
Chapter 8
Evolutionary Ensemble Learning

Malcolm I. Heywood

Abstract Evolutionary Ensemble Learning (EEL) provides a general approach for
scaling evolutionary learning algorithms to increasingly complex tasks. This is gen-
erally achieved by developing a diverse complement of models that provide solutions
to different (yet overlapping) aspects of the task. This chapter reviews the topic of
EEL by considering two basic application contexts that were initially developed
independently: (1) ensembles as applied to classification and regression problems
and (2) multi-agent systems as typically applied to reinforcement learning tasks.
We show that common research themes have developed from the two communities,
resulting in outcomes applicable to both application contexts. More recent devel-
opments reviewed include EEL frameworks that support variable-sized ensembles,
scaling to high cardinality or dimensionality, and operation under dynamic environ-
ments. Looking to the future we point out that the versatility of EEL can lead to
developments that support interpretable solutions and lifelong/continuous learning.

8.1 Introduction

Evolutionary Ensemble Learning (EEL) is taken to encompass the development of
team behaviours that collectively solve a problem through a process of ‘divide-and-
conquer’. As such the terms team and ensemble will be used interchangeably. Team
members will be referred to as participants or agents and a team must have more
than one participant. The definition we will assume for a participant will take the
following form:

Definition 8.1 Each participant (agent) performs an independent mapping from
input (state) space to output (action) space.

Such a definition is adopted in order to distinguish participants from other
approaches to ‘divide-and-conquer’ such as modularity, e.g. automatically defined
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functions [115]. In short, the above definition implies that all participants are mod-
ules (because a participant never acts outside of a team), but not all modules are
participants. Indeed, most instances of modularity follow a sequence of a callee
referencing the module, passing a set of arguments, the module performing some
computation and the callee using the returned variable(s) in some larger calculation.
As such modules are typically representation-specific, whereas team participants are
generally agnostic to the representation. Given such a stance, the focus of the chapter
will be on the mechanisms which define the relationships between participants and
therefore facilitate the processes of problem-solving through divide-and-conquer.

Historically, prior assumptions were often made about task decomposition and
therefore team complement. For example, entirely homogeneous teams in a herding
task [168] or requiring heterogeneous teams to consist of one instance of each agent
‘type’, e.g. writing and reading to memory [32] or classes in a classification task
[147]. The ‘level of selection’ represents a reoccurring theme (Sect. 8.3), which is to
say, does selection/variation/replacement appear at the level of team or participant?
Initially, two basic approaches for evolving teams became established: the team as a
single unit of selection versus sampling a participant from independent cooperative
populations each time a team is composed.1 Early examples in which teams were
the unit of selection assumed a multi-tree representation, e.g. [81, 134]. At the same
time, multi-population models (e.g. [87, 201]) increasingly became associated with
cooperative coevolution and multi-agent systems (Sect. 8.4).

Diversity maintenance also represents a reoccurring theme, with different state
representations having an impact on preferences for heterogeneous versus homoge-
nous team compositions [134]. However, diversity maintenance is also linked to a
desire to solve tasks of increasing difficulty [15, 133]. Hence, there is no need to use
an ensemble if a single participant can solve the task, but if an ensemble is necessary,
how can a meaningful division of duties across participants be achieved?

This chapter develops the topic ofEEL through twobasic perspectives that initially
developed independently:

• Ensemble learning as applied to regression and classification or a supervised learn-
ing perspective, hereafter supervised EEL or sEEL (Sect. 8.2).

• Cooperative coevolution as applied to multi-agent systems or a form of reinforce-
ment learning, hereafter maEEL (Sect. 8.4)

Participants in sEEL are always heterogeneous, whereas maEEL places more
emphasis on finding m types of agent to appear in a team of n agents where n ≥ m.
The concept of a team also introduces the topic of ‘level of selection’ (Sect. 8.3)
to the team or the agent (or both). Section8.5 reviews research that attempts to
extend the concept of an ensemble to variable-sized ensembles (hereafter vEEL),
with the objective of further scaling the scope of tasks that EEL can be applied to.
The chapter concludes with a summary of applications that potentially benefit from
assuming ensemble formulations (Sect. 8.6) and a concluding discussion (Sect. 8.7).

1 Also synonymous with the Pittsburgh versus Michigan approaches to learning classifier systems.
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8.2 Ensembles for Supervised Learning

An ensemble under a supervised learning context is taken to imply a partnership
between n decision-makers to solve a supervised learning task such as regression or
classification. Classically, a bias–variance decomposition [33, 118] might be used to
establish the extent to which error can be attributed to:

• the average behaviour differing from the desired function. Typically denoted the
bias in which case under-fitting the data is said to result in a solution with ‘high
bias’.

• the ensemble is sensitive to the data set used to train the model. Typically denoted
the variance in which case overfitting on training leads to high variance on test
data.

Ensemble learning in general, therefore, attempts to compose a team of agents
that exhibit diversity in their respective behaviours to optimize the bias–variance
tradeoff. Such a framework has seen use with neural networks [29, 73, 78], genetic
programming [2, 99, 100, 158] and ‘wide’ neural networks [24] as well as providing
early insights to ensemble construction. With this in mind, ensemble learning as
practiced outside of evolutionary learning often enforces diversity using one of three
mechanisms:

• Bagging: n agents are independently constructed from n different samples (or
‘bags’) taken from the original training partition [33].

• Boosting: constructs n agents sequentially with the performance of earlier agents
used to bias the selection of data to appear in the training partition for the next
agent [34].

• Stacking: n − 1 agents comprising the ensemble are trained on n − 1 training
folds. A ”meta agent” is then trained from the n − 1 agents” predictions to define
the ensemble’s overall prediction [221]. Other variants include cascading in which
n agents are added sequentially, augmenting the data with their prediction [70].

Successful ensembles identify participants that are sufficiently accurate, yet ‘dis-
agree’ with each other [118, 156]. As a consequence, many approaches have been
proposed for maintaining ensemble diversity [119, 120]. However, diversity in itself
is not a guarantee for an effective ensemble, i.e. diversity is relative to the behaviour
of other participants comprising the ensemble. Moreover, ensemble learning as
defined above implicitly assumes that only one candidate solution is developed at
a time. Conversely, evolutionary learning algorithms maintain multiple candidate
solutions simultaneously (the population). This implies that there are potentially
more avenues for pursuing diversity and participant composition than under non-
evolutionary approaches to ensemble learning. Assuming a broader perspective on
diversity and/or composition enables us to identify five themes that sEEL might
support exclusively or collectively, Fig. 8.1. We detail each of the five themes in
Sect. 8.2.1 and make summary observations on sEEL in Sect. 8.2.2.



208 M. I. Heywood

(a) sEEL (b) Level of Selection

Fig. 8.1 Properties of significance to SupervisedEvolutionaryEnsemble Learning (sEEL). aDiver-
sity maintenance takes the form of data diversity (what data is an ensemble participant constructed
from) and reward diversity (what is the performance function each participant experiences). Ensem-
ble composition reflects (1) the diversity of mechanisms assumed for aggregating participants’ pre-
dictions, (2) the degree of segregation appearing in the operation of participants and (3) the diversity
in representations assumed for participants. b Level of Selection has an impact on segregation and
representation (Sect. 8.3)

