
Chapter 18
Evolutionary Machine Learning
in Science and Engineering

Jianjun Hu, Yuqi Song, Sadman Sadeed Omee, Lai Wei, Rongzhi Dong,
and Siddharth Gianey

Abstract Evolutionary machine learning (EML) has been increasingly applied to
solving diverse science and engineering problems due to the global search, opti-
mization, and multi-objective optimization capabilities of evolutionary algorithms
and the strong modeling capability of complex functions and processes by machine
learning (ML) and especially deep neural network models. They are widely used to
solve modeling, prediction, control, and pattern detection problems. Especially EML
algorithms are used for solving inverse design problems ranging from neural network
architecture search, inverse materials design, control system design, and discovery
of differential equations.

18.1 Introduction

Several common fundamental research themes frequently arise in many science and
engineering domains such as modeling physical and chemical processes, prediction,
pattern classification, abnormality recognition, generation of structures, control, and
inverse design. In these problems, the traditional analytical models are increasingly
replaced or complemented by data-driven machine ML and especially deep neu-
ral network models [70], due to their strong capability to learn complex nonlinear
relationships and inherent representations that lead to high-performance prediction
models. For example, ab initio crystal structure prediction (CSP) has been a long-
time challenging problem due to the expensive first principle calculations needed to
evaluate the candidate structures during the search. However, currently, significant
progress is being made in learning neural network-based interatomic potentials to
speed up the CSP or molecular dynamics simulation process [60]. As a result, ML
and especially deep learning (DL) have been transforming almost every discipline
of science and engineering.
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While deep neural network models are good at modeling, their gradient-descent-
based training algorithms can only be applied to differentiable networks. However,
there are many science and engineering problems that need strong global (multi-
objective) optimization or search capability in vast design space, e.g., of materials
and molecules or searching discrete structures such as neural network architectures.
In this regard, it is natural to hybridize ML models with evolutionary algorithms to
achieve synergistic high performance in problem-solving. Evolutionary computation
(EC) has been applied to various stages ofMLandDL formodel search, feature selec-
tion, or hyperparameter tuning. It has played an increasing role in a range of scientific
research tasks due to its global search and multi-objective optimization capabilities
such as crystal structure prediction or inverse design [5] in which a surrogate perfor-
mance evaluation model is trained and then used as the objective function in inverse
design search. With these complementary roles of ML and evolutionary computa-
tion, there emerges the EML paradigm with unique capabilities and applications in
diverse disciplines.

EMLmethods can be understood from different perspectives. From the ML prob-
lem point of view, EML has been used in solving supervised learning, unsupervised
learning, and reinforcement learning problems. For example, it has been used for
clustering [54], classification [106], regression [33, 87], and ensemble learning [40].
Froman algorithmandmodel point of view,EMLcanbe classified into two categories
including: (1) EC as ML tools, in which evolutionary algorithms are directly used
to solve diverse ML problems such as clustering, classification [41], or regression
(2) EC for ML, in which EC is used to improve the model design (such as net-
work architecture as shown in the evolutionary DL [126]), training of ML models,
hyperparameter search, feature engineering, and explainability.

Some prominent applications of EML in science and engineering are shown in
Fig. 18.1. These applications have some unique characteristics. First, most physical,
chemical, and engineering processes are highly nonlinear and are difficult to model
explicitly, so neural networks have thus been exploited to model such complex pro-
cesses. Similarly, the complexity of patterns from these systems has also called for
the application of ML and DL in these areas. So both EC as ML and EC for ML have
beenwidely used in science and engineering for clustering, classification, regression,
pattern detection, etc. However, there is a special category of application of EML
in science and engineering: the (inverse) design problem, which ranges from neural
network architecture [15, 66, 111] and parameter design, to partial differential equa-
tion discovery [121], inverse materials design [122], neural control system design
[84], crystal structure prediction [37], and engineering system design. In these prob-
lems, usually, the objective function or performance evaluation is modeled using an
ML or neural network model, and then genetic algorithms (GAs) are used to search
the candidate solutions in the design space using ML as the objective function. This
problem-solving strategy also applies to the problem of discovering physics equa-
tions, in which the terms of (partial) differential equations can be discovered by
evolutionary algorithms and then assembled either by GAs or by DL.
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Fig. 18.1 Categories of problems suitable for solving using EML

18.2 Applications of EML in Science and Engineering

EML has gained widespread recognition and has been extensively utilized in diverse
fields of science and engineering. In the subsequent sections, we provide a compre-
hensive overview of the manifold applications of EML in various domains, including
physics and materials sciences, chemistry, astronomy, biology, geography, and other
branches of engineering. The comprehensive breakdown of the contents pertaining
to the applications of EML in these domains is graphically represented in Fig. 18.1.
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18.2.1 EML for Physics and Materials Sciences

The application of ML and especially DL in physics and materials science has been
accelerating due to the complexity in manually modeling the structure-property rela-
tionship, the challenge in ab initio simulation for materials characterization, and the
challenge in sampling the huge chemical space. To address these issues, ML and
deep neural networks are now commonly used to learn the interatomic potentials for
Density Functional Theory (DFT) ormolecular dynamics simulation, which can then
be combined with global optimization algorithms for crystal structure prediction [8].
Neural networks are also trained with ab initio data to speed up materials property
calculation so that they can be used as fast surrogate models for inverse design of
materials using evolutionary algorithms [5]. Evolutionary algorithms can also be
combined with ML to discover physical laws as represented by partial differential
equations [119, 121]. Finally, evolutionary algorithms are also routinely used for
training special neural network models due to their gradient-free global optimization
capability.

