
Chapter 6
Evolutionary Clustering and Community
Detection

Julia Handl, Mario Garza-Fabre, and Adán José-García

Abstract This chapter provides a formal definition of the problem of cluster
analysis, and the related problem of community detection in graphs. Building on
the mathematical definition of these problems, we motivate the use of evolutionary
computation in this setting. We then review previous work on this topic, highlighting
key approaches regarding the choice of representation and objective functions, as
well as regarding the final process of model selection. Finally, we discuss success-
ful applications of evolutionary clustering and the steps we consider necessary to
encourage the uptake of these techniques in mainstream machine learning.

6.1 Introduction

Unsupervised learning is concerned with the identification of patterns in data in
scenarios where information on the outcome of interest is not available directly. In
other words, while supervised learning is concerned with the mapping from an input
space X to an output (target) space Y , unsupervised learning is strictly limited to the
analysis of X and the discovery of patterns inherent to that space.

The most commonly encountered question in unsupervised learning relates to
the presence of natural groups within the data, i.e., subsets of entities that are
inherently similar or related to each other and, at the same time, inherently dissimi-
lar or unrelated to other entities within a data set. Where data is available in the form
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Fig. 6.1 Unsupervised learning scenarios relevant to the problems of cluster analysis and com-
munity detection. The different ways in which entities are characterized are highlighted in red:
x j
i is a feature vector, d j

i is a dissimilarity vector, and a j
i is a row of the adjacency matrix, such

that j ∈ {1, . . . , V }, where V represents the number of distinct data views available in the form of
feature spaces, dissimilarity matrices, or relational spaces

of features, directly characterizing each entity, or in the form of (dis)similarities, cap-
turing the pairwise relationships between all samples, the above problem is referred
to as clustering or cluster analysis [33]. Otherwise, when the data is characterized
primarily through a partial set of relations between the entities, information which
is commonly represented as a graph, the resulting problem is known as community
detection [12]. Figure 6.1 provides a side-by-side comparison of these three key sce-
narios, which may overlap in practice. Due to their close relationship, this chapter
aims to provide a holistic overview of evolutionary approaches designed for all three
problem settings.

6.2 Unsupervised Learning Scenarios

We are concerned with unsupervised learning on a set of entities X . Here, X is made
up of individual entities xi ∈ X , with i ∈ {1, . . . , N } and N being the cardinality of
X (i.e., N is the total number of entities in the data set).

Depending on the particular scenario of unsupervised learning, further informa-
tion about entities may be available as follows:

1. In many instances of unsupervised learning, each entity xi is directly represented
through a feature vector:

x j
i = (x j

i1, . . . , x
j
i D j ) .

Here, D j represents the dimensionality of the j-th feature space, F j . Some
applications are characterized by the availability of multiple feature spaces (data
views), so j ∈ {1, . . . , V }, where V represents the number of distinct feature
spaces available.
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2. In certain applications of unsupervised learning, a feature representation of indi-
vidual entities is not appropriate or available. Instead, entities may be character-
ized indirectly, through their dissimilarity or similarity relationships to all other
entities within the data set, X . Concretely, in such scenarios, each entity xi is
represented through a dissimilarity vector:

d j
i = (d j

i1, . . . , d
j
i N ) .

In vector d j
i , d

j
it captures the dissimilarity between entity i and entity t , whereas

N corresponds to the total number of entities within the data set. As above, some
applications are characterized by the availability of multiple dissimilarity values,
so j ∈ {1, . . . , V }, where V represents the number of distinct dissimilarity matri-
ces (data views) available. Without loss of generality, this definition focuses on
dissimilarities only, as relational information presented as a similarity matrix can
be mapped to a dissimilarity matrix through a suitable mathematical transforma-
tion.

3. Finally, unsupervised learning scenarios can be characterized by the availability
of relational information between subsets of entities only. This information can
be naturally captured in the form of a graph. Concretely, in such scenarios, each
entity xi is modeled as a node of a graph, and the available relational information,
for that node, is given by a single row of the graph’s adjacency matrix:

a j
i = (a j

i1, . . . , a
j
i N ) .