8.2.1 Diversity Maintenance in Supervised Evolutionary
Ensemble Learning

Figure8.1 divides sources of diversity in sEEL as applied to supervised learning
tasks such as regression and classification into explicit ‘diversity maintenance’ ver-
sus ‘ensemble composition’. Diversity maintenance is divided further into diversity
through the data that different ensemble participants experience during training ver-
sus adaptation of the performance (reward) function, i.e. each participant potentially
experiences a different performance function. Ensemble composition reflects differ-
ent mechanisms by which the ensemble might be constructed.We divide this concept
into three themes. Aggregation defines the mechanism assumed for combining the
predictions from individual participants into an overall ensemble recommendation.
Segregation characterizes how the role of participants might be revised during evolu-
tion and is related to credit assignment but reflects properties specific to evolutionary
computation (e.g. the role of selection). Finally, representational diversity captures
the ability of evolutionary computation to develop unique topologies as well as
parameterize them. That said, most sEEL as applied to supervised learning tasks
assume that the number of participants, n, is known a priori. The case of evolved
participant complements and consequently context-specific participant deployment
will be developed later (Sect. 8.5). In the following, we detail each theme in more
detail.
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Data diversity: implies that different participants of an ensemble are trained with
different distributions of data.Adopting bagging strategies for ensemble learning rep-
resents a reoccurring theme [27, 68, 88]. Bagging might also be used with massively
parallel computing platforms in order to accelerate the evolution of multiple par-
ticipants from different partitions of the data, thus scaling sEEL to large regression
and classification datasets [17, 18, 212]. Bagging methods were recently revisited
for outlier reduction using niching [50], coevolution of participants and ensembles
[170] and assessing participants over multiple bootstrap samples [214]. Likewise,
partitioning the data into n folds (one fold held out from each data subset) enables
n ensemble participants to be independently trained [90]. Competitive coevolution
[69, 72, 126, 192] or active learning [83, 111, 185] have been used to adapt the data
that ensemble participants experience during the course of evolution. That is to say,
during evolution the most discriminatory exemplars will change as a function of the
performance of the ensemble. In a further development, Lexicase selection repre-
sents a recent evolutionary selection mechanism for diversity maintenance using as
little as a single exemplar to identify a parent [82]. Support for explicitly modular
representations, such as sEEL, appears to provide a more effective mechanism for
utilizing the available diversity [165]. Finally, ensembles have been incrementally
constructed with the first participant evolved against the entire training partition.
Thereafter, each additional ensemble participant is only evolved against the data that
could not previously be labelled. This focuses each additional participant on what
the ensemble cannot previously label [228].

Reward diversity:manipulates the performance function so that different partici-
pants of the ensemble experience different rewards. Early examples include boosting
[68, 88, 162], cascade correlation [166], fitness sharing [172, 184] and negative cor-
relation [128].2 Other natural extensions include the use of multi-objective methods
to trade off diversity and accuracy of ensemble participants [40, 41, 63, 123] and the
simultaneous minimization of the resulting ensemble complexity [42]. Moreover,
multi-objective performance criteria may represent a more robust predictor of (post-
training) ensemble performance than rankingusing a single objective [129].Recently,
novelty measures [37] and surrogate models [36] have been used to evolve ensem-
bles for computer vision benchmarks such as CIFAR and SVHN. Under streaming
tasks, other properties such as participant age have been used to prioritize partic-
ipant replacement [67, 111]. Cooperative coevolutionary formulations imply that
ensemble participants are sampled from n different populations [166]. The fitness
that ensemble participants receive is used to direct development within each of the n
different populations. This introduces issues regarding the fitness of ensembles ver-
sus participants (level of selection, Sect. 8.3) and a range of advantages and potential
pathologies [159].

Ensemble aggregator: recognizes that once the participants of an ensemble are
identified, then mechanisms need to be adopted to map from the n independent (par-
ticipant) recommendations to a single (ensemble) recommendation [31]. Depending

2 Negative correlation is related to the concept of covariance, the minimization of which potentially
helps address the bias–variance trade off [41].
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on the task, the optimal approach for combining recommendations might differ, i.e.
majority voting, winner takes all [31, 85, 194] or Bayesian networks [198] in classifi-
cation versus weighted average [47] and Bayesian model averaging [3] in regression.
For example, an averaging assumption might penalize the development of special-
ists in regression tasks [161]. One potential approach for addressing this issue is
to augment the ensemble with an additional participant (the ‘gate’). Such a partici-
pant learns how to switch or blend the output from the n ensemble ‘experts’ [161].
Such a ‘mixtures of experts’ architecture can be deployed hierarchically [96] and has
seen widespread use with neural networks [226]. Nguyen et al. go a step further and
actively coevolve ensembles using the mixtures of experts framework [150, 151].
More recently, the concept of a convex hull has been deployed to identify the ensem-
ble participants with Boolean operators defining the ensemble aggregation function
[123]. Tsakonas and Gabrys use grammatical evolution to optimize a hierarchy of
aggregation functions deployed to different combinations of ensemble participants
[208]. The aggregator itself can be evolved [31, 121], where this would be synony-
mous with wrapper approaches to feature construction, i.e. the aggregator would be a
regressor or classifier [77]. Evolving either linear or non-linear aggregators has been
shown to be more effective than a ‘fixed’ voting scheme [31, 121]. However, there is
a computational overhead associated with the case of evolved non-linear aggregators
[121]. Finally, we note that solution interpretability is likely to be impacted by the
choice of aggregator, i.e. a ‘winner-takes-all’ (versus majority) operator attributing
a prediction to a single (versus all) participant(s) of an ensemble.

Participant segregation: captures the degree to which the n participants evolve
independently and is influenced by the approach to selection (level of selection,
Sect. 8.3). This is distinct but related to the degree to which the data (or performance
function) is manipulated to establish n distinct behaviours. For example, n indepen-
dent populations could be evolved on the same data (e.g. [90]) as opposed to evolving
n independent populations on different samples from the training partition (bagging).
This also leads to the use of libraries or archives of previous behaviours so that an evo-
lutionary method can identify: (1) the participants to include in the ensemble from
the library; and (2) how to weigh their respective contributions [27, 94]. Hybrid
approaches have also been proposed in which: (1) a spatial embedding is used to
define the migration protocol between independent populations [68]; or (2) variation
is allowed between populations associated with different partitions of the data [27].
Alternatively, the champions from each of the n independent runs can be compared
for their relative diversity and entire populations pruned should their champions
be deemed too similar [38]. Rebuli and Vanneschi propose a model for multi-class
classification with n demes, i.e. variation takes place between demes [167]. Later, a
‘phase change’ takes place afterwhich the n demes are treated as islands, i.e. variation
limited to the same population.Multifactorial evolutionary algorithms solvemultiple
optimizationproblemsusing a single population inwhichdifferent ‘tasks’ are present.
Unlike cooperative coevolution, sharing takes place between participants associated
with different tasks, i.e. soft segregation. The approach has been demonstrated in the
context of evolving ensembles for multi-class classification problems [217]. Finally,
ensemble participants might instead be strictly organized as a stack/cascade with a
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participant evolved to make a prediction or defer judgement to a later participant(s)
[228]. Different subsets of the dataset are then labelled by different ‘levels’ of the
stack/cascade.

Representational diversity: implies that participants comprising the ensemble
are free to adopt different types of representation. We distinguish between coarse-
and fine-grained representational differences. Coarse-grained representational dif-
ferences imply that entirely different machine learning paradigms were deployed
to develop participants, e.g. decision tree induction, Naive Bayes, multi-layer per-
ceptron. Such an approach has been demonstrated for non-evolutionary machine
learning [132], but could be achieved using a cooperative coevolutionary approach
(different populations for each representation). Neural networks potentially bene-
fit from assuming different architectures, thus diversity in the networks appearing
within ensembles has been considered [128] as has diversity in the activation func-
tion [209]. In addition, rather than assume a behavioural performancemetric to select
ensemble participants, a genotypic performance metric might be preferred. As such,
ensemble participants are selected for those that have themost unique representations
[68, 85, 112]. Likewise, grammatical evolution has been used to evolve ensembles
with different types of representation for rule induction [95]. Cloud-based comput-
ing services have also been used to simultaneously evolve multiple participants with
different representations in parallel for solving large classification problems, e.g.
learning classifiers versus genetic programming [18]. In a related approach, Fletcher
et al. assume that multiple ensembles are trained, each with a different ‘base clas-
sifier’ and an evolutionary multi-objective approach is adopted to select the best
ensemble [63]. Note that the base classifier is common to the same ensemble, but
different across ensembles.

