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16In the Pipeline: Emerging Therapy 
for Acute Myeloid Leukaemia

Harinder Gill and Amber Yip

Abstract

Acute myeloid leukaemia (AML) is an aggressive, heter-
ogenous, and age-related haematological malignancy 
with dismal prognosis. Conventional therapy for AML 
consists of frontline induction therapy with cytarabine 
infusion for 7 days and administration of anthracyclines, 
most commonly daunorubicin, for 3  days (7  +  3), fol-
lowed by subsequent consolidation with chemotherapy or 
allogeneic haematopoietic stem cell transplant (HSCT) 
for high-risk disease. However, the age-related nature of 
AML implies that a significant portion of patients are 
unfit for such intensive regimens and can only be put on 
palliative treatment. Increasing emphasis is being put on 
maximizing specificities and potencies of novel agents 
while minimizing treatment-related toxicities, entailing a 
future of personalized-therapy in AML.  This chapter 
reviews recently approved agents and agents still in the 
pipeline for the treatment of AML both in the frontline 
and the relapsed/refractory setting.
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16.1  Introduction

Acute myeloid leukaemia (AML) is an aggressive, heterog-
enous, and age-related haematological malignancy with dis-
mal prognosis. Conventional therapy for AML consists of 
frontline induction therapy with cytarabine infusion for 
7 days and administration of anthracyclines, most commonly 
daunorubicin, for 3  days (7  +  3), followed by subsequent 
consolidation with chemotherapy or allogeneic haematopoi-
etic stem cell transplant (HSCT) for high-risk disease. 
However, the age-related nature of AML implies that a sig-
nificant portion of patients are unfit for such intensive regi-
mens and can only be put on palliative treatment. Although 
treatment options for AML have remained stagnant for a 
long time, exciting progress has been made during recent 
years, with the U.S. Food and Drug Administration (FDA) 
approving nine novel agents indicated for this disease 
(Table 16.1). Increasing emphasis is being put on maximiz-
ing specificities and potencies of novel agents while mini-
mizing treatment-related toxicities, entailing a future of 
personalized-therapy in AML.
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Table 16.1 Summary of recently approved agents in acute myeloid leukaemia (AML)

Agent Class
Date of 
approval Indication Registration trial

Midostaurin FLT3 inhibitor 1/4/2017 In combination with 7 + 3 in newly diagnosed FLT3-mutant 
patients ≥60 years old

CALGB- 
RATIFY

Enasidenib Mutant IDH2 
inhibitor

1/8/2017 r/r IDH2 mutant AML NCT01915498

CPX-351 Liposomal 
daunorubicin and 
cytarabine

3/8/2017 AML with MRC or t-AML NCT01696084

Gemtuzumab 
ozogamicin

Anti-CD33 ADJ 1/9/2017 CD33+ newly diagnosed or r/r AML MyloFrance 1

Ivosidenib Mutant IDH1 
inhibitor

1/7/2018 r/r IDH1 mutant AML NCT02074839

Gilteritinib FLT3 inhibitor 28/11/2018 r/r FLT3 mutant AML ADMIRAL
Glasdegib Smo inhibitor 21/11/2018 In combination with LDAC in newly diagnosed AM patients 

≥75 years old
NCT01546038

Oral azacitidine HMA 1/9/2020 Maintenance therapy in adult patients achieving CR or CRi NCT01757535
Venetoclax Bcl-2 inhibitor 16/10/2020 In combination with azacitidine, Decitabine, or LDAC for 

newly diagnosed AML in patients ≥75 years old or unfit for 
intensive induction chemotherapy

VIALE-A
VIALE-C

ADJ antibody-drug conjugate, AML acute myeloid leukaemia, Bcl-2 B-cell lymphoma 2, CR complete remission, CRi complete remission with 
incomplete hematologic recovery, FLT3 Fms-like tyrosine kinase 3, HMA hypomethylating agent, IDH1 isocitrate dehydrogenase 1, IDH2 isoci-
trate dehydrogenase 2, LDAC low-dose cytarabine, r/r relapsed or refractory, Smo smoothened

16.2  Novel Chemotherapeutic 
Formulations

16.2.1  CPX-351

CPX-351 (Vyxeos) is an FDA-approved liposomal formula-
tion of daunorubicin and cytarabine in a 5:1 molar ratio. 
While the combination of cytarabine and anthracyclines 
(7 + 3) has long been the conventional treatment for AML, 
their administration in the form of a liposomal capsule sig-
nificantly prolongs their half-life and efficacy [1].