In this case, a j
it captures the strength of the relationship between the i-th and

t-th data entities, with a value of a j
it = 0 indicating the absence of relational

information (and, therefore, absence of an edge between the associated nodes).
Asbefore, N refers to the total number of entitieswithin the data set. In the simplest
case, the entries of a j

i are binary, i.e., a
j
it = 0 or a j

it = 1, representing the absence
or presence of a relation, respectively. Where present, the relation is represented
as an unweighted edge in the graph. Alternatively, edges within the graph may
be weighted and/or directed, reflecting the strength, and potential directionality,
of the relationship between connected entities. Again, some applications may be
characterized by the availability of multiple sets of relations, so j ∈ {1, . . . , V },
where V represents the number of distinct relational spaces (data views) available.

Considering the above definitions, the touching points between the three scenarios
are clear. First, given the choice of a suitable distance function, problem instances
consistent with Scenario 1 can always be transformed into instances consistent with
Scenario 2, bymapping each feature space to a dissimilaritymatrix. Second, Scenario
3 presents a generalization of Scenario 2. Specifically, it relaxes two assumptions
usually made in cluster analysis: (i) the assumption that relational information is
available (or can be derived) for all pairs of data entities; and (ii) the assumption of
symmetry made by standard, metric distance functions. In other words, unsupervised
learning problems arising in the form of Scenarios 1 and 2 can equivalently be
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modeled as learning problems on complete (i.e., fully connected), weighted, and
undirected graphs, with edge weights capturing the similarity between entities.

It is also evident that wemay encounter instances that combine aspects of different
problem scenarios. In providing the above definitions, we have ensured to cater
for multi-view settings, where data entities can be characterized from a number of
incommensurable perspectives. In amulti-view setting, however, each individual data
view may arise in a form consistent with a different scenario, so the full problem
instance may in fact involve multiple scenarios. For example, a learning problem
may involve two views, one available as a feature space and one available in the
form of a dissimilarity matrix. Similarly, information provided in the form of a graph
may be accompanied by node features, i.e., by a feature vector associated with each
of the nodes (data entities) described by the graph. In this case, the learning problem
can be thought of as a multi-view problem involving two views: a set of relational
information captured by the graph’s edges, and a feature space directly characterizing
each entity.

6.3 Cluster Analysis and Community Detection

The previous section has defined different scenarios we may encounter in unsuper-
vised learning, with the aim of highlighting the commonalities and potential inter-
play between those settings. We will now set out to provide a formal definition of the
problems of cluster analysis and community detection. While these learning tasks
have typically been studied in separate threads in the academic literature, below we
will focus on a joint definition. The motivation behind this is the close relationship
between them, as highlighted in the scenario definitions above.

The problems of cluster analysis and community detection aim to partition a given
set of entities X into sub-groups. A generic definition of these partitioning problems
is as follows:

argminK ,�( f h(�(X))) .

Here, K is the decision variable indicating the number of groups (clusters or commu-
nities) in a partition. � defines a partition of X into subsets {X1, . . . , XK }, such that
∀xi ∈ X : ∃Xk : xi ∈ Xk . Commonly, definitions of these problems further assume
� to induce a crisp partition, i.e., ∀l �= m : Xl ∩ Xm = ∅.

In the above definition, f h represents an objective function that captures the
quality of a partition and, without loss of generality, is to be minimized. Note that
h ∈ {1, . . . , H} and, with H > 1, i.e., where multiple objective functions are to be
used, this formulation results in a multi-objective optimization problem. The use of
multiple objective functions can arise for a variety of reasons. It can help capture
multiple different aspects of the quality of a partition, such as relationships within
groups and across groups, or it can capture the quality of a partition with regard to
multiple views that may be available for the entities considered.
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In terms of the problem definition, key differences between cluster analysis and
community detection relate only to the specific choices of objective functions, and
the information these functions are based on. Fundamentally, this is where clustering
algorithms rely on a direct feature representation of each entity, or the full matrix
of pairwise dissimilarities between entities. In contrast, objective functions for com-
munity detection are expressed in terms of a graph’s edges, and the presence or level
of relationship (similarity) they convey.