Fine-grained representational differences acknowledges the ability of the same
evolutionary computational paradigm to evolve the topology of individuals as well
as parameterize them. As such this will be impacted by the approach to selection or
the level of selection, Sect. 8.3. Two general approaches have been widely adopted:
multi-trees [31, 147, 194] (i.e. specific to genetic programming) or cooperative
coevolution [159, 166] (i.e. agnostic to the underlying participant representation).
Both approaches assume that the number of participants, n, is known a priori. For
example, it might be assumed that the number of participants and classes requiring
classification are the same. Section8.5 reviews representations that evolve ensem-
bles/teams that support a variable number of participants. This ultimately implies
that participants can be deployed depending on input context rather than always
simultaneously deploying all participants.

8.2.2 Discussion

Section8.2.1 established that sEEL for supervised learning provides multiple paths
by which diversity in ensemble learning can be maintained/introduced. Bagging and
boosting can be considered specific mechanisms by which data and reward diver-
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sity might be supported. Stacking—the third form of diversity classically recognized
in non-evolutionary ensemble learning—appears as an instance of representational
diversity. However, assuming that participants are ‘evolved’ using variable length
representations such as genetic programming means that unique participant topolo-
gies can be discovered.3 Representational diversity might additionally be considered
when the number of participants, n, is not defined a priori as a hyper-parameter.
Section8.5 will develop this topic further. The property of participant segregation is
specific to evolutionary computation on account of multiple participants being devel-
oped simultaneously. Diversity in the aggregation operation has seen a wide range
of approaches, ranging from methods developed for Bayesian and neural networks
to evolving the aggregator itself. We note, however, that such approaches are still
limited to the ‘classical’ model of ensemble deployment: an ensemble consists of n
participants and all participants participate in each prediction.We consider the impli-
cations of relaxing this constraint in Sect. 8.5.2 when graph-based representations
are adopted.

A further set of observations can also be made independently of the specific
diversity methods adopted, as follows:

• Strong ensemble performance does not imply that individual participants are also
strong [31, 195]. Thus, there could be orders of magnitude differences between
the performance of the ensemble and the participants comprising the ensemble.
Indeed, selection for explicitly strong yet complementary ensemble members, as
opposed to the original emphasis on ensembles composed from weak learners
alone (e.g. [177]), represents a recent theme in sEEL [180–182].

• Participants of an ensemble are typically much simpler than when single ‘mono-
lithic’ solutions were evolved for the same task. Depending on the task, the ensem-
ble might also be collectively simpler than single monolithic solutions evolved for
the same task [31, 88, 127]. Indeed, the participants of the ensemble might be
more effective when simplicity is emphasized [123, 171].

• Assuming pairwise diversity measures does not necessarily lead to system-wide
diversity [62]. Conversely, system-wide metrics, such as measuring the expected
failure rate [90], have to date only been applied post-training.Usingmulti-objective
formulations may benefit from defining the dominance relation on the basis of an
entire performance characteristic, as opposed to single operating points [123], or
modifying multi-objective formulations to incorporate validation data [176].

• Methods based on segregation and/or fixed partitions of training data are not able to
adapt performance to changes in the behaviour of different ensemble participants.
Adaptive reward functions might only be able to achieve this by rendering the
training process serial, i.e. cascade correlation [166]. Conversely, serialization of
the training process can result in considerable speedups when participants are able
to distinguish between making a prediction versus deferring to another participant
[228].

3 Other successful ensemble methods such as Decision Forests also have this property.
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• The multi-tree representation assumes that performance is evaluated at the ‘level’
of the team (Sect. 8.3). Constraints can potentially be enforced to ensure context
between different participants. For example, under a class classification problem,
crossover might be limited to exchanging material between participants labelling
the same class [147]. Additional participant-specific performance functions might
be included in order to penalize unwanted participant properties [205, 223],
although the ability to do this might be limited to specific applications. Multi-trees
can also be evolved to providemultiple layers of abstraction. Such an approach has
been demonstrated to be particularly effective for designing operators for image
processing [89].

• Coevolutionary formulations for composing an ensemble have to sample one par-
ticipant from n different populations in order to construct a single ensemble. Fit-
ness then needs to be interpreted at the level of individual ensemble participants,
resulting in various potential pathologies. This is discussed further in Sect. 8.3 and
potential solutions are reviewed in Sect. 8.4.

Finally, we note that an ensemble actually presents multiple decisions regarding
the ‘level of selection’, i.e. the team versus the participant. This represents a theme
common to both sEEL and maEEL. Section8.3 will therefore develop this topic
specifically before ensembles are discussed from the perspective of multi-agent sys-
tems (Sect. 8.4).

8.3 Level of Selection

The concept of level of selection reflects the two levels at which credit assignment
operates when multiple agents are involved in making decisions. As per Definition
1, an ‘agent’ (or ensemble participant) in this context is a fully functional decision-
making partner that performs a mapping from input (state) to output action. Such an
agent might be a neural network, genetic program, decision tree, etc. Thus, given a
pool of agents and a team/ensemble comprising of n agents, the level of selection
problem reflects the following two issues.

Definition 8.2 Team composition: is the likelihood of mapping an agent to a ‘posi-
tion’ in the team/ ensemble consisting of a fixed number of agents.4 There are two
extremes: all participants of a team are unique (heterogeneous team composition) or
all participants of a team are the same (homogeneous team composition), Fig. 8.2.

Definition 8.3 Unit of selection: operates at the level of agents appearing within a
team or at the level of a team, as shown in Fig. 8.2. Naturally, this implies that it is
possible to express performance objectively at the level in question. Generally, the
performance of a team can always be expressed objectively. However, depending on
the task, expressing performance at the level of agents participating with a team may

4 Section8.5 considers the case of variable-sized teams.
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Fig. 8.2 Level of selection [215]. Full homogeneity (a) and (b) assume that all n agents per team
are cloned from one of P genotypes. Full heterogeneity (c) and (d) assume M teams by n agents.
Fitness evaluated at the level of individuals (a) and (c) versus team-level fitness evaluation (b) and
(d). Reproduction at the level of individuals implies that two agents are chosen and an offspring
agent results. Reproduction at the level of teams implies that two teams are chosen and variation
operates at the level of team and possibly agent as well

or may not be possible. In the worst case, team and agent performance might not be
aligned.

The previous discussion of ensembles (Sect. 8.2) implicitly assumed that agents
participating within an ensemble were all different (heterogeneous). Moreover, when
the multi-tree representation is assumed the unit of selection is typically that of the
team [147]. Two parents are selected using team performance and crossover swaps
team participants to create offspring, i.e. performed at the level of the team. In
addition, ‘strong typing’ might also be assumed to direct the action of crossover
such that only agents (sub-trees) with the same type are interchanged. Thus, for
example, multi-trees applied to classification tasks might limit sub-tree crossover to
classes of the same type [147]).

However, this need not be the case. Assuming that suitably informative perfor-
mance functions could be designed for participants as well as at the complete ensem-
ble/team, then the Orthogonal Evolution of Teams (OET) is able to [173, 204, 205]:

1. select parents at the level of participants but replace at the level of teams (OET1),
or;
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2. select parents at the level of teams but replace at the level of participants (OET2).

Such an ‘orthogonalization’ of the processes of selection and replacement was
motivated to have credit assignment operate on the two levels simultaneously. Given
an ensemble of size n there are n participant populations. Teams potentially repre-
sent columns sampled across the n participant populations [173]. Benchmarkingwith
different classification tasks indicated preferences for different OET configurations
[205]. However, OET2 appeared to be more effective at ‘repair’ when applied to
a multi-agent foraging task [204]. We also note that the OET approach was inde-
pendently discovered and used to evolve neural networks with an a priori fixed
architecture [76], where each participant population was associated with a specific
weight population and the ensemble was a complete network. A similar ‘orthogo-
nalized’ process for the level of selection was used to direct the action of selection
and replacement.

