
Chapter 21
Evolutionary Machine Learning
for Space

Moritz von Looz, Alexander Hadjiivanov, and Emmanuel Blazquez

Abstract The Venn diagram of evolutionary computation, machine learning and
space applications shows some intriguing overlaps. As evolutionary algorithms are
often resource-intensive, they have not yet been applied in space. Nevertheless, it has
been decisively demonstrated that evolutionarymachine learning (EML) is a valuable
tool for space, specifically in fields such as trajectory optimisation, optimal control
and neuroevolution for robot control, where high-dimensional, discontinuous, sparse
and/or non-linear problems abound. In the following chapter, we introduce common
problems faced by the space research and application community, together with EML
techniques used for generating robust, performant and, sometimes indeed, state-of-
the-art solutions. The often complex mathematics behind some problems (especially
in trajectory optimisation and optimal control) has been simplified to the minimum
necessary to convey the essence of the challenge without encumbering the overview
of the relevantEMLalgorithms.Wehope that this chapter provides useful information
to both the EML and the space communities in the form of algorithms, benchmarks
and standing challenges.

21.1 Introduction

The intersection between evolutionary methods and classical machine learning is
extensive and varied [55]. Both approaches have foundmany applications in the space
domain individually: evolutionarymethods for interplanetary trajectory optimisation,
recurrent neural network architectures for guidance, navigation and control (GNC)
tasks, neurocontrollers for in-space robotics or convolutional neural networks for
image recognition in earth observation (EO) and astronomy. One of the earliest
demonstrations of a real-world application of evolution was an antenna designed
by a genetic programming algorithm [34] for NASA’s Space Technology 5 mission.
The performance of the final design was found to be comparable to hand-crafted

M. von Looz (B) · A. Hadjiivanov · E. Blazquez
European Space Agency ESA, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands
e-mail: moritz@vlooz.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Banzhaf et al. (eds.), Handbook of Evolutionary Machine Learning,
Genetic and Evolutionary Computation,
https://doi.org/10.1007/978-981-99-3814-8_21

611

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3814-8_21&domain=pdf
mailto:moritz@vlooz.de
https://doi.org/10.1007/978-981-99-3814-8_21

612 M. von Looz et al.

Evolved Neurocontrollers

Evolutionary Robotics:21.4

Machine Learning
Supports Evolution Evolution Optimises Machine Learning

Spaceflight
Trajectory
Optimization:
21.2

Control of
Spacecraft
Operations:
21.3

Formation
Flying

Controller
Evolution

Morphology
Evolution

Fig. 21.1 EML for space applications considered in this chapter

antennae. It was evaluated on an actual satellite, and a subsequent study successfully
re-evolved the design [3] to comply with changes in the requirements.

An important distinction is that the space domain is not restricted to applica-
tions physically in space (generally known as on-board applications). Traditionally,
requirements in terms of robustness and reliability for any physical device deployed
in space have been, and remain, notoriously high. This is due to the stringent safety
qualification and performance requirements, which in turn stem from the harsh envi-
ronment and high cost of failures. Furthermore, due to the limited power budget,
computational capabilities and support for parallelisation of spaceflight on-board
hardware and software, the use of evolutionary algorithms is currently limited to
on-ground pre- and post-processing.

Still, just like life on Earth, which flourishes even in the most inhospitable envi-
ronments thanks to biological evolution, evolutionary machine learning (EML) has
found its niche applications in space-related research. Specifically, EML for space
applications is an optimisation paradigm that is growing in popularity and can benefit
from everything that evolution has to offer, such as tackling large and discontinuous
fitness landscapes, as well as robustness to local minima.

The applications of EMLmethods in the space sector can be broadly grouped into
two categories, see Fig. 21.1. The first one is the use of machine learning methods
for assisting evolution: Evolutionary methods have been highly successful in inter-
planetary trajectory design [29], and we will discuss potential applications of EML
for trajectories in Sect. 21.2.

The second area of intersection is classical machine learning (most commonly
artificial neural networks) assisted by evolutionary methods. This takes the form of
neural architecture search, genetic programming or direct optimisation of network
weights. Many guidance and path planning tasks in space can be mathematically
framed as control problems and addressed with neurocontrollers, as we will discuss
in Sect. 21.3. This applies specifically to robotic planetary exploration, see Sect. 21.4.

It is important to note that vision-based object classification is a major task in
astronomy, and the field has embraced evolutionary machine learning methods for
this purpose [16, 24]. One particular challenge is the identification of objects in the
presence of stray light sources and diffusion. For instance, Jones et al. [30] use an

21 Evolutionary Machine Learning for Space 613

evolutionary approach to neural architecture search, in which they evolve parameters
specifying the topology of a convolutional neural network tasked with identifying
galaxies in the Zone of Avoidance (the part of the universe that is obscured by the
galactic disk of theMilkyWay).However, we choose to direct our focus to spaceflight
applications in the remainder of this chapter as this matches our area of expertise.
Below, we present several categories of such applications, together with examples
and future directions in Sect. 21.5.

21.2 Spaceflight Trajectory Optimisation

Among the applications of evolutionary algorithms for spaceflight, the optimization
of trajectories is by far the most successful. Numerous winning entries in the series
of the Global Trajectory Optimisation Competition (GTOC) have relied primarily on
evolutionary algorithms, occasionally augmented with machine learning techniques.

In the absence of other forces, a spacecraft will follow a ballistic, predictable
arc. A trajectory is thus characterised by the timing and nature of its manoeuvres,
either using some propulsion system or gravitational interactions. Propulsion sys-
tems can be classified by their exhaust velocity and thrust. A higher exhaust velocity
makes the system more efficient, and larger manoeuvres can be done with the same
amount of fuel. A higher thrust allows manoeuvres to be done in shorter time, mak-
ing their planning and modelling much easier. For classical, chemical engines, the
thrust is high enough that on the time scales for interplanetary trajectories, manoeu-
vres can be modelled as instantaneous. In contrast, low-thrust engines, for example,
ion drives and other sorts of electrical propulsion, are using their fuel much more
efficiently, but manoeuvres take weeks or months [59]. Spacecraft with low-thrust
engines effectively accelerate continuously on a large part of their trajectory, trav-
elling on long spirals instead of ballistic arcs. Figure 21.2 shows an example of a
low-thrust trajectory from an Earth parking orbit to the moon.