After encouraging results in a phase I study, subsequent 
phase II and III trials were carried out [2]. In a phase II study 
comparing CPX-351 with 7 + 3  in newly diagnosed AML 
patients, remarkable clinical benefit of CPX-351 was dem-
onstrated, especially among patients with secondary AML, 
which is associated with poor prognosis [3]. In another phase 
II trial among relapsed or refractory (r/r) patients, CPX-351 
induced superior responses when compared to standard sal-
vage chemotherapy [4]. In a phase III trial, CPX-351 showed 
significantly prolonged survival compared to 7 + 3 induction 
[5]. These promising results were consistently replicated in 
subsequent trials [6, 7]. Side effects of CPX-351 are gener-
ally similar to those of 7 + 3, including myelosuppression, 
cardiotoxicity, with the exception of slower recoveries of 
neutrophil and platelet counts [3–5]. Combination of vyxeos 

with gemtuzumab ozogamicin (GO) and FLT3 inhibitors 
(quizartinib, midostaurin) also demonstrated clinical and 
preclinical efficacy respectively [8, 9].

Trials of CPX-351 as monotherapy or in combination 
with Ivosidenib, enasidenib, venetoclax, gilteritinib, 
midostaurin, quizartinib, palbociclib, glasdegib, GO, or 
fludarabine are underway (NCT04230239, NCT03988205, 
NCT03629171, NCT04668885, NCT04269213, NCT0355 
5955, NCT0404 9539, NCT04493164, NCT03825796, NCT 
04075747, NCT04209725, NCT04038437, NCT03826992, 
NCT04293562, NCT04128748, NCT03844997, NCT0 
4231851, NCT03878927, NCT03904251, NCT03672539, 
NCT02272478, NCT04425655). Studies comparing CPX- 
351 with other intensive chemotherapy regimens are also 
ongoing (NCT03897127, NCT04061239, NCT04293562, 
NCT04195945, NCT04802161).

16.3  Targeting Tyrosine Kinases

Tyrosine kinases regulate a wide range of cellular pathways 
and are crucial to signal transduction. Their aberrant activities 
can contribute to leukaemogenesis via promoting prolifera-
tion, impeding differentiation, and inhibiting apoptosis. 
Therefore, various agents have been developed against these 
kinases for the treatment of AML (Figs. 16.1, 16.2, and 16.3).
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Fig. 16.1 Downstream events of aberrant FLT3 signalling. AKT pro-
tein kinase B, ERK extracellular-signal-regulated kinase, FLT3-ITD 
FLT3 internal tandem duplication, FLT3-TKD FLT3 tyrosine kinase 
domain mutations, FLT3 Fms-like tyrosine kinase 3, MEK mitogen- 

activated protein kinase kinase, mTOR mammalian target of rapamycin 
complex, PI3K phosphoinositide 3-kinase, RAF rapidly accelerated 
fibrosarcoma, Ras rat sarcoma viral oncogene homolog, STAT5 signal 
transducer and activator of transcription 5

Abbreviations: FL, FLT3 ligand; FLT3, Fms-like tyrosine kinase 3
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quizartinib

FL

Active conformationInactive conformation

Fig. 16.2 Actions of type I 
and type II FLT3 inhibitors. 
FL FLT3 ligand, FLT3 
Fms-like tyrosine kinase 3
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Fig. 16.3 Agents targeting tyrosine kinases. AXL anexelekto, BTK 
Bruton tyrosine kinase, c-KIT cluster of differentiation 117, c-MET 
mesenchymal-epithelial transition factor, FL FLT3 ligand, FLT3 Fms- 

like tyrosine kinase 3, HGF hepatocyte growth factor, SCF stem cell 
factor, SFK Src family kinases, SYK spleen-associated tyrosine kinase

Table 16.2 Summary of the characteristics of major novel FLT3 inhibitors [10, 11]

