays. Many compounds 
derived from plants were tested in their pure form, and their effects on chemotaxis 
have been confirmed (Table 3.1). These studies are difficult to compare because they
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were done with different methods, nematode species and populations and chemicals, 
without any standardized controls across studies. In this chapter, we made an effort 
to compile the studies with purified chemicals tested in chemotaxis of Meloidogyne 
species in a quantitative way, whenever possible (Table 3.1). The determination of a 
chemotaxis index (CI) is the most common way of presenting the data. This is a 
convenient way to make comparisons, especially when the methods are the same, but 
one should always keep the differences in mind. For example, salicylic acid was 
used in four different studies and in only one of them, it did not attract M. incognita, 
although it did not repel (Table 3.1). In these four studies, the chemotaxis index 
varied from 0.09 to 0.42 and four different methods were used to determine CI 
(Table 3.1), illustrating the difficulties of comparing these data. Nevertheless, when 
the methods are the same, there is value in comparing the CIs obtained in different 
studies. As an example, the CI of methyl salicylate (MeSA) in sand varied from 0.16 
to 0.52 in one study and from 0.2 to 0.48 in another, both in the same range 
(Table 3.1).

100 W. C. Terra et al.

Although studies on chemotaxis are done with pure compounds, semiochemicals 
are not expected to exert their activities isolated, but in complex mixtures. In some 
studies, this aspect was taken into consideration. For example, MeSA was detected 
in tomato roots and shown to contribute to the attractiveness of tomato to 
M. incognita, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to 
the attractiveness of spinach. MeSA exerted a stronger attraction even when mixed 
with other compounds and was responsible for the preference of tomato over spinach 
by M. incognita (Murungi et al. 2018). The blend composed of α-pinene + limonene 
+2-methoxy-3-(1-methylpropyl)-pyrazine + tridecane + MeSA was highly attractive 
to J2s of M. incognita. However, when MeSA was removed from the blend, the 
attractiveness was drastically reduced. Similarly, thymol induced negative chemo-
taxis (repellence) when it was added in any blend (Kihika et al. 2017). 

There is an effect of the concentration for many of these chemical compounds, 
where lower concentrations attract nematodes and higher concentrations repel them 
and vice versa (Li et al. 2019; Tables 3.1 and 3.2). This is another factor that makes 
comparisons across studies difficult because there is no standardization among 
studies. Additionally, some compounds detected in root exudates might be 
contaminants from soil, microorganisms or the extraction process. One possible 
example is dibutyl phthalate, a common plasticizing agent, that was detected in 
tomato root exudates (Yang et al. 2016). Although its origin is unknown, it has been 
reported to be produced by filamentous fungi in nature (Tian et al. 2016). 

It appears that there is no universal chemical that will function in the same way for 
all Meloidogyne spp. However, some chemical characteristics gave some hints in 
determined systems. For example, Oota et al. (2019) found that only diamines with a 
backbone containing three to five carbons, including cadaverine, putrescine and 
propane-1,3-diamine attracted J2s of M. incognita among the 376 compounds tested. 
Cadaverine was the most attractive compound to J2s of M. incognita, but it had no 
effect on M. arenaria and M. enterolobii, showing that this specificity may deter-
mine the host range of different Meloidogyne spp. (Oota et al. 2019). According to 
the authors, cadaverine is released by stressed plants, leading nematodes to potential
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hosts with a compromised immunity. In another study, Oka (2020) found that the 
most attractive chemicals to three different Meloidogyne spp. in a screening of 
60 pure compounds contained a methoxy group (OCH3) and postulated that its 
presence may play a role in attraction. Although the methoxy group was present in 
the attractants reported by Oka (2020), it is absent from widely known list of 
semiochemicals such as salicylic acid and carvacrol (attractants) and thymol and 
trans-cinnamic acid (repellents).
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Non-volatile compounds from tomato root exudates were fractionated and the 
phytohormone zeatin (cytokinin) was shown to be attractive to the M. incognita J2s, 
whereas the flavonoid quercetin elicited concentration-dependent responses, being 
attractive at low concentrations and repellent at high concentrations (Kirwa et al. 
2018). These results indicate that the concentration of certain chemicals and the ratio 
among compounds in mixtures determine the complex responses of Meloidogyne 
spp. (Kirwa et al. 2018). Furthermore, zeatin was shown to be secreted by 
M. incognita and is probably used in the manipulation of plant hormone balance 
in the initial stages of invasion for the establishment of feeding sites (Dowd et al. 
2017; Kirwa et al. 2018). It appears that most phytohormones are somehow involved 
in the attractiveness of Meloidogyne to plants, including indolacetic acid (IAA), 
salicylic acid, jasmonic acid and ethylene (Wuyts et al. 2006; Bhattarai et al. 2008; 
Curtis 2008; Fudali et al. 2013; Fleming et al. 2017; Zinovieva et al. 2021). Salicylic 
acid was shown to be an attractant of M. incognita J2s, but it also inhibited egg 
hatching and had nematicidal effects (Wuyts et al. 2006). Foliar or drench 
applications of salicylic acid suppressed M. incognita (Maheshwari and Anwar 
1990; Nandi et al. 2003), probably by increasing the level of plant resistance. 
However, exogenous application of IAA decreased the resistance of plants to 
M. incognita (Curtis 2008). Mutants deficient in the accumulation of salicylic acid 
and ethylene attracted more J2s than the wild type (Fudali et al. 2013; Čepulyté et al. 
2018), whereas the role of jasmonic acid in chemotaxis is less understood (Bhattarai 
et al. 2008). In addition to VOCs and phytohormones, Meloidogyne spp. also 
responds to fatty acids, such as lauric acid that was found in exudates of crown 
daisy (Dong et al. 2014) and palmitic and linoleic acid from roots of castor bean 
(Dong et al. 2018). 