In practice, specialized algorithms for both problems exist, which are not always
transferable across problem boundaries. In particular, some of the best-known
clustering algorithms assume the presence of a feature space, and do therefore not
directly generalize to community detection settings.

6.4 Practical Challenges and Opportunities
for Evolutionary Computation

There is a long history of research on cluster analysis and community detection, and
this is evident from the large variety of algorithms and objective functions available
for both problems [2, 51, 56]. There is a clear trade-off between the flexibility of a
given algorithm and its scalability to large problems. Some of the most established
algorithms are those that introduce strong assumptions about the data and/or rely
on a greedy or local search heuristic. A prominent example of this is the k-means
algorithm [39]: it relies on the external definition of the number of clusters, and
lends itself to the (local) optimization of a specific objective function (within-cluster
variance) only. In return, it achieves a run time complexity that is linear in terms of
the number of entities in a data set, and remains one of the most commonly used
algorithms in practice [31, 33]. Given steadily increasing demands regarding the
scale of data and the speed with which it requires processing, the identification of
fast, specialized heuristics (and associated objective functions) remains an important
active area of research.

On the other hand, there are applications inwhich the narrowassumptionsmade by
such heuristics are constraining. Their usemay prevent problem formulations that are
sufficiently comprehensive to cover all relevant problem aspects, including the full
range of data views available. Meta-heuristics such as evolutionary algorithms can
provide a powerful alternative in this setting. One of the specific advantages of meta-
heuristic algorithms is their flexibility to adapt to different problem formulations,
i.e., the opportunity they provide to exchange or experiment with additional objective
functions, constraints, and data views, without a complete overhaul of the underlying
optimization engine. The ability to perform a wider, global exploration of the search
space and escape more easily from local optima is another fundamental advantage
of meta-heuristic methods [53, 59].

In the following, we highlight some of the key developments made by evolution-
ary computation researchers in designing approaches to clustering and community
detection.Our discussion focuses on the crucial design challenges associatedwith the
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adoption of existing meta-heuristic optimizers for the unsupervised learning domain,
including issues around problem representation and operator design, the interaction
of these choices with problem formulation (in terms of objective functions), and the
strategies for addressing final model selection. It is our experience that the largest
performance differences in unsupervised learning arise from decisions with respect
to the problem formulation, rather than the specifics (or parameterization) of the
optimizer used. Hence, our discussion will focus on the choice of meta-heuristic
optimizer only where this choice is essential to support aspects of the problem for-
mulation.

6.4.1 Solution Representation

Representation plays a crucial role in the adaption of meta-heuristic optimizers to
a given problem [53, 59]. Jointly with the variation operators, they define the phe-
notypic neighborhoods that are accessible from a given candidate solution during
optimization, thereby impacting on problem difficulty and the effectiveness of the
overall search process. In cluster analysis, this aspect is further amplified by the fact
that the choice of representation may predetermine the type of partition that can be
induced, so it directly affects the formulation of the optimization problem and the
set of phenotypes that can be reached [34, 45].

6.4.1.1 Direct Representations

The simplest representation of a partition relies on the use of a separate decision
variable to indicate the cluster or community assignment for every data entity. A
direct problem representation can thus be designed as a string r = (r1, . . . , rN ),
where ri ∈ {1, . . . , K } represents the cluster or community entity xi ∈ X is assigned
to, as shown in Fig. 6.2a. Alternatively, a binary representation of these integer values
could be adopted, resulting in a binary string of length N × �log2(K )	.

The advantage of these direct representations is their generality. Other than a
maximum number of clusters Kmax, they introduce no assumptions regarding the
properties of partitions, and they can therefore be deployed in optimizing partitions
with respect to any objective function or constraint. Nevertheless, both representa-
tions share the same core issue, which is rooted in the lack of a direct interpretation
of the specific cluster or community labels: the labels only serve to induce the co-
assignment (and separation) of entities, but the final phenotype (partition) is agnostic
to the specific label used. Consider, for example, genotype (1, 2, 2, 1, 2, 2, 1, 1, 2, 2)
illustrated in Fig. 6.2a (for a problem with N = 10 and K = 2). If we exchange
cluster labels, so that entities originally assigned to Cluster 1 are now assigned to
Cluster 2 and vice versa, we will obtain a completely different new genotype, namely
(2, 1, 1, 2, 1, 1, 2, 2, 1, 1). Note, however, that both of these genotypes induce the
same two sets of data entities. When it comes to evolutionary algorithms, in particu-
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(a) Direct representation