18.2.1.1 Discovering Physical Laws and Equations

Discovering physical laws represented as mathematical models such as partial differ-
ential equations (PDE) is one of the most challenging tasks in physics. Data-driven
methods have been routinely used for PDE discovery, but they usually require all
potential terms to be specified. Xu et al. [119, 121] proposed a novel method, DLGA-
PDE for PDE discovery without such constraints. It works by training a DLmodel of
the physical process for generating meta-data and derivatives and then using a GA to
search for the combination of such terms. Their method has been shown to achieve
good performance in the discovery of the Korteweg-de Vries (KdV) equation, the
Burgers equation, the wave equation, and the Chaffee-Infante equation, all with an
incomplete term library and even with noisy and limited data. In [26], Chen et al.
used an evolutionary strategy to train a discrete feed-forward convolutional neural
network model for modeling variational wave functions for correlated many-body
quantum systems. They found that networks can converge with high accuracy to the
analytically known sign structures of ordered phases. In [120], a robust PDE discov-
ery framework called the robust DL GA (R-DLGA) was proposed, which combines
the physics-informed neural network (PINN) and DLGA for potential terms discov-
ery. The terms discovered by DLGA are added to the loss function of the PINN
as physical constraints to improve the accuracy of the derivative calculation. The
authors [121] further proposed an EML method for DL of parametric partial differ-
ential equations from sparse and noisy data. The EML method has also been applied
to learn models that balance accuracy with parsimony in classical mechanics and
the melting temperature prediction of materials [38]. The EML approach allowed
them to discover interpretable physical laws from data based on parsimonious neu-
ral networks (PNNs) combined with evolutionary optimization. The EML approach
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has also been applied to learn parametric partial differential equations including the
Burgers equation, the convection-diffusion equation, thewave equation, and theKdV
equation from sparse and noisy data [121], in which the neural network is first trained
to calculate derivatives and generate meta-data, which solves the problem of sparse
noisy data. Then, the GA is used to discover the form of PDEs and corresponding
coefficients.

18.2.1.2 Crystal Structure Prediction

One of themajor challenges inmaterials science is to predict a structure given only its
composition. While several crystal structure prediction algorithms based on global
optimization and first principle (e.g., Density Functional Theory (DFT)) have been
proposed, the computational complexity of such DFT simulations have made it diffi-
cult to predict structures for most materials. To address this issue, a series of research
combined deep neural networks with GAs for crystal phase determination [8, 37].
In [8], Artrith et al. trained a specialized ML neural network potential using around
1000 first-principles calculations, which can help sample low-energy atomic con-
figurations in the entire amorphous LixSi phase space. The result is comparable to
that of ANN trained with extensive molecular dynamics simulations with ≈ 45 000
first-principles calculations. Such neural network potentials (including graph neural
network potentials) have since been further improved or developed and applied with
evolutionary algorithms [17, 28]. In [130], Bayesian optimization is combined with
graph neural network (GNN) potential to do crystal structure relaxation. The GNN is
then later combined with a GA for de novo crystal structure prediction [31].Wanzen-
böck et al. [76] proposed an algorithm that explores the rich phase diagram of TiOx
overlayer structures on SrTiO3(110) by combining the covariance matrix adaptation
evolution strategy (CMA-ES) and a neural network force field (NNFF) as a surrogate
energy model, which dramatically reduces the computational resources needed by
DFT simulation. While most neural network potentials are trained before the genetic
search of crystal phases, it is also possible to conduct both simultaneously, which is
how active learning works. In [91], Podryabinkin et al. proposed a methodology for
crystal structure prediction based on the evolutionary algorithm and the active learn-
ing of neural network interatomic potentials. Their approach allows for an automated
construction of an interatomic interaction model from scratch achieving a speedup
of several orders of magnitude. They have benchmarked their algorithms on crystal
structure prediction of carbon, high-pressure phases of sodium, and boron allotropes,
including those that have more than 100 atoms in the primitive cell, all with satis-
factory results. Kang et al. [60] trained a deep neural network interatomic potential
model and combined it with a GA for crystal structure prediction. By avoiding the
expensive DFT calculations of formation energy and harnessing the speed and accu-
racy of neural network potentials (NNPs), their algorithm navigates configurational
spaces 102 − 103 times faster than DFT-based methods. Their SPINNER algorithm
has identified more stable phases in many cases than the data-mined template-based
method and DFT-based evolutionary algorithm methods.
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18.2.1.3 Hyperparameter Tuning

Another major application of EML in physics andmaterials is hyperparameter tuning
of ML models as shown in [109]. Both particle swarm optimization (PSO) and GAs
are routinely used to select optimal hyperparameter values autonomously. Tani and
Rand evaluated how PSO and GA can improve the performance of their XGBoost
ML model for the ATLAS Higgs boson ML challenge (HBC) [3], which represents
a typical application of ML algorithms to the field of high energy physics. The task
of the HBC is to separate the Standard Model (SM) Higgs boson signal from the
large SM background. They showed that compared to using the default hyperparam-
eters, the optimization of the hyperparameter values by GA or PSO improves the
sensitivity of the data analysis, by 12-13%, demonstrating that the optimization of
hyperparameters is a worthwhile task for data analyses in the field of HEP. In [50],
DL techniques are applied to learn the physics of extensive air showers in which the
inner structure of the neural network is optimized through the use of GAs.