Agent
Developmental 
status Generation Type Off-target activity Side effects

Sorafenib Phase III First II RAF, PDGFR, 
VEGFR, c-KIT, 
RET

Dermatological reactions (e.g. hand-foot-skin reaction, skin rash, 
mucositis), bleeding, cardiac events, febrile neutropenia, GI 
disturbance

Midostaurin FDA-approved First I PKC, SYK, SRC, 
c-KIT, VEGFR, 
PDGFR, AKT

Pulmonary toxicity (e.g. drug-induced pneumonitis), febrile 
neutropenia, QT prolongation, edema, bruising, GI disturbance

Sunitinib Phase II First I VEGFR, PDGFR, 
c-KIT

Dermatological reactions (e.g. hand-foot-skin reactions, erythema 
multiforme), myelosuppression, GI disturbances

Ponatinib Phase II First II RET, c-KIT, 
FGFR, PDGFR, 
BCR-ABL

Cardiovascular ischemic events, myelosuppression, febrile 
neutropenia, hepatotoxicity, skin rash, GI disturbances

Gilteritinib FDA-approved Second I AXL, ALK, LTK Febrile neutropenia, liver toxicity, GI disturbance, fatigue
Quizartinib Phase III Second II c-KIT, RET, 

PDGFR, CSF1
Nausea, febrile neutropenia, sepsis or septic shock, QT 
prolongation

Crenolanib Phase II Second I PDGFR, c-KIT Skin rash, GI disturbance, febrile neutropenia, elevation of 
transaminases

AKT protein kinase B, ALK anaplastic lymphoma kinase, AXL AXL receptor tyrosine kinase, BCR-ABL1 breakpoint cluster region-Abelson 
murine leukaemia viral oncogene homolog 1, c-KIT tyrosine-protein kinase KIT, CSF1 colony-stimulating factor 1, FDA U.S. Food and Drug 
Administration, FGFR fibroblast growth factor receptor, FLT3 Fms-like tyrosine kinase 3, GI gastrointestinal, LTK leucocyte tyrosine kinase 
receptor, PDGFR platelet-derived growth factor receptor, PKC protein kinase C, RAF rapidly accelerated fibrosarcoma, RET rearranged during 
transfection, SRC proto-oncogene tyrosine-protein kinase SRC, SYK tyrosine-protein kinase SYK, VEGFR vascular endothelial growth factor 
receptor

16.3.1  FLT3 Inhibitors

Figures 16.1, 16.2, and 16.3 and Table 16.2 summarize the 
role of FLT3 inhibitors and the major FLT3 inhibitors in 
development. Readers should refer to Chap. 12 of this title 
for further discussion.

16.3.2  c-KIT Inhibitors

c-KIT, also known as CD117, is an RTK expressed in hae-
matopoietic cells for their normal development. Upon bind-
ing of stem cell factor (SCF), c-KIT dimerizes and undergoes 
autophosphorylation, which activates downstream PI3K/
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AKT/mTOR, JAK-STAT, and Ras/RAF/MAPK pathways, 
as well as Src family kinases (SFKs) [12, 13]. The expres-
sion of c-KIT is found in 60–80% of AML and its mutation 
is especially prevalent in core binding factor (CBF) AML 
[14]. Mutations in c-KIT mainly occur in exon 8 and exon 
17, with the latter being associated with a more inferior clini-
cal outcome [12]. Aberrant activation of c-KIT results in 
increased proliferation, reduced apoptosis, and subsequent 
leukaemogenesis [12].

Dasatinib and radotinib are multi-kinase inhibitors with 
potent activity against c-KIT. These agents induced apopto-
sis in c-KIT-positive AML cell lines and showed activity in 
downregulating other leukaemogenic pathways in various 
preclinical studies [15]. Dasatinib also showed synergistic 
efficacy with navitoclax against AML cells with NUP98- 
NSD1 and FLT3-ITD [16]. Addition of dasatinib to standard 
chemotherapy and its use as single agent maintenance ther-
apy in patients with CBF AML showed favourable outcomes 
and a tolerable safety profile [17–19]. A phase III random-
ized controlled trial of chemotherapy with or without dasat-
inib in CBF AML patients is underway (NCT02013648). 
Other c-KIT inhibitors which are not actively evaluated for 
use in AML include imatinib, SU5416, and SU6668 [20, 21].

