
Chapter 7
Algebraic Geometry

In this chapter, we will study algebraic geometry and its surroundings. First, we will
learn about algebraic sets and manifolds. A manifold is like a globe (an open set
family) that has many local maps (open sets). Each open set must be a one-to-one
correspondence with the open set of the same dimensional Euclidean space, which
allows us to define local variables and local coordinates. The resolution of singular
points, referred to as blow-ups, denotes the process of updating local coordinates
containing singular points to other local coordinates. The Watanabe-Bayes theory
aims to obtain a standard form called normal crossing for each local coordinate. In the
regular case, the dimension d of the parameter is twice the real logarithmic threshold
λ in the general case. This value of λ can be obtained by resolving singular points. In
fact, the resolution of singular points is not directly related to the Watanabe-Bayes
theory. This point is often misunderstood in Watanabe-Bayes theory. Based on the
Hironaka theorem, whether there are singular points or not, in each local coordinate,
we transform the average log-likelihood to normal crossing.

Readers who are learning algebraic geometry for the first timemay not understand
what is written here at all. In such a case, as mentioned in the “Introduction”, I
recommend slowly reading while writing the formulas in each section. If you still do
not understand, I recommend repeating the same thing tomorrow and the day after.
Eventually, you should feel more comfortable.

7.1 Algebraic Sets and Analytical Sets

Hereafter, we denote the set of real-number-coefficient polynomials with variables
x = (x1, . . . , xd) as R[x1, . . . , xd ] or R[x]. At this time, using the subset J of R[x]
(assuming it is not an empty set), we define the set I that can be written as

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
https://doi.org/10.1007/978-981-99-3838-4_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3838-4_7&domain=pdf
https://doi.org/10.1007/978-981-99-3838-4_7


152 7 Algebraic Geometry

I =
{∑

i

fi (x)gi (x) | fi (x) ∈ J, gi (x) ∈ R[x]
}

as the ideal of R[x]. We also say that set J generates the ideal I .

Example 58 For J={x + y2, x − y2, y3} ⊆ R[x, y], I={x f (x, y)+ y2g(x, y) | f,
g ∈ R[x, y]} is the ideal generated by J . In other words, the same ideal is gen-
erated by J = {x, y2}. While I1 = {x f (x, y) | f ∈ R[x, y]} and I2 = {y2g(x, y) |
g ∈ R[x, y]} are ideals, we have

I � x − y2 /∈ I1 ∪ I2.

�

The set of common zeros of the elements of the ideal I is given by

V (I ) = {
x ∈ R

d | f (x) = 0, f ∈ I
} ⊆ R

d

and it is called the algebraic set determined by the ideal I in R[x]. If the algebraic
set V can be expressed as the union of two distinct non-empty algebraic sets V1 and
V2, it is said to be reducible. Otherwise, it’s called irreducible. Hereafter, we assume
that V (I ) is irreducible, and for simplicity, we will refer to it simply as V . In contrast
with the forthcoming projective space Pd , we sometimes denote the d-dimensional
Euclidean space R

d as the affine space A
d according to tradition. When given the

algebraic set V , note that the subset of R[x]

I (V ) = { f ∈ R[x] | f (x) = 0, x ∈ V }

forms an ideal in R[x].
Example 59 The algebraic set of the ideal I generated by J = {x2 + y2} is

V = V (I ) = {
(x, y) ∈ R

2 | x2 + y2 = 0
} = {(0, 0)}

Consequently, I (V ) is

I (V ) = { f ∈ R[x, y] | f (0, 0) = 0} = {
x, y, x2, y2, xy, . . .

}
and it becomes the ideal generated by J = {x, y}.

Similarly, we can construct an analytic set

{x ∈ U | f (x) = 0}
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Fig. 7.1 The case where the elliptic curve y2 = x3 + ax + b does not have a singularity (refer to
Sect. 6.3). The above three types are considered typical

using an analytic function f with an open setU ⊆ R
d as its domain. Using multiple

analytic functions f1, . . . , fd : U → R that share the domain U , we can also define
an analytic set

{x ∈ U | f1(x) = 0, . . . , fd(x) = 0}.

Also, if f : U → V is defined as f = ( f1, . . . , fd) by analytic functions f1, . . . ,
fd : U → R with U, V being open sets in Rd , we call f an analytic map.
In this chapter, we mainly focus on algebraic sets defined by a single irreducible

(i.e., cannot be factored further) polynomial 0 �≡ f ∈ R[x]

V ( f ) = {x ∈ R
d | f (x) = 0} ⊆ R

d

or analytic sets constituted by a single analytic function f : U → R

V ( f ) = {x ∈ U | f (x) = 0} ⊆ U.

Example 60 (Elliptic curve) For a, b ∈ R, a curve on a plane determined by the
polynomial of 2 variables f (x, y) = y2 − x3 − ax − b = 0 is called an elliptic
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curve. Try to draw the outline of the algebraic set

V ( f ) = {(x, y) ∈ R
2 | f (x, y) = 0}

for (a, b) = (−3, 3), (1, 0), (−1, 0) using the R language (Fig. 7.1). The following
code is used: �

1 a <- −3

2 b <- 3

3 x.min <- −3

4 x.max <- 3 # Non−singular case (1)

5 # a <- 1; b <- 0; x.min <- −1; x.max <- 5 # Non−singular case (2)

6 # a <- −1; b <- 0; x.min <- −2; x.max <- 4 # Non−singular case (3)

7 # a <- 0; b <- 0; x.min <- −1; x.max <- 5 # Case including singularity

8 (1)

9 # a <- −3; b <- 2; x.min <- −3; x.max <- 3 # Case including singularity

10 (2)