The concept of level of selection implies that decisions made regarding the team
composition could have an impact on the degree of specialization versus the gener-
ality of agents supported in a team. For example, cooperative coevolution (Sect. 8.4)
often assumes fully heterogeneous teams, making it difficult to establish teams com-
posed of multiple instances of different types of agents. Moreover, as the level of
selection is often that of the team, coevolutionary pathologies may arise such as:

• mediocre stable states: a form of deception in which agents collaborate to lead
progress away from the global optima [74, 159].

• relative overgeneralization: agents with specialist behaviours are explicitly
selected against [159].

• loss of fitness gradient: the performance of a few ‘affective’ agents is hidden by
the poor performance of the majority of agents within a team. Also referred to as
the ‘signal-to-noise’ problem [6].

• hitchhikers: in this case is synonymous with agents that exist within a team that
does not contribute anything. Such agents reproduce, but do not contribute to the
performance of the team [138, 141].

Section8.4 revisits these pathologies in more detail under the context of multi-
agent systems (cooperative coevolution is frequently usedwithmulti-agent systems).
Figure8.2 summarizes the level of selection concept, albeit assuming 4 ‘types’ of
agent and teams of size n = 4. Waibel et al. performed a series of empirical evalua-
tions of all four discrete parameterizations of team composition and level of selection
using three tasks [215]. The tasks were designed to reward: (1) individual foraging,
(2) cooperative foraging and 3) altruistic foraging. Agent specialization was not
considered in these tasks. Heterogeneous teams with individual selection (Fig. 8.2c)
were preferable when no cooperation was necessary. When cooperation is necessary,
homogenous teams are preferable. However, the study came with some caveats, in
particular teams were entirely homogeneous or heterogeneous. This means that it
was not possible to construct teams with a instances of agent type i. Such hybrid
team compositions might be considered the norm for composing optimal solutions
to many tasks, such as multi-agent robotics.
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Fig. 8.3 Level of crossover [124]. Agent-level crossover a and b identify two agents within two
teams and recombine the agent’s genotypic material. Team-level crossover c and d identifies two
agents within two teams and swaps the (entire) agent genomes. Restricted crossover a and c assume
the position of the first agent. Free crossover b and d may choose agents from different team
positions

A further study considered the impact of variation operators under hybrid team
compositions [124]. The authors set themselves the goal of attempting to evolve
teams consisting of 1,000 agents, in which specific combinations of agent types have
to be found given 10,000 distinct types of agents. Uniform crossover with free or
restricted gene transfer (FAR and RAS respectively) was assumed (Fig. 8.3). The
underlying conclusions were that RAS would converge quickly, where this would
enable it to solve tasks involving many different teams (highly heterogeneous team
compositions). However, when more homogeneous teams were required, the diver-
sity maintenance provided by FAS was the most effective. In addition, the authors
show that by deploying FAS for the early generations and RAS in the latter genera-
tions, thenhybrid teamcompositions canbediscovered.This topicwill be particularly
important when composing teams for multi-agent systems (Sect. 8.4).

Questions left unanswered include the relative impact of attempting to evolve
both agent and team composition simultaneously and the impact of gene linkage
during the course of evolving team composition. Also left unanswered is the effect
of reinventing agent policies. Lichocki et al. concentrated on team composition [124],
whereas agent discovery might benefit from the trading of generic abilities.
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8.4 Multi-agent Systems and Cooperative Coevolution

Multi-agent systems attempt to solve a task cooperatively using a finite set of agents
and are typically applied to reinforcement learning5 (RL) tasks involving more than
one decision-making agent. On the one hand, it is possible that a task might be
solved optimally with the same agent deployed across the entire team or a purely
homogeneous deployment. Conversely, at the other extreme, a task might be solved
optimally with each agent comprising the team being unique (a purely heterogeneous
deployment). Naturally, the number of agents, n, comprising the (multi-agent) team is
known a priori. Thus, when describing the players participating in a soccer team, the
number of players is known. Likewise, the number of robots available for performing
a collective task might well be known. Under the sEEL context (Sect. 8.2) these
issues are not as prevalent because the only team compositions that are appropriate
are purely heterogeneous. Figure8.4 summarizes the reoccurring themes that will be
developed from an explicitly maEEL perspective.

Under a homogeneous deployment, one population is sufficient for sourcing the
agents, and the concept of fitness at the level of teamversus individual agent is aligned
(Sect. 8.3). However, under heterogeneous settings, amultitude of possiblemappings
exist between population(s) sourcing the agents, and team composition (Sect. 8.3).
At one extreme, a single population exists with each agent representing a participant
of the multi-agent team. Under such a setting, incremental models of selection and
replacement are assumed in order to gradually turn over the content of the population

Fig. 8.4 Properties of
significance to Multi-agent
Evolutionary Ensemble
Learning (maEEL). a Two
major themes are identified:
(1) Diversity maintenance is
parameterized from the
perspective of
genotypic/phenotypic
diversity, task transfer and
reward shaping. (2)
Cooperative evolution which
is impacted by the level of
selection (Sect. 8.3),
coevolutionary pathologies
and also reward shaping

(a) maEEL (b) Level of Selection

5 Reinforcement learning implies that an agent interacts with an environment and is rewarded for
maximizing the cumulative rewards as experienced over a finite or unlimited number of interactions
[200]. Applications include robotics, scheduling, game playing and stock trading.
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and speciation/fitness sharing used to maintain population diversity, e.g. [197]. At
the other extreme, each agent is associated with an independent population, this is
the case of cooperative coevolution as formulated by Potter and De Jong [166].

To date, the cooperative coevolutionary formulation represents the typical start-
ing point, Fig. 8.5. As such, one agent is sampled from each population in order to
construct a single multi-agent team of n agents [166]. Thus, population i only ever
source agents for ‘position’ i in the multi-agent team. Put another way, population i
only ever source agents of ‘type’ i; therefore, the context between agent and position
within the team is explicit. Reproduction and replacement only occur between par-
ticipants of the same population. Moreover, cooperative coevolution is agnostic to
the representation assumed to define the agents. Indeed, the populations associated
with each agent (type) could have entirely different representations.

Naturally, performance is evaluated at the level of a team.However, fitness of agent
i from an n agent team is a function of the other n − 1 agents participating within the
multi-agent team.As a consequence,N samples (and thereforefitness evaluations) are
made of the agents from the other n − 1 populations in order to establish the fitness of
agent i. However, cooperative coevolution requires ameasure of fitness to be returned
to individual agents in order to direct the population-specific process of reproduction
and replacement. At this point, pathologies can appear during credit assignment.
For example, it became apparent that using the average (team) fitness from the N
partnerships used to quantify the performance of agent i results in team compositions
that favour mediocre stable states [74, 159]. In addition, relative overgeneralization
may appear, where many individuals represent ‘jack-of-all-trades’ style solutions.
This in turn precludes the development of specialists that could improve the overall
collective performance of a team [159].

An early mechanism adopted for reducing these biases was to assign an agent its
best fitness from the N partnerships as opposed to the average of all N partnerships
[220]. This was later refined to using an annealing schedule to reduce the number of
partnerships assessed as the number of generations increased [160].Most recently, the

Fig. 8.5 Cooperative
Coevolution [166].
Populations A, B and C only
provide agents for team
positions 1, 2 and 3,
respectively. The
context/type for each agent is
therefore explicit. However,
this forces teams to be
heterogeneous. Evolving
hybrid compositions requires
the introduction of different
team-level representations
(Sect. 8.4.3)
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issue of premature convergence in cooperative coevolutionary approaches to multi-
agent systems has been addressed through the use of diversity measures (Sect. 8.4.1)
and/or task variation (Sect. 8.4.2).

A related pathology that multi-agent systems can experience is with regards to a
loss of fitness gradient. Specifically, as the team size increases, then the performance
of one ‘good’ agent can be lost in the ‘noise’ created by all the poor-performing
agents, i.e. a signal-to-noise problem. Attempting to address this problem by increas-
ing the number of partners that agent i is evaluated with will not scale as the team
size increases.