In a relatively large-scale screening, Oka (2020) tested 60 pure aromatic 
compounds against M. incognita, M. javanica, M. marylandi and M. hapla and 
found that none of the compounds was repellent, even the ones with nematicidal 
activity, such as carvacrol. Meloidogyne incognita did not respond to any of the 
compounds and 35 of them attracted at least one of the three other species, and 
13 were considered highly attractive (Table 3.1). Although M. javanica and 
M. hapla are considered species with a broad host range, the specialist 
M. marylandi was attracted to more chemicals. In this study, thymol and salicylic 
acid, previously found to be repellent and attractant, respectively, by other authors 
(Fleming et al. 2017; Kihika et al. 2017; Wuyts et al. 2006), did not elicit any 
response from M. incognita. These results raise awareness to the fact that either the 
methodology used by Oka (2020) needs to be further evaluated or populations of 
M. incognita are responding differently to the same chemicals as implied by Wang



et al. (2009). In a follow-up study, Oka (2021) used a bioassay with trap tubes filled 
with sand. In contrast with the other study (Oka 2020), the author was able to show 
attraction of M. incognita J2s to salicylic acid and less attractiveness of all species of 
Meloidogyne to carvacrol (Table 3.1). Differential responses are known to occur 
among Meloidogyne species and their nature is still unknown. More investigations in 
this area will uncover if there is any link between chemotaxis and host range. 
Additionally, the concentrations used in laboratory assays are not always realistic 
in the field. 
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3.5.3 Nematode-Derived Compounds 

The semiochemical compounds described up to now are produced either by plants or 
by microorganisms in soil or in the rhizosphere. However, there is a large class of 
glycosidic hormones called ascarosides, universally conserved among nematodes 
that function in mate location, aggregation and regulation of development (Choe 
et al. 2012; Schroeder 2015). Ascarosides seem to be devoid of antimicrobial activity 
and sometimes may act against parasitic nematodes as they are also perceived by 
other microorganisms such as nematophagous fungi, that are induced to produce 
trapping structures to capture nematodes moving in soil (Hsueh et al. 2013). These 
molecules are also perceived by plant roots at pico to nano molar concentrations and 
elicit systemic resistance to nematodes and other pathogens, in plants as diverse as 
tomato, Arabidopsis and barley (Manosalva et al. 2015). 

Ascaroside ascr#18 (Fig. 3.2), the most common in Meloidogyne spp. and other 
nematodes, is a weak attractant to nemadodes (Hamada et al. 2020). This compound 
was shown to be metabolized by plants and transformed into ascr#9 (Fig. 3.2), which 
in mixtures with asc#18 repelled J2s of M. incognita (Manohar et al. 2020). It has 
also been shown that repellence, rather than systemic resistance, was mainly respon-
sible for the reduced infection by M. incognita (Manohar et al. 2020). Therefore, 
these mixtures of ascarosides seem to interfere with the plant-nematode interaction 
by reducing the level of infection. 