18.2.1.4 Inverse Design

Another major application of EML in physics is the inverse design in which the ML
models are used to learn the relationship between structures and physical property
while evolutionary algorithms are used to search the design space. In [32, 46], Comin
and Hartschuh combined neural networks with a GA for optimizing spectral-phase
shaping of an incident field to achieve second harmonic generation hotspot switching
in plasmonic nanoantennas design. They first trained a neural network to predict the
relative intensity of the second-harmonic hotspots of the nanoantenna for a given
spectral phase and then used aGA to generate a wide range of nanoantenna designs to
be fed into the neural network. Taking advantage of the multi-objective optimization
feature of the GA, Li et al. [75] applied a multi-objective GA to the optimization of
the apertures of the National Synchrotron Light Source II (NSLI-II) Storage Ring. To
maintain the diversity of the population of the GA, a K-means clustering algorithm is
applied to the population to group individuals into clusters of different fitness levels.
Then individuals from the “Good” and “Poor” clusters aremixedwith the “Best/elite”
individuals to ensure population quality improvement without losing diversity. In
[29], Chen et al. proposed an EML approach for physics-guided ML-based inverse
design of acoustic metamaterials. They used a multi-layer perceptron (MLP) neural
network to map the wave-field-to-wave propagation relationship and then used it as
a surrogate model for GA for inverse design of the metabeam. While deep neural
networks are widely used as surrogate models, they are not able to tune the output
to encompass a range of input states. In this case, a nonlinear symbolic regression
model by genetic programming is more desirable, which is used in metamaterials
design [5]. In their work, the actual design is implemented using the MLP-based
autoencoder network model. The EML-based inverse design has also been applied
to designing solid oxide fuel cells (SOFCs) [122], in which a deep neural network is
used to map the current density, anode flow rate, cathode flow rate, and temperatures
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to outputs that reflect the efficiency and thermal behavior of the SOFC cell.Moreover,
the EML has also been used in inverse design of photonics in [52].

There are several other novel applications of EML in physics problems. In [26],
Chen et al. used a MLP network to approximate a novel class of variational wave
functions for correlatedmany-body quantum systems. They encode the all-important
rugged sign structure of a quantum wave function in a convolutional neural network
with discrete output, which is then trainedwith a gradient-free evolution strategy (ES)
algorithm rather than the commonly used back-propagation algorithm. They found
that while the stochastic gradient descent (SGD) algorithm is better for optimizing
continuous functions, theESmethod is the better choice for optimizing the variational
wave function while SGD is no longer applicable. In [116], a multi-objective GA
is combined with deep neural network models for improving the performance and
durability of direct internal reforming solid oxide fuel cells.

18.2.2 EML for Chemistry

Evolutionary algorithms (EAs) are generic, population-based, metaheuristic opti-
mization methods. The mechanisms by which EAs operate are inspired by biological
evolutionary operations such as selection, mutation, recombination, and reproduc-
tion. Combined with ML, GAs provide a novel tool for the investigation of molecule
design, optimization, and molecular dynamic simulation.

18.2.2.1 EML for Molecule Design and Optimization

The rise ofmachine intelligence provides a grand opportunity to expeditiously design
and discover novel molecules through smart search. The discovery of new functional
molecules has led to many technological advances and remains one of the most
critical approaches to overcoming technical problems in various industries, such as
those in organic semiconductors, displays, and batteries.

Evolutionary design has gained significant attention as a useful tool to acceler-
ate the design process by automatically modifying molecular structures to obtain
molecules with the target properties. However, devising a way to rapidly evolve
the molecule while maintaining its chemical validity is a challenge. Kwon et al.
[68] proposed a GA along with RNN and DNN models that were used to evolve
the fingerprint vectors of seed molecules. The RNN decoder reconstructed chemi-
cally valid molecular structures in the SMILES format from the evolved fingerprint
vectors without resorting to predefined chemical rules. The method employed DL
models to extract the inherent knowledge from a database of materials and is used
to effectively guide the evolutionary design. Designing a new therapeutic drug can
be a time-consuming and expensive process. It also enables rapid discovery of new
drug candidates by performing intelligent searches in a wide molecular structure
space. In [2], Abouchekeir et al. proposed a new approach called adversarial deep
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evolutionary learning (ADEL) to search for novel molecules in the latent space of
an adversarial generative model and keep improving the latent representation space.
In [125], Yoshikawa et al. proposed a new population-based approach using a gram-
matical evolution named ChemGE that can update a large population of molecules
concurrently and ChemGE succeeded in finding hundreds of candidate molecules
whose affinity for thymidine kinase is better than that of known binding molecules
in a database (DUD-E). Li et al. [74] proposed a deep evolutionary learning (DEL)
process that integrates a fragment-based deep generative model and multi-objective
evolutionary computation for molecular design, which can generate promising novel
molecular structures.

Optimizingmolecules for desired properties is a fundamental yet challenging task
in chemistry, material science, and drug discovery. In [27], Chen et al. developed a
novel algorithm for optimizing molecular properties via an Expectation Maximiza-
tion (EM) like an explainable evolutionary process. They showed that the evolution-
by-explanation algorithm is 79% better than the best baseline in terms of a generic
metric combining aspects such as success rate, novelty, and diversity.

Evolutionary algorithms have found increasing applications in both the discovery
and optimization of novel molecular structures. Artificial evolutionarymethods, such
as GAs, can not only explore large and complex search spaces very efficiently, but
also can be applied to the identification and optimization of newmolecules faster than
pure physical experiments. MLmodels can enhance the suitability of experimentally
measured molecules to accelerate the discovery of useful and novel molecules in a
broad composition or property space. For example, Tu C. Le and Nhiem Tran [69]
reviewed how GAs have been used to solve optimization problems in computational
drug design including catalyst discovery and optimization. They also describe the
use of both experimental and computational fitness functions to evolve materials
into promising areas of catalyst space. Among these applications, neural networks
have been used widely as in silico fitness functions based on these neural structure-
property models.

18.2.2.2 EML for Molecular Dynamic Simulation

Molecular dynamics (MD) has become a powerful tool for studying biophysical
systems due to increased computing power and the availability of software. Efficient
computational strategies for the targeted generation and screening of molecules with
desired therapeutic properties are therefore urgently required.