16.3.3  AXL Inhibitors

Anexelekto (AXL) is a member of the TYRO3, AXL, and 
MER (TAM) RTK family [22]. It is expressed on a multitude 
of cells and tissues and is crucial for the normal function of 
various haematopoietic cell types [22, 23]. Binding of Gas6 
to AXL induces its dimerization and subsequent activation of 
PI3K, Ras, Src, and JAK/STAT pathways, resulting in cellu-
lar proliferation and migration [22]. In AML, AXL may be 
activated via mechanisms independent of Gas6 [22]. Aberrant 
signalling of AXL also acts as a key mediator of resistance 
against FLT3 inhibitors [23].

Similar to FLT3 inhibitors, AXL inhibitors are divided 
into two types. Type I AXL inhibitors bind to the ATP- 
binding site of the active AXL receptor [22]. Bemcentinib 
(BGB324) is a highly specific, potent, and safe small mole-
cule type I inhibitor of AXL which showed efficacy against 
both FLT3-WT and FLT3-mutant AML cell lines [24, 25]. 
Due to promising results of its combination with LDAC in 
recent trials, bemcentinib has received fast track designation 
from the FDA [26, 27]. A phase II study regarding the use of 
bemcentinib in AML is currently underway (NCT03824080). 
Other type I inhibitors include gilteritinib and sunitinib. Type 
II inhibitors bind to the AXL receptor in its inactive form 
[22]. Among them, merestinib (LY2801653) is a potent and 
orally available inhibitor of AXL, FLT3, MNK, MET/RON, 
and other oncoproteins [28, 29]. It was proven to be safe in 

r/r AML patients in a phase I clinical trial [30]. Other novel 
AXL inhibitors with impressive preclinical efficacies against 
AML cell lines include the AXL/Mer dual inhibitors ONO- 
9330547 and ONO-7475, with ONO-7475 currently in a 
phase I/II trial as monotherapy or in combination with vene-
toclax (NCT03176277) [31–33].

16.3.4  c-MET Inhibitors

The MET RTK family consists of two members, c-Met and 
RON.  Upon binding of their respective ligands (HGF for 
c-Met, MSP for RON), their tyrosine kinase domain acti-
vates and initiates signal transduction via PI3K, AKT, 
Β-catenin, Ras/MAPK, and JAK/STAT pathways [34]. 
Evidence of their expression in AML blasts led to studies 
evaluating their potential roles as therapeutic targets [34].

SU11274 is a c-Met inhibitor which demonstrated anti- 
leukaemic efficacy in preclinical studies [34–36]. Crizotinib 
also exhibited activity against AML cells, but seemed to 
induce resistance via a compensatory increase in HGF 
expression [35].

16.3.5  SYK Inhibitors

Spleen-associated tyrosine kinase (SYK) is a cytoplasmic 
tyrosine kinase with diverse biological activities, including 
roles in adaptive immune receptors signalling [37]. In AML, 
its increased expression is shown to be associated with infe-
rior clinical outcomes [38]. Upon activation by FLT3-ITD or 
other upstream pathways, SYK undergoes phosphorylation 
and initiates a series of downstream signalling pathways, 
ultimately contributing to leukaemogenesis [39].

Preclinical studies with R406, an active metabolite of the 
SYK inhibitor fostamatinib, showed efficacy against AML 
cell lines by inducing differentiation and inhibiting prolifera-
tion [39]. Entospletinib (GS-9973) showed efficacy as mono-
therapy as well as in combination with chemotherapy in two 
early phase trials [40, 41]. TAK-659, a dual inhibitor of SYK 
and FLT3, also exhibited anti-leukemic activity in murine 
models and showed promising efficacy and safety profile in 
a phase Ib/II study in r/r AML patients [42, 43].