Fig. 21.2 An illustration of
a low-thrust trajectory,
inspired by the SMART-1
technology demonstrator
mission to the moon. The
continuous thrust results in
trajectories with a large
number of free variables,
illustrated by the ticks. (Not
to scale)

614 M. von Looz et al.

The key figure of merit of a trajectory is the total change of velocity required
to be fulfilled by its propulsive manoeuvres.1 It is denoted as �V , and the fuel
requirements of a mission scale exponentially with it

mfuel =
(
e�V/vexhaust − 1

) · mdry. (21.1)

Equation 21.1 stems from rearranging the famous Tsiolkovsky’s rocket equation,
with mfuel denoting the fuel mass, vexhaust the exhaust velocity of the propulsion
system and mdry the mass of everything else: the payload, but also the weight of the
propulsion system and empty tanks. Due to the exponential growth, fuel requirements
quickly become prohibitive for higher values of �V . Designing efficient trajectories
is thus imperative not only to lower the cost of a mission but also to make it possible
at all.

A basic building block of efficient trajectory design is the use of gravity assist
manoeuvres (GAs). In these, a spacecraft flies past a moving massive body, and
exchanges momentum due to the gravitational interaction. Multiple flybys can be
chained together to increase the saved�V , but require precise timing. This technique,
denoted asMultipleGravityAssists (MGA), enabled theGrandTour ofVoyager 2 [31]
and has become nearly indispensable in modern interplanetary missions. Figure 21.3
shows an example trajectory with four gravity assists to reach Jupiter.

The parameterisation of a trajectory can be conceptually reduced to the epochs,
magnitudes and directions of its manoeuvres, including gravity assists. For impulsive
trajectory designs making use of chemical engines, the arcs between manoeuvres are
ballistic, see also Fig. 21.3. For low-thrust trajectories with continuous acceleration,
the continuous-time optimisation problem is first discretised and free parameters,
such as thrust angles and epochs, are specified for each discretisation node, as shown
in Fig. 21.2.

The resulting optimisation problems are high-dimensional, even more so for low-
thrust trajectories. As the effect of a gravity assist depends on precise timing, the cost
functions have steep gradients and many local optima which makes them challeng-
ing to optimise. Analytical gradients are not always available and local optimisation
relies heavily on the quality of an initial estimate. Evolutionary algorithms have thus
been used extensively and with considerable success to initialise global trajectory
optimisation searches [29, 59]. In these, the genotype specifies the trajectory param-
eters, while the fitness is set to its cumulative �V (and thus the logarithm of fuel
use) over the entire trajectory.

Multiple approaches have been developed to accelerate the evolutionary trajec-
tory search. Izzo et al. [27] introduce the archipelago model to make use of parallel
computing resources. In this model, multiple populations of solutions are evolved
simultaneously with regular migration. In addition to allowing a higher degree of par-
allelisation, this approach prevents the evolution from getting stuck in local minima.
Some trajectory problems have combinatorial aspects in addition to the continuous

1 Other considerations include time of flight, radiation load, timing of manoeuvres and targets of
opportunity.

21 Evolutionary Machine Learning for Space 615

t0

t1 t3

t5t2

t4

t6

Fig. 21.3 A trajectory usingmultiple gravity assists on Earth,Mars andVenus on theway to Jupiter.
Each coloured dot marks the location of a planet during a gravity assist manoeuvre. The Earth is
visited multiple times. The trajectory is inspired by ESA’s JUICE mission, launched in 2023 and
currently en route to the Jupiter system. In this parametrisation, the free parameters are only the
times t0–t6: the timings of launch, the flybys and the arrival

ones. Examples include the right order of planets to visit for flybys or the creation
of tours covering multiple moons or asteroids. Well-known instances include the
Global Trajectory Optimisation Challenge (GTOC), a regular competition of com-
plex trajectory problems. The seventh GTOC, for example, challenged participants
to explore the asteroid belt with multiple craft, while the ninth GTOC posed the
problem of selecting, visiting and removing pieces of space debris with a limited
fuel budget [25]. More applied mission proposals also face the problem of target
selection and visitation orders [47].

21.2.1 Use of Machine Learning Methods

Due to the inherent randomness of evolutionary optimisation and the many local
minima prevalent in trajectory problems, it is beneficial to perform multiple restarts
of the optimisation process, starting from different seeds to have a higher chance of
reaching a global optimum. Due to this process, but also during a single evolutionary
run, large amounts of data about the fitness landscape are gathered.

Multiple machine learning approaches have been developed to take advantage
of this data to learn the fitness landscape. Cassioli et al. [8] use a Support Vector
Machine (SVM) to classify starting points by whether Monotonic Basin Hopping
(MBH) will find a good enough solution if starting from that point. They test this
approach on a set of trajectory problems from ESA’s Advanced Concepts Team
(ACT) [56] and report a reduction of total fitness evaluations by about a third. More
recently, Estimation of Distribution Algorithms (EDAs) [35] have seen some appli-
cations to trajectory design, in particular to low-thrust scenarios. EDAs refer to a

616 M. von Looz et al.

class of evolutionary algorithms that makes use of probabilistic models to detect
the most promising chromosomes in a population and evolve it. Shirazi et al. [50]
applied an enhanced EDA algorithm based on Gaussian distribution learning to solve
time-varying Lyapunov control problems for low-thrust transfers in the Earth envi-
ronment, showing the promise of these techniques in obtaining feasible near-optimal
solutions with reasonable performance while offering insight into the probabilis-
tic fitness landscape of the problem at hand. In regards to target selection, Choi
et al. [9] target six multiple gravity assist (MGA) trajectory optimisation problems
(including the 1st GTOC) as benchmarks for a novel adaptive differential evolu-
tion (DE) method, which relies on selecting the most performant strategy from a
pool of EAs (DE/rand/1, DE/rand/2, DE/best/2, DE/current-to-best/1, DE/current-
to-pbest/1 and DE/current-to-opposition/1) at runtime. Specifically, the adaptive DE
method involves recording two extra pieces of information for each individual in the
population: the current strategy being used and the time since the last fitness update.
If the individual is stagnant, its strategy is updated with a random one from the pool
of algorithms, and the best-performing strategies become increasingly likely to be
selected as a result of applying the Cauchy distribution method in [10]. Choi et al.
[9] report that their DE method matched the currently known best results for two
problems and improved on the state of the art for the remaining four problems.

