
Chapter 1
Overview of Watanabe’s Bayes

In this chapter, we will first review the basics of Bayesian statistics as a warm-up. In
the latter half, assuming that knowledge alone, we will describe the full picture of
Watanabe’sBayesTheory. In this chapter,wewould like to avoid rigorous discussions
and talk in an essay-like manner to grasp the overall picture.

From now on, we will write the sets of non-negative integers, real numbers, and
complex numbers as N, R, and C, respectively.

1.1 Frequentist Statistics

For example, let’s represent heads of a coin as 1 and tails as 0. If x is a variable
representing heads or tails of the coin, x takes the value of 0 or 1. X = {0, 1} is the
set of possible values of x . Furthermore, we represent the probability of getting heads
with θ that takes values from 0 to 1. � = [0, 1] is the set of possible values of θ. We
call θ a parameter. Here, we consider the distribution p(x |θ) of x ∈ X determined
by θ ∈ �. In the case of this coin toss example,

p(x |θ) =
{

θ, x = 1
1 − θ, x = 0

(1.1)

can be established. In statistics, when “p(x |θ) is a distribution”, p(x |θ) must be
non-negative and the sum of x ∈ X must be 1 (in this case, p(0|θ) + p(1|θ) = 1).

As it is a coin toss, it might be common to assume that the parameter θ is 0.5.
In this case, in statistics, the value of θ is “known”. However, if the value of θ is
“unknown” because we cannot assume θ = 0.5, for example, due to the coin being
bent, we would try tossing the coin several times and estimate the value of θ. If we
toss the coin n = 10 times and get heads 6 times, we might guess that θ = 0.6, and
if we suspect something, we might toss the coin 20 or 100 times.
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2 1 Overview of Watanabe’s Bayes

In thisway, the problemof estimating the true value of θ from the data x1, . . . , xn ∈
X is called parameter estimation, and n (≥ 1) is called the sample size. The estimated
parameter is often denoted as θ̂n = 0.6, for example, to distinguish it from the true
parameter θ. Alternatively, it can be seen as a mapping like

X n � (x1, . . . , xn) �→ θ̂(x1, . . . , xn) ∈ � .

Statistics is a discipline that deals with problems such as parameter estimation, where
the distribution generating x1, . . . , xn is estimated.

In the coin tossing problem, with xi = 0, 1, we have

θ̂(x1, . . . , xn) = 1

n

n∑
i=1

xi (1.2)

which is called the relative frequency. This is the ratio of the frequency of 1 to the
number of data n. If x1, . . . , xn occur independently, as shown in Chap.4, this value
converges to the true parameter θ. This is the weak law of large numbers. However,
the convergence means that the probability of |θ̂(x1, . . . , xn) − θ| staying within a
certain value approaches 1, as x1, . . . , xn vary probabilistically.

At this point, it is worth noting that there are two types of averages. The value in
(1.2), which is obtained by dividing the sum of the randomly occurring x1, . . . , xn

by the number n, is called the sample mean. In contrast, 0 · (1 − θ) + 1 · θ = θ is
called the expected value. In this book, when we say average, we mean the latter.

1.2 Bayesian Statistics

However, it is undeniable that estimators like (1.2) can feel awkward.Whenwatching
a baseball game, the batting average from the beginning of the season is displayed.
By the second half of the season, that average seems to be close to the player’s true
ability and the true parameter θ. In the opening game, especially in the second at-bat,
it is clear that the displayed batting average is either 0 or 1. That is, in the case of
n = 1, the calculation in (1.2) results in θ̂n = 0 or θ̂n = 1. Furthermore, if the first
at-bat results in a walk or something that does not count as an at-bat, n = 0 and the
calculation in (1.2) cannot even be done. Is there a more intuitive estimator? So,
considering that there are many hitters around a .250 batting average in baseball,
how about estimating as follows?

θ̂(x1, . . . , xn) =
∑n

i=1 xi + 25

n + 100
. (1.3)

The numbers 25 and 100 may be too arbitrary, but they represent prior information
and the beliefs of the person making the estimate. The framework that justifies this
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way of thinking is Bayesian statistics. How Eq. (1.3) is derived will be resolved in
this chapter.