Because of the negative environmental impact of damaging organic solvents and
the high cost of chemical waste disposal, the search for alternative, renewable sol-
vents is a top priority in the chemical industry. Zhong et al. [128] facilitated the devel-
opment of optimized potentials for liquid simulation (OPLS)-based force field (FF)
parameters for eight unique deep eutectic solvents (DESs) based on three ammonium-
based salts and five HBDs at multiple salt-HBD ratios. DESs are a class of solvents
often composed of ammonium-based chloride salts and a neutral hydrogen bond
donor (HBD) at specific ratios. These cost-effective and environmentally friendly
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solvents have seen significant growth in multiple fields, including organic synthesis,
and in materials and extractions because of their desirable properties. Coronavirus
disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus
type 2 (SARS-CoV-2) has led to a global pandemic. DL techniques and molecular
dynamics (MD) simulations are two mainstream computational methods for study-
ing the geometric, chemical, and structural features of proteins and guiding protein
structures. Sun et al. [107] introduced the latest progress of the DL-based molecular
dynamic simulation approaches in structure-based drug design (SBDD) for SARS-
CoV-2 which could address the problems of protein structure and binding prediction,
drug virtual screening, molecular docking, and complex evolution. MD can also help
researchers develop newmolecular materials in biomaterials science. Collagen is the
most abundant structural protein in humans, providing crucial mechanical proper-
ties, including high strength and toughness, in tissues. In [61], Khare et al. developed
a general model using a GA within a DL framework to design collagen sequences
with specific Tm values. They discovered that the number of hydrogen bonds within
collagen calculatedwithmolecular dynamics (MD) is directly correlated to the exper-
imental measurement of triple-helical quality.

18.2.3 EML for Astronomy

The fundamental advantage of EML is that they deliver high-quality results even
when computational resources are constrained. The so-called comprehensive opti-
mization methods are primarily constrained by the scale of the problem or data since
the field of astronomy often involves optimizing problems of great complexity or
processing enormous amounts of data. For this reason, EML has been used in var-
ious significant applications in astronomy such as orbital parameter determination,
stellar spectra modeling, stellar structure modeling, planet search, gamma emission
analysis.

18.2.3.1 Orbital Parameter Determination

Due to the sheer number of unknown parameters involved in the problem of find-
ing orbital parameters, it is considered a highly difficult task. As a result, in the
absence of an efficient approach, one is forced to either accept an extremely coarse-
grained parameter space scan or limit the search space by setting the ranges of certain
parameters. Wahde [112] proposed a method based on GA for efficiently searching
vast space of possible orbits. The goal of this paper was to evaluate the effective-
ness of using a GA-based method to determine the orbital parameters of interacting
galaxies provided photometric observations and systemic velocities of the pair of
galaxies. Later Wahde and Donner [113] extended the simulation part of this GA-
based approach to investigate the impact of past interactions between the NGC5195
and the Messier M51 galaxies. In another work, Theis and Kohle [110] showed that
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if adequate data are provided, their GA-based method can reliably calculate orbital
parameters. The use of a GA theoretically enables a uniqueness test of a preferred
parameter combination and so the authors use it on the parameter region determined
after the fast restricted N-body method. Cantó et al. [21] designed a modification of
the canonical GA to observe the orbital parameters of the planets orbiting 55 Can-
cri. The GA is predominantly used here to maximize a function where traditional
methods are ineffective.

18.2.3.2 Stellar Spectra Modeling

Modeling a good fit of cosmic stellar spectra is a very challenging objective. How-
ever, this task is very crucial as a wide range of stellar attributes can be inferred
from this. The first known evolutionary computing-based analysis of stellar spectra
was performed by Metcalfe [79]. The work proposed employing a GA to compare
the observed light curves to those produced by theoretical models to determine the
properties of binary stellar systems. In this work, GAwas used to randomly populate
the defined parameter space, which also allowed the trial parameter sets to evolve
over time. The optimal set of parameters and the mean set of parameters have very
negligible differences after 100 generations. Mokiem et al. [82] developed a paral-
lelized GA which served as the foundation for an autonomous fitter of the spectra of
massive stars with stellar winds. With the utilization of a rapid performance stellar
atmosphere code named FASTWIND [92] and a fitting method based on GA named
PIKAIA [25], a fast and efficient method for automating the fitting of the continuum
normalized spectra of O− and early B− type stars with stellar winds is described in
this paper. The GA-based routine PIKAIA is employed for parameter optimization
of FASTWIND. PIKAIA optimizes a population till a predetermined number of gen-
erations is reached rather than until a specified criterion is met. PIKAIA is also used
on other several noteworthy papers. One such important application can be found in
the work by Baier et al. [14]. They combined the radiative transfer code DUSTY [58]
with PIKAIA to notably enhance the spectral fit of the dust spectra of AGB stars.
PIKAIA, which is based on the evolutionary natural selection process, seeks to max-
imize the function g(λ) = [F(λ) − Fm(λ)]−2, where F(λ) is the observed spectrum
and Fm(λ) is a model spectrum computed using DUSTY.

18.2.3.3 Stellar structure Modeling

Another important application of EML in astronomy is stellar structure modeling.
The internal structures of stellar objects vary depending on their classifications and
ages, reflecting the components they are made of and how they transfer energy.
Metcalfe and Charbonneau [80] obtained a number of intriguing physical discov-
eries for stellar structure modeling of white dwarf stars, thanks to the effective,
concurrent exploration of parameter space enabled by GA-based numerical opti-
mization. The authors also use the GA-based routine PIKAIA [25] (described in the
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paragraph above) and re-implement it as a fully parallel routine to provide an objec-
tive estimate of the globally optimal parameters for a particular model versus an
observational dataset. A total of five parameters were allowed to evolve by the paral-
lel GA for obtaining structural and physical details about thewhite dwarf stars. Zhang
et al. [127] calculated stellar effective temperatures and identified angular parameters
using a stochastic PSO on known stellar flux data in specific bands. The system’s
input settings were first set. Second, each particle’s fitness value was determined. The
fitness values of each particle with the prior best predictions were then contrasted.
Following the generation of the new particle, other particles’ positions and velocities
were updated. When a specific stopping criterion is met, the stochastic PSO termi-
nates. Another work describes a novel approach based on GA for estimating the age
and relative contribution of various stellar populations in galaxies [9]. Using charge-
coupled device (CCD) images in the U, B, V, R, and I bands, the authors apply this
technique to the barred spiral galaxy NGC 3384. Using the hypothesis that just two
stellar populations, each with a different color, age, metallicity, etc., are responsible
for the observed light from a galaxy, the GA is used to solve the equation set that
describes the relationships characterizing the two stellar populations’ mixing-tracks
found from [1].