21.2.1.1 Surrogate Models

Analternative approach is to train amodel to approximate thefitness functiondirectly,
commonly known as surrogate model. For instance, Ampatzis et al. [1] describe a
surrogate model for Multiple Gravity Assist problems. They use a feed-forward
network with two hidden layers of 25 neurons each, with the logistic and tangent
activation functions used in the first and second hidden layers, respectively.With this,
they find that apart from the strict performance benefit, using a surrogate function also
improves the evolutionary process by smoothing out the rugged fitness landscape.
The training data for the surrogate model comes from the evolved population itself.
In order to address the trade-off between the actual and the surrogate models in
terms of the number of fitness evaluations, Ampatzis et al. [1] use a fixed number
of generations and alternate evolving the population with the true model and the
surrogate model. They use Differential Evolution (DE) [45] for this optimisation
and find that on problems such as recreating the Cassini mission trajectory [44],
this hybrid approach needs in expectation as many generations as the non-surrogate
version, but with much faster function evaluations in generations using the surrogate
model.

Stubbig et al. [54] train a three-layer ReLU network as surrogate function for
low-thrust trajectories in the hodographic shaping method. They find that feature
engineering is relevant, as including more, even redundant information in the state
vectors increases the model accuracy.

Hennes et al. [20] develop fast approximators for low-thrust transfers in the main
asteroid belt. Low-thrust transfers are expensive to compute and the number of pos-

21 Evolutionary Machine Learning for Space 617

sible transfers is large in a dense asteroid population, it thus becomes necessary
to quickly decide which of them to compute in detail. Approximating low-thrust
transfers as ballistic (Lambert) transfers with impulsive manoeuvres is fast but lacks
accuracy. The authors find that most common machine learning methods outperform
the ballistic approximation, with gradient-boosted decision trees performing best,
but all need the right input features. These include the phasing, defining how far
along each asteroid is in its orbit. Crucially, the machine learning methods perform
best if the ballistic approximation itself is also part of the input features.

Merata et al. [38] extend this approach to Near-Earth Asteroids (NEA), which
are closer to the sun than the main belt asteroids and thus have shorter orbital peri-
ods. The transfers may thus span multiple orbital periods and the phasing indicators
become meaningless. The authors generate a database of 60000 Optimal Control
Problem (OCP) descriptions of near-earth asteroid transfers and train an ensemble
of machine learning methods. They find that feature selection of the right astrody-
namical variables (time of transfer and differences in orbital radius and inclination)
is critical for good performance.

21.2.1.2 Parameter Learning

The behaviour of evolutionary algorithms is commonly governed by parameters,
whose tuning can have a marked effect on the algorithm’s performance. Within
evolutionary approaches, Omran et al. [40] use self-adaptation to great advantage in
differential evolution and Zuo et al. [61] build on that success with a technique they
name case learning: Keeping a reservoir of mutation and crossover parameters that
resulted in improved offspring within differential evolution.

21.3 Optimal Control of Spacecraft Operations

Optimal control refers to the methodology of finding, given a dynamical system and
an associated figure ofmerit defined as the cost, a series of control inputs over a period
of time that results in the minimisation or maximisation of said cost. A challenge
in many control problems, especially for spacecraft applications, is that designing
robust and highly performant near-optimal controllers comes at the expense of thor-
ough system identification and computationally expensive open- and closed-loop
simulations. Rephrased more generally in the reinforcement learning literature, opti-
mal control is akin to an agent perceiving an environment and selecting actions in
order to maximise a reward. Actions are selected according to a policy, commonly
implemented as a neural network. This can be done by training estimators for the
expected value of actions and states, as is done with Q-learning or actor–critic net-
works, or by optimising the network weights of a policy network directly. The latter
strategy is called direct policy search. Most neuroevolutionmethods used for optimal
control correspond to gradient-free direct policy search. In recent years, neurocon-

618 M. von Looz et al.

trollers have appeared as potential solutions for real-time on-board control of space
systems. Neuro-controllers are typically defined as neural network mapping a series
of system state inputs to control action outputs with the goal to replace traditional
controller design with neural architectures.

For example, Leitner et al. [32] design a neurocontroller for autonomous ren-
dezvous and docking between two spacecraft. It is assumed that only one spacecraft
is controllable in translation and attitude with thruster actuators controlled via feed-
forward neural networks. In a two-dimensional dynamical system, the controlling
network receives position, speed, attitude and angular velocity, for a total of six inputs,
and produces two outputs that directly control two thrusters. The overall network is
relatively small, consisting of 30 neurons and 103weights, which are optimised using
a simple genetic algorithm from randomly selected starting points. Leitner et al. [32]
find that the neurocontroller usesmore fuel and time than a numerical optimal control
strategy, but can deal better with unexpected changes to the dynamics. They refer to
this trade-off as the price of robustness.

Dachwald [11] consider very-low-thrust trajectories suitable for solar sails or
nuclear electric propulsion, with thrusts in the range of mN/kg. They discretise the
trajectory, with the thrust angle and magnitude used as free parameters at each time
step. Then, instead of optimising the trajectory directly, they pose the control problem
as a reinforcement learning problem and design a neural network (neurocontroller)
to take the current state as input and return the thrust as output. They then optimise
the network weights via direct policy search.

Willis et al. [57] design a neurocontroller for hovering over a non-spherical aster-
oid. A particular challenge in navigation around small bodies is their weak gravita-
tional field, leading to a relatively stronger effect of inhomogeneities, solar radiation
pressure and other perturbative forces. They investigate a sensor setup without direct
distance measurements, instead using optical flow to estimate the ratio of relative
velocity to distance from the surface. They then propose a fixed two-layer feed-
forward neural network to minimise the offset in each direction independently and
optimise the weights with direct policy search using generational particle swarm
optimisation (PSO) on an archipelago setup. Multiple populations are evolved inde-
pendently with regular migration, for a total population of 504 individuals over 1000
generations. They find that, although the lack of absolute distance measurements
has a negative effect on the control performance, the evolutionary approach yields
significantly better hovering controllers than previous work.

Yang et al. [33] apply a neural guidance scheme using an artificial neural network
to control thrust vector steering during low-thrust transfers in the Earth environ-
ment, using a Lyapunov control scheme and an improved cooperative evolutionary
algorithm to evolve the parameters of the network. The proposed solution shows rea-
sonable accuracy in the satisfaction of the constraints of the corresponding optimal
control problem, with the potential of offering an on-board autonomous guidance
solution. The robustness of the proposed architecture and its integration within a
complete GNC solution still remain open questions.