11 f <- function(x) sqrt(max(x^3+a*x+b,0))
12 x.seq <- seq(x.min,x.max,0.001)
13 y.seq <- NULL
14 for(x in x.seq) y.seq <- c(y.seq,f(x))
15 y.max <- max(y.seq)
16 plot(0,xlab="x", ylab="y",xlim=c(x.min,x.max), ylim=c(−y.max,y.max),type=
17 "n",
18 main=paste("a=",a,", b=",b))
19 lines(x.seq,y.seq)
20 lines(x.seq,−y.seq)
21 abline(h=0)
22 abline(v=0)

7.2 Manifold

In this section, we define topological spaces and (analytic) manifolds. Let M be a
set. When a set U consisting of subsets of M is defined to satisfy the following three
conditions, M is called a topological space, U is called a family of open sets, and the
elements of U are called open sets.1

1. U includes the entire set M and the empty set {} as elements.
2. The union of any number of elements of U (open sets of M) is an element of U .
3. The intersection of any finite number of elements of U (open sets of M) is an

element of U .
Furthermore, for any x �= y ∈ M , when there existU, V ∈ U such that x ∈ U , y ∈ V ,
and U ∩ V = {}, that topological space M is called a Hausdorff space.

Example 61 (Distance space) If a distance d(x, y), x, y ∈ M is defined for the set
M , we can define an open set B(ε, x) := {y ∈ M | dist (x, y) < ε} using it, so the
family of open sets can be defined as

1 Including distance metrics such as Euclidean distance to define open sets (metric spaces).
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Fig. 7.2 The images of
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U = {B(ε, x) | ε > 0, x ∈ M}.

For x, y ∈ M , x �= y, by taking ε > 0 sufficiently small, we can make B(ε, x) ∩
B(ε, y) = {}, so if the topological space M is a distance space, it is Hausdorff. �

In the following, we define a manifold.2 Let M be a Hausdorff topological space.
When a bijection (mapping one-to-one and onto) from an open set to another open
set is continuous in both directions, this mapping is said to be homeomorphic.

1. For each open set U of the family of open sets of M , there exists a φ such that
U → φ(U ) ⊆ R

d is homeomorphic.
2. For such pairs (U,φ) and (Ũ , φ̃), when U ∩ Ũ is not empty, the coordinate

transformation

φ ◦ φ̃−1(U ∩ Ũ ) : φ(U ∩ Ũ ) → φ̃(U ∩ Ũ )

is an analytic mapping (see Fig. 7.2).

In this case, M is said to be a d-dimensional analytic manifold. At this time, each
element u of U can be treated as if it were an element φ(u) of the open set φ(U )

of Rd . This φ(u) ∈ R
d is called a local variable, and the coordinates constructed by

them are called local coordinates. By using local coordinates, it is possible to treat
a point on U as if it were a point in R

d . In addition, such a set consisting of (U,φ)

is called a local coordinate system of M .

Example 62 A
d is a (trivial) d-dimensional manifold. With the identity mapping

id : Rd → R
d , S = {(Rd , id)} forms a coordinate neighborhood system. It may be

2 A topological space being Hausdorff is a necessary condition for the existence of a partition of
unity (Sect. 7.5)
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divided into multiple local coordinates. When d = 1, defineUi = (i − 1, i + 1) and
φi for each i ∈ Z as

φi : Ui � x �→ x − i ∈ (−1, 1).

Then, φi becomes a local coordinate system of Ui , and S = {(Ui ,φi ) | i ∈ Z} gives
a coordinate neighborhood system. In this case, for x ∈ (0, 1),

φi+1 ◦ φ−1
i (x) = x − 1

becomes the coordinate transformation. And for each i , x − i ∈ (−1, 1) can be used
as a local variable. �

As a typical example of a manifold, we consider the projective space. For each
(x0, x1, . . . , xd), (x ′

0, x
′
1, . . . , x

′
d) ∈ R

d+1\{(0, . . . , 0)}, when there exists a t ∈ R

such that

(x0, x1, . . . , xd) = t (x ′
0, x

′
1, . . . , x

′
d) ,

an equivalence relationship exists between them. When each class is denoted as
[x0 : x1 : · · · : xd ], the set of elements iswritten asPd ,which is called ad-dimensional
projective space.

Example 63 P
d is a d-dimensional manifold. When the value of the i th coordinate

is not zero, by dividing the values of other coordinates by its value, we get Ui :=
{[x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] ∈ P

d}. The coordinate transformation

φi : Ui � [x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] �→ (x0, x1, . . . , xi−1, xi+1, . . . , xd ) ∈ A
d

from φi (Ui ∩Uj ) to φ j (Ui ∩Uj ) becomes

φ j ◦ φ−1
i (x0, x1, . . . , xi−1, xi+1, . . . , xd)

=

⎧⎪⎪⎨
⎪⎪⎩

(
x0
x j

,
x1
x j

, . . . ,
xi−1

x j
,
1

x j
,
xi+1

x j
, . . . ,

x j−1

x j
,
x j+1

x j
, . . . ,

xd
x j

)
, i < j(

x0
x j

,
x1
x j

, . . . ,
x j−1

x j
,
x j+1

x j
, . . . ,

xi−1

x j
,
1

x j
,
xi+1

x j
, . . . ,

xd
x j

)
, j < i

, (7.1)

(Exercise 70(a)) and S = {(Ui ,φi ) | i = 0, 1, . . . , d} forms a coordinate neighbor-
hood system. And for each i ,

(x0, x1, . . . , xi−1, xi+1, . . . , xd) ∈ R
d

can be used as local coordinates. Particularly, in the case of d = 1, it becomes

φx : Ux � [1 : ux ] �→ ux ∈ A
1
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and

φy : Uy � [uy : 1] �→ uy ∈ A
1.