3.5.4 Inorganic Compounds 

Inorganic salts and ions were investigated for their effect on the chemotaxis of 
M. incognita J2s and most of them were found to be repellent. No salt was found 
to be a consistent attractant to the J2s of this species. In some cases, higher 
concentrations resulted in stronger repellence (Qi et al. 2015). Salts of nitrate 
(NO-

3 Þ, ammonium NHþ 
4 , thiocyanate (SCN

-), cesium (Cs+ ), potassium (K+ ) 
and sodium (Na+ ) were among the most repellent (Castro et al. 1990; Le Saux and 
Quénehervé 2002; Qi et al. 2015). Salts of chloride (Cl-), sulfate (SO2-

4 Þ, 
hidrogenphosphate HPO-

4 , carbonate CO2-
3 and hydroxide (OH-) repelled at



a lower extent, whereas salts of calcium (Ca2+ ) had no effect (Castro et al. 1990; Le  
Saux and Quénéhervé 2002; Qi et al. 2015). 
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Many of these salts are used as fertilizers and may have a disruptive effect on 
nematode orientation in soil (Qi et al. 2015). Besides repelling nematodes, some 
salts, such as the ones containing ammonium have a nematicidal activity (Oka and 
Pivonia 2002). It would be interesting to determine if these salts can increase the 
efficacy of chemical nematicides when they are combined in joint field applications. 

3.6 Microorganisms Affecting Meloidogyne Chemotaxis 

Plant roots are metabolically active organs that produce exudates and when these 
compounds are released, they attract microorganisms of different trophic levels, 
including saprophytes, symbionts and phytopathogens, such as plant-parasitic 
nematodes (Hol et al. 2013). The rhizosphere is one of the most complex ecosystems 
on earth, fostering millions of microbial cells that can affect the migration of 
nematodes (Korenblum et al. 2020). Surprisingly, despite the extensive number of 
reports demonstrating the influence of root exudates from host plants on the 
behaviour of plant-parasitic nematodes, there have been few studies on the 
behaviour of nematodes with respect to soil microorganisms. Several authors have 
demonstrated that bacteria, mainly in the genera Bacillus and Pseudomonas, are able 
to reduce Meloidogyne spp. penetration and reproduction (Leontopoulos et al. 2017; 
Cruz-Magalhães et al. 2021; Antil et al. 2022; Gowda et al. 2022). It is thought that 
microorganisms, in general, can alter the production of root exudates or modify their 
composition after secretion, thereby affecting nematode chemotaxis. One of the 
main effects of microorganisms is to decrease the attractiveness of the root exudates 
(Padgham and Sikora 2007; Hu et al. 2017; Zhao et al. 2022). 

Bacteria such as Pseudomonas oryzihabitans were shown to inhibit the migration 
of M. javanica J2s by modifying the root exudates, making it less attractive to the 
nematode (Leontopoulos et al. 2017). The efficient colonization of roots by the 
biological control agent Bacillus cereus strain BCM2 was fundamental to repelling 
J2s of M. incognita, leading to 80% reduction in the number of galls (Hu et al. 2017). 
Based on these results, Li et al. (2019) studied the composition of root exudates 
released by tomato plants colonized by B. cereus BCM2 and showed that the 
bacterium changed the composition of the exudates, increasing the number of 
molecules produced, including 2,4-di-tert-butylphenol and 3,3-dimethiloctane, 
which reduced the number of galls and the number of nematodes in soil and plant 
tissue. The VOCs furfural acetone and decan-2-ol from the bacterium Paenibacillus 
polymyxa KM25021–1 attracted J2s of M. incognita in a strategy named “honey-
trap” by the authors (Cheng et al. 2017). These J2s were subsequently killed either 
through fumigation or direct contact with the bacterium, which probably used the 
nematode as a food source. 