Agogino and Tumar proposed to address this problem by adopting factored (dif-
ference) performance functions [6]. This implies that for any state, the runner-up
solution is known such that the effect of substituting the runner-up for the target
agent can be estimated. Such functions have been demonstrated for a cross-section
of applications involving agent deployments, e.g. sensor networks [4], air traffic
control [5], multi-rover co-ordination [6].

Factored performance functions effectively reshape the reward such that improve-
ments by a single agent also improve themulti-agent reward [44]. Shaping the reward
in this way is easier to achieve when the agents are ‘loosely coupled’. Loose cou-
pling implies that the actions of one agent are not closely dependent on another,
i.e. a form of gene linkage. It is more difficult to formulate factored performance
functions when agents are tightly coupled [51]. For example, should one agent be
doing something useful, such as attempting to push a highly valued object, unless
the other agents also perform the same action, there might be no reward. This plays
into being able to more explicitly control the degree of homogeneity/heterogeneity
so that there are a instances of agent type i and b instances of agent type k. Hence,
rather than attempting to evolve all agents independently, it might only be necessary
to evolve 2 different agent types in a team of 20. Evolving teams with a hybrid mix
of homogeneity/heterogeneity is discussed further in Sect. 8.4.3.

8.4.1 Diversity Maintenance

Diversity in cooperative coevolution can be promoted using behavioural (pheno-
typic) or genotypic properties at the level of team and/or agent. Diversity in the
underlying team objective is often achieved by adopting multi-objective formula-
tions in which several possibly conflicting objectives describe the underlying goal
[43, 227]. Pareto formulations encourage tradeoffs between the different objectives
to be investigated by different team complements. Moreover, they can also be used
to provide a sequence of objectives of incremental difficulty that can lead to solving
some (more difficult) overall objective [207].

Diversity maintenance represents a general challenge when evolving multi-agent
systems. As such multi-objective methods have been widely adopted in an attempt
to simultaneously develop task-specific objectives and promote diversity [144, 145].
Several approaches have appeared, including initially developing diverse behaviours
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on a set of source tasks usingmultiple novelty objectives. The non-dominated individ-
uals are used to seed the population for the target task(s) [143]. Conversely, Doncieux
andMouret include the task-specific objective throughout, but switch between differ-
ent diversity objectives [54]. Such task switching has been recognized as a potential
mechanism for promoting ‘modular’ solutions in general [164].

Several studies have demonstrated their applicability across a range of benchmark
tasks: predator–prey [74], herding [74], multi-rover [74], half-field offence soccer
[103] and Ms Pac-Man [103]. Genotypic diversity can be captured by measuring the
pairwise similarity of team content between teams [74]. Moreover, such metrics can
also be formulated for variable size teams [103]. Noveltymetrics have been evaluated
at the level of individual participants of a team as well as at the team level. A distinct
preference for maintaining diversity at the level of the team has been reported [74,
152].Moreover, experiments with and without behavioural diversity, genotypic team
diversity and multiple source tasks indicate that the most general solutions appear
when multiple forms of diversity appear [74, 103, 152].

8.4.2 Task Transfer

Task transfer (or layered learning) represents a mechanism for scaling learning algo-
rithms in general and multi-agent (or cooperative coevolutionary) systems in par-
ticular to tasks that cannot be solved directly (tabula rasa), e.g. [178, 199, 202,
219]. This is also referred to as the bootstrap problem [143, 207]. As such, one or
more source task(s) need identifying, typically a priori, with the evolution of the
multi-agent system first performed on the source task(s). Policies or entire teams are
then used as a ‘run transferable library’ for use during an independent evolution-
ary cycle conducted against a target task [101, 103]. The library might be used as
seed material for initializing the population evolved against the target task, i.e. the
agent-teams discovered under the source task aremodified. For example, participants
taking the form of code fragments6 have been evolved using learning classifier sys-
tems on small-scale Boolean tasks and scaled to solve Boolean problems of larger
dimension [13, 91]. Conversely, the solutions from the source task might be ref-
erenced by agents as evolved against the target task [101, 103], i.e. the solutions
identified under the source task are not subject to variation during the development
of the target task. The end result is an ensemble with a variable-sized structure that
deploys solutions to source tasks in innovative ways to solve target tasks [108, 189]
or the evolution of ensembles for solving multiple target tasks simultaneously [104,
108, 109] (reviewed in Sect. 8.5). In some cases, configurations of the task can be
specified by members of an independent population. Competitive coevolution can
then be used to establish an ‘arms race’ between candidate solutions (the teams) and
the task [117]. This leads to a more open-ended process of team development [186,
190].

6 Tree structured GP with a depth limit of two.
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To date, task transfer under neural evolution tends to assume a population-seeding
approach to task transfer [149]. Early examples evolved a neural network under a
lower dimensional input space7 and transferred this to a higher dimensional version
of the task [22]. The HyperNEAT framework was assumed for this purpose, and
teams were not explicitly present. However, this set the scene for use of a ‘bird’s
eye’ representation in which an explicitly multi-agent task (e.g. evolution of agents
to play keepaway soccer) could be evolved to transfer between unrelated tasks [213].
One element of the approach was to reformulate the original egocentric task descrip-
tion to that of a two-dimensional global ‘grid world’ representation as viewed from
above. HyperNEAT could then be used to scale to increasing numbers of players for
the keepaway soccer benchmark task without target task training by adding a third
dimension to the original bird’s-eye view [45, 46]. The concept of a team is now
a continuum. HyperNEAT represents an example of a developmental framework in
which neural networks evolved with cyclic activation functions (denoted a Compos-
ite Pattern Producing Network, CPPN) describing the parameters appearing in the
target architecture. The inputs to the CPPN represent the co-ordinates of the input
and output of the target architecture. Adding a further HyperNEAT input to index
the number of teams effectively scales the approach to arbitrary numbers of agents
per team [45, 46]. Diversity was again a significant issue, with the combination of
(task-specific) performance objectives and novelty search resulting in the most effec-
tive agents under the keepaway soccer task [152]. Such an approach rests on the use
of (1) a bird’s-eye representation and (2) HyperNEAT. For example, the bird’s-eye
representation removes some of the properties of the keepaway soccer task that made
it challenging (e.g. navigation using an egocentric representation). HyperNEAT also
composed solutions in the form of a 160,000 parameter feed-forward neural network,
therefore losing solution transparency.

8.4.3 Hybrid Homogeneous–Heterogeneous Multi-agent
Systems

The ‘signal-to-noise’ pathology in multi-agent systems (cooperative coevolution)
can potentially be addressed by explicitly supporting the evolution of hybrid team
compositions (see also Sect. 8.3). Thus, a team of 11 soccer-playing agents could
be parameterized by specifying four types of agents (goalie, defender, mid-field and
striker) and the number of each type of agent evolved. Nitschke et al. adapted the
classic cooperative coevolutionary framework of Potter and De Jong [166] (fully
heterogeneous) to address this issue by introducing an inter-population crossover
operator [153, 154]. To do so, the genotypic and behavioural similarities between
different populations are measured. This implied that a particular neural encoding
had to be adopted. When the inter-population similarity passes a threshold, then

7 Representing a board game with complete state information.
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crossover of material between populations can take place. There are still as many
populations as agents, but subsets of populations can now influence each other.

Early examples of evolving hybrid team compositions specific to genetic pro-
gramming include the use of an ‘automatically defined group’ [79] and the ‘Legion
system’ [30], both of which assume a tree-structured representation. Automatically
defined groups rely on special purpose crossover operations to manage the develop-
ment of teams over multiple level of selection. The Legion system not only relied on
specialized crossover operators (specific to tree-structured genetic programming) but
also introduced an entropy based heterogeneitymeasure in order to encourage/reward
the division of labour between agents.

More recently, Gomes et al. explicitly define a team encoding to distinguish
between agent type and the number of instances of each agent [75]. Specifically,
the Potter–De Jong cooperative coevolutionary framework is still assumed, but this
time the number of independent populations reflects the number of agent types. One
set of variation operators functions at the team level and another set operates at the
agent level [75]. Team-level variation can decrease or increase the number of agent
types, thus merges or splits the corresponding agent populations. The approach is
still independent of the agent representation, but the same representation has to be
employed throughout.

