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Preface: Sumio Watanabe—Spreading
the Wonder of Bayesian Theory

The first time I met Prof. Sumio Watanabe was when I was invited to a research
meeting organized by Prof. Hideki Aso at the National Institute of Advanced Indus-
trial Science and Technology, where I spoke for about 90 minutes in a seminar. It was
in the early summer of 1994, when I had just been appointed as a full-time lecturer at
Osaka University, and I believe the topic was about structural learning of Bayesian
networks. At that time, there was someone who asked me questions about 20–30
times in total, about once every 2–3 min. That person was Prof. Watanabe.

It was about five years later when Prof. Watanabe gave a lecture titled “Alge-
braic Geometric Methods in Learning Theory” at the Information Based Induction
Sciences (IBIS) Workshop, a machine learning research meeting. At that time, I
was also writing papers on algebraic curve cryptography and plane curves (my co-
authored paper with J. Silverman has been cited over 100 times), and I was confident
in both Bayesian statistics and algebraic geometry. However, I could not understand
Prof. Watanabe’s IBIS talk at all, as it was too rich in originality.

In conventional Bayesian statistics, regularity (defined in detail in Chap. 2) is
assumed, and in that case, the posterior distribution given the sample becomes
a normal distribution. Watanabe’s Bayesian theory is a generalization of existing
Bayesian statistics that uses algebraic geometric methods to derive posterior distri-
butions for cases without assuming regularity. As a consequence, information criteria
such as the Widely Applicable Information Criterion (WAIC) and the Widely Appli-
cable Bayesian Information Criterion (WBIC) are derived. These are similar to infor-
mation criteria such as AIC and BIC, but they can be applied even when the rela-
tionship between the true distribution and the statistical model is non-regular. Also,
if there is sample data, these values can be easily calculated using software such as
Stan (Chap. 3 of this book).

The period from 2005 to 2010 was when Watanabe’s Bayesian theory was most
developed, andmany students entered theWatanabe laboratory.At that time, I listened
to several presentations on the achievements of the young researchers in theWatanabe
laboratory, but I thought it was impossible to understand without studying the basics.
Fortunately, Prof. Watanabe published “Algebraic Geometry and Learning Theory”
(Japanese book) in 2006 and “Algebraic Geometry and Statistical Learning Theory”
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(Cambridge University Press) in 2009. Both are masterpieces on algebraic geometric
methods in learning theory, but they did not discuss the essence of Watanabe’s
Bayesian theory. The latter book does mention WAIC.

On the other hand, the book “Theory and Methods of Bayesian Statistics”
published in 2012 (Japanese book) includes descriptions of not only WAIC but also
Watanabe Bayesian theory. However, although it does not assume prior mathemat-
ical knowledge, it does not delve into the details of the theory, making it difficult to
understand its essence. Honestly, I thought it would be easy to give up unless one
spends about a year reading either of the first two books before reading “Theory and
Methods of Bayesian Statistics”. There was also a concern that themajority of people
might be simply believing and using the claim that “use WAIC or WBIC instead of
AIC or BIC for non-regular cases”. In fact,Watanabe Bayesian theory does not apply
to all irregular statistical models. Moreover, with such an attitude, I think it would
be difficult to understand the general properties of WAIC and WBIC.

The determination to write this book was solidified when Prof. Watanabe visited
the Graduate School of Engineering Sciences at Osaka University for a concentrated
lecture in 2019 (he also visited the Osaka University School of Science in 2009).
Looking back at the materials from that time, the lecture reminded me more of
the general Bayesian theory rather than the essence of Watanabe Bayesian theory.
Professor Watanabe avoids difficult topics and shows a caring attitude, but if I were
Prof. Watanabe, I would have conveyed the essence of Watanabe Bayesian theory
regardless of whether students would run away or not. That thought is also incorpo-
rated in this book. At that time, I was planning a series of 100 mathematical exercises
on machine learning which was translated into Springer books in English. At that
time, without hesitation, I told the editor to include this book as one of them.

However, the book, which I expected to be completed in about half a year, took
a full year to finish. I was well aware that Watanabe Bayesian theory is difficult
to understand. However, when I started writing, I realized that I only understood
the surface of the theory. Moreover, I thought that a satisfactory work would not be
completed unless I delved into claims not written in Prof.Watanabe’s previous books
and papers, and even the essence that Prof. Watanabe himself did not recognize.
As I kept questioning why and pursued the issue, I repeatedly encountered new
perspectives. I thought that Watanabe Bayesian theory is a masterpiece completed
by combining well-thought-out ideas, not just one or two whims.

Watanabe Bayesian theory is constructed by applying algebraic geometry, empir-
ical processes, and zeta functions to existing Bayesian statistics in order to realize
generalization without assuming regularity. These are different from linear algebra
and calculus and are difficult mathematics that are not used unless you major in
mathematics. However, in actual Watanabe Bayesian theory, only a small part of
them is used. This book aims to untangle the complex intertwined threads and serve
as a guide that allows readers to smoothly understand the material without going
through the same time and effort as I did.
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The outline of each chapter is as follows. Please see https://bayesnet.org/books
for abbreviated solutions to the exercises in each chapter.

Chapter Contents

2 Overview of Bayesian Statistics

3 The role of MCMC (such as Stan) used in this book and usage of Stan

4 Summary of mathematical matters used in this book

5 Discussions assuming regularity (Watanabe Bayesian theory that corresponds to its
generalization)

6 Information criteria (AIC, BIC, TIC, WAIC, WBIC, and Free Energy)

7 Minimal necessary algebraic geometry for understanding Chaps. 8 and 9

8 The essence of WAIC

9 WBIC and its application to machine learning

(The relationship between chapters is illustrated in Fig. 1).
This book has been written with the following features:

1. Covering major topics of Watanabe Bayesian theory, from WAIC/WBIC
(Chap. 6) to learning coefficient calculation (Chap. 9). It includes not only the
content discussed in SumioWatanabe’s trilogy but also recent results such as the
equivalence of WBIC and CV (Cross-Validation) (Chap. 8).

2. Providing R/Stan source code.
3. Presenting numerous examples, making the difficult-to-understand Watanabe

Bayesian theory accessible to beginners.
4. Carefully explaining the basics of algebraic geometry necessary for under-

standing Watanabe Bayesian theory (Chap. 8).
5. Offering 100 exercise problems to allow for self-checks.

−→: Generalization
−→: Implication

Chapter 3
MCMC and Stan

Chapter 4
Mathematical preparation

Chapter 5
Regular statistical models

Chapter 6
Information criterion

Chapter 7
Algebraic geometry

Chapter 8
Essence of WAIC

Chapter 9
Application to machine learning

Fig. 1 Relationship between chapters

https://bayesnet.org/books
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Additionally, this book is intended for readers who meet any of the following
criteria:

1. Possess knowledge equivalent to first-year university-level statistics
2. Have used WAIC and WBIC before (applicable even to non-science majors)
3. Possess knowledge equivalent to “Statistical Learning with Math and R/Python”

(Springer).

However, the author would be most delighted if there are readers who have

Studied Watanabe Bayesian theory in the past and failed, but were
able to understand it by reading this book

I have tried to avoid making mathematical leaps, but even for previously unknown
formulas, the ability to read and understand definitions and explanations is necessary.

My wish is for many people to know about Sumio Watanabe’s Bayesian theory,
Akaike’s information criterion, and Amari’s information geometry as some of the
great achievements of Japanese statistics.

One-Point Advice for Those Who Struggle with Math

If you struggle with math, get into the habit of “writing”. Read this book while
writing.

Some people don’t take notes when the teacher writes the same thing on the
board as the textbook. This reduces the learning effect. On the other hand, writing
helps to internalize concepts through sight and touch (sensory and motor nerves). At
undergraduate and graduate thesis presentations, math professors often take notes
while listening to the student’s presentation.

For those who find math difficult while reading this book, I recommend slowly
copying the propositions and equations of each chapter. By doing so, the concepts
will become your own, and you will want to think about why they are true and
consider their proofs. If you still don’t understand after copying, try doing the same
thing the next day.

This is a study method recommended by the famous mathematician Kunihiko
Kodaira. Just by copying, the material becomes much more familiar and less
intimidating.
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Features of This Series

I have summarized the features of this series rather than this book as follows:

1. Acquiring: Building Logic
By graspingmathematical concepts, constructing programs, executing them, and
verifying their operation, readers will build a “logic” in their minds. Not only
will you gain knowledge of machine learning but also a perspective that allows
you to keep up with new sparse estimation techniques. Most students say that
they have learned a lot after solving 100 problems.

2. Not just talk: Code is available for immediate action
It is very inconvenient if there is no source code in a machine learning book.
Furthermore, even if there is a package, without the source code, you cannot
improve the algorithm. Sometimes, the source is made public on platforms like
git, but it may only be available in MATLAB or Python or may not be sufficient.
In this book, code is written for most processes, so you can understand what it
means even if you don’t understand the math.

3. Not just usage: An academic book written by a university professor
Books that only consist of package usage and execution examples have their
merits, such as giving people unfamiliar with the topic a chance to grasp it.
However, there is a limit to the satisfaction of being able to execute machine
learning processes according to procedures without understanding what is
happening. In this book, the mathematical principles of each sparse estimation
process and the code to implement them are presented, leaving no room for doubt.
This book belongs to the academic and rigorous category.

4. Solving 100 problems: University exercises refined through feedback from
students
The exercises in this book have been used in university seminars and lectures,
refined through feedback from students, and have been carefully selected to be
the optimal 100 problems. Themain text of each chapter serves as an explanation,
so by reading it, you can solve all the exercises.

5. Self-contained within the book
Have you ever been disappointed by a theorem proof that says, “Please refer
to literature XX for details”? Unless you are a very interested reader (e.g., a
researcher), you are unlikely to investigate the referenced literature. In this book,
we have carefully chosen topics to avoid situations where external references are
needed. Also, proofs are made accessible, and difficult proofs are placed in the
appendix at the end of each chapter.



x Preface: Sumio Watanabe—Spreading the Wonder of Bayesian Theory

6. Not a one-time sale: Videos, online Q&A, and program files
In university lectures, we use Slack to answer questions from students 24/365,
but in this book, we use the reader’s page

https://bayesnet.org/books

to facilitate casual interaction between authors and readers. In addition, we
publish 10–15 min videos for each chapter. Furthermore, the programs in this
book can be downloaded from git.

Toyonaka, Japan Joe Suzuki
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Chapter 1
Overview of Watanabe’s Bayes

In this chapter, we will first review the basics of Bayesian statistics as a warm-up. In
the latter half, assuming that knowledge alone, we will describe the full picture of
Watanabe’sBayesTheory. In this chapter,wewould like to avoid rigorous discussions
and talk in an essay-like manner to grasp the overall picture.

From now on, we will write the sets of non-negative integers, real numbers, and
complex numbers as N, R, and C, respectively.

1.1 Frequentist Statistics

For example, let’s represent heads of a coin as 1 and tails as 0. If x is a variable
representing heads or tails of the coin, x takes the value of 0 or 1. X = {0, 1} is the
set of possible values of x . Furthermore, we represent the probability of getting heads
with θ that takes values from 0 to 1. � = [0, 1] is the set of possible values of θ. We
call θ a parameter. Here, we consider the distribution p(x |θ) of x ∈ X determined
by θ ∈ �. In the case of this coin toss example,

p(x |θ) =
{

θ, x = 1
1 − θ, x = 0

(1.1)

can be established. In statistics, when “p(x |θ) is a distribution”, p(x |θ) must be
non-negative and the sum of x ∈ X must be 1 (in this case, p(0|θ) + p(1|θ) = 1).

As it is a coin toss, it might be common to assume that the parameter θ is 0.5.
In this case, in statistics, the value of θ is “known”. However, if the value of θ is
“unknown” because we cannot assume θ = 0.5, for example, due to the coin being
bent, we would try tossing the coin several times and estimate the value of θ. If we
toss the coin n = 10 times and get heads 6 times, we might guess that θ = 0.6, and
if we suspect something, we might toss the coin 20 or 100 times.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
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2 1 Overview of Watanabe’s Bayes

In thisway, the problemof estimating the true value of θ from the data x1, . . . , xn ∈
X is called parameter estimation, and n (≥ 1) is called the sample size. The estimated
parameter is often denoted as θ̂n = 0.6, for example, to distinguish it from the true
parameter θ. Alternatively, it can be seen as a mapping like

X n � (x1, . . . , xn) �→ θ̂(x1, . . . , xn) ∈ � .

Statistics is a discipline that deals with problems such as parameter estimation, where
the distribution generating x1, . . . , xn is estimated.

In the coin tossing problem, with xi = 0, 1, we have

θ̂(x1, . . . , xn) = 1

n

n∑
i=1

xi (1.2)

which is called the relative frequency. This is the ratio of the frequency of 1 to the
number of data n. If x1, . . . , xn occur independently, as shown in Chap.4, this value
converges to the true parameter θ. This is the weak law of large numbers. However,
the convergence means that the probability of |θ̂(x1, . . . , xn) − θ| staying within a
certain value approaches 1, as x1, . . . , xn vary probabilistically.

At this point, it is worth noting that there are two types of averages. The value in
(1.2), which is obtained by dividing the sum of the randomly occurring x1, . . . , xn

by the number n, is called the sample mean. In contrast, 0 · (1 − θ) + 1 · θ = θ is
called the expected value. In this book, when we say average, we mean the latter.

1.2 Bayesian Statistics

However, it is undeniable that estimators like (1.2) can feel awkward.Whenwatching
a baseball game, the batting average from the beginning of the season is displayed.
By the second half of the season, that average seems to be close to the player’s true
ability and the true parameter θ. In the opening game, especially in the second at-bat,
it is clear that the displayed batting average is either 0 or 1. That is, in the case of
n = 1, the calculation in (1.2) results in θ̂n = 0 or θ̂n = 1. Furthermore, if the first
at-bat results in a walk or something that does not count as an at-bat, n = 0 and the
calculation in (1.2) cannot even be done. Is there a more intuitive estimator? So,
considering that there are many hitters around a .250 batting average in baseball,
how about estimating as follows?

θ̂(x1, . . . , xn) =
∑n

i=1 xi + 25

n + 100
. (1.3)

The numbers 25 and 100 may be too arbitrary, but they represent prior information
and the beliefs of the person making the estimate. The framework that justifies this
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way of thinking is Bayesian statistics. How Eq. (1.3) is derived will be resolved in
this chapter.

Before the season begins, there might be someone who imagines the distribution
of the player’s batting average θ to be roughly around θ ∈ �. Such a distribution,
determined by prior information or the estimator’s beliefs, is called the prior distri-
bution, and is denoted by ϕ(θ). Although it is the same distribution as p(x |θ), it does
not depend on x ∈ X . However, since it is a distribution, not only must ϕ(θ) ≥ 0,
but also

∫
�

ϕ(θ)dθ = 1. As long as these conditions are met, a uniform distribution
such as ϕ(θ) = 1, 0 ≤ θ ≤ 1 is acceptable.

The results of the first three at-bats in the opening game, represented by hits as 1
and outs as 0, can be any of the following (x1, x2, x3) ∈ {0, 1}3:

000, 001, 010, 011, 100, 101, 110, 111 .

Here, someone who clearly imagines the prior distribution ϕ(θ) can calculate the
probabilities of these eight events. However, for simplicity, assume that the occur-
rences of x1, x2, x3 = 0, 1 are independent. In fact, the conditional probability for a
parameter value of θ is p(x1|θ)p(x2|θ)p(x3|θ). Furthermore, multiplying the prior
probability ϕ(θ) results in p(x1|θ)p(x2|θ)p(x3|θ)ϕ(θ), but actually, integration over
θ is necessary. That is,

Z(x1, x2, x3) =
∫

�

p(x1|θ)p(x2|θ)p(x3|θ)ϕ(θ)dθ

is the probability of (x1, x2, x3). If the prior distribution is uniform,

Z(0, 0, 0) =
∫

[0,1]
(1 − θ)3dθ = 1

4
, Z(0, 0, 1) =

∫
[0,1]

(1 − θ)2θdθ = 1

12

Z(0, 1, 1) =
∫

[0,1]
(1 − θ)θ2dθ = 1

12
, and Z(1, 1, 1) =

∫
[0,1]

θ3dθ = 1

4

can be calculated in this way. The other four cases can also be calculated similarly,
and the sum of the probabilities of the eight sequences is 1. Similarly, for any general
n ≥ 1 and ϕ(·), we can define Z(x1, . . . , xn). This value is called the marginal
likelihood.

1.3 Asymptotic Normality of the Posterior Distribution

Next, after the opening game is over and a person has seen the results of the first
three at-bats (x1, x2, x3), they can estimate the batting average θ more accurately. As
the season progresses and a person sees 100 at-bats (x1, . . . , x100), the estimation
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Fig. 1.1 As the sample size increases, the posterior distribution concentrates near the true parameter
(left). The prior distribution of batting average (1.4) is maximized at θ = 0.25 (right)

of θ becomes even more accurate. The conditional probability of θ under the data
x1, . . . , xn is called its posterior distribution. As the sample size n increases, the
width of the posterior distribution narrows, concentrating around the true value of θ
(Fig. 1.1 left).

To calculate the posterior distribution, it is necessary to apply Bayes’ theorem.
When expressing the conditional probability of event A under event B as P(A|B),
Bayes’ theorem can be written as

P(A|B) = P(B|A)P(A)

P(B)
.

Let A represent the probability of the parameter being θ, and B represent the prob-
ability of the data being x1, . . . , xn . That is, by setting P(B|A) as p(x1|θ) · · · p(xn|θ),
P(A) as the prior probability ϕ(θ), and P(B) as the marginal likelihood
Zn(x1, . . . , xn), the posterior distribution p(θ|x1, . . . , xn) can be written as

p(x1|θ) · · · p(xn|θ)ϕ(θ)

Z(x1, . . . , xn)
.

Returning to the batting average example,

p(θ|0, 0, 0) = 4(1 − θ)3 , p(θ|0, 0, 1) = 12(1 − θ)2θ,

p(θ|0, 1, 1) = 12(1 − θ)θ2 , and p(θ|1, 1, 1) = 4θ3
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are the result. The other four cases can also be calculated similarly, and in each of
the eight series,

∫ 1
0 p(θ|x1, x2, x3)dθ = 1 holds.

As such, defining a prior distribution and finding its posterior probability is
Bayesian estimation. In contrast to traditional statistics, which provides a single
estimate θ̂n for parameter estimation as in (1.2) (called point estimation), Bayesian
statistics gives the result as a posterior distribution. Under certain conditions (regu-
larity) regarding the relationship between the true distribution and the estimated dis-
tribution, it is known that the posterior distribution of the parameter p(θ|x1, . . . , xn)

follows a normal distribution even if it is not a normal distribution when the sample
size n is large. This is called asymptotic normality.�������������������������������

Regularity =⇒ Asymptotic Normality

This theorem will be proven in Chap.5, but in practical data analysis using
Bayesian statistics, asymptotic normality is often not considered. Rather, it is pri-
marily utilized by some Bayesian theorists to prove mathematical propositions and
is often seen as a theory for the sake of theory.

In Watanabe’s Bayesian theory, this theorem is generalized. Under the condition
of “having a relatively finite variance” defined in Chap.2, the posterior distribution
(asymptotic posterior distribution) is derived when n is large. This posterior distri-
bution generally does not become a normal distribution, but it does become a normal
distribution when the regularity condition is added.

On the other hand, if the posterior distribution p(θ|x1, . . . , xn) is known, the
conditional probability r(xn+1|x1, . . . , xn) of xn+1 ∈ X occurring under the series
x1, . . . , xn ∈ X can be calculated as

r(xn+1|x1 . . . , xn) =
∫

�

p(xn+1|θ)p(θ|x1, . . . , xn)dθ .

This is called the predictive distribution. For example, in the case of the batting
average problem,whereX = {0, 1}, the predictive distribution satisfies the properties
of a distribution as follows:

r(1|x1, . . . , xn) + r(0|x1, . . . , xn) = 1 .

That is, when the prior distribution ϕ(·) is determined, the marginal likelihood,
posterior distribution, and predictive distribution are also determined. For example,
if the prior distribution is

ϕ(θ) = θ24(1 − θ)74∫ 1
0 θ241 (1 − θ1)74dθ1

, 0 ≤ θ ≤ 1 (1.4)
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(as shown in Fig. 1.1 on the right), it can be shown that the predictive distribution
r(1|x1, . . . , xn) is given by (1.3) (see Sect. 2.1). The generalization loss

EX
[− log r(X |x1, . . . , xn)

]
(1.5)

and the empirical loss
1

n

n∑
i=1

{− log r(xi |x1, . . . , xn)} (1.6)

are also defined using the predictive distribution. These are the mean and arithmetic
mean of − log r(x |x1, . . . , xn) with respect to x ∈ X , respectively (Chap.5). The
WAIC (Chap.6) is also defined using the empirical loss.

In other words, Bayesian statistics can be said to be a statistical method that
estimates the true distribution using not only samples but also prior distributions that
reflect beliefs and prior information.

1.4 Model Selection

In this book, in addition to determining the posterior distribution for parameter esti-
mation, Bayesian statistics are applied for another purpose. Here, we consider the
problem of estimating which of the statistical models 0 and 1 is correct from the
data sequence x1, . . . , xn , where the statistical model (1.1) is model 1 and the statis-
tical model with equal probabilities of 0 and 1 occurring is model 0. In conventional
statistics, the details are omitted, but this would typically involve hypothesis testing.

In Bayesian statistics, the value obtained by applying the negative logarithm to
the marginal likelihood, − log Z(x1, . . . , xn), is called the free energy. Free energy
is used for model selection, which estimates which statistical model the sample
sequence x1, . . . , xn follows. Under certain conditions, selecting the model with a
smaller free energy value results in a correct choice (called consistency) as the sample
size n → ∞. If the prior probability is uniform at n = 3, the marginal likelihood for
model 1 can be calculated as

− log Z(0, 0, 0) = log 4 , − log Z(0, 0, 1) = log 12

− log Z(0, 1, 1) = log 12 , and − log Z(1, 1, 1) = log 4 .

In the case of Model 0, regardless of (x1, x2, x3) ∈ X 3, the free energy becomes
log 8, so Model 1 is chosen when (x1, x2, x3) = (0, 0, 0), (1, 1, 1), and Model 0 is
chosen otherwise. If we toss a coin three times and the result is biased toward either
0 or 1, rather than a mix of 0 and 1, our intuition tells us that Model 0 is suspicious.
The value of the free energy depends on the choice of the prior distribution, but as the
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sample size n increases, this dependence disappears. In other words, the influence
of actual evidence becomes relatively more significant than prior information or the
estimator’s beliefs.

Next, let’s examine how the estimate in (1.2) is obtained. Here, we derive (1.2)
from the criterion of maximizing the likelihood. The likelihood is a quantity defined
by

p(x1|θ) · · · p(xn|θ)

when data x1, . . . , xn ∈ X are obtained. The θ that maximizes this value is called
the maximum likelihood estimator. The likelihood of (1.2) is θk(1 − θ)n−k when the
number of i with xi = 1 is k and the number of i with xi = 0 is n − k. We could
maximize this value, but instead, we take advantage of the fact that f (x) = log x is
a monotonically increasing function and differentiate

k log θ + (n − k) log(1 − θ)

with respect to θ and set it to 0, resulting in

k

θ
− n − k

1 − θ
= 0 .

Solving this equation, we find that (1.2) is obtained.
Furthermore, we assume that the parameter set� is a subset of the d-dimensional

Euclidean space Rd . Roughly speaking, assuming regularity, it is known that when
the sample size n is large, the free energy can be written as

n∑
i=1

− log p(xi |θ̂n) + d

2
log n ,

wherewe have omitted constant terms andwritten themaximum likelihood estimator
obtained from x1, . . . , xn as θ̂n . This value is called the BIC. Also, the dimension d
of the parameter space can be interpreted as the number of independent parameters.

Furthermore, replacing the second term d
2 log n with d, we obtain

n∑
i=1

− log p(xi |θ̂n) + d , (1.7)

whichwe call theAIC. The details ofAIC andBICwill be discussed inChap.6. In any
case, these criteria are used to select models with smaller values. AIC, BIC, and free
energy are examples of quantities used for this purpose, which we call information
criteria.
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1.5 Why are WAIC and WBIC Bayesian Statistics?

As mentioned in the preface, this book is intended for the following readers:

1. Those with a comprehensive knowledge of mathematical statistics.
2. Those who have used WAIC or WBIC but want to understand their essence.
3. Those with a basic understanding of university-level mathematics such as linear

algebra, calculus, and probability statistics.

Readers in categories 2 and 3 should be able to approach the level of reader 1
in mathematical statistics by reading up to this point. On the other hand, we often
receive questions like the following, particularly from readers in category 2. The
purpose of this book is to answer these questions, but we would like to provide an
overview of the answers here.�������������������������������

Why are WAIC and WBIC used instead of AIC and BIC in non-regular
cases?

Why are WAIC and WBIC considered Bayesian statistics?

Why is algebraic geometry necessary for understanding this?

Information criteria such as AIC, BIC, WAIC, and WBIC (Chap. 6) can be calcu-
lated from the data sequence x1, . . . , xn . Here,

W AI C = (empirical loss) + 1

n

n∑
i=1

V(xi ) , (1.8)

where V(·) is a quantity defined in Chap.5 and, like empirical loss, is calculated from
the posterior distribution p(·|x1, . . . , xn). Calculating this value using R or Python
is not difficult.

In any case, by feeding the data sequence into pre-prepared functions, one can
calculate the values of such information criteria. However, many people use WAIC
instead ofAIC in non-regular caseswithout understandingwhy, just believing that “in
non-regular cases, use WAIC instead of AIC”. Just as one would want to understand
“why AIC”, one would also want to understand “why WAIC”. We would like to
discuss this in more detail below.

Among these, for WAIC andWBIC, in order to calculate the average of f : � →
R

I =
∫

�

f (θ)p(θ|x1, . . . , xn)dθ (1.9)

with respect to the posterior distribution p(θ|x1, . . . , xn), it is necessary to generate
random numbers θ = a1, . . . , am ∈ � (m ≥ 1) according to p(θ|x1, . . . , xn), θ ∈ �
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and calculate the approximate value of I :

Î = 1

m

m∑
j=1

f (a j ) .

Except for special cases, it is considered difficult to calculate the integral of (1.9)
mathematically. In this book, we assume the use of specialized software Stan for this
purpose. In Chap.3, we explain how to use it with examples.

Since WAIC and WBIC are calculated by generating random numbers according
to the posterior distribution using Stan, it can be inferred that they are Bayesian
quantities.

In the following, we denote the operation of taking the average over x ∈ X
as EX [·]. For example, the average of − log p(x |θ̂n) over x ∈ X is written as
EX [− log p(X |θ̂n)]. Here, we write the variable for which the average is taken in
capital letters, such as X . On the other hand, AIC, BIC, and the maximum likelihood
estimate θ̂n are calculated from the n data points x1, . . . , xn ∈ X , which actually
occur randomly. Therefore, we denote the average of the AIC values taken over
these as

EX1···Xn [AI C(X1, . . . , Xn)] (1.10)

or simply as EX1···Xn [AI C]. Also, the value of EX [− log p(X |θ̂n)] varies depending
on the values of x1, . . . , xn ∈ X for θ̂n . Taking the average over these gives

EX1···Xn

[
EX [− log p(X |θ̂(X1, . . . , Xn))]

]
, (1.11)

which we will simply write this as EX1···XnEX [− log p(X |θ̂n)]. Hirotsugu Akaike,
who proposed the AIC, considered the value obtained by averaging the maximum
log-likelihood − log p(x |θ̂(x1, . . . , xn)) over both the training data x1, . . . , xn and
the test data x (1.11) to be an absolute quantity. He justified the AIC by showing that
the AIC averaged over the training data (1.10) matched (1.11).

Sumio Watanabe found it difficult to remove the assumption of regularity as long
as the maximum likelihood estimate used in the first term of AIC (1.7) was applied.
In Chap.6, we will prove that the maximum likelihood estimate may not converge
to its original value without assuming regularity. In WAIC (1.8), the empirical loss
of (1.6) was introduced as a substitute.

Why is WAIC Bayesian?� �

Breaking away from AIC’s maximum likelihood estimation, which does not
work in non-regular cases, replacing its first term with the empirical loss was
the first step in developing WAIC. As a result, there was a need to explore the

derivation of a posterior distribution without assuming regularity.
� �

We have already mentioned that the justification for AIC is that AIC and
EX [− log p(X |θ̂n)] coincide when averaged over the training data x1, . . . , xn . In
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Watanabe’s Bayesian theory, just as the negative log-likelihood is replaced with the
empirical loss, EX [− log p(X |θ̂n)] is replaced with the generalization loss of (1.5).
Then, with or without regularity, excluding terms that can be ignoredwhen n is large,

EX1···Xn [W AI C] = EX1···Xn [generalization loss]

holds (strictly speaking, the equality does not hold, but the difference becomes neg-
ligible). We will discuss the details in Chap. 6 (regular cases) and Chap.8 (general
cases).

Justification of AIC and WAIC� �

EX1···Xn [AI C] = EX1···XnEX [− log p(X |θ̂n)]
EX1···Xn [W AI C] = EX1···Xn [generalization loss]

In regular cases, W AI C = AI C
� �
Abandoning maximum likelihood estimation and introducing generalization loss
and empirical loss was the starting point of SumioWatanabe’s journey into his novel
theory.

1.6 What is “Regularity”

In statistics, assuming the true distribution is q(x) and the statistical model is p(x |θ),
θ ∈ �, we often use EX [log q(X)

p(X |θ) ] to represent the discrepancy between the two.
This quantity is called theKullback-Leibler (KL) information, and it becomes 0when
p(x |θ) and q(x)match. We will discuss its definition and properties in Chap.2. Let’s
denote the value of θ ∈ � that minimizes this value as θ∗. Then, the KL information
between p(x |θ∗) and p(x |θ) is defined as

K (θ) = EX [log p(X |θ∗)
p(X |θ) ].

If this value becomes 0, θ coincides with θ∗, and p(x |θ∗) is closest to the true
distribution q(x). In the following, we will denote the set of such θ∗ as �∗.

The regularity condition (3 conditions), which we have mentioned several times,
will be discussed in detail in Chap.2, but firstly, it requires that�∗ consists of exactly
one element. Secondly, the θ∗ contained in �∗ minimizes K (θ), but θ∗ must not be
an endpoint of �, and it must not be 0 when differentiated with respect to θ, where
� is included in the Euclidean space R

d . When we differentiate K (θ) twice with

respect to each of θ1, . . . , θd , we denote the matrix with elements −∂2K (θ)

∂θi∂θ j
as
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J (θ). The value of J (θ) at θ = θ∗, J (θ∗), has all non-negative eigenvalues (non-
negative definite, details in Chap.4), but the third condition is that they all take
positive values. In regular cases, as n increases, the posterior distribution approaches
a normal distribution, and it is shown that the inverse of the covariance matrix is
n J (θ∗) (Chap. 5). If J (θ∗) does not have an inverse, the covariance matrix does not
exist.

For example, let’s assume that the three types of readers mentioned above follow
some distribution for each of the three variables: statistics, WAIC/WBIC, and math-
ematics, and overall, the distribution is the sum of the three distributions divided
by 3. The mixture of normal distributions discussed in Chap.2 corresponds to this
case. In this case, it is known that there are multiple θ∗ values for which K (θ∗) = 0.
Although regular distributions are common in high school and university statistics
courses, it is said that most real-world data are non-regular.

1.7 Why is Algebraic Geometry Necessary for
Understanding WAIC and WBIC?

In Watanabe’s Bayesian theory, the derived posterior distribution is described using
the concept of algebraic geometry, specifically the real log canonical threshold λ. It
would be impossible to discuss Watanabe’s Bayesian theory without using algebraic
geometry.

However, Bayesian statistics and algebraic geometry (Chap.7) are independent
academic fields. To solve the problem of generalizing the posterior distribution, a
formula called the state density is used to connect the two. The climax could be said
to be there.

In Chap.5, we define Bn := {θ ∈ �|K (θ) < n−1/4} and prove that the posterior
distribution of θ ∈ � not included in Bn can be ignored, regardless of whether it
is regular or not. Therefore, the generalization of the posterior distribution to non-
regularity in Chap.8 is performed only for θ included in Bn , i.e., θ close to θ∗.

The state density formula in Chap.8 seeks an integration formula when n → ∞
and the volume of a certain Bn is sufficiently small (Sect. 8.2). This allows us to
express the posterior distribution and free energy using λ and its multiplicity m. The
definitions of λ and m are discussed below.

1.8 Hironaka’s Desingularization, Nothing to Fear

Many readers may take time to learn the concept ofmanifolds rather than desingular-
ization. However, the algebraic geometry covered in Chap.7 is intended to provide
the prerequisite knowledge for Chap. 8 and beyond, and from the perspective of
algebraic geometry as a whole, Watanabe’s Bayesian theory uses only a very small
portion of it.
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Hironaka’s theorem is a theorem that claims that even if K (θ) has singular points,
there exists a manifold that appears as if there are no singular points. Heisuke Hiron-
aka says the following:�������������������������������

When you look at the shadow cast by the track of a roller coaster on the
ground, an extremely complex figure is drawn there. Lines intersect in
various ways, and in some parts, the shape becomes pointed. What was
actually a smooth curve appears as intersecting lines and pointed shapes
when focusing on the shadow. In algebraic geometry, such points where
lines intersect or become pointed are called “singular points”.

Let’s give two examples of manifolds.
First, it can be easily verified that the set P1 of the ratio [x : y] of x and y becomes

the union of the set Ux of elements that can be written as [x : 1] and the set Uy of
elements that can be written as [1 : y]. The elements of Ux ∩ Uy can be written as
both [x : 1] and [1 : y], so we assume a relationship where xy = 1. In each case, we
have bijections (one-to-one mappings to the top) with R

1 as follows:

{
φx : Ux � [x : 1] �→ x ∈ R

1

φy : Uy � [1 : y] �→ y ∈ R
1 .

Next, notice that the pairs of elements of P1 and the entire set of real numbers R,
as x, y, z ∈ R, can be written as either ([x : 1], z) or ([1 : y], z). If we write each set
as Ux , Uy , we have bijections with R

2 as follows:

{
φx : Ux � ([x : 1], z) �→ (x, z) ∈ R

2

φy : Uy � ([1 : y], z) �→ (y, z) ∈ R
2 .

If P1 and P
1 × R satisfy several other conditions, then they are considered to form

manifolds of dimensions 1 and 2, respectively. Then, we call the x, y in the first
example and the (x, z), (y, z) in the second example the respective local variables
and their coordinates the local coordinates. In both cases, the manifold M is a union
of two open sets, but in general, there can be any number of them, and we describe
them as a set like (U1,φ1), (U2,φ2), . . ..

From now on, we consider the mapping from M = P
1 × R to R2

g : M � ([x : y], z) �→ (xz, yz) ∈ R
2

to be written as g : (x, z) �→ (zx, z) when y �= 0, and g : (y, w) �→ (w,wy) when
x �= 0.

At this stage, let’s return to the topic of statistics. Suppose we can express the
function K (θ) for the two-dimensional parameter θ = (θx , θy) as θ2x + θ2y . When
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θy �= 0, we can express (θx , θy) as (zx, z) and when θx �= 0, we can express (θx , θy)

as (w,wy). In each case, we have

K (g(x, z)) = K (zx, z) = z2(1 + x2) , K (g(y, z)) = K (w,wy) = w2(1 + y2) .

(1.12)
Also, for the first case, we obtain

∂θx

∂x
= z ,

∂θx

∂z
= x ,

∂θy

∂x
= 0 ,

∂θy

∂z
= 1

and the Jacobian is z for the first case and it is −w for the second case. The absolute
values of these are |z| and |w|, respectively.

The precise statement of Hironaka’s theorem will be discussed in Chap. 7, but it
asserts the existence of a manifold M and a mapping g : M → � such that, for each
local coordinate with local variables u = (u1, . . . , ud),

K (g(u)) = u2k1
1 · · · u2kd

d (1.13)

|g′(u)| = b(u)|uh1
1 · · · uhd

d |. (1.14)

The form of (1.13) is called normal crossing. The absolute value of g′(u) in (1.14)
is the Jacobian, and b(u) is a function that always takes positive values. In relation
to (1.12), if we replace the local variables (x, z) with (x, v) where v = z

√
1 + x2,

we get

K (x, v) = v2

|g′(x, v)| = 1

1 + x2
|v|.

In fact, we can calculate

⎡
⎢⎢⎣

∂θx

∂x

∂θx

∂v

∂θy

∂x

∂θy

∂v

⎤
⎥⎥⎦ =

⎡
⎢⎣

1

(1 + x2)3/2
u

x

(1 + x2)1/2

− x

(1 + x2)3/2
u

1

(1 + x2)1/2

⎤
⎥⎦ .

On the other hand, if we set r = w
√
1 + x2, we obtain K (y, r) = r2 and

|g′(y, r)| = 1
1+y2 |r |.

In Watanabe’s Bayesian theory, the operation of finding the normal crossing of
K (θ) for each local coordinate is called “resolving the singularity”. In other words,
for each local coordinate, we obtain two sequences of non-negative integers of length
d, (k1, . . . , kd) and (h1, . . . , hd). We define the value

λ(α) = min
1≤i≤d

hi + 1

2ki
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as the (local-coordinate-wise) real log canonical threshold, and the number of i’s
achieving the minimum value as the (local-coordinate-wise) multiplicity, m(α).

Then, the minimum of λ(α) over all local coordinates, λ = minα λ(α), is called
the real log canonical threshold, and the maximum of m(α) among local coordinates
achieving λ(α) = λ is called the multiplicity.

In the example above, for the first local coordinate corresponding to (x, v), the
values (ki , hi ) are (0, 0) and (2, 1), respectively, resulting in λ(α) = 1/2 and m(α) =
1. The same is true for the other local coordinate. Therefore, λ = 1/2 and m = 1.

That is, we can determine λ and m from K (θ). At this point, the role of algebraic
geometry is finished.

Even when using Hironaka’s theorem, we are only calculating the normal cross-
ing for each local coordinate. It may not be impossible to understand Watanabe’s
Bayesian theory by exploring the relationship between statistical regularity and alge-
braic geometry’s singularity, but this book takes the following position:�������������������������������

In Watanabe’s Bayesian theory,

the regularity of Bayesian statistics and the non-singularity of algebraic
geometry are assumed to be unrelated.

In particular, readers of type 2 should read through Chap.7 and beyond without
the preconception that it is “difficult”.

1.9 What is the Meaning of Algebraic Geometry’s λ in
Bayesian Statistics?

The real log canonical threshold λ in algebraic geometry is also called the learning
coefficient in Watanabe’s Bayesian theory.

Readers of types 1 and 2who have attempted to studyWatanabe’s Bayesian theory
may have various thoughts about the meaning of λ and how to concretely determine
it.

In Chap.9, we prove that when the system is regular, the normal crossing can
actually be calculated, andλ = d/2.We havementioned that AIC justifies its validity
by satisfying (1.10), but this condition does not hold when the system is not regular.
In fact, the expected AIC, EX1···Xn [AI C], becomes smaller. However, even in that
case, (1.11) holds. If the system is regular, the second term of WAIC becomes on
average equal to d, but when not regular, it becomes 2λ. In fact,

EX1···Xn [generalization loss] = EX1···Xn [empirical loss + 2λ

holds (Chap. 8).
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However, it is difficult to derive the value of the learning coefficient λ mathemat-
ically, and only a few cases have been understood so far (Chap.9). Among them,
Miki Aoyagi’s analysis of shrinkage rank regression is famous. In this chapter, we
hope that more results will follow, and we have included the proof in the appendix.
The proof in the original paper is long, so the author has rewritten it to be simpler
and easier to understand the essence.

Instead of the learning coefficient itself, there are research results that seek the
upper bound of the learning coefficient. Additionally, there is a method to determine
the learning coefficient λ from the WBIC value. The WBIC, using our notation so
far, is

n∑
i=1

− log p(xi |θ)

averaged over � with respect to the posterior distribution. Watanabe’s Bayesian
theory generalizes the posterior distribution using an inverse temperature β > 0. In
that case, the WBIC is∫

�

n∑
i=1

− log p(xi |θ)pβ(θ|x1, . . . , xn)dθ ,

where

pβ(θ|x1, . . . , xn) = ϕ(θ)
∏n

i=1 p(xi |θ)βdθ∫
�

ϕ(θ′)
∏n

i=1 p(xi |θ′)βdθ′ .

WBIC, when regular, exhibits values similar to BIC, and even when not regular, it
calculates values close to the free energy. After all, researchers in statistical physics
have been attempting to calculate the free energy for a long time, and it is known that
the calculations are extensive. WBIC has value as a means to calculate free energy
alone.

If one understands the algebraic geometry in Chap.7 and the state density formula
in Sect. 8.1, the WBIC theory is not as complicated as the WAIC theory.�������������������������������

WAIC and WBIC are bifocal glasses

substitutes for AIC and BIC when not regular

Finally, for those who have experienced frustration and want to conquer the chal-
lenging Watanabe’s Bayesian theory, we have described the important and hard-to-
notice essence in blue throughout each chapter. If this helps reach those hard-to-reach
spots, we would be delighted.



Chapter 2
Introduction to Watanabe Bayesian
Theory

First, we define basic terms in Bayesian1 statistics, such as prior distribution, poste-
rior distribution, marginal likelihood, and predictive distribution. Next, we define the
true distribution q and the statistical model {p(·|θ)}θ∈�, and find the set of θ ∈ � that
minimizes the Kullback-Leibler (KL) information between them, denoted as�∗. We
then introduce the concepts of homogeneity with respect to�∗, realizability, and reg-
ularity between q and {p(·|θ)}θ∈�. TheWatanabe Bayes theory aims to generalize the
asymptotic normality of the posterior distribution for irregular cases by introducing
a condition of relatively finite variance. We derive the relationships between homo-
geneity, realizability, regularity, and relatively finite variance. Finally, we derive the
posterior distribution when the statistical model is an exponential family distribution
and its conjugate prior distribution is applied.

2.1 Prior Distribution, Posterior Distribution, and
Predictive Distribution

LetX be a set and n ≥ 1. Given observed data x1, . . . , xn ∈ X , we infer information
about the unknown distribution q generating them (e.g., the mean and variance). This
is called statistical inference. In the following, when we say distribution q, we mean
a function q (probability density function) satisfying q(x) ≥ 0, x ∈ X , and

∫
X
q(x)dx = 1 (2.1)

1 “Bayes” is derived from Thomas Bayes (1701–1761), a British minister, mathematician, and
philosopher.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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or ifX is a countable set, a function q satisfying q(x) ≥ 0, x ∈ X , and
∑

x∈X q(x) =
1. The integrals treated in this book are Riemann integrals (those learned in high
school). The true distribution q is the distribution of a random variable X ∈ X
(defined precisely in Chap. 4), and the n samples x1, . . . , xn are the realized values
of the independently generated2 X1, . . . , Xn . Therefore, the joint distribution of the
n samples is the product of each distribution, q(x1) · · · q(xn).

Example 1 For the normal distribution

q(x) = 1√
2πσ2

exp{− (x − μ)2

2σ2
} , μ ∈ R , σ2 > 0 , (2.2)

we derive (2.1). First, using the substitution integral with r = (x − μ)/σ, we note
that

∫ ∞

−∞
q(x)dx =

∫ ∞

−∞
1√
2π

exp(−r2

2
)dr .

In general, if u = r cos θ, v = r sin θ (r > 0, 0 ≤ θ ≤ π/2) and f : R2 → R is dif-
ferentiable, we can write3

∫ ∞

0

∫ ∞

0
f (u, v)dudv =

∫ π/2

0

∫ ∞

0
f (r cos θ, r sin θ)rdrdθ. (2.3)

From this and Exercise 1, we obtain

{
∫ ∞

0
exp(−u2

2
)du}2 = π

2
. (2.4)

Thus,

∫ ∞

−∞
exp(−u2

2
)du = √

2π (2.5)

is obtained, and (2.1) holds. �

The mean and variance of a random variable X are defined, respectively, as

2 In this book, uppercase letters like X, Xi represent random variables, and lowercase letters like
x, xi represent their realized values.
3 When converting the two variables (u, v) to polar coordinates (r, θ), dudv becomes the value

obtained by multiplying the Jacobian

∣∣∣∣∣
∂u
∂r

∂v
∂r

∂u
∂θ

∂v
∂θ

∣∣∣∣∣ = r (polar coordinate transformation).
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E[X ] :=
∫
X
xq(x)dx , and

V[X ] := E[{X − E[X ]}2] =
∫
X

(x − E[x])2q(x)dx ,

where, when explicitly indicating the random variable X , we will denote it as EX [·],
VX [·]. Moreover, for a function f : X n → R, the operation of taking the mean of
the random variable f (X1, . . . , Xn) is denoted as

E[ f (X1, . . . , Xn)] :=
∫
X

· · ·
∫
X

f (x1, . . . , xn)q(x1) · · · q(xn)dx1 · · · dxn .

The variance of f (X1, . . . , Xn) is defined similarly.

Example 2 For the normal distribution (2.2), the mean and variance of the random
variable X are, respectively, E[X ] = μ, V[X ] = σ2. In general, E[(X − μ)m] = 0
holds for odd numbers m. Furthermore, for m = 4, E[(X − μ)4] = 3σ4 holds (see
Exercise 2). �

In general, if the mean of a random variable X is E[X ], the variance of X can be
written as

V[X ] = E[{X − E[X ]}2] = E[X2] − E[XE[X ]] − E[E[X ]X ] + E[X ]2 = E[X2] − E[X ]2.

Here, we used E[aX ] = aE[X ] and V[bX ] = b2V[X ] for a, b ∈ R. For a d-
dimensional vector, similarly, if the mean is E[X ] ∈ R

d , its covariance matrix can
be written as

E[(X − E[X ])(X − E[X ])	] = E[XX	] − E[X ]E[X ]	 ∈ R
d×d .

In the following, the true distribution q is unknown, but we consider finding the
distribution closest to the true distribution q among those that can be written as
p(x |θ), x ∈ X , using some parameter θ. This includes the special case where the
true distribution q can be realized in the form of p(·|θ). We assume that the set of
such parameters � is contained in a d(≥ 1)-dimensional Euclidean space Rd .

Example 3 Suppose that each x ∈ X := R is generated according to the distribution
q(x). In this case, if there exists a θ = (μ,σ2) ∈ � = {(μ,σ2) ∈ R

2 | σ2 > 0} such
that q(x) = p(x |μ,σ2), then the parameters (μ,σ2) of the normal distribution

p(x |μ,σ2) = 1√
2πσ2

exp{− (x − μ)2

2σ2
} (2.6)

can be estimated from n samples x1, . . . , xn . If the true distribution q cannot be
written in this way, it will be an approximation. �
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Furthermore, we assume that each parameter θ is generated according to some
distribution ϕ. That is, we assume that ϕ(θ) ≥ 0, θ ∈ �, and

∫
�

ϕ(θ)dθ = 1 hold.
In this book, we call {p(·|θ)}θ∈� a statistical model and ϕ a prior distribution.

Then, we call

p(θ|x1, . . . , xn) := ϕ(θ)p(x1|θ) · · · p(xn|θ)
Z(x1, . . . , xn)

(2.7)

the posterior distribution of θ ∈ � when x1, . . . , xn are given. The constant
Z(x1, . . . , xn) for normalization is called the marginal likelihood. We define it as

Z(x1, . . . , xn) :=
∫

�

ϕ(θ)p(x1|θ) · · · p(xn|θ)dθ .

We call the predictive distribution of x ∈ X ,

r(x |x1, . . . , xn) :=
∫

�

p(x |θ)p(θ|x1, . . . , xn)dθ = Z(x1, . . . , xn, x)

Z(x1, . . . , xn)
(2.8)

which is the average of the statisticalmodel {p(·|θ)}θ∈� with the posterior distribution
(2.7). Note that (2.7) and (2.8) are determined by the prior distribution ϕ(·) and
x1, . . . , xn . In this book, we will investigate reducing the difference between the
true distribution q and the predictive distribution r(·|x1, . . . , xn) as the sample size
n increases.4

The derivation of the marginal likelihood, posterior density, and predictive distri-
bution in Examples 4 to 7 below will be done in Sect. 2.4.

Example 4 In Example 3, the statistical model (2.6) can be written as

p(x |μ) := 1√
2π

exp{− (x − μ)2

2
}

when σ2 = 1 is known, and the prior distribution for μ ∈ � = R is

ϕ(μ) := 1√
2π

exp(−μ2

2
) . (2.9)

In this case, the marginal likelihood and posterior probability are respectively

Z(x1, . . . , xn) = 1√
n + 1

(
1√
2π

)n exp

{
−1

2

n∑
i=1

x2i +
1

2(n + 1)
(

n∑
i=1

xi )
2

}
(2.10)

p(μ|x1, . . . , xn) = 1√
2π/(n + 1)

exp

{
−n + 1

2
(μ − 1

n + 1

n∑
i=1

xi )
2

}
. (2.11)

4 The number of samples n is called the sample size.
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In other words, before and after obtaining the samples x1, . . . , xn , the prior distribu-
tion μ ∼ N (0, 1) is updated to the posterior distribution μ ∼ N ( 1

n+1

∑n
i=1 xi ,

1
n+1 ).

5

Also, the predictive distribution, for x ∈ R, is

r(x |x1, . . . , xn) = 1√
2π

n + 2

n + 1

exp

⎧⎪⎨
⎪⎩− 1

2
n + 2

n + 1

(x − 1

n + 1

n∑
i=1

xi )
2

⎫⎪⎬
⎪⎭ . (2.12)

That is, it follows a normal distributionwithmean 1
n+1

∑n
i=1 xi and variance

n+2
n+1 . Fur-

thermore, if there exists a μ∗ such that q(·) = p(·|μ∗), when considering X1, . . . , Xn

as random variables, as n → ∞, 1
n+1

∑n
i=1 Xi converges6 to μ∗. The derivation of

(2.10), (2.11), and (2.12) will be done in Example 17. �
Example 5 Consider a statistical model with X = 0, 1, p(1|θ) = θ ∈ � := [0, 1],
and suppose there are k occurrences of 1 among x1, . . . , xn ∈ X . We consider the
case where the prior distribution is a uniform distribution:

ϕ(θ) =
{
1 , θ ∈ �

0 , θ /∈ �
(2.13)

(we can also confirm that ϕ(θ) ≥ 0 and
∫ 1
0 ϕ(θ)dθ = 1). In this case, the marginal

likelihood, posterior distribution, and predictive distribution are, respectively,

Z(x1, . . . , xn) = (n − k)!k!
(n + 1)! (2.14)

p(θ|x1, . . . , xn) = θk(1 − θ)n−k (n + 1)!
(n − k)!k! (2.15)

r(x |x1, . . . , xn) =
{

(k + 1)/(n + 2), x = 1
(n − k + 1)/(n + 2), x = 0

. (2.16)

The derivations of (2.14), (2.15), and (2.16) will be done in Example 19. Therefore,
if there exists a θ∗ such that q(·) = p(·|θ∗), as n → ∞, the predictive distribution
k+1
n+2 converges to θ∗. �

In Examples 4 and 5, note that specific prior distributions, such as (2.9) and (2.13),
were chosen, so the resulting posterior and predictive distributions are obtained
accordingly. Different posterior and predictive distributions would be obtained if
different prior distributions were chosen.

Example 6 In Example 4, instead of using (2.9) as the prior distribution ϕ, set

ϕ(μ) := 1√
2π

exp{− (μ − φ)2

2
} . (2.17)

5 We denote the normal distribution with mean μ and variance σ2 as N (μ,σ2).
6 This is due to the law of large numbers in Sect. 4.3. Here, we mean convergence in probability.
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Fig. 2.1 For a specific sequence of random numbers x1, . . . , x20 generated according to the stan-
dard normal distribution, the predictive distribution was constructed using the first n = 1, 5, 10, 20
elements. In addition, similar experiments were conducted for φ = −4,−2, 2 as well as φ = 0. It
can be seen that the obtained predictive distributions are close to the prior distribution when n is
small, but become more dependent on the observed values x1, . . . , x20 as n increases

Then, the predictive distribution is

1√
2π

n + 2

n + 1

exp[− 1

2
n + 2

n + 1

{x − 1

n + 1
(φ +

n∑
i=1

xi )}2] (2.18)

(see Fig. 2.1). The derivation of this will be done in Example 18. The case with φ = 0
corresponds to (2.12). The code used for the implementation is shown below. �
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Please note that the characters in the graphs obtained by executing the
programs in this book may differ from those shown in the figure (the code
is simplified).

1 f <- function(x,mu,sig2) (2*pi*sig2)^(−1/2)*exp(−(x−mu)^2/2)
2 ## Definition of normal distribution

3 phi.seq <- c(−4,2,2) ## Candidate hyperparameters

4 n.seq <- c(1,5,10,20) ## Candidates for n, the first n samples

5 m <- length(phi.seq)
6 l <- length(n.seq)
7 n <- 30 ## Number of samples n

8 x <- rnorm(n) ## Generate n normal random numbers

9 par(mfrow = c(2,2)) ## Generate 4 graphs

10 for(phi in phi.seq){
11 plot(0, 0, xlim=c(−5,7), ylim=c(0,0.5), type="n")
12 for(k in 1:l){
13 nn <- n.seq[k] ## First n samples

14 mu <- (phi+sum(x[1:nn]))/(nn+1) ## Mean of predictive

15 distribution
16 sig2 <- (nn+2)/(nn+1) ## Variance of predictive

17 distribution
18 curve(f(x,mu,sig2), col=k+1, add=TRUE) ## Draw the curve

19 title(paste("phi=",phi))
20 }
21 ## Draw the curve of the true distribution

22 curve(dnorm(x), lwd=2, lty=2, col=1, add=TRUE)
23 legend("topright",c("True", n.seq), lty=c(2, rep(1,4)),
24 lwd=c(2,rep(1,4)), col=1:(l+1))
25 }
26 par(mfrow = c(1,1))

Example 7 In Example 5, instead of using (2.13), we use the Beta distribution for
ϕ. That is, with appropriate a, b > 0,

ϕ(θ) := θa−1(1 − θ)b−1

∫ 1
0 θa−1(1 − θ)b−1dθ

, θ ∈ [0, 1] . (2.19)

In this case, the predictive distribution is given by

r(x |x1, . . . , xn) =
{

(k + a)/(n + a + b), x = 1
(n − k + b)/(n + a + b), x = 0

. (2.20)

The derivation of this result is carried out in Example 19. When a = b = 1, this
corresponds to (2.16). By making the values of a and b small, the values of (2.20)
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change sensitively with respect to the observed k = 0, 1, . . . , n. Moreover, if it is
expected that there is a high probability of x = 1, a prior distribution with a > b
should be given. �

Parameters included in the definition of the prior distribution, such as φ in (2.17)
and a, b in (2.19), are called hyperparameters in this book. The choice of the prior
distribution and how to select the hyperparameters cannot be discussed in general
without making assumptions.

2.2 True Distribution and Statistical Model

In this book, we consider the problem of estimating the distribution q from observa-
tions. However, estimating an unknown q in general is difficult, so we limit ourselves
to a certain distribution form p(·|θ) and estimate q by estimating its θ ∈ R

d (d ≥ 1).
The true distribution q may or may not be realized using some θ ∈ � in p(·|θ).

p(x |θ) = q(x), x ∈ X .

If there exists a θ ∈ � such that the above equation holds, the distribution q is said
to be realizable by the statistical model {p(·|θ)}θ∈�.

Example 8 Given observed values x1, . . . , xn ∈ X generated according to an
unknown distribution q, we estimate the mean μ and variance σ2 using the sample
mean x̄ := 1

n

∑n
i=1 xi and the sample variance s2 := 1

n

∑n
i=1(xi − x̄)2. Then, using

these values, we estimate q with a normal distribution p(·|μ,σ2), where μ := x̄ and
σ2 := s2 (even though q might not be a normal distribution). In this case, d = 2 and
θ = (μ,σ2) is the parameter. �

In general, we want to find the parameter θ that makes q(·) and p(·|θ) as close as
possible. In this book, we evaluate the closeness between the two using theKullback-
Leibler (KL) divergence

D(q||p(·|θ)) :=
∫
X
q(x) log

q(x)

p(x |θ)dx .

However, the Kullback-Leibler information is not symmetric, as D(p(·|θ)||q) �=
D(q||p(·|θ)), and thus it is not a distance.