In a screening of actinomycetes performed by Wang et al. (2019), 17% of the 
isolates attracted J2s of M. incognita, while 8% repelled them. The selected actino-
mycete Streptomyces plicatus strain G produced the VOC dibenzofuran (Fig. 3.2),



that was a potent attractant to J2s, whereas benzothiazole (Fig. 3.2) was a repellent. 
The attractive effect prevailed when the mixture of purified VOCs or cultures of the 
bacterium were applied to tomato roots. This bacterium may attract the nematodes to 
the roots to use them for their nutrition. 
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Fungi were also shown to affect the chemotaxis of Meloidogyne species J2s. 
Common endophytic fungi such as Fusarium spp. were shown to alter the composi-
tion of root exudates (Hallmann and Sikora 2011) and thereby affect chemotaxis. 
Purpureocillium lavendulum produced the compound 5-methoxymethyl-1H-pyr-
role-2-carboxaldehyde (Fig. 3.2), which attracted J2s of M. incognita at low 
concentrations and was toxic at high concentrations, causing up to 98% mortality 
and inhibiting egg hatching by 81% (Bao et al. 2022). The fungal species Pochonia 
clamydosporia has been widely studied for its antagonistic interaction with plant-
parasitic nematodes. This fungal species produced several VOCs and among them, 
1,4-dimethoxybenzene (Fig. 3.2), which attracted J2s of M. incognita, causing 89% 
mortality and reduced hatching by 86% (Pacheco et al. 2021). The nematophagous 
fungus Arthrobotrys oligospora perceives the presence of nematodes by detecting 
their ascarosides (Hsueh et al. 2013) and is then able to attract these nematodes with 
volatile furanones and at the same time increase the number of traps to capture 
nematodes by signaling with pyrones (Wang et al. 2018b). 

Some of these rhizosphere microorganisms are active ingredients of commercial 
products because they reduce the reproduction of Meloidogyne spp. on plants. 
However, the mode of action of some of them is still unknown, but part of them is 
expected to act by disrupting chemoreception in J2s. 

3.7 Prospects and Potential Uses of Chemotaxis to Manage 
Meloidogyne Species 

Plants and microorganisms rely on chemical communication networks to determine 
the outcome of their interactions (Van Dam and Bouwmeester 2016). The composi-
tion and concentration of semiochemicals impact plant development and health as 
plants evolved strategies to interact with beneficial microorganisms and protect 
themselves against pathogens, such as nematodes (Siddique et al. 2022). 

Several techniques were employed to study chemotaxis in vivo and in vitro 
(Dusenbery 1980, 1983; Castro et al. 1988; Haseeb and Fried 1988; Perry 1996; 
Rocha et al. 2016; Wang et al. 2009; Oka 2020, 2021; Pacheco et al. 2021). These 
techniques have advantages and disadvantages, but none of them is superior. The 
most used in vitro approach is agar plates with demarcated zones to calculate the 
chemotaxis index (Cheng et al. 2017; Zhai et al. 2018) and in vivo/in planta assays 
are pots connected with tubes filled with soil or sand (Wang et al. 2019; Oliveira 
et al. 2020). The most challenging task is extracting the nematodes from the soil 
(Oka 2021). Although assays in sand or soil may best simulate the natural environ-
ment, nematodes cannot be seen in these opaque substrates, instead, they must be 
extracted to monitor migration (Siddique et al. 2022). Nematode extraction 
techniques recover only around 10% of the total number of nematodes placed in



soil (Oka 2020; Viglierchio and Schmitt 1983). Together these two factors may 
explain why most chemotaxis studies are conducted in vitro with Petri dishes. These 
in vitro assays are difficult to standardize because of the variation in set-ups. New 
apparatuses with microchannels filled with a gel appear to allow the quantitative and 
high-throughput efficient determination of chemotaxis in nematodes (Hida et al. 
2015) or standardized chambers made by 3D printers could help standardize the 
chemotaxis tests (Laloum et al. 2020). 
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Many chemicals from plants and microorganisms that play a role in chemotaxis 
are being revealed. These chemicals may be used in nematode management in 
different ways, such as the development of synthetic nematicides by using them as 
lead structures. This may be necessary if the chemicals are not stable enough to be 
used in their natural form. Some chemicals such as carvacrol have dual effects as 
they attract and kill nematodes at the same time (Oka 2020) and can be used directly 
as a nematicide. Plants may not produce enough of these semiochemicals or may 
depend on specific conditions such as temperature and nutrition, and therefore the 
direct application of the purified product might be more efficient, especially when 
they can be produced at low costs. One of the difficulties with synthetic 
semiochemicals is that they appear to be highly specific. Finding compounds that 
would attract a broad range of parasitic nematodes seems to be impossible. Up to this 
moment, there is no universal attractant to all Meloidogyne species. 