16.3.6  BTK Inhibitors

Bruton tyrosine kinase (BTK) is a member of the Tec family 
kinases [44]. This family of non-receptor, cytoplasmic 
kinases are mainly expressed on the surfaces of haematopoi-
etic stem cells (HSCs) and other haematopoietic cells [44]. 
BTK, in particular, also plays a critical role in the develop-

16 In the Pipeline: Emerging Therapy for Acute Myeloid Leukaemia
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ment of B lymphocytes and is considered to be a key media-
tor in B-cell neoplasms [45, 46]. In AML, aberrant signalling 
of SFK, SYK, and PI3K leads to BTK activation and down-
stream activation of NFKB and other kinase pathways, 
resulting in leukaemogenesis. Emerging evidence of high 
BTK expression and constitutive activation in AML cells has 
led to interests on its potential role as a therapeutic target 
[47, 48]. In addition, FLT3-ITD may act as one of the 
upstream events leading to BTK autophosphorylation, 
implying the potential of BTK inhibitors for treating FLT3- 
ITD- positive AML [47].

Ibrutinib (CI-32765) is an irreversible inhibitor of BTK. In 
preclinical studies, it showed efficacy against AML cell lines 
by inhibiting downstream NFKB signalling, SDF1/CXCR4- 
mediated migration, and SDF1-induced activation of the 
AKT/MAPK pathway [48, 49]. Mutations in FLT3, NPM1, 
and DNMT3A were shown to be associated with increased 
sensitivity to ibrutinib [50]. In leukaemic blasts obtained 
from c-KIT-positive AML patients, ibrutinib also inhibited 
activation of BTK by c-KIT and their adhesion to bone mar-
row stromal cells [51]. Furthermore, specific inhibition of 
FLT3-ITD by ibrutinib in leukaemic cell lines has been 
reported, supporting the hypothesis that BTK inhibition may 
be efficacious against FLT3-ITD-positive AML [52]. Its 
combination with the recently approved Bcl-2 inhibitor, 
venetoclax, also showed promising results in preclinical 
studies [53]. However, a phase II clinical trial with ibrutinib 
monotherapy or in combination of azacitidine or cytarabine 
showed limited efficacy [54].

CG-806 is a dual FLT3/BTK inhibitor with remarkable 
activity and safety against AML cell lines and murine mod-
els [55]. This agent is currently evaluated in a phase I clinical 
trial (NCT04477291). Other novel BTK inhibitors with 
promising preclinical results include ARQ351 and abiver-
tinib (AC0010) [56–58].

16.3.7  SFK Inhibitors

The non-receptor Src family of kinases include LYN, HCK, 
BLK, FGR, FYN, LCK, SRC, and YES [59]. In AML cells, 
FYN, LYN, HCK, and FGR are commonly expressed. 
Aberrant upstream signalling of FLT3, c-KIT, and other 
RTKs result in their activation, subsequently causing STAT5, 
Ras, and PI3K induction [59].

Bosutinib is an SFK inhibitor primarily used in the treat-
ment of chronic myeloid leukaemia (CML). Recently, stud-
ies showed that its combination with all-trans retinoic acid 
(ATRA) enhances sensitivity of AML cell lines to ATRA, 
thus promoting differentiation of AML blasts [60]. It will be 
evaluated in a subsequent phase Ib trial in combination with 
glasdegib (NCT04655391).

RK-20449 is a selective HCK inhibitor which showed 
efficacy against chemotherapy-resistant AML cells in murine 

models [61]. An FGR inhibitor, TL02–59, also showed anti- 
leukaemic activity in a preclinical study [62]. Other SFK 
inhibitors with impressive preclinical evidences include PP2, 
dasatinib, ponatinib, PD180970, and SKI-606 [59, 63]. 
Although SAR103168 showed efficacy against AML cell 
lines in preclinical studies, results from a subsequent phase I 
trial were disappointing [64, 65].

16.4  Targeting the Hedgehog Pathway

The hedgehog (Hh) pathway is an essential mediator of 
embryonic development. In the canonical Hh pathway, Hh 
ligand binds to the transmembrane protein Patched (PTCH) 
to alleviate its inhibition on Smoothened (Smo), another 
transmembrane protein (Fig.  16.4). Smo then activates 
downstream glioma transcription factors (GLI) to stimulate 
gene transcription and proliferation [66]. In the non- 
canonical Hh pathway, activation of GLI is induced by other 
upstream pathways instead of Smo activation, such as PI3K/
AKT/mTOR, RAS/RAF/MEK/ERK, protein kinase C 
(PKC), and many others [67]. In AML, the Hh pathway and 
oncogenic GLI activity may be constitutively activated, 
which is associated with radio- and chemo-resistance as 
well as poor prognosis [68–70]. Notably, crosstalk between 
the Hh pathway and FLT3-ITD has been discovered, 
prompting contemplations on its therapeutic role in FLT3-
mutant AML [67].