A further aspect of the signal-to-noise pathology is that there are two compo-
nents to the reward function: a ‘high-frequency’ component and a ‘low-frequency’
component. The high-frequency component is associated with the agent to environ-
mental interaction, i.e. reinforcement learning [200]. The low-frequency component
is associated with satisfying multi-agent components of the reward. With this in
mind, neuro-evolutionary approaches have been proposed in which gradient-based
temporal difference methods are used to optimize properties of individual agents,
while evolutionary computation is employed to design the team [110]. Naturally,
such an approach assumes a real-valued numerical representation [218] in order
to support both high-frequency (gradient decent) and low-frequency (evolutionary
computation) credit assignment.

Finally, we also note the use of ‘tagging’ to dynamically identify which team a
participant belongs to [86, 169]. Thus, participants are assigned on the basis of the
similarity8 of their respective tag values. This method of dynamic team selection has
been extensively analysedwithin the context of the iterated prisoners dilemma [20]. In
particular, only members of the same group play each other, resulting in participants
increasingly adopting altruistic strategies as opposed to defector strategies as the
number of tags increases. This is to say, the altruistic participants learn to increase
the number of teams in order to decrease the likelihood of their team including
a defector. More recently, Lalejini et al. used tags to identify the conditions under
which agentswere associatedwith states. This enabled agents to evolve ‘event driven’
decompositions of tasks [122].

8 The similarity metric could also be probabilistic, resulting in a source of variation in participant-
to-team association.
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Fig. 8.6 Properties of
significance to
Variable-sized Evolutionary
Ensemble Learning (vEEL).
Flat implies that the
ensemble is organized with
all agents participating in
every decision. Graph/Tree
implies that ensemble
participants are organized
hierarchically with different
subsets of individuals
participating in decisions
depending on the input state

8.5 Ensembles with Variable Size-Structures

All the above research assumed ensembles/multi-agent systems in which the number
of participants/agents per team was specified a priori. However, it might actually be
desirable for this to evolve as well. Figure8.6 highlights themes of significance for
evolving variable-sized evolutionary ensemble learners (vEEL).

One approach to vEEL might be to repeatedly evolve a fixed-sized ensemble
approach (Sect. 8.2) over a range of ensemble sizes. Naturally, this would incur a
significant computational overhead. Multi-tree representations have been proposed
for evolving teams of up to n participants by introducing a ‘null’ program at the
sub-tree level [21]. Multi-objective archiving has also been used to cooperatively
evolve ensembles of classifiers formulti-class [139] and binary [25, 26] classification
problems. As such the complexity of the resulting archive is a function of the task
difficulty, i.e. the number of participants per class is an evolved property. Such an
approach deploys participants in parallel (or ‘Flat’ in Fig. 8.6). Conversely, at the
other extreme, participants might be organized as a hierarchy or a cascade [70].
Potter and De Jong assumed the specific case of cascade correlation in order to
let cooperative coevolution incrementally evolve a neural network without a priori
specifying the number of hidden layer neurones [166]. However, this solution was
specific to the case of neural networks with a cascade correlation topology [61], so
the coevolutionary process was no longer agnostic to the representation assumed for
participants. A further approach to cascade/stack construction has been proposed
in which participants distinguish between making a prediction or not [228]. If a
prediction is made, no further participants need to make a decision. If a prediction
is not made, then the next participant in the hierarchy is queried.

Sections8.2 and 8.4 for the most part assumed that all participants collaborated at
the same level (parallel/flat agent deployment). Conversely, graphs have the ability to
describe hierarchical relationships and enforce spatial and/or temporal dependencies
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between different participants. Graphs have previously been used as an organizing
principle for instructions within programs (e.g. [135, 193]) or state machines (e.g.
[16, 91]). However, two works have also considered using conditional statements
attached to a ‘header’ of ensemble participants to define which out of several ‘fol-
lowing’ participants to execute: PADO [203] and Linear Graph GP [97]. In both
cases, given a start or root participant, the participant is executed and the partici-
pant’s conditional statement is assessed. Depending on the conditional statement,
either another participant is executed or not. The conditional statements from PADO
assess the state defined in a common memory (to all participants), whereas the con-
ditionals of Linear Graph GP assess the register values of the parent participant. As
such, a single participant is associated with graph nodes and arcs are associated with
each condition statement. The concept of a team is therefore ‘distributed’ across
the graph as a whole. Note, that a participant’s action is now either a reference to
another participant or a task-specific action, i.e. the number of actions has increased.
This is still consistent with Definition 1 because a participant is completely executed
(without transfer of execution to different participants) before action selection can
take place. In effect, by adopting a graph, hierarchical relationships now exist so that
a participant can defer task-specific action selection to a more specialist participant.
We identify these approaches as ‘rule based’ in Fig. 8.6.

More recently, graphs have been evolved for which each node represents a team
and each participant an arc. Given a start or root node, a subset of the teams in the
graph is visited, depending on the state of the environment. The process of visiting
nodes (teams) continues until an arc is selected that ends in a task-specific action as
opposed to another team. In the following, we review attempts to evolve variable-
sized ensembles (including trees of teams) using this process (Sect. 8.5.1) and then
generalize this to the case of graphs (Sect. 8.5.2).

8.5.1 Variable Size Ensembles Through Symbiosis

Symbiotic models of cooperative coevolution provide a generic approach for dis-
covering the composition of variable-size ensembles / multi-agent teams using only
two populations [84]. Thus, unlike the Potter–De Jong formulation of cooperative
coevolution (Sect. 8.4), the number of populations is independent of the number of
participants appearing in the team. Specifically, there is a team (host) population and
a participant/ agent (symbiont) population, Fig. 8.7. The team population attempts to
discover useful team compositions whereas the agent population provides the pool
of participants that may appear within a team. Participants may appear in multiple
teams, and the team composition has to be unique. An early example of symbiosis
was used to evolve fixed topology neural networks, i.e equivalent to a fixed size team
[142].

In order to extend the two population model into a variable length representation
(thus hybrid homogeneous/ heterogeneous compositions), agents need to distinguish
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Fig. 8.7 Symbiotic cooperative coevolution with bid based agents [126]. Participants from the
Team population (LHS) are defined as pointers to participants of the Agent population (RHS). For
illustration the Agent population is considered to consist of three types of action (e.g. class 1, 2,
3), represented by the star, triangle and circle. Valid teams should consist of Agents representing
at least two different types of action. The same Agent can appear in multiple Teams, but the team
complement should be unique

between context and action [125]. Thus, agent execution9 is used to identify the bid (or
confidence) given the environment’s state. All agents from the same team provide a
bid; however, only the agent with the highest bid ‘wins’ the right to suggest its action
[126, 127, 223]. This means that multiple agents might appear in the same team
with the same action, but with different contexts, adding another degree of flexibility
to the process of divide-and-conquer.10 Moreover, teams need not start with the
full complement of agent types, but instead incrementally develop the relevant type
complexity.

In the simplest case the action, a, is just a discrete scalar value.11 Agent actions
are chosen from the set of task-specific actions a ∈ A, e.g. class labels. We now have
an agent representation that can evolve teams consisting of any number of team par-
ticipant types and different sizes. Moreover, the parent pool is identified at the level
of teams. Any team participants not associated with a surviving team are deleted, i.e.
task specific fitness need only be defined at the level of the teampopulation. Hitchhik-
ing is still an issue but can be addressed by periodically dropping team participants
that never win a round of bidding. The resulting symbiotic model of coevolution was
demonstrated to be superior to evolution without ensembles [127] and competitive
with learning classifiers and support vector machines under multi-class classifica-
tion tasks [126, 223]. Further developments included scaling to high-dimensional
(≥ 5, 000) classification tasks [56, 127] and operation under non-stationary stream-
ing data classification tasks (Sect. 8.6).