And when ux , uy �= 0, the coordinate transformation is given by (Exercise 70(b))

φxy : φx (Ux ∩Uy) � ux �→ 1

ux
= uy ∈ φy(Ux ∩Uy)

and

φyx : φy(Ux ∩Uy) � uy �→ 1

uy
= ux ∈ φx (Ux ∩Uy)

from [1 : ux ] = [uy : 1]. �
When looking at a certain country on a globe, one cannot see the country on the

other side of the earth unless the globe is rotated. It may be interpreted that the globe
is made by pasting together multiple maps.3

7.3 Singular Points and Their Resolution

Next, we define singular points on an algebraic set V . If the ideal I (V ) is generated
by polynomials f1, . . . , fm , and the rank of the matrix

(
∂ fi (x1, . . . , xd)

∂x j

)
i=1,...,m, j=1,...,d

is constant for every x = (x1, . . . , xd) ∈ V , then V is said to be non-singular. If there
exists an x ∈ V where the rank is smaller, then x is called a singular point. Especially
when m = 1 and

f1(x1, . . . , xd) = ∂ f1
∂x1

(x1, . . . , xd) = · · · = ∂ f1
∂xd

(x1, . . . , xd) = 0, (7.2)

(x1, . . . , xd) ∈ V is called a singular point of V . If V has no singular points, it’s said
to be non-singular.

Example 64 From Example 59, I (V ) is generated by J = {x, y}, thus
[

∂ f1(x,y)
∂x

∂ f1(x,y)
∂y

∂ f2(x,y)
∂x

∂ f2(x,y)
∂y

]
=

[
1 0
0 1

]

holds for all (x, y) ∈ V . Therefore, V is non-singular.

3 In this sense, manifolds are sometimes called “atlases”, and individual (Ui ,φi ) are called “charts”.
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Fig. 7.3 When the elliptic curve y2 = x3 + ax + b has a singular point. In the case of (a, b) =
(0, 0) (left), (x, y) = (0, 0) becomes a singular point, and in the case of (a, b) = (−3, 2) (right),
(x, y) = (1, 0) becomes a singular point. In each case, it can be seen that a tangent line cannot be
drawn (as it is sharp), and multiple tangent lines can be drawn. Conversely, a non-singular algebraic
curve can draw a single tangent line at any point, and can be said to be smooth

Example 65 (Singular elliptic curve) In Example 60, we look for the condition for
having a singular point. As (7.3) specifically becomes

y2 = x3 + ax + b , 3x2 + a = 0 , 2y = 0

⇐⇒ x(−a

3
+ a) + b = 0 , 3x2 + a = 0 , y = 0

⇐⇒
{
a = b = 0, (x, y) = (0, 0)
a �= 0, 4a3 + 27b2 = 0, (x, y) = (− 3b

2a , 0)
,

it is found that when
4a3 + 27b2 = 0 (7.3)

(x, y) = (0, 0) or (−3b

2a
, 0) becomes a singular point (there are no others). As

(a, b) = (0, 0), (−3, 2) satisfy (7.3), using the same code as in Example 60, we
draw its outline (Fig. 7.3). It can be seen that at the singular point (x, y) = (0, 0)
in the former case, no tangent line can be drawn (as it is sharp), and at the singular
point (x, y) = (1, 0) in the latter case, multiple tangent lines can be drawn. �

Next, we define the blow-up of A2 centered at the origin. First, we introduce a
subset

U := {(x, y, [x ′ : y′]) ∈ A
2 × P

1 | xy′ = x ′y} (7.4)

ofA2 × P
1. In other words, the setU consists of two types of elements: (x, y) × [x :

y] for (x, y) ∈ A
2 − {(0, 0)}, and (0, 0) × [x ′ : y′] for [x ′ : y′] ∈ P

1. Furthermore,
U can be written as Ux ∪Uy using the set

Ux := {(x, y, [x ′ : y′]) ∈ U | x ′ �= 0}
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Uy := {(x, y, [x ′ : y′]) ∈ U | y′ �= 0} ,

and it becomes a manifold. In fact,

φx : Ux � (ux , uxvx , [1 : vx ]) �→ (ux , vx ) ∈ A
2

and

φy : Uy � (uyvy, vy, [uy : 1]) �→ (uy, vy) ∈ A
2

become a homeomorphism (1 to 1 and onto mapping that is continuous in both
directions). Also, we can confirm that

(ux , uxvx , [1 : vx ]) = (uyvy, vy, [uy : 1]) =⇒ ux = uyvy, vy = uxvx , vxuy = 1

holds, so the coordinate transformation is given by

φx (Ux ∩Uy) � (ux , vx ) �→ (
1

vx
, uxvx ) = (uy, vy) ∈ φy(Ux ∩Uy)

φy(Ux ∩Uy) � (uy, vy) �→ (uyvy,
1

uy
) = (ux , vx ) ∈ φx (Ux ∩Uy).

At this time, the projection π : U → A
2, which corresponds only to the A2 compo-

nent of the assembled U excluding the P1 component, gives the isomorphism

π : U − {(0, 0)} × P
1 � (x, y, [x : y]) �→ (x, y) ∈ A

2 − {(0, 0)} ,

when excluding the origin.
Next, we consider the algebraic set V ⊆ A

d with d ≥ 2. Consider the subset U ′
of U ∩ (V × P

d−1) restricted to A
d × P

d−1, where π(U ′) = V − (0, 0). Here, U ′
does not include elements of (0, 0) × P

d−1. Therefore, it does not generally become
an algebraic set. For example,

{(x, y) ∈ A
2 | y2 = x3 + x2} − {(0, 0)}

is not an algebraic set. However, adding (0, 0) to it yields an algebraic set (x, y) ∈
{A2 | y2 = x3 + x2}. In this way, for a subsetU ′ ofAd × P

d−1, the smallest algebraic
set containing it is called its closure, and it is written as U ′. Then, the projection
π : U → A

d is called the origin-centered blow-up of the algebraic set V , and the
manifold U ′ = π−1(V − (0, 0)) is called the strict pullback of V .