 

(b) Prototype-based representation, using centroids

(c) Graph-based representation

Cluster 1 Cluster 2

Cluster 1 Cluster 2

Cluster 1 Cluster 2 Cluster 3

Fig. 6.2 Illustration of the (a) direct, (b) prototype-based, and (c) graph-based representations used
in evolutionary clustering (equivalent choices are available for community detection). An example
problem instance with N = 10 data entities is considered in all cases

lar, the resulting redundancy makes it difficult to derive effective crossover operators
for this representation. Adjustments designed to address this issue for grouping prob-
lems [11] have shown limited success, especially for the problem scales typically
considered during cluster analysis [24]. Consequently, the use of direct representa-
tions in the clustering and community detection literature is sparse.

6.4.1.2 Prototype-Based Representations

In meta-heuristic approaches to cluster analysis, prototype-based representations
have been extensively used to overcome issues with scalability. Rather than spec-
ifying cluster assignments directly, prototype-based approaches specify a set of
representatives from which a partition can be induced: each entity is assigned to the
cluster associated with the representative it is closest to—in the following we refer
to this as the cluster assignment step. These representatives may adopt the form of
cluster centroids or cluster medoids, depending on the clustering scenario at hand
and, specifically, on the availability of a numerical feature space, which is a prereq-
uisite for the calculation of cluster centroids. Hence, the representation can take one
of the following forms:
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1. A string of K × D real values, r = (r11, . . . , r1D, . . . , rK1, . . . , rK D), where
(rk1, . . . , rkD) represents the centroid vector of the k-th cluster. Figure 6.2b illus-
trates this representation based on centroids, for K = 2 and D = 2.

2. A string of K integer values, r = (r1, . . . , rK ), where rk ∈ {1, . . . , N } identifies
the specific entity xrk ∈ X serving as the cluster medoid for cluster Xk . Alterna-
tively, a binary representation of each medoid could be used.

Either representation can induce a partition on X by assigning each entity to its closest
cluster representative, using a designated distance function (in the case of cluster
centroids) or dissimilaritymatrix (in the case of clustermedoids). Standard prototype-
based approaches assume that the number of groups K in the partitions is known in
advance, as this defines the representation length. This assumption can be relaxed to
assume knowledge of the maximum number of groups Kmax only, e.g., through the
introduction of placeholder values [4]. The definition of a centroid or medoid does
not extend directly to a graph-based scenario, and therefore community detection.
However, alternative definitions of node representativeness, within graphs, have been
derived and used in this context [64], allowing the adoption of a representation
equivalent to the medoid-based approach described above.

A clear advantage of the prototype-based approach is its scalability: it eliminates
the linear increase of representation length with the number of entities, N . Instead,
representation length becomes a function of the number of desired groups, K , and
dimensionality, D (for centroid-based representations). For medoid-based represen-
tations, the number of available allele values for each encoding position increases
with N , so there remains a dependency of the search space on the number of enti-
ties. This becomes explicit in a binary representation: where this is used to represent
medoids, the representation length is K × �log2(N )	. A separate advantage of pro-
totype-based representations is the fact that, for those assuming a fixed K , routine
(generic) variation operators can potentially be used, in the case of real, integer, and
binary encodings.

Despite these distinct strengths, key limitations of the prototype-based represen-
tations result from the cluster assignment step. The first of these limitations relates
to the cluster shapes that can be obtained. In particular, when the standard Euclidean
distance is used to support cluster assignment, this restricts the search to clusters with
a hyper-spherical shape (i.e., clusters that are compact). This restriction at the rep-
resentational level will override decisions made during the choice of the objective
functions. Consequently, the use of a prototype-based representation can signifi-
cantly limit an algorithm’s ability to discover data partitions that violate assumptions
of compactness but provide promising characteristics from other points of view, e.g.,
clusters that are elongated but spatially well-separated. Recent work has highlighted
potential avenues for reducing this limitation [36]. As illustrated in Fig. 6.3, trans-
formations of the original dissimilarity space (choices of more complex distance
functions) can potentially address this issue, enabling the use of prototype-based
representations for the identification of non-compact clusters.