Marchetti et al. [36] design a hybrid control scheme in which they first find
a control law using genetic programming, then optimise it (possibly online) with

21 Evolutionary Machine Learning for Space 619

artificial neural networks. The coefficients in the evolved control law and the
weights of control variables are first optimised with classical approaches (Broyden–
Fletcher–Goldfarb–Shanno and Nelder–Mead) with a set of random disturbances.
The reference trajectories together with the optimised scalars are used as training
data for neural networks. They test this approach on a control task of a single-stage-
to-orbit transfer vehicle with random disturbances. Evaluating the neural networks
trained on the optimised trajectories yields a success ratio (being within 1% of the
reference trajectory) of roughly 65-85%.

Zhang et al. [60] survey different combinations of genetic programming and
machine learning approaches in the context of job shop scheduling. Some of them,
for example, surrogate functions, are also widely used within evolutionary machine
learning for space. In their case, the surrogate models consist of equivalent, but
smaller scheduling problems. While genetic programming approaches for space
applications are currently a niche application, many of the assistive techniques men-
tioned by Zhang et al. [60] (for example, feature selection) are likely to be beneficial
as well.

21.4 Evolutionary Robotics

In the specific context of space, there are a number of confounding factors that
robotics design needs to take into account. Deep space is an exceedingly harsh
environment characterised by high vacuum, strong ionising radiation and fluctuating
extreme temperatures. Similarly, when considering planetary exploration, there can
be a number of complicating factors, such as low or high gravitational pull, broken
terrain characteristics and a corrosive, abrasive or pressurised environment. None of
these factors are specific to evolutionary robotics (ER)—indeed, they must be dealt
with by any algorithm used for optimising a robot’s morphology or behaviour. In
this section, rather than a thorough overview of the fundamentals of ER, we present
approaches that take into consideration at least some of the constraints associated
with robotic space exploration.We therefore introduce some insight intomorphology
evolution (ME) and controller evolution (CE) within a space context, followed by an
overviewof self-assembly and reconfiguration,which aremore niche but prospective,
realistic future space applications subject to harsh environmental constraints.

21.4.1 Morphology Evolution

Morphology evolution (ME) focuses on evolving the shape, propulsion mode, mate-
rials and other physical aspects of the robot. In ME, the controller is usually fixed,
whereas controller evolution (CE) focuses on evolving the robot’s behaviour while
keeping its morphology fixed (or at least that the type of control is fixed, in other
words, if the mode of propulsion is bipedal motion, it is guaranteed that the controller

620 M. von Looz et al.

is not going to have to deal with jet-based propulsion). Morphology/controller co-
evolution is a combination of both: it is a manifestation of the philosophy of embod-
ied intelligence [21, 22]—the idea that true intelligence can only be achieved with a
physical embodiment. CE is conceptually and practically very different from ME—
while robot morphology can be evolved in simulation, there is significant overhead
associated with the production and testing of the final design, as well as a limitation
on the number of components and their types. In contrast, evolved controllers can
be readily transferred to actual hardware and tested immediately, leading to a much
faster prototyping cycle.

Studies on ME that take into account the fact that the robot will be operating in
space are few and far between. In one example, Rommerman et al. [46] apply Covari-
ance Matrix Adaptation—Evolutionary Strategy (CMA-ES) [19] to the morphology
evolution of a crawling robot. However, CMA-ES itself does not consider any space-
related constraints; instead, it is the base robotic platform (ARAMIES [53]) that
makes the results relevant to space applications. Indeed, the ARAMIES robot was
designed specifically for moving over rough terrain at steep inclinations, with high
robustness, ease of maintenance and long mean time between failures. Other stud-
ies have focused on evolving specific subsystems, such as active vision [7, 42, 43]
in a simulated rover, or behaviour, such as trajectory optimisation [11, 12] or path
planning behaviour [51] for a swarm of rovers. In general, ME for robots designed
specifically for space exploration suffers from the issue of unknown unknowns—sets
of physical parameters that are too poorly understood to be used as constraints or
objectives. This is not a limitation of ER per se—rather, it is the result of our limited
understanding of and inability to reproduce the environments in which the evolved
robots might operate, leading to a degree of uncertainty that is currently too high for
ME to be applied to real-world optimisation tasks.

21.4.2 Controller Evolution

A relevant example of CE for space applications deals with the feasibility of bio-
inspired design specifically targeting deployment on Mars as presented in [14]. The
study considers realistic constraints associated with the particular environment of its
intended operation, such as communication, temperature range, batteries, landing site
and even soil composition. Consequently, Ellery et al. [14] consider the versatility
of different propulsion techniques and adopt an insect-like hexapodal structure as
well as other insect-like qualities such as perceptual, behavioural and functional.
A noteworthy feature of the Mars Walker includes the implementation of reflex
motions, namely the searching reflex and the elevator reflex [15], which counteract
external perturbations by activating when obstacles or gaps are encountered during
regular locomotion. Critically, lessons learned from previous missions to Mars (such
as opportunity becoming stuck on relatively flat terrain) as well as the particular
operating conditions (e.g., a limited power budget) are translated into requirements
for the controller, namely, energy efficiency, ability to cover large gaps, robustness

21 Evolutionary Machine Learning for Space 621

and stability. Therefore, Ellery et al. [14] opt for a model of the stick insect as a
natural match for the insect-like body design of the Mars Walker. The weights of the
neural networks designed as controllers for each of the hexapod’s legs are optimised
using the island model [23], which has emerged as a useful tool for evolutionary
optimisation in cases that involve multiple constraints, and in particular in studies on
CE for neurocontrollers in the context of designing robots for space exploration. In
the case of theMarsWalker, the controller is modelled as a continuous-time recurrent
neural network (CTRNN) with weights evolved with coevolutionary distributed GA.
Ellery et al. [14] use the OpenDynamics Engine (ODE) simulator [52] to evaluate the
robot’s performance. The same approach is also taken by Peniak et al. [42], where the
objective is developing an active vision system for obstacle avoidance in unknown
environments, targeting a simulated version of a Mars rover. A dedicated study on
the island model for multi-agent CE scenarios is given in [7].