Before the season begins, there might be someone who imagines the distribution
of the player’s batting average θ to be roughly around θ ∈ �. Such a distribution,
determined by prior information or the estimator’s beliefs, is called the prior distri-
bution, and is denoted by ϕ(θ). Although it is the same distribution as p(x |θ), it does
not depend on x ∈ X . However, since it is a distribution, not only must ϕ(θ) ≥ 0,
but also

∫
�

ϕ(θ)dθ = 1. As long as these conditions are met, a uniform distribution
such as ϕ(θ) = 1, 0 ≤ θ ≤ 1 is acceptable.

The results of the first three at-bats in the opening game, represented by hits as 1
and outs as 0, can be any of the following (x1, x2, x3) ∈ {0, 1}3:

000, 001, 010, 011, 100, 101, 110, 111 .

Here, someone who clearly imagines the prior distribution ϕ(θ) can calculate the
probabilities of these eight events. However, for simplicity, assume that the occur-
rences of x1, x2, x3 = 0, 1 are independent. In fact, the conditional probability for a
parameter value of θ is p(x1|θ)p(x2|θ)p(x3|θ). Furthermore, multiplying the prior
probability ϕ(θ) results in p(x1|θ)p(x2|θ)p(x3|θ)ϕ(θ), but actually, integration over
θ is necessary. That is,

Z(x1, x2, x3) =
∫

�

p(x1|θ)p(x2|θ)p(x3|θ)ϕ(θ)dθ

is the probability of (x1, x2, x3). If the prior distribution is uniform,

Z(0, 0, 0) =
∫

[0,1]
(1 − θ)3dθ = 1

4
, Z(0, 0, 1) =

∫
[0,1]

(1 − θ)2θdθ = 1

12

Z(0, 1, 1) =
∫

[0,1]
(1 − θ)θ2dθ = 1

12
, and Z(1, 1, 1) =

∫
[0,1]

θ3dθ = 1

4

can be calculated in this way. The other four cases can also be calculated similarly,
and the sum of the probabilities of the eight sequences is 1. Similarly, for any general
n ≥ 1 and ϕ(·), we can define Z(x1, . . . , xn). This value is called the marginal
likelihood.

1.3 Asymptotic Normality of the Posterior Distribution

Next, after the opening game is over and a person has seen the results of the first
three at-bats (x1, x2, x3), they can estimate the batting average θ more accurately. As
the season progresses and a person sees 100 at-bats (x1, . . . , x100), the estimation
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Fig. 1.1 As the sample size increases, the posterior distribution concentrates near the true parameter
(left). The prior distribution of batting average (1.4) is maximized at θ = 0.25 (right)

of θ becomes even more accurate. The conditional probability of θ under the data
x1, . . . , xn is called its posterior distribution. As the sample size n increases, the
width of the posterior distribution narrows, concentrating around the true value of θ
(Fig. 1.1 left).

To calculate the posterior distribution, it is necessary to apply Bayes’ theorem.
When expressing the conditional probability of event A under event B as P(A|B),
Bayes’ theorem can be written as

P(A|B) = P(B|A)P(A)

P(B)
.

Let A represent the probability of the parameter being θ, and B represent the prob-
ability of the data being x1, . . . , xn . That is, by setting P(B|A) as p(x1|θ) · · · p(xn|θ),
P(A) as the prior probability ϕ(θ), and P(B) as the marginal likelihood
Zn(x1, . . . , xn), the posterior distribution p(θ|x1, . . . , xn) can be written as

p(x1|θ) · · · p(xn|θ)ϕ(θ)

Z(x1, . . . , xn)
.

Returning to the batting average example,

p(θ|0, 0, 0) = 4(1 − θ)3 , p(θ|0, 0, 1) = 12(1 − θ)2θ,

p(θ|0, 1, 1) = 12(1 − θ)θ2 , and p(θ|1, 1, 1) = 4θ3
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are the result. The other four cases can also be calculated similarly, and in each of
the eight series,

∫ 1
0 p(θ|x1, x2, x3)dθ = 1 holds.