9 The executable component of an agent could be a program or a neural network.
10 Agent context divides the input space into a region and associates its region with an action. As
multiple programs appear in the same ensemble, multiple regions–actions appear.
11 Support for real-valued actions introduces an action program at each agent [23, 106].
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The approach has also been extended to produce hierarchical teams for rein-
forcement evolutionary ensemble learning (rEEL) [55, 105]. This is distinct from
maEEL as rEEL solutions describe a single agent policy but explicitly decompose the
task/representation. One implication of this is that strategies for solving one aspect
of a task can be reused for solving other aspects of a task [103]. The resulting tree
structure represents teams as tree nodes and agents as arcs. Leaves represent atomic
actions. The tree is constructed bottom-up (but evaluated top-down from a single
root team), with successive layers describing their actions in terms of pointers to
previously evolved teams [55, 105].

In order to ensure that different teams represent different strategies, then diversity
maintenance (during evolution) represents a re-occurring theme (Sect. 8.4.1). In par-
ticular, different tasks could be interleaved with the development of the hierarchical
team, thus a natural approach for task transfer [101, 103]. Alternatively, competitive
coevolution has been used to develop an ‘arms race’ between tasks and solution
strategies resulting in the organization of thousands of team participants for opti-
mally solving (tens of millions of) Rubik’s Cube configurations [186, 190]. As an
additional benefit, unlike monolithic solutions (a single large agent), only one team
per tree level is evaluated to determine the ultimate action, making for extremely
efficient solutions when compared to neural networks [103, 187].

8.5.2 Tangled Program Graphs

The symbiotic framework was also generalized to organizing teams into graphs of
teams, leading to results that are competitive with deep learning solutions on (visual)
reinforcement learning problems [102, 187]. Indeed, the resulting ‘tangled program
graphs’ could learn policies for playing multiple game titles simultaneously under
the ALE benchmark, i.e multitask learning [104]. The graph representation gives
direct insights into the nature of the decomposition of agents to decision-making
under different game titles, i.e. interpretable machine learning. Later developments
demonstrated that the approach also scales to multiple types of partially observable
task12 such as Dota 2 [188] and ViZDoom navigation [108]. Support for real-valued
actions under tangled program graphs enabled problems in recursive forecasting
[108], multitask control [109], and biped locomotion [14] to be addressed.

One of the unique benefits of the graph-based ensemble is that they are excep-
tionally efficient to train and deploy. The composition of agents, teams, and graphs
is incremental and entirely emergent. This results in solutions whose complexity
reflects the properties of the task, not the initial dimensionality of the state space or a
priori assumptions about suitable solution topologies. Thus, under visual reinforce-
ment tasks, less than 20% of the pixels are used to reach a decision [102, 104, 187].13

12 Implies that the agents can only solve a task by forming decisions from the internal state (memory)
as well as the external state as provided by the environment.
13 Decreases to < 5% as the dimension of the visual state space increases [107].
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The complexity of the entire solution is typically three or more orders of magnitude
lower than deep learning approaches to the same task [102, 104, 187]. Specifically,
in order to make a decision, only a fraction of the graph is evaluated, which this
changing as a function of the state. Insights are then possible about the functional-
ity of participants in the evolved team [107]. In addition, this has led to the use of
graph ensembles in ultra-low power signal processing applications such as real-time
intrusion detection on IoT devices [196]. Indeed, solutions to the ALE visual rein-
forcement learning benchmark [137] have been demonstrated using nothing other
than Raspberry PI embedded controllers [48].

8.6 Applications and Future Research

Table8.1 provides a review of specific application developments that have bene-
fited from adopting an evolutionary ensemble learning approach. Thus, aside from
the application of evolutionary ensemble methods to a wide range of regression
and classification problems (summarized in Sect. 8.2), we note that the underly-
ing requirements for constructing ensembles are also the requirements for feature
construction/engineering using wrapper or filter methods [77]. Specifically, feature
construction requires that a diverse set of features be engineered to improve theperfor-
mance of a regression or classification task. Indeed, many evolutionary approaches
to feature engineering assume a multi-tree representation, e.g. [7, 21, 148, 206].
Thus, the number of ensemble participants (n) represents the number of features
constructed [7, 116, 148, 183]. More recently, multiple features (participants) have
been engineered per class (e.g. [56, 127, 206]) or features (participants) are evolved
that are capable of transferring between different environments [8]. Multidimen-
sional genetic programming approaches the (feature construction) task from a differ-
ent perspective by attempting to discover a low-dimensional space appropriate for
describing all aspects of the task [39, 139]. In general, what is particularly impres-
sive with ensemble solutions to the feature construction problem is the capacity to
discover very accurate low-dimensional feature spaces from applications described
in terms of higher dimensions [56, 148, 171] or from low cardinality datasets [9].

Future work might consider the use of ensemble diversity measures originally
developed from the perspective of feature construction. For example, limitations
may appear when relying on pairwise (feature) diversity measures [90] or attribute
frequency importance [49], whereas a permutation-based sensitivity analysis can
avoid the linear correlation constraint (e.g. [12, 49, 93]). Future work might further
consider the utility of permutation schemes for interpretable solutions [57].

In general, scalability represents an underlying theme for sEEL. One approach
might be to make use of the increasing availability of parallel computing platforms,
such as cloud [18, 68, 212] or GPU [17]. Alternatively, methods for algorithmically
reducing the number of evaluations might be adopted, such as surrogate models
[36] or active learning [185]. Both of the latter have been benchmarked on com-
puter vision benchmarks such as CIFAR resulting in much simpler solutions than
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Table 8.1 Summary of EEL research with specific application contexts

Application area Publication

Control systems

Direct control [55, 76, 161]

Dynamical systems modelling [1, 47]

Path planning/obstacle avoidance [54, 105, 144, 145]

Robot locomotion [14]

Data analysis

Boolean expression learning [13, 91, 92]

Cancer prediction [7, 11, 85, 113, 222]

Instance selection [71]

Interpretable solutions [35]

Multi-label classification [146]

Multi-objective [21, 40, 42, 63, 123, 129, 139, 176]

Outlier reduction [50]

Software fault utilization [191]

Feature Construction

Application specific [7, 21, 85]

High-dimensional (input) [56, 127, 148]

Image data [9, 27, 28, 36, 37, 89, 171, 180, 203]

Inter-task feature transfer [8, 28, 149]

Low cardinality (training) [9]

Multi-feature construction [56, 89, 206]

Multi-task or transfer learning

Supervised [8, 28, 149, 178, 180]

Reinforcement learning agents (memory) [106, 108, 109, 188, 189]

Reinforcement learning agents (reactive) [22, 48, 101–104, 112, 186, 187, 190]

Multi-agent Reinforcement learning

Air traffic control [5]

Five aside soccer [75]

Keepaway soccer [101, 152, 213, 219]

Half-field offence [101, 103]

Multi-agent communication [52, 140, 225]

Multi-rover [6, 51, 74, 75, 110, 175, 224]

Preditor–prey [74, 225]

RoboCup [15, 133]

Sensor networks [4]

Scalable training

Active learning [69, 72, 126, 127, 139, 185, 192]

Algorithmic efficiency [214, 228]

Cloud or cluster computing [18, 68, 212]

GPU platform [17]

Surrogate fitness [36]

(continued)
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Table 8.1 (continued)

Application area Publication

Scheduling

Capacitated arc routing [216]

Dispatching rules [58–60, 80, 163]

Trip planning [98]

Streaming

Benchmarks [19, 64, 65, 67, 83, 210]

Churn detection [211]

Intrusion detection [66, 111, 196]

Trading agents [130, 136]

currently available using deep learning. In addition, organizing ensemble agents as
a stack/cascade was shown to scale sEEL to data cardinalities in the hundreds of
thousands in less than 30s on a regular CPU [228]. Future work might continue to
investigate how different ways of composing ensembles trades off accuracy versus
training efficiency versus interpretability [35].

A related application of sEEL is that of streaming data forecasting and classifi-
cation [83]. Some properties that make the streaming data environment challenging
yet appropriate for sEEL might include.