Ampatzis et al. [2] consider a robot self-assembly task and investigate the role
of isolated populations and migrations for the evolution of neurocontrollers. They
use Continuous-Time Recurrent Neural Networks (CTRNNs) of 24 neurons in total
and optimise their weights with direct policy search using differential evolution on
an archipelago with 10 islands, both without migration and a ring topology. They
find that migration has a strong effect on the final fitness: Without migration, only
80% of the maximum fitness is reached, even with a higher number of generations.
Peniak et al. [41] use evolutionary search to design neurocontrollers for autonomous
planetary rovers. The controllers are implemented as neural networks and receive as
input a simple sensory system that can serve as a backup in case 3D vision becomes
unavailable. The evolutionary search is a simple genetic algorithm implemented on
the archipelago framework, with 9 islands of 10 individuals each. A virtual version
of the Mars Science Laboratory (MSL) rover is used in a virtual environment as
the base for the simulation. The authors find the island model to be successful for
evolving neurocontrollers in this framework.

In a work of de Croon et al. [13], a robot controller is evolved with the objective
of odour-based localisation of a simulated methane plume on Mars in the pres-
ence of wind with low or high turbulence. They consider a robot equipped with a
single chemical sensor and a single wind sensor, and train a CTRNN architecture
consisting of 4 input neurons (whose inputs are computed from the two simulated
sensors), 10 hidden neurons and 4 output neurons. A population of 30 individuals
is used, with 1 elite individual and 6 parents selected on a roulette wheel principle.
Crossover is carried out with a probability of 0.1, Gaussian mutation with a proba-
bility of 0.03 per gene. They use the simple genetic algorithm implementation from
the PyGMO/PAGMOplatform [4] with direct policy search, where the objective is to
locate and approach themethane source. An interesting approach taken in the study is
to interpret the evolved policies as finite-state machines, thus distilling an algorithm
from the network behaviour. Arguably, the ability to translate a more or less ‘opaque’
neural model into a highly explainable and convenient symbolic or algorithmic rep-
resentation for human mission analysts is in fact one crucial step towards the more
widespread adoption of evolutionary methods in space-related research involving
any form of control.

622 M. von Looz et al.

A key takeaway is that the main differentiator in the design of ME and CE for
robots deployed in space is whether the design process considers specific factors of
the mission or the environment as either constraints or objectives. The following is
a non-exhaustive list of factors to consider:

• Payload restrictions: What is the payload mass that can be launched, determined
by launch capacity.

• Extreme conditions: If the robot is meant to operate in highly inhospitable envi-
ronments involving as high pressure, radiation, corrosive substances or extreme
temperatures (high, low or alternating between the two extremes).

• Communication delay: Even at the speed of light, a round-trip to Mars takes
over 30 min, and the delay only becomes longer for more distant missions. This
translates into a requirement for semi- or even fully autonomous robots.

• Microgravity: If the robot is expected to operate in space rather than on (or
beneath) the surface of a celestial body, the non-trivial effect of microgravity must
be taken into account for everything from propulsion to collision avoidance.

Microgravity is also one of the aspects of space in terms of environmental con-
ditions that has no analogue on Earth. For instance, friction is effectively absent in
space, and therefore one cannot assume that the robot would simply stop moving
when the propulsion is cut off. Microgravity can serve either as an obstacle or as
an opportunity depending on the application. Thus, it provides a segue into the next
section, which looks at the specific application of formation flying, where ER has
been applied in a microgravity environment.

21.4.3 Formation Flying and In-Orbit Assembly

In-orbit assembly [6, 58] refers to the process of putting individual components
together in-orbit to create a larger structure, and reconfiguration is the process of
reshaping or otherwise altering an already assembled structure. Arguably the most
successful case of in-orbit assembly is the International SpaceStation (ISS) [6],which
is composed of several modules designed, manufactured and launched by different
international actors and space agencies. A unique feature of in-orbit assembly is that
it happens in a microgravity environment, which allows certain manoeuvres that are
impossible or impractical on the ground.

A noteworthy type of in-orbit assembly is self-assembly, where the components
self-organise into a larger target structure. An interesting example is given by Shen
et al. [49], who study the feasibility of achieving a stable predefined structure from a
random starting configuration of tethered units (individual robots in a swarm). The
tethers feature universal connectors that allow any two connectors to dock together,
enabling the robots to form any possible configuration. The study models a sys-
tem of Intelligent Reconfigurable Components (IRCs) composed of FIMER and
CONRO robots that provide tethering connections between pairs of IRCs, systems
for position, orientation and wireless communication, and an onboard controller for

21 Evolutionary Machine Learning for Space 623

topology discovery, planning and communication. As the tethers are flexible, when
a connection is established between two IRCs, the tether is reeled in to eliminate
slack. The taut link, that is established, then behaves as a rigid beam due to the syn-
chronised coupled orbital motion of the robots at either end. System optimisation
relies on a hormone-inspired distributed control algorithm developed specifically for
the CONRO robots [48]. Notably, the mechanics of the docking procedure produces
non-trivial effects, such as dampened oscillatory spinning that results in alternat-
ing clockwise/counterclockwise twisting of the tether until an equilibrium point is
reached. Nevertheless, Shen et al. [49] show that the method can grow stable tethered
structures by allowing the robots to dynamically reconfigure their communication
and control strategy by following the simple preferential attachment instructions
encoded in the form of artificial hormones.

There are several key motivations for pursuing in-orbit (self-)assembly:

• Payloadmanagement: Smaller components are easier and cheaper to launch than
a single large structure.

• Maintainability: Modular structures are easier to repair and upgrade in situ (i.e.
in orbit) without decommissioning the entire structure.

• Repurposing: Reconfigurable structures can be repurposed into different
configurations.

In most cases, in-space assembly relies on the fundamental concept of formation
flying [37], where the objective is to control a fleet of independent satellites in such
a way that the respective relative distance between each pair of satellites remains
fixed. This enables servicing procedures such as rendezvous and docking to take
place, while satellites flying in formation can effectively emulate a rigid structure.

From the point of view of ER, formation flying poses an interesting challenge.
Orbital dynamics is well-studied and tractable with various optimisation algorithms,
while the environment poses some unique constraints (such as working in microgra-
vity) and opportunities (allowing for the creativity of evolution to shine in design
and optimisation settings). In the following, we briefly expand on an interesting
application of evolutionary algorithms in the context of an inverse-dynamic approach
to formation flying named equilibrium shaping [26].