Proposition 1 When the true distribution is q, for any distribution p, D(q||p) ≥ 0
and

D(q||p) = 0 ⇐⇒ the probability of {x ∈ X | q(x) = p(x)} is 1

holds.
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(a) f(x) = x2 (b) f(x) = x4 (c) f(x) = |x|

Fig. 2.2 It is not enough for the function to be convex at θ∗. With θ∗ = 0, (a) f (x) = x2 satisfies
the second condition as f ′′(0) = 2. However, (b) f (x) = x4 is unsuitable due to f ′′(0) = 0. (c)
f (x) = |x | is discontinuous with f ′(0−) = −1 and f ′(0+) = 1, and f ′′(0) is not defined

Fig. 2.3 Examples of non-regular cases. From left to right: multiple θ∗, not twice differentiable
at θ∗, θ∗ on the boundary of �

Proof From the inequality x − 1 ≥ log x (x > 0) (equality holds when x = 1),

∫
X
q(x) log

q(x)

p(x)
dx = −

∫
X
q(x) log

p(x)

q(x)
dx ≥ −

∫
X
q(x){ p(x)

q(x)
− 1}dx = 0

holds. �
In the following, we consider D(q|p(·|θ)) as a function of θ, and the set of θ that

minimizes D(q|p(·|θ)) is called the optimal parameter set, denoted as �∗. Then,
when the following three conditions are satisfied for the statistical model {p(·|θ)}θ∈�

with respect to the distribution q:

1. There exists a (unique) θ∗ ∈ � such that �∗ = {θ∗}
2. The matrix7

[
∂2D(q|p(·|θ))

∂θi∂θ j
|θ=θ∗

]
∈ R

d×d is positive definite

3. There exists an open set �̃ ⊆ � such that θ∗ ∈ �̃,

the distribution q is said to be regular (positive definiteness and open sets are defined
in Sect. 4.1).

The second condition requires a certain convexity of the function D(q||p(·|θ)) at
θ = θ∗.8 For example, if d = 1, the condition becomes that the second derivative is
positive. Strictly speaking, as shown in Fig. 2.2, it is necessary to confirm that the
second derivative is positive or that the Hesse matrix is positive definite, rather than
just being convex.

7 A matrix containing the values of second partial derivatives of a multivariate function is called a
Hesse matrix (Hesse matrix).
8 In general, a function f : Rd → R is convex if it satisfies f (λx + (1 − λ)y) ≤ λ f (x) + (1 −
λ) f (y) for any 0 < λ < 1 and x, y ∈ R

d .
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Fig. 2.4 Probability density of t-distributions with degrees of freedom 1, 2, 3, 4, and 5, and the
normal distribution (bold black line). As the degrees of freedom of the t-distribution increase, it
approaches the normal distribution

The third condition requires that θ = θ∗, which minimizes D(q||p(·|θ)), is not on
the boundary of �. Figure 2.3 schematically represents examples that do not satisfy
these three conditions.

Furthermore, we only deal with statistical models that satisfy the following con-
ditions.

Assumption 1 Assume that p(·|θ) is continuous at θ = θ∗ in the sense that the
following equation holds:

lim
θ→θ∗

sup
x∈X

| p(x |θ) − p(x |θ∗)| = 0 .

That is, for any x ∈ X and θ∗ ∈ �∗, p(x |θ∗) is continuous.

In this book, when p(·|θ∗) = p(·|θ′∗) holds for θ∗, θ′∗ ∈ �∗, the optimal parameter
set �∗ is said to be homogeneous.

Example 9 Let � = {μ ∈ R | |μ| ≥ 1}, and consider

q(x) = 1√
2π

e−x2/2

p(x |μ) = 1√
2π

e−(x−μ)2/2.

In this case,
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D(q|p(·|μ)) =
∫
R

q(x){− x2

2
+ (x − μ)2

2
}dx = −μ

∫
R

xq(x)dx + μ2

2

∫
R

q(x)dx = μ2

2

so, �∗ = {±1}, but �∗ is not homogeneous. Also, q is neither realizable nor regular
with respect to {p(·|μ)}μ∈�. �

Example 10 In Example 9, when we set � = {μ ∈ R | 1 ≤ μ ≤ 2}, � = {1} is

homogeneous. Also, with d = 1, the matrix
[

∂2D(q|p)
∂θi∂θ j

|θ=θ∗

]
is equal to 1. However,

since no open set containing 1 is fully included in �, it is not regular. �

Example 11 Let � = {μ ∈ R | |μ| ≤ 1}, and consider the case where the true dis-
tribution is a t-distribution withm degrees of freedom (see Fig. 2.4). In this case, the
following calculations can be made:

q(x) = �(m+1
2 )√

mπ�(m2 )
(1 + x2

m
)−

m+1
2

p(x |μ) = 1√
2π

e−(x−μ)2/2

D(q|p(·|μ)) = log

(
�(m+1

2 )√
mπ�(m2 )

)
+ 1

2
log(2π) + EX [−m + 1

2
log(1 + X2

m
) + (X − μ)2

2
] ,

∂D(q‖p)
∂μ

= μ , and

∂2D(q‖p)
∂μ2 = 1 > 0 .

Although the true distribution q is not realizable in the statistical model {p(·|μ)}μ∈�,
D(q|p(·|μ)) is minimized only when μ = 0, and there exists an ε > 0 such that
0 ∈ (−ε, ε) ⊆ �, so it is regular. �

Example 12 Let � = {(α,β) ∈ R
2|α �= 0}, μ ∈ R, σ > 0, and consider

q(x) = 1√
2πσ2

e−(x−μ)2/2σ2
,

p(x |α,β) = 1√
2π/α2

e−(αx−β)2/2 .

In this case, only when (α,β) = (± 1

σ
,±μ

σ
) (with the same order of signs),

D(q|p) =
∫
R

q(x)−1

2
logσ2α2 − (x − μ)2

2σ2
+ (αx − β)2

2
dx = 0

is achieved. Also, since p(x | 1
σ
,

μ
σ
) = p(x | − 1

σ
,−μ

σ
), �∗ = {( 1

σ
,

μ
σ
), (− 1

σ
,−μ

σ
)} is

homogeneous. �
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Fig. 2.5 Mixture of normal distributions with parameters (μ,−μ, 0.5), μ = 1, 2, 3

Example 13 In Example 12, if we set� = {(α,β) ∈ R
2 | α > 0}, μ = 0, and σ2 =

1, then only when (α,β) = (1, 0), D(q|p) = 0 can be achieved. Then,

∂2D(q‖p)
∂α2

= ∂2

∂α2

∫
R

{− logα + (αx − β)2

2
}q(x)dx =

∫
R

{ 1

α2
+ x2}q(x)dx = 2 .

∂2D(q‖p)
∂α∂β

= ∂2

∂α∂β

∫
R

(αx − β)2

2
q(x)dx = 0 , and

∂2D(q|p)
∂β2

= ∂2

∂β2

∫
R

(αx − β)2

2
q(x)dx = 1

hold, and the matrix
[

∂2D(q|p)
∂θi∂θ j

|θ=θ∗
]

=
[
2 0
0 1

]
has both eigenvalues positive. Fur-

thermore, if we take a circle with radius ε > 0 centered at (1, 0) small enough, that
circle is included in �. Therefore, q is regular with respect to {p(·|α,β)}(α,β)∈�. �

Let’s give a slightly more specific example.

Example 14 (Mixture of normal distributions [12]) Consider a distribution with the
probability density function given by

p(x |a,μ1,μ2) = (1 − a) · 1√
2π

exp(− (x − μ1)
2

2
) + a · 1√

2π
exp(− (x − μ2)

2

2
).

Here, 0 < a < 1, and it is a mixture distribution with the ratio of 1 − a, a for
the probability density functions of normal distributions N (μ1, 1) and N (μ2, 1)
(the graph for the case of a = 0.5, μ1 = μ, μ2 = −μ, μ = 1, 2, 3 is shown in
Fig. 2.5). In the following, we consider the case where μ1 = 0,μ2 = b, and � =



2.3 Toward a Generalization Without Assuming Regularity 29

{θ = (a, b) | 0 ≤ a ≤ 1,−∞ ≤ b ≤ ∞}, q(x) = p(x |a∗, 0, b∗). In this case, the
Kullback-Leibler divergence D(q||p) is

K (a, b) := E[log (1 − a∗) exp(−x2/2) + a∗ exp(−(x − b∗)2/2)
(1 − a) exp(−x2/2) + a exp(−(x − b)2/2)

]

=
∫
X
log

(
1 + a∗{exp(b∗x − b2∗/2) − 1}
1 + a{exp(bx − b2/2) − 1}

)
q(x)dx .

However, when a∗b∗ = 0, ab = 0 ⇐⇒ K (a, b) = 0. That is, θ = (a, b) ∈ � satis-
fying K (a, b) = 0 is not unique. �

2.3 Toward a Generalization Without Assuming Regularity

Next, for p(·|θ∗), θ∗ ∈ �∗, and p(·|θ), θ ∈ �, we define the log-likelihood ratio as

log
p(·|θ∗)
p(·|θ) . (2.21)

Then, if there exists a constant c > 0 such that for any θ∗ ∈ �∗ and θ ∈ �,

EX [{log p(X |θ∗)
p(X |θ) }2] ≤ cEX [log p(X |θ∗)

p(X |θ) ] (2.22)

holds, then for the statistical model {p(·|θ)}θ∈� and the true distribution q, the log-
likelihood ratio function is said to have relatively finite variance.

In Chap. 5, we show that when regularity can be assumed, the posterior proba-
bility converges in law to a normal distribution (the definition is given in Chap. 4).
Watanabe’s Bayesian theory provides a solution for the law of convergence of the
posterior distribution in a general situation without assuming regularity. In Chap. 8,
we will use the law of convergence of a certain empirical process to a Gauss pro-
cess (a generalization of the central limit theorem) to derive the conclusion, but the
condition of relatively finite variance is essential for enabling its application. WAIC,
WBIC (second half of Chap. 8), and the calculation of learning coefficients (Chap.
9) are obtained as applications.

Proposition 2 (Watanabe 2012 [13])

1. Having relatively finite variance =⇒ �∗ is homogeneous
2. If q is realizable with respect to {p(·|θ)}θ∈�, =⇒ it has relatively finite variance
3. If q is regular with respect to {p(·|θ)}θ∈�, =⇒ it has relatively finite variance

Proof The knowledge of matrix and mean value theorems in Chap. 4 is required, so
the proof is provided in the appendix of Chap. 4.
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regular
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relatively finite variance

homogeneous Θ∗
Ex.9

Ex.10

Ex.11

Ex.12
Ex.13

Fig. 2.6 The relationship between {p(·|θ)}θ∈�, regularity, realizability, relatively finite variance,
and homogeneous �∗ in Examples 9–13

Example 15 In the following, we illustrate Proposition 2 through Examples 9–13
(Fig. 2.6). First, for Examples 9 and 10, we can transform as follows:

EX

[
− (X − μ∗)2

2
+ (X − μ)2

2

]
= (μ∗ − μ)EX

[
X − μ∗ + μ

2

]
= −(μ∗ − μ)

μ∗ + μ

2
,

and

EX

[
{− (X − μ∗)2

2
+ (X − μ)2

2
}2

]
= (μ∗ − μ)2EX

[
X − μ∗ + μ

2

2
]

= (μ∗ − μ)2

{
1 +

(
μ∗ + μ

2

)2
}

.

Then, in Example 9, �∗ = {±1}, so it includes μ∗ = 1, μ = −1. Therefore, there
does not exist a c satisfying (2.22). However, in Example 10, since �∗ = {1} and
considering the range of�, we can have μ∗ + μ ≥ 2. Thus, there exists a c satisfying
(2.22).

A similar transformation can be made in Example 11. Considering the
t-distribution with degrees of freedom m, substituting μ∗ = 0 gives

log
p(x |μ∗)
p(x |μ)

= − (x − μ∗)2

2
+ (x − μ)2

2
= −μ(x − μ

2
)

and the square mean and mean are
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E[{−μ(X − μ

2
)}2] = V[−μ(X − μ

2
)] + E[−μ(X − μ

2
)]2

= μ2
V[X ] + (

μ2

2
)2 = μ2(

m

m − 2
+ μ2

4
)

and E[−μ(X − μ/2)] = μ2/2, respectively. Thus, such a c in (2.22) exists because

2(
m

m − 2
+ μ2

4
) ≤ 2(

m

m − 2
+ 1

4
)

regardless of the value of μ. The fact that Examples 12 and 13 have relatively finite
variance is derived from Proposition 2. �

In this book, we assume relatively finite variance and proceed with the discussion.
This assumption implies that the optimal parameter set� is homogeneous. However,
whether the distribution q is regular or not, and whether it is realizable or not, for
the statistical model {p(·|θ)}θ∈� varies in individual cases.

In practice, though, we often deal with cases that are not regular but realizable.
It might be helpful to understand this as a generalization that can handle such cases
(problems like Example 10 are rare in practice).

2.4 Exponential Family

Assuming J ≥ 1, if the conditional probability of x ∈ X under θ ∈ � can be written
using some u : X → R, v : � → R

J , w : X → R
J as

p(x |θ) = u(x) exp v(θ)	w(x), (2.23)

then this distribution is said to belong to the exponential family. Furthermore, if the
distribution of the parameter θ ∈ � depends on some hyperparameter φ ∈ R

J , and
can be written as

ϕ(θ|φ) := exp v(θ)	φ

z(φ)
(2.24)

z(φ) =
∫

�

exp(v(θ)	φ)dθ

then, ϕ(θ|φ) is said to be a conjugate prior distribution. Note that we use the same
function v in (2.23) and (2.24).
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Example 16 In the case of the normal distribution (2.6) from Example 3, we have

J = 4, u(x) = 1√
2π

, v(θ)	 = [ 1
σ2

,
μ

σ2
,
μ2

σ2
, logσ2], and w(x)	 = [− x2

2
, x,−1

2
,

−1

2
] (note that u, v, w do not uniquely decompose). �

Here, let’s define φn := φ + ∑n
i=1 w(xi ). Then, we can transform the following

expression:

ϕ(θ|φ)

n∏
i=1

p(xi |θ) = exp v(θ)	φ

z(φ)

n∏
i=1

[u(xi ) exp v(θ)	w(xi )]

= exp v(θ)	(φ +
n∑

i=1

w(xi )) · 1

z(φ)

n∏
i=1

u(xi )

= exp v(θ)	φn

z(φn)
· z(φn)

z(φ)

n∏
i=1

u(xi ). (2.25)

It is important to note that regardless of φ ∈ R
J , the integral with respect to θ in

(2.24) equals 1, so the first half of (2.25) forms the posterior distribution, and the
second half forms the marginal likelihood.

p(θ|x1, . . . , xn) = exp v(θ)	φn

z(φn)

Z(x1, . . . , xn) = z(φn)

z(φ)

n∏
i=1

u(xi ).

The predictive probability is given by

r(x |x1, . . . , xn) = Z(x1, . . . , xn, x)

Z(x1, . . . , xn)
=

z(φn + w(x))

z(φ)

n∏
i=1

u(xi ) · u(x)

z(φn)

z(φ)

n∏
i=1

u(xi )

= u(x)
z(φn + w(x))

z(φn)
.

Example 17 The prior distribution (2.9) can be interpreted as a conjugate prior with

J = 2, u(x) = 1√
2π

exp(− x2

2
), v(μ)	 = [μ,−μ2

2
], w(x)	 = [x, 1], and φ	 =

[φ1,φ2] = [0, 1]. In fact, for a general [φ1,φ2],
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z(
[
φ1 φ2

]
)T =

∫
�

exp{φ1μ − φ2μ
2

2
}dμ =

∫
�

exp{−φ2

2
(μ − φ1

φ2
)2 + φ2

1

2φ2
}dμ

=
√
2π

φ2
exp(

φ2
1

2φ2
)

can be obtained, thus z(φ) = z([0, 1]	) = √
2π. Also,

φn = φ +
n∑

i=1

w(xi ) = [0, 1]	 +
n∑

i=1

[xi , 1]	 = [
n∑

i=1

xi , n + 1]	

from which we can derive

z(φn) = z([
n∑

i=1

xi , n + 1]	) =
√

2π

n + 1
exp

{
(
∑n

i=1 xi )
2

2(n + 1)

}
.

From this, it becomes clear that (2.10), (2.11), and (2.12) hold. �

Example 18 Example 17 also holds when J = 3, u(x) = 1√
2π

, v(μ)	 = [−1

2
,

μ,−μ2

2
], w(x)	 = [x2, x, 1], and φ	 = [0, 0, 1]. Furthermore, if we let φ	 =

[φ2,φ, 1], we can obtain the predictive distribution (2.18) when the prior distribution
is set as (2.17). �

Example 19 The prior distribution (2.19) is a conjugate prior distribution with J =
2, u(x) = 1, v(θ)	 = [log θ, log(1 − θ)],w(x)	 = [x, 1 − x], andφ	 = [φ1,φ2] =
[a − 1, b − 1]. In fact, for a general [φ1,φ2]	,

z([φ1,φ2]	) =
∫

�

exp{φ1 log θ + φ2 log(1 − θ)}dθ =
∫

�

θφ1(1 − θ)φ2dθ

can be obtained. Let the right-hand side be B(φ1 + 1,φ2 + 1), then z(φ) = z([a −
1, b − 1]	) = B(a, b). Also,

φn = φ +
n∑

i=1

w(xi ) = [a − 1, b − 1]	 +
n∑

i=1

[xi , 1 − xi ]	 = [k + a − 1, n − k + b − 1]	

from which we can derive

z(φn) = z([k + a − 1, n − k + b − 1]	) = B(k + a, n − k + b).

This value is the marginal likelihood Z(x1, . . . , xn), and the posterior and predictive
distributions are given by
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p(θ|x1, . . . , xn) = θk+a−1(1 − θ)n−k+b−1

B(k + a, n − k + b)

and (2.20), respectively. Furthermore, if we set a = b = 1, we get (2.14), (2.15), and
(2.16). In fact,

Cn,k := B(k + 1, n − k + 1) =
∫ 1

0
(

θk+1

k + 1
)′(1 − θ)n−kdθ

=
[

θk+1

k + 1
(1 − θ)n−k

]1

0

+ n − k

k + 1

∫ 1

0
θk+1(1 − θ)n−k−1 = n − k

k + 1
Cn,k+1

and from Cn,n = (n + 1)−1, we get

Cn,k = n − k

k + 1
Cn,k+1 = · · · = n − k

k + 1
· · · 1

n
Cn,n = (n − k)!k!

n! · 1

n + 1
= (n − k)!k!

(n + 1)!
holds true. �

Exercises 1–13

1. Using (2.3), prove (2.4) and (2.5).
2. Show that for the true distribution q in (2.2), the mean of an odd function f :

(−∞,∞) → R,
∫ ∞

−∞
f (x)q(x − μ)dx is 0, and using (2.1) as well as

∫ ∞

−∞
z2√
2π

exp(− z2

2
)dz = 2

∫ ∞

0

z√
2π

{− exp(− z2

2
)}′dz

= 2

{[
− z√

2π
exp(− z2

2
)

]∞

0

+
∫

0∞ 1√
2π

exp(− z2

2
)dz

}
= 1

prove that E[X ] = μ, V[X ] = σ2, E[(X − μ)4] = 3σ4.
3. In Example 4’s statistical model, when the prior distribution is (2.9), show that

ϕ(θ) ≥ 0 and
∫ ∞
−∞ ϕ(θ)dθ = 1. Also, derive the marginal likelihood (2.10), pos-

terior distribution (2.11), and predictive distribution (2.12).
4. In Example 5’s statistical model, let there be k instances of 1 in x1, . . . , xn ∈ X .

When the prior distribution is (2.13), show that ϕ(θ) ≥ 0 and
∫ 1
0 ϕ(θ)dθ = 1.

Also, derive the marginal likelihood (2.14), posterior distribution (2.15), and
predictive distribution (2.16).

5. Fill in the blanks below to execute the graph of the posterior distribution in Fig.
2.1 with hyperparameters φ = −3,−1, 1, 3, and the first n = 1, 5, 10 samples.
Verify that it produces the desired graph.
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1 f <- function(x,mu,sig2) (2*pi*sig2)^(−1/2)*exp(−(x−mu)^2/2)
2 ## Definition of normal distribution

3 phi.seq <- # Blank (1) #

4 n.seq <- # Blank (2) #

5 m <- length(phi.seq)
6 l <- length(n.seq)
7 n <- 30 ## Number of samples n

8 x <- rnorm(n) ## Generate n normal random numbers

9 par(mfrow = c(2,2)) ## Generate 4 graphs

10 for(phi in phi.seq){
11 plot(0, 0, xlim=c(−5,7), ylim=c(0,0.5), type="n")
12 for(k in 1:l){
13 nn <- n.seq[k] ## First n samples

14 mu <- # Blank (3) #

15 sig2 <- # Blank (4) #

16 curve(f(x,mu,sig2), col=k+1, add=TRUE) ## Draw the curve

17 title(paste("phi=",phi))
18 }
19 ## Draw the curve of the true distribution

20 curve(dnorm(x), lwd=2, lty=2, col=1, add=TRUE)
21 legend("topright",c("True", n.seq), lty=c(2, rep(1,4)),
22 lwd=c(2,rep(1,4)), col=1:(l+1))
23 }
24 par(mfrow = c(1,1))

6. In R language, generate a graph similar to Fig. 2.4.
7. Show that in Example 9, the true distribution and statistical model are not homo-

geneous, not realizable, not regular, and do not have a relatively finite variance.
8. Show that in Example 10, the true distribution and statistical model are homo-

geneous, not realizable, not regular, and have a relatively finite variance.
9. Show that in Example 11, the true distribution and statistical model are homo-

geneous, not realizable, regular, and have a relatively finite variance.
10. Show that in Example 12, the true distribution and statistical model are homo-

geneous, realizable, not regular, and have a relatively finite variance. However,
you may use Proposition 2.

11. Show that in Example 13, the true distribution and statistical model are homo-
geneous, realizable, regular, and have a relatively finite variance. However, you
may use Proposition 2.

12. In Example 14, show that when a∗b∗ = 0, there are multiple (a, b) pairs for
which K (a, b) = 0.

13. In Example 19, for non-negative integers l,m, express the value of B(l,m) using
factorials!.

The abbreviated solutions for each chapter’s exercise problems can be found
at https://bayesnet.org/books.



Chapter 3
MCMC and Stan

In Bayesian statistics, it is generally difficult to mathematically derive the poste-
rior distribution, except in special cases. Instead, it is common to generate random
numbers following the posterior distribution and perform integration calculations
based on their frequency. In this chapter, we will discuss Markov Chain Monte Carlo
(MCMC) methods, which generate random numbers following the posterior distri-
bution using Markov chains. Bayesian theory by Watanabe seeks to obtain asymp-
totic posterior distributions in general situations without assuming regularity. Since
MCMC generates random numbers without assuming regularity, it is an effective
means of experimentally verifying the results of Watanabe’s Bayesian theory. In
fact, MCMC is also used to calculate WAIC and WBIC introduced in Chap. 6 and
beyond. In particular, this chapter introduces two types of MCMC, the Metropolis-
Hastings method and the Hamiltonian method, to understand their principles. Stan,
which we will cover in this book, is a realization method for the latter category
of MCMC. Since we will also cover Stan in the following chapters, we will limit
our discussion in this chapter to the minimum necessary understanding of how to
describe Stan files and execute programs.

3.1 MCMC and Metropolis-Hastings Method

Given a statistical model p(·|θ), θ ∈ � ⊆ R
d , samples x1, . . . , xn ∈ X , and a prior

distribution ϕ(·), we consider the calculation of the expected value of a function
f : � → R with respect to the posterior distribution p(θ|x1, . . . , xn), which is

∫
�

f (θ)p(θ|x1, . . . , xn)dθ.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
https://doi.org/10.1007/978-981-99-3838-4_3
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Example 20 Let f (θ) = p(x |θ), and let us seek the value of the predictive distri-
bution, r(x |x1, . . . , xn), for each x ∈ X , given by

r(x |x1, . . . , xn) =
∫

�

p(x |θ)p(θ|x1, . . . , xn)dθ. �

In addition, WAIC and WBIC, which are also discussed in this book, can be
expressed in this form by appropriately setting the function f .

In the previous chapter, we confirmed that given a statistical model {p(·|θ)}θ∈�

and a prior distribution ϕ(·), the posterior distribution p(θ|x1, . . . , xn) and the pre-
dictive distribution r(x |x1, . . . , xn) for x ∈ X can be determined from a sample
x1, . . . , xn ∈ X , provided θ ∈ �. However, in cases such as when the conjugate
prior distribution of exponential family is unknown (see Examples 4 and 5), the pos-
terior and predictive distributions cannot necessarily be solved analytically. In such
cases, numerical computation is usually necessary.

We generate random variables θ1, . . . , θK following the posterior distribution
p(θ|x1, . . . , xn) with θ ∈ �, and approximate the integral as

1

K

K∑
k=1

f (θk) , θk ∼ p(·|x1, . . . , xn) . (3.1)

Especially, the method of generating random variables for the stationary distribution
of aMarkov chain is called theMarkov ChainMonte Carlo (MCMC)method. Here, a
sequence of random variables θ1, θ2, . . . that only depend on θk and are independent
of θ1, . . . , θk−1 is called a Markov chain, and its conditional probability is denoted
as P(θk+1|θk) (k = 1, . . . , K − 1). In this case, θk+1 is said to be conditionally inde-
pendent of θ1, . . . , θk−1 given θk .

Then, if the following two conditions hold, it is known that the accuracy of Equa-
tion (3.1) improves arbitrarily as K increases.

1. For any θ, θ′ ∈ �,

P(θ|θ′)p(θ′|x1, . . . , xn) = P(θ′|θ)p(θ|x1, . . . , xn). (3.2)

2. The probability of reaching any neighborhood of θ ∈ � is not zero.

Equation (3.2) is called the detailed balance condition, and the second condition is
called ergodicity.

The detailed balance condition pertains to the P(·|·) probability distribution
(referred to as the transition probability of theMarkov chain) that is set up inMCMC.
It is a condition that ensures that the stationary probability is equal to p(θ|x1, . . . , xn),
the probability distribution of θ given the observed data x1, . . . , xn , even if θ tran-
sitions to other values through (3.2) and there are transitions from other values
to θ.

The Metropolis-Hastings (MH) algorithm is a representative method of MCMC.
First, we prepare a symmetric conditional probability,
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s(θ′|θ) = s(θ|θ′) , θ, θ′ ∈ � (3.3)

with
∫

�

s(θ′|θ)dθ′ = 1 ,

where s(θ′|θ) ≥ 0, θ, θ′ ∈ �, and select an initial value θ1. Then, defining a function
H(θ) on the set � as

H(θ) := −
n∑

i=1

log p(xi |θ) − logϕ(θ) ,

we execute the following steps for k = 1, 2, . . . ,

1. Generate θ ∈ � according to the probability s(θ|θk).
2. Obtain θk+1 as follows: with probability Qk := min{1, exp(−{H(θ) − H(θk)})},

set θk+1 ← θ (accepted), otherwise set θk+1 ← θk (rejected).

Here, s(θ′|θ), θ, θ′ ∈ � is called the proposal distribution, and the resulting P(θ′|θ),
θ, θ′ ∈ � becomes the transition probability. The acceptance and rejection of the pro-
posal correspond to the acceptance and rejection of the transition in Step 2, respec-
tively.

The following proposition holds for the Markov chain generated by the MH algo-
rithm, provided that s(·|·) is symmetric (3.3):

Proposition 3 The detailed balance condition (3.2), i.e.,

P(θ′|θ) exp{−H(θ)} = P(θ|θ′) exp{−H(θ′)}

holds for the MH algorithm.

Proof Please refer to the appendix at the end of the chapter. �

For some time after execution, there is an influence of the initial values and
the stationary distribution of the Markov chain is not reached. The period until the
influence of the initial values disappears is called burn-in. Sampling during this
period is not used for approximating the distribution.

Example 21 We use the Metropolis-Hastings algorithm to generate random num-
bers forσ2 following the posterior distribution p(μ,σ2|x1, . . . , xn) of a normal distri-
butionwith knownmeanμ andunknownvarianceσ2, basedon a sample ofn = 30000
data points x1, . . . , xn . Assuming μ = 10 and σ = 3, we generate n random numbers
and assume that the arithmetic mean μ̂ is the correct value for μ. We then sample
1000 data points from the original dataset and display them as a histogram (Fig. 3.1):
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Fig. 3.1 Artificial data used
in Example 21. We generated
n = 30000 data points with
μ = 10 and σ = 3, and
randomly sampled 1000 of
them
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1 pop <- rnorm(30000,10,3)
2 obs <- pop[as.integer(runif(1000, min = 1, max = 30001))]

3 mu_obs <- mean(obs)
4 hist(obs, breaks=35, xlab="Data values", ylab="Frequency",
5 main="Data used in the example",col=3)

As a transition rule, we set the ruleσ ← N (σ, 0.52), which adds a randomnumber
from N (0, 0.52) to the current value θ[2] of σ, without changing the value θ[1] of μ
(function trans). This satisfies condition (3.3):

1 trans<- function(theta) c(theta[1],abs(rnorm(1, theta[2],0.5)))

We take the absolute value to ensure that the updated value of σ does not become
negative.1Wealso set the functionlik to calculate the likelihood (− ∑n

i=1 log p(xi |θ)),
and the acceptance rule function accept, which determineswhether or not to accept
andwithwhat probability (Step2).We shoulduseH(θ) insteadof−∑n

i=1 log p(xi |θ)
for the lik. However, for simplicity, we remove the effect of the prior distribution
in Sects. 3.1 and 3.2:

1 lik <- function(theta,data) sum(−log(theta[2]*sqrt(2*pi))−((data−theta
2 [1])**2)/(2*theta[2]**2))
3 ## data is sample x_1, ... , x_n (vector of length n)

1 accept <- function(x, y) runif(1,0,1) < exp(y−x)

Since runif(1,0,1) is the uniform distribution on [0, 1], if y > x , TRUE is
returnedunconditionally.Then,weconstruct the function metropolis_hastings
to calculate the likelihood of the proposed parameters and the new and old parame-
ters. Since we assume the same prior distribution, it follows that

1 Therefore, (3.3) does not strictly hold.
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H(θ) − H(θ′) = −
n∑

i=1

log p(xi |θ) +
n∑

i=1

log p(xi |θ′).

1 metropolis_hastings <- function(theta,data){
2 theta_new <- trans(theta)
3 H_old <- lik(theta,data)
4 H_new <- lik(theta_new,data)
5 return(list(theta=theta_new, old=H_old, new=H_new))
6 }

The following is the functionMCMC to execute theMCMC.μ = μ̂ is fixed and does
not change.Thevalues of theparameters (μ,σ2) are stored intheta[1],theta[2].
The column of theta[2] is the random number sequence of σ following the pos-
terior distribution we are trying to obtain.

1 MCMC <- function(proc, theta_init,iters,data){
2 theta <- theta_init ## initial value of theta

3 output <- NULL
4 accept_reject <- NULL
5 for(i in 1:iters){
6 res <- proc(theta,data) ## proc is metropolis_hastings
7 if (accept(res$old,res$new)){ ## compare old and new to accept/
8 reject
9 theta <- res$theta ## proposed theta

10 accept_reject <- c(accept_reject,1)
11 }
12 else {
13 accept_reject <- c(accept_reject,0)
14 }
15 output <- c(output,res$theta)
16 }
17 return(list(output=output, accept_reject=accept_reject))
18 }

Figure 3.2 is obtained sequentially by executing the following:

1 m <- 50000;

2 # m <- 100 To run with m set to 100, uncomment the line

3 result = MCMC(metropolis_hastings, c(mu_obs,3), m, obs)
4 output <- result$output
5 output2 <- output[seq(2,2*m,2)]
6 colors <- 2*result$accept_reject+2
7 pchs <- −3*result$accept_reject+4
8 plot(1:m, output2[1:m], col=colors[1:m], xlab="Number of iterations",
9 ylab="Value of sigma",ylim=c(1.0,5.0), main="Generated parameters")

10 legend("bottomright",legend=c("accepted","rejected"),col=c(4,2), pch=c
11 (1,1))

1 hist(output2,breaks=c(0,seq(1,5,0.01)),xlim=c(1,5),col=4,
2 xlab="Value of sigma", ylab="Probability density", main="Posterior

distribution of sigma")
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Fig. 3.2 Random numbers for σ following the posterior distribution. Values farther from the center
are rejected (in red)

1 sigma <- sqrt(sum(output2^2)/length(output2))
2 hist(obs, breaks=35, xlab="Data values", ylab="Probability density",
3 main="Original data and predictive distribution",
4 freq=FALSE,col=3)
5 curve(dnorm(x,mu_obs,sigma),mu_obs−3*sigma,mu_obs+3*sigma, add=TRUE,col
6 =2,lwd=2)

�

Also, regardless of whether performance guarantees can be obtained or not, there
is a strategy called thinning, in which not all of the series of posterior distributions
of parameters are used, but every few values like θ2k and θ3k+1 are taken. The aim
is to reduce the autocorrelation between adjacent values in the series. Furthermore,
there is a method to extract multiple series and check if there are any convergence
problems to ensure the quality ofMCMC solutions. Each series in this case is called a
chain. The Metropolis-Hastings method is considered difficult to choose the optimal
method for setting the updating rule. For example, in Example 21, the updating rule
uses N (σ, 0.52) to select the next σ, but there is no basis for the standard deviation
of 0.5 to be valid. If this standard deviation is too small, the risk of strong correlation
between the series and the lack of ergodicity arises.
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Fig. 3.3 Random numbers of σ following the posterior distribution. It can be seen that the shape is
close to a normal distribution. As discussed in Chap. 5, for regular models with large sample sizes,
it is known that the posterior distribution of parameters takes a shape close to a normal distribution
(left). Using the obtained posterior distribution of σ, we calculated the predictive distribution of
future x ∈ X and overlaid it on the histogram of the original data in Fig. 3.1 (right). It appears that
noise has been removed

3.2 Hamiltonian Monte Carlo Method

In Stan, which is actively used in this book, the Hamiltonian Monte Carlo method
(HMC) is adopted insteadof theMetropolis-Hastingsmethod.Also, updates likeσ ←
N (σ, 0.52) are called random walks in the context of Markov chains. By applying
Hamilton’s equations, a kind of Newton’s equations of motion, without relying on
randomwalks, it is possible to dramatically change the state while maintaining a low
rejection rate.

Let θ(t) = [θ1(t), . . . , θd(t)]	, p(t) = [p1(t), . . . , pd(t)]	 be the positions and
momenta (product of mass and velocity) of d particles at time t , respectively. The
sum of kinetic energy V (p) and potential energy U (θ),

H(p, θ) = V (p) +U (θ)

is called the Hamiltonian. Furthermore,

dθ(t)

dt
= ∇pV (p) (3.4)

and
dp(t)

dt
= −∇θU (θ) (3.5)

are called Hamilton’s equations. In terms of components, each is
dθ j (t)

dt
= ∂V (p)

∂ p j
,

dp j (t)

dt
= −∂U (θ)

∂θ j
, j = 1, . . . , d. In general, if u = φ(t), v = ψ(t) are differen-
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tiable, and f (u, v) is totally differentiable2 with respect to u, v, the derivative of the
composite function w = f (u, v) = f (φ(t),ψ(t)) can be written as follows:

dw

dt
= ∂ f

∂u

du

dt
+ ∂ f

∂v

dv

dt
.

Using this, the energy conservation law

dH(p, θ)

dt
= ∇pH(p, θ)	

dp(t)

dt
+ ∇θH(p, θ)	

dθ(t)

dt

= ∇pV (p)	
dp(t)

dt
+ ∇θU (θ)	

dθ(t)

dt

=
d∑
j=1

∂V (p)

∂ p j

dp j (t)

dt
+

d∑
j=1

∂U (θ)

∂θ j

dθ j (t)

dt

=
d∑
j=1

∂V (p)

∂ p j
(−∂U (θ)

∂θ j
) +

d∑
j=1

∂U (θ)

∂θ j

∂V (p)

∂ p j
= 0

is satisfied (Exercise 17).
In the following, let

V (p) := 1

2
‖p‖2

and

U (θ) := −
n∑

i=1

log p(xi |θ) − logϕ(θ),

where ‖p‖2 is the sum of the squares of the components of p. Then, the MCMC
algorithm is constructed as follows. Determine the initial value of θ and repeat the
following:

1. Generate momentum p ∼ N (0, 1).
2. Calculate H(p, θ).
3. Obtain (p(T ), θ(T )) = (p′, θ′) after a fixed time T has elapsed from (p(0),

θ(0)) = (p, θ) based on the Hamilton equations.
4. Accept θ′ with probability min{1, exp{H(p, θ) − H(p′, θ′)}}.
In the following, we will discuss the method to obtain the trajectory from (p(0),
θ(0)) → (p(T ), θ(T )), and the reasons why H(p, θ) and H(p′, θ′) do not match.

The trajectory is obtained by updating (p, θ) at discrete times. By taking ε > 0
and updating (3.4) (3.5) with

2 f : R2 → R is totally differentiable at (x, y) ∈ R
2 if there exist A, B ∈ R such that

f (x+h,y+k)− f (x,y)−(Ah+Bk)√
h2+k2

→ 0 ((h, k) → (0, 0)).
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p(t + ε) ← p(t) + ε · dp
dt

= p(t) − ε · ∇θU (θ)

θ(t + ε) ← θ(t) + ε · dθ

dt
= θ(t) + ε · ∇pV (p)

(Euler method), the trajectory of (p, θ) can be obtained. However, in the Euler
method, errors accumulate due to discretization, so the following update procedure
is used:

1. p(t + ε/2) ← p(t) − ε

2
· ∇θU (θ).

2. θ(t + ε) ← θ(t) + ε · p(t + ε/2).

3. p(t + ε) ← p(t + ε/2) − ε

2
· ∇θU (θ)

(Leapfrog method). Even with the Leapfrog method, there is an error, and the values
of H(p, θ) and H(p′, θ′) are slightly different. However, since both are almost the
same, the probability of acceptance is high.

Also, themomentum p is changed in each cycle. This means that each cycle traces
a trajectory with different energy H(p, θ). The space represented by (p(t), θ(t)) is
called the phase space, and each trajectory is represented by contour lines (Fig. 3.4).

Example 22 Consider the simplest case:

H(p, θ) = U (θ) + V (p) = θ2

2
+ p2

2
.

From (3.4), (3.5), dθ
dt = p, dp

dt = −θ, so for a, r ∈ R, the general solution is θ(t) =
r cos(a + t), p(t) = −r sin(a + t). Under the initial conditions θ(0) = 1, p(0) = 0,
we have a = 0 and r = 1. To find this solution, we observed the behavior using
the following R language code. For both ε = 0.1 and ε = 0.3, the (p(t), θ(t)) of

H = 14

H = 16

H = 20

H = 24

moment p

position θ

Fig. 3.4 Phase space. The contour lines are represented by (p, θ) with equal energy
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Fig. 3.5 ε = 0.1 (left) and ε = 0.3 (right). In the case of the Euler method, since the value of the
derivative one time step before is used, errors tend to accumulate, such as when the trajectory draws
a circle. On the other hand, such problems are less likely to occur in the Leapfrog method

the Euler and Leapfrog methods were plotted using the R language code below.
In the case of the Euler method, since the value of the derivative one time step
before is used, errors tend to accumulate, such as when the trajectory draws a circle
(Fig. 3.5). This property becomes more evident when the value of ε is large: �

1 L <- 2

2 M <- 100

3 eps <- 0.1

4 # You can also run with L <- 3; M <- 30; eps <- 0.3

1 euler <- function(p,q){
2 r <- p−eps*q
3 s <- q+eps*p
4 return(list(p=r,q=s))
5 }

1 leapfrog <- function(p,q){
2 p <- p−eps/2*q
3 q <- q+eps*p
4 p <- p−eps/2*q
5 return(list(p=p,q=q))
6 }

1 draw <- function(proc,pch,col,P=0,Q=1){
2 p <- rep(0,M)
3 q <- rep(0,M)
4 p[1] <- P
5 q[1] <- Q
6 for(i in 1:(M−1)){
7 res <- proc(p[i],q[i])
8 p[i+1] <- res$p
9 q[i+1] <- res$q
10 }
11 points(p,q,pch=pch,col=col)
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12 lines(p,q)
13 }

1 plot(0,xlim=c(−L,L),ylim=c(−L,L))
2 draw(euler,1,2)
3 draw(leapfrog,4,4)
4 legend("bottomright",legend=c("Euler","Leapfrog"),lwd=1,pch=c(1,4),col=c

(2,4))

In HMC, the following two general-purpose functions are needed. First, the func-
tion Leapfrog below is an extension of the already defined leapfrog for the
general case:

1 eps <- 0.01

2 Leapfrog <- function(U,p,theta){
3 p <- p − eps/2 * grad_U(U,theta)
4 theta <- theta + eps * p
5 p <- p + eps/2 * grad_U(U,theta)
6 return(list(p=p,theta=theta))
7 }

The function Leapfrog requires a function to numerically differentiate. For
example, it can be constructed as follows:

1 grad_U <- function(U,theta){
2 p <- length(theta)
3 h <- 0.01

4 f <- U(theta)
5 diff <- NULL
6 for(i in 1:p){
7 theta_h <- theta
8 theta_h[i] <- theta[i]+h
9 diff[i] <- (U(theta_h)−f)/h
10 }
11 return(diff)
12 }

Example 23 In Example 21, we applied the metropolis_hastings function
to MCMC. In this section, we apply the hamiltonian function to the same data.
In this example, we find a sequence of random numbers following the posterior
distribution of (μ,σ) under the samples x1, . . . , xn:

1 L <- 20

2 hamiltonian <- function(theta,data){
3 U <- function(theta)lik(theta,data)
4 p <- rnorm(length(theta))
5 H_old <- U(theta)−sum(p^2)/2
6 for(i in 1:L){
7 res <- Leapfrog(U,p,theta)
8 p <- res$p
9 theta <- res$theta
10 }
11 H_new <- U(theta)−sum(p^2)/2
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12 return(list(theta=theta, old=H_old, new=H_new))
13 }

Using the HMC method, we generated 10,000 random numbers following the
posterior distribution of (μ,σ) and produced the corresponding histograms (Fig.
3.6). To obtain these, we executed the following code:

1 m <- 10000

2 result <- MCMC(hamiltonian,c(mu_obs,3), m, obs)
3 output <- result$output
4 output1 <- output[seq(1,2*m,2)]
5 output2 <- output[seq(2,2*m,2)]
6 s=length(output1)
7 plot(1:s, output1, xlab="Number of iterations", ylab="Value of mu",
8 ylim=c(9.5,10.5),type="l",col=2)
9 plot(1:s, output2, xlab="Number of iterations", ylab="Value of sigma",
10 ylim=c(2.75,3.50),type="l",col=4)
11 hist(output1,breaks=c(0,seq(9,11,0.02)),xlim=c(9,11),col=2,
12 xlab="Value of mu", ylab="Probability density", main="

Posterior distribution of mu")
13 hist(output2,breaks=c(0,seq(2.5,3.75,0.01)),xlim=c(2.75,3.5),col=4,
14 xlab="Value of sigma", ylab="Probability density", main="

Posterior distribution of sigma")

�

Each time the above functions are executed, the initial momentum p is determined
randomly, and (p, θ) is updated while keeping the sum of the kinetic and potential
energies constant, and the obtained θ′ becomes the position of the stopped particle.
In the program, U(theta), H_old, and H_new correspond to the potential energy
and the total energy multiplied by −1, and when the process returns to MCMC, the
accept function accepts with certainty if H_new is larger than H_old, and with
high probability if they are close.

In Stan, a variant of HMC called No U-turn Sampler (NUTS) is used.

3.3 Stan in Practice

Stan is an implementation of MCMC as discussed in the previous sections. That is,
it has the function of generating a large number of random numbers following the
posterior distribution. Therefore, it is not used with existing information criteria such
as AIC and BIC, but demonstrates its power in calculating WAIC and WBIC.

Stan is provided as the CRAN package “rstan”. Create the Stan code, store it in a
file named “***.stan” in the same folder as the R environment, and refer to it from
the R language:

1 install.packages("rstan", dependencies = TRUE) # If not installed

2 library(rstan) # Every time you start the R environment



3.3 Stan in Practice 49

0 2000 4000 6000 8000 10000

9.
0

9.
5

10
.0

10
.5

11
.0

Number of iterations

V
al
ue

of
μ

0 2000 4000 6000 8000 10000

2.
0

2.
5

3.
0

3.
5

4.
0

Number of iterations

V
al
ue

of
σ

Posterior distribution of μ

Value of μ

P
ro
ba

bi
lit
y
de

ns
it
y

9.0 9.5 10.0 10.5 11.0

0.
0

0.
5

1.
0

1.
5

2.
0

Posterior distribution of σ

Value of σ

P
ro
ba

bi
lit
y
de

ns
it
y

2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 3.6 Using the HMC method, we generated 10,000 random numbers following the posterior
distribution of (μ,σ). We also produced the corresponding histograms (bottom two figures)

�������������������������������

Be careful when installing Stan, as it can be tricky. It will not work if the
versions of R, Rtools, and the rstan package are not appropriate (this book
assumes versions R 4.2.3, Rtools 4.2, rstan 2.26.21).

Place the following binomial distribution, normal distribution, simple regres-
sion, multiple regression, and mixed normal distribution Stan codes (13 files from
model1.stan to model13.stan) in the folder where R is executed, and then execute the
following R code line by line and check the output results.

First, a Stan code consists of the following blocks. We will explain them in order
through examples. In this book, Stan files are enclosed in orange frames to distinguish
them from R code.
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Block type Role
Data Definition of data and sample size used
Parameters Specification of parameters for which posterior

distribution is desired
Transformed parameters Specification of parameter transformation
Model Specification of model structure
Generated quantities Specification when posterior distribution is

desired separately from model specification

3.3.1 Binomial Distribution

Suppose we conduct a trial with a success probability of 0 < p < 1 and observe
D successes out of N attempts. We want to estimate the posterior distribution of p
based on this fact. We constructed the Stan file as follows:

model1.stan

1 parameters{
2 real<lower=0,upper=1>p; // The parameter for binomial distribution
3 0<p<1 is a real number, so real
4 }
5 model{
6 15 ˜ binomial(30,p); // 15 occurrences in 30 trials with
7 probability p
8 }

Put the parameter θ in the parameters block, and put the information about the prior
distribution ϕ(θ) and the likelihood p(y|θ) in the model block. In this Stan code,
the data y is fixed at D = 15 and N = 30. There are also the following rules when
writing Stan code:

Rules for Writing Stan Code� �

• Enclose blocks in curly braces
• Put a semicolon at the end of each line
• Comments are after // (double slash)
• Put a blank line at the end of the file

� �
Let’s use this Stan file and execute it from R code:

1 fit1 <- stan("model1.stan")
2 # Check the results

3 # If all parameter Rhat values are 1.1 or lower, it is considered OK

4 fit1
5 # Trace of parameter sampling

6 stan_trace(fit1, pars="p")
7 # Posterior distribution of the parameter

8 stan_dens(fit1, pars="p")
9 # Density estimation of the posterior distribution of the parameter
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10 # If it has converged, all chains should overlap nicely

11 stan_dens(fit1, pars="p", separate_chains = TRUE)
12 # If it converges to the stationary distribution, there is no correlation

13 with the previous sample
14 # High autocorrelation means it has not converged

15 stan_ac(fit1, pars="p", separate_chains = TRUE)
16 # Extract the element as p

17 # Since extract may exist in other packages, prepend rstan::

18 p <- rstan::extract(fit1)$p
19 # Look at the frequency distribution

20 hist(p)
21 mean(p)

Besides the output below, we obtain a histogram (Fig. 3.7):
..........

> fit1
Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=4000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

p 0.50 0.00 0.09 0.33 0.44 0.50 0.56 0.67 1391 1
lp__ -22.69 0.02 0.73 -24.71 -22.86 -22.41 -22.23 -22.18 1692 1

Samples were drawn using NUTS(diag_e) at Fri May 12 10:26:32 2023.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

..........

> mean(p)
[1] 0.5007415

Fig. 3.7 The table obtained
by the execution for a
binomial distribution
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The above Rhat represents the ratio of within-chain variance to between-chain
variance, and if this value is within 1.1, it can be considered converged. Here, "15"
and "30" can be used as input data:

model2.stan

1 data{
2 int D; // Number of occurrences
3 int N; // Number of trials
4 }
5 // The parameters block is the same
6 model{
7 D ˜ binomial(N,p);
8 }

1 # Specify the data

2 data_list <- list(D=20, N=30)
3 fit2 <- stan("model2.stan", data=data_list)
4 stan_dens(fit2, pars="p")
5 # You can compile the model first

6 model2 <- stan_model("model2.stan")
7 fit2 <- sampling(model2, data=data_list)
8 # Add options to sampling

9 fit2 <- sampling(model2, data=data_list, iter=5000, warmup=1000, chains
10 =3, cores=3)
11 fit2

The options for sampling are as follows:

Option Spec. Default Notes
Number of samples iter= 2000 More than 2000 may be needed

for complex models
Burn-in period warmup= iter/2 No need to touch
Thinning interval thin= 1 thin=2 for every other one
Number of chains chains= 4 At least 2 are needed to confirm

convergence
Number of cores cores= 1 Parallelization is possible, less than

or equal to the number of Markov chains

If a prior distribution is not specified, it defaults to a uniform distribution. However,
if the sample size is small, it is better to set an appropriate prior distribution for
better estimation. As discussed in Chap. 2, the Beta distribution (2.19) is often used
for binomial distributions. The uniform distribution can also be represented (just set
a = b = 1):

model3.stan

1 // data, parameters blocks are the same
2 model{
3 p ˜ beta(1,1); // p’s prior distribution is the same for Beta

distribution with 1, -1 ˜ uniform(0,1)
4 D ˜ binomial(N,p);
5 }
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Checkhow the results differwhen specifying theprior distributionwithmodel2.stan:

1 data_list <- list(D=20, N=30)
2 fit3 <- stan("model3.stan", data=data_list)
3 fit3

3.3.2 Normal Distribution

In the following, we want to estimate the posterior distribution of the mean and
variance from 100 data points, assuming they follow a normal distribution. In the
case of a normal distribution, the mean is often assumed to have a normal prior
distribution, and the standard deviation is often assumed to have a half-Cauchy prior
distribution (Cauchy distribution is symmetric about the origin, but only positive
values are taken):

1 curve(dcauchy(x),0,5) # Let’s check the shape of the Cauchy distribution

Unlike R, in Stan code, it is more common to specify the standard deviation rather
than the variance.

model4.stan

1 data{
2 array[100] real y; // Data
3 }
4 parameters{
5 real mu; // Mean value
6 real<lower=0> sigma; // Standard deviation
7 }
8 model{
9 mu ˜ normal(0,100); // Prior distribution of the mean value
10 sigma ˜ cauchy(0,5); // Prior distribution of the standard deviation
11 for(n in 1:100){
12 y[n] ˜ normal(mu, sigma); // Repeat 100 times with for
13 }
14 }

1 set.seed(456)
2 y <- rnorm(100,4,2)
3 hist(y)
4 model4 <- stan_model("model4.stan")
5 data_list <- list(y=y)
6 fit4 <- sampling(model4, data=data_list)
7 fit4
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We can also make the number of elements in the array N an input variable:

model5.stan

1 data{
2 int N; // Number of data
3 array[N] real y; // Data
4 }
5 // The parameters block is the same
6 model{
7 mu ˜ normal(0,100); // Prior distribution of the mean value
8 sigma ˜ cauchy(0,5); // Prior distribution of the standard deviation
9 for(n in 1:N)
10 y[n] ˜ normal(mu, sigma); // Repeat N times with for
11 // In the case of a for loop with only one line of processing, {} can be

omitted
12 }

1 model5 <- stan_model("model5.stan")
2 data_list <- list(N=100, y=y)
3 fit5 <- sampling(model5, data=data_list)
4 fit5

For loops can also be vectorized:

model6.stan

1 // data, parameters blocks are the same
2 model{
3 mu ˜ normal(0,100); // Prior distribution of the mean value
4 sigma ˜ cauchy(0,5); // Prior distribution of the standard deviation
5 y ˜ normal(mu, sigma); // Vectorization
6 }

This is a process that makes the N-dimensional y follow the normal() distribution at
once. By doing so, some of the processes for calculating the likelihood of the normal
distribution can be shared, making the calculation faster.

As we have seen so far, when using a new variable, it is necessary to specify the
type of the variable. Continuous values are real type (real), and discrete values are
integer type (int). However, note that the corresponding type varies depending on
the distribution. For example, variables following continuous distributions such as
normal distribution and Beta distribution need to use real, while variables following
discrete distributions such as binomial distribution need to use int.

Vectors (vector) and matrices (matrix) can be specified to apply matrix operations
(linear algebra operations). Also, parameters must be of type real, vector, or matrix.
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For example, in multivariate normal distribution, data and mean use vector, and
covariance matrix uses matrix. When specifying them concretely, write in the order
of range, number of elements, and variable, as follows:

vector[2] x;
matrix[4,5] x;
vector<lower=0>[5] sigma;

In addition, there are arrays that are similar but different from these:

array[5] real x;
// A 1-dimensional array with 5 real numbers
array[5,5] int x;
// A 2-dimensional array with 5 X 5 integers
array[5] vector[2] x;
// An array containing 5 vectors, each with 2 elements

Arrays do not allow matrix operations, but for dependent variables’ data assuming
discrete distribution, it is necessary to use arrays of type int.

3.3.3 Simple Linear Regression

Simple linear regression is a problem of estimating the intercept and slope α,β ∈ R,
and the variance of the noise σ2 > 0, assuming that

yi = α + βxi + ei , ei ∼ N (0,σ2)

holds independently for each i = 1, . . . , n fromobservations x1, . . . , xn ∈ R, y1, . . . ,
yn ∈ R. It is possible to calculate α,β ∈ R,σ2 = 0 from the least squares method,
but this corresponds to the case when estimated by the maximum likelihood method.
Here, we use Stan to find the posterior distribution of α,β ∈ R,σ > 0 given
x1, . . . , xn, y1, . . . , yn ∈ R.

In the following, we model that α,β,σ2 are generated based on the prior distri-
bution, and for each i = 1, . . . , n, yi ∼ N (α + xiβ,σ2) holds:

model7.stan

1 data{
2 int N; // Sample size
3 vector[N] y; // Dependent variable
4 vector[N] x; // Explanatory variable
5 }
6 parameters{
7 real alpha; // Intercept
8 real beta; // Slope
9 real <lower=0> sigma; // Standard deviation of the residuals
10 }
11 model{
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Table 3.1 The response medv and 13 covariates in the Boston data

Column Variable Meaning of the variable

1 crim Per capita crime rate by town

2 zn Proportion of residential land zoned for lots over 25,000 sq.ft.

3 indus Proportion of non-retail business acres per town

4 chas Charles River dummy variable (= 1 if tract bounds river;

0 otherwise)

5 nox Nox concentration (parts per 10 million)

6 rm Average number of rooms per dwelling

7 age Proportion of owner-occupied units built prior to 1940

8 dis Weighted distances to five Boston employment centers

9 rad Index of accessibility to radial highways

10 tax Fixed asset tax rate per 10,000 dollars

11 ptratio Pupil-teacher ratio by town

12 b Proportion of blacks by town

13 lstat Percentage of lower status of the population

14 medv Median housing price in units of 1,000 dollars

12 alpha ˜ normal(0,100);
13 beta ˜ normal(0,100);
14 sigma ˜ cauchy(0,5);
15 y ˜ normal(alpha + beta * x, sigma); // x is declared as a vector
16 }

We examined the linear regression (simple regression) between the average num-
ber of rooms per household rm and the average housing price medv in the Boston
dataset (Table 3.1) available in the CRAN MASS package. We built a model
medv ˜ normal(alpha + beta*rm, sigma) and obtained the posterior distributions of the
intercept alpha, slope beta, and noise (square root of the residuals) sigma:

1 library(rstan)
2 library(MASS)
3 data_list <- list(N = nrow(Boston), y = Boston$medv, x = Boston$rm)
4 fit7 <- stan("model7.stan", data = data_list)
5 print(fit7, probs = c(0.025, 0.5, 0.975))

.........

> print(fit7, probs = c(0.025, 0.5, 0.975))
Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
alpha -34.43 0.08 2.70 -39.63 -34.48 -29.20 1089 1
beta 9.06 0.01 0.43 8.23 9.07 9.89 1084 1
sigma 6.64 0.01 0.21 6.24 6.63 7.08 1650 1
lp__ -1208.83 0.04 1.27 -1212.12 -1208.51 -1207.40 902 1
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If you want to output only specific parameters, do as follows:

1 print(fit7, pars=c("alpha", "beta"))
2 print(fit7, pars="sigma", digit=3) # Specify the number of output digits

> print(fit7, pars=c("alpha", "beta"))

..........

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha -34.43 0.08 2.70 -39.63 -36.29 -34.48 -32.57 -29.20 1089 1
beta 9.06 0.01 0.43 8.23 8.77 9.07 9.36 9.89 1084 1

..........

> print(fit7, pars="sigma", digit=3)

..........