Example 66 In Example 65,when (a, b) = (0, 0), it has a singularity only at the ori-
gin. If the local coordinates ofUx ,Uy are (ux , vx ), (uy, vy), they can be constructed
as
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Fig. 7.4 (a) The elliptic curve y2 = x3 has a singularity at the origin. (b) It corresponds to the open
set Ux . (c) Removing the blue part (curve) corresponding to the singularity in V and taking the
closure (adding the origin) results in a curve without a singularity. (d) It corresponds to the open
setUy . (e) Removing the blue curve (point) corresponding to the singularity in V results in a curve
without a singularity. (f) The open sets Ux ,Uy correspond, except at (0, 0)

f (x, y) = f (ux , uxvx ) = u2x (v
2
x − ux )

f (x, y) = f (uyvy, vy) = v2
y(1 − u3yvy).

In the former case, (x, y) = (0, 0) ⇐⇒ ux = 0, and in the latter case, (x, y) =
(0, 0) ⇐⇒ vy = 0, so the U ′ satisfying π(U ′) = V − {(0, 0)} is v2

x − ux = 0 when
x �= 0 (ux �= 0), and 1 − u3yvy = 0 when y �= 0 (vy �= 0). Taking closures of them,
namely, v2

x = ux when x �= 0, and u3yvy = 1 when y �= 0 become the strict pull-

backs, both of which are non-singular. Indeed, for f (ux , vx ) = v2
x − ux ,

∂ f
∂ux

= −1,
∂ f
∂vx

= 2vx , and it is impossible to make these three expressions zero simultaneously.
The same is true for f (uy, vy) = 1 − u3yvy . Thus, V can be expressed in either of the
local coordinates {(ux , vx ) | v2

x = ux }, {(uy, vy) | 1 = u3yvy}, andwhen it canbewrit-
ten in both, they correspond by the coordinate transformation vxuy = 1, ux = uyvy ,
vy = uxvx . In Fig. 7.4(c), (e), Ux ,Uy are open sets without singularities. Also, the
places where either of the local coordinatesUx ,Uy can be written (except the origin)
are shown in Fig. 7.4(f). �



7.3 Singular Points and Their Resolution 161

We would like to explain why generating two curves (c) (e) from the elliptic curve
inFig. 7.4(a) canbe said to have resolved the singularity. First of all, (c) corresponds to
V − {(0, 0)} represented in the local coordinates (ux , vx ) (ux �= 0). And its pullback
(the inverse image of π) is a subset of Ux . Similarly, the pullback of (e) represented
in the local coordinates (uy, vy) (vy �= 0) is a subset of Uy . Therefore, the strict
pullback is given as a manifold as a whole. The original elliptic curve included
singular points, but after finite blow-ups, when seen as a manifold, it turns out that
there are no singular points in any local coordinates.

Note that if the algebraic set is not (x, y) ∈ A
2 | y2 = x3, but (x, y) ∈ A

2 | y2 =
x5, singular points cannot be resolved with a single blow-up. For the obtained local
coordinates, another blow-up is performed. In this case, the local coordinates of the
manifold are further divided. In the case of d = 2, it is known that singular points can
be resolved by repeating this process a finite number of times (Hironaka’s theorem).
For the general d ≥ 3, it is necessary to apply the general blow-up introduced in the
next section.

Example 67 y2 = x5 has a singular point only at the origin. If the local coordinates
of Ux ,Uy are (ux , vx ), (uy, vy), they can each be written as

f (ux , uxvx ) = (uxvx )
2 − u5x = u2x (v

2
x − u3x )

and

f (uyvy, vy) = v2
y − (uyvy)

5 = v2
y(1 − u5yv

3
y).

The term v2
x − u3x in the former has a singular point at (ux , vx ) = (0, 0), and the

term 1 − u5yv
3
y in the latter is non-singular. Indeed, the term v2

x − u3x can resolve the
singular point if another blow-up is performed using the method in Example 66.
Also, 1 − u5yv

3
y becomes zero only when uy = 0 or vy = 0 when differentiating with

respect to uy, vy , but in either case 1 − u5yv
3
y does not become zero. �

Furthermore, in the case where the singular point is not the origin, as in the
following example, perform a parallel shift of the coordinates and then blow up.

Example 68 In Example 65, when (a, b) = (−3, 2), it has a singular point only at
(1, 0). If x �→ x + 1, then

y2 − x3 + 3x − 2 = y2 − (x − 1)2(x + 2) �→ y2 − (x + 1 − 1)2(x + 1 + 2) = y2 − x2(x + 3)

can be achieved, so consider the parallel-translated origin passing y2 = x3 + 3x2. If
the local coordinates of Ux ,Uy are (ux , vx ), (uy, vy), they can each be written as

f (ux , uxvx ) = (uxvx )
2 − u3x − 3u2x = u2x (v

2
x − ux − 3)

f (uyvy, vy) = v2
y − (uyvy)

3 − 3(uyvy)
2 = v2

y(1 − u3yvy − 3u2y).

v2
x − ux − 3 = 0, 1 − u3yvy − 3u2y = 0 are the strict pullbacks, and both are non-

singular. �
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7.4 Hironaka’s Theorem

The theory of resolving singularities in the previous section was constructed by
Heisuke Hironaka in 1964.