16.4.1  Smo Inhibitors

Inhibition of Smo is the most widely studied among all 
potential therapeutic targets in the Hh pathway. Glasdegib 
(PF-04449913) is an FDA-approved selective Smo inhibi-
tor. After encouraging results from preclinical studies, glas-
degib was further studied in phase I clinical trials, where it 
was proven to be effective and tolerable in AML patients 
[71–73]. Subsequent trials investigating combinations of 
glasdegib with LDAC, decitabine, or standard chemother-
apy all demonstrated clinical effectiveness [74–77]. 
Notably, addition of glasdegib to LDAC prolonged survival 
by nearly twofold compared to single agent LDAC, but did 
not increase toxicity in a multi-centre randomized phase II 
trial [76, 77]. Major side effects of glasdegib include febrile 
neutropenia, anaemia, and gastrointestinal disturbances 
[72–77]. Future trials include combination therapies with 
chemotherapy, LDAC, CPX-351, decitabine, azacitidine, 
GO, gilteritinib, ivosidenib, enasidenib, venetoclax, bosu-
tinib, avelumab, and OX40 (NCT0341617, NCT02038777, 
NCT04231851, NCT04051996, NCT02367456, 
NCT04093505, NCT04655391, NCT03390296).

Sonidegib (LDE225) is another Smo inhibitor which 
demonstrated efficacy against doxorubicin-resistant AML 
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Fig. 16.4 Agents targeting the hedgehog pathway. AKT protein kinase 
B, ERK mitogen-activated protein kinase, GLI glioma transcription fac-
tors, Hh hedgehog, MEK mitogen-activated protein kinase kinase, 

mTOR mammalian target of rapamycin, PI3K phosphoinositide 
3-kinase, PTCH patched, RAF rapidly accelerated fibrosarcoma, Ras rat 
sarcoma, Smo smoothened

cell lines and exhibited synergism with azacitidine in pre-
clinical studies [78]. Its single agent therapy and combina-
tion with azacitidine or decitabine have been studied in phase 
I and phase II trials (NCT02129101, NCT01826214) [79].

Vismodegib (GDC-0449) also showed anti-leukaemic 
activity in preclinical studies, but had limited efficacy as 
monotherapy in a subsequent trial [80, 81]. Similarly, another 
trial of its use in combination with cytarabine was terminated 
due to the minimal responses observed among patients 
(NCT01880437).

16.4.2  GLI Inhibitors

Given that GLI activation can occur independently of Smo, 
direct inhibition of GLI is an attractive strategy against resis-
tance to Smo inhibitors [67]. GANT61 is a GLI inhibitor 
which inhibited proliferation and induced apoptosis of AML 
in preclinical studies [82]. Its combination with sunitinib 
also prolonged survival of FLT3-mutant mice [83]. These 
optimistic results warrant clinical studies for GLI inhibitors 
in AML patients.
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16.5  Targeting Apoptotic Pathways

16.5.1  BCL-2 Family Inhibitors

The anti-apoptotic B-cell lymphoma 2 (BCL-2) family pre-
vents cellular apoptosis via the inhibition of proapoptotic 
proteins, such as BAX and BAK.  Examples of members 
include Bcl-2 (B-cell lymphoma 2), myeloid cell leukaemia 
sequence 1 (MCL-1), and B-cell lymphoma-extra-large 
(Bcl-xL) [84]. Their actions are counteracted by the pro- 
apoptotic subfamily of BCL-2 (Fig.  16.5). In AML, their 
overexpression has been identified in multiple studies, which 
implies their influence on impairing apoptosis and promot-
ing survival of leukemic cells [84, 85].

16.5.2  Bcl-2 Inhibitors

Bcl-2 inhibitors exert anti-leukaemic activity by mimicking 
the BH3 domain of the pro-apoptotic BCL-2 proteins and 
freeing them from the anti-apoptotic BCL-2 protein, which 
induces apoptosis [85].