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
sigma 6.636 0.005 0.213 6.241 6.492 6.627 6.772 7.081 1650 1.003

Next, we consider finding the distribution of predicted values using the posterior
probabilities of the generated parameters. We want to find the distribution of the
value of y at a point x∗ ∈ R different from the x1, . . . , xn ∈ R used to estimate α,β.
Without using Bayes, we find the confidence intervals for α,β and then find the con-
fidence interval for α + x∗β. Also, for each α,β ∈ R, α + x∗β can be calculated,
but in reality, it fluctuates more than the confidence interval due to the independently
varying variance σ2 noise. It is also possible to calculate the confidence interval
(prediction interval) that takes this effect into account.3 In Bayes, the distribution
of α + x∗β corresponding to the confidence interval is determined by the posterior
distribution of α,β. Furthermore, another distribution corresponding to the predic-
tion interval, considering the independent noise effect, is determined. Below, the
normal_rng() function generates random numbers following a normal distribution:

model8.stan

1 data{
2 int N; // Sample size
3 vector[N] y; // Dependent variable
4 vector[N] x; // Explanatory variable
5 int N_pred; // The number of x to predict
6 vector[N_pred] x_pred; // The vector consisting of the values of x to

predict
7 }
8 // The data, parameters blocks are the same

3 The details are described in Chap. 2 of Statistical Machine Learning with Math and R (Springer)
by Joe Suzuki [14].
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9 generated quantities{
10 vector[N_pred] y_mu;
11 vector[N_pred] y_pred;
12 y_mu = alpha + beta * x_pred; // Predicted values
13 for(n in 1:N_pred)
14 y_pred[n] = normal_rng(y_mu[n], sigma); // Values with added noise
15 to the predicted values
16 }

We tried to predict the average housing price when the average number of rooms
per household was 2, 3, 4, 5, 6:

1 rm_pred <- 2:6

2 data_list <- list(N = nrow(Boston), y = Boston$medv,
3 x = Boston$rm, N_pred = length(rm_pred), x_pred = rm_pred)
4 fit8 <- stan("model8.stan", data = data_list)
5 stan_dens(fit8, pars=c("y_mu","y_pred"))

We obtained the output as in Fig. 3.8.
Below, we introduce the transformed parameters block. This makes the processing

easier to see and easier to extend:

model9.stan

1 // The data and parameters blocks are the same as in model7.stan,
2 transformed parameters{
3 vector [N] mu;
4 mu = alpha + beta * x; // x is declared as a vector
5 }
6 model{
7 alpha ˜ normal(0,100);
8 beta ˜ normal(0,100);
9 sigma ˜ cauchy(0,5);
10 y ˜ normal(mu, sigma);
11 }

In fact, by adding a generated quantities block, the likelihood of the parameters

− log f (yi |μ j ,σ j ) , i = 1, . . . , n , j = 1, . . . ,m

can be calculated with f (·|μ,σ), being the probability density function of N (μ,σ2).
μ,σ follow the posterior distribution. For each sampling j = 1, . . . ,m, a different
θ j = (μ j ,σ j ) is obtained. Since these are the realized values of θ = (μ,σ) generated
according to the posterior distribution p(θ|y1, . . . , yn), we obtain

∫
�

f (yi |θ)p(θ|y1, . . . , yn)dθ ≈ 1

m

m∑
j=1

f (yi |μ j ,σ j ). (3.6)

model9.stan
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Fig. 3.8 The output of the mean housing price predictions

1 // Add the following generated quantities block
2 generated quantities{
3 array[N] real log_lik;
4 for(n in 1:N)
5 log_lik[n]= normal_lpdf(y[n]|mu,sigma);
6 }

Here, even if f is not a normal distribution, by appending _lpdf at the end, such as
cauchy_lpdf or beta_lpdf, it means the logarithm of the probability density function. It
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is common to place parameters after y[n]|. Also, _lpdf cannot be vectorized because
its arguments are a mix of vectors and scalars. For example,

generated quantities{
array[N] real log_lik;
log_lik= normal_lpdf(y|mu,sigma)
}

will result in an error. Next, let’s output log_lik:

1 y <- rnorm(100,5,2)
2 x <- rnorm(100,7,6)
3 model9 <- stan_model("model9.stan")
4 fit9 <- sampling(model9, data=list(N=100, x=x, y=y))
5 log_lik <- rstan::extract(fit9)$log_lik
6 is.matrix(log_lik) # It is clear that it is a matrix

7 dim(log_lik) # Number of samples X number of samplings

8 head(log_lik,5) # The first 5 rows

..........

> log_lik <- rstan::extract(fit9)$log_lik
> is.matrix(log_lik)
[1] TRUE
> dim(log_lik)
[1] 4000 100
> head(log_lik,5)

iterations [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -3.403301 -1.657132 -1.725351 -2.779104 -2.936850 -2.715903 -1.917382
[2,] -3.653273 -1.698815 -1.692000 -2.890423 -2.650699 -2.649536 -1.990583
[3,] -3.622558 -1.629874 -1.682376 -2.834984 -2.848217 -2.820437 -1.908749
[4,] -3.841320 -1.640801 -1.659828 -2.841350 -2.617469 -2.938005 -1.914694
[5,] -4.102244 -1.746632 -1.650777 -2.999545 -2.293481 -2.712034 -2.053173

..........

iterations [,99] [,100]
[1,] -1.747460 -1.926040
[2,] -1.717556 -1.994222
[3,] -1.715444 -1.913033
[4,] -1.707978 -1.910116
[5,] -1.684236 -2.042841

The right-hand side of (3.6) can be written in R language using the functions exp()
and colMeans() as

colMeans(exp(log_lik))

Furthermore, taking the product for i = 1, . . . , n and then taking the logarithm

-mean(log(colMeans(exp(log_lik))))

corresponds to the empirical loss required to calculate WAIC.
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3.3.4 Multiple Regression

Multiple regression is a problem of estimating the intercept and slope β0 ∈ R,β ∈
R

p, and the noise variance σ2 > 0 under the assumption that for each i = 1, . . . , n,
the following independent relationship holds:

yi = β0 + xiβ + ei , ei ∼ N (0,σ2 In)

givenobservations x1, . . . , xn ∈ R
p, y1, . . . , yn ∈ R, where xiβ represents

∑p
j=1 xi, j

β j with β = [β1, . . . ,βp]	 (column vector) and xi = [xi,1, . . . , xi,p] (row vector),
and In is the identity matrix of size n.

In this case, let X ∈ R
n×(p+1) be a matrix with a size n column vector with all

components being 1 to the left of the matrix containing x1, . . . , xn in each row, and
y = [y1, . . . , yn]	 ∈ R

n . We denote [β0,β1, . . . ,βp]	 as β ∈ R
p+1 and use Stan

to find the posterior distribution of β ∈ R
p+1,σ2 > 0 under X, y. In the following,

we modeled that β,σ2 are generated based on the prior distribution, and for each
i = 1, . . . , n, y ∼ N (Xβ,σ2 In) holds for

y =
⎡
⎢⎣
y1
...

yn

⎤
⎥⎦ , X =

⎡
⎢⎣
1 x1,1 · · · x1,p
...

...
. . .

...

1 xn,1 · · · xn,p

⎤
⎥⎦ , β =

⎡
⎢⎢⎢⎣

β0

β1
...

βp

⎤
⎥⎥⎥⎦ , σ2 In =

⎡
⎢⎣

σ2 · · · 0
...

. . .
...

0 · · · σ2

⎤
⎥⎦ .

model10.stan

1 data{
2 int N; // Sample size
3 int M; // Number of variables (including the intercept)
4 vector[N] y; // Dependent variable
5 matrix[N,M] x; // Independent variables, declared as matrix
6 }
7 parameters{
8 vector[M] beta; // declared as vector
9 real <lower=0> sigma;
10 }
11 model{
12 beta ˜ normal(0,100);
13 sigma ˜ cauchy(0,5);
14 y ˜ normal(x * beta, sigma);
15 }

1 x1 <- rnorm(100,0,1)
2 x2 <- rnorm(100,0,1)
3 y <- 2 + 5 * x1 + 7 * x2 +rnorm(100,0,3)
4 summary(lm(y˜x1+x2))
5 intercept <- rep(1,100)
6 x <- data.frame(intercept, x1, x2)
7 head(x)
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8 data_list <- list(N=100, M=3, y=y, x=x) # Note M=3

9 model10 <- stan_model("model10.stan")
10 fit10 <- sampling(model10, data=data_list)
11 print(fit10, probs=c(0.025, 0.5, 0.975))

In particular, summary, head, and the last print output as follows:

> summary(lm(y˜x1+x2))

Call:
lm(formula = y ˜ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-7.8477 -1.9461 0.0227 1.8287 6.6660

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1942 0.2866 7.657 1.43e-11 ***
x1 4.9308 0.2636 18.706 < 2e-16 ***
x2 6.7242 0.2869 23.437 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.836 on 97 degrees of freedom
Multiple R-squared: 0.9036, Adjusted R-squared: 0.9016
F-statistic: 454.5 on 2 and 97 DF, p-value: < 2.2e-16

..........

> head(x)
intercept x1 x2

1 1 -0.9823585 0.7517814
2 1 1.7503470 -1.3702254
3 1 0.9805008 0.1549586
4 1 -1.0044848 0.5919998
5 1 1.8609173 -0.9818162
6 1 -0.3310599 -0.2195880

..........

> print(fit10, probs=c(0.025, 0.5, 0.975))
Inference for Stan model: anon_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
beta[1] 2.19 0.00 0.30 1.61 2.20 2.77 4285 1
beta[2] 4.93 0.00 0.27 4.41 4.93 5.44 4150 1
beta[3] 6.72 0.00 0.29 6.15 6.72 7.30 3789 1
sigma 2.87 0.00 0.21 2.50 2.86 3.31 3637 1
lp__ -154.02 0.03 1.45 -157.74 -153.70 -152.18 1910 1

We can also calculate the empirical loss by adding generated quantities to
model10.stan:
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model11.stan

1 // Add the following generated quantities block below
2 generated quantities{
3 array[N] real log_lik;
4 for(n in 1:N)
5 log_lik[n]= normal_lpdf(y[n]|x[n]*beta, sigma);
6 }

3.3.5 Mixture of Normal Distributions

For example, as shownwhen executing the last line above, in addition to the specified
parameters, the parameter lp__ (two underscores after lp) is automatically generated.
This value corresponds to the posterior log-likelihood, which, for θ = (β,σ2), is the
logarithm of the likelihood ϕ(θ)

∏n
i=1 p(xi |θ):

logϕ(θ) +
n∑

i=1

log p(xi |θ).

The posterior log-likelihood can also be used in the model block. In that case, use
the variable name target.

Note that the following Stan code behaves the same as model7.stan:

model12.stan

1 // The data and parameters blocks are the same as in model7.stan
2 model{
3 for(n in 1:N)
4 target += normal_lpdf(y[n] | alpha + beta * x[n], sigma);
5 target += normal_lpdf(alpha|0,100);
6 target += normal_lpdf(beta |0,100);
7 target += cauchy_lpdf(sigma|0, 5);

8 }

Here, normal_lpdf and cauchy_lpdf are the log-likelihoods when assuming a normal
distribution and a Cauchy distribution, respectively. target is initially initialized to
0, and target += is a shorthand for target = target +.

Using target, we canwrite the Stan code for amixture of normal distributions. The
probability density function of y ∈ R following a mixture of normal distributions is
given by

θ f (y|μ1,σ1) + (1 − θ) f (y|μ2,σ2)

for 0 < θ < 1,μ1 < μ2, and σ1,σ2 > 0, where f (y|μ,σ) represents the probability
density function of y ∈ N (μ,σ2). The following Stan code allows the parameters
μ1,μ2 to vary in the range μ1 < μ2. Also, it is common to use the function log_mix()

provided by Stan when the number of classes is 2:
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model13.stan

1 data {
2 int<lower = 0> N;
3 vector[N] y;
4 }
5 parameters {
6 ordered[2] mu;
7 real<lower=0, upper=1> theta;
8 real<lower=0> sigma;
9 }
10 model {
11 mu ˜ normal(0, 2);

12 theta ˜ beta(5, 5);

13 for (n in 1:N)
14 target += log_mix(theta,
15 normal_lpdf(y[n] | mu[1], sigma),
16 normal_lpdf(y[n] | mu[2], sigma));
17 }

It is fine when the number of classes is 2 (Rhat is slightly above 1), but it becomes
unstable as the number of classes increases. The following execution performs par-
allel processing and uses the cores to their maximum capacity:

1 library(rstan)
2 rstan_options(auto_write = TRUE)
3 options(mc.cores = parallel::detectCores()) # package rstudioapi is

4 required
5 N <- 100

6 y <- rnorm(100)
7 data_list <- list(N = N, y = y)
8 fit13 <- stan(file = "model13.stan", data = data_list, seed = 1)

9 # seed = 1 will generate the same random numbers

10 stan_dens(fit13)

Appendix: Proof of Proposition

Proof of Proposition 3

At a certain time, when θ is given, the probability that θ′ is generated and accepted
is s(θ′|θ)min{1, exp(−H(θ′) + H(θ))}. Integrating this with respect to θ′ gives the
conditional probability of acceptance for θ,

Q(θ) :=
∫

�

s(θ′|θ)min
(
1, exp{−H(θ′) + H(θ)}) dθ′.

The probability of staying in the same state is 1 − Q(θ), so

P(θ′|θ) = s(θ′|θ)min
{
1, exp(−H(θ′) + H(θ))

} + δ(θ′ − θ){1 − Q(θ)} , (3.7)
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where δ(x) is the delta function and
∫
�

δ(θ′ − θ)(1 − Q(θ′))dθ′ = 1 − Q(θ) holds.
From this and (3.3), we have

P(θ′|θ) exp{−H(θ)}
= s(θ′|θ)min

{
exp(−H(θ)), exp(−H(θ′))

} + δ(θ′ − θ){1 − Q(θ)} exp{−H(θ)}
= s(θ|θ′)min

{
exp(−H(θ)), exp(−H(θ′))

} + δ(θ′ − θ){1 − Q(θ′)} exp{−H(θ′)}
(3.8)

= P(θ|θ′) exp{−H(θ′)} ,

whereweused the fact that the term δ(θ′ − θ){1 − Q(θ′)} in each equation is nonzero
only when θ = θ′. �

Exercises 14–26

14. Why does (3.7) hold in the proof of Proposition 3? What about equality (3.8)?
15. The function lik takes the parameters θ = (θ1, θ2) ∈ � of a normal distribution

and the samples x1, . . . , xn ∈ X , and outputs

1√
2πθ2

exp{− (xi − θ1)
2

2θ2
} , i = 1, . . . , n.

What does it output? Also, what does the function accept(x,y) output for
the cases y ≥ x and y < x?

16. In the function MCMC, what values are stored in the variables output and
accept_reject after execution? Also, in the execution

1 result = MCMC(metropolis_hastings, c(mu_obs,3), 50000, obs)
2 m <- 50000; # m=100

3 output <- result$output
4 output2 <- output[seq(2,2*m,2)]

what values are stored in the variables output and output2?
17. Prove the conservation of energy from (3.4) and (3.5).
18. In Example 22, when θ(t) = sin t and p(t) = cos t , how should the functions

euler and leapfrog be changed? Also, execute and output a graph like Fig. 3.5.
19. Generate x1, . . . , xn ∈ R (n = 100) according to the standard normal distribu-

tion, and confirm in Stan that under the conditions of Example 4, the posterior
probability of μ becomes (2.11) (compare the theoretical posterior distribution
written in R language with the curve output by Stan’s stan_dens()).

20. Find the posterior distribution for the case of a Beta distribution with parameters
(a, b) as a prior distribution and D occurrences out of N trials (using a formula,
not Stan).
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21. It is known that the least squares solution β̂ = (X	X)−1X	y ∈ R
p+1 follows

N (β,σ2(X	X)−1). Show that the variance of the inner product x∗β̂ with row
vector x∗ ∈ R

p+1, whose first component is 1, is σ2x∗(X	X)−1x	∗ , and that
the variance of x∗β̂ + e, with e ∼ N (0,σ2) added independently of x∗β̂, is
σ2{x∗(X	X)−1x	∗ + 1}.

22. Add the covariate LSTAT (proportion of low-income population) to the Boston
data, use themodel10.stanfile to calculate the posterior distribution, and dis-
play the posterior distribution of all parameters using the function stan_hist.

23. Apply model10.stan instead of model7.stan to the following process
and find the same solution:

1 library(rstan)
2 library(MASS)
3 data_list <- list(N = nrow(Boston), y = Boston$medv, x = Boston$rm)
4 fit7 <- stan("model7.stan", data = data_list)
5 print(fit7, probs = c(0.025, 0.5, 0.975))

24. Wewant tomake the standard deviations different as well as themeans of the two
classes of the mixed normal distribution. Create Stan code 24.stan and execute
the following:

1 library(rstan)
2 N <- 100

3 y <- rnorm(100)
4 data_list <- list(N = N, y = y)
5 fit <- stan(file = "24.stan", data = data_list)
6 stan_dens(fit)

25. We want to find the posterior distribution of the difference in means from two
types of samples with the same number of samples.We want to find the posterior
distribution of mu_x - mu_y. Complete the generated quantities,
display the posterior distribution, and find the probability of μx > μy :

1 data{
2 int N; // Sample size
3 array[N] real y; // Data 1

4 array[N] real x; // Data 2

5 }
6 parameters{
7 real mu_y; // mean of y
8 real <lower=0> sigma_y; // standard deviation of y
9 real mu_x; // mean of x
10 real <lower=0> sigma_x; // standard deviation of x
11 }
12 model{
13 mu_y ˜ normal(0,100); // prior distribution of the mean of y
14 sigma_y ˜ cauchy(0,5); // prior distribution of the standard

deviation of y
15 mu_x ˜ normal(0,100); // prior distribution of the mean of x
16 sigma_x ˜ cauchy(0,5); // prior distribution of the standard

deviation of x
17 y ˜ normal(mu_y,sigma_y);
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18 // y follows a normal distribution with mean mu_y and standard
deviation sigma_y

19 x ˜ normal(mu_x,sigma_x);
20 // x follows a normal distribution with mean mu_x and standard

deviation sigma_x
21 }
22 generated quantities{
23 // To be completed
24 }

(Assuming the filename above is model_X.stan)

1 y <- rnorm(100,5,2)
2 x <- rnorm(100,7,6)
3 fit_X <- stan("model_X.stan", data=list(N=100,y=y,x=x))
4 diff <- rstan:: extract(fit_X)$diff # Random numbers following the

posterior distribution of the difference

5 plot(density(diff)) # Display the posterior

6 distribution of the difference

26. The following is Stan code to find the posterior distribution of the parameters
for logistic regression:

1 data{
2 int N; // Sample size
3 int M; // Number of variables (including intercept)
4 array[N] int y; // Target variable
5 matrix[N,M] x; // Explanatory variables, declared as matrix
6 }
7 parameters{
8 vector[M] beta; // Declared as vector
9 }
10 model{
11 beta ˜ normal(0,100);
12 y ˜ bernoulli_logit(x*beta); // Shorter code and faster

estimation
13 }

Actually, with N = 100 and M = 3, generate random data for the covariates
and the response, and display the posterior distribution of each parameter using
stan_dens.



Chapter 4
Mathematical Preparation

In this chapter, we describe themathematical knowledge necessary for understanding
this book. First, we discuss matrices, open sets, closed sets, compact sets, the Mean
Value Theorem, and Taylor expansions. All of these are topics covered in the first
year of college. Next, we discuss absolute convergence and analytic functions. Then,
we discuss the Law of Large Numbers and the Central Limit Theorem, as well as
defining the symbols OP(·) and oP(·) used in subsequent chapters. Finally, we define
the Fisher information matrix and discuss the properties of regular and realizable
cases. For algebraic geometry and related topics, please refer to Chap. 6. Readers
who already understand the content of this chapter may skip it as appropriate. At the
end of the chapter, we provide the proof of Proposition 2, which was postponed in
Chap. 1. It is assumed that with the preliminary knowledge of this chapter, it can be
understood.

4.1 Elementary Mathematics

Here we discuss matrices and eigenvalues, open sets, closed sets, compact sets, the
Mean Value Theorem, and Taylor expansions.

4.1.1 Matrices and Eigenvalues

A matrix A ∈ R
n×n (n ≥ 1) with the same number of rows and columns is called

a square matrix. A diagonal matrix is a matrix whose off-diagonal elements are all
zero. A diagonal matrix with all diagonal elements equal to 1 is called an identity
matrix, denoted as In ∈ R

n×n . The sum of the diagonal elements of a square matrix is
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called the trace. A matrix with zero elements in the (i, j) (i < j) positions is called
a lower triangular matrix.

In the following, for a square matrix A ∈ R
n×n , we assume that there exists an

X ∈ R
n×n such that AX = In , and we try to find it. To do this, we perform two types

of operations on the matrix [A | In] ∈ R
n×2n , which consists of A and In arranged

side by side:

1. Subtract a multiple of one row from another row
2. Swap two rows

We obtain a matrix such that the left half becomes a lower triangular matrix. Assum-
ing that we performed operation 2 a total of m times, the product of the diagonal
elements of the left half of the matrix at this point, multiplied by (−1)m , is called
the determinant of the matrix A. In the following, we write the determinant of the
matrix A as det A.

After performing these operations, initially with B = In , [A | B] is transformed
into [A′ | B ′], but X satisfying AX = B also satisfies A′X = B ′. If the determinant
of A is not zero, we perform the above two operations further to make the left half a
diagonal matrix. Finally, by

1. Dividing each row by the value of the diagonal element

we make the left half the identity matrix In .1 If A′′ = In , then for [A′′ | B ′′], A′′X =
B ′′, so the right half B ′′ at that time is X . Conversely, if the determinant of A is
zero, such a matrix X does not exist. When a square matrix exists such that AX = In
(when the determinant of A is not zero), X is called the inverse matrix of A, denoted
as X = A−1.

Example 24 In each of the cases d �= 0 and d = 0,

[
a b
c d

]
→
[
a − bc/d 0

c d

]
,

[
a b
c 0

]
→
[
c 0
a b

]

can be done. The determinant is (a − bc/d) · d · (−1)0 for d �= 0, and cb · (−1)1 for
d = 0, both of which can be seen to be ad − bc. �

Example 25 When the determinant of A, � = ad − bc, is not zero, in particular
when d �= 0,

[
a b 1 0
c d 0 1

]
→
[
a − bc/d 0 1 −b/d

c d 0 1

]
→
[

�/d 0 1 −b/d
0 d −cd/� 1 + bc/�

]

→
[
1 0 d/� −b/�
0 1 −c/� a/�

]

can be done, and

1 Themethod of obtaining the inversematrix by operations 1, 2, and 3 is calledGaussian elimination.
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[
a b
c d

]
· 1

�

[
d −b

−c a

]
=
[
1 0
0 1

]

holds. That is,
1

�

[
d −b

−c a

]
becomes the inverse matrix of

[
a b
c d

]
. �

Moreover, when a constant λ ∈ C and a vector u ∈ C
n (u �= 0) exist such that

Au = λu, λ is called an eigenvalue, and u is called an eigenvector. If the matrix
A − λIn has an inverse, that is, if the determinant of A − λIn is not zero, then from
u = (A − λIn)−10 = 0, the u that satisfies Au = λu is limited to u = 0. Eigenvalues
are determined as solutions to the equation concerningλ (eigenvalue equation) stating
that the determinant of A − λIn is zero. In other words,

Au = λu, u �= 0 ⇐⇒ (A − λIn)u = 0, u �= 0 ⇐⇒ det(A − λIn) = 0

holds.

Example 26 For n = 2, if we set A =
[
a b
c d

]
, then det(A − λI2) = (a − λ)(d −

λ) − bc = 0 holds. Therefore, the solutions of the quadratic equation λ2 − (a +
d)λ + ad − bc = 0 are the eigenvalues. �

A matrix A ∈ R
n×n for which all the (i, j) components Ai, j and ( j, i) components

A j,i are equal is called a symmetric matrix. In general, eigenvalues λ are not neces-
sarily real numbers, but when the matrix A ∈ R

n×n is symmetric, λ becomes a real
number. In fact, for λ ∈ C and u ∈ C

n (u �= 0), since2 Au = Au = λu = λu, we
have

〈Au, u〉 = 〈λu, u〉 = λ〈u, u〉

and

〈Au, u〉 = 〈u, Au〉 = 〈u, Au〉 = 〈u,λu〉 = 〈u,λu〉 = λ〈u, u〉,

where z denotes the complex conjugate of z ∈ C, and for a, b ∈ R, we set
a + ib = a − ib.

Example 27 For the matrix

[
a b
c d

]
, if we set b = c, the eigenvalue equation

becomes λ2 − (a + d)λ + ad − b2 = 0, and its discriminant is (a + d)2 − 4(ad −
b2) = (a − d)2 + 4b2 ≥ 0. Indeed, the eigenvalues are real numbers. �

For a symmetric matrix A, it is called non-negative definite when all eigenvalues
are non-negative, and positive definite when all eigenvalues are positive.

2 For u, v ∈ C, uv = u · v holds.
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Example 28 For the matrix

[
a b
c d

]
, if we set b = c, when a + d ≥ 0, and ad ≥ b2,

the two solutions of the eigenvalue equation are non-negative, and it becomes non-
negative definite. Furthermore, if both eigenvalues are positive, that is, a + d ≥ 0,
and ad > b2, it becomes positive definite. �

Moreover, for a symmetric matrix A ∈ R
n×n , z�Az, z ∈ R

n is called the quadratic
form of A.

Proposition 4 A symmetric matrix A ∈ R
n×n being non-negative definite is equiv-

alent to the quadratic form z�Az being non-negative for any z ∈ R
n. Furthermore,

A being positive definite is equivalent to the quadratic form z�Az being positive for
any 0 �= z ∈ R

n.

For the proof, please refer to the appendix at the end of the chapter.

4.1.2 Open Sets, Closed Sets, and Compact Sets

Let the Euclidean distance between each x, y ∈ R
d be denoted as dist (x, y). For a

subset M ofRd , let us denote the open ball (excluding the boundary) of radius ε > 0
centered at z ∈ M as B(z, ε) := {y ∈ R

d | dist (z, y) < ε}. If there exists a radius
ε > 0 such that B(z, ε) ⊆ M for any z ∈ M , M is called an open set. On the other
hand, for any ε > 0, if the intersection of B(z, ε) and M is non-empty, z ∈ R

d is
called a tactile point of M ⊆ R

d . If M contains all its tactile points as its elements,
M is called a closed set (see Fig. 4.1). Generally, the complement of a closed set is
an open set, and the complement of an open set is a closed set.

In fact, if M is a closed set, its tactile points are not included in the complement
MC , so when the radius of the open ball for each z ∈ MC is chosen to be small, the
open ball will not intersect M . Conversely, if M is an open set, when the radius of
the open ball for each z ∈ M is chosen to be small, the open ball will not intersect
MC . Therefore, the tactile points of MC are not in M .

Example 29 Assume that d = 1 and d = 3 for items 1–4 and item 5, respectively.

1. The open interval (a, b) is an open set, and the closed interval [a, b] is a closed
set.

2. The set of all real numbers R and the set of all integers Z are closed sets (R is
also an open set).

3. The set R ∩ Z
C , which is the set of all real numbers R excluding the set of all

integers Z, is an open set.
4. The set of all rational numbers Q is neither an open set nor a closed set.
5. The region {(x, y, z) ∈ R

3 | x2 + y2 + z2 < 1, z ≥ 0} is neither an open set nor
a closed set.

�
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a0 1

a − +

For any a ∈ (0, 1),
∃ 0 such that
(a − + ) ⊆ (0, 1)

a0 1

a − +

For any a ∈ [0, 1],
∀ 0 such that
(a − + ) ∩ [0, 1] = {}.

a0 1

a − +

(0, 1] does not include
the point of tangency a = 0,
∀ 0 s.t.(− ) ∩ [0, 1] = {}

Open set Closed set Neither open nor closed set

Fig. 4.1 Open sets, closed sets, and cases that are neither. An open set is one where any point in
the set is included if the neighborhood is made small enough. A tactile point is one that intersects
the set no matter how small the neighborhood is made. A closed set is one that contains all tactile
points

In addition, there is a concept of compact sets related to closed sets. When a mapping
M � x �→ ε(x) ∈ R> 0 is arbitrarily defined and a finite number of z1, . . . , zm are
used such that the union of open balls ∪m

i=1B(zi , ε(zi )) contains M as a subset, M
is called compact. In this book, we only deal with subsets of Rd as the universal set
and Euclidean distance as the distance. In this case, it is known that compact sets
are equivalent to closed sets with bounded domains (bounded closed sets), where
we say a set M is bounded when there exists a positive constant L > 0 such that
dist (x, y) < L for any x, y ∈ M . Among the closed sets in Example 29, [a, b] is
compact, but R and Z are not.

Although the proof is omitted, if a set M is compact, a continuous function with
domain M has maximum and minimum values.

Example 30 M = (0, 1], [1,∞) are not compact. The continuous function f (x) =
1/x does not have a maximum value on M = (0, 1] and does not have a minimum
value on M = [1,∞). �

Also, let dist (x, a) be the distance between x, a ∈ M (M = R, for example,
dist (x, a) = |x − a|). For any ε > 0, a function f with domain M is said to be
continuous (continuous) at x = a if there exists a δ = δ(ε, a) such that:

dist (x, a) < δ =⇒ | f (x) − f (a)| < ε.

If the function is continuous for all a ∈ M , then f is continuous.
The continuity of functions can be defined not only for f : R → R. From Chap. 4

onwards, wewill examine the set of continuous functionsC(K ) defined on a compact
set K . The distance between elements φ and φ′ in C(K ) is defined by the sup-norm
(uniform norm):

dist (φ,φ′) := sup
θ∈K

|φ(θ) − φ′(θ)|. (4.1)
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Then, the continuity of a function f : C(K ) → R at φ = φa ∈ C(K ) is defined by
the existence of δ = δ(ε,φa) such that for any ε > 0,

dist (φ,φa) < δ =⇒ | f (φ) − f (φa)| < ε.

4.1.3 Mean Value Theorem and Taylor Expansion

In the following chapters, we will discuss the Mean Value Theorem and Taylor
expansion, which will be used several times. They are particularly necessary for
mathematical analysis when the sample size n is large.

TheMean Value Theorem asserts that for a differentiable function f : R → R, if
a < b, then there exists a c such that a < c < b satisfying

f (b) − f (a)

b − a
= f ′(c). (4.2)

Example 31 For f (x) = x2 − 3x + 2, a = 2, and b = 4, we have

(b2 − 3b + 2) − (a2 − 3a + 2)

b − a
= a + b − 3 = 3 , f ′(c) = 2c − 3.

So, c = 3 satisfies the condition. �

Equation (4.2) can be written as f (b) = f (a) + f ′(c)(b − a), which is an extended
to Taylor’s theorem.

Namely, if f is continuous up to the (n − 1)-th derivative and is n times differ-
entiable,

f (b) = f (a) + f ′(a)

1! (b − a) + f ′′(a)

2! (b − a)2 + · · · + f (n−1)(a)

(n − 1)! (b − a)n−1 + Rn

(4.3)
with

Rn = f (n)(c)

n! (b − a)n.

There exists an a < c < b. If n = 1, it becomes theMeanValueTheorem. Sometimes
it is written as θa + (1 − θ)b instead of c, and there exists such a 0 < θ < 1.

Setting b = x in (4.3), we get

f (x) = f (a) + f ′(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n−1)(a)

(n − 1)! (x − a)n−1 + Rn



4.1 Elementary Mathematics 75

which is called the Taylor expansion of the function f at x = a. Furthermore, setting
a = 0, we get

f (x) = f (0) + f ′(0)
1! x + f ′′(0)

2! x2 + · · · + f (n−1)(0)

(n − 1)! x
n−1 + Rn

which is called the Maclaurin expansion.

Example 32 When ex and log(1 + x) are Maclaurin-expanded, there exist 0 < θ <

1 for each of

ex = 1 + x + x2

2
+ · · · + xn−1

(n − 1)! + xn

n! e
θx (4.4)

and

log(1 + x) = x − x2

2
+ x3

3
− · · · + (−1)n−2 xn−1

n − 1
+ (−1)n−1 x

n

n
· 1

(1 + θx)n
.

(4.5)
�

For the case of two variables, a function f : R2 → R that is continuous up to
the (n − 1)th derivative and differentiable n times, the Taylor expansion at (x, y) =
(a, b) can be written as

f (x, y) =
n−1∑
k=0

k∑
i=0

1

(k − i)!i ! (x − a)i (y − b)k−i ∂k f

∂xi∂yk−i
(a, b)

+
n∑

i=0

1

(n − i)!i ! (x − a)i (y − b)n−i ∂n f

∂xi∂yn−i
(θa + (1 − θ)x, θb + (1 − θ)y).

In the case of n = 2 for d variables, the Taylor expansion around x = (x1, . . . ,
xd)� = (a1, . . . , ad)� = a is, when f has a continuous first derivative and is twice
differentiable, written as

f (x) = f (a) +
d∑

i=1

(xi − ai )
∂ f

∂xi
(a) + 1

2

d∑
i=1

d∑
j=1

(xi − ai )(x j − a j )
∂2 f

∂xi∂x j
(θa + (1 − θ)x)

= f (a) + (x − a)�{∇ f (a)} + 1

2
(x − a)�{∇2 f (θa + (1 − θ)x)}(x − a),

where ∇ f : Rd → R
d is a vector consisting of the d partial derivatives of f ,

∂ f

∂xi
,

and ∇2 f : Rd → R
d×d is a matrix (the Hessian matrix) consisting of the second

partial derivatives of f ,
∂2 f

∂xi∂x j
.
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4.2 Analytic Functions

In the following, we will denote the set of non-negative integers by N. Firstly, for
r = (r1, . . . , rd) ∈ N

d , x = (x1, . . . , xd), b = (b1, . . . , bd) ∈ R
d , ar = ar1,...,rd ∈ R,

we define

ar (x − b)r := ar1,...,rd (x1 − b1)
r1 . . . (xd − bd)

rd .

A sum of such terms

f (x) :=
∑
r∈Nd

ar (x − b)r =
∑
r1∈N

. . .
∑
rd∈N

ar1,...,rd (x1 − b1)
r1 . . . (xd − bd)

rd , x ∈ R
d

(4.6)
is called a power series. When there are a finite number of non-zero terms, we call
f (x) a polynomial with real coefficients in terms of x1, . . . , xd , and we denote the
set of such polynomials asR[x] orR[x1, . . . , xd ]. Furthermore, when there exists an
open setU (b ∈ U ⊆ R

d ) such that for any x ∈ U ,
∑

r |ar ||x − b|r < ∞, we say that
f (x) converges absolutely. In this case, the infinite series (4.6) is independent of the
order of the sums

∑
r1
, . . . ,

∑
rd
and is unique. We call such a function f : U → R

an (real) analytic function.

Example 33 For the infinite series
∑∞

n=0 an with an = (−1)n , we can write it in two
ways:

(1 − 1) + (1 − 1) + · · · = 0 + 0 + · · ·

and

1 − (1 − 1) − (1 − 1) − · · · = 1 − 0 − 0 − . . . ,

which is due to the fact that
∑∞

n=0 |an| = 1 + 1 + · · · = ∞. However, in the case of
an = (− 1

2 )
n , we have

∑∞
n=0 |an| = 1 + 1

2 + · · · = 2, and hence the series converges.
�

Let an be a sequence of real numbers and c ∈ R. When the power series∑∞
n=0 an(x − c)n converges absolutely if |x − c| < R and diverges if |x − c| > R,

we call R the radius of convergence (we need to investigate the case where x − c
equals the radius of convergence). If an = 0 except for a finite number of terms,

R := limn→∞
∣∣∣ an
an+1

∣∣∣ will be the radius of convergence. In fact, if the absolute ratio

of adjacent terms

r := lim
n→∞

∣∣∣∣an+1(x − c)n+1

an(x − c)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ · |x − c|
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is 0 ≤ r < 1, it converges, and if 1 < r ≤ ∞, it diverges.

Example 34 For

f (x) =
∞∑
n=1

1

n
xn = x + 1

2
x2 + 1

3
x3 + · · ·

the absolute ratio of adjacent terms is

lim
n→∞

|x |n+1

|x |n
1/(n + 1)

1/n
= |x | lim

n→∞
n

n + 1
= |x |

for sufficiently large n. Therefore, it converges absolutely if |x | < 1. When investi-
gating the case of |x | = 1, it becomes

∞∑
n=1

1

n
= 1 + 1

2
+ 1

3
+ · · · > lim

n→∞

∫ n

1

dx

x
= lim

n→∞ log n = ∞,

so it does not converge absolutely when |x | = 1. Therefore, we can set the open set
of the domain of f to be U = (−1, 1). �

Since taking the absolute value of each term makes it non-negative, absolute
convergence becomes a convergence that does not assume the order of summation.
However, what problems would arise with convergence that assumes the order of
summation (conditional convergence)?

Example 35 If the series
∞∑
n=1

(−1)n−1 1

n
is summed in the order of

1 − 1

2
+ 1

3
− 1

4
+ · · · =

∞∑
k=1

(−1)k−1

k
, (4.7)

it becomes log 2. In fact, if we denote the right-hand side of

2n∑
k=1

(−1)k−1

k
=
⎛
⎝ 2n∑
k=1

(−1)k−1

k
+ 2

n∑
k=1

1

2k

⎞
⎠− 2

n∑
k=1

1

2k
=

2n∑
k=1

1

k
−

n∑
k=1

1

k
=

n∑
k=1

1

n + k

as Sn , the equations

Sn = 1

n

n∑
k=1

1

1 + k/n
≤
∫ 1

0

dx

1 + x
≤ 1

n

n−1∑
k=0

1

1 + k/n
= Sn + 1

2n

and



78 4 Mathematical Preparation

∫ 1

0

dx

1 + x
− 1

2n
≤ Sn ≤

∫ 1

0

dx

1 + x
= log 2

hold. On the other hand, if we first add the terms for n = 1, 2, 4, then the ones for
odd numbers greater than or equal to 3, even numbers not divisible by 4 and greater
than or equal to 6, and finally multiples of 4 greater than or equal to 8, (4.7) can be
calculated as

∞∑
n=1

(−1)n−1 1

n
= 1 − 1

2
− 1

4
+

∞∑
n=2

{ 1

2n − 1
− 1

2(2n − 1)
− 1

4n
} = 1

4
+ 1

2

∞∑
n=2

{ 1

2n − 1
− 1

2n
}

= 1

2

∞∑
n=1

{ 1

2n − 1
− 1

2n
} = 1

2
lim

n→∞ Sn = 1

2
log 2.

�
Although the proof is omitted, it is known that any series that converges condi-

tionally can be made to converge to any real number by changing the order of its
sum (Riemann’s rearrangement theorem).

Example 36 In U := {(x, y) ∈ R
2}, the series
∞∑

m=0

∞∑
n=0

xm yn

m!n!

converges absolutely. In fact, the ratio of the absolute values of any two adjacent
terms converges to 0. Therefore, we can rearrange the order of the terms, and we
obtain

∞∑
m=0

xm

m! ·
∞∑
n=0

yn

n! = ex · ey,

so the function f : U → R, f (x, y) = ex+y , is an analytic function. �
Here, if a function is differentiable any number of times r ≥ 0 and the r -times

differentiated function is continuous, the function is said to be of class Cr . On the
other hand, analytic functions are continuous and differentiable, and no matter how
many times they are differentiated, the asymptotic ratio of adjacent terms remains the
same, making them analytic functions. That is, they are of class C∞. Moreover, the
analytic functions that can be expanded into power series can be uniquely expanded
into Taylor series.

Note, however, that a function being of class C∞ does not necessarily mean that
it is an analytic function.

Example 37 The function

f (x) =
{
exp(−1/x) , x > 0
0 , x ≤ 0
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is of classC∞ but not analytic. In fact, theTaylor expansion at x = 0 results in ar = 0,
r ∈ R

d (Exercise 31), which contradicts the uniqueness of the Taylor expansion. �

InChap. 8,wewill assume that the average likelihood ratio K (θ) = EX [log p(X |θ∗)
p(X |θ) ]

and the prior distribution ϕ(θ) are analytic functions on θ ∈ � and proceed with the
discussion. In this case, for the power series with real numbers ar

∑
r∈Nd

ar (x − b)r ,

we consideredwhether
∑

r∈Nd |ar | |(x − b)r | is finite. In this book,we further assume
that the likelihood ratio f (x, θ) = log p(x |θ∗)

p(x |θ) is also an analytic function for θ ∈ �.
However, in the case of multiple variables, preparations for extension are necessary.
In this case, we consider as ar : X → R and use the norm of ar .

The set V with the properties

f, g ∈ V =⇒ f + g ∈ V

and

α ∈ R, f ∈ V → α f ∈ V .

is called a linear space. In a linear space, we call ‖ · ‖ : V → R that satisfies the
following conditions for each element a norm of V : for α ∈ R, f, g ∈ V

‖α f ‖ = |α| · ‖ f ‖ , ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖ , ‖ f ‖ ≥ 0 , ‖ f ‖ = 0 =⇒ f = 0.

In this book, we denote the set of f : X → R for which

‖ f ‖2 :=
√∫

X
{ f (x)}2q(x)dx

is finite as L2(q), where the true distribution q is used.
Here, the absolute value | · | becomes the norm of the one-dimensional Euclidean

spaceR, but the norm ‖ · ‖2 also becomes the normof the linear space L2(q) (problem
38). We often call it an analytic function taking real values when ar ∈ R and an
analytic function taking values in L2(q) when ar ∈ L2(q), but in this book, we
simply call the former an analytic function. Also, when we write each norm as ‖ · ‖,
the set of x for which

∑
r∈Nd ‖ar‖ |(x − b)r | is finite becomes the domain.

For example, if the log-likelihood ratio f (x, θ)

f (x, θ) =
∑
r∈Nd

ar (x)(θ − θ1)r
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is an analytic function, it means that there exists a convergence domain (the radius
of convergence is non-zero) such that

∑
r∈Nd

‖ar‖2|(θ − θ1)r | < ∞.

4.3 Law of Large Numbers and Central Limit Theorem

4.3.1 Random Variables

By preparing a universal set � and a set of its events in advance, when

{ω ∈ � | X (ω) ∈ O}

becomes an event for any open set O of R, we say that X : � � ω �→ X (ω) ∈ R is
measurable. Also, X is called a random variable that takes values in3 R. However,
the way to determine the probability needs to be defined separately.

Example 38 When � = {1, 2, 3, 4, 5, 6} and X (ω) = (−1)ω , it is necessary that at
least {1, 3, 5} and {2, 4, 6} are events. That is, among the empty set {} and the universal
set � and these two sets, even if union, intersection, and complement operations are
performed, no other than these four sets are generated. Also, by calculating the set of
ω ∈ � such that X (ω) ∈ (0, 1), the set of ω ∈ � such that X (ω) ∈ (−2, 1), etc., we
can see that the subset of �where X (ω) ∈ O for any open set O does not exist other
than those four. The random variable X only defines the events, and the probability
needs to be specified according to the axioms. �

Random variables can be defined not only as � → R. If η : � → C(K ) is mea-
surable, where C(K ) is a continuous function defined on a compact set K , then η is
said to be a random variable that takes values in C(K ). Rather than considering it
as a random variable, it can be seen as a random function. In defining measurability,
open sets are defined using distance by the uniform norm.

4.3.2 Order Notation

First,we shall define the limit of a sequence of real numbers,which appears frequently
in this book.

3 It can be understood as a random variable.
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An infinitely long sequence of real numbers an is said to converge toα as n → ∞,
or limn→∞ an = α, if for any ε > 0, |an − α| < ε holds except for a finite number
of n.4

Also, for a function g(n) of positive integer n such as g(n) = 1, n, n2, if
|g(n)an| < ε holds for any ε > 0 except for a finite number of n, i.e., if g(n)an
converges to 0 as n → ∞, we write an = o( 1

g(n)
). On the other hand, if there exists

anM > 0 such that |g(n)an| < M holds except for a finite number of n, i.e., if g(n)an
is bounded, we write an = O( 1

g(n)
). For example, if it is O(1/n), it is also o(1).

4.3.3 Law of Large Numbers

Next, we will examine whether the sequence of probabilities {P(An)} for a sequence
of events {An} converges to 1. When the probability P(|Xn − α| < ε) converges
to 1 as n → ∞ for any ε > 0, the sequence of random variables {Xn} is said to

stochastically converge to α, and we write it as Xn
P−→ α.

TheWeak Law of LargeNumbers is one of themost important theorems regarding
stochastic convergence. Before introducing it, we shall show an important inequality.

Proposition 5 (Chebyshev’s Inequality) For a random variable with mean μ and
variance σ2 > 0, for any constant k > 0, the inequality

P(|X − μ| ≥ k) ≤ σ2/k2

holds.

Proof Define I so that I (A) = 1 when event A occurs and I (A) = 0 otherwise.
Then, the following inequality holds.

σ2 = EX [(X − μ)2] ≥ EX [(X − μ)2 I (|X − μ| ≥ k)] ≥ k2 · P(|X − μ| ≥ k).

�

Here, consider {Xn}∞n=1 and {εn}∞n=1 as sequences of random variables. When

Xn

εn

P−→ 0

holds as n → ∞, wewrite Xn = oP (εn). Especially, when Xn
P−→ 0 holds, wewrite

Xn = oP(1).
Moreover, when there exist an M > 0 except for a finite number of n (they can

depend on δ) such that

4 It is equivalent to the existence of some N (ε) for any ε such that |an − α| < ε for n ≥ N (ε).
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P (|Xn| ≤ M |εn|) ≥ 1 − δ

for any δ > 0, we write

Xn = OP (εn) .

Especially, if P (|Xn| ≤ M) ≥ 1 − δ, we write Xn = OP(1).
oP and OP have the following properties for sequences of random variables

{εn}∞n=1 and {δn}∞n=1:

I f Xn = oP (εn) and Yn = oP (εn) , then Xn ± Yn = oP (εn) . (4.8)

I f Xn = oP (εn) and Yn = OP (δn) , then XnYn = oP (δnεn) . (4.9)

In particular, (4.9) implies (4.10).

I f Xn = oP (εn) and Yn = oP (δn) , then XnYn = oP (δnεn) . (4.10)

Moreover, for a ∈ R and a continuous function g : R → R, we have

I f Xn
P−→ a, then g(Xn)

P−→ g(a). (4.11)

Equations (4.8)–(4.10) are known as Slutsky’s theorem and Eq. (4.11) is known as
the Continuous Mapping Theorem. For proofs, see [16], for example. The notation
OP , oP is not commonly used in general statistics, but it is frequently used inWatan-
abe’s Bayesian theory, so it is necessary to understand it well.

Example 39 An independent sequence of random variables X1, X2, . . . such that
Xn ∼ N (0, 1) is OP(1). Also, a sequence of random variables X1, X2, . . . such that
Xn ∼ N (0, 1/n) stochastically converges to 0, hence Xn = oP(1). �

Proposition 6 (Weak Law of Large Numbers) For a sequence of independent and

identically distributed random variables {Xn}, the average Zn := X1 + · · · + Xn

n
stochastically converges to its expected value5 μ.

Proof First, the mean and variance of Zn are, respectively, E[Zn] =
E[ X1 + · · · + Xn

n
] = E[X1] = μ and6 V[Zn] = V[ X1 + · · · + Xn

n
] = V[X1]/n =

σ2/n. Applying these to Proposition 5, we obtain

5 There is also a Strong Law of Large Numbers, which states that under the same conditions, there
is almost sure convergence, not just convergence in probability, but this book does not deal with
almost sure convergence.
6 For a, b ∈ R and a random variable X , we haveE[aX + b] = aE[X ] + b,V[aX + b] = a2V[X ].
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Fig. 4.2 A random number following a binomial distribution is generated n = 200 times, and
the convergence of the sequence of random variables Zn is illustrated. A sequence was generated
eight times each for the probabilities of 1 occurring p = 0.5 and p = 0.1 (Example 40). Since
the variances of Xn for p = 0.5, 0.1 are p(1 − p) = 0.25, 0.09 respectively, the variance at each
i = 1, . . . .n of Zi is 0.25/ i, 0.09/ i . It can be seen that the estimated values up to that point are
converging to p = 0.5, 0.1 respectively

P(|Zn − μ| ≥ ε) ≤ σ2

n
/ε2.

Therefore, as n → ∞, the probability of the event (|Zn − μ| ≥ ε) approaches 0. �

Example 40 We generated random numbers following a binomial distribution 200
times (n = 200), calculated Zi for each point up to i = 1, . . . , n, and checked the
degree of convergence (see Fig. 4.2). We generated Zn 8 times each for p = 0.5 and
p = 0.1.

1 n <- 200
2 p <- 0.5
3 plot(0,0,xlim=c(1,n),ylim=c(0,1),xlab="Number oftrials",ylab="The
4 estimated value up to that point",
5 type="n",main="p=0.5")
6 abline(h=p)
7 for(j in 1:8){
8 x <- rbinom(n,1,p)
9 y <- NULL

10 for(i in 1:n) y <- c(y,sum(x[1:i])/i)
11 lines(1:n,y,col=j)
12 }

�
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4.3.4 Central Limit Theorem

In the following, we denote the mean and variance of the true distribution q as μ and
σ2, respectively. TheCentral Limit Theorem is, alongside the Law of LargeNumbers,
an important asymptotic property of a sequence of random variables {Xn}.
Proposition 7 (Central Limit Theorem) For a sequence of independent random
variables {Xn} each following the same distribution with mean μ and variance σ2,

Yn := X1 + · · · + Xn − nμ

σ
√
n

(4.12)

follows the standard normal distribution as n → ∞.

This book will not prove this theorem, but we will confirm its meaning by giving
examples of this theorem and its extensions. First, it should be noted that each of the
random variables in the sequence Xn does not necessarily need to follow a normal
distribution.

Example 41 (Application of the Central Limit Theorem) Setting n = 100, for each
distribution q below, we generated m = 500 random samples of (4.12) and plotted
the distribution of Yn (see Fig. 4.3).

1. Standard normal distribution
2. Exponential distribution with λ = 1
3. Binomial distribution with p = 0.1
4. Poisson distribution with λ = 1

Note that the exponential distribution is a distribution with a probability density
function that is 0 for x ≤ 0 and

q(x) := λe−λx

for x ≥ 0. The Poisson distribution takes values x = 0, 1, 2, . . ., with probabilities
q(x) = e−λλx/x !. The experiment was run using the following code:

1 CLT <- function(dist){
2 S <- NULL
3 for(j in 1:500){
4 if(dist==1) x <- rnorm(n,mu,sigma)
5 if(dist==2) x <- rexp(n,lambda)
6 if(dist==3) x <- rbinom(n,1,p)
7 if(dist==4) x <- rpois(n,lambda)
8 S <- c(S,(sum(x)−n*mu)/sqrt(n)/sigma)
9 }

10 titles <- c("Normal distribution","Exponential distribution (lambda=1)"
11 ,"Binomial distribution (p=1)","Poisson distribution (lambda=1)")
12 plot(density(S),xlab="Y_n",ylab="Probability density",main=titles[dist
13 ])

14 }
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15 ## Normal distribution

16 n=100
17 mu <- 0

18 sigma <- 1

19 CLT(1)
20 ## Exponential distribution

21 lambda <- 1

22 mu <- 1/lambda
23 sigma <- 1/lambda
24 CLT(2)
25 ## Binomial distribution

26 p <- 0.1

27 mu <- p
28 sigma <-sqrt(p*(1−p))
29 CLT(3)
30 ## Poisson distribution

31 lambda <- 1

32 mu <- lambda
33 sigma <- sqrt(lambda)
34 CLT(4)
35 ## Specify dist as 1 − 4, and set the parameters for each distribution as

36 above
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Fig. 4.3 We generated n = 100 random samples following normal distribution, exponential dis-
tribution, binomial distribution, and Poisson distribution, and calculated the value of Yn once. This
process was repeatedm = 500 times to examine its distribution. Evenwith n = 100, the distribution
is approaching a normal distribution
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It can be seen that regardless of the shape of distribution q, even with n = 100,
the shape is close to the standard normal distribution. �

The above Central Limit Theorem assumed that X1, . . . , Xn were each real
numbers (one-dimensional), and assumed μ ∈ R, σ2 > 0. Similar assertions hold
even for two-dimensional and d-dimensional (d ≥ 1) cases. Hereinafter, N (μ, �)

denotes a d-dimensional normal distribution with mean μ ∈ R
d and covariance

matrix � ∈ R
d×d . The probability density function of X ∼ N (μ, �) is as follows.

f (x) = 1

(2π)d/2(det�)1/2
exp{−1

2
(x − μ)��−1(x − μ)}.

In general, when the distribution function {Fn(x)} of a sequence of real-valued
random variables {Xn} converges to the distribution function FX (x) := ∫ x

−∞ q(t)dt
of a random variable X at each continuous point x as n → ∞,

lim
n→∞ Fn(x) = FX (x) (4.13)

we say that {Xn} converges in distribution to X , and write this as Xn
d−→ X . If the

probability density function followed by X is q, we sometimes write this as Xn
d−→ q.

For example, the Central Limit Theorem can be written as Xn
d−→ N (0, 1). And, it is

known that (4.13) is equivalent to

lim
n→∞En[g(Xn)] = EX [g(X)] (4.14)

for any bounded and continuous function g : R → R (Exercise 38), where En[·],
EX [·] are the operations of the mean with respect to the distribution functions Fn, FX

respectively.

Proposition 8 Consider independent random variables X1, . . . , Xn with mean
μ ∈ R

d and covariance matrix � ∈ R
d×d (they do not necessarily follow a normal

distribution). Then, we have

X1 + · · · + Xn − nμ√
n

d−→ N (0, �).

On the other hand, for a probability variable ηn : C(K ) → R that takes values in
C(K ), the concept of distribution function does not exist because C(K ) is not in a
Euclidean space.7 Therefore, for any bounded and continuous function g : C(K ) →
R, we define the convergence in distribution of the sequence η1, η2, . . . to a random

variable η taking values in some C(K ) (ηn
d−→ η) as

7 The concept of distribution function applies not only to the one-dimensional case F : R � x �→∫ x
−∞ q(t)dt , but also to the two-dimensional case F : R2 � (x, y) �→ ∫ x

−∞
∫ y
−∞ q(s, t)dsdt .



4.4 Fisher Information Matrix 87

lim
n→∞En[g(ηn)] = Eη[g(η)]. (4.15)

4.4 Fisher Information Matrix

The Fisher information matrix represents the smoothness of the log-likelihood
log p(X |θ) at each θ ∈ �, and is an important measure for analyzing the relationship
between the true distribution and the statistical model.

In this book, we assume the following conditions.

Assumption 2 1. The order of integration in X and differentiation with respect to
θ ∈ � in p(·|θ) can be exchanged.

2. For each (x, θ) ∈ X × �, the partial derivatives
∂2 log p(x |θ)

∂θi∂θ j
exist, for i, j =

1, . . . , d.

The Fisher information matrix I (θ) is defined as the covariance matrix of

∇ log p(X |θ) =
[
∂ log p(X |θ)

∂θ1
, . . . ,

∂ log p(X |θ)
∂θd

]

I (θ) := V[∇ log p(X |θ)]
= EX [{∇ log p(X |θ) − EX ′ [∇ log p(X ′|θ)]}

·{∇ log p(X |θ) − EX ′′ [∇ log p(X ′′|θ)]}�]
= EX [∇ log p(X |θ)(∇ log p(X |θ))�] − ∇EX [log p(X |θ)]∇EX [log p(X |θ)]�

(4.16)

and we denote I := I (θ∗) ∈ R
d×d for θ∗ ∈ �∗. Also, we define the matrix J :=

J (θ∗) ∈ R
d×d using

J (θ) := EX [−∇2 log p(X |θ)]. (4.17)

Assuming regularity, there exists a unique θ = θ∗ that minimizes D(q||p(·|θ)),
that is, minimizes EX [− log p(X |θ)], and there exists an open set containing θ∗ that
is included in �, and since ∇2

EX [log p(X |θ)] is positive definite, ∇EX [log p(X |θ)]
is 0 at θ = θ∗. We write this as

∇EX [log p(X |θ∗)] = 0. (4.18)

Therefore, if it is regular, the following holds from (4.16).

I (θ∗) = EX [∇ log p(X |θ∗)(∇ log p(X |θ∗))�]. (4.19)
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Example 42 Assume that the mean and variance of the true distribution q are μ and
σ2, respectively (not necessarily normally distributed). For the probability density
function (normal distribution) with parameter θ = (μ,σ2)

p(x |θ) = 1√
2πσ2

exp− (x − μ)2

2σ2
,

we shall calculate the matrices I, J . From

log p(x |θ) = −1

2
log 2πσ2 − (x − μ)2

2σ2

∇[log p(x |θ)] =
⎡
⎢⎣

x − μ

σ2

− 1

2σ2
+ (x − μ)2

2(σ2)2

⎤
⎥⎦ =

⎡
⎢⎣

x − μ

σ2

(x − μ)2 − σ2

2(σ2)2

⎤
⎥⎦ (4.20)

∇2[log p(x |θ)] =
⎡
⎢⎣

− 1

σ2
− x − μ

(σ2)2

− x − μ

(σ2)2

1

2(σ2)2
− (x − μ)2

(σ2)3

⎤
⎥⎦ (4.21)

EX [(X − μ)2] = EX [(X − μ∗∗ + μ∗∗ − μ)2] = σ2
∗∗ + (μ∗∗ − μ)2 , (4.22)

we obtain

EX [∇ log p(X |θ)] =
⎡
⎢⎣

μ∗∗ − μ

σ2

− 1

2σ2
+ σ2∗∗ + (μ∗∗ − μ)2

2(σ2)2

⎤
⎥⎦ (4.23)

V[∇ log p(X |θ)]
= EX [{∇ log p(X |θ) − EX [∇ log p(X |θ)]} {∇ log p(X |θ) − EX [∇ log p(X |θ)]}�]

= EX {
⎡
⎢⎣

X − μ∗∗
σ2

(X − μ∗∗)2 + 2(μ∗∗ − μ)(X − μ∗∗) − σ2∗∗
2(σ2)2

⎤
⎥⎦

·
[
X − μ∗∗

σ2

(X − μ∗∗)2 + 2(μ∗∗ − μ)(X − μ∗∗) − σ2∗∗
2(σ2)2

]
} . (4.24)

Let A := EX [(X − μ∗∗)3] and B := EX [(X − μ∗∗)4], then the (1,1), (1,2), and (2,2)
elements of (4.24) are respectively

EX [
(
X − μ∗∗

σ2

)2

] = σ2∗∗
(σ2)2

,
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EX [ X − μ∗∗
σ2

· (X − μ∗∗)2 + 2(μ∗∗ − μ)(X − μ∗∗) − σ2∗∗
2(σ2)2

] = A + 2(μ∗∗ − μ)σ2∗∗
2(σ2)3

,

and

EX [
{

(X − μ∗∗)2 + 2(μ∗∗ − μ)(X − μ∗∗) − σ2∗∗
2(σ2)2

}2
]

= 1

4(σ2)4

{
EX [(X − μ∗∗)4] + 4(μ∗∗ − μ)EX [(X − μ∗∗)3]

+4(μ∗∗ − μ)2EX [(X − μ∗∗)2] + (σ2
∗∗)

2 − 2σ2
∗∗EX [(X − μ∗∗)2]

}

= B − (σ2∗∗)2 + 4(μ∗∗ − μ)A + 4(μ∗∗ − μ)2σ2∗∗
4(σ2)4

.