As such, defining a prior distribution and finding its posterior probability is
Bayesian estimation. In contrast to traditional statistics, which provides a single
estimate θ̂n for parameter estimation as in (1.2) (called point estimation), Bayesian
statistics gives the result as a posterior distribution. Under certain conditions (regu-
larity) regarding the relationship between the true distribution and the estimated dis-
tribution, it is known that the posterior distribution of the parameter p(θ|x1, . . . , xn)

follows a normal distribution even if it is not a normal distribution when the sample
size n is large. This is called asymptotic normality.�������������������������������

Regularity =⇒ Asymptotic Normality

This theorem will be proven in Chap.5, but in practical data analysis using
Bayesian statistics, asymptotic normality is often not considered. Rather, it is pri-
marily utilized by some Bayesian theorists to prove mathematical propositions and
is often seen as a theory for the sake of theory.

In Watanabe’s Bayesian theory, this theorem is generalized. Under the condition
of “having a relatively finite variance” defined in Chap.2, the posterior distribution
(asymptotic posterior distribution) is derived when n is large. This posterior distri-
bution generally does not become a normal distribution, but it does become a normal
distribution when the regularity condition is added.

On the other hand, if the posterior distribution p(θ|x1, . . . , xn) is known, the
conditional probability r(xn+1|x1, . . . , xn) of xn+1 ∈ X occurring under the series
x1, . . . , xn ∈ X can be calculated as

r(xn+1|x1 . . . , xn) =
∫

�

p(xn+1|θ)p(θ|x1, . . . , xn)dθ .

This is called the predictive distribution. For example, in the case of the batting
average problem,whereX = {0, 1}, the predictive distribution satisfies the properties
of a distribution as follows:

r(1|x1, . . . , xn) + r(0|x1, . . . , xn) = 1 .

That is, when the prior distribution ϕ(·) is determined, the marginal likelihood,
posterior distribution, and predictive distribution are also determined. For example,
if the prior distribution is

ϕ(θ) = θ24(1 − θ)74∫ 1
0 θ241 (1 − θ1)74dθ1

, 0 ≤ θ ≤ 1 (1.4)
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(as shown in Fig. 1.1 on the right), it can be shown that the predictive distribution
r(1|x1, . . . , xn) is given by (1.3) (see Sect. 2.1). The generalization loss

EX
[− log r(X |x1, . . . , xn)

]
(1.5)

and the empirical loss
1

n

n∑
i=1

{− log r(xi |x1, . . . , xn)} (1.6)

are also defined using the predictive distribution. These are the mean and arithmetic
mean of − log r(x |x1, . . . , xn) with respect to x ∈ X , respectively (Chap.5). The
WAIC (Chap.6) is also defined using the empirical loss.

In other words, Bayesian statistics can be said to be a statistical method that
estimates the true distribution using not only samples but also prior distributions that
reflect beliefs and prior information.

1.4 Model Selection

In this book, in addition to determining the posterior distribution for parameter esti-
mation, Bayesian statistics are applied for another purpose. Here, we consider the
problem of estimating which of the statistical models 0 and 1 is correct from the
data sequence x1, . . . , xn , where the statistical model (1.1) is model 1 and the statis-
tical model with equal probabilities of 0 and 1 occurring is model 0. In conventional
statistics, the details are omitted, but this would typically involve hypothesis testing.

In Bayesian statistics, the value obtained by applying the negative logarithm to
the marginal likelihood, − log Z(x1, . . . , xn), is called the free energy. Free energy
is used for model selection, which estimates which statistical model the sample
sequence x1, . . . , xn follows. Under certain conditions, selecting the model with a
smaller free energy value results in a correct choice (called consistency) as the sample
size n → ∞. If the prior probability is uniform at n = 3, the marginal likelihood for
model 1 can be calculated as

− log Z(0, 0, 0) = log 4 , − log Z(0, 0, 1) = log 12

− log Z(0, 1, 1) = log 12 , and − log Z(1, 1, 1) = log 4 .