A second difficulty with prototype-based representations arises in clustering set-
tings involvingmultiple data views. As the cluster assignment step requires the calcu-
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Fig. 6.3 The impact of the distance function on how an algorithm “perceives” the relationships
between a given set of entities, which will directly determine cluster assignments in a prototype-
based representation: original data (left); embedding of the associated Euclidean distances (center);
and embedding of the associated MED distances [6] (right). This shows that the MED distance
favors the clear spatial separation of elongated cluster structures (e.g., on the Spirals data) but
is less capable than the Euclidean distance in separating overlapping clusters (e.g., on the Sizes
data). This underlines that the choice of distance function can play a significant role in determining
the types of clusters that can be identified, irrespective of the choice of objective function

lation or use of dissimilarity information, it becomes a potential source of bias when
multiple incommensurable sources of dissimilarity information exist. In particular,
reliance on a single source, or on a fixed weighting between the available sources,
will override decisions made during the choice of the objective functions. Recent
work has highlighted how the introduction of such bias can be avoided in the context
of a many-objective optimizer [36]. Specifically, the use of a decomposition-based
approach [32, 63] has been exploited as a mechanism to directly align reference vec-
tors deployed within the optimizer with the weights used during cluster assignment
(see Fig. 6.4), avoiding the introduction of unintended bias during the search process.

6.4.1.3 Graph-Based Representations

Finally, graph-based representations have enjoyed notable success in identifying
partitions, for both clustering and the problem of community detection [30, 51]. In
community detection, the rationale for a graph-based representation is straightfor-
ward, as it aligns very closely with the learning problem at hand. In cluster analysis,
this particular choice of representation is less intuitive. However, in the context
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Fig. 6.4 Example of a many-objective optimizer considering many views at the cluster assignment
step: This is possible due to explicit knowledge of the weights associated with each reference vector,
which are exploited during the decoding (and cluster assignment) as well as the evaluation step of
the algorithm

of multi-objective clustering in particular, graph-based representations have been
shown to provide an effective mechanism to explore a diverse range of candidate
partitions [24].

The most straightforward version of the graph-based representation captures the
set of all edges within a graph (or all pairwise relations within a data set), and
introduces a binary decision variable to allow for the inclusion or removal of each
of them. In other words, the representation of a partition is given as a string of
E binary values, r = (r1, . . . , rE ), where E denotes the number of edges in the
original graph and re ∈ {0, 1} indicates the absence or presence of a given link in
the candidate graph. To interpret each candidate graph as a partition, an additional
decoding step determines the set of connected components defined by the links; each
such component is interpreted as a separate cluster or community. This representation
can be suitable for small problem instances, and introduces no additional bias, but
lacks scalability in the case of cluster analysis and densely connected graphs, as the
number of edges will then grow as O(N 2).

Alternatively, and more commonly, a candidate partition can be represented by
explicitly defining connections between data entities or graph nodes [49, 50]. Here,
the representation of a partition is given as r = (r1, . . . , rN ), a string of N integer
values, where N denotes the number of data entities or nodes in the graph. In a
clustering context, the associated interpretation is for ri ∈ {1, . . . , N } to represent
the index of one other data entitywhich xi is connected to, as illustrated in Fig. 6.2c. In
a community detection setting (or a clustering setting with additional assumptions),
a more compressed form of this representation becomes available by exploiting the
concept of an adjacency list: here ri ∈ {1, . . . , Li } refers to an index into the original
graph’s adjacency list for node xi , of length Li . Although an integer encoding is used
in both cases, in the compressed form the possible alleles (range of integer values)
may vary across genotype positions.