• Non-stationary nature of the underlying task (drift and/or shift) whichmight imply
thatmechanisms need to be identified for detecting the onset of change and reacting
appropriately [64, 65, 67]. Ensembles are capable of reacting to changes more
effectively than non-ensemble approaches because the implicit modularity enables
specific participants to be retired/replaced as their performance degrades. This then
leads to solutions that are more adaptable than without the use of ensembles [210].

• Anytime nature of deployment implies that in time series classification a champion
classifier has to be available for labelling the next exemplar before any model has
encountered it. This means that the champion classifier might vary over the course
of time.

• Imbalanced or limited availability of label information. Given that streaming data
is typically experienced on a continuous basis (there is no ‘end’ to network or stock
market data), models are constructed from the content of a sliding window, i.e. a
finite number of exemplars. This can lead to different strategies being adopted for
retaining data beyond the most recent window content, e.g. data subset archiving
and ensemble archiving [19, 111].

To date, streaming ensemble methods have been applied to applications in trading
agents [130, 136], intrusion detection [66, 111], electricity utilization [131], satellite
data [64], and churn detection [211]. Specifically, Mabu et al. assume a graph rep-
resentation that explicitly captures dynamics of stock trading, whereas Loginov and
Heywood coevolve an ensemble of technical indicators and decision trees for cur-
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rency trading and utility forecasting. Both Folino et al. and Khanchi et al. emphasize
the ability of ensembles to dynamically react to changes to the underlying properties
of the streaming data. A related topic is that of dynamical systems identification in
which each (independent) variable has a participant evolved and a suitable aggrega-
tion function applied [1]. Particular challenges in this setting might include evolving
explainable solutions. Other tasks with dynamic properties that have deployed evo-
lutionary ensemble approaches include different formulations of scheduling tasks
that are addressed through the evolution of dispatching rules, e.g. [58–60, 80, 163].

Task transfer and multi-task learning also represent areas in which rEEL can
potentially produce advances to the state-of-the-art. Task transfer is typically assumed
when the ultimate objective is too complex to solve ‘tabula rasa’ [219]. Instead,
solutions are first evolved to solve simpler source tasks before the ultimate target
task is encountered [202]. Likewise, multitask learning requires that solutions to
multiple tasks are discovered such that a single champion for all tasks is discovered.
This can be particularly difficult as, aside from the difficulty of solving each task,
the agent has to establish what environment it is in. Current results indicate that EEL
approaches are well placed to incrementally absorb multiple source tasks [8, 101,
103, 149, 186–188] as well as solve multiple tasks simultaneously [28, 98, 104,
108, 109].

Future challengesmight include extending these results to environments requiring
lifelong/continuous learning (e.g. [179]) and addressing pathologies such as catas-
trophic forgetting (e.g. [114]) or returning solutions that are interpretable [57, 174].
Given the explicit use of structured representations in EEL, interpretable solutions
might represent a potentially significant new development for EEL. Moreover, some
of the opaque properties of individual participants might be amenable to simplifi-
cation using techniques developed for interpretable AI (e.g. model debugging using
adversarial learning or perturbation-based analysis [57]). Indeed, there is already a
rich history of employing competitive coevolution (the EC approach to adversarial
learning) to develop more robust solutions to computer security applications [157].

Multi-agent systems will continue to develop, particularly with respect to evo-
lutionary robotics [53]. One avenue that is beginning to see some results is with
regards to the evolution of communication [140] or stigmergy [225] in multi-agent
systems. In particular, Mingo and Aler demonstrate that agents can evolve spatial
languages with specific syntactical properties using the evolution of grammatical
evolution [155]. As the number of agents and objects increases, then the sophistica-
tion of the evolved language also increases [140]. Developments of this nature may
lead to agents teaching agents [178] and/ or forms of problem-solving that uniquely
reflect the mixed ability of the agents to perform different tasks [10].

In addition, multi-agent approaches have appeared in gaming applications in
which group behaviours might be desirable. The RoboCup competition represented
an early example [15, 133], with more recent works using specific aspects of the full-
team competition as smaller scale benchmarks, e.g. keepaway [101, 152, 213, 219],
half field offence [101, 103] or five-a-side soccer [75]. First-person video games have
also been used to demonstrate the development of squad behaviours using EEL [197]
and confirmed that teams increasingly make use of communication as the amount of
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visual information decreases [52]. Likewise, partially observable environments have
also been used to demonstrate: (1) navigation behaviours under visual reinforcement
problems [108, 188, 189] and (2) time series prediction [106, 108] and (3) agents
able to solve multiple control problems simultaneously [109]. The resulting EEL
graph structures demonstrate an emergent division of duties between, for example,
participants that write to memory (a specialist) and those that read (everyone) or the
types of tasks addressed by different parts of the graph-based ensemble.

8.7 Discussion

EEL in general has a long and rich history in which the desire to scale evolutionary
computation to increasingly more demanding tasks represents an underlying motiva-
tion. To do so, the divide-and-conquer approach to problem-solving is assumed as a
general principle. However, in doing so, several pathologies potentially appear/need
recognition of which level of selection and diversity maintenance represent reoc-
curring themes. The level of selection reflects the fact that a solution is composed
of multiple participants, whereas the performance function might only operate at
one level. Moreover, gene linkage can appear between participants and diversity can
appear at multiple ‘levels’, making credit assignment difficult to measure. In addi-
tion, EEL as applied to multi-agent systems cannot just assume that teams will be
heterogeneous. Instead, specific combinations of different types of agents might be
the norm.

Historically, supervised learning applications of EEL have assumed a fixed-sized
ensemble definedby amulti-tree representation (Sect. 8.2). Thismeans that the partic-
ipants are always heterogeneous and the unit of selection is that of the team.However,
as demonstrated by the OET algorithm (Sect. 8.3), this might represent a sub-optimal
model of selection. Conversely, multi-agent tasks often assume cooperative coevolu-
tion as the starting point for defining a teamof agents. The cooperative coevolutionary
model not only provides a wider opportunity for developing mechanisms for answer-
ing the level of selection question but also potentially introducesmultiple pathologies
(Sect. 8.4). Attempting to develop variable-sized ensembles means that a participant
has to distinguish between learning context (decomposing the state/input space into
regions) versus suggesting an action (Sect. 8.5). Some of the benefits of adopting
a variable-sized team are that the evolved ensemble imparts additional knowledge
about what was learnt. However, pathologies such as hitchhiking might result in
bloated ensembles unless mitigation strategies are taken.

The future of EEL will likely continue to grow with the development of applica-
tions on the one hand and challenges tomachine learning as awhole on the other. EEL
is central to a body of work on feature construction that is now leading to the adop-
tion of task transfer techniques, e.g. high-dimensional taskswithmissing information
and/or low cardinality. Likewise, EEL has repeatedly been successfully applied to
streaming data in general, but the number of new streaming data applications con-
tinues to grow (e.g. IoT, social media, e-commerce). Streaming data applications
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also point to the concept of lifelong (continuous) learning in which case there is
potentially no end to the learning process.

EEL as formulated to address multi-agent or reinforcement learning problems is
able to answer questions about hybrid homogeneous–heterogeneous team composi-
tion as well as variable-size ensembles. Incorporating hierarchical relationships into
EELmeans that participantswho systematicallymispredict can defer their decision to
another (specialist) team that concentrates on resolving this ambiguity. Approaches
for discovering graph ensembles provide a further opportunity for establishing struc-
tures that might be appropriate for continuous learning and interpretable solutions.
A wide range of empirical results has already established that participants are sig-
nificantly less complex than monolithic solutions (e.g. when using SVM or deep
learning). Moreover, the appropriate selection of the ensemble aggregation oper-
ation (e.g. winner-tasks-all or the additive operator) provides explicit support for
interpretable solutions [174]. This in combination with parsimonious participants
may lead to truly scalable ensembles that support low-dimensional saliency, i.e. do
not rely on post hoc ‘explanations’. In short, there is still ‘plenty of room’ in the
divide-and-conquer approach to evolutionary machine learning.
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