In the case of Model 0, regardless of (x1, x2, x3) ∈ X 3, the free energy becomes
log 8, so Model 1 is chosen when (x1, x2, x3) = (0, 0, 0), (1, 1, 1), and Model 0 is
chosen otherwise. If we toss a coin three times and the result is biased toward either
0 or 1, rather than a mix of 0 and 1, our intuition tells us that Model 0 is suspicious.
The value of the free energy depends on the choice of the prior distribution, but as the
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sample size n increases, this dependence disappears. In other words, the influence
of actual evidence becomes relatively more significant than prior information or the
estimator’s beliefs.

Next, let’s examine how the estimate in (1.2) is obtained. Here, we derive (1.2)
from the criterion of maximizing the likelihood. The likelihood is a quantity defined
by

p(x1|θ) · · · p(xn|θ)

when data x1, . . . , xn ∈ X are obtained. The θ that maximizes this value is called
the maximum likelihood estimator. The likelihood of (1.2) is θk(1 − θ)n−k when the
number of i with xi = 1 is k and the number of i with xi = 0 is n − k. We could
maximize this value, but instead, we take advantage of the fact that f (x) = log x is
a monotonically increasing function and differentiate

k log θ + (n − k) log(1 − θ)

with respect to θ and set it to 0, resulting in

k

θ
− n − k

1 − θ
= 0 .

Solving this equation, we find that (1.2) is obtained.
Furthermore, we assume that the parameter set� is a subset of the d-dimensional

Euclidean space Rd . Roughly speaking, assuming regularity, it is known that when
the sample size n is large, the free energy can be written as

n∑
i=1

− log p(xi |θ̂n) + d

2
log n ,

wherewe have omitted constant terms andwritten themaximum likelihood estimator
obtained from x1, . . . , xn as θ̂n . This value is called the BIC. Also, the dimension d
of the parameter space can be interpreted as the number of independent parameters.

Furthermore, replacing the second term d
2 log n with d, we obtain

n∑
i=1

− log p(xi |θ̂n) + d , (1.7)

whichwe call theAIC. The details ofAIC andBICwill be discussed inChap.6. In any
case, these criteria are used to select models with smaller values. AIC, BIC, and free
energy are examples of quantities used for this purpose, which we call information
criteria.
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1.5 Why are WAIC and WBIC Bayesian Statistics?

As mentioned in the preface, this book is intended for the following readers:

1. Those with a comprehensive knowledge of mathematical statistics.
2. Those who have used WAIC or WBIC but want to understand their essence.
3. Those with a basic understanding of university-level mathematics such as linear

algebra, calculus, and probability statistics.

Readers in categories 2 and 3 should be able to approach the level of reader 1
in mathematical statistics by reading up to this point. On the other hand, we often
receive questions like the following, particularly from readers in category 2. The
purpose of this book is to answer these questions, but we would like to provide an
overview of the answers here.�������������������������������

Why are WAIC and WBIC used instead of AIC and BIC in non-regular
cases?

Why are WAIC and WBIC considered Bayesian statistics?

Why is algebraic geometry necessary for understanding this?

Information criteria such as AIC, BIC, WAIC, and WBIC (Chap. 6) can be calcu-
lated from the data sequence x1, . . . , xn . Here,

W AI C = (empirical loss) + 1

n

n∑
i=1

V(xi ) , (1.8)

where V(·) is a quantity defined in Chap.5 and, like empirical loss, is calculated from
the posterior distribution p(·|x1, . . . , xn). Calculating this value using R or Python
is not difficult.

In any case, by feeding the data sequence into pre-prepared functions, one can
calculate the values of such information criteria. However, many people use WAIC
instead ofAIC in non-regular caseswithout understandingwhy, just believing that “in
non-regular cases, use WAIC instead of AIC”. Just as one would want to understand
“why AIC”, one would also want to understand “why WAIC”. We would like to
discuss this in more detail below.