21.4.4 Case Study: Equilibrium Shaping of Spacecraft
Swarm

Equilibrium shaping (ES) has been developed for the purpose of achieving a stable
spacecraft formation from arbitrary initial conditions (i.e. with satellites distributed
randomly within a certain volume). It is a behaviour-based path planning algorithm
based on a swarm control technique that introduces an artificial potential field [17],
where the agents follow the negative gradient of the potential towards unique attrac-
tors identified as minima in the global potential landscape. In ES, each agent in the
spacecraft swarm follows distinct behaviours that define the overall velocity field

624 M. von Looz et al.

for each agent. The net effect of all behaviours ensures that the agent ends up in
one of the equilibrium points designed to coincide with the desired formation. Key
properties of ES are the minimisation of inter-agent communication and its limited
sensory information requirements.

Formally, the total velocity vi of each satellite i is distributed as the sum of the
velocities defined by three distinct behavioural patterns: gather, dock and avoid:

vi = v
gather
i + vdock

i + vavoid
i (21.2)

where each of the individual behavioural velocity components can be decomposed
as a discrete sum of non-linear functions over state decision vectors, leading to a
straightforward nonlinear programming formulation. This makes ES quite amenable
to evolutionary optimisation techniques. To that end, Izzo et al. [28] apply ES to the
problem of formation flying as posed in terms of swarm control [18], where neural
controllers are taskedwithmaintaining the formation in a decentralisedmanner,with-
out a dedicated control unit. Specifically, the set-up involves the SPHERES robotic
platform, consisting of three spherical devices which can manoeuvre independently
in six degrees of freedom. The authors design two distinct multi-layer perceptrons
(MLPs) networks, one of which translates the relative positions of the satellites into
velocities and another one for translating the target formation into angular velocities.
They find that the controllers encounter difficulties achieving rotational invariance,
i.e. having the controller perform the same action for two states that only differ
by a rotated reference frame. For this reason, they use an additional sensor input
representing an absolute reference frame. Note that the controllers are identical for
each satellite, so every agent is controlled in the same way by the controller and can
be swapped freely. Using particle swarm optimisation, the controllers are evolved
to achieve sub-micrometre positional accuracy in 99.93% of 25000 simulation runs
with the help of the SPHERES simulator [39].

21.4.5 Future Challenge: Fault Recovery

Robots deployed in space would be operating in unknown environments that are
often harsh and can cause damage to the structural elements of the robot, its hardware
controller (including processor, memory and other components), or both. However,
unlike a terrestrial robot, which would be repaired or replaced in the event of damage,
a robot in space would need to recover from the damage as fully as possible in order
to complete the mission. Such failure recovery should take place at the controller
level while still maintaining the strong guarantees for robustness and interpretability
normally required for a space-grade controller.

In this regard, the translation of a neural network behaviour into a series of log-
ical steps in de Croon et al. [13] highlights a potential pathway for neuroevolution
for robot control in space. Specifically, as evolution is well suited for dealing with

21 Evolutionary Machine Learning for Space 625

changes in the topology of the search space and the solution itself, it can serve as a
valuable tool for controller recovery in the case of irreparable hardware damage. For
instance, reconfigurable hardware platforms, such as FPGAs, are becoming increas-
ingly popular and energy efficient, and could ultimately find their way onboard space
probes and robots. A controller implemented in FPGA can be reconfigured dynami-
cally in case of a failure; however, since there is no way to estimate with certainty the
type of failure, the reconfiguration procedure should be as generic as possible. The
recovered controller might need to work with altered inputs (for instance, a blocked
wheel or undeployed solar panel) or more subtle changes such as permanently cor-
rupted memory or processor registers. Currently, the place-and-route step is a very
computationally intensive part of the FPGA update cycle, which needs to be done
with ground support. Further algorithmic improvement would be necessary to limit
the recomputations to a small environment around a fault. While to our knowledge
there are no dedicated studies on neuroevolution for controller recovery for robots
deployed in space, a system such as that in [5] could in principle be used as a fallback
system for controller recovery, even if it is initially designed to be used only in the
case of such irreparable damage. An additional advantage is that robot systems and
failures can be simulated with high accuracy and reproducibility, paving the way
to fast prototyping cycle. We anticipate that advancing the state of the art in that
direction would greatly expand the potential for the application of evolution to robot
control for space applications.

21.5 Conclusions

Evolutionary computation andmachine learning have been conjointly used for awide
number of space applications, including trajectory and path optimisation, robotics
guidance and control and morphology evolution.

In some applications, combining evolutionary and machine learning methods
helps in further reducing the need for human design choices. For instance, the
design of neural networks, including the number and width of layers or the choice of
activation functions, can be partially automated using evolutionary neural architec-
ture search (ENAS). Evolutionary algorithms are used extensively in the prospect
of automating offline trajectory design, and machine learning methods is used in
shaping the search space, reducing expensive function evaluations and complex sys-
tem modeling.

So far, the combined use of machine learning and evolutionary optimisation
remains exploratory in nature. No evolutionary machine learning technique has yet
become the standard used to solve a particular challenge in space engineering, despite
the promise shown by the prospective studies showcased in this review. A dynamic
subfield within EML for space applications is optimal control problems solved with
artificial neural networks, which are in turn optimised with evolutionary methods.
This, together with learning the search space in evolutionary trajectory design seems
to be the key promising areas for future developments.