Furthermore, by substituting θ = θ∗ = (μ∗,σ2∗), (4.24) becomes as follows.

I =

⎡
⎢⎢⎣

σ2∗∗
(σ2∗)2

A + 2(μ∗∗ − μ∗)σ2∗∗
2(σ2∗)3

A + 2(μ∗∗ − μ∗)σ2∗∗
2(σ2∗)3

B − (σ2∗∗)2 + 4(μ∗∗ − μ∗)A + 4(μ∗∗ − μ∗)2σ2∗∗
4(σ2∗)4

⎤
⎥⎥⎦ .

(4.25)
On the other hand, from (4.21), we obtain

J (θ) =
⎡
⎢⎣

1

σ2

μ∗∗ − μ

(σ2)2

μ∗∗ − μ

(σ2)2
− 1

2(σ2)2
+ σ2∗∗ + (μ∗∗ − μ)2

(σ2)3

⎤
⎥⎦

and

J =

⎡
⎢⎢⎣

1

σ2∗

μ∗∗ − μ∗
(σ2∗)2

μ∗∗ − μ∗
(σ2∗)2

− 1

2(σ2∗)2
+ σ2∗∗ + (μ∗∗ − μ∗)2

(σ2∗)3

⎤
⎥⎥⎦ . (4.26)

Moreover, if it is regular, from (4.19), (4.23) becomes 0, so (μ,σ
2∗) = (μ,σ2). There-

fore, we obtain

I =

⎡
⎢⎢⎣

(σ2
∗)

−1 A

2(σ2∗)3
A

2(σ2∗)3
B − (σ2∗)2

4(σ2∗)4

⎤
⎥⎥⎦ (4.27)

and

J =
[

(σ2∗)−1 0
0 (σ2∗)−2/2

]
. (4.28)
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Furthermore, if it is realizable, the true distribution q is also normal, and since A = 0
and B = 3(σ2∗∗)2 (as per Example 2), (4.27) coincides with (4.28). �
Proposition 9 When the true distribution q is realizable for the statistical model
p(·|θ)θ∈� and is regular, I = J holds.

Proof Since it is realizable, q = p(·|θ∗), and we can write

J = EX [−∇2 log p(X |θ∗)] = EX

[
−∇(

∇ p(X |θ∗)
p(X |θ∗)

)

]

= EX

[
−∇2 p(X |θ∗)

p(X |θ∗)

]
+ EX

[∇ p(X |θ∗)(∇ p(X |θ∗))�

p(X |θ∗)2

]

= −EX

[∇2 p(X |θ∗)
q(X)

]
+ EX

[∇ log p(X |θ∗)(∇ log p(X |θ∗))�
]
.

Furthermore, from the first condition of Assumption 2, we have

EX [∇
2 p(X |θ∗)
q(X)

] =
∫
X

∇2 p(x |θ∗)dx = ∇2
∫
X

p(x |θ∗)dx = ∇21 = 0,

and from the equation where we substitute θ = θ∗ into (4.16), we can write

J = 0 + I (θ∗) + (∇EX [− log p(X |θ∗)]) (∇EX [− log p(X |θ∗)])� .

Furthermore, since it is regular, we can apply (4.18), and the proposition follows. �
Example 43 In Example 42, if we change the parameter σ2 > 0 to σ �= 0, the dis-
tribution becomes the same (homogeneous) at θ = (μ,σ) and θ = (μ,−σ), but

∇[log p(x |θ)] = [ x − μ

σ2
,− 1

σ
+ (x − μ)2

σ3
]�,

∇2[log p(x |θ)] =
⎡
⎢⎣− 1

σ2
−2(x − μ)

σ3

−2(x − μ)

σ3

1

σ2
− 3(x − μ)2

σ4

⎤
⎥⎦ ,

and

J (θ) =
⎡
⎢⎣

1

σ2

2(μ∗∗ − μ)

σ3

2(μ∗∗ − μ)

σ3
− 1

σ2
+ 3

(μ∗∗ − μ)2 + σ2∗∗
σ4

⎤
⎥⎦

follow, and the values of J (θ) do not coincide between the two. When μ = μ∗∗, they
coincide at ±σ. �
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When limited to the exponential family, using the notation of Sect. 2.4, given
that p(x |θ) = u(x) exp{v(θ)�w(x)} and ∇ log p(x |θ) = ∇v(θ)�w(x), the Fisher
information matrix can be written as

I (θ) = V[∇{v(θ)�w(X)}]

and

J (θ) = −EX [∇2{v(θ)�w(X)}].

Example 44 In Example 42, with J = 4, we can write u(x) = 1√
2π

, v(θ) =

[ 1
σ2

,
μ

σ2
,
μ2

σ2
, logσ2]�, andw(x) = [− x2

2
, x,−1

2
,−1

2
]� (see Example 16). Hence,

∇[v(θ)�w(x)] = ∇[−1

2
logσ2 − (x − μ)2

2σ2
] = [ x − μ

σ2
,− 1

2σ2
+ (x − μ)2

2(σ2)2
]�

∇2[v(θ)�w(x)] =
⎡
⎢⎣

− 1

σ2
− x − μ

(σ2)2

− x − μ

(σ2)2

1

2(σ2)2
− (x − μ)2

(σ2)3

⎤
⎥⎦

can be obtained. We can calculate EX [·] and VX [·] using these and the true model.
�

Appendix: Proof of Proposition

Proof of Proposition 4

Whenmatrix A is symmetric, the eigenvectors corresponding to different eigenvalues
are orthogonal (their inner product is 0). Indeed, if Au = λu, Au′ = λ′u′, andλ �= λ′,
we have

0 = 〈Au, u′〉 − 〈Au, u′〉 = 〈Au, u′〉 − 〈u, Au′〉 = 〈λu, u′〉 − 〈u,λ′u′〉 = (λ − λ′)〈u, u′〉

which results in 〈u, u′〉 = 0. If the eigenvalues are repeated, there exist as many
linearly independent eigenvectors as there are repetitions, and we choose them to
be orthogonal. Moreover, we normalize all eigenvectors to have a magnitude of 1.
Assume that we have obtained eigenvalues λ1, . . . ,λn and eigenvectors u1, . . . , un
in this way. In this case, Aui = λi ui holds. Also, let U ∈ R

n×n be the matrix with
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columns u1, . . . , un , and let D ∈ R
n×n be the diagonal matrix with diagonal entries

λ1, . . . ,λn . We then have AU = UD. Since U is an orthogonal matrix due to its
construction (U�U = U�U = In), we can multiply U� from the right to get A =
UDU�.

First, if z�Az ≥ 0 for any z ∈ R
n , then λi u�

i ui ≥ 0 and λi ≥ 0. Conversely, if
λi ≥ 0, by denoting the matrix obtained by replacing each component of D with its
square root as

√
D, we have A = U

√
D

√
DU� = (

√
DU�)�

√
DU�, and z�Az =

(
√
DU�z)�

√
DU�z ≥ 0 holds for any z ∈ R

n .
Furthermore, if z�Az > 0 for any z �= 0, then λi u�

i ui > 0 and, since u�
i ui �= 0,

we have λi > 0. Conversely, if λi > 0, then
√
DU� is regular, and for any z �= 0,√

DU�z �= 0, and z�Az = (
√
DU�z)�

√
DU�z �= 0 holds. �

Proof of Proposition 2

In the following, let f (x, θ∗, θ) := log p(x |θ∗)
p(x |θ) .

1. Given any θ1, θ2 ∈ �∗, we have relative finite variance, so

0 = D(q‖p(·|θ2)) − D(q‖p(·|θ1)) =
∫
X
q(x) f (x, θ1, θ2)dx ≥ γ

∫
X
q(x) f (x, θ1, θ2)

2dx ≥ 0.

There exists a constant γ > 0, so f (·, θ1, θ2) is zero as a function, and θ1, θ2 become
the same distribution.

2. As q is realizable, we can set f (x, θ∗, θ) = log q(x)
p(x |θ) . Arbitrarily choose

θ∗ ∈ �∗ from the homogeneous �∗ and consider the limit of EX [ f (X, θ∗, θ)] =
D(q|p(·|θ)) as θ → θ∗ in (2.22). For F(t) := t + e−t − 1, t ∈ R, there exists
|t∗| ≤ |t | such that F(t) = t2

2 e
−t∗ from the Taylor expansion of F at t = 0. Here,

note that

F(log
q(x)

p(x |θ) ) = log
q(x)

p(x |θ) + p(x |θ)
q(x)

− 1.

Then, we can see that

EX [ f (X, θ∗, θ)]=
∫
X
q(x)F(log

q(x)

p(x |θ) )dx = 1

2

∫
X

f (x, θ∗, θ)2e−tθ(x)q(x)dx

≥ 1

2

∫
X

f (x, θ∗, θ)2 min{ p(x |θ)
q(x)

,
q(x)

p(x |θ) }q(x)dx

holds,wherewe assume |tθ(x)| ≤ | log q(x)
p(x |θ) |. Also, from the continuity (Assumption

1), if θ → θ∗, we can make p(x |θ) → q(x) = p(x |θ∗). Therefore, for any ε > 0,
there exists a θ that satisfies

min{ p(x |θ)
q(x)

,
q(x)

p(x |θ) } >
1

1 + ε
.

Hence, if |θ − θ∗| < δ, we can have
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EX [ f (X, θ∗, θ)] ≥ 1

2(1 + ε)
EX [ f (X, θ∗, θ)2]

and the constant c in (2.22) can be bounded by 2.
3. Let g(θ) := EX [ f (X, θ∗, θ)] and h(θ) := EX [ f 2(X, θ∗, θ)]. Both g(θ) and

h(θ) take their minimum values g(θ∗) = h(θ∗) = 0 at θ∗, an element of �∗. Hence,
∇g(θ∗) = ∇h(θ∗) = 0. Therefore, by Taylor’s expansion, and defining ∇g(θ) =(

∂g(θ)
∂θ1

|θ=θ∗, . . . ,
∂g(θ)
∂θd

|θ=θ∗

)
, we have

g(θ) = g(θ∗) + ∇g(θ∗)�(θ − θ∗) + 1

2
(θ − θ∗)�∇2g(θ1)(θ − θ∗) = 1

2
(θ − θ∗)�∇2g(θ1)(θ − θ∗)

and

h(θ) = h(θ∗) + ∇h(θ∗)�(θ − θ∗) + 1

2
(θ − θ∗)�∇2h(θ2)(θ − θ∗) = 1

2
(θ − θ∗)�∇2h(θ2)(θ − θ∗)

for some θ1, θ2 that exist between θ and θ∗. Moreover, as θ → θ∗, we have θ1, θ2 →
θ∗, and both can be approximated in the neighborhood of θ∗ by

1

2
(θ − θ∗)�∇2g(θ∗)(θ − θ∗) ,

1

2
(θ − θ∗)�∇2h(θ∗)(θ − θ∗).

On the other hand, since g is regular, the θ∗ that minimizes g is unique, and all eigen-
values of ∇2g(θ∗) = ∇2D(q||p(·|θ))|θ=θ∗ are positive. Also, according to Proposi-
tion 4, ∇2h is non-negative in the neighborhood of θ = θ∗. If we denote the smallest
eigenvalue of the former as λmin > 0 and the largest value of the latter as λmax ≥ 0,
then we can write

EX [ f (X, θ∗, θ)2]
EX [ f (X, θ∗, θ)] = h(θ)

g(θ)
≤ λmax

λmin
.

Exercises 27–41

27. For a, b, c, d ∈ R, prove that (a + bi)(c + di) = a + bi · c + di . Also, for the
eigenvalue λ ∈ C and eigenvector u ∈ C

n of matrix A ∈ R
n×n , prove that Au =

Au = λu = λu.
28. For a matrixU = [u1, . . . , un] ∈ R

n×n , where the inner product 〈ui , u j 〉 of each
column is 1 when i = j and 0 otherwise, we callU an orthogonal matrix. Show
that U�U = UU� = In .

29. Prove the following.

(a) An open interval (a, b) is an open set, and a closed interval [a, b] is a closed
set.

(b) The set of all real numbers R and the set of all integers Z are closed sets.
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(c) The set R ∩ Z
C , which is the set of all real numbers R excluding the set of

all integers Z, is an open set.
(d) The set of all rational numbers Q is neither an open set nor a closed set.
(e) The region {(x, y, z) ∈ R

3 | x2 + y2 + z2 < 1, z ≥ 0} is neither an open set
nor a closed set.

30. Based on the definition of Maclaurin expansion, prove (4.4) (4.5).
31. Show that the function f in Example 37 is C∞.
32. Show that the absolute value | · | is a norm inR. Also, show that L2(q) is a linear

space, and that ‖ · ‖2 is a norm. [Hint] Show in relation to the relationship ∼
such as f ∼ g ⇐⇒ ∫

X f (x)q(x)dx = ∫X g(x)q(x)dx .
33. When tossing a coin with equal probability of heads or tails, what kind of event

set should be prepared for the variable X to become a random variable, with
X = 1 if heads appear and X = 0 if tails appear?

34. Prove the two inequalities

E[(X − μ)2] ≥ E[(X − μ)2 I (|X − μ| ≥ k)] ≥ k2 · P(|X − μ| ≥ k).

35. Toss a coin with equal probability of heads or tails n times, and let ai be the
relative frequency of heads occurring up to the i th time, for 1 ≤ i ≤ n. Write
an R program that takes n as input, generates n random numbers following a
binomial distribution, and outputs the sequence a1, . . . , an .

36. When executing the following program with different values of m and n such
as m = 10, 100 and n = 10, 100, different graphs are obtained. What kind of
graphs can be generally obtained?

1 m <- 100

2 n <- 100

3 x.seq <- NULL
4 for (i in 1:n) {
5 x <- (sum(rbinom(m, 1, 0.5)) − 0.5*m) / (sqrt (m/4))
6 x.seq <- c(x.seq, x)
7 }
8 curve(dnorm(x), −5, 5, col=2)
9 lines(density(x.seq), col=3)

37. Following the application example of Example 41, generate n = 500 random
numbers approximately following the standard normal distribution from m =
100 sets of random numbers following the χ2 distribution with 2 degrees of
freedom, and draw a graph similar to Fig. 4.3.

38. Prove the following two propositions.

(a) If Xn
d−→ X and g : R → R is bounded (|g(x)| < M , there exists M > 0

such that x ∈ R) and continuous, then E[g(Xn)] → E[g(X)], where the
following fact can be used without proof. When fixing ε > 0 arbitrarily,
we can choose continuous points a0 < a1 < · · · < ak of the distribution
function of X that satisfy the following conditions:
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P (X ≤ a0) < ε , P (X > ak) < ε

and

|g(x) − g(ai )| < ε , x ∈ [ai−1, ai
]

, i = 1, . . . , k.

[Hint] Apply the function h : R → R, which takes the value 0 outside
(a0, ak] and a constant value within each (ai−1, ai ), to the following inequal-
ity.

|E[g(Xn)] − E[g(X)]|
≤ |E[g(Xn)] − E[h(Xn)]| + |E[h(Xn)] − E[h(X)]| + |E[h(X)] − E[g(X)]|.

(b) For any bounded and continuous g : R → R, if E[g(Xn)] → E[g(X)], then
Xn

d−→ X . [Hint] Since g : R → R is a bounded and continuous function,
for example, let a ∈ R be a continuous point of the distribution function of
X , and let m ≥ 1, then

ga,m(x) =
⎧⎨
⎩
1, x ≤ a
−m(x − a) + 1, a < x < a + 1/m
0, x ≥ a + 1/m.

For the function ga,m : R → R, E[ga,m(Xn)] → E[ga,m(X)] (n → ∞) is
established, and FX (a) ≤ E[ga,m(X)] ≤ FX (a + 1

m ) holds. Finally, use the
fact that a ∈ R is a continuous point of the distribution function.

39. When the true distribution is regular with respect to the statistical model, show
that for θ∗ ∈ �∗,

I (θ∗) = EX [∇ log p(X |θ∗)(∇ log p(X |θ∗))�]

holds.
40. Under regularity, (4.23) becomes 0. Assuming θ = (μ,σ2) = (μ∗,σ2∗) = θ∗,

show that (4.25) can be written by (4.27). Also, why does (4.27) become (4.28)
when realizable?

41. Perform the same derivation as in Example 44 for Example 17.



Chapter 5
Regular Statistical Models

In this chapter, we discuss the situation where the true distribution has a regular
relationshipwith the statisticalmodel.Wewill explain the traditional approach before
the emergence of Watanabe’s Bayesian theory. Being regular, �∗ contains a single
element θ∗. In Watanabe’s Bayesian theory, this is divided into � within a Euclidean
distance of εn = n−1/4 (where n is the sample size) from θ∗ and everything else. For
the latter, we apply the discussion without assuming regularity. In other words, the
generalization proposed by Watanabe’s Bayesian theory applies only to the former.
In this chapter, we will demonstrate existing analytical methods for the former, as
well as explicitly show results that can also be applied in Chap.8. First, we obtain
a result regarding the posterior distribution (asymptotic normality). Then, we define
important statistical quantities for defining WAIC, namely the generalization loss
and empirical loss. Finally, we define specific values assuming regularity.

Relationship between Propositions of Chapter 5 and Regularity� �

P.10 ← Regular → P.14 → P.15 → P.16 → P.19

↑ ↗
P.11 → P.12 → P.13 P.17 → P.18

� �

(Red is applicable only in Chaps. 5 and 6, blue can also be applied in Chaps. 8 and
9)

In this chapter, we assume that � is a compact set.

Assumption 3 � is compact

Note that, from this chapter onwards, there will be situations where we ana-
lyze the stochastic fluctuations of the training data, but unless we are taking the
average, we will describe them in lowercase (x1, . . . , xn ∈ X ) rather than upper-
case (X1, . . . , Xn ∈ X ). Also, we write the marginal likelihood as Zn rather than
Z(x1, . . . , xn).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
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5.1 Empirical Process

In this section, we will examine the properties of the following quantities. Let J (θ) ∈
R

d×d be the matrix defined in Sect. 4.4. For x1, . . . , xn ∈ X , θ ∈ � and θ∗ ∈ �∗, we
define

ηn(θ) := 1√
n

n∑

i=1

{
EX

[
log

p(X |θ∗)
p(X |θ)

]
− log

p(xi |θ∗)
p(xi |θ)

}
(5.1)

and
�n := J−1(θ∗)∇ηn(θ∗)/

√
n. (5.2)

where we assume the existence of the inverse matrix of J (θ∗), but ηn can be defined
even if it is not regular. Applying the Central Limit Theorem, the following propo-
sition holds.

Proposition 10 When θ ∈ � is fixed, ∇ηn(θ) and
√
n�n converge in distribu-

tion to the normal distributions N (0, I (θ)) and N (0, J−1 I J−1), respectively, and
∇ηn(θ)/

√
n and �n both converge in probability to 0, where I = I (θ∗) and J =

J (θ∗).

Proof ∇ηn(θ) is a value obtained by adding all independent −∇ log p(xi |θ) +
EX [∇ log p(X |θ)] and dividing by

√
n. Also, its mean is 0, and from the Central

Limit Theorem, it converges in distribution to a normal distribution with mean 0
and covariance matrix (4.16). Therefore,

√
n�n = J−1∇ηn converges in distribu-

tion to the normal distribution N (0, J−1 I J−1). Furthermore, that ∇ηn(θ)/
√
n and

�n converge in probability to 0 follows from the Weak Law of Large Numbers. �

We want to note that ∇ηn(θ) = OP(1) and �n = OP(1/
√
n).

Example 45 We shall assume that a random variable X = 1, 0 occurs with prob-
abilities θ∗ and 1 − θ∗. Let 0 < ε < 0.5 be known. If ε ≤ θ∗ ≤ 1 − ε is unknown
and we apply a statistical model with ε ≤ θ ≤ 1 − ε, and if ones appear k times in n
observations x1, . . . , xn , then from

P(x |θ) =
{

θ, x = 1
1 − θ, x = 0

,

we obtain

ηn(θ)/
√
n = −θ∗ log θ − (1 − θ∗) log(1 − θ) + k

n
log θ + (1 − k

n
) log(1 − θ)

+θ∗ log θ∗ + (1 − θ∗) log(1 − θ∗) − k

n
log θ∗ − (1 − k

n
) log(1 − θ∗),

∇ηn(θ)/
√
n = −θ∗

θ
+ 1 − θ∗

1 − θ
+ k

nθ
− 1

1 − θ
(1 − k

n
) = 1

θ(1 − θ)

k

n
− θ∗

θ(1 − θ)

∇ηn(θ∗)/
√
n = k/n − θ∗

θ∗(1 − θ∗)
,
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J (θ) = θ∗
∂2

∂θ2
{− log θ} + (1 − θ∗)

∂2

∂θ2
{− log(1 − θ)}

= θ∗
1

θ2
+ (1 − θ∗)

1

(1 − θ)2
= θ∗ − 2θθ∗ + θ2

θ2(1 − θ)2
,

and

I = J = J (θ∗) = 1

θ∗(1 − θ∗)
.

Therefore, according to Proposition 10, as n increases,

√
n(k/n − θ∗)
θ∗(1 − θ∗)

d→ N (0,
1

θ∗(1 − θ∗)
)

holds. This is equivalent to

√
n(k/n − θ∗)√
θ∗(1 − θ∗)

d→ N (0, 1)

and it can also be derived from the Central Limit Theorem. �
In the following, when the log-likelihood f (·, θ) = log p(·|θ∗)

p(·|θ) is an L2(q)-valued
analytic function, we call the function in Sect. 5.1

ηn(θ) = 1√
4

n∑

i=1

{EX [ f (X, θ)] − f (xi , θ)}

an empirical process, and consider its behavior as n → ∞.
First, note that η1, η2, . . . , given in (5.1), have the same mean and covariance. In

fact, we have

EX1,...,Xn [ηn(θ)] = 0 , θ ∈ �

EX1,...,Xn [ηn(θ)ηn(θ′)] = EX [log p(X |θ∗)
p(X |θ) log

p(X |θ∗)
p(X |θ′)

] , θ, θ′ ∈ �

which do not depend on n.
On the other hand, a random variable η that takes values in analytic functions is

called a Gaussian process when η(θ1), . . . , η(θm) follow a m-dimensional normal
distribution for any positive integer m and any elements θ1, . . . , θm of �. Especially
when � is compact, it is known that a sequence of such random variables (empirical
processes) ηn converges in distribution to a Gaussian process η.

Proposition 11 Suppose the log-likelihood f (·, θ) is an L2(q)-valued analytic func-
tion.When� is compact, the empirical processes η1, η2, . . . , converge in distribution
to a Gaussian process η.
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Proposition 11 holds whether or not the true distribution q is regular with respect
to the statistical model p(·|θ)θ∈�. While the proof is omitted, we want to mention its
significance. First, from the Central Limit Theorem, for any θ, there exists a constant

σ2 such that ηn(θ)
d−→ N (0,σ2). Also, the Central Limit Theorem can be extended

to multiple dimensions. That is, for any m ≥ 1 and θ1, . . . , θm ∈ �, there exists a
positive definite matrix � ∈ R

m×m such that

(ηn(θ1), . . . , ηn(θm))
d−→ N (0, �). (5.3)

However, it is not easy to prove that this dimension is extended to infinity and ηn
d−→ η

holds. In fact, Proposition 11 implies the following proposition.

Proposition 12 Assume the log-likelihood f (·, θ) is an analytic function taking
values in L2(q). When � is compact, sup

θ∈�

{ηn(θ)}2 converges in distribution to

supθ∈� η(θ)2.

In fact, letting C(�) be the set of continuous functions in �, the function

h : C(�) � φ �→ sup
θ∈�

|φ(θ)| ∈ R

is continuous (under the uniform norm):

|h(φ1) − h(φ2)| = | sup
θ∈�

|φ1(θ)| − sup
θ∈�

|φ2(θ)|| ≤ sup
θ∈�

|φ1(θ) − φ2(θ)| = ‖φ1 − φ2‖
(5.4)

(Problem 43). From this fact and the convergence in distribution ηn → η (Proposition
11), Proposition 12 holds (see page 151 of reference [12]). However, even if we
prove (5.3), we cannot obtain Proposition 12. As � is an infinite set and the θ ∈ �

that reaches the supremum is different for each n = 1, 2, . . . , even if each θ ∈ �

converges in distribution to a normal distribution, it does not necessarily converge to
a Gaussian process as a whole.

5.2 Asymptotic Normality of the Posterior Distribution

In this section, we will show that in the regular case, as the sample size n increases,
the posterior distribution follows a normal distribution.

In this section, we write Un ∼ Vn to indicate the relationship between the
sequences of random variables {Un} and {Vn} whose ratio converge in probability to
1 as n → ∞.1 Also, we define the sequence εn as

εn = n−1/4. (5.5)

1 The symbol ∼ is often used to represent an equivalence relation between elements of a set S
(Sect. 7.2). Outside of this section, it is also used in the sense of X ∼ N (0, 1) (the random variable
X follows the standard normal distribution).
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We assume that the true distribution is regular with respect to the statistical model,
which means that �∗ contains just one element. From now on, we define B(ε, θ) :=
{θ′ ∈ � | EX

[
log p(X |θ)

p(X |θ′)

]
< ε}, and partition � into two regions, B(εn, θ) and its

complement B(εn, θ∗)C . Then, when we define

U (0)
n :=

∫

B(εn ,θ∗)C

n∏

i=1

p(xi |θ)
p(xi |θ∗)

ϕ(θ)dθ and U (1)
n :=

∫

B(εn ,θ∗)

n∏

i=1

p(xi |θ)
p(xi |θ∗)

ϕ(θ)dθ

we can ignore the value of the former (Proposition 13), and for the marginal likeli-
hood

Zn =
∫

�

n∏

i=1

p(xi |θ)ϕ(θ)dθ

we can show that U (1)
n ∼ Zn

/∏n
i=1 p(xi |θ∗) (Proposition 14).

Proposition 13 (Watanabe [10]) When � is compact, the following two equations
hold:

U (0)
n = oP(exp(−√

n)) (5.6)

and

U (2)
n :=

∫

B(εn ,θ∗)C

{
n∑

i=1

log
p(xi |θ∗)
p(xi |θ)

}
n∏

i=1

p(xi |θ)
p(xi |θ∗)

ϕ(θ)dθ = oP(exp(−√
n)).

(5.7)
where �∗ generally contains multiple elements (we do not assume regularity), and
we arbitrarily fix one of them, θ∗.

Proof Refer to the appendix at the end of this chapter.

We will use Eq. (5.7) in Chap.6.
Note that the proof of Proposition 13 does not use regularity. We will discuss

the general case in Chap. 8, but only the θ ∈ � included in B(εn, θ∗) are subject to
generalization.

Proposition 14 When the true distribution is regular with respect to the statistical
model,

Zn ∼
n∏

i=1

p(xi |θ∗)(
2π

n
)d/2 ϕ(θ∗)√

det(J )
exp

{n
2
�T

n J�n

}
(5.8)

is valid.

Proof Assuming that the true distribution is regular with respect to the statistical
model, ∇EX [− log p(X |θ)] = 0 holds. Also, for θ ∈ B(εn, θ∗), by Taylor’s expan-
sion around θ∗, there exist θ1, θ2 ∈ B(εn, θ∗) such that
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EX [− log p(X |θ)] = EX [− log p(X |θ∗)] + 1

2
(θ − θ∗)� J (θ1)(θ − θ∗) (5.9)

and

ηn(θ) = (θ − θ∗)�∇ηn(θ
2)

hold. And, assuming that the true distribution is regular with respect to the statistical
model, the matrix J (θ∗) is regular. Hence, since εn → 0, for sufficiently large n, we
may assume that the matrix J (θ1) is regular. That is,

n∑

i=1

− log p(xi |θ)

= n

⎧
⎨

⎩EX [− log p(X |θ)] − EX [− log p(X |θ∗)] − 1

n

n∑

i=1

log p(xi |θ∗) − 1√
n

ηn(θ)

⎫
⎬

⎭

= n

{
EX [− log p(X |θ∗)] + 1

2
(θ − θ∗)� J (θ1)(θ − θ∗)

}

−n

⎧
⎨

⎩EX [− log p(X |θ∗)] + 1

n

n∑

i=1

log p(xi |θ∗) + 1√
n

(θ − θ∗)�∇ηn(θ2)

⎫
⎬

⎭

=
n∑

i=1

− log p(xi |θ∗) + n

2
(θ − θ∗)� J (θ1)(θ − θ∗) − √

n(θ − θ∗)�∇ηn(θ2)

=
n∑

i=1

− log p(xi |θ∗) + n

2
‖J (θ1)1/2

{
θ − θ∗ − J (θ1)−1∇ηn(θ2)√

n

}
‖2 − n

2
‖J (θ1)−1/2 ∇ηn(θ2)√

n
‖2

can be established, where the final transformation employs themethod of completing
the square. This can be confirmed from the fact that

‖J (θ1)1/2{θ − θ∗ − J (θ1)−1∇ηn(θ
2)√

n
}‖2

= (θ − θ∗)� J (θ1)(θ − θ∗) − 2√
n

(θ − θ∗)� J (θ1)J (θ1)−1∇η(θ2) + ‖J (θ1)−1/2 ∇ηn(θ
2)√

n
‖2

holds. Also, as n → ∞, θ1, θ2 → θ∗, so

n∑

i=1

− log p(xi |θ)

=
n∑

i=1

− log p(xi |θ∗) + n

2
‖J 1/2(θ − θ∗ − �n)‖2 − n

2
‖J 1/2�n‖2 + oP(1)

=
n∑

i=1

− log p(xi |θ∗) + n

2
(θ − θ∗ − �n)

� J (θ − θ∗ − �n) − n

2
��

n J�n + oP(1)

(5.10)
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is valid. Moreover, the integrand of

U (1)
n =

∫

B(εn ,θ∗)
exp{

n∑

i=1

log
p(xi |θ)
p(xi |θ∗)

}ϕ(θ)dθ

∼
∫

B(εn ,θ∗)
exp

(
−n

2
(θ − θ∗ − �n)

� J (θ − θ∗ − �n)
)
dθ · exp

{n
2
��
n J�n

}
ϕ(θ∗)

(5.11)

is proportional to the probability density function of a normal distribution with mean
θ∗ + �n and covariance matrix (nJ )−1. And, since

√
nεn → ∞,

EX [log p(X |θ∗)
p(X |θ) ] = 1

2
(θ − θ∗)� J (θ − θ∗) + o(|θ|3) < εn

includes the region where the integrand takes its main values. Therefore, as n → ∞,
the integral becomes the same value as the integral over Rd .

To put it more concretely, as n → ∞,

1. The integrand (probability density function of the normal distribution) converges
to a function that takes values only at one point θ∗ (with the speed of convergence
to the mean θ∗ being O(n−1/2) and the standard deviation converging to 0 at a
speed of O(n−1/2)).

2. The integration domain B(εn, θ∗) converges to a single point θ∗ (at a rate of
O(n−1/4)).

Because 1. is faster than 2., as n → ∞, the entire integration domain of the
integrand is included in B(εn, θ∗), and this integral value (due to the properties of
the probability density function of the normal distribution) converges to 1. In fact, if
2. converges faster than 1., the integral of a function with an integral value of 1 in
R

d would converge to a single point before the integration domain, so the integral
value would not converge to 1 (it would converge to 0).

Therefore,

U (1)
n ∼ (

2π

n
)d/2(det J )−1/2 exp

(n
2
��

n J�n

)
ϕ(θ∗)

whichmeans fromProposition 13,we have Zn ∼ U (1)
n , where the final transformation

used

1

(2π)d/2(det�)1/2

∫

Rd

exp{−1

2
(θ − μ)��−1(θ − μ)}dθ = 1.

That is, we set � = (nJ )−1, μ = θ∗ + �n , and det� = 1

nd
· 1

det J
. �

Note that in the proofs up to this point in this section, we are using the three
conditions of regularity and the assumption of compactness of �.
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1. There exists a unique θ∗ ∈ � such that �∗ = {θ∗}.
2. The matrix

[
∂2D(q|p(·|θ))

∂θi∂θ j
|θ=θ∗

]
∈ R

d×d is positive definite.

3. There exists an open set �̃ such that θ∗ ∈ �̃ ⊆ �.

The corresponding parts are marked in blue. The assumption of compactness of
� is used in Proposition 13.

FromProposition 14,we see that the posterior distribution p(θ|x1, . . . , xn) asymp-
totically converges to

p(θ|x1, . . . , xn) =
∏n

i=1 p(xi |θ)ϕ(θ)∫
�

∏n
i=1 p(xi |θ′)ϕ(θ′)dθ′

∼ C exp
{
−n

2
(θ − θ∗ − �n)

� J (θ − θ∗ − �n)
}

,

where C is a constant. In other words, it converges to N (θ∗ + �n,
1
n J

−1).

Example 46 In Example 45, �n = k/n − θ∗ implies that the posterior distribution

of θ converges to N (θ∗ + k

n
− θ∗,

θ∗(1 − θ∗)
n

). �

Proposition 15 When the true distribution is in a regular relationship with the sta-
tistical model, the posterior mean of the function s : � → R after obtaining the
samples x1, . . . , xn is given by

E[s(θ)] :=
∫

�

s(θ)p(θ|x1, . . . , xn)dθ

∼
∫
�
s(θ) exp

{− n
2 (θ − θ∗ − �n)

� J (θ − θ∗ − �n)
}
dθ

∫
�
exp

{− n
2 (θ − θ∗ − �n)� J (θ − θ∗ − �n)

}
dθ

. (5.12)

where �n is defined by Eqs. (5.1) and (5.2), and we set J := J (θ∗).

From Proposition 15, the following holds. It plays an important role in the next
section and in Chap. 5 as a consequence of the asymptotic normality of the posterior
probability.

Proposition 16 When the true distribution is in a regular relationship with the sta-
tistical model, the following five equations hold.2

E[θ] = θ∗ + �n + oP(
1√
n
), (5.13)

E[(θ − θ∗ − �n)
� J (θ − θ∗ − �n)] = d

n
+ oP(

1

n
), (5.14)

2 Even if we take the mean with X , there remains uncertainty due to x1, . . . , xn , so it becomes a
matter of dealing with random variables. This is also why we use things like oP (·).
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E[(θ − θ∗)� J (θ − θ∗)] = d

n
+ ��

n J�n + oP(
1

n
), (5.15)

E(x) := E[− log p(x |θ)] = − log p(x |θ∗) − ��
n ∇ log p(x |θ∗) + oP(

1√
n
), (5.16)

and

V(x) := E[{− log p(x |θ) − E(x)}2]
= 1

n
tr
{
J−1∇(− log p(x |θ∗))∇(− log p(x |θ∗))�

}+ oP(
1

n
). (5.17)

Proof Refer to the appendix at the end of the chapter (apply Slutsky’s theorem
(Eqs. 4.8–4.10) and the Continuous Mapping Theorem (Eq. 4.11)).

Example 47 Standard normal random numbers were generated n times, and the
posterior distributions of themeanμ and varianceσ2 were calculated, yielding shapes
close to a normal distribution (Fig. 5.1a, b). Comparing the cases of n = 100 and n =
10000, it can be seen that the latter has vertical andhorizontal shapes of the probability
density function that are 10 times larger and 1/10 times smaller, respectively. The
corresponding R code is as follows: �

1 library(rstan)
2 f <- function(N) stan("model6.stan", data = list(N = N, y = rnorm(N)))
3 # Chapter 2’s model6.stan

4 fit1 <- f(100) # n=100

5 fit2 <- f(10000) # n=10000

6 stan_hist(fit1)
7 stan_hist(fit2)

Example 48 (Mixture Normal Distribution) We shall revisit the example of the
mixture normal distribution from Example 14 in Chap.1. The prior distribution was
given as μ1,μ2 ∼ N (0,σ2), μ1 < μ2, and the posterior distribution of μ1,μ2 was
calculated after observing n samples. In this case, if 0 < a < 1 is the mixture ratio,
the probability density function becomes

a
1√
2π

exp

{
− (x − μ1)

2

2

}
+ (1 − a)

1√
2π

exp

{
− (x − μ2)

2

2

}
.

In addition, the standard normal distribution was taken as the true distribution. It
becomes a distribution that mixes the probability density functions of N (μ1,σ) and
N (μ2,σ) at the ratio of a and 1 − a. In this case, it does not become regular (Example
14). The results output by Stan showed that the posterior distribution deviated from
the normal distribution (Fig. 5.1). The R code is as follows: �
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(a) n = 100 (b) n = 10000
μ σ

-0.50 -0.25 0.00 0.25 0.8 1.0 1.2

μ σ

-0.04 -0.02 0.00 0.02 0.04 0.97 0.98 0.99 1.00 1.01 1.02

(c) μ1 (d) μ2

-1.0 -0.5 0.0
μ1

0.0 0.5 1.0 1.5
μ2

Fig. 5.1 In the case of regularity, the shape of the posterior distribution becomes a normal distri-
bution. When comparing a n = 100 and b n = 10000, the variance in the latter case is 1/100 (the
standard deviation is 1/10). c, d In the case where the true distribution is a normal distribution and
the statistical model is a mixed normal distribution, it is not regular. It can be seen that the posterior
distributions of the parameters μ1,μ2 deviate from the normal distribution

1 library(rstan)
2 N <- 100

3 y <- rnorm(100)
4 fit <- stan(file = "model13.stan", data = list(N=N, y=y))
5 stan_dens(fit, pars="mu")
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5.3 Generalization Loss and Empirical Loss

The quantities

Gn := EX [− log r(X |x1, . . . , xn)]

and

Tn := 1

n

n∑

i=1

{− log r(xi |x1, . . . , xn)}

obtained from the predictive distribution r(x |x1, . . . , xn) are respectively called the
generalization loss and empirical loss. These quantities play a crucial role in defining
the WAIC in the next chapter.

Here, Gn is obtained by taking the average with respect to the random variable X ,
but like Tn , it depends on the samples x1, . . . , xn ∈ X . From this section onwards, we
will consider the samples x1, . . . , xn as random variables (they should be written as
X1, . . . , Xn), and regardGn , Tn as randomvariables. However, wewill use uppercase
notation for x1, . . . , xn onlywhen performing operations to take themean or variance.

From Proposition 1, the inequality

EX [log q(X)

p(X |θ) ] ≥ 0 , θ ∈ � (5.18)

holds between the true distribution q and the statistical model {p(·|θ)}θ∈�. Statistics
and learning theory correspond to the problem of constructing θ = θ̂(x1, . . . , xn)
from samples x1, . . . , xn ∈ X to minimize the left-hand side of (5.18). And since
EX [log q(X)] is a constant, the minimization of (5.18) is equivalent to the minimiza-
tion of

EX [− log p(X |θ̂(x1, . . . , xn))].

At this time, it does not necessarily become the minimization, but it is often the case
to take θ that maximizes

n∑

i=1

log p(xi |θ)

as θ̂(x1, . . . , xn) (maximum likelihood estimation). Moreover, in Watanabe’s
Bayesian theory, instead of constructing θ̂(x1, . . . , xn) from samples x1, . . . , xn ∈ X ,
it uses the predictive distribution r in Bayesian theory and sets

p(X |θ̂(x1, . . . , xn)) = r(X |x1, . . . , xn).
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Fig. 5.2 Initially, in Example 49,we compared the exact values of generalization loss and empirical
loss with the values obtained by Stan. As a result, it was found that the two values almost coincide
(left). Also, we plotted the values of the generalization loss Gn and the empirical loss Tn . It was
found that the variance of the generalization loss was smaller compared to the empirical loss (right)

The value obtained by taking EX
[− log(·)] of that value becomes the generalization

loss. Also, because the true distribution q is unknown, it is sometimes approximated
by

1

n

n∑

i=1

− log[p(xi |θ̂(x1, . . . , xn))].

The latter is the empirical loss. Whether to use maximum likelihood estimation,
generalization loss, or empirical loss will be discussed in the next chapter (Fig. 5.2).

Example 49 For Example 4, from (2.12), we have

− log r(x |x1, . . . , xn) = 1

2
log(2π

n + 2

n + 1
) + n + 1

2(n + 2)
{x − 1

n + 1

n∑

i=1

xi }2

and

EX [(X − 1

n + 1

n∑

i=1

xi )
2] = 1 + (μ − 1

n + 1

n∑

i=1

xi )
2.

Then, Gn, Tn can be written as follows.

Gn = 1

2
log(2π

n + 2

n + 1
) + n + 1

2(n + 2)
{1 + (μ − 1

n + 1

n∑

i=1

xi )
2}

and
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Tn = 1

2
log(2π

n + 2

n + 1
) + n + 1

2(n + 2)

1

n

n∑

i=1

{xi − 1

n + 1

n∑

j=1

x j }2.

In the R language functions, they are as follows:

1 G <- function(y)
2 0.5*log(2*pi*(n+2)/(n+1)) + (n+1)/(n+2)/2*(sigma^2+(mu−sum(y)/(n+1))**
3 2)

1 T<- function(y)
2 0.5*log(2*pi*(n+2)/(n+1)) + (n+1)/(n+2)/2*mean((y−sum(y)/(n+1))**2)

�

However, the ability to analytically solve the generalization loss Gn and empir-
ical loss Tn , as in Example 49, is limited to cases such as using a conjugate prior
distribution for the exponential family of distributions. Therefore, the same example
is calculated using Stan. However, the generalization loss cannot be evaluated if the
true distribution q is unknown, and the true distribution is assumed as

f (x) = 1

2
f (x | − 1) + 1

2
f (x |1) , f (x |μ) = 1√

2π
exp{− (x − μ)2

2
}.

Also, as mentioned in Chap.2, the empirical loss Tn can generally be defined as
follows.

1 T_n <- function(log_likelihood) −mean(log(colMeans(exp(log_likelihood))))

Each part has the following meaning.

exp(log_likelihood) p(xi |θ)p(θ|x1, . . . , xn), i = 1, . . . , n
colMeans(exp(log_likelihood)) Approximation of

∫
� p(xi |θ)p(θ|x1, . . . , xn)dθ

Overall − 1
n
∑n

i=1 log p(xi |x1, . . . , xn)

Also, a function to find the generalization loss is as follows.

1 f_true <- function(x) 0.5*dnorm(x, −1, 1) + 0.5*dnorm(x, 1, 1)

1 G_n <- function(y_pred, f_true) {
2 dens <- density(y_pred)
3 f_pred <- approxfun(dens$x, dens$y, yleft=1e−15, yright=1e−15)

4 f_ge <- function(x) f_true(x)*(−log(f_pred(x)))
5 ge <- integrate(f_ge, lower=−6, upper=6)$value
6 return(ge)
7 }
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Each part has the following meaning.

y_pred m random numbers following the predictive distribution r(x |x1, . . . , xn)
dens (x ( j), r(x ( j)|x1, . . . , xn)), j = 1, . . . ,m
f_pred Function r(·|x1, . . . , xn)
f_true Function q(·)
f_ge Function − log r(·|x1, . . . , xn)q(·)
Overall

∫
X − log r(x |x1, . . . , xn)q(x)dx

And in the generated quantities block, various quantities can be computed.
For instance, in the following model14.stan, not only the empirical loss, but also
the generalization loss can be calculated. The Stan code was set as follows.

model14.stan

1 data{
2 int N; // Number of data
3 real y[N]; // Data
4 }
5

6 parameters{
7 real mu; // Mean
8 }
9

10 model{
11 mu ˜ normal(0,100); // Prior distribution of mean
12 y ˜ normal(mu, 1); // Vectorization
13 }
14

15 generated quantities {
16 vector[N] log_lik;
17 real y_pred;
18 for(n in 1:N)
19 log_lik[n] = normal_lpdf(y[n] | mu, 1);

20 y_pred = normal_rng(mu, 1);

21 }

And the following process was carried out.

1 n <- 100

2 ## Calculation of horizontal axis and vertical axis values

3 m <- 20

4 GG <- NULL
5 TT <- NULL
6 T_stan <- NULL
7 G_stan <- NULL
8 sigma <- 1

9 mu <- 0

10 for(j in 1:m){
11 y <- c(rnorm(n*0.5,−1,1),rnorm(n*0.5,1,1))
12 GG <- c(GG,G(y))
13 TT <- c(TT,T(y))
14 data_list <- list(N=n, y=y)
15 fit <- stan(file="model14.stan", data=data_list)
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16 ms <- rstan::extract(fit)
17 T_stan <- c(T_stan,T_n(ms$log_lik))
18 G_stan <- c(G_stan,G_n(ms$y_pred, f_true))
19 }
20 ## Plotting the graph

21 plot(GG,G_stan,col="blue",xlim=c(1.8,2.2),ylim=c(1.8,2.2),xlab="Exact
22 values",ylab="Stan’s values", main="Exact values and Stan’s values")
23 abline(a=0,b=1)
24 points(TT,T_stan,col="red")
25 legend("topleft",legend=c("Generalization Loss","Empirical Loss"),pch=1,
26 col=c("blue","red"))

For a sample x1, . . . , xn , fix x ∈ X and consider the function of α ∈ R:

s(x,α) := log
∫

�

{
p(x |θ)
p(x |θ∗)

}α

p(θ|x1, . . . , xn)dθ. (5.19)

Taylor expand this around α = 0 to get

s(x,α) = s(x, 0) + s ′(x, 0)α + 1

2
s ′′(x, 0)α2 +

∞∑

k=3

1

k! s
(k)(x, 0)αk . (5.20)

Substitute α = 1 to get

s(x, 1) = s(x, 0) + s ′(x, 0) + 1

2
s ′′(x, 0) +

∞∑

k=3

1

k! s
(k)(x, 0).

Accurately calculating both sides of this yields

− log
∫

�

p(x |θ)p(θ|x1, . . . , xn)dθ = E(x) − 1

2
V(x) −

∞∑

k=3

1

k! s
(k)(x, 0), (5.21)

where E(x) and V(x) are the mean and variance of − log p(x |θ) due to the prob-
abilistic variation of θ ∈ � when sample x1, . . . , xn is obtained, and are quantities
already defined in (5.16) and (5.17).

In fact, (5.21) is obtained by substituting α = 0 into (5.20) and the following two
equations:

s ′(x,α) =
∫
�
{log p(x |θ) − log p(x |θ∗)}p(x |θ)α p(θ|x1, . . . , xn)dθ∫

�
p(x |θ)α p(θ|x1, . . . , xn)dθ

(5.22)
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s ′′(x,α) =
∫
�
{log p(x |θ) − log p(x |θ∗)}2 p(x |θ)α p(θ|x1, . . . , xn)dθ∫

�
p(x |θ)α p(θ|x1, . . . , xn)dθ

−{∫
�
{log p(x |θ) − log p(x |θ∗)}p(x |θ)α p(θ|x1, . . . , xn)dθ}2

{∫
�
p(x |θ)α p(θ|x1, . . . , xn)dθ}2 (5.23)

(Exercise51). Furthermore, we shall define

sk(x,α) := E[{log p(x |θ) − log p(x |θ∗)}k p(x |θ)α]
E[p(x |θ)α] . (5.24)

Under this definition, the following proposition holds true.

Proposition 17 For s(k), which is the kth derivative of the function s(x,α) with
respect to α, there exists a positive constant Ck , for k = 2, 3, . . . , such that

|s(k)(x,α)| ≤ Ck |sk(x,α)|. (5.25)

Proof Refer to the appendix at the end of the chapter.

Utilizing this, the following proposition as well as Proposition 17 hold in general,
without assuming regularity.

Proposition 18 The generalization loss Gn and the empirical loss Tn can be
expanded as follows:

Gn = EX [E(X)] − 1

2
EX [V(X)] + oP(

1

n
) (5.26)

and

Tn = 1

n

n∑

i=1

E(xi ) − 1

2n

n∑

i=1

V(xi ) + oP(
1

n
). (5.27)

Proof By taking the expectation value of x as a random variable X in (5.21), we
obtain

Gn = −E[s(X, 1)] + EX [log p(X |θ∗)]

= EX [E(X)] − 1

2
EX [V(X)] − EX [

∞∑

k=3

1

k! s
(k)(x, 0)]

From this, it suffices to show that the mean and the sample mean of 1
k! s

(k)(x, 0) in
∞∑

k=3

1

k! s
(k)(x, 0) are OP(n−k/2) which will be proved in Proposition34.
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Proposition 19 When the true distribution is regular with respect to the statistical
model, the generalization loss Gn and the empirical loss Tn can be expanded as
follows:

Gn = EX [− log p(X |θ)] + d

2n
+ 1

2
��

n J�n − 1

2n
tr(I J−1) + oP(

1

n
) (5.28)

and

Tn = 1

n

n∑

i=1

− log p(xi |θ∗) + d

2n
− 1

2
��

n J�n − 1

2n
tr(I J−1) + oP(

1

n
). (5.29)

Proof Since (5.16) is accurate to oP(1/
√
n), we use a method that does not use

(5.16) to determine EX [E(X)] and 1
n

∑n
i=1 E(xi ) to oP(1/n). First, by the Taylor

expansion around θ∗ and the fact that θ − θ∗ = oP(1), we have

− log p(x |θ) = − log p(x |θ) + (θ − θ∗)�∇− log p(x |θ∗)

+1

2
(θ − θ∗)�∇2− log p(x |θ∗)(θ − θ∗) + o(1) , x ∈ X

and

EX [− log p(X |θ)] = EX [− log p(X |θ∗)] + 1

2
(θ − θ∗)� J (θ∗)(θ − θ∗) + o(‖θ − θ∗‖2),

where o(‖θ − theta∗‖2) is a function g(θ) such that g(θ)/‖θ − theta∗‖2 converges
to zero as θ → θ∗. Then, from (5.15),

EX [E(X)] = EX [− log p(X |θ)] + d

2n
+ 1

2
��

n J�n + o(
1

n
)

is established. Similarly, from (5.10) and (5.14),

1

n

n∑

i=1

E(xi ) = 1

n

n∑

i=1

− log p(xi |θ∗) + d

2n
− 1

2
��

n J�n + oP(
1

n
)

holds. Furthermore, from (5.17) and the definition of the matrix I := I (θ∗), we have

EX [V(X)] = 1

n
tr(I J−1) + oP(

1

n
).

Also, applying the law of large numbers (Proposition 6) to

V(xi ) = 1

n
tr[∇(− log p(xi |θ∗))∇(− log p(xi |θ∗))� J−1],
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we obtain

1

n

n∑

i=1

∂ log p(xi |θ j )

∂θ j
· ∂ log p(xi |θk)

∂θk

p→ I (θ) j, k

for j, k = 1, . . . , d, and from (4.8), we have

1

n

n∑

i=1

V(xi ) = 1

n

n∑

i=1

1

n
tr(I + oP(1))J−1 + oP(

1

n
)
1

n
tr(I J−1) + oP(

1

n
).

This completes the proof. �

Appendix: Proof of Proposition

Proof of Proposition 133

From the inequality of arithmetic and geometric means, we have

√
nηn(θ) ≤ 1

2

(
nεn + supθ∈� ηn(θ)

2

εn

)
.

Moreover, from the definition of ηn , for θ ∈ B(εn, θ∗)C , we obtain

1

n

n∑

i=1

log
p(xi |θ∗)
p(xi |θ) = EX

[
log

p(X |θ∗)
p(X |θ)

]
− ηn(θ)√

n
≥ εn − ηn(θ)√

n
.

Therefore,

U (0)
n ≤

∫

B(εn ,θ∗)C
exp(−nεn + √

nηn(θ))ϕ(θ)dθ

≤ exp(−nεn + √
n sup

θ∈�

ηn(θ))

∫

B(εn ,θ∗)C
ϕ(θ)dθ ≤ exp

(
−nεn

2
+ supθ∈� η2n(θ)

2εn

)

holds. Also, since � is compact (Assumption 3), according to Proposition 12,
supθ∈� η2

n(θ) converges in law to a certain random variable. And, since εn = n−1/4,
the exponent part becomes

−nεn

2
+ supθ∈� η2

n(θ)

2εn
= −1

2
n3/4 + 1

2
n1/4 · OP(1) = −1

2
n3/4 + oP(n3/4),

3 The proof of Lemma 1 in [10] was referred to.
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where we used supθ∈� ηn(θ) = OP(1), i.e., supθ∈� η2
n(θ) = OP(1). Therefore, (5.6)

holds.
Furthermore, since � is compact, M := supθ∈� EX [log p(X |θ∗)

p(X |θ) ] is bounded, and
‖ηn‖ := supθ∈� |ηn(θ)| converges in law to a certain random variable. Therefore, we
can write

|
n∑

i=1

log
p(xi |θ∗)
p(xi |θ) | = |nEX [log p(X |θ∗)

p(X |θ) ] − √
nηn(θ)| ≤ n(M + ‖ηn‖/√n).

Moreover, applying (4.9), we have

U (2)
n ≤ n{M + ‖ηn‖/√n}U (0)

n = OP (1) · exp(log n) · oP (exp(−√
n)) = oP (exp(−√

n)).

�

Proof of Proposition 16

1. Since θ ∼ N (θ∗ + �n, (nJ )−1) and �n = OP(1/
√
n), we have E[θ − θ∗] =

�n + oP(1/
√
n). Since

√
nE[θ − θ∗] − �n converges in probability to 0, E[θ] −

θ∗ − �n = oP(1/
√
n) holds.

2. From (4.10), we have oP(1/
√
n)oP(1/

√
n) = oP(1/n). Moreover, using 1., we

can get

E[(θ − θ∗ − �n)
� J (θ − θ∗ − �n)]

= E[tr{J (θ − θ∗ − �n)(θ − θ∗ − �n)
�}]

= tr{JE[(θ − E[θ] + oP(1/
√
n))(θ − E[θ] + oP(1/

√
n))�]}

= tr{JE[(θ − E[θ])(θ − E[θ])�] + tr(J · oP(
1

n
)I )}

= tr{J (nJ )−1} + oP(
1

n
) = d

n
+ oP(

1

n
), (5.30)

where we used the fact that for matrices A ∈ R
m×n, B ∈ R

n×m , the traces of their
products AB and BA are equal (Exercise 53). Also, since oP(1/

√
n) does not

contain terms related to θ, we have

E[oP(1/
√
n)θ − E[θ]] = oP(1/

√
n)E[θ − E[θ]] = 0.

Note that while E[s(θ)] denotes the posterior mean of s : � → R. However, in
the case of s : � → R

d×d , it will mean the posterior mean for each component.
3. This can be derived by expanding (5.30).
4. From the mean value theorem, there exists some θ1 ∈ � between θ and θ∗ such

that
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log p(x |θ) = log p(x |θ∗) + (θ − θ∗)�∇ log p(x |θ1)

and from (4.11), as n → ∞, the posterior mean of (θ − θ∗)�∇ log p(x |θ1)
approaches E[θ − θ∗]�∇ log p(x |θ∗). Therefore, the posteriormean of the second
term on the right-hand side also approaches the same value. Hence,

E[log p(x |θ)] = E[{log p(x |θ∗) + (θ − θ∗)�∇ log p(x |θ∗)(1 + oP(1))}]
= log p(x |θ∗) + E[θ − θ∗]�∇ log p(x |θ∗)(1 + oP(1))

= log p(x |θ∗) + {�n + oP(
1√
n
)}�∇ log p(x |θ∗)(1 + oP(1))

= log p(x |θ∗) + ��
n ∇ log p(x |θ∗) + oP(

1√
n
).

Thus, (5.16) can be derived. Note that we have applied oP(1/
√
n)oP(1) =

oP(1/
√
n) which can be derived from (4.10).

5. First, from

log p(x |θ) = log p(x |θ∗) + (θ − θ∗)�(∇ log p(x |θ∗) + o(1)),

we obtain

V[log p(x |θ) − log p(x |θ∗)] = V[(θ − θ∗)�(∇ log p(x |θ∗) + oP(1))]
= E[{(θ − θ∗)�∇ log p(x |θ∗) + oP(1)}2] − E[log p(x |θ) − log p(x |θ∗)]2.