Among these, for WAIC andWBIC, in order to calculate the average of f : � →
R

I =
∫

�

f (θ)p(θ|x1, . . . , xn)dθ (1.9)

with respect to the posterior distribution p(θ|x1, . . . , xn), it is necessary to generate
random numbers θ = a1, . . . , am ∈ � (m ≥ 1) according to p(θ|x1, . . . , xn), θ ∈ �
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and calculate the approximate value of I :

Î = 1

m

m∑
j=1

f (a j ) .

Except for special cases, it is considered difficult to calculate the integral of (1.9)
mathematically. In this book, we assume the use of specialized software Stan for this
purpose. In Chap.3, we explain how to use it with examples.

Since WAIC and WBIC are calculated by generating random numbers according
to the posterior distribution using Stan, it can be inferred that they are Bayesian
quantities.

In the following, we denote the operation of taking the average over x ∈ X
as EX [·]. For example, the average of − log p(x |θ̂n) over x ∈ X is written as
EX [− log p(X |θ̂n)]. Here, we write the variable for which the average is taken in
capital letters, such as X . On the other hand, AIC, BIC, and the maximum likelihood
estimate θ̂n are calculated from the n data points x1, . . . , xn ∈ X , which actually
occur randomly. Therefore, we denote the average of the AIC values taken over
these as

EX1···Xn [AI C(X1, . . . , Xn)] (1.10)

or simply as EX1···Xn [AI C]. Also, the value of EX [− log p(X |θ̂n)] varies depending
on the values of x1, . . . , xn ∈ X for θ̂n . Taking the average over these gives

EX1···Xn

[
EX [− log p(X |θ̂(X1, . . . , Xn))]

]
, (1.11)

which we will simply write this as EX1···XnEX [− log p(X |θ̂n)]. Hirotsugu Akaike,
who proposed the AIC, considered the value obtained by averaging the maximum
log-likelihood − log p(x |θ̂(x1, . . . , xn)) over both the training data x1, . . . , xn and
the test data x (1.11) to be an absolute quantity. He justified the AIC by showing that
the AIC averaged over the training data (1.10) matched (1.11).

Sumio Watanabe found it difficult to remove the assumption of regularity as long
as the maximum likelihood estimate used in the first term of AIC (1.7) was applied.
In Chap.6, we will prove that the maximum likelihood estimate may not converge
to its original value without assuming regularity. In WAIC (1.8), the empirical loss
of (1.6) was introduced as a substitute.

Why is WAIC Bayesian?� �

Breaking away from AIC’s maximum likelihood estimation, which does not
work in non-regular cases, replacing its first term with the empirical loss was
the first step in developing WAIC. As a result, there was a need to explore the

derivation of a posterior distribution without assuming regularity.
� �

We have already mentioned that the justification for AIC is that AIC and
EX [− log p(X |θ̂n)] coincide when averaged over the training data x1, . . . , xn . In
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Watanabe’s Bayesian theory, just as the negative log-likelihood is replaced with the
empirical loss, EX [− log p(X |θ̂n)] is replaced with the generalization loss of (1.5).
Then, with or without regularity, excluding terms that can be ignoredwhen n is large,

EX1···Xn [W AI C] = EX1···Xn [generalization loss]

holds (strictly speaking, the equality does not hold, but the difference becomes neg-
ligible). We will discuss the details in Chap. 6 (regular cases) and Chap.8 (general
cases).

Justification of AIC and WAIC� �

EX1···Xn [AI C] = EX1···XnEX [− log p(X |θ̂n)]
EX1···Xn [W AI C] = EX1···Xn [generalization loss]

In regular cases, W AI C = AI C
� �
Abandoning maximum likelihood estimation and introducing generalization loss
and empirical loss was the starting point of SumioWatanabe’s journey into his novel
theory.