626 M. von Looz et al.

References

1. Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions
in trajectory optimisation. In: Proceedings of the IJCAI-09Workshop on Artificial Intelligence
in Space, pp. 1–6 (2009)

2. Ampatzis, C., Izzo, D., Ruciński, M., Biscani, F.: Alife in the galapagos: migration effects on
neuro-controller design. In: Advances in Artificial Life. Darwin Meets von Neumann: 10th
European Conference, ECAL 2009, Budapest, Hungary, 13–16 Sept. 2009, Revised Selected
Papers, Part I 10, pp. 197–204. Springer (2011)

3. Basak, A., Lohn, J.D.: A comparison of evolutionary algorithms on a set of antenna design
benchmarks. In: 2013 IEEECongress onEvolutionaryComputation, pp. 598–604. IEEE (2013)

4. Biscani, F., Izzo, D.: A parallel global multiobjective framework for optimization: pagmo. J.
Open Sour. Softw. 5(53), 2338 (2020)

5. Borrett, F., Beckerleg, M.: A comparison of an evolvable hardware controller with an artificial
neural network used for evolving the gait of a hexapod robot. Gen. Programm. Evol. Mach.
24(1), 5 (2023)

6. Boyd, I.D., Buenconsejo, R.S., Piskorz, D., Lal, B., Crane, K.W., De La Rosa, Elena, B.:
On-Orbit Manufacturing and Assembly of Spacecraft. Technical report, Institute for Defense
Analyses (2017)

7. Cangelosi, A., Marocco, D., Peniak, M., Bentley, B., Ampatzis, C., Izzo, D.: Evolution in
Robotic Islands. Technical Report Ariadna ID: 09-8301, ESA (2010)

8. Cassioli, A., Di Lorenzo, D., Locatelli, M., Schoen, F., Sciandrone, M.: Machine learning for
global optimization. Comput. Optim. Appl. 51, 279–303 (2012)

9. Choi, J.H., Lee, J., Park, C.: Deep-space trajectory optimizations using differential evolution
with self-learning. Acta Astronautica 191, 258–269 (2022)

10. Choi, T.J., Togelius, J., Cheong, Y.-G.: Advanced cauchy mutation for differential evolution in
numerical optimization. IEEE Access 8, 8720–8734 (2020)

11. Dachwald, B.: Optimal solar sail trajectories for missions to the outer solar system. J. Guid.
Control Dyn. 28(6), 1187–1193 (2005)

12. Dachwald, B.: Optimization of very-low-thrust trajectories using evolutionary neurocontrol.
Acta Astronautica 57(2–8), 175–185 (2005)

13. de Croon, G., O’connor, L.M., Nicol, C., Izzo, D.: Evolutionary robotics approach to odor
source localization. Neurocomputing 121, 481–497 (2013)

14. Ellery,A., Scott,G.P.,Gao,Y.,Husbands, P.,Vaughan, E., Eckersley, S.:MarsWalker. Technical
Report AO/1-4469/03/NL/SFe, ESA (2005)

15. Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control
and local reflexes improve rough terrain locomotion in a hexapod robot. Robot. Auton. Syst.
18(1–2), 59–64 (1996)

16. Fluke, C.J., Jacobs, C.: Surveying the reach and maturity of machine learning and artificial
intelligence in astronomy. Wiley Interdiscip. Rev.: Data Mining Knowl. Disc. 10(2), e1349
(2020)

17. Gazi, V.: Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans.
Robot. 21(6), 1208–1214 (2005)

18. Gazi, V., Fidan, B.,Marques, L., Ordonez, R.: Robot swarms: dynamics and control. In: Kececi,
E.F., Ceccarelli,M. (eds.),MobileRobots forDynamicEnvironments, pp. 79–126.ASMEPress
(2015)

19. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

20. Hennes, D., Izzo, D., Landau, D.: Fast approximators for optimal low-thrust hops between
main belt asteroids. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1–7. IEEE (2016)

21. Howard, D., Eiben, A.E., Kennedy, D.F., Mouret, J.-B., Valencia, P., Winkler, D.: Evolving
embodied intelligence from materials to machines. Nat. Mach. Intell. 1(1), 12–19 (2019)

21 Evolutionary Machine Learning for Space 627

22. Howard, D., Glette, K., Cheney, N.: Editorial: evolving robotic morphologies. Front. Robot.
AI 9, 874853 (2022)

23. Husbands, P.: Distributed coevolutionary genetic algorithms for multi-criteria and multi-
constraint optimisation. In: Fogarty, T.C. (ed.) Evolutionary Computing. Lecture Notes in
Computer Science, vol. 865, pp. 150–165. Springer, Berlin, Heidelberg (1994)

24. Ivezić, Ž., Connolly, A.J., VanderPlas, J.T., Gray, A.: Statistics, datamining, andmachine learn-
ing in astronomy. In: Statistics, Data Mining, and Machine Learning in Astronomy. Princeton
University Press (2014)

25. Izzo, D.: Problem description for the 9th global trajectory optimisation competition. Acta
Futura 11, 49–55 (2017)

26. Izzo, D., Pettazzi, L.: Autonomous and distributedmotion planning for satellite swarm. J. Guid.
Control Dyn. 30(2), 449–459 (2007)

27. Izzo, D., Ruciński, M., Biscani, F.: The generalized Island model. Parallel Arch. Bioinspired
Algorim. 151–169 (2012)

28. Izzo, D., Simões, L.F., Croon, G.C.H.E.: An evolutionary robotics approach for the distributed
control of satellite formations. Evol. Intell. 7(2), 107–118 (2014)

29. Izzo, D., Sprague, C.I., Tailor, D.V.: Machine learning and evolutionary techniques in inter-
planetary trajectory design. In: Modeling and Optimization in Space Engineering: State of the
Art and New Challenges, pp. 191–210 (2019)

30. Jones, D., Schroeder, A., Nitschke, G.: Evolutionary deep learning to identify galaxies in the
zone of avoidance (2019). arXiv:1903.07461

31. Kohlhase,C.E., Penzo, P.A.:Voyagermission description. SpaceSci. Rev. 21(2), 77–101 (1977)
32. Leitner, J., Ampatzis, C., Izzo, D.: Evolving anns for spacecraft rendezvous and docking.

In: Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and
Automation in Space, i-SAIRAS 2010, pp. 386–393. European Space Agency (ESA) (2010)

33. Yang, D.l., Xu, B., Zhang, L.: Optimal low-thrust spiral trajectories using lyapunov-based
guidance. Acta Astronautica 126, 275–285 (2016)

34. Lohn, J.D., Hornby, G.S., Linden, D.S.: An evolved antenna for deployment on Nasa’s space
technology 5 mission. In: O’Reilly, U.-M., Yu, T., Riolo, R., Worzel, B. (eds.), Genetic Pro-
gramming Theory and Practice II, volume 8 of Genetic Programming, pp. 301–315. Springer
(2005)

35. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolutionary Com-
putation. Springer, Berlin, Heidelberg (2006)

36. Marchetti, F., Minisci, E.: A hybrid neural network-genetic programming intelligent control
approach. In: Bioinspired Optimization Methods and Their Applications: 9th International
Conference, BIOMA 2020, Brussels, Belgium, 19–20 Nov. 2020, Proceedings, vol 9, pp. 240–
254. Springer (2020)