18.2.3.4 Astronomical Object Discovery

Even though there are a great number of astronomical objects, we have only dis-
covered and examined a small fraction of them. This necessitates the creation of
algorithms for efficiently finding astronomical objects. Nesseris and Shafieloo [86]
developed a null test for the cosmological constant model using the so-called Om
statistic in combination with GAs to recreate the expansion history of the universe in
a model-independent way. In this paper, the GA is applied on the SNIa dataset (with
the selected execution parameters) [99] to find a solution for the “distance modulus”
term of its fitness function. Based on evolutionary optimization of the classifiers,
Wierzbiński et al. [117] created an effective and precise classifier for cosmic objects
that are mostly used to discover the best parameters for the voting classifiers to cate-
gorize stellar spectra of stars, quasars, and galaxies. With their default parameters as
a starting point, the authors trained a collection of 21 classifiers. Then, they optimized
the hyperparameters using GA. Cassisi [23] used an evolutionary algorithm in which
the equations for convective mixing and nuclear burning are solved using a single
common scheme to undertake the first complete evolutionary computations of stars
undergoing “He flash mixing”. For the evolutionary calculations, the authors employ
an evolutionary code from [103]. Joseph et al. [59] used GA to search through four
nonlinear parameters of each planet to fit a full Keplerian orbit. Chan et al. [24] used a
GA for locating stars formed after supernovae explosion and eventually backtracking
to stars formed after the big bang. As applying a complete search is computation-
ally very expensive, the authors employed a GA with a local search boosted with
random initial solutions. In a study by Geyter et al. [34], the SKIRT [12], a Monte
Carlo radiative transfer code designed to examine the impact of dust absorption and
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scattering on the gas and star kinematics of dusty galaxies, its output is optimized
using the GA library GAlib [114] by searching through the vast model parameter
space.

18.2.3.5 Dark Matter and Dark Energy Analysis

Dark energy makes up around 68% of the universe and dark matter about 27%.
They are predominantly responsible for the bulk of galaxies and galaxy clusters
as well as the large-scale organization of galaxies. So they are very significant to
understand the formation of the universe. Bogdanos and Nesseris [18] employed
GAs to study standard SNIa data [67] to extract model-independent restrictions on
the evolutionof the dark energy equationof state.With the selected execution settings,
the GA is applied to the original SNIa dataset to produce a solution for the reduced
distance modulus. Ruiz et al. [95] applied PSO to analyze merger trees obtained
from a common Lambda Cold DarkMatter N-body simulation and the Semi-analytic
Model of Galaxy Formation (SAM). The PSO is mainly used here to calculate the
best possible set of SAM parameters. Moster et al. [83] devised a reinforcement
learning approach to compute the galaxy properties for dark matter haloes and train
the parameters using a PSO technique. The authors compute the galaxy properties for
all haloes for a specific set of weights and biases and then produce mock statistics for
GalaxyNet, which is trained using a reinforcement learning approach. These statistics
are compared to the observations to determine the model loss, which is minimized
using PSO.

18.2.4 EML for Biology

The protein structure design problem is one of the most exciting challenges of mod-
ern computational biology. Because of its scientific complexity, research on under-
standing the function of proteins, and studying the relationship between amino acid
sequences and protein structures is very difficult. ML-guided evolution is a new
paradigm for a biological design that enables optimizing complex procedures. And
the multi-objective evolutionary algorithm is introduced as it can deal with several
functions when designing protein structures.

18.2.4.1 Protein Function Prediction

Protein function prediction methods are techniques that bioinformatics researchers
use to understand the biological or biochemical roles of proteins. Proteins often
function poorlywhen used outside their natural contexts and directed evolution can be
used to engineer them tobemore efficient in new roles.Wuet al. [118] incorporateML
into the protein’s directed evolutionworkflow, to reduce the experimental effort and to
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explore the sequence space encoded by mutating multiple positions simultaneously.
They have validated their approach on a large published empirical fitness landscape
anddemonstrated thatML-guided directed evolutionfinds variantswith higher fitness
than other evolution approaches.

18.2.4.2 Protein Structure Comparison

Identifying structural similarities is essential for assessing the relationship between
structure and function in proteins. Szustakowski and Weng [108] developed a struc-
ture alignment algorithmusingGA for three-dimensional structures of proteins. They
first align the proteins’ cores, as represented by their secondary structure elements,
by minimizing the difference of distance matrices using a GA. And then extend the
alignment to include any positions in loops or turns deemed equivalent in a conver-
gent process. Carr et al. [22] developed a new approach to structural comparison by
using aMultimeme evolutionary algorithm. In aMultimeme algorithm, an individual
is composed of its genetic material (that represents the solution to the problem being
solved) and its memetic material (that defines the kind of local searcher to use). Dur-
ing crossover, both genetic and memetic transmission will be done. In [11], Bacardit
et al. used GA to design automated procedures to reduce the dimension of protein
structure prediction datasets by simplifying how the primary sequence of a protein
is represented. Reducing the size of the alphabet used for prediction from twenty
to just three letters resulted in more compact and human-readable classifiers. And
the loss of accuracy accrued by this substantial alphabet reduction is not statistically
significant compared to the full alphabet.

18.2.4.3 Protein Structure Design

ML-guided directed protein structure design enables optimization of complex func-
tions. Pegg et al. [90] developed a GA for structure-based de novo design. They use
molecular interactions evaluated with docking calculations as a fitness function to
reduce the search space. Durrant et al. [39] developed a protein inhibitor design algo-
rithm that uses a growth strategy to build the core scaffold, molecular fragments are
added at random to this scaffold. An evolutionary algorithm is then used to evaluate
the scores of each population member, and the best ones become founders of the
subsequent generation.