1.6 What is “Regularity”

In statistics, assuming the true distribution is q(x) and the statistical model is p(x |θ),
θ ∈ �, we often use EX [log q(X)

p(X |θ) ] to represent the discrepancy between the two.
This quantity is called theKullback-Leibler (KL) information, and it becomes 0when
p(x |θ) and q(x)match. We will discuss its definition and properties in Chap.2. Let’s
denote the value of θ ∈ � that minimizes this value as θ∗. Then, the KL information
between p(x |θ∗) and p(x |θ) is defined as

K (θ) = EX [log p(X |θ∗)
p(X |θ) ].

If this value becomes 0, θ coincides with θ∗, and p(x |θ∗) is closest to the true
distribution q(x). In the following, we will denote the set of such θ∗ as �∗.

The regularity condition (3 conditions), which we have mentioned several times,
will be discussed in detail in Chap.2, but firstly, it requires that�∗ consists of exactly
one element. Secondly, the θ∗ contained in �∗ minimizes K (θ), but θ∗ must not be
an endpoint of �, and it must not be 0 when differentiated with respect to θ, where
� is included in the Euclidean space R

d . When we differentiate K (θ) twice with

respect to each of θ1, . . . , θd , we denote the matrix with elements −∂2K (θ)

∂θi∂θ j
as
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J (θ). The value of J (θ) at θ = θ∗, J (θ∗), has all non-negative eigenvalues (non-
negative definite, details in Chap.4), but the third condition is that they all take
positive values. In regular cases, as n increases, the posterior distribution approaches
a normal distribution, and it is shown that the inverse of the covariance matrix is
n J (θ∗) (Chap. 5). If J (θ∗) does not have an inverse, the covariance matrix does not
exist.

For example, let’s assume that the three types of readers mentioned above follow
some distribution for each of the three variables: statistics, WAIC/WBIC, and math-
ematics, and overall, the distribution is the sum of the three distributions divided
by 3. The mixture of normal distributions discussed in Chap.2 corresponds to this
case. In this case, it is known that there are multiple θ∗ values for which K (θ∗) = 0.
Although regular distributions are common in high school and university statistics
courses, it is said that most real-world data are non-regular.

1.7 Why is Algebraic Geometry Necessary for
Understanding WAIC and WBIC?

In Watanabe’s Bayesian theory, the derived posterior distribution is described using
the concept of algebraic geometry, specifically the real log canonical threshold λ. It
would be impossible to discuss Watanabe’s Bayesian theory without using algebraic
geometry.

However, Bayesian statistics and algebraic geometry (Chap.7) are independent
academic fields. To solve the problem of generalizing the posterior distribution, a
formula called the state density is used to connect the two. The climax could be said
to be there.

In Chap.5, we define Bn := {θ ∈ �|K (θ) < n−1/4} and prove that the posterior
distribution of θ ∈ � not included in Bn can be ignored, regardless of whether it
is regular or not. Therefore, the generalization of the posterior distribution to non-
regularity in Chap.8 is performed only for θ included in Bn , i.e., θ close to θ∗.

The state density formula in Chap.8 seeks an integration formula when n → ∞
and the volume of a certain Bn is sufficiently small (Sect. 8.2). This allows us to
express the posterior distribution and free energy using λ and its multiplicity m. The
definitions of λ and m are discussed below.

1.8 Hironaka’s Desingularization, Nothing to Fear

Many readers may take time to learn the concept ofmanifolds rather than desingular-
ization. However, the algebraic geometry covered in Chap.7 is intended to provide
the prerequisite knowledge for Chap. 8 and beyond, and from the perspective of
algebraic geometry as a whole, Watanabe’s Bayesian theory uses only a very small
portion of it.



12 1 Overview of Watanabe’s Bayes

Hironaka’s theorem is a theorem that claims that even if K (θ) has singular points,
there exists a manifold that appears as if there are no singular points. Heisuke Hiron-
aka says the following:�������������������������������

When you look at the shadow cast by the track of a roller coaster on the
ground, an extremely complex figure is drawn there. Lines intersect in
various ways, and in some parts, the shape becomes pointed. What was
actually a smooth curve appears as intersecting lines and pointed shapes
when focusing on the shadow. In algebraic geometry, such points where
lines intersect or become pointed are called “singular points”.