Proposition 27 (Hironaka [4, 5])Let f be an analytic function froma neighborhood
of the origin in R

d to R, with f (0) = 0 and not a constant function. Then, there
exists a manifold U, an open set V of Rd containing the origin, and an analytic map
g : U → V that satisfy the following conditions:

1. For any compact set K of V , g−1(K ) is a compact set of U.
2. Let V0 := {x ∈ V | f (x) = 0} and U0 := {u ∈ U | f (g(u)) = 0}, then g gives

an isomorphism4 of U\U0 and V \V0.
3. For each P ∈ U0, there exists local coordinates (u1, . . . , ud) of U with P as the

origin, and using a multi-index κ = (κ1, . . . ,κd) ∈ N
d and a sign S ∈ {−1, 1},

it can be written as
f (g(u)) = Suκ1

1 . . . uκd
d . (7.5)

4. The Jacobian of x = g(u) can be written as an analytic function b(u) �= 0, using
a multi-index h = (h1, . . . , hd) ∈ N

d ,

g′(u) = b(u)uh11 . . . uhdd . (7.6)

A representation by local coordinates as in (7.5) is called a normal crossing. In
this book, we do not prove Hironaka’s theorem, but instead perform blow-ups for
some specific manifolds, not algebraic sets, to find normal crossings.

Regarding Proposition 27, there are two points to note. First, in this book, we
consider K (θ) = EX [log p(X |θ∗)

p(X |θ) ], θ ∈ � as the function f . That is, it is only applied
in the neighborhood of each θ∗ ∈ �∗. Second, the domain of the function g is U ,
or it is expressed as a function of local variables. The same function symbol g is
used even if the local coordinates are different, but the correspondence for each local
coordinate is described.

This may be a bit late to mention,5 in Watanabe’s Bayesian theory, (so-called)
singularity resolution is not used. Whether a certain θ∗ ∈ �∗ is regular or not, the
normal crossing form is sought.Hironaka’s theoremguarantees that a normal crossing
can be obtainedwhether it is singular or non-singular. In this sense, it may be said that
there is no relationship between whether a point is regular in statistics and whether
it is singular in algebraic geometry.

In the following chapters, Hironaka’s theoremwill be applied in the neighborhood
of θ∗ ∈ �∗.

4 Maintains the same structure as the analytic manifold.
5 In the field of algebraic geometry, it seems that Proposition 27 is called the singularity resolu-
tion theorem, and the process of finding the normal crossing form is called singularity resolution.
However, in this book, such a description is used for the understanding of beginners.
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y2 − x3

u2
2(1 − u3

1u2)

(x, y) = (u1u2, u2)

(x, y) = (u1, u1u2) −u2
1(u1 − u2

2)

−v21v
3
2(v1 − v2)

(u1, u2) = (v1v2, v2)

w2
1w

6
2(1 − w1)

(v1, v2) = (w1w2, w2)

(u1, u2) = (v1, v1v2) −v31(1 − v1v
2
2)

(v1, v2) = (w1, w1w2) −w6
1w

3
2(1 − w2)

(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(u1u2, u2)

(u1, u1u2) =

⎧
⎨

⎩

(v1, v2
1v2)

(v1v2, v1v22) =
(w2

1w2, w
3
1w

2
2)

(w2
1w2, w1w

3
2)

Fig. 7.5 By variable transformation, (x, y) is expressed in local coordinates (four types in this
example), and the normal crossing of y2 − x3 is found

Example 69 WhenHironaka’s theorem is applied, Examples 66, 67, and 68 become
as follows. For instance, if it is y2 − x3, the procedure is as shown in Fig. 7.5.

f (x, y) g(u) g′(u) f (g(u)) S κ h

(u1, u
2
1u2) u21 −u31(1 − u1u

2
2) −1 (3, 0) (2, 0)

y2 − x3 (u1u2, u2) u2 u21(1 − u31u2) 1 (0, 2) (0, 1)

(Example 66) (u1u
2
2, u1u

3
2) u1u

4
2 u21u

6
2(1 − u1) 1 (2, 6) (1, 4)

(u21u2, u
3
1u

2
2) u41u

2
2 −u61u

3
2(1 − u2) −1 (6, 3) (4, 2)

(u1u2, u2) u2 u22(1 − u51u
3
2) 1 (0, 2) (1, 0)

y2 − x5 (u1u2, u1u
2
2) u1u

2
2 u21u

4
2(1 − u31u2) 1 (2, 4) (1, 2)

(Example 67) (u1u
2
2, u

2
1u

5
2) u21u

6
2 u41u

10
2 (1 − u1) 1 (4, 10) (2, 6)

(u21u2, u
5
1u

3
2) u61u

3
2 −u101 u2(1 − u2) −1 (10, 1) (6, 3)

(u1, u
3
1u2) u31 −u51(1 − u1u

2
2) −1 (5, 0) (3, 0)

y2 − x3 − 3x2 (
u1√
3

, u1u2)
u1√
3

−u21(1 − u22 + u1
3
√
3

) −1 (2, 0) (1, 0)

(Example 68) (u1u2, u2) u2 u22(1 − u31u2 − 3u21) 1 (0, 2) (0, 1)

�

In the first example of Example 69, −u31(1 − u1u22) ≈ −u31, 1 − u1u22 becomes 1
near the origin. Even if a polynomial that becomes 1 at the origin is multiplied in this
way, a normal crossing can be obtained. As shown in Example 69, a normal crossing
cannot be obtained by performing a variable transformation within the range of a
rational map. In general, it becomes the product of a normal crossing and an analytic
function that does not become 0. If the variable transformation is performed within
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the range of an analytic map, it becomes a normal crossing. For example, in the case
of Example 66, it is sufficient to apply an analytic map that makes u1(1 − u1u22)

1/3

a single variable.
In the previous section,we introduced the blow-up centered at the origin for d = 2,

but for d = 3, it becomes

φx : (ux , uxuy, uxuz, [1 : uy : uz])

φy : (uxuy, uy, uyuz, [ux : 1 : uz])

φz : (uxuz, uyuz, uz, [ux : uy : 1]),

and it is extended to the general d > 2. However, there may be cases where the
normal crossing claimed in Hironaka’s theorem cannot be obtained with the blow-up
centered at the origin. From here on, we will introduce the blow-up centered at the
ideal. The blow-up centered at the origin was

U = {(0, . . . , 0)} × P
d−1 ∪ {(x1, . . . , xd , [x1 : · · · : xd ]) | (x1, . . . , xd) �= (0, . . . , 0)}

for the general d, but the blow-up centered at the ideal uses the ideal I ⊆ R[x]
generated by f1, . . . , fm ∈ R[x], and it is set to be

U =V (I ) × P
m−1 ∪ {(x1, . . . , xd , [ f1(x1, . . . , xd) : · · · :

fm(x1, . . . , xd)]) | (x1, . . . , xd) /∈ V (I )}.