18.2.4.4 Multi-objective Optimization of Proteins

Using only one energy function is insufficient to characterize proteins because of
their complexity. Multi-objective algorithms can provide a better protein with less
computational resource requirement than DL methods. Brasil et al. [19] developed
a multi-objective evolutionary algorithm for ab initio protein structure prediction
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without using any earlier knowledge from similar protein structures. Gao et al. [44]
adopted a solvent-accessible surface area into a multi-objective evolutionary algo-
rithm with three objective functions to improve protein structure prediction accuracy
and efficiency. Traditional multi-objective algorithms cannot obtain the desired solu-
tion because the selection pressure decreases as the number of objectives increases.
To address this problem, Lei et al. [71] proposed a many-objective evolutionary
algorithm with four types of objectives to alleviate the impact of imprecise energy
functions for predicting protein structures.

18.2.5 EML for Geography and Geophysics

Process in evolutionaryML has contributed to significant advances in geography and
geophysics research, such as climate change [94], geological features, geographical
information systems, and transportation.

18.2.5.1 Climate Change

Recently, one of the biggest problems confronting humanity is climate change.
Storms, droughts, fires, and flooding have become stronger and more frequent [94].
The main strategies for addressing climate change include reducing greenhouse gas
(GHG) emissions and preparing for resilience and disaster management, named mit-
igation and adaption respectively. Mitigation of GHG emissions requires changes to
electrical systems, transportation, buildings, industry, and land-use.Many experts are
exploring how to use MLmethods to tackle the issue of climate change. Considering
both adaption and mitigation response to climate change, Paton et al. [89] incorpo-
rated GHG emissions into the multi-objective evolutionary algorithm (MOEA). The
application of this method in Adelaide, Australia’s southern water supply system has
illustrated the framework’s useful management implications. For spatially allocating
land-use, analyzing climate change impacts may be a useful and fundamental long-
term adaptation strategy. Joo Yoon and co-workers[124] utilized multi-objective GA
to identify climate adaptation scenarios based on existing extents of three land-use
classes in South Korea. Specifically, five objectives were established for predict-
ing climate change impacts and regional economic conditions: (1) minimization of
disaster damage, (2) existing land-use conversion, (3) maximization of rice yield,
(4) protection of high species richness areas, and (5) economic value. This method
showed better performance than other spatial land-use compositions for all adapta-
tion objectives. Climate change trends have already affected many ecosystems, such
as species range and diversity, and this effect is different and varies from place to
place. Rezayan et al. [97] provided an optimal combination of the common species
distributionmodels (SDMs), and employed a GA tomodel the climate change effects
on the spatial distribution of Quercus brantii in the west of Iran.
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18.2.5.2 Geological Features

Several attempts have been made to predict and analyze geographic properties by
EML methods, such as earthquake hypocenter location [64, 96, 102], surface water
reservoir control [100], ocean wave height [115], and magnetic anomalies [16].

In the geophysical research area, the determination of reliable and accurate earth-
quake hypocenters is a crucial task. In 1993, Sambridge and Gallagher [102] pub-
lished a paper in which they used GAs to predict earthquake hypocenter location,
which can refine a population of hypocenters collectively by exploiting information
from the group as a whole, rather than relying on only local information about a
single hypocenter. Kim et al. [64] applied a GA and a two-point ray tracing method
[63] to solve non-uniqueness problems in determining reliable hypocentral parame-
ters including latitude, longitude, source depth, and origin time. With the increasing
risk of flood and drought impacts and the changing water allocation requirements
among complex users, an efficient multipurpose reservoir management strategy is
critical. Salazar et al. [100] carried out a diagnostic assessment framework of the
surface water reservoir control for the Conowingo reservoir in the Lower Susque-
hanna River Basin, Pennsylvania, USA. Specifically, they use Evolutionary Multi-
Objective Direct Policy Search (EMODPS) [48] as the decision analytic framework
where reservoirs’ candidate operating policies are represented using parameterized
global approximators. And then, they use multi-objective evolutionary algorithms to
optimize those parameters for discovering the Pareto approximate operating policies.
To predict the heights of ocean waves accurately and quickly, which is an important
problem in marine detection and warning, Wang et al. [115] reported a hybrid Mind
Evolutionary Algorithm-BP neural network strategy (MEA-BP). It can avoid early
convergence and improve the prediction accuracy by combining the local searching
capabilities of the BP neural network and the global searching ability of the MEA.
Their experiments cover a wide range of geographical locations (from 12 observation
points across two geographically distinct regions - the Bohai Sea, and the Yellow
Sea) and different weather (from Jan 1, 2016, to Dec 31, 2016) and show faster run-
ning time and high prediction accuracy. Balkaya and co-workers [16] demonstrated
the differential evolution algorithm for 3D nonlinear inversion of total field magnetic
anomalies caused by vertical-sided prismatic bodies. Li et al. [72] used an artificial
neural network (ANN) to capture ionospheric spatiotemporal characteristics with
a powerful capacity and capability and used a GA to improve the ANN’s learning
efficiency for predicting ionospheric peak parameters including foF2 and hmF2.

18.2.5.3 Geographical Information Systems

GAs have recently generated much interest in the field of geographical information
system (GIS) including optimal location search [73], and land partitioning [35]. Opti-
mal location search is usually required in many urban applications for establishing
one or more facilities. When it involves multiple sites, various constraints, and mul-
tiple objectives, the search task is very complex. In work [73], it demonstrated that
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GAs can be used with GIS to effectively solve the spatial decision problems for n
facilities. Land partitioning is a basic process of land consolidation [105], it involves
the subdivision of land into smaller sub-spaces subject to several constraints [36].
Demetriou et al. [35] proposed the GIS and GAs integrated model: Land Parceling
System (LandParcelS) which automates the land partitioning process by designing
and optimizing land parcels according to their shape, size, and value.