(5.31)

where V[·] represents the operation of posterior variance with respect to θ. More-
over, taking the posterior mean of

{(θ − θ∗)�(∇ log p(x |θ∗) + oP(1))}2
= tr(θ − θ∗)(θ − θ∗)�∇ log p(x |θ)∇ log p(x |θ∗)�(1 + oP(1))

from (5.15), we obtain

E[{(θ − θ∗)�(∇ log p(x |θ∗) + oP(1))}2]
= tr(

J−1

n
+ �n�

�
n )∇ log p(x |θ∗)∇ log p(x |θ∗)� + oP(

1

n
). (5.32)

Furthermore, similar to the derivation of (5.16), we have

E[log p(x |θ) − log p(x |θ∗)] = ��
n ∇ log p(x |θ∗) + oP(

1√
n
). (5.33)

Finally, from (5.31), subtracting the square of (5.33) from (5.32), we obtain (5.17).

�
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Proof of Proposition 17

Generally, each term of s(k)(x,α) is the product
∏

h sh(x,α) in (5.24), such that
s ′(x,α) = s1(x,α), s ′′(x,α) = s2(x,α) − s1(x,α)2, etc., where the sum of the
degrees of each term equals k. Indeed, if this holds for some k ≥ 1, then

s′h(x, α)

=
∫
�

{log p(x |θ)
p(x |θ∗)

}h+1 p(x |θ)α p(θ|x1, . . . , xn)dθ
∫
�
p(x |θ)α p(θ|x1, . . . , xn)dθ

−{∫
�

{log p(x |θ)
p(x |θ∗)

}h p(x |θ)α p(θ|x1, . . . , xn)dθ}{∫
�

{log p(x |θ)
p(x |θ∗)

}p(x |θ)α p(θ|x1, . . . , xn)dθ}
{∫

�
p(x |θ)α p(θ|x1, . . . , xn)dθ}2

= sh+1(x, α) − sh(x, α)s1(x, α).

That is, each term of s(k+1)(x,α) also has a sum of degrees equal to k + 1, and it
takes the form

s(3)(x,α) = s3(x,α) − 3s2(x,α)s1(x,α) + 2s1(x,α)3. (5.34)

Therefore, each term of s(k)(x,α) is a product of sh(x,α).
By Hölder’s inequality,

|si (x,α)|1/ i ≤ |si+ j (x,α)|1/(i+ j)

we have4 |si+ j (x,α)| ≥ |si (x,α)s j (x,α)|, i, j = 1, 2, . . . . Therefore, |sk(x,α)| is
the maximum in the product

∏
h sh(x,α) excluding the coefficients of each term

of s(k)(x,α), and (5.25) holds. Here, Ck is the sum of the absolute values of the
coefficients of each term of s(k)(x,α), and it holds that C2 = 2,C3 = 6, . . . . For
example, the coefficients of s(3)(x,α) in (5.34) are 1,−3, 2, so C3 = |1| + | − 3| +
|2| = 6. �

Exercises 42–53

42. Let the random variable X = 1, 0 occur with probabilities θ∗, 1 − θ∗. Suppose
0 < θ∗ < 1 is unknown andwe apply a statistical model with 0 < θ < 1, demon-
strate the following:

I = J = J (θ∗) = 1

θ∗(1 − θ∗)
.

43. Show the following inequalities to prove (5.4).

4 This can be seen as a generalization of the fact that the square mean of a random variable is never
less than the square of its mean (since the variance is nonnegative).
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(a) |φ1(θ)| ≤ |φ2(θ)| + |φ1(θ) − φ2(θ)|
(b) supθ∈� |φ1(θ)| ≤ supθ∈� |φ2(θ)| + supθ∈� |φ1(θ) − φ2(θ)|.

44. Confirm the following three inequalities used in the proof of Proposition 13.

U (0)
n ≤

∫

B(εn ,θ∗)C
exp(−nεn + √

nηn(θ))ϕ(θ)dθ

≤ exp(−nεn + √
n sup

θ∈�

ηn(θ))

∫

B(εn ,θ∗)C
ϕ(θ)dθ ≤ exp

(
−nεn

2
+ supθ∈� η2n(θ)

2εn

)
.

45. Confirm the following equalities used to derive (5.8). That is, for θ ∈ B(εn, θ∗),
θ∗ ∈ �∗, we have

EX [− log p(X |θ)] = EX [− log p(X |θ∗)] + 1

2
(θ − θ∗)� J (θ1)(θ − θ∗)

ηn(θ) = (θ − θ∗)�∇ηn(θ
2),

where θ1, θ2 ∈ B(εn, θ∗) exist and condition

‖J (θ1)1/2{θ − θ∗ − J (θ1)−1∇ηn(θ
2)√

n
}‖2

= (θ − θ∗)� J (θ1)(θ − θ∗) − 2√
n

(θ − θ∗)� J (θ1)J (θ1)−1∇η(θ2) + ‖J (θ1)−1/2 ∇ηn(θ
2)√

n
‖2

is satisfied.
46. In the process of obtaining Proposition 14, where are the three conditions of

regularity applied?

(a) There exists (uniquely) θ∗ ∈ � such that �∗ = {θ∗}
(b) The matrix

[
∂2D(q|p(·|θ))

∂θi∂θ j
|θ=θ∗

]
∈ R

d×d is positive definite

(c) There exists an open set �̃ such that θ∗ ∈ �̃ ⊆ �

47. In Fig. 5.1, when comparing (a) n = 100 and (b) n = 10000, why is the variance
in the latter 1/100 (standard deviation 1/10)? Also, why are the posterior distri-
butions of parameters μ1,μ2 in (c)(d) deviating from the normal distribution?

48. In Example 4, show that the generalization loss and empirical loss are respec-
tively given by

Gn = 1

2
log(2π

n + 2

n + 1
) + n + 1

2(n + 2)
{1 + (μ − 1

n + 1

n∑

i=1

xi )
2}

and

Tn = 1

2
log(2π

n + 2

n + 1
) + n + 1

2(n + 2)

1

n

n∑

i=1

{xi − 1

n + 1

n∑

j=1

x j }2.
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Also, write the code that generates Gn and Tn , generate 100 standard normal
random numbers with μ = 0, and calculate these values.

49. Why can the generalization loss be obtained from the y_pred in the generated
quantities block via the function below?Explain the role of each step after dens.

1 G_n <- function(y_pred, f_true) {
2 dens <- density(y_pred)
3 f_pred <- approxfun(dens$x, dens$y, yleft=1e−15, yright=1e−15)

4 f_ge <- function(x) f_true(x)*(−log(f_pred(x)))
5 ge <- integrate(f_ge, lower=−6, upper=6)$value
6 return(ge)
7 }

50. Prove Eq. (5.21) from (5.20), (5.22) and (5.23).
51. Show that each term of s(k)(x,α), which is the kth derivative of (5.19) with

respect to α, can be written as a product of sh(x,α), h ≤ k, defined in (5.24).
52. Explain how to apply (4.8) in the last step of the proof of Proposition 19.
53. For matrices A ∈ R

m×n and B ∈ R
n×m , prove that the traces of their products

AB and BA are equal.



Chapter 6
Information Criteria

In this chapter, we discuss information criteria such as AIC and BIC. In Watanabe’s
Bayesian theory, new information criteria, such as WAIC and WBIC, are proposed.
Existing information criteria assume that the true distribution is regular with respect
to the statistical model, and they cannot be applied to general situations. In this
chapter, we point out that this is due to their definition using maximum likelihood
estimates. Indeed, although WAIC is defined using empirical loss, it does not use
maximum likelihood estimates. Furthermore, we clarify that AIC, TIC, and WAIC
show almost the same performance when assuming regularity. In addition, we intro-
duce WBIC, which corresponds to a generalization of BIC, and clarify that it shows
similar performance when assuming regularity. Note that there is the following rela-
tionship among the propositions presented in this chapter.

Relationship between the propositions of Chapter 6 and regularity� �

Regular → P.10 → P.21 → P.24 ← P.19 ← Regular

↓ ↘ ↓ ↙
P.14 P.20 → P.22 → P.23 ← P.9
↓ ↖

P.26 ← P.13

� �

(Red text is applicable only in Chaps. 5 and 6, blue text is applicable in Chaps. 8 and
9 as well).

6.1 Model Selection Based on Information Criteria

Suppose there are statistical models �,�′, and data x1, . . . , xn ∈ X have been
observed. We want to identify which model the observations came from. Here, we
define the smallest d for which � ⊆ R

d as the dimension of the parameter space,
denoted as d(�). When the dimensions of the parameter spaces d(�) and d(�′)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
https://doi.org/10.1007/978-981-99-3838-4_6
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are different, it is difficult to determine which of � or �′ is more appropriate based
solely on the likelihood. In particular, if there is an inclusion relationship such as
� ⊆ �′, the goodness of fit of �′ will be better, and its likelihood will be larger than
that of �. In fact, the following holds:

� ⊆ �′ =⇒ sup
θ∈�

n∏

i=1

p(xi |θ) ≤ sup
θ∈�′

n∏

i=1

p(xi |θ).

However, �′ is more complex as a model. In other words, the following holds:

� ⊆ �′ =⇒ d(�) ≤ d(�′).

We should evaluate both the goodness of fit of the data x1, . . . , xn ∈ X to � and �′,
and the complexity of � and �′. In this chapter, we call the sum of the quantities
representing the goodness of fit of the data to the statistical model and the complexity
of the statistical model the information criterion, and we examine the problem of
selecting the statistical model that minimizes this value.

In the following, we call the θ that maximizes the likelihood
∏n

i=1 p(xi |θ), or
minimizes the negative log-likelihood

l := −1

n

n∑

i=1

log p(xi |θ)

the maximum likelihood estimation.1

In this chapter, among the information criteria we discuss, AIC (Akaike Informa-
tion Criterion), BIC (Bayesian Information Criterion), and TIC (Takeuchi Informa-
tion Criterion) use the quantity

1

n

n∑

i=1

{− log p(xi |θ̂)}

to represent the goodness of fit to the statistical model. As for the complexity of
the statistical model, AIC applies d(�), BIC applies d(�)

2 log n, and TIC applies
tr(In J−1

n ). Here, we define

Jn=
(

−1

n

n∑

k=1

∂2 log p(xk |θ)
∂θi∂θ j

)

i, j

∣∣∣∣∣∣
θ=θ̂

and In = 1

n

n∑

k=1

∇ log p(xk |θ̂){∇ log p(xk |θ̂)}�.

In other words, we define d := d(�) and use the quantities

1 If the maximum likelihood does not exist, neither do the maximum likelihood estimation nor the
values of the information criterion that can be represented using it.
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AIC := 1

n

n∑

i=1

{− log p(xi |θ̂)} + d

n
, (6.1)

BIC := 1

n

n∑

i=1

{− log p(xi |θ̂)} + d

2n
log n, (6.2)

and

T IC := 1

n

n∑

i=1

{− log p(xi |θ̂)} + 1

n
tr(In J

−1
n ) (6.3)

to compare the statistical models � and �′ in each of the information criteria, where
θ̂ is the maximum likelihood estimator of θ based on x1, . . . , xn ∈ X .

In this book, in addition to that, we also consider information criteria such as the
free energy,WAIC (Watanabe Akaike Information Criterion), andWBIC (Watanabe
Bayesian Information Criterion).2 In particular, we aim to clarify the principles on
which these criteria are based. In this section, as preparation for that, we will look
at examples of model selection using AIC and BIC.

Example 50 (Multiple Regression) Suppose we are given observed data (x1, y1),
. . . , (xn, yn) ∈ R

p × R.3 We aim to find β0 ∈ R and β ∈ R
p that minimize

n∑

i=1

(yi − β0 −
p∑

j=1

xi, jβ j )
2.

In practice, we perform centering by subtracting 1
n

∑n
k=1 xk, j from each xi, j and

1
n

∑n
k=1 yk from each yi , and set the intercept β0 to 0. Using the obtained β̂ =

[β̂1, . . . , β̂p]� and the newly calculated β̂0 := yi − ∑p
j=1 xi, j β̂ j , we predict the

dependent variable y for a new set of covariates observation x = [x (1), . . ., x (p)]�
as y = β̂0 + ∑p

j=1 x
( j)β̂ j .

During this process, we consider the likelihood of the underlying statisticalmodel.
Instead of using all p covariates, we aim to minimize the values of AIC and BIC by
selecting a subset of d variables (0 ≤ d ≤ p). It is important to note that although
the likelihood is maximized when d = p, minimizing the values of AIC and BIC
does not necessarily correspond to this maximum likelihood. This is because AIC
and BIC take into account the model’s complexity in addition to the goodness of fit
to the data, such as likelihood. Here, when minimizing

l = 1

n

n∑

i=1

− log p(xi , yi |β,σ2) = 1

2
log 2πσ2 + 1

n

n∑

i=1

(yi − ∑p
k=1 xi,kβk)

2

2σ2

2 Professor Sumio Watanabe himself refers to them as Widely Applicable Information Criterion
and Widely Applicable Bayesian Information Criterion, respectively [13].
3 For multiple regression, refer to “Statistical Learning with Math and R” by Suzuki Joe (Springer,
2020) [14].
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obtained from

p(xi , yi |β,σ2) = 1√
2πσ2

exp{− (yi − ∑p
k=1 xi,kβk)

2

2σ2
},

differentiating as

∂l

∂β j
= −1

n

n∑

i=1

xi, j (yi − ∑p
k=1 xi,kβk)

σ2

and

∂l

∂σ2
= 1

2σ2
− 1

n

n∑

i=1

(yi − ∑p
k=1 xi,kβk)

2

2(σ2)2
,

we find that the maximum likelihood estimators are β̂1, . . . , β̂p and

σ̂2 = 1

n

n∑

i=1

(yi −
p∑

k=1

xi,k β̂k)
2 ,

which minimize
∑n

i=1(yi − ∑p
k=1 xi,kβk)

2.
In that case, the value of l is given by

1

2
log 2πσ̂2 + 1

2
. (6.4)

And then, considering the value of AIC, by adding p
n to this and replacing p with

1 ≤ d ≤ p, it becomes the minimization of

1

2
log σ̂2 + d

n
+ 1

2
log 2π + 1

2
. (6.5)

Since 1
2 log 2π and 1

2 are constants, multiplying by 2n results in minimization4 of

n log σ̂2 + 2d (6.6)

Similarly, BIC can be reduced to the minimization of

n log σ̂2 + d log n.

4 In cases where equivalent minimization can be obtained by adding constants or multiplying by
constants from the original AIC value, the converted value is often called AIC as well. The same
applies to BIC.
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The code for calculating and plotting AIC and BIC is shown below. There are 2p

subsets of {1, . . . , p}, and for each, the maximum likelihood estimates (β̂, σ̂2) are
determined. The function that finds the minimum sum of squares for each d is
RSS.min, and the function that calculates the information criterion such as AIC
and BIC is IC. �

1 RSS.min <- function(X, y, T) {
2 m <- ncol(T)
3 S.min <- Inf
4 for (j in 1:m) {
5 q <- T[, j]
6 S <- sum((lm(y ˜ X[, q])$fitted.values − y) ^ 2)

7 if (S < S.min) {
8 S.min <- S
9 set.q <- q

10 }
11 }
12 return(list(value = S.min, set = set.q))
13 }

1 IC <- function(k) {
2 T <- combn(1:p, k) # The rows of matrix T are each one of the size k

subsets of {1,...,p}.
3 res <- RSS.min(X, y, T)
4 AIC <- n * log(res$value / n) + 2 * k
5 BIC <- n * log(res$value / n) + k * log(n)
6 return(list(AIC = AIC, BIC = BIC))
7 }

Out of the 13 explanatory variables in the CRAN package Boston (average housing
price dataset), discrete ones are excluded from the beginning, and p = 11 is set.

1 library(MASS)
2 df <- Boston
3 X <- as.matrix(df[, c(1, 3, 5, 6, 7, 8, 10, 11, 12, 13)])

4 y <- df[[14]]
5 n <- nrow(X)
6 p <- ncol(X)
7 AIC.seq <- NULL
8 BIC.seq <- NULL
9 for (k in 1:p) {

10 AIC.seq <- c(AIC.seq, IC(k)$AIC)
11 BIC.seq <- c(BIC.seq, IC(k)$BIC)
12 }
13 plot(1:p, ylim = c(min(AIC.seq), max(BIC.seq)), type = "n", xlab = "# of
14 variables", ylab = "IC values")
15 lines(AIC.seq, col = "red")
16 lines(BIC.seq, col = "blue")
17 legend("topright", legend = c("AIC", "BIC"), col = c("red", "blue"), lwd
18 = 1, cex = .8)

19 which(AIC.seq==min(AIC.seq))
20 which(BIC.seq==min(BIC.seq))

The results are shown in Fig. 6.1.



126 6 Information Criteria

Fig. 6.1 AIC and BIC
values (vertical axis) for the
Boston dataset (Table 3.1).
The horizontal axis is the
number of selected variables.
Both AIC and BIC draw
downward convex curves. In
particular, the point where
AIC is minimized is further
to the right

2 4 6 8 10

16
50

17
00

17
50

18
00

18
50 AIC

BIC

Changes in AIC and BIC values

6.2 AIC and TIC

To understand AIC and TIC, it is necessary to clarify the behavior of the average log-
likelihood. First, we shall look at how the estimates obtained bymaximum likelihood
approach θ∗.

Proposition 20 Assume that the true distribution has a regular relationship with the
statistical model. When� is compact, the maximum likelihood estimate θ̂n converges
in probability to the true parameter θ∗ as n → ∞, and

θ̂n = θ∗ + �n + oP(
1√
n
).

Proof See the appendix at the end of the chapter.

Proposition 20 was derived to guarantee the performance of AIC and TIC in the
regular case (Propositions 22 and 23). Therefore, it does not apply to the performance
guarantee of WAIC or the subsequent chapters.

In the following, we will only consider the maximum likelihood estimate θ̂, and
in order to emphasize that it varies with the samples x1, . . . , xn ∈ X , we will write
it as θ̂n or θ̂(x1, . . . , xn). Furthermore, for �n and Jn , when we explicitly specify
the samples, we will write them as �(x1, . . . , xn) and J (x1, . . . , xn), respectively.
In this chapter, we will apply the following proposition several times.

Proposition 21 Assume that the true distribution has a regular relationship with
the statistical model. In this case, when x1, . . . , xn ∈ X are considered as random
variables X1, . . . , Xn following the distribution q, and their averages are taken,
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nEX1,...,Xn [�(X1 . . . Xn)
� J�(X1 . . . Xn)] = tr(I J−1) + o(1) (6.7)

holds.

Proof From the definition of �n (5.2),

n��
n J�n = ∇ηn(θ∗)� J−1∇ηn(θ∗) = tr[∇ηn(θ∗)∇ηn(θ∗)� J−1]

holds (Exercise53). Furthermore, Proposition 10 implies that EX1−Xn [∇ηn(θ∗)
∇ηn(θ∗)�] → I . Therefore, (5.7) holds.

�

Example 51 Consider binary logistic regression. For the covariate x ∈ R
p, the prob-

ability of occurrence of y ∈ {1,−1} is expressed using the intercept β0 ∈ R and the
slope β ∈ R

p as

P(y|x) = 1

1 + exp−y(β0 + xβ)
.

Wewant to findβ0 ∈ R andβ ∈ R
p thatmaximize the likelihood

∏n
i=1 P(yi |xi ) from

the training data (x1, y1), . . . , (xn, yn) ∈ R
p × {1,−1}. In this case, if � ⊆ R

p+1

containing θ :=
[

β0

β

]
is not compact, there is a possibility that the θ that maximizes

the likelihood does not exist. For example, if for all i = 1, . . . , n, yi (β0 + xiβ) > 0,
then by doubling β0 and β, the value of yi (β0 + xiβ) is doubled. That is, for all i ,
P(yi |xi ) increases, and the likelihood can be approached to 1 as much as desired.
This occurs when the sample size n is small, and in the case where the maximum
likelihood estimate does not exist, the consistency argument does not apply. In the
case where the optimal (β0,β) is infinite, it is not regular (there exists an open set
�̃ ⊆ � containing θ∗). Conversely, if � is restricted to a compact set, a θ̂n that
maximizes the likelihood can be found even in such cases. �

Example 52 Example 45 corresponds to the regular case. Therefore, for �n =
k/n − θ∗, the maximum likelihood estimator k/n = θ∗ + �n converges in proba-
bility to θ∗. �

AICandTIC can be calculated from the samples x1, . . . , xn ∈ X , and are designed
to be unbiased estimators of a certain quantity when taking the average of test data
and training data (respectively, EX [·], EX1...Xn [·]). In particular, the expectation over
the training data is an operation of the average related to the maximum likelihood
estimation (it can also be written as Eθ̂(X1...Xn)

[·] instead of EX1...Xn [·]). Proposi-
tion 20, which describes the behavior of maximum likelihood estimation under the
assumption of regularity, plays an essential role in deriving the following proposition.
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Proposition 22 When the true distribution is regular with respect to the statistical
model,

EX [− log p(X |θ̂(x1, . . . , xn))]
= EX [− log p(X |θ∗)] + 1

2
�(x1, . . . , xn)

� J�(x1, . . . , xn) + oP(
1

n
) (6.8)

and

1

n

n∑

i=1

{− log p(xi |θ̂(x1, . . . , xn))}

= 1

n

n∑

i=1

{− log p(xi |θ∗)} − 1

2
�(x1, . . . , xn)

� J�(x1, . . . , xn) + oP(
1

n
) (6.9)

hold. Furthermore, when X, X1, . . . , Xn are independent random variables follow-
ing the distribution q,5 the following hold, respectively:

U := EX1...XnEX [− log p(X |θ̂(X1, . . . , Xn))]
= EX [− log p(X |θ∗)] + 1

2n
tr(I J−1) + o(

1

n
) (6.10)

and

EX1...Xn [
1

n

n∑

i=1

{− log p(Xi |θ̂(X1, . . . , Xn))}]

= EX [− log p(X |θ∗)] − 1

2n
tr(I J−1) + o(

1

n
). (6.11)

Proof Using (6.7), (6.8) (6.9) imply (6.10) (6.11) respectively. Therefore, it is suffi-
cient to show (6.8) (6.9). From (4.18), Proposition 20, and the Mean Value Theorem,
exists θ1 on the line segment between θ̂n and θ such that

5 In (6.8) (6.9), X1, . . . , Xn are treated as random variables, so the error oP ( 1n ) is allowed. However,
in (6.10) (6.11), since the average is taken with respect to X1, . . . , Xn , there is no such random
fluctuation, and the error becomes o( 1n ).
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EX [− log p(X |θ̂n)]
= EX [− log p(X |θ∗)] + (θ̂n − θ∗)�∇EX [− log p(X |θ∗)]

+1

2
(θ̂n − θ∗)�∇2

EX [− log p(X |θ1)](θ̂n − θ∗)

= EX [− log p(X |θ∗)] + 1

2
��

n J�n + oP(
1

n
),

where the last equality is due to

θ̂n
P−→ θ∗ =⇒ θ1

P−→ θ∗

and (4.10) (4.11). Furthermore, from Proposition 20 and the Mean Value Theorem,
and from (5.13), there exists θ2 on the line segment between θ̂n and θ∗ such that

1

n

n∑

i=1

{− log p(xi |θ∗)} = 1

n

n∑

i=1

{− log p(xi |θ̂n)} + (θ∗ − θ̂n)�∇[ 1
n

n∑

i=1

{− log p(xi |θ̂n)}]

+ 1

2
(θ∗ − θ̂n)�∇2

⎡

⎣ 1

n

n∑

i=1

{− log p(xi |θ2)}
⎤

⎦ (θ∗ − θ̂n)

= 1

n

n∑

i=1

{− log p(xi |θ̂n)} + 1

2
��
n J�n + oP (

1

n
)

which holds true, where the last equality is obtained by applying (4.9) and the Con-
tinuous Mapping Theorem (4.11):

θ̂n
P−→ θ∗ =⇒ θ2

P−→ θ∗ =⇒ ∇2 1

n

n∑

i=1

{− log p(xi |θ2)} P−→ ∇2 1

n

n∑

i=1

{− log p(xi |θ∗)

while the Weak Law of Large Numbers (Proposition 6) is also used.

�
Calculate the maximum likelihood estimator θ̂(x1, . . . , xn) for x1, . . . ,

xn ∈ X , and evaluate it with the log-likelihood for x ′
1, . . . , x

′
n ∈ X , taking the aver-

age:

EX1...XnEX ′
1...X

′
n
[1
n

n∑

i=1

− log p(X ′
i |θ̂(X1, . . . , Xn))].
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which is (6.10). Calculate the maximum likelihood estimator θ̂(x1, . . . , xn) for
x1, . . . , xn ∈ X , and evaluate it with the log-likelihood for the same x1, . . . , xn ,
taking the average, which is (6.11). To give an analogy in stock price prediction,
evaluating the predictive performance using the stock prices up to yesterday learned
from the stock prices up to yesterday (6.11) is different from evaluating the learning
results using the stock prices for tomorrow (6.10), and the former is better evaluated.
Indeed, (6.9) is smaller than (6.8) by �(x1, . . . , xn)� J�(x1, . . . , xn), and (6.11) is
smaller than (6.10) by 1

n tr(I J
−1).

In AIC and TIC, the aim is to minimize the value of U in (6.10) by adding
1
n tr(I J

−1) to 1
n

∑n
i=1 − log p(xi |θ̂n) in order to compensate for this difference. In

other words, the justification for AIC and TIC is that their average coincides with
(6.10).

Proposition 23 Assume that the true distribution is regular with respect to the sta-
tistical model.

EX1...Xn [T IC] = U + o(
1

n
). (6.12)

Furthermore, if realizable,

EX1...Xn [AIC] = U + o(
1

n
) (6.13)

holds true.

Proof From (6.10) (6.11), we have

EX1...XnEX [− log p(X |θ̂n(X1, . . . , Xn))]

= EX1...Xn [
1

n

n∑

i=1

{− log p(Xi |θ̂n(X1, . . . , Xn))}] + 1

n
tr(I J−1) + o(

1

n
).

(6.14)

On the other hand, the second term of TIC is

In J
−1
n = I J−1 + oP(1)

and we have

EX1...Xn [In J−1
n ] = I J−1 + o(1)

which means (6.12). From Proposition 9, when realizable, I = J , so (6.13) is a
special case. �

Example 53 Assuming that the true distribution q is realizable with respect to the
statistical model p(·|θ)θ ∈ � and can be written as
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p(x |θ) = 1√
2πσ2

exp

{
− (x − θ)2

2σ2

}
, θ ∈ �

then we have

n∑

i=1

(xi − θ)2 =
n∑

i=1

(xi − θ∗)2 − 2(θ − θ∗)
n∑

i=1

(xi − θ∗) + n(θ − θ∗)2

and

−
n∑

i=1

log p(xi |θ) = n

2
log(2πσ2) + 1

2σ2

n∑

i=1

(xi − θ)2

= n

2
log(2πσ2) + 1

2σ2

n∑

i=1

(xi − θ∗)2 − 1

σ2
(θ − θ∗)

n∑

i=1

(xi − θ∗) + n

2σ2
(θ − θ∗)2

Assuming that x1, . . . , xn are realizations of independent random variables X gen-
erated by q, taking the average yields

nEX [− log p(X |θ)] = n

2
log(2πσ2) + n

2
+ n

2σ2
(θ − θ∗)2.

Substituting the maximum likelihood estimator θ̂(x1, . . . , xn) = 1
n

∑n
i=1 xi for θ,

we get

EX [− log p(X |θ̂(x1, . . . , xn))] = 1

2
log(2πσ2) + 1

2
+ 1

2σ2
(θ̂(x1, . . . , xn) − θ∗)2.

Assuming that x1, . . . , xn are realizations of independent random variables
X1, . . . , Xn generated by q, taking the average yields

U = EX1...XnEX [− log p(X |θ̂(X1, . . . , Xn))] = 1

2
log(2πσ2e) + 1

2n
. (6.15)

This value corresponds to theAICwhen d = 1. However, the value ofσ2 is unknown,
and by calculating

σ̂2(x1, . . . , xn) := 1

n

n∑

i=1

(xi − θ̂n)
2

and

V := logσ2 − EX1...Xn [log σ̂2(X1, . . . , Xn)],

we obtain
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AIC := 1

2
log(2πe) + 1

2
log σ̂2(x1, . . . , xn) + V

2
+ 1

2n
. (6.16)

where V = 2/n + o(1/n).

In fact,
nσ̂2(X1, . . . , Xn)

σ2
follows the χ2 distribution with n − 1 degrees of free-

dom,6 with mean and variance being n − 1 and 2(n − 1), respectively (Exercise
6.4). Therefore, using the Taylor expansion of log x , log x = log 1 + (x − 1) 11−
1
2 (x − 1)2 11 + . . . , we can take the mean of

log
nσ̂2

(n − 1)σ2
= 0 +

(
nσ̂2

(n − 1)σ2
− 1

)
− 1

2
· 1

(n − 1)2

{
nσ̂2

σ2
− (n − 1)

}2

+ . . .

and obtain

EX1−Xn [log
nσ̂2

σ2 ] = log(n − 1) − 0 − 1

2

1

(n − 1)2
· 2(n − 1) + · · · = log(n − 1) − 1

n − 1
+ O(

1

n2
).

This means that

nV = nEX1...Xn [log n − log
nσ̂2

n

σ2
]

=n log n − n{log(n − 1) − 1

n − 1
+ O(

1

n2
)} = 2 + o(1) (6.17)

using the equation

log(n − 1) = log n − 1

n
+ O(

1

n2
).

Thus, excluding o(1/n), we have

AIC = 1

2
log(2πe) + 1

2
log σ̂2(x1, . . . , xn) + 3

2n
(6.18)

�

Here, the χ2 distribution with m degrees of freedom is the distribution of the sum of
squares ofm independent standard normal random variables X1, . . . , Xm ∼ N (0, 1),
i.e.,

∑m
i=1 X

2
i . The shape of the distribution is shown in Fig. 6.2. The following R

code was used to generate the figure:

6 This is a well-known theorem in statistics, and proofs can be found in sources such as [16].
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Fig. 6.2 Probability density functions of χ2 distributions with degrees of freedom 1 ∼ 10

1 plot(0,xlim=c(0,30),ylim=c(0,0.7),xlab="$x$",ylab="Probability density
function",

2 type="n", main="$\chiˆ2$ distribution")
3 for(i in 1:10)curve(dchisq(x,i),col=i, add=TRUE)
4 legend("topright",legend=1:10,col=1:10,lwd=1)

Furthermore, from Example 2, the square mean of each of X1, . . . , Xm is 1, and the
fourth moment is 3, so the mean of each of X2

1, . . . , X
2
m is 1, and the variance is 2.

Therefore, the mean of X2
1 + · · · + X2

m is m, and the variance is 2m.
The analysis in Example 53 corresponds to the special case of multiple regression

with p variables, where the number of variables is p = 0 (only an intercept, with no
slope). In the general case of p �= 0, we have

U = 1

2
log(2πσ2e) + p + 1

2n

AIC = 1

2
log(2πσ̂2e) + 2p + 3

2n
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as shown.7 When using AIC for variable selection, the minimization becomes 0 ≤
d ≤ p

AIC(d) = 1

2
log(2πσ̂2e) + 2d + 3

2n

which is equivalent to minimizing (6.6). The purpose of calculating the exact value
of (6.18) is to compare it with the value of WAIC in the next section.

6.3 WAIC

Before defining WAIC, we would like to mention a fact that justifies its exis-
tence. Watanabe’s Bayesian theory claims that by replacing the empirical loss
1
n

∑n
i=1 − log p(xi |θ) with Tn and replacing U with the average of the generalized

loss Gn with respect to X1 . . . Xn , a similar relationship as AIC or TIC holds:

EX1...Xn [Gn] = EX1...Xn [Tn] + 1

n
tr(I J−1) + o(

1

n
). (6.19)

In fact, by setting λ := d

2
and ν := 1

2
tr(I J−1), Proposition 19 and Proposition

21 lead to the following proposition:

Proposition 24 When the true distribution is regular with respect to the statistical
model,

EX1...Xn [Gn] = EX [− log p(X |θ∗)] + λ

n
+ o(

1

n
)

and

EX1...Xn [Tn] = EX [− log p(X |θ∗)] + λ − 2ν

n
+ o(

1

n
)

hold.

Therefore, from (6.10) and (6.11), the following also hold:

EX1...Xn [Gn] = EX1...XnEX [− log p(X |θ̂(X1, . . . , Xn))] + λ − ν

n
+ o(

1

n
)

and

EX1...Xn [Tn] = EX1...Xn [
1

n

n∑

i=1

{− log p(Xi |θ̂(X1, . . . , Xn))}] + λ − ν

n
+ o(

1

n
).

7 This is proven in Chap. 5 of Statistical Learning with Math and R, Springer by Joe Suzuki.
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Next, WAIC is defined as

W AICn := Tn + 1

n

n∑

i=1

V(xi ). (6.20)

And, we have

EX1...Xn [
1

n

n∑

i=1

V(Xi )] = EX [V(X)]

= 1

n
tr

{
J−1

EX [∇ log p(X |θ∗)∇ log p(X |θ∗)�]} + o(
1

n
)

= 1

n
tr(J−1 I ) + o(

1

n
) (6.21)

in Proposition 38. The definition in (6.20) can be used similarly even when the true
distribution is not regular with respect to the statistical model.

Therefore,when the true distribution is regularwith respect to the statisticalmodel,
AIC, TIC, and WAIC coincide in terms of the first and second terms, excluding
O(1/n). Here, Proposition 23 and Proposition 24 guarantee the similar performance
of AIC, TIC, and WAIC, but there is an essential difference. The former values are
calculated based onmaximum likelihood estimation, so the proof of Proposition 20 is
necessary. The latter does not usemaximum likelihood estimation, so by generalizing
Proposition 19 alone, the performance in non-regular cases is also guaranteed. It is
no exaggeration to say that the secret of WAIC’s success lies in breaking away from
the constraints of maximum likelihood estimation. In fact, even if it is not regular,
WAIC can show the following generalized relationship of (6.19):

Proposition 25

EX1...Xn [Gn] = EX1...Xn [W AICn] + o(
1

n
).

Proposition 25 will be proved in Chap. 8.
The variance Vn := 1

n

∑n
i=1 V(xi ) can be described as follows:

1 V_n <- function(log_likelihood):
2 mean(colMeans(log_likelihood^2) − colMeans(log_likelihood)^2)

Using the previously defined T_n and the variance above, WAIC can be written
in R language as follows:

1 WAIC <- function(log_likelihood) T_n (log_likelihood) + V_n (log_
likelihood)

Wewant to verify that the values of AIC andWAIC coincide, excluding OP(1/n),
in the regular case. To guarantee regularity, the true distribution q is required, so we
will use artificial data.
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Fig. 6.3 The values of AIC andWAIC are almost identical. Also, the values of the term excluding
3
2n in AIC and Tn are almost identical

Gn Tn

1.
30

1.
35

1.
40

1.
45

1.
50

Box plot of Gn, Tn (n = 200)

Fig. 6.4 The variance of Tn is larger than that of Gn . The red horizontal line represents the value
of U

Example 54 Assuming the true distribution q follows N (0, 1) and the statistical
model is N (μ,σ2), AIC, U , WAIC, and Gn are calculated 50 times. The R code is
written as follows. The comparison of the overall values of AIC and WAIC, as well
as the comparison of the first terms, is shown in Fig. 6.4. In this case, (6.18) was used
for the AIC value. Overall, WAIC is slightly larger (Fig. 6.3 left), but the first term
was in complete agreement (Fig. 6.3 right). The arithmetic mean values of AIC and
WAIC for m = 50 times are obtained as follows, where the value of U , 1.421439,
was calculated from (6.15).

U Mean of AIC Mean of WAIC Mean of Gn

1.421439 1.422835 1.425567 1.424936

Furthermore, we found that the variance of Gn is very small. Theoretically, only the
coincidence of the averages of both is guaranteed in the regular case, but it is often
the case that AIC and WAIC are almost identical, as in this example. �
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Using model14.stan defined in Chap. 5, the following processing was per-
formed.

1 model14 <- stan_model("model14.stan")
2 f_true <- function(x) dnorm(x)
3 T_stan <- NULL; G_stan <- NULL; V_stan <- NULL; AIC=NULL
4 m <- 50

5 n <- 200

6 for(j in 1:m){
7 y <- rnorm(n,0,1)
8 value <- 1/2*log (2*pi*exp(1))+1/2*log(var(y)/n*(n−1))+3/n/2
9 AIC <- c(AIC,value)

10 data_list <- list(N=n, y=y)
11 fit <- sampling(model14, data=data_list, iter=6000, warmup=1000, chain
12 =1,seed=123)
13 ms <- rstan::extract(fit)
14 T_stan <- c(T_stan,T_n(ms$log_lik))
15 V_stan <- c(V_stan,V_n(ms$log_lik))
16 G_stan <- c(G_stan,G_n(ms$y_pred,f_true))
17 }
18 WAIC_stan <- T_stan+V_stan
19 U <- 0.5*log (2*pi*exp(1))+1/n/2
20 pre_AIC=AIC−3/n/2
21 ## Graph 1

22 plot(AIC,WAIC_stan,col="red",pch=2,xlim=c(1.25,1.60),
23 ylim=c(1.25,1.60),xlab="AIC",
24 ylab="WAIC", main="AIC and WAIC")
25 abline(a=0,b=1,col="blue")
26 ## Graph 2

27 plot(pre_AIC,T_stan,col="red",pch=3,xlim=c(1.25,1.60),
28 ylim=c(1.25,1.60),xlab="AIC",
29 ylab="WAIC", main="main terms of AIC and WAIC")
30 abline(a=0,b=1,col="blue")
31 ## Graph 3

32 boxplot(G_stan,T_stan,names=c("G","T"),main="Boxplots of $G_n$, $T_n$ (n
=200)")

33 abline(a=U,b=0,col="red")

It is possible to use the waic function of the CRAN loo package instead of con-
structing and calculating the WAIC function as above. However, in that case, the vari-
able name log_lik must be used for the variable representing the log-likelihood.
Also, the waic function displays the value of WAIC multiplied by 2n (twice the
sample size).

Example 55 We applied the WAIC function and the waic function to the Boston
data to find the value of WAIC. Also, since it is a multiple regression, we provide
xi, j , i = 1, . . . , n, j = 1, . . . , p in the form of an n × (p + 1) design matrix X (the
first column of X corresponds to the intercept and has all 1 values). The following
processing was performed using model11.stan defined in Chap. 3. �
First, make the package and Boston data available.

1 library(rstan); library(MASS); library(loo); library(bayesplot)
2 data(Boston)
3 index <- c(1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14)
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To obtain the design matrix X , execute the following.

1 lm <- formula(medv ˜ . −medv, data=Boston)
2 df <- Boston[, index]
3 X=model.matrix(lm, df)

After that, it is no different from the usual Stan execution.

1 N <- nrow(df)
2 K <- length(index)
3 Y <- df$medv;
4 data_list <- list(N = N, M = K, y = Y, x = X)
5 fit <- stan(file = "model11.stan", data = data_list, seed = 1)

In the case of waic in the loo package, it can be calculated in the following two
steps from fit.

1 m1 <- extract_log_lik(fit)
2 waic(m1)

As a result of the execution, the following output is obtained. is

Computed from 4000 by 506 log-likelihood matrix

Estimate SE
elpd_waic -1536.4 33.8
p_waic 19.5 4.0
waic 3072.9 67.5

For the case of WAIC, it is as follows. However, we multiply by 2n to obtain the
same value as waic.

1 m2 <- rstan::extract(fit)
2 2*N*WAIC(m2$log_lik)

As a result of the execution, the following output is obtained.

[1] 3072.8457

When comparing the values of WAIC for each statistical model, there is no need
to multiply by 2n.

6.4 Free Energy, BIC, and WBIC

Taking the logarithm of the marginal likelihood,

Fn := − log Zn

is called the free energy. When the true distribution is realizable and regular with
respect to the statistical model, and when an appropriate prior probability is chosen,
the free energy satisfies the property
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1

n
Fn → EX [− log p(X |θ∗)].

The later described BIC (Bayesian Information Criterion) is obtained as an approx-
imation of this free energy.

The value of the free energy is determined only by the samples. However, except
for special cases such as when the statistical model belongs to the exponential family
(Sect. 2.4) and the prior distribution is given by a conjugate prior distribution, it is
difficult to calculate the exact value of the marginal likelihood, and therefore, the
exact value of the free energy.

Example 56 For Example 4,

Fn = 1

2
log(n + 1) + 1

2

n∑

i=1

x2i − 1

2(n + 1)
(

n∑

i=1

xi )
2 + n

2
log 2π

is obtained. Then,we generate x1, . . . , xn (n = 100) according to the true distribution
q (assuming the standard normal distribution) and measure the frequency of the free
energy at that time (Fig. 6.5 left). We also tried a similar experiment for the binomial
distribution (Fig. 6.5 right). The execution was done with the following code.

1 F.1 <- function(x) log(n+1)/2+sum(x**2)/2−1/2/(n+1)*(sum(x))**2+n/2*log
2 (2*pi)
3 m <- 500

4 n <- 100

5 # Calculate free energy

6 T <- NULL
7 for(j in 1:m){
8 x <- rnorm(n)
9 T <- c(T,F.1(x))

10 }
11 # Plot the graph

12 plot(density(T), main="Free energy (Standard normal distribution)", col="
red",

13 xlab="$F_n$", ylab="Probability density")

�

In the following, we will consider cases where, like the above examples, the
solution cannot be obtained analytically.

First, when the true distribution is regular with respect to the statistical model,
from (5.8), the free energy and its average can be described as follows.

Fn = − log Zn =
n∑

i=1

− log p(xi |θ∗) + d

2
log

n

2π

+1

2
log det J − n

2
��

n J�n − logϕ(θ∗) + oP(1). (6.22)

If x1, . . . , xn ∈ X are independent, we have



140 6 Information Criteria

0 200 400 600 800

0.
00

0
0.
00

1
0.
00

2
0.
00

3
0.
00

4
Free Energy (Standard
Normal Distribution)

Fn

P
ro
ba

bi
lit
y
D
en

si
ty

40 50 60 70

0.
00

0.
02

0.
04

0.
06

0.
08

Distribution)
Free Energy (Binomial

Fn

P
ro
ba

bi
lit
y
D
en

si
ty

Fig. 6.5 In Example 4, the true distribution q was assumed to be the standard normal distribution.
The free energy was generated 500 times, and its frequency was calculated (left). Next, in Example
5, the true distribution q was assumed to be a binomial distribution with probabilities 0.75 and 0.25
for 1 and 0, respectively. The free energy was generated 500 times, and its frequency was calculated
(right)

EX1...Xn [Fn]
= nEX [− log p(X |θ∗)]+d

2
log

n

2π
+1

2
log det J − 1

2
tr(I J−1) − logϕ(θ∗) + o(1)

where, in deriving the latter, (6.7) is used. In the realizable case, the average can be
written as

EX1...Xn [Fn]=nEX [− log p(X |θ∗)] + d

2
log

n

2πe
+ 1

2
log det J − logϕ(θ∗) + o(1).

(6.23)

From (5.10), (6.22) can also be written as

Fn =
n∑

i=1

− log p(xi |θ̂n) + d

2
log

n

2π
+ 1

2
log det J

−n

2
(θ̂n − θ∗ − �n)

� J (θ̂n − θ∗ − �n) − logϕ(θ∗) + oP(1)

=
n∑

i=1

− log p(xi |θ̂n) + d

2
log

n

2π
+ 1

2
log det J − logϕ(θ∗) + oP(1).

(6.24)

where we use the fact that the maximum likelihood estimate θ̂n = θ∗ + �n +
oP(1/

√
n) (Proposition 20). The value obtained by subtracting the OP(1) term of

the free energy (6.24) is called BIC (Bayesian Information Criteria).
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BIC :=
n∑

i=1

− log p(xi |θ̂n) + d

2
log n.

There are severalways to approximate the free energywithout assuming regularity.
In statistical physics, the challenge has been to efficiently calculate the free energy
with a small computational cost. As seen with WAIC, is there a method that can
correctly calculate the free energy for general cases, even if they are not regular,
while having performance similar to BIC when regular? In the following, we will
consider the information criterion

WBIC := Eβ[
n∑

i=1

− log p(xi |θ)] , (6.25)

where we have set

Eβ[ f (θ)] :=
∫

�

f (θ)pβ(θ|x1, . . . , xn)dθ,

with

pβ(θ|x1, . . . , xn) = ϕ(θ)
∏n

i=1 p(xi |θ)β
Zn(β)

and

Zn(β) :=
∫

�

ϕ(θ)

n∏

i=1

p(xi |θ)βdθ.

WBIC has various desirable properties.

Proposition 26 In particular, when β = 1/ log n is set, when the true distribution
is regular with respect to the statistical model, we have

W BIC = BIC + oP(1). (6.26)

Proof Refer to the appendix at the end of the chapter.
Even if it is not regular, when β = 1/ log n, in general,

Fn = WBIC + OP(
√
log n)

holds (proof in Chap. 7). In any case, it provides an efficient method for calculating
the free energy.

To write WBIC in Stan, it would look like the following.
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1 wbic <- function(log_likelihood) − mean(rowSums(log_likelihood))

Example 57 For the p-variable multiple regression (with intercept), we examined
the relationship in (6.26).

f (x |μ) = 1√
2πσ2

exp{− (x − μ)2

2σ2
}.

By setting the partial derivatives of

L := −
n∑

i=1

log f (xi |μ,σ2) = n

2
log(2πσ2) + 1

2σ2

n∑

i=1

(xi − μ)2

with respect to μ and σ2 to 0, the maximum
likelihood estimates μ̂ = 1

n

∑n
i=1 xi , σ̂

2 = 1
n

∑n
i=1(xi − μ̂)2 are obtained. Therefore,

substituting the maximum likelihood estimates μ̂, σ̂2 into L , we have

L = n

2
log(2πσ̂2) + 1

2σ̂2

n∑

i=1

(xi − μ̂)2 = n

2
log(2πσ̂2e)

and

BIC = n

2
log(2πσ̂2e) + p + 1

2
log n.

The execution was done using the R code below. Also, the Stan file for WBIC
(model15.stan) was configured as shown below.We conducted experimentsm =
20 times each for p = 3, 7 and n = 100, 300, 500, and obtained the results in Fig.
6.6. �

1 library(rstan)
2 bic <- function(x,y){
3 beta2 <- as.vector(solve(t(x)%*%x)%*%t(x)%*%y)
4 sigma2 <- sum((y−x%*%beta2)^2)/n
5 return(0.5*n*log(2*pi*exp(1)*sigma2)+0.5*(p+1)*log(n))
6 }
7 model15 <- stan_model("model15.stan")
8 m <- 20

9 n <- 200

10 p <- 3 ones
11 <- rep(1,n)
12 BIC <- NULL
13 WBIC <- NULL
14 for(j in 1:m){
15 beta <- rnorm(p+1)
16 x <- matrix(rnorm(n*p),n,p)
17 x <- cbind(ones,x)
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18 y <- as.vector(x%*%beta+rnorm(n))
19 BIC <- c(BIC,bic(x,y))
20 data_list <- list(N = n, M = p+1, y = y, x = x, beta=1/log (n))
21 fit <- sampling(model15, data = data_list, seed = 1,iter=3000)
22 mm <- rstan::extract(fit)
23 WBIC <- c(WBIC, wbic(mm$log_lik))
24 }
25 plot(BIC,WBIC, xlab="BIC",ylab="WBIC",xlim=c(),)

In the case ofmultiple regression, the value ofWBIC can be obtained by preparing the
following Stan code. First, input the inverse temperature β > 0. Then, pay attention
to the point where the log posterior likelihood is determined based on that β. Ifβ = 1,
it becomes

y ˜ normal(X * b, sigma);

or

for(n in 1:N)
target += normal_lpdf(Y[n] | X[n] * b, sigma);

If β �= 1, it means that the definition of the posterior probability itself is different.
Also, it is difficult to model with the former expression, including β. In that sense,
the sampling itself is different. Of course, we must multiply β in the model block’s
target, not the generated quantities block’s log_lik.

model15.stan

1 data {
2 int N; // Sample size
3 int M; // Number of explanatory variables + 1 (intercept
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Fig. 6.6 We compared the values of BIC and WBIC for multiple regression (p = 3, 7 variables,
including the intercept) when n = 100, 300, 500. Since it is a regular statistical model, it can be
seen that the values of both are almost the same in both cases of p = 3, 7
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4 )

5 vector[N] y; // Dependent variable
6 matrix[N, M] x; // Design matrix
7 real beta; // Inverse temperature
8 }
9 parameters {

10 vector[M] b; // M−1 slopes and intercept
11 real<lower=0> sigma; // Standard deviation
12 }
13 model {
14 for(n in 1:N)
15 target += beta * normal_lpdf(y[n] | x[n] * b, sigma);
16 }
17 generated quantities{
18 vector[N] log_lik;
19 for (n in 1:N)
20 log_lik[n]= normal_lpdf(y[n] | x[n]*b, sigma);
21 }

In this book, for a concise understanding, we take a policy of not using the inverse
temperatureβ > 0 until the second half (it is easier to understandwithout being aware
of β > 0). However, if we introduce the inverse temperature β > 0, we will have the
same posterior probability structure even without considering specific applications
such as WAIC and WBIC. In fact, model15.stan will be applied to WAIC and
cross-validation, assuming a general inverse temperature β > 0 in Chap. 8.

Appendix: Proof of Proposition

Proof of Proposition 20

To improve the visibility, we shall discuss for a general inverse temperature β > 0.
β → ∞ corresponds to the maximum likelihood estimation case.

Since ηn(θ) converges in probability to a certain random variable for each θ ∈ �

(Proposition 10) and any β > 0,

L(θ) := −1

n

n∑

i=1

log p(xi |θ) − 1

nβ
logϕ(θ)

= −1

n

n∑

i=1

log p(xi |θ∗) + EX [log p(X |θ∗)
p(X |θ) ] − 1√

n
ηn(θ) − 1

nβ
logϕ(θ)

= −1

n

n∑

i=1

log p(xi |θ∗) + EX [log p(X |θ∗)
p(X |θ) ] + OP(

1√
n
). (6.27)
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Then, for εn = n−1/4, εn → 0 and
√
nεn → ∞ (n → ∞), for θ ∈ � such that

EX [log p(X |θ∗)
p(X |θ) ] ≥ εn ,

L(θ) ≥ −1

n

n∑

i=1

log p(xi |θ∗) + εn + OP(
1√
n
).

The right side becomes larger than

L(θ∗) = −1

n

n∑

i=1

log p(xi |θ∗) + OP(
1√
n
)

when n → ∞. Therefore, for θ (θ̂) that minimizes L(θ), it is necessary that the

probability of EX [log p(X |θ∗)
p(X |θ̂) ] < εn converges to 1. Moreover, since it is regular

and θ∗ is unique, θ̂ converges in probability to θ∗. Also, the same holds when β is
arbitrarily large, so the first half of the claim is demonstrated.

Regarding the second half, since ∇L(θ̂) = 0, by the mean value theorem, there
exists a θ1 between θ∗ and θ̂ such that

0 = ∇L(θ∗) + ∇2L(θ1)(θ̂ − θ∗)

and we have
θ̂ = θ∗ − ∇2L(θ1)−1∇L(θ∗). (6.28)

Next, differentiating (6.27) twice with respect to θ and substituting θ = θ1, from the

first half of the claim (θ̂
p−→ θ∗),

∇2L(θ1) = ∇2
EX [− log p(X |θ)]∣∣

θ=θ1
+ oP(1) = J + oP(1) (6.29)

holds. Finally, differentiating the definition of L(θ) once with respect to θ and sub-
stituting θ = θ∗, from (5.1) and (5.2),

− ∇L(θ∗) = 1√
n
∇ηn(θ∗) + oP(

1√
n
) = J�n + oP(

1√
n
) (6.30)

holds (actually, oP( 1√
n
) becomes OP( 1n )). Therefore, from (6.28), (6.29), and (6.30),

we obtain the second half of the claim

θ̂ = θ∗ + (J + oP(1))−1{J�n + oP(
1√
n
)} = θ∗ + �n + oP(

1√
n
).

�
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Proof of Proposition 26

Proof From Proposition 13,8 we can write

Eβ[
n∑

i=1

log
p(xi |θ∗)
p(xi |θ) ] =

∫
�
{∑n

i=1 log
p(xi |θ∗)
p(xi |θ) }{∏n

i=1 p(xi |θ)}βϕ(θ)dθ
∫
�
{∏n

i=1 p(xi |θ)}βϕ(θ)dθ

= U (3)
n + oP(exp(−√

n))

U (1)
n + oP(exp(−√

n))
.

where we define

U (1)
n :=

∫

B(εn ,θ∗)
{

n∏

i=1

p(xi |θ)
p(xi |θ∗)

}βϕ(θ)dθ

and

U (3)
n :=

∫

B(εn ,θ∗)
{

n∑

i=1

log
p(xi |θ∗)
p(xi |θ) }{

n∏

i=1

p(xi |θ)
p(xi |θ∗)

}βϕ(θ)dθ.

Next, by the mean value theorem, there exists a θ1 ∈ � between θ and θ̂ such that

n∑

i=1

− log p(xi |θ) =
n∑

i=1

− log p(xi |θ̂) + 1

2
(θ − θ̂)� Jn(θ

1)(θ − θ̂) (6.31)

wherewedefine the ( j, k)-th component of Jn(θ) is defined as−
n∑

i=1

1

n

∂2 log p(xi |θ)
∂θ j∂θk

.

Furthermore, from the probability convergence θ̂ → θ∗ and εn = n−1/4, the proba-
bility convergence θ1 → θ∗ holds. Therefore, taking the Frobenius norm9 as | · |, as
n → ∞, the right-hand side of

‖Jn(θ1) − J (θ∗)‖ ≤ ‖Jn(θ1) − Jn(θ∗)‖ + ‖Jn(θ∗) − J (θ∗)‖
≤ |θ1 − θ∗|� sup

θ∈B(εn ,θ∗)
‖∂ Jn(θ)

∂θ
‖ + ‖Jn(θ∗) − J (θ∗)‖

converges to 0. Thus,
Jn(θ

1) = J (θ∗) + oP(1) (6.32)

8 It is proven for β = 1, but it holds for a general β.
9 The square root of the sum of squares of all components. It is known to satisfy the norm conditions.
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holds. Since it is assumed to be regular, J (θ∗) is positive definite. Hence, from (6.31)
and (6.32), similarly to the proof of Proposition 14, we can write

U (1)
n = {

n∏

i=1

p(xi |θ̂)
p(xi |θ∗)

}β
∫

B(εn ,θ∗)
exp{−nβ

2
(θ − θ̂)�(J (θ∗) + oP(1))(θ − θ̂)}ϕ(θ)dθ

= {
n∏

i=1

p(xi |θ̂)
p(xi |θ∗)

}β(nβ)−d/2
∫

Rd

exp{−1

2
u�(J (θ∗) + oP(1))u}ϕ(θ̂ + u√

nβ
)du

∼ {
n∏

i=1

p(xi |θ̂)
p(xi |θ∗)

}β
(
2π

nβ

)d/2 ϕ(θ̂) + oP(1)√
det(J (θ∗) + oP(1))

.

where we define u = √
nβ(θ − θ̂). Furthermore,

U (3)
n = {

n∏

i=1

p(xi |θ̂)
p(xi |θ∗)

}β
∫

B(εn ,θ∗)

{
n∑

i=1

− log p(xi |θ̂) + nβ

2
(θ − θ̂)�(J (θ∗) + oP (1))(θ − θ̂)}

· exp{−nβ

2
(θ − θ̂)�(J (θ∗) + oP (1))(θ − θ̂)}ϕ(θ)dθ

∼ {
n∏

i=1

p(xi |θ̂)
p(xi |θ∗)

}β
(
2π

nβ

)d/2 ϕ(θ̂) + oP (1)√
det(J (θ∗) + oP (1))

{
n∑

i=1

− log p(xi |θ̂) + d

2β
+ oP (1)}

can be written. Since β = 1/ log n, these imply Proposition 26.

�

Exercises 54–66

In the following, let m, n ≥ 1.

54. When In = Jn , show that the second term of (6.3) becomes d/n.
55. Show that the minimum value of the negative log-likelihood in Example 50 is

given by (6.4).
56. Explain the relationship between the input X,y,T and the output S.min,set.q

of the function RSS.min. Also, identify which variables are used as global
variables in the function IC.

57. In the proof of Proposition 20, for any β > 0, let

L(θ) := −1

n

n∑

i=1

log p(xi |θ) − 1

nβ
logϕ(θ)
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beminimized by θ (denoted as θ̂). Show that the probability ofE[log p(X |θ∗)
p(X |θ̂) ] <

εn converges to 1. Also, show that there exists a θ1 between θ∗ and θ̂ such that

θ̂ = θ∗ − ∇2L(θ1)−1∇L(θ∗)

Moreover, show ∇2L(θ1) = J + oP(1) and −∇L(θ∗) = J�n + oP( 1√
n
) hold.