Note that

f1(x1, . . . , xd) = 0, . . . , fm(x1, . . . , xd) = 0 ⇔ (x1, . . . , xn) ∈ V (I ).

In the blow-up centered at the ideal, it is not necessary to use all of x1, . . . , xd .
The blow-up centered at the origin is equivalent to the blow-up by the ideal
( f1(x) = x1, . . . , fd(x) = xd ). In other words, the blow-up centered at the ideal
is a generalization of the blow-up centered at the origin. In Example 70, we perform
a blow-up using z, x in (1), y + α1, y in (2), and β1, y in (4) as the generators of the
ideal.

Example 70 For the function

f (x, y, z) = (xy + z)2 + x2y4 ,

we seek a normal crossing representation by local coordinates as shown in Fig. 7.6.
Then, we define the mapping from each coordinate Ui = (ui , vi , wi ), i = 1, 2, 3, 4
to R3 in
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(1) (2)

(3)

(4)

(5)

(6)

(7)

z = α1x

x = α2z

y + α1 = β1y

y = β2(y + α1)

β1 = γ1y

y = γ2β1

(1) f = (xy + z)2 + x2y4 (5) f = x2(y + α1)2{1 + β2
4(y + α1)2}

(2) f = x2{(y + α1)2 + y4} (6) f = x2y4(1 + γ2
1)

(3) f = z2{(1 + α2y)2 + α2
2y4} (7) f = x2γ2

2β1
4(1 + γ2

2)
(4) f = x2y2(β1

2 + y2)

Fig. 7.6 The normal crossing of the function f (x, y, z) = (xy + z)2 + x2y4 is shown in (3) (5)
(6) (7), and for this, the variables α1,α2,β1,β2, γ1, γ2 are introduced

⎧⎪⎪⎨
⎪⎪⎩

(x, y, z) = (u1w1, v1, w1)

(x, y, z) = (u2, v2w2, u2(1 − v2)w2)

(x, y, z) = (u3, v3, u3v3(v3w3 − 1))
(x, y, z) = (u4, v4w4, u4v4w4(w4 − 1)).

However, let α1,α2,β1,β2, γ1, γ2 be the values defined in Fig. 7.6, and let

(u1, v1, w1), (u2, v2, w2), (u3, v3, w3), (u4, v4, w4)

=(α2, y, z), (x,β2, y + α1), (x, y, γ1), (x, γ2,β1),

respectively. For example, in the local coordinates U1, we have f (g(u1, v1, w1)) =
w2

1(u1v1 + 1)2 + u21v
4
1 , and the Jacobian is obtained from

⎡
⎢⎣

∂x
∂u1

∂x
∂v1

∂x
∂w1

∂y
∂u1

∂y
∂v1

∂y
∂w1

∂z
∂u1

∂z
∂v1

∂z
∂w1

⎤
⎥⎦ =

⎡
⎣w1 0 u1

0 1 0
0 0 1

⎤
⎦

as g′(u1, v1, w1) = |w1|. The same calculations can be done for the others, resulting
in the following.

i Ui f (g(ui , vi , wi )) g′(ui , vi , wi ) (κ1,κ2,κ3) (h1, h2, h3)

1 U1 w2
1{(u1v1 + 1)2 + u21v

4
1 } w1 (0, 0, 2) (0, 0, 1)

2 U2 u22w
2
2(1 + v42w2

2) u2w2 (2, 0, 2) (1, 0, 1)

3 U3 u23v
4
3 (w2

3 + 1) u3v
2
3 (2, 4, 0) (1, 2, 0)

4 U4 u24v
2
4w4

4(1 + v24 ) u4v4w
2
4 (2, 2, 4) (1, 1, 2)

Also, the Jacobian g′(ui , vi , wi ) �= 0 is the necessary and sufficient condition for
the local coordinates and x, y, z are isomorphic, so it would be good to perform the
pasting according to each condition of
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g′(u1, v1, w1) �= 0 ⇐⇒ w1 �= 0 ⇐⇒ z �= 0

g′(u2, v2, w2) �= 0 ⇐⇒ u2w2 �= 0 ⇐⇒ xy + z �= 0

g′(u3, v3, w3) �= 0 ⇐⇒ u3v3 �= 0 ⇐⇒ xy �= 0

g′(u4, v4, w4) �= 0 ⇐⇒ u4v4w4 �= 0 ⇐⇒ xy �= 0.

Both of them can be seen to correspond to (7.5) and (7.6). �

Example 71 The normal crossing representation of the function f (x, y, z, w) =
(xy + zw)2 + (xy2 + zw2)2 by local coordinates is shown in Fig. 7.7. We try to
perform the blow-up fromEq. (7.3) in two types of procedures.Although the obtained
local coordinates are different, both of them are normal crossings obtained in (5) (7)
(9) (10) (11). In addition, we introduce the variables ξ1, ξ2, ξ3,α1,α2,β1,β2, γ1, γ2,
δ1, δ2. Also, the blow-up between (1) and (2) is symmetrical for (x, z), (y, w), so
we only performed the former because the same result can be obtained either by
y = ξ1w or w = ξ2y. �

At the end of this section, we omit the proof but present a useful generalization
for Bayesian theory by Watanabe. The specific application will be discussed in the
next chapter.