18.2.5.4 Transportation

Bicycle-sharing systems have become an important part of urban transportation sys-
tems [43]. To increase the number of bicycles available for rent and improve profits,
it is better to collect bicycles in the evening and redistribute them to themain stations.
This relies on the model that accurately forecasts rental demand. In [45], Gao et al.
presented amoment-based rental predictionmodel by a fuzzyC-means (FCM)-based
GA with a back propagation network (BPN) with more than ten factors, including
the date, time, weather (e.g., temperature, humidity, and wind speed) and season,
all of which make different contributions to the final demand. Firstly, they use the
unsupervised FCM-based GA method to pre-classify historical rental records into
groups. Next, the classification results are fed into a BPN predictor which is trained
using these categorized records. After training, the BPN predictor can predict the
demand at future moments.

18.2.6 EML for Engineering

Evolutionary algorithms are being used to enhance and optimize traditional ML sys-
tems. The quick convergence and flexibility that comes with evolutionary algorithms
make their performance so useful in so many different areas. The use of evolutionary
algorithms with ML is growing, and it is being used in many engineering areas such
as software security, energy production, radiation prediction, civil engineering, and
hardware design.

18.2.6.1 Software Security

Cybersecurity and preventing unwanted attacks on computer networks is a very
important and constantly changing field. Intrusion detection systems (IDS) are being
used to keep malicious software out and are constantly being developed. With the
addition of ML algorithms, these IDSs can classify network traffic as normal or not.
Hosseinei and Zade [53] made a novel hybrid intrusion detection method that has
two phases, a feature selection phase, and an attack detection phase. In the feature
selection phase, a GA is modified to have a new multi-parent crossover operator and
combined with a support vector machine (SVM) to improve performance and help
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reduce the dimensions and select relevant features. For the attack detection phase,
an ANN was used to detect any attacks. To train the ANN, a hybrid system was
created using hybrid gravitation search and PSO algorithms. Al-Yaseen et al. [4]
proposed another IDS that involved the use of a wrapper-based differential evolution
algorithm for feature selection and an extreme learning machine as the classifier. The
differential evolution algorithm is similar to a GA, but mutation occurs first before
crossover. The feature selection from this algorithm is fed into an ML algorithm to
classify and detect intruders. In [51], Halim et al. proposed a similar IDS system that
used a GA for feature selection as well as an ML algorithm-based prediction system.
Another aspect of cyber security that is often developing is the detection of spam
and phishing websites. Spammers are creating new techniques that dodge filters and
phishing attacks are becoming a larger problem for web security. In [42], Farris et al.
proposed a new detection system for spam using a GA in combination with a random
weight network. This new system can better handle the massive data flow that needs
to be processed to be able to accurately filter out spam. The system uses a GA to
find possible feature subsets and an RNW as the base classifier. Ali and Ahmed [6]
created a new hybrid phishing website prediction model. The model uses a GA for
feature selection, figuring out themost important features and providing proportional
weight to these features for optimal results, and applies it to a deep neural network to
accurately predict which websites are phishing sites. Detecting where future attacks
on software could come from is also very important to the security of that software.
These are done using a vulnerability prediction model (VPM). Sahin et al. [98]
designed a new model to predict vulnerabilities in software, applying symbiotic GA
and DL methods. The proposed VPM used a deep neural network-based symbiotic
GA to predict where the software may be lacking in security. The method used
two versions of GA and a population-based dominance mechanism to identify the
dominant-feature representations.

18.2.6.2 Energy Production

Energy production and consumption are both very necessary for this world. The shift
to more natural energy sources has already started, but to see if they can even keep
up with what a place or country needs, the amount of renewable energy produced
needs to be optimized and measured, and the energy demand needs to be predicted.
Prediction systems are developed to help with this, but the feature selection process
can be improved with the help of evolutionary approaches. Zhou et al. [129] created
a prediction system of photovoltaic cells to see solar energy production. The system
utilized a GA and a customized similar day analysis based on an extreme learning
machine to predict the photovoltaic output. In [101], Salcedo-Sanz et al. focused on
renewable energyuses anddeveloped anewsystem that used a coral-reef optimization
algorithm with a substrate layer for feature selection. Then an extreme learning
machine was used to predict renewable energy production. Hu and Chen [55] were
looking more specifically at wind energy and wind speed prediction. The proposed
model included a differential evolutionary algorithm in conjunction with a Long
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Short Term Memory (LSTM) to accurately predict wind speeds and wind energy
production. Neshat et al. [85] also used an LSTM in combination with six different
evolutionary algorithms to test them all for wind speed and wind energy production
predictions. Prediction systems for the demand of places are also being developed and
enhanced using evolutionary algorithms. Mason et al. [78] created a new system that
applied a Covariancematrix adaptation evolutionary strategy to train neural networks
to predict the energy demand for Ireland. It resulted in accurate predictions with fast
convergence times. Seyedzadeh et al. [104] similarly made an energy consumption
prediction model for non-domestic buildings. A gradient-boosted regression tree
model was used for prediction, and an evolutionary algorithm was used to optimize
the model by adjusting the hyperparameters.

18.2.6.3 Radiation Prediction

Ghimire et al. [47] proposed a self-adaptive differential evolutionary extreme learn-
ing machine (ELM) to predict daily solar radiation for solar-rich cities. For the
feature selection for the predictors of solar radiation, a swarm-based ant colony
algorithm was used. The learning algorithm used was optimized from a standard
ELM: a self-adaptive differential evolutionary extreme learning machine. This sys-
tem was compared to others used to accomplish the same task, and it performed on
par, if not more accurately for predicting solar radiation forecasts. In [62], Kilic et al.
were looking at global solar radiation prediction. They implemented a hybrid ANN
system, using an evolutionary algorithm for feature selection and to help train the
ANN. The hybrid system was compared to usual ML algorithms for the prediction
of radiation, including an ANN, SVM, and a DL model. Guijo-Rubio et al. [49] did
something similar, using an evolutionary algorithm to train and evolve an ANN to
predict solar radiation. Marzouq et al. [77] utilized a GA for the selection of critical
inputs for the ANN to predict solar radiation. This new evolutionary ANN model
outperformed usual algorithmic models for solar radiation prediction. Amiri et al.
[7] took the solar radiation prediction further, predicting on a tilted plane. The evolu-
tionary algorithm was used to find the proper topology, and the study was conducted
in two ways, assuming the satellites where the data was pulled from had the same
tilt angle, and assuming the angles could be different.