Let’s give two examples of manifolds.
First, it can be easily verified that the set P1 of the ratio [x : y] of x and y becomes

the union of the set Ux of elements that can be written as [x : 1] and the set Uy of
elements that can be written as [1 : y]. The elements of Ux ∩ Uy can be written as
both [x : 1] and [1 : y], so we assume a relationship where xy = 1. In each case, we
have bijections (one-to-one mappings to the top) with R

1 as follows:

{
φx : Ux � [x : 1] �→ x ∈ R

1

φy : Uy � [1 : y] �→ y ∈ R
1 .

Next, notice that the pairs of elements of P1 and the entire set of real numbers R,
as x, y, z ∈ R, can be written as either ([x : 1], z) or ([1 : y], z). If we write each set
as Ux , Uy , we have bijections with R

2 as follows:

{
φx : Ux � ([x : 1], z) �→ (x, z) ∈ R

2

φy : Uy � ([1 : y], z) �→ (y, z) ∈ R
2 .

If P1 and P
1 × R satisfy several other conditions, then they are considered to form

manifolds of dimensions 1 and 2, respectively. Then, we call the x, y in the first
example and the (x, z), (y, z) in the second example the respective local variables
and their coordinates the local coordinates. In both cases, the manifold M is a union
of two open sets, but in general, there can be any number of them, and we describe
them as a set like (U1,φ1), (U2,φ2), . . ..

From now on, we consider the mapping from M = P
1 × R to R2

g : M � ([x : y], z) �→ (xz, yz) ∈ R
2

to be written as g : (x, z) �→ (zx, z) when y �= 0, and g : (y, w) �→ (w,wy) when
x �= 0.

At this stage, let’s return to the topic of statistics. Suppose we can express the
function K (θ) for the two-dimensional parameter θ = (θx , θy) as θ2x + θ2y . When
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θy �= 0, we can express (θx , θy) as (zx, z) and when θx �= 0, we can express (θx , θy)

as (w,wy). In each case, we have

K (g(x, z)) = K (zx, z) = z2(1 + x2) , K (g(y, z)) = K (w,wy) = w2(1 + y2) .

(1.12)
Also, for the first case, we obtain

∂θx

∂x
= z ,

∂θx

∂z
= x ,

∂θy

∂x
= 0 ,

∂θy

∂z
= 1

and the Jacobian is z for the first case and it is −w for the second case. The absolute
values of these are |z| and |w|, respectively.

The precise statement of Hironaka’s theorem will be discussed in Chap. 7, but it
asserts the existence of a manifold M and a mapping g : M → � such that, for each
local coordinate with local variables u = (u1, . . . , ud),

K (g(u)) = u2k1
1 · · · u2kd

d (1.13)

|g′(u)| = b(u)|uh1
1 · · · uhd

d |. (1.14)

The form of (1.13) is called normal crossing. The absolute value of g′(u) in (1.14)
is the Jacobian, and b(u) is a function that always takes positive values. In relation
to (1.12), if we replace the local variables (x, z) with (x, v) where v = z

√
1 + x2,

we get

K (x, v) = v2

|g′(x, v)| = 1

1 + x2
|v|.

In fact, we can calculate

⎡
⎢⎢⎣

∂θx

∂x

∂θx

∂v

∂θy

∂x

∂θy

∂v

⎤
⎥⎥⎦ =

⎡
⎢⎣

1

(1 + x2)3/2
u

x

(1 + x2)1/2

− x

(1 + x2)3/2
u

1

(1 + x2)1/2

⎤
⎥⎦ .

On the other hand, if we set r = w
√
1 + x2, we obtain K (y, r) = r2 and

|g′(y, r)| = 1
1+y2 |r |.

In Watanabe’s Bayesian theory, the operation of finding the normal crossing of
K (θ) for each local coordinate is called “resolving the singularity”. In other words,
for each local coordinate, we obtain two sequences of non-negative integers of length
d, (k1, . . . , kd) and (h1, . . . , hd). We define the value

λ(α) = min
1≤i≤d

hi + 1

2ki
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as the (local-coordinate-wise) real log canonical threshold, and the number of i’s
achieving the minimum value as the (local-coordinate-wise) multiplicity, m(α).