As before, an additional decoding step is required to interpret such an integer string
as a partition. First, a candidate graph is constructed, containing the set of N nodes
and edges between entities xi and x j , iff ri = x j or, in the compressed encoding, if
x j corresponds to the ri -th entry in the adjacency list of xi (or vice versa). Subse-
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quently, the connected components of this graph are determined, and each of them is
interpreted as a separate cluster or community. Similar to the binary representation
discussed above, this approach can be highly effective in small problem instances,
but can suffer from poor scalability in the case of cluster analysis and densely con-
nected graphs. While the integer string is restricted to length N , the number of the
allele choices can still grow as a function of N , leading to an exponential increase in
the size of the solution space, which is highly redundant.

In cluster analysis, the scalability issues of the locus-based adjacency representa-
tion have been addressed in different ways [17, 18, 24, 65]. Firstly, by limiting the
adjacency list for each node to a reduced number of possibilities, e.g., representing
the nearest neighbors of each data point. Secondly, by designing specialized ini-
tialization schemes, exploiting minimum-spanning trees, in order to bias the search
process toward the most promising edges of the graph. Lastly, by pre-processing the
data set in advance, so that only the most relevant decisions become the focus of the
optimization process [17]. In community detection, node and edge centrality may
be used as additional sources of heuristic bias, during the initialization and variation
stages of the search [27].

6.4.2 Objective Functions

Assuming the use of any competent optimizer (as well as the absence of harmful
bias at the representation level), the choice of objective function is arguably the
most important decision determining the outcome of an unsupervised learning task.
Building on the general problem formulation derived in Sect. 6.3, this section aims
to highlight the different types of criteria we may choose to integrate as objectives
for a given application, and the rationale behind this.

One of the most challenging aspects of cluster analysis and community detection
is the lack of a clearly defined quality criterion. As a consequence, the literature con-
tains a wide variety of objective functions, each prioritizing different (and sometimes
combinations of) quality aspects of a partition [2, 35]. Furthermore, while there are
conceptual similarities between the objective functions used in cluster analysis and
community detection, the two fields generally use different approaches. For example,
both fields feature measures that consider the strength of inter-group relations, but
clustering objectives typically do so by assessing themaximumor average dissimilar-
itywithin a cluster (e.g., diameter [28] orwithin-cluster variance [38]), while the field
of community detection relies on variants of modularity, which assess within-cluster
edge densities relatively to a statistical null model [46].

The diversity of potential objectives arises due to the range of complementary, yet
conflicting aspects that we attribute to a good partition of a graph or data set, and the
difficulty in defining such aspects mathematically. Generally, there is an agreement
that partitions are derived with the aim of identifying groups that are homogeneous
and mutually distinct. However, there are very different ways in which homogeneity
and distinctiveness can be described mathematically. For example, within-group
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homogeneity may be translated into a requirement to resemble all other entities in
the same group, or it may suffice to resemble a cluster representative, or even just
another subset of entities in the group; such different assumptions will result in
drastically different groups in many data sets.

A direct implication of this ambiguity is that the available objective functions
typically capture some but not all desirable aspects of a clustering or community
detection problem. Thus, there is a need to carefully align objectives with the model-
ing intentions in a given application. Furthermore, when desirable partition attributes
are not clear in advance, the simultaneous consideration of multiple objectives can
provide a more comprehensive problem formulation that avoids premature decisions
on the importance of different quality facets.

Meta-heuristic algorithms are well-suited to assist with the above challenges.
Unlike purpose-built heuristics, they are sufficiently flexible to allow for experimen-
tation with different objective functions. Moreover, due to their population-based
approach, multi-objective evolutionary algorithms (MOEAs) provide a particularly
convenient approach to the simultaneous optimization of multiple objectives, and the
exploration of trade-offs between them. Cluster analysis and community detection
are often applied for exploratory data analysis, i.e., to assist with the understanding
of a novel data set. MOEAs facilitate the exploration of a select range of candidate
solutions, and the learning associated with this can add distinct value to the process.

Multiple objectives in clustering and community detection do not solely derive
from the definition of multiple quality criteria. A further complicating factor in the
definition of a partition is the decision on the number of groups to create, K . Algo-
rithms like k-means [39] side-step this issue by making K a user-defined parameter.
However, where algorithms are required to determine K as part of the optimization
process, integration of objectives with opposing biases (with respect to K ) has been
found to be particularly useful [17, 24]. Elsewhere, the value of K has been explicitly
employed as an additional optimization criterion [37, 48, 62].