Proposition 28 (Simultaneous normal crossing[4, 5, 13]) Let f0, f1, . . . , fm be
analytic functions from a neighborhood of the origin of Rd to R, where for each
i = 0, 1, . . . ,m we have fi (0) = 0 and they are not constant functions. In this case,
there exist a manifold U, an open set V in Rd containing the origin, and an analytic
map g : U → V that satisfy the following properties:

1. For any compact set K in V , g−1(K ) is a compact set in U.
2. g gives an isomorphism between U\U0 and V \V0, where V0 := ∪m

i=1x ∈ V |
fi (x) = 0 and U0 := ∪m

i=1u ∈ U | fi (g(u)) = 0.
3. For each P ∈ U0, there exist local coordinates (u1, . . . , ud) of U centered at

P, multi-indices κ(i) = (κ1(i), . . . ,κd(i)) ∈ N
d , i = 0, 1, . . . ,m, analytic func-

tions ai , 1 ≤ i ≤ m, and a sign S ∈ −1, 1 such that we can write

f0(g(u)) = Suκ(0) , f1(g(u)) = a1(u)uκ(1) , . . . , fm(g(u)) = am(u)uκ(m).

Here, uκ(i) := uκ1(i)
1 . . . uκd (i)

d .
4. The Jacobian (determinant) of x = g(u) can be written as g′(u) = b(u)uh, where

b(u) �= 0 is an analytic function that is not zero, and h = (h1, . . . , hd) ∈ N
d is a

multi-index.
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(1) (2) (3)
y = ξ1w

w = ξ2y

ξ3 = xξ1 + z

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

ξ3 = α1w

w = α2ξ3

α1 = β1x

x = β2α1

β1 = γ1ξ1

ξ1 = γ2β1

ξ1 − 1 = δ1γ1

γ1 = δ2(ξ1 − 1)

(1) (xy + zw)2 + (xy2 + zw2)2 (7) α2
1w

4{1 + (β2ξ
2
1 + w − β2ξ1)2}

(2) w2{(xξ1 + z)2 + w2(xξ21 + z)2} (8) w4x2ξ21{γ2
1 + (ξ1 + γ1w − 1)2}

(3) w2{ξ23 + w2(xξ21 + ξ3 − xξ1)2} (9) x2w4β2
1{1 + (β1γ

2
2 + w − γ2)2}

(4) w4{α2
1 + (xξ21 + α1w − xξ1)2} (10) x2w4{1 + δ1γ1}2γ2

1{1 + (δ1 + w)2}
(5) α2

2ξ
4
3{1 + α2

2(xξ21 + ξ3 − xξ1)2} (11) w4x2ξ21(ξ1 − 1)2{δ22 + (1 + δ2w)2}
(6) x2w4{β2

1 + (ξ21 + β1w − ξ1)2}

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

ξ3 = α1ξ1

ξ1 = α2ξ3

α1 = β1x

x = β2α1

β1 = γ1(ξ1 − 1)

ξ1 − 1 = γ2β1

w = δ1γ1

γ1 = δ2w

(4) w2ξ21{α2
1 + w2(xξ1 + α1 − x)2} (8) w2ξ21x

2(ξ1 − 1)2{γ2
1 + w2(γ1 + 1)2}

(5) w2ξ23{1 + w2(xα2
2ξ3 + 1 − xα2)2} (9) x2w2(1 + γ2β1)2β2

1{1 + (1 + γ2)2w2}
(6) x2w2ξ21{β2

1 + w2(ξ1 + β1 − 1)2} (10) x2δ21γ
4
1ξ21(ξ1 − 1)2{1 + δ21(γ1 + 1)2}

(7) w2ξ21α
2
1{1 + w2(β2ξ1 + 1 − β2)2} (11) w4x2ξ21(ξ1 − 1)2{δ22 + (1 + γ1)2}

Fig. 7.7 The normal crossing representation of the function f (x, y, z, w) = (xy + zw)2 + (xy2 +
zw2)2 by local coordinates. We tried to perform the blow-up from Eq. (7.3) in two types of proce-
dures. Although the obtained local coordinates are different, both are normal crossings obtained in
(5) (7) (9) (10) (11)

7.5 Local Coordinates in Watanabe Bayesian Theory

Asmentioned in Chap. 2, when a statistical model p(·|θ)θ ∈ � is given, let� denote
the set of θ ∈ � that minimizes the Kullback-Leibler divergence with respect to the
true distribution q(·):

E

[
log

q(X)

p(X |θ)
]

.

In the general case without assuming regularity, �∗ may contain multiple elements.
Furthermore, since we assume finite relative variance in this book, according to
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Proposition 1.3 (1), the statistical model is homogeneous, and the distribution p(·|θ∗)
does not depend on θ∗ ∈ �∗. Hence, the function

K (θ) = E[log p(X |θ∗)
p(X |θ) ]

does not depend on θ∗ ∈ �∗. In Chap. 8, we assume that K (·) is an analytic function.
Thus,�∗ is an analytic set. For each θ∗ ∈ �∗, we shift the coordinates by the amount
corresponding to θ∗ and apply Proposition 27 with each of them as the origin. Then,
using the local coordinates of the corresponding manifold in the neighborhood of θ∗,
we express K (θ) in the form of a normal crossing.