37. Mathavaraj, S., Padhi, R.: Satellite Formation Flying: High Precision Guidance Using Optimal
and Adaptive Control Techniques. Springer Singapore (2021)

38. Mereta, A., Izzo, D., Wittig, A.: Machine learning of optimal low-thrust transfers between
near-earth objects. In: Hybrid Artificial Intelligent Systems: 12th International Conference,
HAIS 2017, La Rioja, Spain, June 21-23, 2017, Proceedings, pp. 543–553. Springer (2017)

39. Miller, D., Saenz-Otero, A., Wertz, J., Chen, A., Berkowski, G., Brodel, C., Carlson, S., Car-
penter, D., Chen, S., Cheng, S., Feller, D., Jackson, S., Pitts, B., Perez, F., Szuminski, J., Sell,
S.: SPHERES: a testbed for long duration satellite formation flying inmicro-gravity conditions.
Adv. Astronautical Sci. 105 (2000)

40. Omran, MG.H., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Hao,
Y., Liu, J., Wang, Y., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.), Computational
Intelligence and Security, Berlin, Heidelberg, pp. 192–199. Springer, Berlin, Heidelberg (2005)

41. Peniak, M., Bentley, B., Marocco, D., Cangelosi, A., Ampatzis, C., Izzo, D., Biscani, F.: An
evolutionary approach to designing autonomous planetary rovers. TAROS 2010, pp. 198 (2010)

42. Peniak, M., Bentley, B., Marocco, D., Cangelosi, A., Ampatzis, C., Izzo, D., Biscani, F.: An
Island-model framework for evolving neuro-controllers for planetary rover control. In: The
2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

http://arxiv.org/abs/1903.07461

628 M. von Looz et al.

43. Peniak, M., Marocco, D., Ramirez-Contla, S., Cangelosi, A.: Active vision for navigating
unknown environments: an evolutionary robotics approach for space research. In: Lacoste, H.
(ed.), ESA Special Publication, volume 673 of ESA Special Publication, p. 7 (2009)

44. Peralta, F., Flanagan, S.: Cassini interplanetary trajectory design. Control Eng. Pract. 3(11),
1603–1610 (1995)

45. Price, K.V.: Differential evolution. Handbook of Optimization: From Classical to Modern
Approach, pp. 187–214 (2013)

46. Rommerman, M., Kuhn, D., Kirchner, F.: Robot design for space missions using evolutionary
computation. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2098–2105. IEEE
(2009)

47. Cuartielles, J.P., Gibbings, A., Snodgrass, C., Green, S., Bowles, N.: Asteroid belt multiple
flyby options for m-class missions. In: 67th International Astronautical Congress, p. IAC–
16.C1.5.7x33119. International Astronautical Federation (2016)

48. Shen, W.-M., Lu, Y., Will, P.: Hormone-based control for self-reconfigurable robots. In: Pro-
ceedings of the Fourth International Conference on Autonomous Agents, AGENTS ’00, pp.
1–8. Association for Computing Machinery (2000)

49. Shen,W.-M.,Will, P.M., Khoshnevis, B.: Self-assembly in space via self-reconfigurable robots.
In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),
2, 2516–2521 (2003)

50. Shirazi, A., Holt, H., Armellin, R., Baresi, N.: Time-varying lyapunov control laws with
enhanced estimation of distribution algorithm for low-thrust trajectory design. In: Modeling
andOptimization in Space Engineering:NewConcepts andApproaches, pp. 377–399. Springer
(2023)

51. Simões, L.F., Cruz, C., Ribeiro, R.A., Correia, L., Seidl, T., Ampatzis, C., Izzo, D.: Path
Planning Strategies Inspired By Swarm Behaviour of Plant Root Apexes. Technical Report
Ariadna ID: 09/6401, ESA (2011)

52. Smith, R.: Open Dynamics Engine (2008)
53. Spenneberg, D., Albrecht, M., Backhaus, T., Hilljegerdes, J., Kirchner, F., Zschenker, H.:

ARAMIES: A four-legged climbing and walking robot. In: Proceedings of the 8th International
Symposium on Artificial Intelligence, Robotics and Automation in Space, vol. 603 (2005)

54. Stubbig, L.J., Cowan, K.J.: Improving the evolutionary optimization of interplanetary low-
thrust trajectories using a neural network surrogate model. Adv. Astronaut. Sci. 175 (2021)

55. Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.H.: Evolutionary machine learning: a
survey. ACM Comput. Surv. (CSUR) 54(8), 1–35 (2021)

56. Vinkó, T., Izzo, D.: Global optimisation heuristics and test problems for preliminary spacecraft
trajectory design. Advanced Concepts Team, ESATR ACT-TNT-MAD-GOHTPPSTD (2008)

57. Willis, S., Izzo, D., Hennes, D.: Reinforcement learning for spacecraft maneuvering near small
bodies. AAS/AIAA Space Flight Mech. Meet. 158, 1351–1368 (2016)

58. Xue, Z., Liu, J., Chenchen, W., Tong, Y.: Review of in-space assembly technologies. Chinese
J. Aeronaut. 34(11), 21–47 (2021)

59. Yam, C.H., Lorenzo, D.D., Izzo, D.: Low-thrust trajectory design as a constrained global
optimization problem. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225(11), 1243–1251
(2011)

60. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Survey on genetic programming and machine
learning techniques for heuristic design in job shop scheduling. IEEE Trans. Evol. Comput.
(2023)

61. Zuo, M., Dai, G., Peng, L., Wang, M., Liu, Z., Chen, C.: A case learning-based differential
evolution algorithm for global optimization of interplanetary trajectory design. Appl. Soft
Comput. 94, 106451 (2020)

	21 Evolutionary Machine Learning for Space
	21.1 Introduction
	21.2 Spaceflight Trajectory Optimisation
	21.2.1 Use of Machine Learning Methods

	21.3 Optimal Control of Spacecraft Operations
	21.4 Evolutionary Robotics
	21.4.1 Morphology Evolution
	21.4.2 Controller Evolution
	21.4.3 Formation Flying and In-Orbit Assembly
	21.4.4 Case Study: Equilibrium Shaping of Spacecraft Swarm
	21.4.5 Future Challenge: Fault Recovery

	21.5 Conclusions
	References