As highlighted in Sect. 6.3, multiple objectives can also play the role of assessing
partition quality with respect to multiple views of a data set. If a set of entities is char-
acterized by multiple feature or dissimilarity spaces, we will usually wish to identify
partitions that take into account, and are consistent with, all available information.
Where the relative importance or reliability of these views are unknown, capturing
them through individual objectives, and optimizing these using a Pareto optimiza-
tion approach, can help with exploring a range of trade-offs and understanding both
conflict and alignment between them [7, 18, 36, 55].

Finally, unsupervised learning settings may involve additional constraints or
objectives that need to be considered in characterizing optimal partitions. These may
include, for example, considerations related to group sizes [40], prior domain knowl-
edge [9], or aspects of fairness [8]. Multi-objective approaches provide a convenient
mechanism to integrate any of these into the search process.
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6.4.3 Model Selection

The previous section has highlighted the potential benefits of problem formulations
integrating a number of optimization criteria, either to capture desirable properties
of a partition more comprehensively or to account for the availability of multiple
views, and explore the trade-offs between them. However, one of the challenges this
presents is the need for final model selection: typically, an unsupervised learning
scenario requires the ultimate selection of a single solution.

Problems of model selection equally arise in traditional approaches to cluster
analysis and community detection. For example, the use of k-means commonly
involves running this algorithm for a range of possible cluster numbers, and using
an additional cluster validity index [3, 35] to support the selection of a final solution
from the set of alternatives obtained. Similar approaches can and have been suggested
in an evolutionary clustering context, including scenarios involving multiple criteria
[5, 15] and multiple data views [36]. A cluster validity index frequently used for
model-selection purposes is the Silhouette Width [54], due to its prominence in the
field of clustering. In general, measures for model selection may be at their most
effective if theydonot fully coincidewith the objectives already consideredduring the
optimization stage of the search process [26], i.e., when they provide complementary
guidance.

More innovative approaches focus on analyzing the shape of the approximation
set returned by multi-objective optimizers, using this to pinpoint the most promising
solution alternatives. For example, one approach to solution selection focuses on the
identification of knee solutions [23, 24, 42, 57], i.e., solutions that present particu-
larly promising performance trade-offs between the objective functions considered.
This builds on ongoing work in the evolutionary multi-objective optimization lit-
erature [10, 29, 58], but also shares similarities with existing approaches from the
clustering literature, such as the Gap statistic [61] and the elbow method [60].

Some authors have explored the interpretation of the final approximation set as
a clustering ensemble [21]. Drawing on previous work in ensemble learning [13],
the aim is to derive a single consensus solution that best represents the informa-
tion captured in the approximation front [25, 43, 44, 52, 65]. The rationale behind
this approach is that all solutions in the approximation set contain useful informa-
tion regarding the correct partition. However, potential disadvantages include: the
focus on a majority consensus, which means that information from the extremes
of the approximation front, in particular, may be insufficiently represented; and the
assumption that all nondominated partitions are equally reliable, which is not nec-
essarily the case and can affect the resulting consensus.

Model selection is a challenging task and remains an active area of research.
As analyzed in [19], all of the above-discussed strategies have shown some success
during empirical evaluations, but their limitations are rooted in assumptions that may
not hold in every scenario. As an alternative, the potential of machine learning to
capture the complexities of the task is showcased [19] reporting promising results.
A supervised learning approach is explored, relying on the initial construction of
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Fig. 6.5 Supporting model selection in multi-objective clustering through machine learning. Each
individual solution in the approximation front is characterized (feature extraction). Then, the quality
of solutions is estimated by a (previously trained) regression model. The solution with the highest
estimated quality is identified and selected as the final result [19]

a regression model that is later exploited to estimate the quality of solutions in
a given approximation front (see Fig. 6.5). Model construction depends on: (i) a
collection of sample problems with known solutions; (ii) a set of training fronts for
each sample problem, generated by some algorithm; (iii) the extraction of features
for all solutions in the training fronts; (iv) the quality assessment of these solutions by
direct comparison with the known correct solution using an external validity index1;
and (v) the use of a machine learning method to build the regression model, using the
extracted features as explanatory variables and the solution-quality measurements as
the response variable. The current approach to feature extraction seeks to characterize
nondominated points based on individual properties of the partitions they encode,
their relation to other solutions in the approximation front, aswell as global aspects of
the entire front and the particular clustering problem being solved. Feature extraction
is a key issue in this methodology and deserves further investigation.