58. When X1, . . . , Xm ∼ N (0, 1) are independent, show the following. It is allowed
to use that their squaremean is 1 and the fourth-powermean is 3 (proven in Chap.
1).◦

(a) The mean of X2
1, . . . , X

2
m is 1, and the variance is 2.

(b) The mean of X2
1 + · · · + X2

m is m, and the variance is 2m.

59. Prove each of the following =⇒.

(a) Propositions 20 and 21 =⇒ Proposition 22
(b) Propositions 9 and 22 =⇒ Proposition 23
(c) Propositions 19 and 21 =⇒ Proposition 24

60. Why can the WAIC value defined in (6.20) be calculated from the function T_n
for empirical loss in Chap. 4 and the following function?

1 V_n <- function(log_likelihood) mean(colMeans(log_likelihood^2) −
colMeans(log_likelihood)^2)

2 WAIC <- function(log_likelihood) T_n (log_likelihood) + V_n (log_
likelihood)

61. For the true distribution and statisticalmodel of theGaussianmixture distribution
in Example 48, calculate the values of AIC and WAIC.

62. For the continuous Boston data in Example 55, calculate the WAIC values using
both the function WAIC and the function waic from the loo package, and
confirm that the values match.

63. In the case where the true distribution is regular with respect to the statistical
model, show that the free energy can be expressed as (6.22). Also, using Jeffreys’
prior probability

ϕ(θ) =
√
det J (θ)∫

�

√
det J (θ′)dθ′

show that the mean (6.23) can be written as

nEX [− log p(X |θ∗)] + d

2
log

n

2πe
+ log

∫

�

√
det J (θ)dθ + o(1)

when realizable.
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64. Following the graph of the free energy of the standard normal distribution in
Example 56, for Example 5, generate a length n = 100 binary vector with each
value independently having aprobability p = 0.25of occurring as 1, andperform
the operation of calculating its free energy m = 500 times to generate a graph.

65. Explain how WBIC calculations can be implemented using the following code.

1 wbic <- function(log_likelihood) − mean(rowSums(log_likelihood))

66. Replace the data in Example 57 with continuous Boston data and compare the
values of BIC and WBIC.



Chapter 7
Algebraic Geometry

In this chapter, we will study algebraic geometry and its surroundings. First, we will
learn about algebraic sets and manifolds. A manifold is like a globe (an open set
family) that has many local maps (open sets). Each open set must be a one-to-one
correspondence with the open set of the same dimensional Euclidean space, which
allows us to define local variables and local coordinates. The resolution of singular
points, referred to as blow-ups, denotes the process of updating local coordinates
containing singular points to other local coordinates. The Watanabe-Bayes theory
aims to obtain a standard form called normal crossing for each local coordinate. In the
regular case, the dimension d of the parameter is twice the real logarithmic threshold
λ in the general case. This value of λ can be obtained by resolving singular points. In
fact, the resolution of singular points is not directly related to the Watanabe-Bayes
theory. This point is often misunderstood in Watanabe-Bayes theory. Based on the
Hironaka theorem, whether there are singular points or not, in each local coordinate,
we transform the average log-likelihood to normal crossing.

Readers who are learning algebraic geometry for the first timemay not understand
what is written here at all. In such a case, as mentioned in the “Introduction”, I
recommend slowly reading while writing the formulas in each section. If you still do
not understand, I recommend repeating the same thing tomorrow and the day after.
Eventually, you should feel more comfortable.

7.1 Algebraic Sets and Analytical Sets

Hereafter, we denote the set of real-number-coefficient polynomials with variables
x = (x1, . . . , xd) as R[x1, . . . , xd ] or R[x]. At this time, using the subset J of R[x]
(assuming it is not an empty set), we define the set I that can be written as
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I =
{∑

i

fi (x)gi (x) | fi (x) ∈ J, gi (x) ∈ R[x]
}

as the ideal of R[x]. We also say that set J generates the ideal I .

Example 58 For J={x + y2, x − y2, y3} ⊆ R[x, y], I={x f (x, y)+ y2g(x, y) | f,
g ∈ R[x, y]} is the ideal generated by J . In other words, the same ideal is gen-
erated by J = {x, y2}. While I1 = {x f (x, y) | f ∈ R[x, y]} and I2 = {y2g(x, y) |
g ∈ R[x, y]} are ideals, we have

I � x − y2 /∈ I1 ∪ I2.

�

The set of common zeros of the elements of the ideal I is given by

V (I ) = {
x ∈ R

d | f (x) = 0, f ∈ I
} ⊆ R

d

and it is called the algebraic set determined by the ideal I in R[x]. If the algebraic
set V can be expressed as the union of two distinct non-empty algebraic sets V1 and
V2, it is said to be reducible. Otherwise, it’s called irreducible. Hereafter, we assume
that V (I ) is irreducible, and for simplicity, we will refer to it simply as V . In contrast
with the forthcoming projective space Pd , we sometimes denote the d-dimensional
Euclidean space R

d as the affine space A
d according to tradition. When given the

algebraic set V , note that the subset of R[x]

I (V ) = { f ∈ R[x] | f (x) = 0, x ∈ V }

forms an ideal in R[x].
Example 59 The algebraic set of the ideal I generated by J = {x2 + y2} is

V = V (I ) = {
(x, y) ∈ R

2 | x2 + y2 = 0
} = {(0, 0)}

Consequently, I (V ) is

I (V ) = { f ∈ R[x, y] | f (0, 0) = 0} = {
x, y, x2, y2, xy, . . .

}
and it becomes the ideal generated by J = {x, y}.

Similarly, we can construct an analytic set

{x ∈ U | f (x) = 0}
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Fig. 7.1 The case where the elliptic curve y2 = x3 + ax + b does not have a singularity (refer to
Sect. 6.3). The above three types are considered typical

using an analytic function f with an open setU ⊆ R
d as its domain. Using multiple

analytic functions f1, . . . , fd : U → R that share the domain U , we can also define
an analytic set

{x ∈ U | f1(x) = 0, . . . , fd(x) = 0}.

Also, if f : U → V is defined as f = ( f1, . . . , fd) by analytic functions f1, . . . ,
fd : U → R with U, V being open sets in Rd , we call f an analytic map.
In this chapter, we mainly focus on algebraic sets defined by a single irreducible

(i.e., cannot be factored further) polynomial 0 �≡ f ∈ R[x]

V ( f ) = {x ∈ R
d | f (x) = 0} ⊆ R

d

or analytic sets constituted by a single analytic function f : U → R

V ( f ) = {x ∈ U | f (x) = 0} ⊆ U.

Example 60 (Elliptic curve) For a, b ∈ R, a curve on a plane determined by the
polynomial of 2 variables f (x, y) = y2 − x3 − ax − b = 0 is called an elliptic
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curve. Try to draw the outline of the algebraic set

V ( f ) = {(x, y) ∈ R
2 | f (x, y) = 0}

for (a, b) = (−3, 3), (1, 0), (−1, 0) using the R language (Fig. 7.1). The following
code is used: �

1 a <- −3

2 b <- 3

3 x.min <- −3

4 x.max <- 3 # Non−singular case (1)

5 # a <- 1; b <- 0; x.min <- −1; x.max <- 5 # Non−singular case (2)

6 # a <- −1; b <- 0; x.min <- −2; x.max <- 4 # Non−singular case (3)

7 # a <- 0; b <- 0; x.min <- −1; x.max <- 5 # Case including singularity

8 (1)

9 # a <- −3; b <- 2; x.min <- −3; x.max <- 3 # Case including singularity

10 (2)

11 f <- function(x) sqrt(max(x^3+a*x+b,0))
12 x.seq <- seq(x.min,x.max,0.001)
13 y.seq <- NULL
14 for(x in x.seq) y.seq <- c(y.seq,f(x))
15 y.max <- max(y.seq)
16 plot(0,xlab="x", ylab="y",xlim=c(x.min,x.max), ylim=c(−y.max,y.max),type=
17 "n",
18 main=paste("a=",a,", b=",b))
19 lines(x.seq,y.seq)
20 lines(x.seq,−y.seq)
21 abline(h=0)
22 abline(v=0)

7.2 Manifold

In this section, we define topological spaces and (analytic) manifolds. Let M be a
set. When a set U consisting of subsets of M is defined to satisfy the following three
conditions, M is called a topological space, U is called a family of open sets, and the
elements of U are called open sets.1

1. U includes the entire set M and the empty set {} as elements.
2. The union of any number of elements of U (open sets of M) is an element of U .
3. The intersection of any finite number of elements of U (open sets of M) is an

element of U .
Furthermore, for any x �= y ∈ M , when there existU, V ∈ U such that x ∈ U , y ∈ V ,
and U ∩ V = {}, that topological space M is called a Hausdorff space.

Example 61 (Distance space) If a distance d(x, y), x, y ∈ M is defined for the set
M , we can define an open set B(ε, x) := {y ∈ M | dist (x, y) < ε} using it, so the
family of open sets can be defined as

1 Including distance metrics such as Euclidean distance to define open sets (metric spaces).



7.2 Manifold 155

Fig. 7.2 The images of
φ1(U1 ∩U2) and
φ2(U1 ∩U2) by φ1 and φ2
are connected by φ2 ◦ φ−1

1
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2 (coordinate
transformation), which are
analytic mappings
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Manifold

U = {B(ε, x) | ε > 0, x ∈ M}.

For x, y ∈ M , x �= y, by taking ε > 0 sufficiently small, we can make B(ε, x) ∩
B(ε, y) = {}, so if the topological space M is a distance space, it is Hausdorff. �

In the following, we define a manifold.2 Let M be a Hausdorff topological space.
When a bijection (mapping one-to-one and onto) from an open set to another open
set is continuous in both directions, this mapping is said to be homeomorphic.

1. For each open set U of the family of open sets of M , there exists a φ such that
U → φ(U ) ⊆ R

d is homeomorphic.
2. For such pairs (U,φ) and (Ũ , φ̃), when U ∩ Ũ is not empty, the coordinate

transformation

φ ◦ φ̃−1(U ∩ Ũ ) : φ(U ∩ Ũ ) → φ̃(U ∩ Ũ )

is an analytic mapping (see Fig. 7.2).

In this case, M is said to be a d-dimensional analytic manifold. At this time, each
element u of U can be treated as if it were an element φ(u) of the open set φ(U )

of Rd . This φ(u) ∈ R
d is called a local variable, and the coordinates constructed by

them are called local coordinates. By using local coordinates, it is possible to treat
a point on U as if it were a point in R

d . In addition, such a set consisting of (U,φ)

is called a local coordinate system of M .

Example 62 A
d is a (trivial) d-dimensional manifold. With the identity mapping

id : Rd → R
d , S = {(Rd , id)} forms a coordinate neighborhood system. It may be

2 A topological space being Hausdorff is a necessary condition for the existence of a partition of
unity (Sect. 7.5)
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divided into multiple local coordinates. When d = 1, defineUi = (i − 1, i + 1) and
φi for each i ∈ Z as

φi : Ui � x �→ x − i ∈ (−1, 1).

Then, φi becomes a local coordinate system of Ui , and S = {(Ui ,φi ) | i ∈ Z} gives
a coordinate neighborhood system. In this case, for x ∈ (0, 1),

φi+1 ◦ φ−1
i (x) = x − 1

becomes the coordinate transformation. And for each i , x − i ∈ (−1, 1) can be used
as a local variable. �

As a typical example of a manifold, we consider the projective space. For each
(x0, x1, . . . , xd), (x ′

0, x
′
1, . . . , x

′
d) ∈ R

d+1\{(0, . . . , 0)}, when there exists a t ∈ R

such that

(x0, x1, . . . , xd) = t (x ′
0, x

′
1, . . . , x

′
d) ,

an equivalence relationship exists between them. When each class is denoted as
[x0 : x1 : · · · : xd ], the set of elements iswritten asPd ,which is called ad-dimensional
projective space.

Example 63 P
d is a d-dimensional manifold. When the value of the i th coordinate

is not zero, by dividing the values of other coordinates by its value, we get Ui :=
{[x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] ∈ P

d}. The coordinate transformation

φi : Ui � [x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] �→ (x0, x1, . . . , xi−1, xi+1, . . . , xd ) ∈ A
d

from φi (Ui ∩Uj ) to φ j (Ui ∩Uj ) becomes

φ j ◦ φ−1
i (x0, x1, . . . , xi−1, xi+1, . . . , xd)

=

⎧⎪⎪⎨
⎪⎪⎩

(
x0
x j

,
x1
x j

, . . . ,
xi−1

x j
,
1

x j
,
xi+1

x j
, . . . ,

x j−1

x j
,
x j+1

x j
, . . . ,

xd
x j

)
, i < j(

x0
x j

,
x1
x j

, . . . ,
x j−1

x j
,
x j+1

x j
, . . . ,

xi−1

x j
,
1

x j
,
xi+1

x j
, . . . ,

xd
x j

)
, j < i

, (7.1)

(Exercise 70(a)) and S = {(Ui ,φi ) | i = 0, 1, . . . , d} forms a coordinate neighbor-
hood system. And for each i ,

(x0, x1, . . . , xi−1, xi+1, . . . , xd) ∈ R
d

can be used as local coordinates. Particularly, in the case of d = 1, it becomes

φx : Ux � [1 : ux ] �→ ux ∈ A
1
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and

φy : Uy � [uy : 1] �→ uy ∈ A
1.

And when ux , uy �= 0, the coordinate transformation is given by (Exercise 70(b))

φxy : φx (Ux ∩Uy) � ux �→ 1

ux
= uy ∈ φy(Ux ∩Uy)

and

φyx : φy(Ux ∩Uy) � uy �→ 1

uy
= ux ∈ φx (Ux ∩Uy)

from [1 : ux ] = [uy : 1]. �
When looking at a certain country on a globe, one cannot see the country on the

other side of the earth unless the globe is rotated. It may be interpreted that the globe
is made by pasting together multiple maps.3

7.3 Singular Points and Their Resolution

Next, we define singular points on an algebraic set V . If the ideal I (V ) is generated
by polynomials f1, . . . , fm , and the rank of the matrix

(
∂ fi (x1, . . . , xd)

∂x j

)
i=1,...,m, j=1,...,d

is constant for every x = (x1, . . . , xd) ∈ V , then V is said to be non-singular. If there
exists an x ∈ V where the rank is smaller, then x is called a singular point. Especially
when m = 1 and

f1(x1, . . . , xd) = ∂ f1
∂x1

(x1, . . . , xd) = · · · = ∂ f1
∂xd

(x1, . . . , xd) = 0, (7.2)

(x1, . . . , xd) ∈ V is called a singular point of V . If V has no singular points, it’s said
to be non-singular.

Example 64 From Example 59, I (V ) is generated by J = {x, y}, thus
[

∂ f1(x,y)
∂x

∂ f1(x,y)
∂y

∂ f2(x,y)
∂x

∂ f2(x,y)
∂y

]
=

[
1 0
0 1

]

holds for all (x, y) ∈ V . Therefore, V is non-singular.

3 In this sense, manifolds are sometimes called “atlases”, and individual (Ui ,φi ) are called “charts”.
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Fig. 7.3 When the elliptic curve y2 = x3 + ax + b has a singular point. In the case of (a, b) =
(0, 0) (left), (x, y) = (0, 0) becomes a singular point, and in the case of (a, b) = (−3, 2) (right),
(x, y) = (1, 0) becomes a singular point. In each case, it can be seen that a tangent line cannot be
drawn (as it is sharp), and multiple tangent lines can be drawn. Conversely, a non-singular algebraic
curve can draw a single tangent line at any point, and can be said to be smooth

Example 65 (Singular elliptic curve) In Example 60, we look for the condition for
having a singular point. As (7.3) specifically becomes

y2 = x3 + ax + b , 3x2 + a = 0 , 2y = 0

⇐⇒ x(−a

3
+ a) + b = 0 , 3x2 + a = 0 , y = 0

⇐⇒
{
a = b = 0, (x, y) = (0, 0)
a �= 0, 4a3 + 27b2 = 0, (x, y) = (− 3b

2a , 0)
,

it is found that when
4a3 + 27b2 = 0 (7.3)

(x, y) = (0, 0) or (−3b

2a
, 0) becomes a singular point (there are no others). As

(a, b) = (0, 0), (−3, 2) satisfy (7.3), using the same code as in Example 60, we
draw its outline (Fig. 7.3). It can be seen that at the singular point (x, y) = (0, 0)
in the former case, no tangent line can be drawn (as it is sharp), and at the singular
point (x, y) = (1, 0) in the latter case, multiple tangent lines can be drawn. �

Next, we define the blow-up of A2 centered at the origin. First, we introduce a
subset

U := {(x, y, [x ′ : y′]) ∈ A
2 × P

1 | xy′ = x ′y} (7.4)

ofA2 × P
1. In other words, the setU consists of two types of elements: (x, y) × [x :

y] for (x, y) ∈ A
2 − {(0, 0)}, and (0, 0) × [x ′ : y′] for [x ′ : y′] ∈ P

1. Furthermore,
U can be written as Ux ∪Uy using the set

Ux := {(x, y, [x ′ : y′]) ∈ U | x ′ �= 0}
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Uy := {(x, y, [x ′ : y′]) ∈ U | y′ �= 0} ,

and it becomes a manifold. In fact,

φx : Ux � (ux , uxvx , [1 : vx ]) �→ (ux , vx ) ∈ A
2

and

φy : Uy � (uyvy, vy, [uy : 1]) �→ (uy, vy) ∈ A
2

become a homeomorphism (1 to 1 and onto mapping that is continuous in both
directions). Also, we can confirm that

(ux , uxvx , [1 : vx ]) = (uyvy, vy, [uy : 1]) =⇒ ux = uyvy, vy = uxvx , vxuy = 1

holds, so the coordinate transformation is given by

φx (Ux ∩Uy) � (ux , vx ) �→ (
1

vx
, uxvx ) = (uy, vy) ∈ φy(Ux ∩Uy)

φy(Ux ∩Uy) � (uy, vy) �→ (uyvy,
1

uy
) = (ux , vx ) ∈ φx (Ux ∩Uy).

At this time, the projection π : U → A
2, which corresponds only to the A2 compo-

nent of the assembled U excluding the P1 component, gives the isomorphism

π : U − {(0, 0)} × P
1 � (x, y, [x : y]) �→ (x, y) ∈ A

2 − {(0, 0)} ,

when excluding the origin.
Next, we consider the algebraic set V ⊆ A

d with d ≥ 2. Consider the subset U ′
of U ∩ (V × P

d−1) restricted to A
d × P

d−1, where π(U ′) = V − (0, 0). Here, U ′
does not include elements of (0, 0) × P

d−1. Therefore, it does not generally become
an algebraic set. For example,

{(x, y) ∈ A
2 | y2 = x3 + x2} − {(0, 0)}

is not an algebraic set. However, adding (0, 0) to it yields an algebraic set (x, y) ∈
{A2 | y2 = x3 + x2}. In this way, for a subsetU ′ ofAd × P

d−1, the smallest algebraic
set containing it is called its closure, and it is written as U ′. Then, the projection
π : U → A

d is called the origin-centered blow-up of the algebraic set V , and the
manifold U ′ = π−1(V − (0, 0)) is called the strict pullback of V .

Example 66 In Example 65,when (a, b) = (0, 0), it has a singularity only at the ori-
gin. If the local coordinates ofUx ,Uy are (ux , vx ), (uy, vy), they can be constructed
as
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Fig. 7.4 (a) The elliptic curve y2 = x3 has a singularity at the origin. (b) It corresponds to the open
set Ux . (c) Removing the blue part (curve) corresponding to the singularity in V and taking the
closure (adding the origin) results in a curve without a singularity. (d) It corresponds to the open
setUy . (e) Removing the blue curve (point) corresponding to the singularity in V results in a curve
without a singularity. (f) The open sets Ux ,Uy correspond, except at (0, 0)

f (x, y) = f (ux , uxvx ) = u2x (v
2
x − ux )

f (x, y) = f (uyvy, vy) = v2
y(1 − u3yvy).

In the former case, (x, y) = (0, 0) ⇐⇒ ux = 0, and in the latter case, (x, y) =
(0, 0) ⇐⇒ vy = 0, so the U ′ satisfying π(U ′) = V − {(0, 0)} is v2

x − ux = 0 when
x �= 0 (ux �= 0), and 1 − u3yvy = 0 when y �= 0 (vy �= 0). Taking closures of them,
namely, v2

x = ux when x �= 0, and u3yvy = 1 when y �= 0 become the strict pull-

backs, both of which are non-singular. Indeed, for f (ux , vx ) = v2
x − ux ,

∂ f
∂ux

= −1,
∂ f
∂vx

= 2vx , and it is impossible to make these three expressions zero simultaneously.
The same is true for f (uy, vy) = 1 − u3yvy . Thus, V can be expressed in either of the
local coordinates {(ux , vx ) | v2

x = ux }, {(uy, vy) | 1 = u3yvy}, andwhen it canbewrit-
ten in both, they correspond by the coordinate transformation vxuy = 1, ux = uyvy ,
vy = uxvx . In Fig. 7.4(c), (e), Ux ,Uy are open sets without singularities. Also, the
places where either of the local coordinatesUx ,Uy can be written (except the origin)
are shown in Fig. 7.4(f). �
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We would like to explain why generating two curves (c) (e) from the elliptic curve
inFig. 7.4(a) canbe said to have resolved the singularity. First of all, (c) corresponds to
V − {(0, 0)} represented in the local coordinates (ux , vx ) (ux �= 0). And its pullback
(the inverse image of π) is a subset of Ux . Similarly, the pullback of (e) represented
in the local coordinates (uy, vy) (vy �= 0) is a subset of Uy . Therefore, the strict
pullback is given as a manifold as a whole. The original elliptic curve included
singular points, but after finite blow-ups, when seen as a manifold, it turns out that
there are no singular points in any local coordinates.

Note that if the algebraic set is not (x, y) ∈ A
2 | y2 = x3, but (x, y) ∈ A

2 | y2 =
x5, singular points cannot be resolved with a single blow-up. For the obtained local
coordinates, another blow-up is performed. In this case, the local coordinates of the
manifold are further divided. In the case of d = 2, it is known that singular points can
be resolved by repeating this process a finite number of times (Hironaka’s theorem).
For the general d ≥ 3, it is necessary to apply the general blow-up introduced in the
next section.

Example 67 y2 = x5 has a singular point only at the origin. If the local coordinates
of Ux ,Uy are (ux , vx ), (uy, vy), they can each be written as

f (ux , uxvx ) = (uxvx )
2 − u5x = u2x (v

2
x − u3x )

and

f (uyvy, vy) = v2
y − (uyvy)

5 = v2
y(1 − u5yv

3
y).

The term v2
x − u3x in the former has a singular point at (ux , vx ) = (0, 0), and the

term 1 − u5yv
3
y in the latter is non-singular. Indeed, the term v2

x − u3x can resolve the
singular point if another blow-up is performed using the method in Example 66.
Also, 1 − u5yv

3
y becomes zero only when uy = 0 or vy = 0 when differentiating with

respect to uy, vy , but in either case 1 − u5yv
3
y does not become zero. �

Furthermore, in the case where the singular point is not the origin, as in the
following example, perform a parallel shift of the coordinates and then blow up.

Example 68 In Example 65, when (a, b) = (−3, 2), it has a singular point only at
(1, 0). If x �→ x + 1, then

y2 − x3 + 3x − 2 = y2 − (x − 1)2(x + 2) �→ y2 − (x + 1 − 1)2(x + 1 + 2) = y2 − x2(x + 3)

can be achieved, so consider the parallel-translated origin passing y2 = x3 + 3x2. If
the local coordinates of Ux ,Uy are (ux , vx ), (uy, vy), they can each be written as

f (ux , uxvx ) = (uxvx )
2 − u3x − 3u2x = u2x (v

2
x − ux − 3)

f (uyvy, vy) = v2
y − (uyvy)

3 − 3(uyvy)
2 = v2

y(1 − u3yvy − 3u2y).

v2
x − ux − 3 = 0, 1 − u3yvy − 3u2y = 0 are the strict pullbacks, and both are non-

singular. �
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7.4 Hironaka’s Theorem

The theory of resolving singularities in the previous section was constructed by
Heisuke Hironaka in 1964.

Proposition 27 (Hironaka [4, 5])Let f be an analytic function froma neighborhood
of the origin in R

d to R, with f (0) = 0 and not a constant function. Then, there
exists a manifold U, an open set V of Rd containing the origin, and an analytic map
g : U → V that satisfy the following conditions:

1. For any compact set K of V , g−1(K ) is a compact set of U.
2. Let V0 := {x ∈ V | f (x) = 0} and U0 := {u ∈ U | f (g(u)) = 0}, then g gives

an isomorphism4 of U\U0 and V \V0.
3. For each P ∈ U0, there exists local coordinates (u1, . . . , ud) of U with P as the

origin, and using a multi-index κ = (κ1, . . . ,κd) ∈ N
d and a sign S ∈ {−1, 1},

it can be written as
f (g(u)) = Suκ1

1 . . . uκd
d . (7.5)

4. The Jacobian of x = g(u) can be written as an analytic function b(u) �= 0, using
a multi-index h = (h1, . . . , hd) ∈ N

d ,

g′(u) = b(u)uh11 . . . uhdd . (7.6)

A representation by local coordinates as in (7.5) is called a normal crossing. In
this book, we do not prove Hironaka’s theorem, but instead perform blow-ups for
some specific manifolds, not algebraic sets, to find normal crossings.

Regarding Proposition 27, there are two points to note. First, in this book, we
consider K (θ) = EX [log p(X |θ∗)

p(X |θ) ], θ ∈ � as the function f . That is, it is only applied
in the neighborhood of each θ∗ ∈ �∗. Second, the domain of the function g is U ,
or it is expressed as a function of local variables. The same function symbol g is
used even if the local coordinates are different, but the correspondence for each local
coordinate is described.

This may be a bit late to mention,5 in Watanabe’s Bayesian theory, (so-called)
singularity resolution is not used. Whether a certain θ∗ ∈ �∗ is regular or not, the
normal crossing form is sought.Hironaka’s theoremguarantees that a normal crossing
can be obtainedwhether it is singular or non-singular. In this sense, it may be said that
there is no relationship between whether a point is regular in statistics and whether
it is singular in algebraic geometry.

In the following chapters, Hironaka’s theoremwill be applied in the neighborhood
of θ∗ ∈ �∗.

4 Maintains the same structure as the analytic manifold.
5 In the field of algebraic geometry, it seems that Proposition 27 is called the singularity resolu-
tion theorem, and the process of finding the normal crossing form is called singularity resolution.
However, in this book, such a description is used for the understanding of beginners.
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(w2

1w2, w
3
1w

2
2)

(w2
1w2, w1w

3
2)

Fig. 7.5 By variable transformation, (x, y) is expressed in local coordinates (four types in this
example), and the normal crossing of y2 − x3 is found

Example 69 WhenHironaka’s theorem is applied, Examples 66, 67, and 68 become
as follows. For instance, if it is y2 − x3, the procedure is as shown in Fig. 7.5.

f (x, y) g(u) g′(u) f (g(u)) S κ h

(u1, u
2
1u2) u21 −u31(1 − u1u

2
2) −1 (3, 0) (2, 0)

y2 − x3 (u1u2, u2) u2 u21(1 − u31u2) 1 (0, 2) (0, 1)

(Example 66) (u1u
2
2, u1u

3
2) u1u

4
2 u21u

6
2(1 − u1) 1 (2, 6) (1, 4)

(u21u2, u
3
1u

2
2) u41u

2
2 −u61u

3
2(1 − u2) −1 (6, 3) (4, 2)

(u1u2, u2) u2 u22(1 − u51u
3
2) 1 (0, 2) (1, 0)

y2 − x5 (u1u2, u1u
2
2) u1u

2
2 u21u

4
2(1 − u31u2) 1 (2, 4) (1, 2)

(Example 67) (u1u
2
2, u

2
1u

5
2) u21u

6
2 u41u

10
2 (1 − u1) 1 (4, 10) (2, 6)

(u21u2, u
5
1u

3
2) u61u

3
2 −u101 u2(1 − u2) −1 (10, 1) (6, 3)

(u1, u
3
1u2) u31 −u51(1 − u1u

2
2) −1 (5, 0) (3, 0)

y2 − x3 − 3x2 (
u1√
3

, u1u2)
u1√
3

−u21(1 − u22 + u1
3
√
3

) −1 (2, 0) (1, 0)

(Example 68) (u1u2, u2) u2 u22(1 − u31u2 − 3u21) 1 (0, 2) (0, 1)

�

In the first example of Example 69, −u31(1 − u1u22) ≈ −u31, 1 − u1u22 becomes 1
near the origin. Even if a polynomial that becomes 1 at the origin is multiplied in this
way, a normal crossing can be obtained. As shown in Example 69, a normal crossing
cannot be obtained by performing a variable transformation within the range of a
rational map. In general, it becomes the product of a normal crossing and an analytic
function that does not become 0. If the variable transformation is performed within
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the range of an analytic map, it becomes a normal crossing. For example, in the case
of Example 66, it is sufficient to apply an analytic map that makes u1(1 − u1u22)

1/3

a single variable.
In the previous section,we introduced the blow-up centered at the origin for d = 2,

but for d = 3, it becomes

φx : (ux , uxuy, uxuz, [1 : uy : uz])

φy : (uxuy, uy, uyuz, [ux : 1 : uz])

φz : (uxuz, uyuz, uz, [ux : uy : 1]),

and it is extended to the general d > 2. However, there may be cases where the
normal crossing claimed in Hironaka’s theorem cannot be obtained with the blow-up
centered at the origin. From here on, we will introduce the blow-up centered at the
ideal. The blow-up centered at the origin was

U = {(0, . . . , 0)} × P
d−1 ∪ {(x1, . . . , xd , [x1 : · · · : xd ]) | (x1, . . . , xd) �= (0, . . . , 0)}

for the general d, but the blow-up centered at the ideal uses the ideal I ⊆ R[x]
generated by f1, . . . , fm ∈ R[x], and it is set to be

U =V (I ) × P
m−1 ∪ {(x1, . . . , xd , [ f1(x1, . . . , xd) : · · · :

fm(x1, . . . , xd)]) | (x1, . . . , xd) /∈ V (I )}.

Note that

f1(x1, . . . , xd) = 0, . . . , fm(x1, . . . , xd) = 0 ⇔ (x1, . . . , xn) ∈ V (I ).

In the blow-up centered at the ideal, it is not necessary to use all of x1, . . . , xd .
The blow-up centered at the origin is equivalent to the blow-up by the ideal
( f1(x) = x1, . . . , fd(x) = xd ). In other words, the blow-up centered at the ideal
is a generalization of the blow-up centered at the origin. In Example 70, we perform
a blow-up using z, x in (1), y + α1, y in (2), and β1, y in (4) as the generators of the
ideal.

Example 70 For the function

f (x, y, z) = (xy + z)2 + x2y4 ,

we seek a normal crossing representation by local coordinates as shown in Fig. 7.6.
Then, we define the mapping from each coordinate Ui = (ui , vi , wi ), i = 1, 2, 3, 4
to R3 in
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(1) (2)

(3)

(4)

(5)

(6)

(7)

z = α1x

x = α2z

y + α1 = β1y

y = β2(y + α1)

β1 = γ1y

y = γ2β1

(1) f = (xy + z)2 + x2y4 (5) f = x2(y + α1)2{1 + β2
4(y + α1)2}

(2) f = x2{(y + α1)2 + y4} (6) f = x2y4(1 + γ2
1)

(3) f = z2{(1 + α2y)2 + α2
2y4} (7) f = x2γ2

2β1
4(1 + γ2

2)
(4) f = x2y2(β1

2 + y2)

Fig. 7.6 The normal crossing of the function f (x, y, z) = (xy + z)2 + x2y4 is shown in (3) (5)
(6) (7), and for this, the variables α1,α2,β1,β2, γ1, γ2 are introduced

⎧⎪⎪⎨
⎪⎪⎩

(x, y, z) = (u1w1, v1, w1)

(x, y, z) = (u2, v2w2, u2(1 − v2)w2)

(x, y, z) = (u3, v3, u3v3(v3w3 − 1))
(x, y, z) = (u4, v4w4, u4v4w4(w4 − 1)).

However, let α1,α2,β1,β2, γ1, γ2 be the values defined in Fig. 7.6, and let

(u1, v1, w1), (u2, v2, w2), (u3, v3, w3), (u4, v4, w4)

=(α2, y, z), (x,β2, y + α1), (x, y, γ1), (x, γ2,β1),

respectively. For example, in the local coordinates U1, we have f (g(u1, v1, w1)) =
w2

1(u1v1 + 1)2 + u21v
4
1 , and the Jacobian is obtained from

⎡
⎢⎣

∂x
∂u1

∂x
∂v1

∂x
∂w1

∂y
∂u1

∂y
∂v1

∂y
∂w1

∂z
∂u1

∂z
∂v1

∂z
∂w1

⎤
⎥⎦ =

⎡
⎣w1 0 u1

0 1 0
0 0 1

⎤
⎦

as g′(u1, v1, w1) = |w1|. The same calculations can be done for the others, resulting
in the following.

i Ui f (g(ui , vi , wi )) g′(ui , vi , wi ) (κ1,κ2,κ3) (h1, h2, h3)

1 U1 w2
1{(u1v1 + 1)2 + u21v

4
1 } w1 (0, 0, 2) (0, 0, 1)

2 U2 u22w
2
2(1 + v42w2

2) u2w2 (2, 0, 2) (1, 0, 1)

3 U3 u23v
4
3 (w2

3 + 1) u3v
2
3 (2, 4, 0) (1, 2, 0)

4 U4 u24v
2
4w4

4(1 + v24 ) u4v4w
2
4 (2, 2, 4) (1, 1, 2)

Also, the Jacobian g′(ui , vi , wi ) �= 0 is the necessary and sufficient condition for
the local coordinates and x, y, z are isomorphic, so it would be good to perform the
pasting according to each condition of
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g′(u1, v1, w1) �= 0 ⇐⇒ w1 �= 0 ⇐⇒ z �= 0

g′(u2, v2, w2) �= 0 ⇐⇒ u2w2 �= 0 ⇐⇒ xy + z �= 0

g′(u3, v3, w3) �= 0 ⇐⇒ u3v3 �= 0 ⇐⇒ xy �= 0

g′(u4, v4, w4) �= 0 ⇐⇒ u4v4w4 �= 0 ⇐⇒ xy �= 0.

Both of them can be seen to correspond to (7.5) and (7.6). �

Example 71 The normal crossing representation of the function f (x, y, z, w) =
(xy + zw)2 + (xy2 + zw2)2 by local coordinates is shown in Fig. 7.7. We try to
perform the blow-up fromEq. (7.3) in two types of procedures.Although the obtained
local coordinates are different, both of them are normal crossings obtained in (5) (7)
(9) (10) (11). In addition, we introduce the variables ξ1, ξ2, ξ3,α1,α2,β1,β2, γ1, γ2,
δ1, δ2. Also, the blow-up between (1) and (2) is symmetrical for (x, z), (y, w), so
we only performed the former because the same result can be obtained either by
y = ξ1w or w = ξ2y. �

At the end of this section, we omit the proof but present a useful generalization
for Bayesian theory by Watanabe. The specific application will be discussed in the
next chapter.

Proposition 28 (Simultaneous normal crossing[4, 5, 13]) Let f0, f1, . . . , fm be
analytic functions from a neighborhood of the origin of Rd to R, where for each
i = 0, 1, . . . ,m we have fi (0) = 0 and they are not constant functions. In this case,
there exist a manifold U, an open set V in Rd containing the origin, and an analytic
map g : U → V that satisfy the following properties:

1. For any compact set K in V , g−1(K ) is a compact set in U.
2. g gives an isomorphism between U\U0 and V \V0, where V0 := ∪m

i=1x ∈ V |
fi (x) = 0 and U0 := ∪m

i=1u ∈ U | fi (g(u)) = 0.
3. For each P ∈ U0, there exist local coordinates (u1, . . . , ud) of U centered at

P, multi-indices κ(i) = (κ1(i), . . . ,κd(i)) ∈ N
d , i = 0, 1, . . . ,m, analytic func-

tions ai , 1 ≤ i ≤ m, and a sign S ∈ −1, 1 such that we can write

f0(g(u)) = Suκ(0) , f1(g(u)) = a1(u)uκ(1) , . . . , fm(g(u)) = am(u)uκ(m).

Here, uκ(i) := uκ1(i)
1 . . . uκd (i)

d .
4. The Jacobian (determinant) of x = g(u) can be written as g′(u) = b(u)uh, where

b(u) �= 0 is an analytic function that is not zero, and h = (h1, . . . , hd) ∈ N
d is a

multi-index.



7.5 Local Coordinates in Watanabe Bayesian Theory 167

(1) (2) (3)
y = ξ1w

w = ξ2y

ξ3 = xξ1 + z

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

ξ3 = α1w

w = α2ξ3

α1 = β1x

x = β2α1

β1 = γ1ξ1

ξ1 = γ2β1

ξ1 − 1 = δ1γ1

γ1 = δ2(ξ1 − 1)

(1) (xy + zw)2 + (xy2 + zw2)2 (7) α2
1w

4{1 + (β2ξ
2
1 + w − β2ξ1)2}

(2) w2{(xξ1 + z)2 + w2(xξ21 + z)2} (8) w4x2ξ21{γ2
1 + (ξ1 + γ1w − 1)2}

(3) w2{ξ23 + w2(xξ21 + ξ3 − xξ1)2} (9) x2w4β2
1{1 + (β1γ

2
2 + w − γ2)2}

(4) w4{α2
1 + (xξ21 + α1w − xξ1)2} (10) x2w4{1 + δ1γ1}2γ2

1{1 + (δ1 + w)2}
(5) α2

2ξ
4
3{1 + α2

2(xξ21 + ξ3 − xξ1)2} (11) w4x2ξ21(ξ1 − 1)2{δ22 + (1 + δ2w)2}
(6) x2w4{β2

1 + (ξ21 + β1w − ξ1)2}

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

ξ3 = α1ξ1

ξ1 = α2ξ3

α1 = β1x

x = β2α1

β1 = γ1(ξ1 − 1)

ξ1 − 1 = γ2β1

w = δ1γ1

γ1 = δ2w

(4) w2ξ21{α2
1 + w2(xξ1 + α1 − x)2} (8) w2ξ21x

2(ξ1 − 1)2{γ2
1 + w2(γ1 + 1)2}

(5) w2ξ23{1 + w2(xα2
2ξ3 + 1 − xα2)2} (9) x2w2(1 + γ2β1)2β2

1{1 + (1 + γ2)2w2}
(6) x2w2ξ21{β2

1 + w2(ξ1 + β1 − 1)2} (10) x2δ21γ
4
1ξ21(ξ1 − 1)2{1 + δ21(γ1 + 1)2}

(7) w2ξ21α
2
1{1 + w2(β2ξ1 + 1 − β2)2} (11) w4x2ξ21(ξ1 − 1)2{δ22 + (1 + γ1)2}

Fig. 7.7 The normal crossing representation of the function f (x, y, z, w) = (xy + zw)2 + (xy2 +
zw2)2 by local coordinates. We tried to perform the blow-up from Eq. (7.3) in two types of proce-
dures. Although the obtained local coordinates are different, both are normal crossings obtained in
(5) (7) (9) (10) (11)

7.5 Local Coordinates in Watanabe Bayesian Theory

Asmentioned in Chap. 2, when a statistical model p(·|θ)θ ∈ � is given, let� denote
the set of θ ∈ � that minimizes the Kullback-Leibler divergence with respect to the
true distribution q(·):

E

[
log

q(X)

p(X |θ)
]

.

In the general case without assuming regularity, �∗ may contain multiple elements.
Furthermore, since we assume finite relative variance in this book, according to
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Proposition 1.3 (1), the statistical model is homogeneous, and the distribution p(·|θ∗)
does not depend on θ∗ ∈ �∗. Hence, the function

K (θ) = E[log p(X |θ∗)
p(X |θ) ]

does not depend on θ∗ ∈ �∗. In Chap. 8, we assume that K (·) is an analytic function.
Thus,�∗ is an analytic set. For each θ∗ ∈ �∗, we shift the coordinates by the amount
corresponding to θ∗ and apply Proposition 27 with each of them as the origin. Then,
using the local coordinates of the corresponding manifold in the neighborhood of θ∗,
we express K (θ) in the form of a normal crossing.

In Chap. 5, we mentioned that we only need to remove regularity constraints on
� contained in B (εn, θ∗) , θ∗ ∈ �∗. Here, it is essential to note that the posterior
distribution we want to derive inWatanabe Bayesian theory is with respect to�m :=⋃

θ∗∈�∗ B (εn, θ∗), not �.
For each θ∗ ∈ �∗, when we take θ∗ as the origin, the mapping from Propo-

sition 27 which is g : U → V can be denoted as: g : U (θ∗) → V (θ∗) By patch-
ing these together, it is given by: g : U → V , where U := ⋃

θ∗∈�∗ U (θ∗) and
V := ⋃

θ∗∈�∗ V (θ∗). In this context, rather than setting g for each θ∗ with θ∗ = 0, a
common g adjusted by θ∗ is utilized. Therefore, for each θ∗ ∈ �∗, we determine the
normal intersection of f (g(u) − θ∗). If V is compact, from Proposition 27.1, U is
also compact. This impliesU can be covered by a finite union of open sets. Notably,
by merging several open sets, each can include the point u such that g(u) = 0.

Without loss of generality, each local coordinate of the open set can be taken as a
cube of size 2 centered at some element of g−1(�∗). Furthermore, we can partition
each into 2d pieces, and adjust their signs to set each local coordinate to [0, 1)d .
Such variable transformations change the Jacobian. As long as it doesn’t become
zero within the local coordinate, it doesn’t impact discussions in the next chapter.
Ultimately, each of the finitely obtained open sets is denoted as Uα.

Additionally, by taking a sufficiently large n, we have �n ⊆ V And U can be
restricted to g−1(�n).

Finally, each parameter θ ∈ �m can generally be written in multiple local coor-
dinates. And usually, open sets of manifolds overlap, so in the next chapter, without
losing generality, we assume the following: That is, construct a C∞ class function
ρα : g−1 (�m) → [0, 1] that satisfies the following three conditions:

1. 0 ≤ ρα(u) ≤ 1
2. supp ρα ⊆ Uα

3.
∑

α ρα(u) = 1

This is called a partition of unity6. The support supp ρα is defined as the smallest
closed set containing points u ∈ g−1 (�m)whereρα(u) > 0. For example, foru ∈ Uα

and

6 As in Murakami [18], the partition of unity is an existing concept in manifold theory.
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σα(u) =
{∏d

i=1 exp
(
− 1

1−ui

)
, 0 ≤ ui < 1, i = 1, . . . , d

0, otherwise

you can set ρα(u) = σα(u)∑
α′ σα′ (u)

.

Exercises 67–74

67. As with the one-variable polynomial R[x] with real coefficients, ideals can be
defined for the set of all integers Z. What kind of a set is the ideal I generated
by J = 2, 3?

68. For the elliptic curve y2 = x3 + ax + b,

(a) Run the program from Example 60 with the settings below, and output the
elliptic curve.

1 a <- 0; b <- 0; x.min <- −1; x.max <- 5 # the first one

2 a <- −3; b <- 2; x.min <- −3; x.max <- 3 # the second one

(b) Demonstrate that the condition for including a singular point is (7.3). Deter-
mine whether each of the following is singular or non-singular:

(a, b) = (−3, 3), (1, 0), (−1, 0), (0, 0), (−3, 2).

Also, where are the singular points for each singular elliptic curve?

69. With regards to the Hausdorff property of topological spaces, demonstrate the
following:

(a) A metric space M is Hausdorff. [Hint] Use the triangle inequality dist
(x, y) ≤ dist (x, z) + dist (y, z), x, y, z ∈ M .

(b) Consider the set of all integers Z as the whole set M . Initially, only include
2n + 1 and 2n − 1, 2n, 2n + 1 for each n ∈ Z in U , and generate elements
of U to satisfy the second and third properties of a topological space. In this
case, M is not Hausdorff.

70. Derive the coordinate transformation for each of the following manifolds:

(a) For Pd = {(Ui ,φi )}i=0,1,...,d , the coordinate transformation of

Ui := {[x0 : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xd ] ∈ P
d}

φi : Ui � [x0 : x1 : . . . : xi−1 : 1 : xi+1 : · · · : xd ]
�→ (x0, x1, . . . , xi−1, xi+1, . . . , xd) ∈ A

d
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from φi (Ui ∩Uj ) to φ j (Ui ∩Uj ) is given by (7.1).
(b) For the blow-up at the origin of A

2, the coordinate transformation of
(Ux ,φx ), (Uy,φy) is given by

φx (Ux ∩Uy) � (ux , vx ) �→ (
1

vx
, uxvx ) = (uy, vy) ∈ φy(Ux ∩Uy)

φy(Ux ∩Uy) � (uy, vy) �→ (uyvy,
1

uy
) = (ux , vx ) ∈ φx (Ux ∩Uy).

71. Show that the set

{(x, y) × [x ′ : y′] ∈ A
2 × P

1 | xy′ = x ′y}

matches the set below.

{(x, y) × [x ′ : y′] ∈ A
2 × P

1 | [x : y] = [x ′ : y′] or (x, y) = (0, 0)}.

72. In Example 69, a normal crossing is obtained using five local coordinates for
y2 − x3. Construct a figure for y2 − x5 similar to Fig. 7.5.

73. In Example 70, a normal crossing is obtained for four local coordinates. Explain
the operations up to obtaining the table below.

i Ui f (g(ui , vi , wi )) g′(ui , vi , wi ) (κ1, κ2, κ3) (h1, h2, h3)

1 U1 w2
1{(u1v1 + 1)2 + u21v

4
1 } w1 (0, 0, 2) (0, 0, 1)

2 U2 u22w
2
2(1 + v42w2

2) u2w2 (2, 0, 2) (1, 0, 1)

3 U3 u23v
4
3 (w2

3 + 1) u3v
2
3 (2, 4, 0) (1, 2, 0)

4 U4 u24v
2
4w4

4(1 + v24 ) u4v4w
2
4 (2, 2, 4) (1, 1, 2)

74. In Example 71, the operations to obtain the local coordinates are performed in
two ways. For each of the local coordinates (5) (7) (9) (10) (11) in the first
method of Fig. 7.7, calculate the Jacobian |g′(·, ·, ·, ·)|.



Chapter 8
The Essence of WAIC

Based on the introductory content of algebraic geometry learned in the previous
chapter, this chapter delves into the core of Watanabe’s Bayesian theory. As learned
in Chap. 5, the generalization to non-regular cases assumes that even if there are
multiple θ∗, the range of B(εn, θ∗) is considered. In Watanabe’s Bayesian theory,
the Jacobian of the variable transformation θ = g(u) is |g′(u)|, and the integral∫
[0,1]d [·]|g′(u)|du is used. The integral is calculated by integrating the value of

EX [log p(X |θ∗)
p(X |g(u))

] = uκ for the same u with t , and finally integrating it with t . In

other words, we find the integral of
∫
[0,1]d [·]δ(t − uκ)|g′(u)|du as a function of t

using the δ function, and ignore terms that become small when t → 0. The formula
obtained in this way is called the state density formula in this book. The resulting
posterior distribution does not converge to a normal distribution as n increases, but is
expressed in a beautiful form using empirical processes. As a result, the relationship
EX1...Xn [Gn] = EX1...Xn [W AICn] + o(1/n) (Proposition 25) holdswithout assuming
regularity. Finally, we prove that WAIC and cross-validation show almost the same
value. The generalization from Chaps. 5 and 6 to 8 has the following relationships:

Chaps. 5 and 6 Chap. 8
Regular General

Posterior Distribution P. 15 P. 33
Gn , Tn P. 18, P. 19 P. 35
EX1...Xn [Gn], EX1...Xn [Tn] P. 24 P. 37
EX1...Xn [Gn] P. 25
= EX1...Xn [W AICn] + o(1/n)

(“P” denotes Proposition)
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8.1 Formula of State Density

In the following chapters, we will need to compute integrals of the form:
∫

g([0,1]d )
[function of θ]dθ =

∫

[0,1]d
[function of g(u)]|g′(u)|du.

As pointed out in Chap. 5, the generalization without assuming regularity is only
carried out for small values of u in the range of B(εn, θ∗), that is,

f (g(u)) = EX [log p(X |θ∗)
p(X |g(u))

].

Watanabe’s Bayesian theory is based on the idea that when uκ = f (g(u)) and
|g′(u)| = b(u)|u|h in Hironaka’s theorem, each value of u ∈ [0, 1]d is classified by
the same value of t = uκ. The aim was to evaluate the integral for sufficiently small
values of t .

In this section, we consider δ as a function, and for u ∈ [0, 1]d and t ∈ [0,∞),
we derive the specific value of

δ(t − uκ)|u|hb(u)du (8.1)

(Proposition 30, Formula of State Density). Note that b(u) is assumed to be an
analytic function with positive values as the local coordinate u moves within [0, 1]d .
Moreover, the δ function is defined as follows.

A function δ(·) that satisfies
∫

δ(x)ϕ(x)dx = ϕ(0)

for any infinitely differentiable function ϕ(x) is called a hyper function. Intuitively,
for a > 0, it can be understood as the probability density of the uniform distribution
in the interval [−a, a] given by

fa(x) =
{
1/2a, |x | ≤ a
0, otherwise

, (8.2)

when a is sufficiently close to 0. Figure 8.1 shows how the uniform distribution
changes with each value of a, using the following code:

1 delta <- function(a, j) lines(c(−a, a, a, −a, −a), c(0, 0, 1/a, 1/a,0),
2 col=j) a.seq <- seq(0.01, 0.05, 0.01)

3 plot(0, xlim=c(−0.05, 0.05), xlab="x", ylab="fa(x)",ylim=c(0, 100), type=
4 "n",
5 main="Uniform Distribution")
6 for(a in a.seq) delta(a, a*100+1)
7 legend("topleft", legend=a.seq, col=2:6, lwd=1)
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Fig. 8.1 Uniform distribution on [−a, a]. As a approaches 0, the values near x = 0 become
infinitely large

We can define integration elements using generalized functions. For example, an
integral using D(x, y) = δ(x2 − y) on R

2 is given by

∫ ∞

−∞

∫ ∞

−∞
f (x, y)D(x, y)dxdy =

∫ ∞

−∞
f (x, x2)dx .

Here, for a real-valuedmeasurable1 function f (t) on (0,∞), the complex function
F(z) defined by the following is called the Mellin transformation of f (t):

M : f �→ F , F(z) :=
∫ ∞

0
t z f (t)dt , z ∈ C.

Although not proven in this book, the inverse Mellin transformation

M−1 : F �→ f

is known to uniquely exist as long as
∫∞
0 t Re(z) f (t)dt < ∞ (where Re(z) is the real

part of z).

1 For the measurability of functions, refer to 3.3.1 Random Variables.
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Example 72 For m ≥ 1 and λ > 0, let

fm(t) :=
{
tλ−1(− log t)m−1 , 0 < t < 1
0 , otherwise.

The Mellin transformation of fm(t) is given by

M[ fm](z) = (m − 1)!
(z + λ)m

. (8.3)

Equation (8.3) is derived by using integration by parts when the real part of z is
greater than2 −λ:

M[ fm](z) =
∫ 1

0
t z tλ−1(− log t)m−1dt

= [ 1

z + λ
t z+λ(− log t)m−1]10 + m − 1

z + λ

∫ 1

0
t z+λ−1(− log t)m−2dt

= m − 1

z + λ
·
∫ 1

0
t z tλ−1(− log t)m−2dt = m − 1

z + λ
M[ fm−1](z)

= (m − 1)!
(z + λ)m−1

M[ f1](z) = (m − 1)!
(z + λ)m−1

· 1

z + λ
= (m − 1)!

(z + λ)m
.

�

Next, let h ∈ N
d and f : [0, 1]d → R≥0. The Zeta function

ζ(z) :=
∫

[0,1]d
f (u)zuhdu , z ∈ C

coincides with the Mellin transformation of the density of states function on [0, 1]d ,

v(t) :=
∫

[0,1]d
δ(t − f (u))uhdu.

In fact, since

f (u)z =
∫ ∞

0
t zδ(t − f (u))dt,

the following holds:

2 when the improper integral limε→0
∫ 1
ε t z tλ−1(− log t)m−1dt converges.
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ζ(z) =
∫

[0,1]d
f (u)zuhdu =

∫

[0,1]d

∫ ∞

0
t zδ(t − f (u))uhdtdu =

∫ ∞

0
t zv(t)dt.

(8.4)

Example 73 Let f (u) = uκ, κ = (κ1, . . . ,κd), and h = (h1, . . . , hd) ∈ N
d ; the

Mellin transformation of the density of states function v(t) = ∫[0,1]d δ(t − uκ)uhdu
is given by (8.4), with λi = (hi + 1)/κi ; we have

ζ(z) =
∫

[0,1]d
(uκ)zuhdu =

d∏

i=1

∫

0≤ui≤1
uκi z+hi
i dui =

d∏

i=1

[
uκi z+hi+1
i

κi z + hi + 1

]1

0

= 1
∏d

i=1 [κi (z + λi )]
= 1
∏d

i=1 κi

1
∏d

i=1(z + λi )
. (8.5)

�

We call the value

λ := min
1≤ j≤d

h j + 1

κ j
> 0

obtained from themulti-indexesκ, h ∈ N
d the real log canonical threshold. Ifκi = 0,

then (hi + 1)/κi = ∞. We consider the case where at least one of κ1, . . . ,κd is
greater than or equal to 1, that is, when λ takes a finite value. We call the number of
elements m in the set

S := {1 ≤ j ≤ d | λ = h j + 1

κ j
}

themultiplicity. For example, ifκ j = 0, then j /∈ S.We divide u = (ua, ub) ∈ [0, 1]d
into ua = (u j ) j∈S ∈ [0, 1]m and the rest ub = (u j ) j /∈S ∈ [0, 1]d−m . We also define
μ := (−λκ j + h j ) j /∈S ∈ Q

d−m corresponding to ub and

uμ
b :=

∏

j /∈S
u

−λκ j+h j

j .

Furthermore, let γm := [(m − 1)!∏ j∈S κ j ]−1. Then, the following proposition
can be obtained.

Proposition 29 When m = d, that is, when h j+1
κ j

= λ for j = 1, . . . , d, the follow-
ing holds:

v(t) =
∫

[0,1]d
δ(t − uκ)uhdu =

{
γd t

λ−1(− log t)d−1, 0 < t < 1
0, otherwise.

(8.6)
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Proof By applying Examples 72, 73, and (8.4) in order, we have that for γd =
[(d − 1)!∏d

j=1 κ j ]−1,

∫ 1

0
t z · γd t

λ−1(− log t)d−1dt = 1

(z + λ)d
· 1
∏d

j=1 κ j

= ζ(z) =
∫ 1

0

∫

[0,1]d
t z · δ(t − uκ)uhdudt

holds. By comparing the [·] in ∫ 1
0 t z[·]dt , the proposition is obtained from the unique-

ness of the inverse Mellin transformation.
�

Proposition 29 assumed m = d, but now let’s consider the general case with
m < d, i.e., the case that includes j such that h j+1

κ j
> λ. First, if there are s different

types of λ j such that λ = λ1 < · · · < λs , then by decomposing (8.5) into partial
fractions (Exercise 76),

ζ(z) = C
s∏

k=1

1

(z + λk)mk
=

s∑

k=1

mk∑

j=1

ck, j ( j − 1)!
(z + λk) j

we find that such C ∈ R and ck, j ∈ R exist for k = 1, . . . , s and j = 1, 2, . . . ,mk .
Next, note that the linearity of the Mellin transformation M[ f + g] = M[ f ] +
M[g] = F + G implies the linearity of the inverse Mellin transformation M−1[F +
G] = f + g = M−1[F] + M−1[G]. Then, from (8.3),

M−1[(z + λk)
− j ] = tλk−1(− log t) j−1

( j − 1)! ,

which implies

M−1[ζ(z)] = M−1[
s∑

k=1

mk∑

j=1

ck, j ( j − 1)!
(z + λk) j

] =
s∑

k=1

mk∑

j=1

ck, j ( j − 1)! · t
λk−1(− log t) j−1

( j − 1)!

Therefore, we have

v(t) =
s∑

k=1

mk∑

j=1

ck, j t
λk−1(− log t) j−1 (8.7)

Thus, to obtain the leading term tλ−1(− log t)m−1 of v(t) as t → 0 (λ = λ1,m = m1),
it suffices to investigate the pole z = −λof ζ(z). In thisway, the followingproposition
is obtained.
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Proposition 30 (State Density Formula) Let du∗ := γmδ(ua)u
μ
bb(u)du; as t → 0,

the following holds:

δ(t − uκ)uhb(u)du = tλ−1(− log t)m−1du∗ + o(tλ−1(− log t)m−1).

Proof Refer to the appendix at the end of the chapter.

Since the term δ(ua) is included in du∗, when integrating over u ∈ [0, 1]d ,
pay attention to the fact that we should integrate over the range ua = 0, i.e.,
ub ∈ [0, 1]d−m .

In the next section, we will examine the behavior of θ ∈ � contained in B(εn, θ∗),
which is equivalent to investigating t values close to 0. As t → 0, the value of v(t)
is dominated by the k that minimizes λk and, in the case of having the same values,
by j = mk .