In Chap. 5, we mentioned that we only need to remove regularity constraints on
� contained in B (εn, θ∗) , θ∗ ∈ �∗. Here, it is essential to note that the posterior
distribution we want to derive inWatanabe Bayesian theory is with respect to�m :=⋃

θ∗∈�∗ B (εn, θ∗), not �.
For each θ∗ ∈ �∗, when we take θ∗ as the origin, the mapping from Propo-

sition 27 which is g : U → V can be denoted as: g : U (θ∗) → V (θ∗) By patch-
ing these together, it is given by: g : U → V , where U := ⋃

θ∗∈�∗ U (θ∗) and
V := ⋃

θ∗∈�∗ V (θ∗). In this context, rather than setting g for each θ∗ with θ∗ = 0, a
common g adjusted by θ∗ is utilized. Therefore, for each θ∗ ∈ �∗, we determine the
normal intersection of f (g(u) − θ∗). If V is compact, from Proposition 27.1, U is
also compact. This impliesU can be covered by a finite union of open sets. Notably,
by merging several open sets, each can include the point u such that g(u) = 0.

Without loss of generality, each local coordinate of the open set can be taken as a
cube of size 2 centered at some element of g−1(�∗). Furthermore, we can partition
each into 2d pieces, and adjust their signs to set each local coordinate to [0, 1)d .
Such variable transformations change the Jacobian. As long as it doesn’t become
zero within the local coordinate, it doesn’t impact discussions in the next chapter.
Ultimately, each of the finitely obtained open sets is denoted as Uα.

Additionally, by taking a sufficiently large n, we have �n ⊆ V And U can be
restricted to g−1(�n).

Finally, each parameter θ ∈ �m can generally be written in multiple local coor-
dinates. And usually, open sets of manifolds overlap, so in the next chapter, without
losing generality, we assume the following: That is, construct a C∞ class function
ρα : g−1 (�m) → [0, 1] that satisfies the following three conditions:

1. 0 ≤ ρα(u) ≤ 1
2. supp ρα ⊆ Uα

3.
∑

α ρα(u) = 1

This is called a partition of unity6. The support supp ρα is defined as the smallest
closed set containing points u ∈ g−1 (�m)whereρα(u) > 0. For example, foru ∈ Uα

and

6 As in Murakami [18], the partition of unity is an existing concept in manifold theory.
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σα(u) =
{∏d

i=1 exp
(
− 1

1−ui

)
, 0 ≤ ui < 1, i = 1, . . . , d

0, otherwise

you can set ρα(u) = σα(u)∑
α′ σα′ (u)

.

Exercises 67–74

67. As with the one-variable polynomial R[x] with real coefficients, ideals can be
defined for the set of all integers Z. What kind of a set is the ideal I generated
by J = 2, 3?

68. For the elliptic curve y2 = x3 + ax + b,

(a) Run the program from Example 60 with the settings below, and output the
elliptic curve.

1 a <- 0; b <- 0; x.min <- −1; x.max <- 5 # the first one

2 a <- −3; b <- 2; x.min <- −3; x.max <- 3 # the second one

(b) Demonstrate that the condition for including a singular point is (7.3). Deter-
mine whether each of the following is singular or non-singular:

(a, b) = (−3, 3), (1, 0), (−1, 0), (0, 0), (−3, 2).

Also, where are the singular points for each singular elliptic curve?

69. With regards to the Hausdorff property of topological spaces, demonstrate the
following:

(a) A metric space M is Hausdorff. [Hint] Use the triangle inequality dist
(x, y) ≤ dist (x, z) + dist (y, z), x, y, z ∈ M .

(b) Consider the set of all integers Z as the whole set M . Initially, only include
2n + 1 and 2n − 1, 2n, 2n + 1 for each n ∈ Z in U , and generate elements
of U to satisfy the second and third properties of a topological space. In this
case, M is not Hausdorff.

70. Derive the coordinate transformation for each of the following manifolds:

(a) For Pd = {(Ui ,φi )}i=0,1,...,d , the coordinate transformation of

Ui := {[x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] ∈ P
d}

φi : Ui � [x0 : x1 : . . . : xi−1 : 1 : xi+1 : · · · : xd ]
�→ (x0, x1, . . . , xi−1, xi+1, . . . , xd) ∈ A

d
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from φi (Ui ∩Uj ) to φ j (Ui ∩Uj ) is given by (7.1).
(b) For the blow-up at the origin of A

2, the coordinate transformation of
(Ux ,φx ), (Uy,φy) is given by

φx (Ux ∩Uy) � (ux , vx ) �→ (
1

vx
, uxvx ) = (uy, vy) ∈ φy(Ux ∩Uy)

φy(Ux ∩Uy) � (uy, vy) �→ (uyvy,
1

uy
) = (ux , vx ) ∈ φx (Ux ∩Uy).

71. Show that the set

{(x, y) × [x ′ : y′] ∈ A
2 × P

1 | xy′ = x ′y}

matches the set below.

{(x, y) × [x ′ : y′] ∈ A
2 × P

1 | [x : y] = [x ′ : y′] or (x, y) = (0, 0)}.

72. In Example 69, a normal crossing is obtained using five local coordinates for
y2 − x3. Construct a figure for y2 − x5 similar to Fig. 7.5.

73. In Example 70, a normal crossing is obtained for four local coordinates. Explain
the operations up to obtaining the table below.

i Ui f (g(ui , vi , wi )) g′(ui , vi , wi ) (κ1, κ2, κ3) (h1, h2, h3)

1 U1 w2
1{(u1v1 + 1)2 + u21v

4
1 } w1 (0, 0, 2) (0, 0, 1)

2 U2 u22w
2
2(1 + v42w2

2) u2w2 (2, 0, 2) (1, 0, 1)

3 U3 u23v
4
3 (w2

3 + 1) u3v
2
3 (2, 4, 0) (1, 2, 0)

4 U4 u24v
2
4w4

4(1 + v24 ) u4v4w
2
4 (2, 2, 4) (1, 1, 2)

74. In Example 71, the operations to obtain the local coordinates are performed in
two ways. For each of the local coordinates (5) (7) (9) (10) (11) in the first
method of Fig. 7.7, calculate the Jacobian |g′(·, ·, ·, ·)|.
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