Interference with chemotaxis is one of the most promising management strategies 
for nematodes in general. Interference could be applied by using plants or/and 
microorganisms that produce or modify the semiochemicals in order to decrease or 
eliminate chemotaxis, produce repellents or increase the amount of attractive 
chemicals. The final outcome would be the impedance of host location by lack of 
attractants, presence of repellents and a confounding effect that would lead J2s 
overwhelmed and incapable of locating the host. Plants already naturally interfere 
with chemotaxis by perceiving nematode ascarosides, for example, and synthesizing 
chemicals that repel nematodes and induce systemic resistance (Manohar et al. 
2020). Repellence may be selected in different plants, as shown for peppers, 
where resistant cultivars repelled M. incognita J2s whereas the susceptible ones 
attracted (Hu et al. 2017; Kihika et al. 2017). The selection of plants that host more 
microorganisms, such as bacteria and fungi that produce repellent semiochemicals, 
is a strategy that has not yet been exploited but holds promise. Another strategy of 
interest is the modification of plant root exudates by microorganisms. Exudates of 
lettuce are normally attractive to M. incognita, but the inoculation of roots with an 
isolate of Bacillus subtilis turned them repulsive to the nematode (VP Cavalcanti, 
unpublished data). Trap plants are regarded as attractive to Meloidogyne spp. and 
their use is considered effective, especially in small plots. For example, Dong et al. 
(2014) reported that five crown daisy plants can protect one tomato plant from 
M. incognita. Yet another way of interfering with chemotaxis is inserting a physical 
barrier between the nematode and plant roots, such as wrapping with banana tissue 
employed in Africa to control the potato cyst nematode (Ochola et al. 2022).
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Transgenic plants, although not yet widely accepted, are interesting alternatives 
to manage nematodes through chemotaxis. Transgenic potato plants secreting 
peptides that interfere with chemoreception decreased Globodera pallida infection 
and development (Liu et al. 2005). This strategy, which aims to interfere with the 
invasion process rather than with the feeding process adopted in most transgenic 
plants (Atkinson et al. 2003), may be further explored to control Meloidogyne spp. 

The number of studies with the olfactory genes in Meloidogyne spp. is still 
relatively small, but at least 14 genes were characterized in the genome of 
M. incognita (Dong et al. 2014; Shivakumara et al. 2019; Li et al. 2022). When 
these genes were interfered with iRNA by soaking, the J2s lost their attraction 
towards or repulsion away from different semiochemicals that were previously 
known to affect the chemotaxis of J2s of this species (Shivakumara et al. 2019; Li  
et al. 2022). These results indicate that these genes are targets for the development of 
new chemical nematicides that interfere with chemotaxis, new iRNA-based 
nematicides directed to these genes or the development of transgenic plants through 
host-induced gene silencing that would interfere with these genes and disrupt 
chemotaxis. 

Nematode chemotaxis is tightly associated with microorganisms that colonize the 
rhizosphere and soil. Chemicals released by bacteria and fungi (Table 3.2) and other 
interactions that are not yet well understood influence chemotaxis. For example, 
most studies report that mycorrhized plants reduced the ability of nematodes to 
locate and penetrate plant roots by interfering with chemotaxis (Bacetty et al. 2009; 
Vos et al. 2012). Some studies show the contrary, increased infection in mycorrhized 
plants due to a decreased resistance induced by the symbiont (Borowicz 2001; Hol 
and Cook 2005; Frew et al. 2018). However, most studies showing increases in 
nematode populations were done with migratory nematodes, which appear to influ-
ence the outcome (Gough et al. 2020). Metataxonomic studies on the whole 
microbiome with NGS sequencing will shed more light on the complex interactions 
between nematodes and the other microorganisms with whom they share the infec-
tion court. In this context, the microbiome in nematode-suppressive soils may 
harbour the clues needed to build an unfavourable environment for these parasites 
(Topalovic et al. 2020). These types of studies showed changes in the bacterial and 
fungal communities (Wang et al. 2014; Toju and Tanaka 2019; Yergalieyev et al. 
2020; Zhang et al. 2020; Liu et al. 2022) and nematode populations (Sikder et al. 
2021) influenced by semiochemicals or by the presence of nematodes. However, in 
order to turn this knowledge into control measures, more field experiments with 
these anti-nematode microorganisms need to be pursued. 
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