Example 74 If the state density on [0, 1]3 is

δ(t − x4y8z6)x1y3z3dxdydz,

then with κ = (4, 8, 6) and h = (1, 3, 3), we have

λ = min{1 + 1

4
,
3 + 1

8
,
3 + 1

6
},

λ = 1/2, m = 2, and μ = −λκ3 + h3 = 0. Therefore, we obtain

γm = [(m − 1)!
∏

j∈S
κ j ]−1 = [1! · 4 · 8]−1 = 1

32

and

δ(t − x4y8z6)x1y3z3dxdydz = 1

32
t−1/2(− log t)δ(x)δ(y)dxdydz + o(t−1/2(− log t)).

�

Suppose we apply Hironaka’s theorem (Proposition 27) to an analytic function
f on R

d , and obtain the normal crossing representation (7.5) (7.6) for each local
coordinateUα. Since f is not a constant function, at least one of κ1, . . . ,κd must be
greater than 1. In this case, for each local coordinateUα, we can compute the real log
canonical threshold λ(α) = min1≤i≤d λ(α)

i and the corresponding multiplicity m(α).
In the following sections, we will also need to compute the minimum value of λ(α),
denoted by λ, and the corresponding multiplicity m (the largest of m(α) for which
λ = λ(α)). We may simply write these as λ and m.
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Example 75 For Example 70,

(κ1,κ2,κ3) = (0, 0, 2), (2, 0, 2), (2, 4, 0), (2, 2, 4)

(h1, h2, h3) = (0, 0, 1), (1, 0, 1), (1, 2, 0), (1, 1, 2)

(
h1 + 1

κ1
,
h2 + 1

κ2
,
h3 + 1

κ3
) = (∞,∞, 1), (1,∞, 1), (1,

3

4
,∞), (1, 1,

3

4
)

and the values of (λ(α),m(α)) for each Uα are

(λ(1),λ(2),λ(3),λ(4)) = (1, 1,
3

4
,
3

4
)

and

(m(1),m(2),m(3),m(4)) = (1, 2, 1, 1).

Thus, λ = 3/4 and m = 1. �

In this book, we do not prove it, but the values of λ and m are independent of
the choice of the normal crossing representation (7.5) guaranteed by Hironaka’s
theorem.3 It is known that they do not depend on the choice of local coordinates.

The state density formula will be applied in the derivation of the free energy and
posterior distribution in the next section (Propositions 32, 33).

8.2 Generalization of the Posterior Distribution

The generalization to the irregular case of the posterior distribution can be done only
in the neighborhood of θ∗ ∈ �∗. However, in the non-regular case, there may be
multiple such θ∗ values. Nevertheless, the assumption of having a relatively finite
variance implies that �∗ is homogeneous (Proposition 2), i.e., p(·|θ∗) = p(·|θ′∗) for
θ∗, θ′∗ ∈ �∗. Therefore, K (θ) becomes the same function, and the same posterior
distribution is obtained for any θ∗. In other words, even if �∗ has multiple elements,
they cannot be distinguished and can be regarded as identical. In the following,
without loss of generality, we arbitrarily choose an element of �∗ and denote it as
θ∗.

In this section, we investigate the function of θ

3 For readers specializing in algebraic geometry, you may understand that “λ and m are birational
invariants”.
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K (θ) := EX [log p(X |θ∗)
p(X |θ) ] =

∫

X

f (x, θ)q(x)dx (8.8)

when the log-likelihood ratio

f (x, θ) = log
p(x |θ∗)
p(x |θ)

has a relatively finite variance. However, since we do not assume regularity, θ∗ ∈ �∗
is not unique.

First, we assume the following that also implies Assumption 1.

Assumption 4 The log-likelihood

f (x, θ) = log
p(x |θ∗)
p(x |θ)

is a L2(q)-valued analytic function.

This implies that K (θ) = ∫X f (x, θ)q(x)dx is also a R-valued analytic function. In
fact, when f (x, θ) =∑r ar (x)(θ − θ1)

r , we have

‖ar‖2 =
√∫

X
ar (x)2q(x)dx ≥ |

∫

X
ar (x)q(x)dx |,

i.e.,

∑

r

‖ar‖2|θ − θ1|r < ∞ =⇒
∑

r

|
∫

X
ar (x)q(x)dx ||θ − θ1|r < ∞

holds. Therefore, Hironaka’s theorem (Proposition 27) can be applied to K (θ). Addi-
tionally, from the definition of θ∗ ∈ �∗, we know that the Kullback-Leibler informa-
tion quantity satisfies D(θ) ≥ D(θ∗), which means that (8.8) is non-negative. Also,
when we set the local coordinates g(u) = θ ∈ �, using (7.5) from Proposition 27
with κ = 2k ∈ N

d and S = 1, we obtain

K (g(u)) = EX [log p(X |θ∗)
p(X |g(u))

] = u2k , (8.9)

where u is the local coordinate corresponding to θ. Moreover, Assumption 4 is
necessarywhen applying the empirical process (Proposition 11) to the log-likelihood.

For now, we will fix the discussion to a single local coordinate. Firstly, the fol-
lowing proposition holds.

Proposition 31 When f (x, g(u)) has a relatively finite variance, there exists a
L2(q)-valued analytic function a(x, u) such that
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f (x, g(u)) = uka(x, u). (8.10)

Proof If we apply Hironaka’s theorem (Proposition 27) to K (θ) ≥ 0, we get

K (g(u)) = u2k .

From the definition, we have

K (g(u)) = EX [ f (X, g(u))]

and assuming that it has a relatively finite variance, there exists a constant C > 0
such that

u2k ≥ C
∫

X
q(x) f (x, g(u))2dx ,

which leads to

1 ≥ C
∫

X
q(x){ f (x, g(u))

uk
}2dx . (8.11)

Moreover, by Assumption 4, the log-likelihood f (x, g(u)) is an analytic function of
u. So, if we denote the remainder when f (x, g(u)) is divided by uκ as b(x, u), we
can write

f (x, g(u)) = uka(x, u) + b(x, u).

If b(x, u) is not a zero function, then b(x, u)/uk would not be bounded as uk → 0,
contradicting (8.11). Therefore, b(x, u) must be identically zero. �

In addition, by taking the average of both sides of (8.10), we have

EX [a(X, u)] = uk , (8.12)

which holds true.
In the following, we will use the validity of (8.10) and (8.12) to generalize the

posterior distribution thatwas derived inChap. 5 for the regular case. For that purpose,
in this section, with the observed data x1, . . . , xn ∈ X , we will consider the function

ξn(u) := 1√
n

n∑

i=1

{uk − a(xi , u)}. (8.13)

Between ξn and ηn defined in (5.1), we have the relation

ξn(u)uk = ηn(g(u))
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by (8.9), (8.10), and (8.12). Therefore, from Proposition 11, since the empirical
processes η1, . . . , ηn converge in law to the Gaussian process η, ξ1, ξ2, . . . are also
empirical processes that converge in law to the Gaussian process ξ such that

ξ(u)uk = η(g(u)).

Their mean is 0, and their covariance is given by

EX [ξn(u)ξn(v)] = EX [1
n

n∑

i=1

n∑

j=1

{uk − a(Xi , u
k)}{vk − a(X j , v

k)}]

= 1

n

n∑

i=1

EX [{uk − a(Xi , u
k)}{vk − a(Xi , v

k)}]

= EX [a(X, u)a(X, v)] − ukvk . (8.14)

The operation of the mean, which was EX1...Xn [·] for each n in X1, . . . , Xn , will be
represented as Eξ[·] in the case of the limit Gaussian process.

The condition of having relatively finite variance mentioned in Sect. 1.3 is essen-
tially important, but several other assumptions are also necessary.

Assumption 5 The prior probability ϕ(θ) can be expressed as the product of a non-
negative valued analytic function ϕ1 and a C∞ function ϕ2 that takes positive values
on �, i.e., ϕ(θ) = ϕ1(θ)ϕ2(θ).

For example, in cases where the prior probability ϕ(θ) = ϕ1(θ)ϕ2(θ) = 0 when
K (θ) = 0 (such as the Jeffreys prior distribution; see Sect. 8.5), one will need to
resolve the singular points of K (θ) and ϕ1(θ) simultaneously (Proposition 28).

In the following, we will proceed with the analysis by considering K (θ) =
K (g(u)), i.e., ϕ = ϕ2, when

K (θ) = EX [log p(X |θ∗)
p(X |θ) ].

One could interpret the C∞ function ρα(u) introduced in Chap. 7 as the function
obtained by multiplying ϕ2(g(u)) by ρα(u).

Moreover, the compact

� = {θ ∈ R
d |π1(θ) ≥ 0, . . . ,πm(θ) ≥ 0}

can also be transformed into a local coordinate

g−1(�) := {u ∈ U |π1(g(u)) ≥ 0, . . . ,πm(g(u)) ≥ 0}
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by simultaneous normal crossing (Proposition 28). Therefore, the following assump-
tion is necessary:4

Assumption 6 π1(θ), . . . ,πm(θ) are analytic functions.

In fact, in order to transform πk(θ) into πk(g(u)) for each k = 1, . . . ,m according
to Proposition 28, πk(θ) must be an analytic function.

Then, from (8.10) (8.13), we have

n∑

i=1

log
p(xi |θ∗)
p(xi |g(u))

=
n∑

i=1

f (xi , g(u)) =
n∑

i=1

uka(xi , u) = nu2k − √
nukξn(u)

For the posterior distribution
∏n

i=1 p(xi |θ∗)
∫
�

�(θ)dθ

�(θ)dθ :=
∏n

i=1 p(xi |θ)∏n
i=1 p(xi |θ∗)

ϕ(θ)dθ = exp{−nu2k + √
nukξn(u)}|uh|b(u)du

using the properties of the δ function, we obtain

�(θ)dθ =
∫ ∞

0
dτδ(τ − u2k)uh exp{−nτ + √

nτξn(u)}b(u)du

=
∫ ∞

0

dt

n
δ(

t

n
− u2k)uh exp{−t + √

tξn(u)}b(u)du.

where the integration is only done with respect to dt , and τ := t/n with dτ = dt/n.
Moreover, by applying Proposition 30, assuming du∗ := γmδ(ua)u

μ
bb(u)du, we can

obtain

�(θ)dθ =
∫ ∞

0
(
t

n
)λ−1(− log

t

n
)m−1 dt

n
exp{−t + √

tξn(u)}du∗ + oP(n−λ)

= (log n)m−1

nλ

∫ ∞

0
dt tλ−1 exp{−t + √

tξn(u)}du∗ (8.15)

+ 1

nλ

∫ ∞

0
dt tλ−1(− log t)m−1 exp{−t + √

tξn(u)}du∗ + oP(n−λ)

= (log n)m−1

nλ

∫ ∞

0
dt tλ−1 exp{−t + √

tξn(u)}du∗ + oP(
(log n)m−1

nλ
).

(8.16)

The marginal likelihood
∫
�

∏n
i=1 p(xi |θ)ϕ(θ)dθ is obtained by multiplying∏n

i=1 p(xi |θ∗) by
∑

α

(log n)m
(α)−1

nλ(α)
Iα + oP(

(log n)m−1

nλ
) , (8.17)

4 This is a theoretical assumption and not something to be aware of in practice.
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where du∗
α := γm(α)δ(ua)u

μα

b b(u)ρα(u)du and

Iα :=
∫

[0,1]d
du∗

α

∫ ∞

0
dt tλ

(α)−1 exp{−t + √
tξn(u)}. (8.18)

The reason for attaching the subscript α to μ,λ,m is that the minimum value of
min1≤i≤d

hα,i+1
2kα,i

and its multiplicity are different for each local coordinate Uα. Also,
the partition of a, b in (ua, ub) for the index set {1, . . . , d} also differs for each local
coordinate Uα. Also, it’s worth noting that in the definition of du∗

α, the function
ρα(u), a partition of unity defined in Chap. 7, is involved. Furthermore, the large

term (log n)m
(α)−1

nλ(α) in the numerator and denominator of the posterior mean (defined in
(8.20)) dominates the overall magnitude. That is, among the local coordinates that
minimize λ(α) (the minimum of these is denoted as λ), those that maximize m(α)

(the maximum of these is denoted as m) are important. Typically, there are multiple
local coordinates for λ(α) and m(α). In what follows, we will refer to such λ,m as
the critical real log canonical threshold and its multiplicity, and denote by A the
set of local coordinates α where m(α) is maximized among the local coordinates
Uα that minimize λ(α). Therefore, the real log canonocal threshold is, from (7.6),
λ = minα min1≤i≤d λ(α)

i when the maximum pole of

ζ(z) =
∫

�

K (θ)zϕ(θ)dθ =
∑

α

∫

[0,1]d
u2kz+hb(u)du =

∑

α

1
∏d

i=1(2ki )

1
∏d

i=1(z + λ(α)
i )

is z = −λ. At this point, the ratio of (8.17) to

(log n)m−1

nλ

∑

α∈A

Iα

converges to 1 as n → ∞. In fact, we have

∑

α

(log n)m
(α)−1

nλ(α)
Iα + oP(

(log n)m−1

nλ
)

(log n)m−1

nλ

∑

α∈A

Iα

= 1 +
∑

α/∈A

(log n)m(α)−m

nλ(α)−λ
· Iα∑

α′∈A Iα′
.

Therefore, we have
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log

(
∑

α

(log n)m
(α)−1

nλ(α)
Iα

)

= log

[
(log n)m−1

nλ

(
∑

α∈A

Iα

)(

1 +
∑

α/∈A

(log n)m(α)−m

nλ(α)−λ
· Iα∑

α′∈A Iα′

)]

= log

(
(log n)m−1

nλ

∑

α∈A

Iα

)

+ oP(1)

= −λ log n + (m − 1) log log n + log
∑

α∈A

Iα + oP(1).

This leads to the following proposition.

Proposition 32 Under the condition of a relatively finite variance, the free energy
has the following asymptotic behavior:

Fn =
n∑

i=1

− log p(xi |θ∗) + λ log n − (m − 1) log log n − log

(
∑

α∈A

Iα

)

+ oP(1).

(8.19)

Here, λ,m are the critical real log canonical threshold and its multiplicity, and Iα
is the value given in (8.18).

From (8.15) and the formula of marginal likelihood
∫
�

∏n
i=1 p(xi |θ)ϕ(θ)dθ, we

obtain the following.

Proposition 33 Under the condition of a relatively finite variance, without assuming
that the true distribution is regular with respect to the statistical model, the poste-
rior average of the function s : [0,∞) × [0, 1]d → R after obtaining the samples
x1, . . . , xn is given by

E [s(t, u)| x1, . . . , xn] :=
∑

α∈A

∫
[0,1]d

∫∞
0 s(t, u)tλ−1e−t+√

tξn(u)dtdu∗
α

∑
α∈A

∫
[0,1]d

∫∞
0 tλ−1e−t+√

tξn(u)dtdu∗
α

, (8.20)

where ξn is the analytic function determined by x1, . . . , xn and is defined in (8.13).

Here, what is defined in (8.20) is defined for each local coordinate fixed by the
theorem of Hironaka. Furthermore, please note that the law of large numbers con-

vergence ξn
d−→ ξ implies the law of large numbers convergence of the posterior

distribution (8.20).
The posterior distribution (8.20) is a generalization of Proposition 15, which

assumes regularity. However, it no longer follows a normal distribution. It claims to
be a sum of
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∫ ∞

0
tλ−1e−t+√

tξn(u)dtdu∗
α

over the critical local coordinates α ∈ A. Here, for

n∏

i=1

p(xi |g(u))

p(xi |θ∗)
= e−nu2k+√

nukξn(u)

it can be obtained in the same way as in the case of assuming regularity from (8.10),
(8.12), (8.13), and (8.14). However, in Watanabe’s Bayesian theory, Proposition 30
(the formula of state density) is applied to derive the relationship between λ,m and
the posterior distribution without using the assumption of regularity.

8.3 Properties of WAIC

In this section, we first generalize the generalized loss Gn and empirical loss Tn that
were introduced in Chap. 4. Here, between the parameter θ ∈ � and the parameter
(t, u), we have θ = g(u) and

K (θ) = u2k = t

n
. (8.21)

which is due to the state density δ
(
t
n − u2k

)
. Thus

log
p(x |θ∗)
p(x |g(u))

= uka(x, u) =
√

t

n
a(x, u). (8.22)

which means

n∑

i=1

log
p(xi |θ∗)
p(xi |g(u))

= nu2k − √
nukξn(u) = t − √

tξn(u). (8.23)

On the other hand, applying Eq. (8.22) to Proposition 17, we obtain the following
proposition for equation (5.20).

Proposition 34 When the variance is relatively finite, the kth derivative s(k)(x,α)

of

s(x,α) =
∞∑

k=0

1

k! s
(k)(x, 0)αk
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defined in Eq. (5.19) becomes OP(n−k/2). Therefore, the mean of the residual
term EX [∑∞

j=k
1
j ! s

( j)(X, 0)α j ] and the sample mean 1
n

∑n
i=1

∑∞
j=k

1
j ! s

( j)(xi , 0)α j

become OP(n−k/2).

Proof This is obtained by substituting Eq. (8.22) into Proposition 33. �
In the following, we derive the generalization loss Gn and empirical loss Tn under

the condition of having a relatively finite variance. First, note that the posterior mean
and variance of

− log p(x |g(u)) = − log p(x |θ∗) +
√

t

n
a(x, u) (8.24)

(both functions of x)

E(x) := E[− log p(x |g(u)) | x1, . . . , xn]

V(x) := V[− log p(x |g(u)) | x1, . . . , xn]

are given by

E(x) = − log p(x |θ∗) + E
[√

t

n
a(x, u)

∣
∣
∣
∣x1, . . . , xn

]

(8.25)

V(x) = V
[√

t

n
a(x, u)

∣
∣
∣
∣x1, . . . , xn

]

= E
[
t

n
a(x, u)2

∣
∣
∣
∣x1, . . . , xn

]

− E
[√

t

n
a(x, u)

∣
∣
∣
∣x1, . . . , xn

]2

.

(8.26)
Here, E(·) and V(·) denote the posterior mean and variance with respect to t, u under
ξn , respectively.

We shall define

Sλ(a) :=
∫ ∞

0
tλ−1e−t+a

√
t dt , λ > 0.

Then, we have S′
λ(a) = Sλ+ 1

2
(a), S′′

λ(a) = Sλ+1(a), and

Sλ+1(a) =
∫ ∞

0
(−e−t )′(tλea

√
t )dt =

∫ ∞

0
e−t (tλea

√
t )′dt

=
∫ ∞

0
e−t a

2
√
t
tλea

√
t dt +

∫ ∞

0
e−tλtλ−1ea

√
t dt = a

2
Sλ+ 1

2
(a) + λSλ(a).

If we substitute a = ξn(u) into both sides and apply

T [·] :=
∑

α∈A

∫

[0,1]d
du∗

α[·]
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to both sides, then divide by T [Sλ(ξn(u))], we obtain

T [Sλ+1(ξn(u))]
T [Sλ(ξn(u))] = T [λSλ(ξn(u))]

T [Sλ(ξn(u))] + T [ ξn(u)

2 Sλ+ 1
2
(ξn(u))]

T [Sλ(ξn(u))] .

On the other hand, the denominator of (8.20) can be expressed as T [Sλ(ξn(u))], and
we have

T [Sλ+1(ξn(u))] = E[t |x1, . . . , xn] · T [Sλ(ξn(u))]

and

T [ξn(u)Sλ+1/2(ξn(u))] = E[√tξn(u)|x1, . . . , xn] · T [Sλ(ξn(u))].

Therefore, we can obtain

E[t |x1, . . . , xn] = λ + 1

2
E
[√

tξn(u)|x1, . . . , xn
]
. (8.27)

Furthermore, from (8.27), the following proposition holds for

Gn := EX [E[− log p(X |g(u))|x1, . . . , xn]]

and

Tn := 1

n

n∑

i=1

E[− log p(xi |g(u))|x1, . . . , xn].

Proposition 35 When the variance is relatively finite, we have

Gn = EX [− log p(X |θ∗)] + 1

n
(λ + 1

2
E[√tξn(u)|x1, . . . , xn]) − 1

2
EX [V(X)] + oP(

1

n
)

(8.28)
and

Tn = 1

n

n∑

i=1

{− log p(xi |θ∗)} + 1

n
(λ − 1

2
E[√tξn(u)|x1, . . . , xn]) − 1

2
EX [V(X)] + oP(

1

n
).

(8.29)

Proof (5.26) and (5.27) in Proposition 18 hold even for the non-regular case. From
(8.12) and (8.21), we have

EX [uka(X, u)] = uk · EX [a(X, u)] = u2k = t

n
.
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Furthermore, from (8.27), we have

E[ t
n
|x1, . . . , xn] = 1

n
{λ + 1

2
E[√tξn(u)|x1, . . . , xn]}.

On the other hand, applying E[·|x1, . . . , xn] to both sides of (8.23) gives

n∑

i=1

E(xi ) =
n∑

i=1

− log p(xi |θ∗) + E[t |x1, . . . , xn] − E[√tξn(u)|x1, . . . , xn].

Applying (8.27) to this, the last two terms on the right side become λ − 1
2E[√t

ξn(u)|x1, . . . , xn]. Moreover, due to V(x) = Op(1/n) and the weak law of large
numbers, we have

1

n

n∑

i=1

V(xi ) = EX [V(X)] + oP(1).

Finally, from Proposition 34, (8.28) and (8.29) hold. �
Next, we consider the functional variance, converging in law ξn to ξ in

V (ξn) := nEX [V(X)] = EX [V[√ta(X, u)|x1, . . . , xn]]

to define

V (ξ) := EX [V[√ta(X, u)]]

as the functional variance. The empirical functional variance is defined as

Vn :=
n∑

i=1

V(xi ) =
n∑

i=1

V[
√

t

n
a(xi , u)|x1, . . . , xn].

We denote the operation of the mean with respect to the variation of the analytic
function ξ as Eξ[·]. Under these definitions, the following proposition holds, which
corresponds to the generalization of Proposition 21 that holds in the regular case.

Note that V (ξn), V (ξ), and Vn are respectively the value − log p(X |θ) when
taken posterior variance with empirical process ξn and averaged over X , the value
− log p(X |θ) when taken posterior variance with the Gaussian process ξ and aver-
aged over X , and the value replacing the averaging over X in V (ξn) with the sample
average over x1, . . . , xn .

Proposition 36 When the variance is relatively finite, we have

EX1···Xn

[
E[√tξn(u)|X1, . . . , Xn]

]
= EX1···Xn [V (ξn)] + o(1) (8.30)
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and
Eξ

[
E[√tξ(u)

]
= Eξ[V (ξ)]. (8.31)

Proof Refer to the appendix at the end of this chapter.

In the following, we call 2ν := Eξ[E[√tξ(u)]] = Eξ[V (ξ)] as the singular fluc-
tuation. Propositions 35 and 36 imply the following proposition.

Proposition 37 Under the condition of relatively finite variance, we have

EX1···Xn [Gn] = EX [− log p(X |θ∗)] + 1

n
λ + o(

1

n
) (8.32)

and

EX1···Xn [Tn] = EX
[− log p(X |θ∗)

]+ 1

n
(λ − 2ν) + o(

1

n
). (8.33)

Proof From (8.30) and V (ξn) = nEX [V(X)], taking average of the both sides of
(8.28) and (8.29) with respect to X1, . . . , Xn , we have (8.32) and (8.33).

Proposition 38 When the variance is relatively finite, EX1,...,Xn [Vn] p−→ 2ν as n →
∞.

Proof Similar to the discussion in the proof of Proposition 35,

EX1...Xn [Vn] = EX1...Xn [
1

n

n∑

i=1

V[√ta(Xi , u)|ξn]] → EξEX [V[
√

t

n
a(X, u)|ξ] = Eξ[V (ξ)] = 2ν.

In this, we can consider the law of large numbers

1

n

n∑

i=1

V[√ta(xi , u)|ξ] → EX [V[√ta(X, u)|ξ]]

and the convergence in distribution ξn
d−→ ξ to be happening simultaneously. �

The value of the real log canonical threshold λ is d/2 if it is regular. The general
case will be discussed in Chap. 9.

Moreover, from Propositions 35 and 37, we have

EX1...Xn [Gn] = EX1...Xn [Tn + Vn

n
] + o(

1

n
). (8.34)

Under (8.34), we define the Watanabe-Akaike information criterion as

W AICn := Tn + Vn

n
. (8.35)
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Even without assuming regularity, Proposition 25 is established.
In the following sections, when we write the posterior mean as E[·], it means

E[·|x1, . . . , xn].

8.4 Equivalence with Cross-Validation-like Methods

Here, we consider a quantity called cross-validation (CV)5,

CVn := −1

n

n∑

i=1

log E−i [p(xi |θ)]. (8.36)

In this equation, E−i [·] represents the posterior mean for θ ∈ � under6 x1, . . . ,
xi−1, xi+1, . . . , xn ∈ X .

Generally, in CV, samples are divided into several groups. For example, if there are
10 groups, you learn from 9 groups and evaluate that learning with one group. Then,
by swapping the one group to be evaluated, you perform learning and evaluation a
total of 10 times, and an overall evaluation value is obtained. CV is considered to
be more versatile than the information criterion. When there are n samples, the CV
that divides them into n groups is called leave one out CV (LOOCV). The value of
(8.36) is the value of LOOCV, which calculates the posterior probability with n − 1
samples and evaluates − log E−i [p(xi |θ)] using one sample xi .

In the case of CV , the posterior probability is calculated based on the values of
x1, . . . , xn ∈ X excluding xi ∈ X , and it is evaluated at X = xi , so on average, it
takes the value of the generalization loss when the sample size is reduced by 1:

EX1...Xn [CVn] = EX1...Xn−1[Gn−1]. (8.37)

Furthermore, by introducing the inverse temperature β > 0, the marginal likeli-
hood and posterior distribution are extended as follows:

Zn(β) :=
∫

�

ϕ(θ)

n∏

i=1

p(xi |θ)βdθ

and

pβ(θ|x1, . . . , xn) = 1

Zn(β)
ϕ(θ)

n∏

i=1

p(xi |θ)β .

5 The content of this section is based on the following paper [9]: Sumio Watanabe, “Asymptotic
Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular
Learning Theory”, Journal of Machine Learning Research Volume 11 (2010) 3571–3594.
6 In this section, when we write E[·], it refers to E[·|x1, . . . , xn].
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So far, we have assumed β = 1 until Chap. 5, but the propositions we have shown
so far hold for any β > 0. However, for the free energy, we still consider the minus
logarithm of the marginal likelihood at β = 1

Fn = − log Zn(1) = − log Zn.

In that case, (8.35) can be written as

W AICn = Tn + Vn

n
β (8.38)

with

Tn = −1

n

n∑

i=1

log Eβ[p(xi |θ)]

and

Vn =
n∑

i=1

{Eβ[(log p(xi |θ))2] − (Eβ[log p(xi |θ)]
)2},

where the posterior averages in Tn , Vn , CVn are replaced from p(θ|x1, . . . , xn) to
pβ(θ|x1, . . . , xn). That is, for w : � → R,

Eβ[w(θ)] =
∫

�

w(θ)pβ(θ|x1, . . . , xn)dθ

E−i
β [w(θ)] =

∫

�

w(θ)pβ(θ|x1, . . . , xi−1, xi+1, . . . , xn)dθ

Vβ[w(θ)] = Eβ[{w(θ) − Eβ[w(θ)]}2]

are defined.
As this section will demonstrate, when β = 1, Eqs. (8.36) and (8.38) coincide,

excluding the oP(1/n2) term.
Here, we will use the notation

Tn(α) = 1

n

n∑

i=1

s(xi ,α).
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where, in the definition of s(·, ·) in (5.19), the posterior mean p(θ|x1, . . . , xn)
for θ ∈ � under x1, . . . , xn ∈ X is treated as a generalized form with β > 0 as
pβ(θ|x1, . . . , xn). Proposition 34 holds similarly even when generalized to β > 0.
At this time, CVn and W AICn can be written as follows.

Proposition 39

CVn = 1

n

n∑

i=1

log p(xi |θ∗) − T ′
n (0) +

(
2β − 1

2

)

T ′′
n (0) −

(
3β2 − 3β + 1

6

)

T ′′′
n (0) + OP (

1

n2
)

(8.39)

W AICn = 1

n

n∑

i=1

log p(xi |θ∗) − T ′
n (0) +

(
2β − 1

2

)

T ′′
n (0) − 1

6
T ′′′
n (0) + OP(

1

n2
).

(8.40)

Proof E−i
β [w(θ)] =

∫

�

w(θ)pβ(θ|x1, . . . , xi−1, xi+1, . . . , xn)dθ can be rewritten as

∫
�

w(θ){∏ j =i p(x j |θ)β}ϕ(θ)dθ
∫
�
{∏ j =i p(x j |θ)β}ϕ(θ)dθ

=
∫
�

w(θ)p(xi |θ)−β{∏n
i=1 p(xi |θ)β}ϕ(θ)dθ

∫
�
p(xi |θ)−β{∏n

i=1 p(xi |θ)β}ϕ(θ)dθ

so we can have

E−i
β [w(θ)] = Eβ[w(θ)p(xi |θ)−β]

Eβ[p(xi |θ)−β] (8.41)

CVn = −1

n

n∑

i=1

log
Eβ[
{

p(xi |θ)
p(xi |θ∗)

}1−β]

Eβ[
{

p(xi |θ)
p(xi |θ∗)

}−β]
+ 1

n

n∑

i=1

log p(xi |θ∗)

= Tn(−β) − Tn(1 − β) + 1

n

n∑

i=1

log p(xi |θ). (8.42)

where we have used the fact that s(x,α) = log Eβ[
{

p(xi |θ)
p(xi |θ∗)

}α]. Then, by expanding
Tn(α) around α = 0 using Taylor’s theorem, and setting α = −β and α = 1 − β,
we have

Tn(−β) = Tn(0) − βT ′
n (0) + β2

2
T ′′
n (0) − β3

6
T ′′′
n (0) + β4

24
T (4)
n (β1)

and

Tn(1 − β) = Tn(0) + (1 − β)T ′
n (0) + (1 − β)2

2
T ′′
n (0) + (1 − β)3

6
T ′′′
n (0) + (1 − β)4

24
T (4)
n (β2),
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where β1,β2 exist (|β1|, |β2| < 1 + β). Therefore, from Eq. (8.42) and Proposition
34, we have

CVn = 1

n

n∑

i=1

log p(xi |θ∗) − T ′
n (0) +

(
2β − 1

2

)

T ′′
n (0) −

(
3β2 − 3β + 1

6

)

T ′′′
n (0) + OP (

1

n2
),

which gives Eq. (8.39). Also, by substituting Tn = 1
n

∑n
i=1 log p(xi |θ∗) − Tn(1),

Vn/n = T ′′
n (0) into the definition of WAIC (8.38), and expanding Tn(1) using Tay-

lor’s theorem, we obtain from Proposition 34

W AICn = 1

n

n∑

i=1

log p(xi |θ∗) − Tn(1) + βT ′′
n (0) = −T ′

n (0) + 2β − 1

2
T ′′
n (0) − 1

6
T ′′′
n (0) + OP (

1

n2
),

which gives us Eq. (8.40). �
Proposition 39 implies, by once again applying Proposition 34, that

CVn − W AICn = β − β2

2
T ′′′
n (0) + oP(

1

n3/2
) = OP(

1

n3/2
). (8.43)

By the way, if we rewrite Propositions 35 and 37 for the general inverse temper-
ature β > 0, we get

Gn = EX [− log p(X |θ∗)] + 1

n
(
λ

β
+ 1

2
Eβ[√tξn(u)]) − 1

2
EX [Vβ(X)] + oP(

1

n
)

(8.44)

Tn = 1

n

n∑

i=1

{− log p(xi |θ∗)} + 1

n
(
λ

β
− 1

2
Eβ[√tξn(u)]) − 1

2
EX [Vβ(X)] + oP(

1

n
)

(8.45)

nEX1...Xn [Gn] = nEX [− log p(X |θ∗)] + λ − ν

β
+ ν + o(1) (8.46)

nEX1...Xn [Tn] = nE[− log p(X |θ∗)] + λ − ν

β
− ν + o(1). (8.47)

To end this section, we implement CV and compare its values withWAIC for β >

0. Due to the use of inverse temperature β > 0, we use the Stan code model15.stan .
The function for CV, using Eq. (8.41), is constructed as follows:

− 1

n

n∑

i=1

log E−i
β [p(xi |θ)] = −1

n

n∑

i=1

log
Eβ[p(xi |θ)1−β]
Eβ[p(xi |θ)−β] . (8.48)

1 CV <- function(log_likelihood, beta)
2 − mean(log(colMeans(exp((1−beta) * log_likelihood)))
3 − log(colMeans(exp(−beta * log_likelihood)))
4 )
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Fig. 8.2 Calculated WAIC and CV values for each β > 0 using the Boston data. As anticipated in
(8.43), the difference was at most 1%

The function for WAIC, assuming the use of model15.stan constructed in Chap. 6, is
extended as follows:

1 WAIC <- function(log_likelihood, beta)
2 T_n (log_likelihood) + beta*V_n (log_likelihood)

Example 76 We calculated the WAIC and CV values for each β > 0 using the
Boston data (Fig. 8.2). As anticipated in (8.43), the values for both were almost
identical for β = 1. Even otherwise, the difference was at most 1%. �

1 library(rstan); library(MASS)
2 data(Boston)
3 index <- c(1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14)

4 lm <- formula(medv ˜ . −medv, data=Boston)
5 df <- Boston[, index]
6 X <- model.matrix(lm, df)
7 N <- nrow(df)
8 K <- length(index)
9 Y <- df$medv

10 waic_values <- NULL
11 cv_values <- NULL
12 beta.seq <- seq(0.1, 1.6, 0.1)

13 for(beta in beta.seq){
14 data_list <- list(N=N, M=K, y=Y, x=X, beta=beta)
15 fit <- stan(file="model15.stan", data=data_list, seed=1)
16 m2 <- extract(fit)
17 waic_values <- c(waic_values, N*WAIC(m2$log_lik, beta))
18 cv_values <- c(cv_values, N*CV(m2$log_lik, beta))
19 }
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Appendix: Proof of Proposition

Proof of Proposition 30

In the following, we seek the inverse Mellin transform of the left-hand side of the
equation to be proved

ζ(z) =
∫

[0,1]d
uκz+hb(u)du.

Just like the Laplace or Fourier transforms, when seeking the inverse transform of a
sum, it is sufficient to compute the inverse transforms separately and then sum them.
Applying the Taylor expansion around ua = 0 to b(ua, ub), and letting

b(u) = b(0, ub) + u�
a ∇ab(0, ub) + · · ·

we obtain

ζ(z) :=
∫

[0,1]d
uκz+hb(0, ub)du +

∫

[0,1]d
uκz+hu�

a ∇ab(0, ub)du + . . .

=
⎛

⎝
∏

j∈S

∫ 1

0
u

κ j z+h j

j du j

⎞

⎠
∫

[0,1]d−m

(
∏

j /∈S
u

κ j z+h j

j )b(0, ub)dub + . . .

=
∏

j∈S

1

κ j z + h j + 1

∫

[0,1]d−m

(
∏

j /∈S
u

κ j z+h j

j )b(0, ub)dub + . . .

=
∏

j∈S

1

κ j
· 1

(z + λ)m

∫

[0,1]d−m

uμ
bb(0, ub)dub + · · · ,

where we set λ = min j
h j+1
κ j

, and focused on the vicinity of the pole z = −λ to
observe the behavior of the inverse Mellin transform as t → 0. The final · · · part
does not have poles in the region Re(z) > −λ, andwhen it does have poles at z = −λ,
their order is less than m. Therefore, it can be seen that the pole with the maximum
real part of ζ(z) is −λ and its order is m. Also, since μ j > −1, j /∈ S, the above
integral takes a finite value. Applying the inverseMellin transform to its leading term
results in

∏

j∈S

1

κ j
· 1

(z + λ)m
uμ
bb(0, ub) �→ γmδ(ua)t

λ−1(− log t)m−1uμ
bb(ua, ub).(8.49)

Applying the inverse Mellin transform to terms other than the main term, the real
part is less than or equal to−λ, and the order of the poles (−λ) is less thanm, so they
converge to zero faster than the main term as t → 0, becoming o(tλ−1(− log t)m−1).
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Since 0 < t < 1, the sum of the inverse Mellin transformed values can be written
as

γmδ(ua)t
λ−1(− log t)m−1uμ

bb(u)du + o(tλ−1(− log t)m−1).

�

Proof of Proposition 36

Given β > 0, expressing Zn(β)/Zn−1(β) in two ways yields the equality7

∫
�
p(xn|θ)β∏n−1

i=1 p(xi |θ)βϕ(θ)dθ

Zn−1(β)
=
[∫

�
p(xn|θ)−β

∏n
i=1 p(xi |θ)βϕ(θ)dθ

Zn(β)

]−1

.

(8.50)

Taking the logarithm of both sides of this equation, replacing the xn on the right-hand
side with x1, . . . , xn , and taking the sum and dividing by n, and finally taking the
average EX1...Xn [·] of both sides yields

EX1...Xn−1EX [log E−n
β [
{

p(X |θ)
p(X |θ∗)

}β

] = −EX1...Xn [
1

n

n∑

i=1

log Eβ[
{

p(X |θ)
p(X |θ∗)

}−β

],

(8.51)

where E−n
β [·] is assumed to be an operation of posterior average by pβ under

x1, . . . , xn−1. From now on, we shall define

Gn(α) := EX [log Eα[
{

p(X |θ)
p(X |θ∗)

}α

]] = EX [s(X,α)]

and

Tn(α) := 1

n

n∑

i=1

log Eα[
{

p(xi |θ)
p(xi |θ∗)

}α

] = 1

n

n∑

i=1

s(xi ,α).

For example, we shall assume that

Gn−1(α) = EX [log E−n
α [
{

p(X |θ)
p(X |θ∗)

}α

].

In this case, (8.51) implies

7 For the symbols Zn(β) and pβ , refer to Sect. 7.4.
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EX1...Xn−1[Gn−1(α)] = −EX1...Xn [Tn(−α)]. (8.52)

Applying the mean value theorem to both sides of (8.52) and substituting α = 1
results in, for some 0 < α1,α2 < 1,

EX1...Xn−1 [G′
n−1(0) + 1

2
G′′
n−1(0) + 1

3!G
′′′
n−1(α

1)] = EX1...Xn [T ′
n (0) − 1

2
T ′′
n (0) + 1

3!T
′′′
n (α2)].

(8.53)

Further, we shall write

{
Gn − EX [log p(X |θ∗)] = −Gn(1) = −G ′

n(0) − 1
2G ′′

n (0) − · · ·
Tn − 1

n

∑n
i=1 log p(xi |θ∗) = −Tn(1) = −T ′

n (0) − 1
2T ′′

n (0) − · · · .

Applying the result of the proof of Proposition 35, we obtain the following.
The following holds:

G ′
n(0) = 1

n
(λ + 1

2
E[√tξn(u)|x1, . . . , xn])

T ′
n (0) = 1

n
(λ − 1

2
E[√tξn(u)|x1, . . . , xn])

G ′′
n (0) = EX [V(X)]

T ′′
n (0) = 1

n

n∑

i=1

V(xi ) = EX [V(X)] + oP(1).

Moreover, since Gn − Gn−1 = oP(1), we have

EX1...Xn [Gn] = EX1...Xn [Gn−1] + o(1).

Substituting these into (8.53), we obtain

EX1...Xn

[
E[√tξn(u)|X1, . . . , Xn])

]
= nEX1...XnEX [V(X)] + o(1).

Defining nEX [V(X)] as V (ξn), (8.30) holds. Further, by letting n → ∞, (8.31) holds,
where we used the fact that G(k)

n (0), T (k)
n (0), k ≥ 2 are Op(n−k/2) (Proposition 34),

and therefore, when the average EX1···Xn [·] is applied to them, they become o(1). �
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Exercises 75–86

75. When h j+1
κ j

= λ, j = 1, . . . , d, prove the following equation by applying Exam-
ples 72, 73, and Eq. (8.4) in order:

∫ 1

0
t z · γd t

λ−1(− log t)d−1dt =
∫ 1

0

∫

[0,1]d
t z · δ(t − uκ)uhdudt.

76. Answer the following questions about partial fraction decomposition.

(a) Express α,β, γ ∈ R in terms of p, q so that they satisfy the following equa-
tion for any real number z, where p = q:

1

(z + p)2(z + q)
= α

(z + p)2
+ β

(z + p)
+ γ

z + q
.

(b) For any real number z, we want to find ck, j ∈ R that satisfy the following
equation. How many conditions (linear forms) are needed for the neces-
sary ck, j? And does such a solution exist?, where λk , k = 1, . . . , s are all
different:

s∏

k=1

1

(z + λk)mk
=

s∑

k=1

mk∑

j=1

ck, j
(z + λk) j

.

77. Show that the function in Eq. (8.2) is a probability density function for each
a > 0. Also, display the shape of the function when a = 10−3. [Hint] Change
the upper limits of the x-axis and y-axis of the graph.

78. Why is the value of the state density function v(t) as t → 0 dominated by k that
minimizes λk , and in the case where there are identical ones, k with a largermk?

79. About the generalization of the posterior distribution,

(a) HowwasEq. (8.15) obtained by applying the formula of state density (Propo-
sition 30)?

(b) Prove the following equation:

log

(
∑

α

(log n)mα−1

nλα
Iα

)

= −λ log n + (m − 1) log log n + log

⎛

⎝
∑

α∈A

Iα

⎞

⎠+ oP (1).

80. For Sλ(a) =
∫ ∞

0
tλ−1e−t+a

√
t dt , λ > 0, prove the following:

(a) S′
λ(a) = Sλ+ 1

2
(a)

(b) S′′
λ(a) = Sλ+1(a)

(c) Sλ+1(a) = a

2
Sλ+ 1

2
(a) + λSλ(a).
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Furthermore, derive Eq. (8.27) from (c).
81. About the proof of Proposition 36,

(a) Demonstrate Eq. (8.51) from Eq. (8.50).
(b) What are the specific values of G ′

n(0), G ′′
n (0), T ′

n (0), and T ′′
n (0)?

82. In the proof ofPropositions 35 and38,what kindof convergence is the following?

Vn = 1

n

n∑

i=1

V
[√

ta(xi , u)|x1, . . . , xn
]

→ EX [V
[√

t

n
a(X, u)]

]

= V (ξ)

EX1...Xn [Vn ] = EX1...Xn [ 1
n

n∑

i=1

V[√ta(xi , u)|X1, . . . , Xn ]] → EξEX [V[
√

t

n
a(X, u)]] = Eξ [V (ξ)].

83. Demonstrate Eq. (8.34) from Propositions 37 and 38.
84. Prove Eqs. (8.44), (8.45), (8.46), and (8.47) for a general β > 0.
85. Derive Eq. (8.48) using Eq. (8.41). Also, why can the CV value be obtained with

the following function?

1 CV <- function(log_likelihood, beta)
2 −mean(log(colMeans(exp((1−beta)*log_likelihood)))
3 −log(colMeans(exp(−beta*log_likelihood)))
4 )

5

86. Modify the program in Example 76 to draw a graph similar to Fig. 8.2. Also, in
Fig. 8.2, it can be seen that WAIC and CV show close values near β = 1. How
can this be explained theoretically?



Chapter 9
WBIC and Its Application to Machine
Learning

In this chapter, we examine the value of the real log canonical threshold λ. First,
assuming a known value of λ, we evaluate the WBIC values for each β > 0. Then,
we determine the value of λ from the WBIC values obtained for different β > 0.
The value of λ is generally below d/2, and in the regular case, it is equal to d/2.
We prove this result. However, there are few statistical models in which the value
of λ is known in advance. In this chapter, we analytically derive the value of λ for
the so-called low-rank regression, which approximates a three-layer neural network
with a linear model (the proof is provided in the appendix at the end of the chapter).
Furthermore, we demonstrate a method to experimentally determine the same λ and
compare it with the theoretical value. Next, we introduce a method to compare the
WBIC values for Gaussian mixture models and select an appropriate model. Finally,
we analytically determine the value of λ when applying Jeffreys prior, known as the
uninformative prior.

This chapter may contain more research-oriented content, but we encourage read-
ers who have reached this far to thoroughly study it until the end.

9.1 Properties of WBIC

We define the Watanabe Bayesian Information Criterion (WBIC) when the inverse
temperature is β > 0 as1

WBICn := Eβ

[
−

n∑
i=1

log p(xi |θ)
]

. (9.1)

1 This section is based on the following paper [10]: Sumio Watanabe, “A Widely Applicable
Bayesian Information Criterion”, Journal of Machine Learning Research Volume 14 (2013) 867–
897.
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On the other hand, for the generalized free energy

Fn(β) = − log
∫

�

n∏
i=1

p(xi |θ)βϕ(θ)dθ , β > 0 (9.2)

(Fn(1) becomes the free energy Fn), we have

F ′
n(β) = Eβ

[
−

n∑
i=1

log p(xi |θ)
]

= WBICn

F ′′
n (β) = −Eβ

[
{

n∑
i=1

log p(xi |θ)}2
]

+
(
Eβ[

n∑
i=1

log p(xi |θ)]
)2

< 0.

Therefore,WBICn = F ′
n(β) is amonotonically decreasing function ofβ. Also, since

Fn(0) = 0, applying the mean value theorem to

Fn = Fn(1) =
∫ 1

0
F ′
n(β)dβ,

we have

Fn = F ′
n(β

1) = Eβ1 [−
n∑

i=1

log p(xi |θ)] ,

where β = β1 (0 < β1 < 1) exists. Moreover, since F ′
n(β) is a monotonically

decreasing function of β, there exists an inverse temperature β > 0 such that the
values of the free energy Fn and WBICn are equal.

WBIC guarantees the performance stated in the following proposition, without
assuming that the true distribution is regular with respect to the statistical model.

Proposition 40 For β0 > 0, the value of WBIC, W BICn, when the inverse temper-
ature is β = β0/ log n is such that

W BICn =
n∑

i=1

− log p(xi |θ∗) + λ log n

β0
+Un

√
λ log n

2β0
+ Op(1) (9.3)

exists, where U1,U2, . . . is a sequence of random variables that converges in law to
a normal distribution with mean 0.

Proof Refer to the appendix at the end of the chapter.
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9.2 Calculation of the Learning Coefficient

In this section, we consider the calculation of the real log canonical threshold λ
discussed in Chaps. 7 and 8. So far, we have referred to λ as the real logarithmic
eigenvalue, but in this chapter, we will call it the learning coefficient.

For simplicity, we shall assume that the true distribution q is realizable with
respect to the statistical model, that is, there exists θ∗ ∈ �∗ such that q(·) = p(·|θ∗).
Consider the problem of finding the greatest pole −λ and its multiplicity m for the
ζ function of

K (θ) = EX [log q(X)

p(X |θ) ]

when the prior probability is ϕ:

ζ(z) :=
∫

�

K (θ)zϕ(θ)dθ.

From here on, we will call the subset of �

supp(ϕ) := {θ ∈ �|ϕ(θ) > 0}

the support of ϕ(·), where A denotes the closure of a set A ∈ R
d , the smallest closed

set that contains that set.

Proposition 41 Suppose supp(ϕ) ∩ �∗ is not an empty set. Let λ and m be the real
log canonical threshold and its multiplicity.

1. The following quantities have positive constants.

lim
n→∞

nλ

(log n)m−1

∫
�

exp(−nK (θ))ϕ(θ)dθ (9.4)

and

lim
t→0

1

tλ−1(− log t)m−1

∫
�

δ(t − K (θ))ϕ(θ)dθ. (9.5)

2.

λ = − lim
n→∞

log
∫
�
exp{−nK (θ)}ϕ(θ)dθ

log n
. (9.6)

Proof The state density formula (8.7) generally becomes an infinite sum

v(t) =
∫

�

δ(t − K (θ))ϕ(θ)dθ =
∞∑
k=1

mk∑
j=1

ck, j t
λk−1 {− log t} j−1 . (9.7)

Let M := maxθ K (θ). Then, we have
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∫
�

exp{−nK (θ)}ϕ(θ)dθ =
∫ M

0
exp(−nt)v(t)dt =

∫ Mn

0
exp(−τ )v(

τ

n
) · 1

n
dτ

=
∫ Mn

0
e−τ

∞∑
k=1

mk∑
j=1

ck, j
(τ

n

)λk−1 {− log(
τ

n
)
} j−1 1

n
dτ

=
∞∑
k=1

mk∑
j=1

ck, j
1

nλk

∫ Mn

0
e−τ τλk−1{− log

τ

n
} j−1dτ

= C
(log n)m−1

nλ
+ o(

(log n)m−1

nλ
),

where C is a constant. Therefore, (9.4), (9.6) hold. (9.5) is obtained from (9.7).
�

Proposition 42 If there exists an open set U such that {θ ∈ U ∩ �∗|ϕ(θ) > 0} is
not empty, λ ≤ d/2 holds.

Proof Choose θ∗ ∈ �∗ such that ϕ(θ∗) > 0. Without loss of generality, we can
assume θ∗ = 0. Let εn := n−1/2, we have

Z(n) :=
∫

�

exp(−nK (θ))ϕ(θ)dθ ≥
∫

‖θ‖2<εn

exp(−nK (θ))ϕ(θ)dθ.

We will evaluate the right-hand side. From Assumption 4, since K (θ) is an analytic
function,we can performaTaylor expansion at θ = 0.Also, since the true distribution
is realizable, we have K (0) = 0, and from the assumption that θ∗ = 0 is an interior

point of�∗, we get∇K (θ) = 0. Therefore, for Ki, j := ∂2K (θ)

∂θi∂θ j
|θ=0, i, j = 1, . . . , d

and for sufficiently small ‖θ‖2 > 0, we have

K (θ) = 1

2

d∑
i=1

d∑
j=1

Ki, jθiθ j + o(‖θ‖32) (9.8)

Z(n) ≥
∫

‖θ‖2<εn

exp{−n

2

d∑
i=1

d∑
j=1

Ki, jθiθ j − n · O(‖θ‖32)}ϕ(θ)dθ. (9.9)

Note that we are not assuming regularity, so (9.8) does not necessarily become
positive definite in the vicinity of θ = 0. Furthermore, if we let θ′ = √

nθ ∈ R
d , the

Jacobian of the transformation is n−d/2, and since ‖θ‖2 < εn ⇐⇒ ‖θ′‖2 < 1, the
right-hand side of (9.9) becomes

∫
||θ′||2<1

exp{−1

2

d∑
i=1

d∑
j=1

Ki, jθ
′
iθ

′
j }
(
1 − 1√

n
O(||θ′||32)

)
ϕ

(
θ′
√
n

)
n−d/2dθ′.
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Moreover, from the assumption that ϕ(0) > 0, as n → ∞, we have

Z(n)nd/2

≥
∫

||θ′||2<1
exp{−1

2

d∑
i=1

d∑
j=1

Ki, jθ
′
iθ

′
j }
(
1 − 1√

n
O(||θ′||32)

)
ϕ

(
θ′
√
n

)
dθ′

→
∫

‖θ′‖2<1
exp{−1

2

d∑
i=1

d∑
j=1

Ki, jθ
′
iθ

′
j }ϕ(0)dθ′ , (9.10)

which converges to a positive value. Furthermore, 1. in Proposition 41 means that

Z(n)
nλ

(log n)m−1

converges to a positive constant, but if λ > d/2, then (9.10) would converge to 0,
which is a contradiction. Therefore, λ ≤ d/2 holds. �

Proposition 43 Let each θ ∈ � be written as θ = (u, v), u ∈ R
d1 , v ∈ R

d2 . If there
exists a u∗ ∈ R

d1 that satisfies the following two conditions:

1. For any v ∈ R
d2 such that (u∗, v) ∈ �, we have K (u∗, v) = 0 and

2. There exists an open set V ⊆ R
d2 such that ϕ(u∗, v) > 0, for all v ∈ V ,

then λ ≤ d1/2 holds.

Proof Without loss of generality, we can assume that u∗ = 0 and 0 ∈ V . In the proof
of Proposition 42, we can rewrite (9.8) as

K (u, v) = 1

2

d1∑
i=1

d1∑
j=1

Ki, j ui u j + o(‖u‖32) , v ∈ V

at u → u∗, and follow the same line of argument. �

Proposition 44 Assume that the true distribution is regular with respect to the sta-
tistical model and is feasible. When ϕ(θ∗) > 0, the following holds:

λ = d

2
, m = 1.

Proof Because it is regular, θ∗ ∈ �∗ is unique. Without loss of generality, we shall
set θ∗ = 0. By applying a orthogonal transformation to θ, we can use the mean value
theorem to write:

K (θ) = K (0) + θ�∇K (θ)|θ=0 + 1

2
θ�∇2K (θ1)θ = 1

2
θ� J (θ1)θ.
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If we take ε > 0 to be sufficiently small, for every θ such that K (θ) < ε, we can
make J (θ1) positive definite. If we denote the maximum and minimum eigenvalues
of J (θ1) when θ moves within the range of K (θ) ≤ ε as λmax and λmin , respectively,
we can write

λmin

2

d∑
j=1

θ2j ≤ 1

2
θ� J (θ1)θ ≤ λmax

2

d∑
j=1

θ2j . (9.11)

Then, define the blow-up g : U1 ∪ · · · ∪Ud → � in local coordinates (u1, . . . ,
ud) ∈ Ui for i = 1, . . . , d as θi = ui , θ j = uiu j ( j �= i). In this case, Eq. (9.11)
can be written as follows by letting ûi = (û1, . . . , ûd) ∈ R

d where û j = u j ( j �= i)
and ûi = 1,

λmin

2
u2i {1 +

∑
j �=i

u2j } ≤ 1

2
u2i û

� J (θ1)û ≤ λmax

2
u2i {1 +

∑
j �=i

u2j }.

Therefore, K (g(u)) in the neighborhood of u = 0 becomes the u2i multiplied
by some non-zero analytic function a(u). Furthermore, when i �= j , we have

∂θ j

∂uk
=
⎧⎨
⎩
1, k = i
ui , k = j
0, k �= i, j

, and when i = j , we have
∂θ j

∂uk
=
{
1, k = i
0, k �= i

. Therefore,

the determinant of the Jacobian, which has ∂θ j

∂uk
as the ( j, k)-th component, is

|g′(u)| = u2i for each i = 1, . . . , d. Hence, by choosing κ = (0, . . . , 0, 2, 0, . . . , 0)
and h = (0, . . . , 0, d − 1, 0, . . . , 0), it follows that λ = d/2 and m = 1. The same
argument applies to the other Ui , i = 1, . . . , d. �

Example 77 (Watanabe [12]) In this example, we consider the standard normal
distributionN and define σ(x) := ex − 1. We assume that the sets X and Y , and the
elements x ∈ X and y ∈ Y , are such that the statistical model p(y|x, θ) and the true
distribution q(y) are given respectively by

p(y|x) = 1√
2π

exp{− (y − aσ(bx) − cσ(dx))2

2
}

and

q(y) = 1√
2π

exp{− y2

2
}.

We also assume that the region where the prior probability ϕ(θ) > 0 is compact and
that ϕ(θ) > 0 for θ = (a, b, c, d) = (0, 0, 0, 0). The following equations hold:

EY [log q(Y )

p(Y |x) ] = 1

2
{aσ(bx) + cσ(dx)}2 (9.12)
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and

K (θ) =
∫
X
EY [log q(Y )

p(Y |x) ]q(x)dx = 1

2

∫
X

{aσ(bx) + cσ(dx)}2q(x)dx,

where q(x) is assumed to be known. Then, we define

h(s, θ) := aσ(bs) + cσ(ds) =
∞∑
k=1

sk

k! (ab
k + cdk). (9.13)

We can also define pk = abk + cdk . Then, K (θ) = 0 if and only if pk = 0 for all k.
Next, we shall apply the local coordinates used to obtain the normal crossing (11) in
the blow-up at the beginning of Example 71 in Chap. 7. We have

z = ξ3 − xξ1 = α1w − xξ1 = β1xw − xξ1 = γ1ξ1xw − xξ1 = δ2ξ1(ξ1 − 1)xw − ξ1x .

For u = (x, ξ1, δ2, w), we define g(u) by

a = x , b = ξ1w , c = xw(ξ1 − 1)ξ1δ2 − xξ1 , d = w. (9.14)

Then, pk := abk + cdk is given by p1 = xξ1(ξ1 − 1)δ2w2, p2 = xξ1(ξ1 − 1)(1 +
δ2w)w2, and for p ≥ 2, we have

pk = x(ξ1w)k + wk{xw(ξ1 − 1)ξ1δ2 − xξ1}
= xξ1(ξ1 − 1){1 + ξ1 + · · · + ξk−2

1 + δ2w}wk . (9.15)

Hence, we have

h(s, g(u)) = xξ1(ξ1 − 1)w2H(s, u)

with

H(s, u) = δ2s +
∞∑
k=2

sk

k!w
k−2{

k−2∑
j=0

ξ
j
1 + δ2w}

and

K (g(u)) = 1

2
{xξ1(ξ1 − 1)w2}2

∫
X
H(s, u)2q(s)ds.