Then, the minimum of λ(α) over all local coordinates, λ = minα λ(α), is called
the real log canonical threshold, and the maximum of m(α) among local coordinates
achieving λ(α) = λ is called the multiplicity.

In the example above, for the first local coordinate corresponding to (x, v), the
values (ki , hi ) are (0, 0) and (2, 1), respectively, resulting in λ(α) = 1/2 and m(α) =
1. The same is true for the other local coordinate. Therefore, λ = 1/2 and m = 1.

That is, we can determine λ and m from K (θ). At this point, the role of algebraic
geometry is finished.

Even when using Hironaka’s theorem, we are only calculating the normal cross-
ing for each local coordinate. It may not be impossible to understand Watanabe’s
Bayesian theory by exploring the relationship between statistical regularity and alge-
braic geometry’s singularity, but this book takes the following position:�������������������������������

In Watanabe’s Bayesian theory,

the regularity of Bayesian statistics and the non-singularity of algebraic
geometry are assumed to be unrelated.

In particular, readers of type 2 should read through Chap.7 and beyond without
the preconception that it is “difficult”.

1.9 What is the Meaning of Algebraic Geometry’s λ in
Bayesian Statistics?

The real log canonical threshold λ in algebraic geometry is also called the learning
coefficient in Watanabe’s Bayesian theory.

Readers of types 1 and 2who have attempted to studyWatanabe’s Bayesian theory
may have various thoughts about the meaning of λ and how to concretely determine
it.

In Chap.9, we prove that when the system is regular, the normal crossing can
actually be calculated, andλ = d/2.We havementioned that AIC justifies its validity
by satisfying (1.10), but this condition does not hold when the system is not regular.
In fact, the expected AIC, EX1···Xn [AI C], becomes smaller. However, even in that
case, (1.11) holds. If the system is regular, the second term of WAIC becomes on
average equal to d, but when not regular, it becomes 2λ. In fact,

EX1···Xn [generalization loss] = EX1···Xn [empirical loss + 2λ

holds (Chap. 8).
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However, it is difficult to derive the value of the learning coefficient λ mathemat-
ically, and only a few cases have been understood so far (Chap.9). Among them,
Miki Aoyagi’s analysis of shrinkage rank regression is famous. In this chapter, we
hope that more results will follow, and we have included the proof in the appendix.
The proof in the original paper is long, so the author has rewritten it to be simpler
and easier to understand the essence.

Instead of the learning coefficient itself, there are research results that seek the
upper bound of the learning coefficient. Additionally, there is a method to determine
the learning coefficient λ from the WBIC value. The WBIC, using our notation so
far, is

n∑
i=1

− log p(xi |θ)

averaged over � with respect to the posterior distribution. Watanabe’s Bayesian
theory generalizes the posterior distribution using an inverse temperature β > 0. In
that case, the WBIC is∫

�

n∑
i=1

− log p(xi |θ)pβ(θ|x1, . . . , xn)dθ ,

where

pβ(θ|x1, . . . , xn) = ϕ(θ)
∏n

i=1 p(xi |θ)βdθ∫
�

ϕ(θ′)
∏n

i=1 p(xi |θ′)βdθ′ .

WBIC, when regular, exhibits values similar to BIC, and even when not regular, it
calculates values close to the free energy. After all, researchers in statistical physics
have been attempting to calculate the free energy for a long time, and it is known that
the calculations are extensive. WBIC has value as a means to calculate free energy
alone.

If one understands the algebraic geometry in Chap.7 and the state density formula
in Sect. 8.1, the WBIC theory is not as complicated as the WAIC theory.�������������������������������

WAIC and WBIC are bifocal glasses

substitutes for AIC and BIC when not regular

Finally, for those who have experienced frustration and want to conquer the chal-
lenging Watanabe’s Bayesian theory, we have described the important and hard-to-
notice essence in blue throughout each chapter. If this helps reach those hard-to-reach
spots, we would be delighted.
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