18.2.6.4 Civil Engineering

Inducing blasts is a common occurrence in rock mining and construction. Being
able to predict the vibrations of these blasts and the impact they will have on the
surroundings is key to the safety of the operation and the workers themselves. When
researching the vibrations, the goal is to measure the peak particle velocity as a
base parameter. Chen et al. [30] proposed new solutions to the problem, combining
various evolutionary algorithms with either an SVM or an ANN. A firefly algorithm,
GA, PSO algorithm, and a modified firefly algorithm were all hybridized with both
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an SVM and an ANN in two separate systems, and the results of all were compared.
The systems were all accurate at predicting peak particle velocity (PPV), with the
modified firefly algorithm support vector regression (SVR) system performing the
best. Azimi et al. [10] did something similar, focusing on using a GA to optimize
an ANN to predict blast vibrations for quarry mining. When constructing different
reinforced concrete structures, beam-column joints are an important point in the
construction, often being the first place to shear and break off. Yaseen et al. [123]
predicted the shearingof these jointswith theuseof aGAcombinedwith adeepneural
network. The GAwas used for the input selection during the modeling phase, and the
DLNNwas used for the prediction phase: to identify any structural problems. Huang
et al. [56] also predicted the shearing of steel fiber-reinforced concrete columns. Two
hybrid systems were created, combining a GA with an ANN and a PSO algorithm
with anANN. In [20], Cai et al. used aGA hybridizedwith a back-propagation neural
network to predict the capacity reinforced concrete beams had to flex in the structure.
Moayedi et al. [81] created a prediction system for ultimate bearing capacity, to see
the possible load a bearing can handle. Many systems were developed, including a
hybrid GA and ANN system, and a PSO and ANN system to predict the bearing
capacity.

18.2.6.5 Hardware Design

The optimal design for hardware and technologies is a big part of engineering and
production. Owoyele et al. [88] proposed an automated ML GA as the system for
optimizing the design of engines. Using computational fluid dynamic simulations,
the system can optimize engines with a hands-off approach. In [13], Bagheri et al.
designed a system that would optimize the design of piezoelectric energy harvesters
using simulations. The system included a NN which was trained by a GA to opti-
mize the prediction of the optimal design. Technology is becoming more and more
advanced, and in so-called advanced technologies, standard cell layouts are done
manually for the design of their nodes. Ren and Fojtik [93] proposed a system using
reinforcement learning in combination with a GA to help predict the optimal layout
of the standard cells. Materials that are for the absorption of microwaves are impor-
tant to technologies related to stealth. Huang et al. [57] proposed a largemutation GA
to optimize the honeycomb meta-structure to have absorption coverage over broad-
band microwaves as well as have successful mechanical resistance. The deployment
of new technology is also very important, trying to efficiently upgrade a system
with minimal downtime. Ko [65] designed a system using reinforcement learning
hybridized with a GA to create a system to deploy a new wireless charging tram
system optimally.
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18.3 Discussion

EMLhas experienced a significant upward trend and facilitates fundamental research
in various science and engineering fields, including physics, chemistry, astronomy,
biology, geography, and engineering. The technology has proven invaluable in the
development of machine learning algorithms that can evolve and adapt in response
to changing data and environmental conditions, enabling researchers to gain a deeper
understanding of complex systems. To illustrate the scope and impact of EML-related
research, we have included a summary of related works in Fig. 18.1. We hope this
provides a glimpse into the exciting possibilities that EML can offer to researchers
across various disciplines.

Despite the promising advancements in EML, there are still several challenges
that need to be addressed. One of the key challenges is the optimization of EML
algorithms, which requires the use of efficient search techniques to identify the best
solutions in large and complex search spaces.Another challenge is the interpretability
of EMLmodels, which can be difficult due to the complex and nonlinear relationships
between variables. Additionally, EML requires significant computational resources,
including high-performance computing and large-scale data storage, which can be
costly and difficult to maintain. Furthermore, EML models may suffer from over-
fitting or underfitting, leading to poor generalization and limited applicability in
real-world scenarios.

Challenges also represent opportunities, EML can also be applied to a wide range
of domains, including finance, business, healthcare, and others. In these domains,
EML can be used to develop predictive models that can inform decision-making and
improve efficiency. Additionally, EML can be used for optimization tasks, such as
scheduling and resource allocation, to improve performance and reduce costs. Fur-
thermore, EML can be used in combination with other advanced deep learning tech-
niques, such as transformer and diffusionmodels, to improvemodel performance and
achieve more accurate predictions. By leveraging the strengths of both approaches,
researchers can develop more robust and effective algorithms and models.

18.4 Conclusion

The combination of evolutionary computation and ML has unique advantages in
solving challenging modeling and design problems arising in diverse fields of sci-
ences and engineering. This is due to the powerful gradient-free evolutionary search
and the strong modeling capability of ML and especially deep neural network
models. In this chapter, we have shown that the EML paradigm has been widely
applied in physics, materials science, chemistry, astronomy, life sciences, geology,
and engineering, ranging from black-boxmodeling, analytical modeling, data-driven



18 Evolutionary Machine Learning in Science and Engineering 555

differential equation learning, inverse design, hyperparameter optimization, training
of deep neural network models, multi-objective optimization and design using ML
surrogate models.
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