Now, when we calculate the Jacobian of (9.14), the determinant becomes the product
of the diagonal elements, so

|g′(u)| = |1 · w · x(ξ1 − 1)ξ1w · 1| = |x(ξ1 − 1)ξ1w
2|. (9.16)
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Table 9.1 The normal crossing of (5)(7)(9)(10)(11) in Example 71

u g(u)
h(x, g(u))

H(x, u)
|g′(u)| Pole

(5) (x,α2, ξ1, ξ3) (x,α2ξ1ξ3, ξ3 −
xξ1,α2ξ3)

α2ξ
2
3 |α2ξ

2
3 | (−∞,−1,−∞,− 3

4 )

(7) (w,α1,β2, ξ1) (α1β2, wξ1,α1w −
α1β2ξ1w)

α1w
2 |α1w

2| (− 3
4 ,−1,−∞,−∞)

(9) (x, w,β1, γ2) (x, wβ1γ2, xwβ1 −
xβ1γ2, w)

xw2β1 |xw2β1| (−1,− 3
4 ,−1,−∞)

(10) (x, w, γ1, δ1) (x, w(1 + δ1γ1), xw2γ1 |xw2γ1 (−1,− 3
4 ,−1,−∞)

x(1 + δ1γ1)(wγ1 −
1), w)

·(1 +
δ1γ1)

·(1 +
δ1γ1)|

(11) (x, w, δ2, ξ1) (x, ξ1w, −xw2ξ1 |xw2ξ1 (−1,− 3
4 ,−∞,−1)

xw(ξ1 − 1)ξ1δ2 −
xξ1, w)

·(1 − ξ1) ·(1 − ξ1)|

Moreover, since ϕ(0) > 0 and H(s, 0) = s2/2 �≡ 0, for the local coordinates (x, w,

δ2, ξ1), we have κ = (2, 4, 0, 2), h = (1, 2, 0, 1), so (h + 1)/κ = (1, 3/4,∞, 1).
Similarly, for the other normal intersections (5)(7)(9)(10) corresponding to Exam-

ple 71, with local coordinates

(x,α2ξ1ξ3, ξ3 − xξ1,α2ξ3) , (α1β2, wξ1, wα1 − ξ1α1β2, w) ,

(x, wβ1γ2, xwβ1 − xβ1γ2, w) , (x, w(1 + γ1δ1), x(1 + δ1γ1)(wγ1 − 1), w).

Similar calculations yield values of λ all greater than or equal to 3/4 (see Table 9.1).
Hence, we have λ = 3/4, m = 1. �

So far, we have been mathematically determining the values of λ andm, but at the
end of this section, let’s consider a method for calculating them numerically from
data.

Proposition 45 Let β01,β02 > 0 be constants, and let β1 := β01/ log n and β2 =
β02/ log n. Then,

Eβ1 [
∑n

i=1 − log p(xi |θ)] − Eβ2 [
∑n

i=1 − log p(xi |θ)]
1/β1 − 1/β2

= λ + OP(1/
√
log n)

(9.17)
holds.

Proof From Proposition 40, we have

Eβ1 [
n∑

i=1

− log p(xi |θ)] =
n∑

i=1

− log p(xi |θ∗) + λ

β1
+ OP(

√
log n)
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Fig. 9.1 For the Boston dataset, the intercept and slope are calculated from the pairs of 1/β and the
corresponding WBIC values for β = 100, 200, 300, 400, 500, 600, and applied to the six sample
points

Eβ2 [
n∑

i=1

− log p(xi |θ)] =
n∑

i=1

− log p(xi |θ∗) + λ

β2
+ OP(

√
log n).

Since 1/β1 − 1/β2 = OP(log n), Eq. (9.17) holds. �

Example 78 For the Boston dataset, a regression equation was obtained from the
data of pairs of 1/β and the corresponding WBIC values using the least squares
method.2 However, since the value of β becomes unstable when it is too small
(β < 1) and Stan does not output the correct value when it is too large, we used
the values 100, 200, 300, 400, 500, 600 divided by log n as β, and calculated the
intercept and slope when 1/β was taken on the horizontal axis and WBICn on the
vertical axis, and applied them to six sample points (Fig. 9.1). The estimated value
was λ̂ = 5.50. Since d = 11, according to Proposition 44, λ = d/2 = 5.5 suggests
that the true distribution was regular with respect to the statistical model. As it is a
linear regression, two of the three conditions of regularity are satisfied, but it seems

that the Hessian matrix

[
∂2D(q‖p(·|θ))

∂θi∂θ j
|θ=θ∗

]
∈ R

d×d was positive definite. �

2 Execution may take a considerable amount of time depending on the PC environment.



210 9 WBIC and Its Application to Machine Learning

1 wbic <- function(log_likelihood) - mean(rowSums(log_likelihood))
2 library(rstan)
3 library(MASS)
4 data(Boston)
5 index <- c(1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14)
6 df <- Boston[, index]
7 lm <- formula(medv ~ . -medv, data=Boston)
8 x <- model.matrix(lm, df)
9 n <- nrow(df)

10 K <- length(index)
11 y <- df$medv
12 b.1 <- c(100,200,300,400,500,600)
13 m <- length(b.1)
14 WBIC.1 <- NULL
15 for(i in 1:m){
16 beta.1 <- b.1[i]/log(n)
17 data_list <- list(N = n, M = K, y = y, x = x, beta=beta.1)
18 fit <- stan(file = "model15.stan", data = data_list, seed = 1,iter

=3000)
19 mm <- rstan::extract(fit)
20 wbic.1 <- wbic(mm$log_lik)
21 WBIC.1 <- c(WBIC.1,wbic.1)
22 }
23 beta.1<-b.1/log(n)
24 u<-1/beta.1
25 uu<-u-mean(u)
26 v<-WBIC.1
27 vv<-v-mean(v)
28 slope<-sum(uu*vv)/sum(uu*uu)
29 intercept<-mean(v)-slope*mean(u)
30 plot(u,v, xlab="1/beta",ylab="WBIC",main="Values of beta and WBIC in
31 the Boston data")
32 abline(a=intercept, b=slope, col="red")

Fig. 9.2 A three-layer
neural network. The input
x1, . . . , xM and output
y1, . . . , yN are sandwiched
by the variables z1, . . . , zH
in the hidden layer

xM

...

x2

x1

yN

...
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9.3 Application to Deep Learning

Let’s apply the results of the previous section to a three-layer neural network. As
shown in Fig. 9.2, suppose that the number of units in the input layer, hidden layer,
and output layer are M, H, N , respectively. We use a three-layer neural network h
and the probability density function q(x) on R

M (the probability distribution of the
input), and define the model as

p(x, y|θ) = q(x)

(2π)N/2
exp{−1

2
‖y − h(x, θ)‖2}

with

h(x, θ) =
H∑

k=1

akσ(x�bk + ck)

and

σ(t) = tanh(t) = et − e−t

et + e−t
,

where ak, ck ∈ R, bk ∈ R
M , k = 1, . . . , H , and the true distribution q(x) of x ∈ X

is known. We assume that the true distribution is realizable, that is, there exists a
θ∗ ∈ �∗ such that q(x, y) = p(x, y|θ∗). In this case, the log-likelihood ratio is given
by

f (x, y, θ) = log q(x, y) − log p(x, y|θ) = 1

2
[‖y − h(x, θ)‖2 − ‖y − h(x, θ∗)‖2],

where the convergence radius of the function σ(t) = tanh(t) is π/2, and there exists
a sequence of rational numbers {Ai } such that

σ(t) = t − 1

3
t3 + 2

15
t5 − · · · =

∞∑
i=0

Ai

(2i + 1)! t
2i+1.

For x, θ ∈ R
d , σ(x�θ) can be written as

∞∑
i=0

Ai

(2i + 1)! (x
�θ)2i+1=

∞∑
i=0

Ai

(2i + 1)!
∑ (2i + 1)!

α1! . . . αd !
d∏
j=1

(x jθ j )
α j =

∑
α

Cαx
αθα,
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where
∑

α is the sum overα1 + · · · + αd = 2i + 1,α1, . . . ,αd ≥ 0,Cα is a constant
determined byα = (α1, . . . ,αd), and xα = ∏d

j=1 x
α j

j and θα = ∏d
j=1 θ

α j

j . Similarly,
this holds when we take d = M + 1, concatenate bk = (bk,1, . . . , bk,M) ∈ R

M and
ck ∈ R into θk ∈ R

M+1, and concatenate x ∈ R
M and 1 into ∈ R

M+1 and write it
again as x . That is, there exists a polynomial hα(x) such that

h(x, θ) =
H∑

k=1

akσ(x�bk + ck) =
∑

α∈NM+1

hα(x)θα ,

where α ∈ N
M+1 is a multi-index. Therefore, if q(x) has a compact support, both

y�h(x, θ) and ‖h(x, θ)‖22 are bounded, and, as a result, f (x, y, θ) becomes a L2(q)-
valued analytic function.

When the true number of hidden units is H∗, the following facts are known about
the learning coefficient λ:

1. λ ≤ 1

2
[H∗(M + N + 1)+min{(N + 1)(H − H∗), M(H−H∗),

1

3
(M(H−H∗)+

2M(N + 1))}] [11]
2. When M = N = 1 and H∗ = 0 [6], we have

λ = [√H ]2 + [√H ] + H

4[√H ] + 2
,

where [a] represents the largest integer that does not exceed a > 0.
In the case where σ(x) = x and ck = 0, if we denote A ∈ R

H×M , B ∈ R
N×H ,

and their true values as A∗, B∗, we can express the relationship as

y − B∗A∗x ∼ N (0, IN ).

This is called a reduced-rank regression. Reduced-rank regression is a type of regres-
sion that assumes that the rank of the linear transformation of inputs and outputs is
smaller to the dimensions of the inputs and outputs. The rank of the linear transforma-
tion corresponds to the number of hidden variables. There are few examples where
the exact value of the learning coefficient, rather than its upper or lower bounds,
has been analytically determined. In this book, we provide a proof for the follow-
ing proposition in the appendix. It is a derivation that can be understood with the
knowledge gained so far, and it is recommended to try it out.

Proposition 46 (Aoyagi [7]) In reduced-rank regression, let ϕ(θ∗) > 0 be the
value of the prior distribution at the true parameters, and let the rank of B∗A∗
be r := H∗. When r ≤ min{H, M, N }, the following holds.
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M + r N + r H + r M + H
Case : : : + m λ

N + H M + H M + N N + r

1a ≤ ≤ ≤ Even 1 −(H + r − M − N )2/8 + MN/2

1b Odd 2 −(H + r − M − N )2/8 + MN/2 + 1/8
2 > 1 (HN − Hr + Mr)/2
3 > 1 (HM − Hr + Nr)/2
4 > 1 MN/2

Proof Refer to the appendix at the end of this chapter.
The mathematical derivation is sufficient, but we shall also try to calculate it

numerically using the method from the previous section.
It is sufficient to calculate the WBIC value for each β > 0. However, to do that,

we need to set the prior probability of the matrix BA.
Here, we modified the implementation of reduced-rank regression by B. Files [3]

using Stan, and attempted to calculate theWBIC value. First, assume that X ∈ R
n×M

and Y ∈ R
n×N are observed. By setting A ∈ R

H×M and B = R
N×H , and assuming

e ∼ N (0, τ 2 In), we model as follows:

Y = X A�B� + e.

We want to calculate the posterior distribution of A�B� ∈ R
M×N . To do this, we

need to set the prior distribution of A�B�. First, to allow the distribution of each
component of A� to vary row by row, set Ai, j ∼ N (0,λ j ) and λ j ∼ N+(0, 2). Here,
∼ N+(0, 1) denotes the distribution of the absolute value of a random variable fol-
lowing the standard normal distribution. Let Âi, j ∼ N (0, 1),� = diag(λ1, . . . ,λM)

(diagonal matrix), and A� = � ÂT . Then, decompose Â� into the product of a lower
triangular matrix L ∈ R

M×H with non-negative diagonal elements and an orthogonal
matrix Q ∈ R

H×H , i.e., Â� = LQ. Since Q is an orthogonalmatrix, the distributions
of B� and B̂� := QB� are the same. We assume B̂i j ∼ N (0, 1)

A�B� = �A�B� = ALQB� = �L B̂�,

where the probability that each diagonal element Li,i of L is x > 0 is proportional
to

xk−i exp{− x2

2
}

(Leung-Drton’s prior distribution [2]), and the off-diagonal elements follow N (0, 1)
(each component is independent).

On the other hand, for e ∼ N (0, τ 2 In), the prior distribution of τ is assumed to
be τ ∼ IG(ν,σ) with ν ∼ G(2, 0.1) and σ ∼ Cauchy(0, 1), where the probability
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density functions of the Gamma distribution u ∼ G(α,β) and the inverse Gamma
distribution v ∼ IG(ν,σ) are given by

fG(u|α,β) = uα−1e−βuβα

�(α)
, f IG(v|ν,σ) = 2

�( ν
2 )

(
νσ2

2
)

ν
2 v−ν−1 exp(−νσ2

2v2
)

using theGamma function�. Then,when ν̃ = ν + N and σ̃2 = (σ2 + z�z)/(ν + N )

are set, from
∫∞
0 f IG(τ |ν̃, σ̃)dτ = 1, we have have

∫ ∞

0
τ−(ν+N+1) exp(−νσ2 + z�z

2τ 2
)dτ = 1

2
�(

ν + N

2
)(

νσ2 + z�z
2

)−(ν+N )/2.

Therefore, the probability density function of z = y − μ ∈ R
N for μ = BAx ∈ R

N

is [1]

∫ ∞

0
(2πτ 2)−N/2 exp(− z�z

2τ 2
) f IG(τ |ν,σ)dτ

=
∫ ∞

0
(2πτ 2)−N/2 exp(− z�z

2τ 2
) · 2

�( ν
2 )

(νσ2/2)
ν
2 τ−ν−1 exp(−νσ2

2τ 2
)dτ

= (2π)−N/2 2

�(ν/2)
(
νσ2

2
)ν/2

∫ ∞

0
τ−(ν+N+1) exp(−νσ2 + z�z

2τ 2
)dτ

= (2π)−N/2 2

�(ν/2)
(
νσ2

2
)ν/2 · 1

2
�(

ν + N

2
)(

νσ2 + z�z
2

)−(ν+N )/2 (9.18)

= �( ν+N
2 )

�( ν
2 )

1

(νπ)N/2σN
(1 + z�z

νσ2
)−(ν+N )/2. (9.19)

Equation (9.19) is called the multivariate student-t distribution with parameters
(ν,σ).

We have created the Stan code model16.stan to set the prior distributions
obtained so far, calculate the posterior distribution, and obtain theWBIC values. The
code utilizes the functions block to define custom functions, specifically for the
definition of Leung-Drton’s prior distribution.

model16.stan

1 functions {
2 real ld_diag_lpdf(real x, int i, int k, real c0) {
3 return (k−i)*log(x) − square(x)/(2*c0);
4 }
5 }
6 data {
7 int n;
8 int M;
9 int N;
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10 int H;
11 matrix[n, M] X;
12 matrix[n, N] Y;
13 real<lower=0> beta;
14 }
15 transformed data {
16 int ntrap = M*H;
17 }
18 parameters {
19 real<lower=0> sigma;
20 real<lower=0> nu;
21 vector<lower=0>[H] diags;
22 vector[ntrap] lowtrap;
23 matrix[H, N] BhatT;
24 vector<lower=0>[M] lambda;
25 }
26 transformed parameters {
27 matrix[n, N] mu;
28 matrix[M, H] L;
29 {
30 int idx;
31 idx=0;
32 L = rep_matrix(0, M, H);
33 for (col in 1:H) {
34 L[col, col] = diags[col];
35 for (r in (col+1):M) {
36 idx+=1;
37 L[r, col] = lowtrap[idx];
38 }
39 }
40 mu = diag_post_multiply(X, lambda)*L*BhatT;
41 }
42 }
43 model {
44 lowtrap ˜ normal(0,1);
45 for (i in 1:H)
46 diags[i] ˜ ld_diag(i, H, 1);

47 to_vector(BhatT) ˜ normal(0,1);
48 lambda ˜ normal(0, 2);

49 nu ˜ gamma(2, 0.1);

50 sigma ˜ cauchy(0,1);
51 for(j in 1:n){
52 for (i in 1:N)
53 target += beta*student_t_lpdf(Y[j,i]|nu, mu[j,i], sigma);
54 }
55 }
56 generated quantities{ // This block is for calculating the value of
57 WBIC.
58 matrix[n,N] log_lik;
59 for (j in 1:n) {
60 for (i in 1:N)
61 log_lik[j,i] = student_t_lpdf(Y[j,i]| nu, mu[j,i], sigma);
62 }
63 }
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(1a) λ̂ = 10.414, λ = 10.5
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(1b) λ̂ = 11.341, λ = 9.5

Fig. 9.3 For the three cases in Example 79, we calculated the WBIC values for multiple β values
and plotted the relationship between the correspondingWBIC values using a straight line. The plots
represent cases 1a, 1b, and 3, respectively

Example 79 Using the model16.stan code, we executed the following R code
for cases 1a, 1b, and 3. We calculated the WBIC values for multiple β values and
plotted the relationship between the correspondingWBIC values using a straight line
(Fig. 9.3). From the slope of the line, we obtained estimated values of λ as shown
in the table below. Note that the ben_files.stan used for data generation is
identical to “Listing 2: Stan program for simulating data from the reduced-rank
regression model” in the literature [3].3

CASE M N H r λ’s Estimate λ̂ λ’s Theoretical Value
1a 5 5 4 2 10.414 10.5
1b 5 5 3 2 11.341 9.5
3 3 4 3 3 6.329 6.0

�

1 wbic <- function(log_likelihood) − mean(rowSums(log_likelihood))
2 library(rstan)
3 ## Data Generation Process

4 n <- 200

5 M <- 4

6 N <- 3

7 r <- 2

8 data_list <- list(n=100, p=M, c=N, k=r)
9 fit <- stan(file = "ben_files.stan", data = data_list, chain=1,

10 algorithm=’Fixed_param’)
11 fit_ss <- extract(fit, permuted = TRUE)
12 X <- fit_ss$X[1,,]
13 Y <- fit_ss$Y[1,,]
14 ## Calculate the WBIC values for multiple betas

3 It is also available from the website of this series: https://bayesnet.org/books_jp.

https://bayesnet.org/books_jp
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15 WBIC <- NULL
16 B.seq <- c(3, 5, 7, 10)

17 for(b in B.seq){
18 data_list <- list(n=n,M=3,H=3,N=4,X=X,Y=Y, beta=b/log(n))
19 fit <- stan(file="model16.stan",data=data_list)
20 wbic.value <- wbic(extract(fit)$log_lik)
21 WBIC <- c(WBIC, wbic.value)
22 }
23 beta.1<-B.seq/log(n)
24 u<-1/beta.1; uu<-u−mean(u)
25 v<-WBIC; vv<-v−mean(v)
26 slope<-sum(uu*vv)/sum(uu*uu)
27 intercept<-mean(v)−slope*mean(u)
28 plot(u,v, xlab="1/beta",ylab="WBIC")
29 abline(a=intercept, b=slope, col="red")

9.4 Application to Gaussian Mixture Models

Suppose there are multiple Gaussian distributions (we assume H ≥ 1), and one of
them is randomly chosen (with probabilitiesπ1, . . . ,πH ≥ 0, and

∑H
h=1 πh = 1), and

the N -dimensional data x ∈ R
N is generated according to this Gaussian distribution

N (μh,σ
2
h). For simplicity of discussion, we will assume that σ2

h = 1:

p(x |θ) =
H∑

h=1

πhsh(x | μh)

with

θ = {(πh,μh) | h = 1, . . . , H},

where sh(x |μh,σ
2
h) is the probability density function of the normal distribution

with mean μh and variance σ2
h . Also, we assume that the above statistical model is

realizable (q(x) = p(x | θ∗)), and we denote the true H as H∗, and the true θ as

θ∗ = {(π∗
h,μ

∗
h) | h = 1, . . . , H∗}.

Regarding the equation

log
p(x | θ∗)
p(x | θ)

= − log

(
1 + p(x | θ) − p(x | θ∗)

p(x | θ∗)

)
, (9.20)

for arbitrary ε > 0, there exist θ �= θ∗ with |θ − θ∗| < ε and x ∈ RN such that
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| p(x | θ) − p(x | θ∗)
p(x | θ∗)

| > 1.

Thus, the convergence radius of log(·) is 1, and we cannot write (9.20) in the form
of (5.2).

For example, if N = 1, H∗ = 1, H = 2, and μ,

p(x | θ) − p(x | θ∗)
p(x | θ∗)

= π1 exp{− (x−θ)2

2 } + (1 − π1) exp{− x2

2 } − exp{− (x−θ∗)2
2 }

exp{− (x−θ∗)2
2 }

= π{exp( xμ1

2
− μ2

1

2
) − 1}

becomes, and (9.20) does not become, a holomorphic function with values in L2(q).
This means that it does not satisfy Assumption 4 that we have been assuming. How-
ever, even in that case, it has been proven that there exists an always positive C∞
(not holomorphic) a(u) such that [12]

K (g(u)) = a(u)u2k11 . . . u2kdd .

From now on, wewill first calculate the value ofWBIC(H) for the observed values
x1, . . . , xn ∈ R

N and the candidate H , and find the H that minimizes it.

Example 80 We shall consider data x1, . . . , xn ∈ R
n with dimension N = 2. With

μ = (1, 1), and the identity matrix of size N = 2 as �, we generate data x1, . . . , xn
(n = 200) each from the twokinds ofGaussian distributions N (−μ, �) and N (μ, �),
and calculate the value of theGaussianmixtureWBIC for H = 1, 2, 3, 4, considering
π∗
1 = π∗

2 = 1/2, H∗ = 2, and the H that minimizes that value is used as the estimate
of H∗. Similarly, we generate data x1, . . . , xn (n = 300) each from the three kinds of
Gaussian distributions N (−2μ, �), N (0, �), and N (2μ, �), and calculate the value
of theGaussianmixtureWBIC for H = 1, 2, 3, 4, consideringπ∗

1 = π∗
2 = π∗

3 = 1/3,
H∗ = 3, and the H that minimizes that value is used as the estimate of H∗. Also,
experiments were conducted for β = 1/ log n, 10/ log n, 100/ log n, 250/ log n. The
results are shown in Table 9.2. In the case of H∗ = 2, it is correctly estimated. In the
case of H∗ = 3, the value of WBIC is smaller for H = 4. When H is large, unless
the sample size n is large, the problem of estimating H∗ is not easy. �

In addition, the learning coefficient, when H ≥ H∗, is bounded from above by
Proposition 43 as

λ ≤ 1

2
(NH∗ + H − 1). (9.21)

In fact, if we define

πh =
{

π∗
h, 1 ≤ h ≤ H∗

0, otherwise
, μh =

{
μ∗
h, 1 ≤ h ≤ H∗

arbitrary, otherwise,
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Table 9.2 Computing WBIC for N = 1, H = 2, 3, and H = 1, 2, 3, 4

H∗ 2 (n = 200) 3 (n = 600)

β\H 1 2 3 4 1 2 3 4

1/ log n 753.44 662.36 664.05 665.28 3168.2 2239.4 2178.8 2178.9

10/ log n 748.80 650.64 650.77 650.98 3163.5 2227.4 2157.897 2157.887

100/ log n 748.33 649.46 648.97 649.01 3163.0 2226.2 2156.0 2155.6

250/ log n 748.30 649.38 648.83 648.85 3163.0 2226.1 2156.0 2155.5

Upper bound
of λ

2 5/2 3 7/2 3 7/2 4 9/2

we have a dimension of NH + H − 1, but there are redundant parameters of N (H −
H∗), and by Proposition 43, the learning coefficient is bounded above by (9.21). The
upper bound in the case of Example 80 is recorded in the lower row of Table 9.2. The
learning coefficient has been studied not only for the upper bound but also for the
lower bound. If they are close, it can be good information. Also, it can be numerically
estimated using the method shown at the end of Sect. 8.1.

model17.stan

1 data {
2 int<lower=1> K; // number of mixture components
3 int<lower=1> N; // number of data points
4 array N vector[2] y; // observations
5 real beta;
6 }
7 parameters {
8 simplex[K] theta; // mixing proportions
9 vector[2] mu[K]; // locations of mixture components

10 }
11 transformed parameters{
12 vector[K] log_theta = log(theta); // cache log calculation
13 }
14 model {
15 mu ˜ multi_normal(rep_vector(0.0,2), diag_matrix(rep_vector(1.0,2)));
16 for (n in 1:N) {
17 vector[K] lps = log_theta;
18 for (k in 1:K)
19 lps[k] += multi_normal_lpdf(y[n] | mu[k], diag_matrix(rep_vector
20 (1.0,2)));

21 target += beta*log_sum_exp(lps);
22 }
23 }
24 generated quantities{
25 vector[N] log_lik;
26 for (n in 1:N) {
27 vector[K] lps = log_theta;
28 for (k in 1:K)
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29 lps[k] += multi_normal_lpdf(y[n] | mu[k], diag_matrix(rep_vector
30 (1.0,2)));

31 log_lik[n] = log_sum_exp(lps);
32 }
33 }

1 wbic <- function(log_likelihood) − mean(rowSums(log_likelihood))
2 library(rstan)
3 b.seq <- c(1,10,100,250)
4 K.seq <- c(1,2,3,4)
5

6 x <- list()
7 #n <- 100 # Data generation K=2

8 #for(i in 1:n) x[[i]]=c(rnorm(1,−1,1),rnorm(1,−1,1))

9 #for(i in (n+1):(2*n)) x[[i]]=c(rnorm(1,1,1),rnorm(1,1,1))

10 n <- 200 # Data generation K=3

11 for(i in 1:n) x[[i]] <- c(rnorm(1,−2,1),rnorm(1,−2,1))

12 for(i in (n+1):(2*n)) x[[i]] <- c(rnorm(1,2,1),rnorm(1,2,1))
13 for(i in (2*n+1):(3*n)) x[[i]] <- c(rnorm(1,0,1),rnorm(1,0,1))
14

15 WBIC <- NULL
16 for(b in b.seq)for(k in K.seq){
17 data_list <- list(K = k, N = length(x), y=x, beta=b/log(n))
18 fit <- stan(file = "model17.stan", data = data_list, warmup = 2500,

19 seed = 1, iter=5000)
20 mm <- rstan::extract(fit)
21 wbic.1 <- wbic(mm$log_lik)
22 WBIC <- c(WBIC,wbic.1)
23 }
24 WBIC

9.5 Non-informative Prior Distribution

We assume that the determinant det I (θ) of the Fisher information matrix I (θ) at
each θ ∈ � is non-negative definite and the integral

∫
�

√
det I (θ)dθ is defined. In

obtaining I (θ), we took the expectation value with q(x) in Chap. 5, but here we
take the expectation value with p(x |θ). Furthermore, when this integral has a finite
positive value, we call

ϕ∗(θ) :=
√
det I (θ)∫

�

√
det I (θ′)dθ′

Jeffreys prior distribution. When K (θ) = 0, ϕ(θ) = 0, so the discussion in
Sect. 9.2 does not hold. By applying Jeffreys prior distributionϕ = ϕ∗, (6.23) can be
written as
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EX1...Xn [Fn] = nEX [− log p(X |θ∗)] + d

2
log

n

2πe
+ log

∫
�

√
det I (θ)dθ + o(1).

(9.22)

Example 81 For the log-likelihood of a normal distribution with variance 1 and
known mean μ,

f (x |μ) = 1√
2π

exp{− (x − μ)2

2
},

L := ∑n
i=1 log f (xi |μ), and taking the derivative with respect to μ gives

∑n
i=1(xi −

μ), and its square mean is n, so I = 1. Therefore, if � is not bounded, such as
� = [−2, 2], Jeffreys prior distribution ϕ∗ is not determined. �
Example 82 Consider a randomvariable X that takes on the value 1with probability
θ and the value 0 with probability 1 − θ. Let x1, . . . , xn ∈ X = {0, 1} be indepen-
dent realizations of X . For L := log{θk(1 − θ)n−k}, we have L ′ = k

θ
− n−k

1−θ
= k−nθ

θ(1−θ)
.

The square mean of this is E[
(

k−nθ
θ(1−θ)

)2] = n
θ(1−θ)

, so I (θ) = 1
θ(1−θ)

> 0. Therefore,

Jeffreys prior distribution is proportional to ϕ∗(θ) ∝ θ−1/2(1 − θ)−1/2. This corre-
sponds to setting a = b = 1/2 in Eq. (2.19). �

In Bayesian statistics, a prior distribution that is used when there is no particular
information available for determining the prior distribution is sometimes called a non-
informative prior. In Eq. (2.19), for example, a = b = 1 (a uniform distribution) is
often used in practice as a non-informative prior.However, a uniformdistribution over
0 ≤ θ ≤ 1 is not a uniform distribution when the variable is transformed to t := √

θ.
On the other hand, Jeffreys prior does not suffer from this problem, satisfying the so-
called invariance property. In some cases, a prior distribution satisfying invariance
is defined as a non-informative prior.

Example 83 In the case of Jeffreys prior, let’s demonstrate that when a random
variable X takes the value 1 with probability θ and the value 0 with probability 1 − θ,
if we let θ = t2 and consider X taking the value 1 with probability t2 and the value
0 with probability 1 − t2, Jeffreys prior distribution remains the same distribution.
We shall denote Jeffreys prior distribution for each as ϕ�∗ and ϕT∗ , respectively. Let
x1, . . . , xn ∈ X = {0, 1} be independent realizations of the random variable X . For
L := log{t2k(1 − t2)n−k}, we have

L ′ = 2k

t
− 2t (n − k)

1 − t2
= 2(k − nt2)

t (1 − t2)
, E[(L ′)2] = 4n

1 − t2
, I (t) = 4

1 − t2
.

Hence, Jeffreys prior distribution is ϕT
∗ (t) ∝ (1 − t2)−1/2. Here, since θ = t2, we

have dθ = 2tdt , so

dθ√
θ(1 − θ)

= 2tdt√
t2(1 − t2)

= 2dt√
1 − t2

.
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This implies that, whether we take the parameter as θ or t , for the integrable subset
T ′ ⊆ T with t ∈ [0, 1] and �′ = {t2|t ∈ T ′} ⊆ �, we have∫

T ′
ϕT

∗ (t)dt =
∫

�′
ϕ�

∗ dθ.

�

Proposition 47 When applying Jeffreys prior distribution, one of the following
occurs:

1. λ = d/2 and m = 1
2. λ > d/2.

Proof Refer to the appendix at the end of the chapter.

Appendix: Proof of Proposition

Proof of Proposition 40

For p = 0, 1, we have

W (p)
n :=

∫
B(εn ,θ∗)

{−
n∑

i=1

log
p(xi |θ)
p(xi |θ∗)

}p{
n∏

i=1

p(xi |θ)
p(xi |θ∗)

}βϕ(θ)dθ

=
∑

α

∫
[0,1]d

du
{
nu2k−√

nukξn(u)
}p

exp{−nβu2k + √
nβukξn(u)}|uh|bα(u).

We evaluate the value of

Eβ[
n∑

i=1

log
p(xi |θ∗)
p(xi |g(u))

] = W (1)
n + oP(exp(−√

n))

W (0)
n + oP(exp(−√

n))
, (9.23)

where we have performed a variable transformation with t = nβu2k . Using exp
(
√

βtξn(u)) = 1 + √
βtξn(u) + OP(β) as β → 0, and excluding the term

oP(
(log nβ)m−1

(nβ)λ
), we obtain
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W (p)
n

∼ (log nβ)m−1

(nβ)λ

∑
α∈A

∫
[0,1]d

∫ ∞

0
dt tλ−1e−t

{
t − √

βtξn(u)

β

}p

{1 +√
βtξn(u)}du∗

α

=

⎧⎪⎪⎨
⎪⎪⎩

(log nβ)m−1

(nβ)λ

[
�(λ)C (0) +√

β�(λ + 1

2
)C (1)

]
, p = 0

(log nβ)m−1

(nβ)λβ

[
�(λ + 1)C (0) +√

β{�(λ + 3

2
) − �(λ + 1

2
)}C (1)

]
, p = 1

where we define

C (p) :=
(∑

α∈A

∫
[0,1]d

ξn(u)pdu∗
α

)
, p = 0, 1 , �(λ) :=

∫ ∞

0
tλ−1 exp(−t)dt

We shall define Y := C (1)/C (0). Then, for constants a, b, c, d with a �= 0, as β → 0,
we have

c + √
βd

a + √
βb

= c

a
+√

β

(
ad − bc

a2

)
+ O(β).

Setting a = �(λ), b=�(λ + 1/2)Y , c=�(λ + 1), and d = (λ − 1/2)�(λ + 1/2)Y ,
we obtain

c

a
= �(λ + 1)

�(λ)
= λ

and

ad − bc = �(λ) · (λ − 1

2
)�(λ + 1

2
)Y − �(λ + 1

2
)Y · �(λ + 1) = −1

2
�(λ)�(λ + 1

2
)Y.

Therefore, Eq. (9.23) can be written as

Eβ[
n∑

i=1

log
p(xi |θ∗)
p(xi |g(u))

] = λ

β
+Un

√
λ

2β
+ OP(1) ,

where we define

Un := −Y�(λ + 1/2)√
2λ�(λ)

.

Substituting β = β0/ log n into this equation, we obtain Eq. (9.3). From the defini-
tion of ξn(u), we get EX1...Xn [Y ] = 0 and EX1...Xn [Un] = 0. Furthermore, since the
sequence ξ1, ξ2, . . . converges in distribution to the Gaussian process ξ, the sequence
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of random variables U1,U2, . . . also converges in distribution to a normal distribu-
tion. This completes the proof. �

Proof of Proposition 46

In order to prove this proposition, we use the following lemma.

Lemma 1 Let U be a neighborhood of θ∗ ∈ �∗, and l,m, n ≥ 1. Suppose T1, T2, T
are mappings from U → R

l×m, U → R
l×n, U → R

m×n matrices respectively, and
‖ · ‖ are their norms. Then,

1. If P ∈ R
m×m , Q ∈ R

n×n are invertible, thenwhen considering PT Q as a function
assigning the matrix PT (u)Q ∈ R

m×n to elements u of U , there exist α,β > 0
such that α‖T ‖ ≤ ‖PT Q‖ ≤ β‖T ‖.

2. If T is bounded (‖T ‖ < ∞), then there exist α,β > 0 such that α(‖T1‖2 +
‖T2‖2) ≤ ‖T1‖2 + ‖T2 + T1T ‖2 ≤ β(‖T1‖2 + ‖T2‖2).

Proof of Lemma 1: Refer to the next section.
Proof of Proposition 464: Firstly, let θ = (A, B), θ∗ = (A∗, B∗), and S := BA −
B∗A∗. Then

K (θ) = 1

2
EXY

[‖Y − BAX‖2 − ‖Y − B∗A∗X‖2]
= 1

2
EXY

[‖Y − B∗A∗X + (B∗A∗ − BA)X‖2 − ‖Y − B∗A∗X‖2]
= 1

2

∫
X

‖Sx‖2q(x)dx

(considering Y − B∗A∗X ∼ N (0, 1)), the problem of finding the poles of
∫
�
K (θ)zϕ

(θ)dθ is equivalent to finding the poles of
∫
�

‖S‖2zϕ(θ)dθ. To show this, let S =
(s jk). Then, there exists a matrix X such that

K (θ) = 1

2

∑
i

∫
X

(
∑
j

si j x j )
2q(x)dx = 1

2

∑
i

∑
j

∑
k

si j sik

∫
X
x j xkq(x)dx = 1

2
Tr(SXST )

and without loss of generality, X can be assumed to be positive definite. Then, there
exist constants c1, c2 > 0 such that

c1‖S‖2 = c1Tr(SS
T ) ≤ K (θ) ≤ c2Tr(SS

T ) = c2‖S‖2.

(For example, take the minimum and maximum eigenvalues of the matrix X as
2c1, 2c2, respectively.) Therefore, the equivalence has been shown.

4 An attempt has been made to derive this in a simple way so that non-experts can understand.
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Let A = (ai, j ) ∈ R
H×M , B = (bi, j ) ∈ R

N×H , and assume that the rank of B∗A∗
is r , and let ‖ · ‖ denote the Frobenius norm of the matrix (the square root of the sum
of squares of the components). First, since the rank of B∗A∗ is r , there exist regular
matrices P ∈ R

N×N , Q ∈ R
M×M such that

P−1B∗A∗Q−1 =
[
Ir 0
0 0

]

and we have

B ′ := P−1B =
[
B1 B3

B2 B4

]
and A′ := AQ−1 =

[
A1 A3

A2 A4

]
.

Let A1 ∈ R
r×r , A2 ∈ R

(H−r)×r , A3 ∈ R
r×(M−r), A4 ∈ R

(H−r)×(M−r), B1 ∈ R
r×r ,

B2 ∈ R
(N−r)×r , B3 ∈ R

r×(H−r), and B4 ∈ R
(N−r)×(H−r). We can further transform

T := B ′A′ −
[
Ir 0
0 0

]
=
[
B1 B3

B2 B4

] [
A1 A3

A2 A4

]
−
[
Ir 0
0 0

]

=
[
C1 (C1 + Ir − B3A2)A

−1
1 A3 + B3A4

C2 (C2 − B4A2)A
−1
1 A3 + B4A4

]

=
[
C1 C1A

−1
1 A3 + A−1

1 A3 + B3A′
4

C2 C2A
−1
1 A3 + B4A′

4

]
=
[
C1 C1(A′

3 − B3A′
4) + A′

3
C2 C2(A′

3 − B3A′
4) + B4A′

4

]
.

Let C1 := B1A1 + B3A2 − Ir , C2 := B2A1 + B4A2, A′
4 := −A2A

−1
1 A3 + A4, and

A′
3 := A−1

1 A3 + B3A′
4. Also, for any neighborhood U(A′,B ′) of (A′, B ′) such that

B ′A′ =
[
Ir 0
0 0

]
.

According to Lemma 1 1, there exist α,β > 0 such that α‖T ‖2 ≤ ‖PT Q‖2 ≤
β‖T ‖2. Also, since

PT Q = P(B ′A′ −
[
Ir 0
0 0

]
)Q = BA − B∗A∗,

let’s define � := ‖BA − B∗A∗‖2. Then, the poles of the integral∫
U(A′ ,B′)

� zϕ(θ)dθ

coincide with the poles of the integral

∫
U(A′ ,B′)

‖
[
C1 C1(A′

3 − B3A′
4) + A′

3
C2 C2(A′

3 − B3A′
4) + B4A′

4

]
‖2zϕdθ
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Furthermore, using Lemma 1 2, if we define

T1 :=
[
C1

C2

]
, T2 :=

[
A′
3

B4A′
4

]
, T := A′

3 − B3A
′
4,

then the poles of the integral

∫
U(A′ ,B′)

‖
[
C1 A′

3
C2 B4A′

4

]
‖2zϕ(θ)dθ

also coincide. Moreover, from C1 ∈ R
r×r , C2 ∈ R

(N−r)×r , and A′
3 ∈ R

r×(M−r),
we can construct the matrix C (0) := [C1,C�

2 , A′
3] ∈ R

r×(N+M−r), B(0) := B4 ∈
R

(N−r)×(H−r), and A(0) := A′
4 ∈ R

(H−r)×(M−r). If we let �(0) := ‖C (0)‖2+
‖B(0)A(0)‖2, then the poles of the integral

∫
U(A′ ,B′)

{�(0)(θ)}zϕ(θ)dθ

also coincide.
The following demonstrates that for each s = 0, 1, . . . ,min{H − r, M − r}, there

existC (s) ∈ R
r×(N+M−r), A(s) ∈ R

(H−r−s)×(M−r−s), B(s)∈R(N−r)×(H−r−s), D(s)
1 , . . . ,

D(s)
s ∈ R

1×(M−r−s), b(s)
1 , . . . , b(s)

s ∈ R
N−r such that

�(s) := u21 . . . u2s

(
‖C (s)‖2 +

s∑
i=1

‖b(s)
i ‖2 + ‖

s∑
i=1

b(s)
i D(s)

i + B(s)A(s)‖2
)

(9.24)

To demonstrate that a similar�(s+1) can be obtained by blowing up one component of
A(s) ∈ R

(H−r−s)×(M−r−s), we without loss of generality consider the top-left compo-
nent us+1 of A(s) to be the one to be blown up. The other components of A(s), as well
as the components ofC (s) and b(1), . . . , b(s), are transformed bymultiplying by us+1.
By factoring out us+1 from �(s), we can express C (s) as C (s+1), b(s)

i as b(s+1)
i , and∑s

i=1 b
(s)
i D(s)

i + B(s)A(s) in terms of suitable a ∈ R
(H−r−s−1)×1, ã ∈ R

1×(M−r−s−1),
and Ã ∈ R

(H−r−s−1)×(M−r−s−1) as follows:

s∑
i=1

b(s+1)
i [Di,1, Di,2, . . . , Di,M−r−s] + [b B(s+1)]

[
1 ã
a Ã

]
.

where we assume B(s) = [b, B(s+1)] and D(s)
i = [Di,1, Di,2, . . . , Di,M−r−s] . By

defining the leftmost column as

b(s+1)
s+1 := b + B(s+1)a +

s∑
i=1

b(s+1)
i Di,1,

we can rewrite the remaining columns as
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s∑
i=1

b(s+1)
i [Di,2, . . . , Di,M−r−s ] + bã + B(s+1) Ã

=
s∑

i=1

b(s+1)
i [Di,2, . . . , Di,M−r−s ] + {b(s+1)

s+1 − B(s+1)a −
s∑

i=1

b(s+1)
i Di,1}ã + B(s+1) Ã

=
s∑

i=1

b(s+1)
i {[Di,2, . . . , Di,M−r−s ] − Di,1ã} + b(s+1)

s+1 ã + B(s+1){ Ã − aã}

=
s+1∑
i=1

b(s+1)
i D(s+1)

i + B(s+1)A(s+1) ,

where we have set A(s+1) := Ã − aã and defined D(s+1)
i ∈ R

1×(M−r−s−1) as

D(s+1)
i := [Di,2, . . . , Di,M−r−s] − Di,1ã

for 1 ≤ i ≤ s, and D(s+1)
s+1 := ã. Therefore, we can express �(s+1) in the form of Eq.

(9.24) with s replaced by s + 1.
When s = min{H − r, M − r} is reached, the term B(s)A(s) vanishes. However,

this operation does not find all local coordinates of the branching manifolds. Choose
some component of C (s) or b(s) as ν, and multiply all the other components of C (s),
b(s), and A(s) by ν. This transformation forms a normal cross in this neighborhood,
thus obtaining the desired local coordinates.

At this time, all components of C (s), A(s), and b(s)
1 , . . . , b(s)

s in �(s) are divided by
ν, and u1 . . . us becomes u1 . . . usν. Furthermore, at each s, C (s), b(s), and A(s) each
have (N + M − r)r , (N − r)s, and (M − r − s)(H − r − s) elements, respectively,
for a total of

l(s) := (N + M − r)r + s(N − r) + (M − r − s)(H − r − s)

= s2 − (M + H − N − r)s + (N − H)r + MH

elements. The Jacobian when each variable is divided by the variable us+1 is u
l(s)−1
s+1 .

The final Jacobian is ul(0)−1
1 . . . ul(s−1)−1

s νl(s)−1, and K (θ) = u21 . . . u2sν
2. Therefore,

the poles of u1, . . . , us, ν are

− l(0)

2
, . . . ,− l(s)

2
.

Also, the number of times the former blow-up is performed, s = 0, 1, . . . ,min{H −
r, M − r}, is determined by when C (s) or b(s) is blown up, and can be freely chosen.

Finally, since l(s) is a quadratic function for 0 ≤ s ≤ min{H − r, M − r}, if the
minimum point is included in the interval, if M + H − N − r is even (equivalent
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to M + H + N + r being even), it is minimum at s = (M + H − N − r)/2, and if
it is odd, it is minimum at s = (M + H − N − r ± 1)/2. When M + H < N − r ,
it is minimum at s = 0, when (M + H − N − r)/2 > H − r and H < M , it is
minimum at s = H − r , and when (M + H − N − r)/2 > M − r and M < H , it
is minimum at s = M − r . And since N ≥ r , M + r > N + H means M > H and
H + r > M + N means H > M , so M + r > N + H and H + r > M + N do not
occur simultaneously.

Proof of Lemma 1

In general, for

A =
⎡
⎢⎣
a1
...

am

⎤
⎥⎦ ∈ R

m×l , B = [b1, . . . , bn] ∈ R
l×n

we have ‖AB‖2 = ∑
i

∑
j 〈ai , b j 〉2 ≤ ∑

i

∑
j ‖ai‖2‖b j‖2 = ‖A‖2‖B‖2, where ‖ · ‖

is the Frobenius norm. Thus, there exist β, γ > 0 such that

‖PT Q‖2 ≤ ‖P‖2‖T ‖2‖Q‖2 ≤ β‖T ‖2

and

‖T ‖2 = ‖P−1PT QQ−1‖2 ≤ ‖P−1‖2‖PT Q‖2‖Q−1‖2 ≤ γ‖PT Q‖2.

If we setα := γ−1, the first item is satisfied. Next, if ‖T ‖2 < ∞, then similarly, there
exist β, γ > 0 that satisfy the following:

‖T1‖2 + ‖T2 + T1T ‖2 ≤ ‖T1‖2 + 2‖T2‖2 + 2‖T1T ‖2 ≤ β(‖T1‖2 + ‖T2‖2),

‖T2‖2 ≤ 2{‖T2 + T1T ‖2 + ‖ − T1T ‖2} ≤ 2{‖T2 + T1T ‖2 + γ‖T1‖2}

and

‖T1‖2 + ‖T2‖2 ≤ 2‖T2 + T1T ‖2 + (2γ + 1)‖T1‖2 ≤ (2γ + 1){‖T2 + T1T ‖2+‖T1‖2}.

If we set α := (2γ + 1)−1, we have the second item as well.
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Proof of Proposition 47

We want to show that the maximum pole of the function

ζ(z) =
∫

�

K (θ)z
√
det I (θ)dθ

is at −λ = −d/2 (multiplicity m = 1) or −λ < −d/2. In general, there are mul-
tiple local coordinates. Choose arbitrary local coordinates (θ1, . . . , θd) such that
K (θ) = θ2k11 θ2k22 . . . θ2kss , for some positive integers k1, k2, . . . , ks . Therefore, the log-
likelihood ratio function can be written as

f (x, θ) :=
n∑

i=1

log
p(xi |θ∗)
p(xi |θ) = a(x, θ)θk11 θk22 . . . θkss .

Define

ri (x, θ) :=
{

∂a(x,θ)
∂θi

θi + kia(x, θ), ki �= 0
∂a(x,θ)

∂θi
, ki = 0.

(9.25)

We have

∂ f (x, θ)

∂θi
=
{
ri (x, θ)θ

k1
1 . . . θki−1

i . . . θkdd , ki �= 0
ri (x, θ)θ

k1
1 . . . θkdd , ki = 0

Define the elements of the matrix J (θ) = (Ji, j (θ)) as

Ji, j (θ) :=
∫
X
ri (x, θ)r j (x, θ)p(x |θ)dx .

Then, we have √
det(I (θ)) =

∏
j :k j �=0

θ
dk j−1
j

√
det(J (θ)). (9.26)

In fact, the elements of I (θ) = (Ii, j (θ)) are

Ii, j (θ) =
∫
X

∂ f (x, θ)

∂θi

∂ f (x, θ)

∂θ j
p(x |θ)dx

= θ2k11 . . . θ2kds θ
−I (ki �=0)
i θ

−I (k j �=0)
j

∫
X
ri (x, θ)r j (x, θ)p(x |θ)dx ,

where I (ki �= 0) takes the value 1 if ki �= 0 and 0 if ki = 0. In this case, when
the indices (i, j) = (i1, j1), . . . , (id , jd) of Ii, j (θ) are chosen so that there are no
duplicates in each of i1, . . . , id and j1, . . . , jd ; their product can be written as
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d∏
h=1

Iih , jh (θ) =
∏
l:kl �=0

θ2dkl−2
l

d∏
h=1

Jih , jh (θ). (9.27)

Therefore, (9.26) is obtained. Moreover, when k1 �= 0, k2, . . . , kd = 0, K (θ) = θ2k11 ,
from (9.26), we have√

det I (θ) = θdk1−1
1

√
det J (θ) = c1(θ1, . . . , θd)θ

dk1−1
1 ,

where c1 is an analytic function. Thus, we have

ζ(z) =
∫

�

K (θ)z
√
det I (θ)dθ1 . . . dθd

=
∫

�

c1(θ1, . . . , θd)θ
2k1z
1 θdk1−1

1 dθ1 . . . dθd = h(z)

k1(2z + d)
,

where h(z) is an analytic function of z. Therefore, if a pole of ζ(z) exists, it is
at z = −d/2 with multiplicity m = 1. In the general case where there are more
than two i for which ki �= 0, we perform the following coordinate transformation.
For simplicity of discussion, assume k1, . . . , ks > 0, ks+1, . . . , kd = 0, and K (θ) =
θk11 . . . θkss . Furthermore, with respect to K (θ), the property of normal crossing is
preserved even when we change the local coordinates to

θ1 = u1 , θ2 = u1u2 , . . . , θs = u1 . . . us

via a blow-up transformation. We denote this transformation as g(u), where u =
(u1, . . . , us). If we define σ j := k1 + · · · + k j , then we can express

K (g(u)) =
s∏

j=1

u
2σ j

j .

Also, since
∂θi

∂u j
forms a lower triangular matrix, the Jacobian of the transformation

is

|g′(u)| =
s∏

i=1

∂θi

∂ui
=

s∏
j=1

us− j
j .

Furthermore, if for any 1 ≤ i ≤ s − 1, ui = 0, then θh = 0 for h = s − 1, s. From
(9.25), rh(x, θ) = kha(x, θ) holds for h = s − 1, s. Thus, the j th column of the
h = s − 1, s rows of J (θ) are respectively

kh

∫
X
a(x, θ){ ∂a

∂θ j
θ j + k ja(x, θ)}p(x |θ)dx ,
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which means that the s − 1 and s rows are proportional, causing the rank of the
matrix J (θ) to decrease by 1. Therefore, det J (g(u)) = 0. Also, since J (g(u)) is an
analytic function, using an analytic function c2(u1, . . . , us), we can express

det J (g(u)) = c2(u1, . . . , us)u
2
1 . . . u2s−1,

which means

√
det I (g(u)) = c2(u1, . . . , us)

s−1∏
l=1

ul ·
s∏

j=1

{
j∏

h=1

uh}dk j−1

= c2(u1, . . . , us)u
dσs−1
s

s−1∏
j=1

u
dσ j−s+ j
j .

Therefore,

u2kz
√
det I (g(u))|g′(u)| = u2σs z+dσs−1

s

s−1∏
j=1

u
2σ j z+dσ j

j .

When integrating with respect to each of u1, . . . , us , the poles of ζ(z) at u j (1 ≤ j ≤
s − 1), us are understood to be respectively

−dσ j + 1

2σ j
, −d

2
.

�

Exercises 87–100

87. Show that there exists an inverse temperature β > 0 such that the free energy
Fn and WBICn are equal.

88. Show that for p = 0, 1,

W (p)
n :=

∑
α

∫
[0,1]d

duα

{
−nu2k + √

nukξn(u)
}p

exp{−nβu2k + √
nβukξn(u)}|uh |bα(u)

can be represented as
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W (p)
n

∼ (log nβ)m−1

(nβ)λ

∑
α∈A

∫
[0,1]d

∫ ∞
0

dt tλ−1e−t
{
t − √

βtξn(u)

β

}p

{1 +√
βtξn(u)}du∗

α

=

⎧⎪⎪⎨
⎪⎪⎩

(log nβ)m−1

(nβ)λ

[
�(λ)C(0) +√

β�(λ + 1

2
)C(1)

]
, p = 0

(log nβ)m−1

(nβ)λβ

[
�(λ + 1)C(0) +√

β{�(λ + 3

2
) − �(λ + 1

2
)}C(1)

]
, p = 1,

Here,

C (p) :=
(∑

α∈A

∫
[0,1]d

ξn(u)pdu∗
α

)
, p = 0, 1 , �(λ) :=

∫ ∞

0
tλ−1 exp(−t)dt.

89. In the proof of Proposition 42, why does the lower bound of Z(n)nd/2 converg-
ing to a positive value contradict with the first point of Proposition 41?

90. In the derivation of Proposition 44, where are each of the three conditions for
regularity used?

91. In Example 77, derive Eqs. (9.12) and (9.15). Also, how is Eq. (9.16) derived
from a Jacobian?

92. Derive each value in Table 9.1.
93. In the procedure for estimating λ in Example 78, what would the estimated

value of λ be if we use the values from 10, ..., 60 divided by log n as β instead
of 100, ..., 600? Also, which variable in the program represents the estimated
value of λ?

94. When M = N = 1 and H∗ = 0, prove the following inequality for when
√
H

is an integer. Also, when does the equality hold? Here, [a] is the largest integer
not exceeding a > 0:

[√H ]2 + [√H ] + H

4[√H ] + 2
≤ 1

2
[H∗(M + N + 1)

+min{(N + 1)(H − H∗), M(H − H∗),
1

3
(M(H − H∗) + 2M(N + 1))}].

[Hint]: For H ≥ 2, it is enough to show that 2H + √
H ≤ 1

3 (H + 4)(2
√
H +

1). Note that both sides can be divided by 2
√
H + 1.

95. Derive Eq. (9.19) from Eq. (9.18). Also, referring to the Stan manual, explain
the details of lines 40 and 53 in the Stan code.

96. What does the functionlq_decomp outputwhen given amatrix A? Investigate
the meanings of the functions qr, qr.Q, and qr.R and explain each step.

1 lq_decomp <- function(A) {
2 QR_decomp <- qr(t(A))
3 L <- t(qr.R(QR_decomp))
4 Q <- t(qr.Q(QR_decomp))
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5 return(list(L = L, Q = Q))
6 }
7

8 A <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)

9 result <- lq_decomp(A)
10 L <- result$L
11 Q <- result$Q

[Hint]: There exist an orthogonal matrix Q and an upper triangular matrix
R such that A� = QR, so if we set L := R� (lower triangular matrix) and
S := Q� (orthogonal matrix), we can write A = R�Q� = LS.

97. From the values of l(s) obtained in the appendix, derive Proposition 46. Also,
even if the s of �(s) in (9.24) is updated to the maximum value, a normal cross
cannot be obtained. Why?

98. Referencing the Stan code in model14.stan, generalize model17.stan
so that the K elements each have a common standard deviation σ > 0 instead
of variance 1. Then, confirm that the same results are output when applying
model14.stan as Stan code for the case of K = 2.

99. Show invariance of Jeffreys’ prior for θ = t4 in Example 83.
100. In the proof of Proposition 47, when selecting the indices (i, j) = (i1, j1), . . . ,

(id , jd) of Ii, j (θ) in such a way that there are no duplicates in i1, . . . , id and
j1, . . . , jd , respectively, why can their products bemultiplied like in Eq. (9.27)?
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F
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43
Hausdorff space, 154, 155
Hidden layer, 211–213
Homeomorphic, 155
Homogeneous, 26
Hyper function, 172, 174
Hyperparameter, 31

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2023
J. Suzuki, WAIC and WBIC with R Stan,
https://doi.org/10.1007/978-981-99-3838-4

237

https://doi.org/10.1007/978-981-99-3838-4


238 Index

I
Ideal, 152
Identity matrix, 69
Information criterion, 122
Input layer, 211–213
Invariance property, 221, 223
Inverse matrix, 70
Inverse Mellin transformation, 173, 175
Irreducible, 152

J
Jeffreys prior distribution, 220, 222

K
Kullback-Leibler divergence, 24

L
Leapfrog method, 45
Learning coefficient, 203, 205
Leave one out CV (LOOCV), 190, 192
Likelihood, 122
Linear space, 79
Local coordinate system, 155, 156
Local coordinates, 155, 156
Local variable, 155
Lower triangular matrix, 70

M
Maclaurin expansion, 75
Manifolds, 154
Marginal likelihood, 20
Markov chain, 38
Markov Chain Monte Carlo (MCMC), 38
Mean, 18
Mean Value Theorem, 74
Mellin transformation, 173, 175
Multiplicity, 175, 177

N
Neural network, 211–213
No U-turn Sampler (NUTS), 48
Non-informative prior, 221, 223
Nonnegative definite, 71
Norm, 79
Normal crossing, 162, 163

O
Open set, 72
Origin-centered blow-up, 159

Output layer, 211–213

P
Positive definite, 71
Posterior distribution, 20
Predictive distribution, 20
Prior distribution, 20
Projective space, 152

R
Random variable, 18, 80
Rational functions, 152
Rational map, 152
Real log canonical threshold, 175, 177
Realizable, 24
Reduced-rank regression, 212, 214
Reducible, 152
Regular, 25
Relatively finite variance, 29

S
Sample size, 20
Slutsky’s theorem, 82
Square matrix, 69
Stan, 48
Statistical model, 20
Stochastically converge, 81
Strict transform, 159
Sup-norm, 73
Support, 203, 205
Symmetric matrix, 71

T
Tactile point, 72
Taylor expansion, 75
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Trace, 70
True distribution, 18

V
Variance, 18

W
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Z
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