6.4.4 Choice of Optimizer

A variety of evolutionary algorithms and alternative meta-heuristics have been
applied to the tasks of clustering and community detection [1, 20, 34, 47]. As dis-
cussed earlier, the choice of representation (with associated variation operators) and
the choice of optimization criteria are arguably the most important design aspects in
determining the performance of these approaches. Furthermore, these aspects ulti-
mately predetermine the general class of algorithms that should be used.

For example, the continuous encoding implicit to standard prototype-based repre-
sentations allows for the use of optimization methods designed for optimization over
continuous spaces. In contrast, the use of a graph-based representation necessitates
the use of integer or binary optimization approaches. Similarly, choices about the
number and nature of objectives have driven decisions toward the adoption of multi-
objective and many-objective optimization approaches. Given identical choices of

1 Cluster validity indices can be external or internal, depending on whether or not they depend on
knowledge of the correct partition (ground truth) to determine solution quality.
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representation, variation operators, and objective(s), there are bound to remain per-
formance differences between distinct choices of optimizers. There has been lim-
ited investigation of this aspect in the literature [41, 45], largely (we speculate)
due to prioritization: in terms of recovery of the ground truth, the associated per-
formance differences are likely to be outweighed by those reflecting fundamental
changes in problem formulation. Nevertheless, one way of addressing this shortfall,
going forward, may be the generation and inclusion of benchmarks derived from
clustering problems into benchmark suites routinely used for the development of
general-purpose meta-heuristics.

6.5 Final Perspectives

As highlighted above, evolutionary approaches have an important role to play in
helping to explore novel, and potentially more comprehensive, formulations of clus-
tering and community detection. In this chapter, we have aimed to highlight those
design issues that we find to be of particular relevance in defining the capabilities
of such approaches. However, in addition to the points highlighted so far, there are
other areas requiring further development.

Whether it refers to the size of the problem (data set) and its dimensionality, or to
the number of optimization criteria, scalability remains a key challenge for the use of
evolutionary algorithms (and other meta-heuristics) in unsupervised learning appli-
cations. Regarding problem size, recent work has highlighted some progress and core
mechanisms that can be exploited, including the use of stratification [14] and changes
to problem resolution which impact on the granularity of the search [17]. Increases
in the number of optimization criteria, either to handle multiple performance aspects
or data views, can benefit from current developments in the area of many-objective
optimization [36].

Finally, the field needs to address issues around the uptake of the algorithms by
practitioners and themainstreammachine learning literature.While promising appli-
cations of evolutionary clustering approaches have been reported [1], and several
different implementations are now available through GitHub, uptake of the tech-
niques outside of the evolutionary computation community remains limited. Future
work needs to prioritize the dissemination of these methods within the machine-
learning and practitioner community, and the translation of algorithms into standard
software packages, with a view of encouraging increased adoption of this research
into practical applications. It is crucial that such messaging is transparent in terms
of the relative strengths and weaknesses of current approaches. As set out in our
chapter, evolutionary computation offers advantages when it comes to comprehen-
sive, flexible problem formulations, and the literature has highlighted this, e.g., by
demonstrating how changes in problem formulation can drive robustness toward a
wider range of data properties than traditional algorithms [16, 22, 24]. However, it is
clear that these benefits also come at significant computational cost, creating barriers
for applications requiring fast throughput or handling of very large data sets. Helping
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practitioners understand the resulting trade-offs relies on routinely including com-
parisons to state-of-the-art non-evolutionary machine learning techniques, as well
as considerations of time complexity [30], into published work. The best choice of
algorithm for a given unsupervised learning setting will always depend on a range
of factors, and we need to ensure that the place of evolutionary-based approaches is
better understood.
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