Despite unsatisfactory results in early trials with oblim-
ersen and obatoclax, efforts on investigation of Bcl-2 inhibi-
tion were persistent, which led to the development of 
venetoclax [85]. Venetoclax (ABT-199) is an FDA-approved, 
potent, and selective Bcl-2 inhibitor. Venetoclax was proven 
to be effective and tolerable in preclinical and clinical stud-
ies, both as monotherapy and in combination with HMAs 
(azacitidine, decitabine) or cytarabine, both in newly diag-

Anti-apoptotic BCL-2 family
e.g. Bcl-2, BCL-xL, MCL-1

BCL-2 family apoptotic inititors
e.g. BIM, PUMA, NOXA

BCL-2 family apoptotic effectors
e.g. BAX, BAK, BOK

Cytochrome C

Apoptosis

Bcl-2 inhibitors e.g. venetoclax
Bcl-2/Bcl-xL inhibitors e.g. navitoclax

MCL-1 inhibitors e.g. AZD5991,
AMG 176, AMG 397

Apoptosome

TRAIL
TRAIL inducers

e.g. ONC201, ONC212

DR4/5

FADD

Pro-caspase 8

tBID

BID

Caspase 8

Caspase 9

Caspase 3

Fig. 16.5 Agents targeting apoptotic pathways. BAK Bcl-2-antagonist/
killer 1, BAX apoptosis regulator BAX, Bcl-2, B-cell lymphoma 2, 
Bcl-xL B-cell lymphoma extra-large, BIM Bcl-2-like protein 11, BOK 
Bcl-2-related ovarian killer, DR4/5 death receptor 4 or 5, MCL-1 

myeloid cell leukaemia sequence 1, NOXA Phorbol-12-myristate-13-
acetate- induced protein 1, PUMA p53 upregulated modulator of apop-
tosis, tBID truncated BID, TRAIL TNF-related apoptosis-inducing 
ligand
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nosed and r/r patients [86–95]. Notably, combination of 
venetoclax with HMAs induced remarkable responses in a 
wide range of patients, including those with high-risk cyto-
genetic features and mutant-TP53 [95, 96]. Preclinical stud-
ies also elucidated their efficacies in targeting LSCs via 
inhibition of complex 2 of the ETC [97].

Full approval of venetoclax by the FDA was prompted by 
the phase III randomized placebo-controlled VIALE-A and 
VIALE-C trials, which evaluated the use of venetoclax in 
combination with azacitidine and LDAC, respectively. Both 
trials illustrated improvements of survival outcomes and 
remission rates upon the addition of venetoclax, along with 

tolerable increases in haematological toxicities [98, 99]. 
However, it should be noted that these benefits did not reach 
statistical significance in the VIALE-C study. Major side 
effects of venetoclax include febrile neutropenia and throm-
bocytopenia [98, 99].

Finally, multiple novel combinations with venetoclax are 
also being studied to overcome resistance. Among them, 
agents downregulating activity of MCL-1 are intensively 
evaluated owing to associations between MCL-1 upregula-
tion and venetoclax resistance [85]. Multiple trials of 
 venetoclax as monotherapy or in combination with other 
agents are ongoing (Table 16.3).

Table 16.3 Venetoclax in future clinical studies as monotherapy or in combination with other agents

Class Combination
Developmental 
status Ongoing/future trials

Bcl-2 inhibitor Venetoclax monotherapy Phase 2 NCT04253314, NCT04613622
Venetoclax with azacitidine
HMA Azacitidine FDA-approved NCT03466294, NCT04267081, NCT0416188, NCT04589728, 

NCT0299352, NCT04102020, NCT03941964, NCT03573024, 
NCT02203773, NCT04454580, NCT04062266, NCT04128501, 
NCT03236857

Azacitidine vs. induction 
chemotherapy

Phase 2 NCT04801797

Venetoclax with azacitidine and other agents
RIT Lintuzumab-Ac225 Phase 1/2 NCT03932318
Anti-CD123 Tagraxofusp (SL-401) Phase 1 NCT03113643
Anti-CD47 Magrolimab Phase 3 NCT04435691, NCT04778397
Chemotherapy Cytarabine, mitoxantrone Phase 1/2 NCT04330820

LDAC, cladribine Phase 2 NCT03586609
FLT3 inhibitor Gilteritinib Phase 1/2 NCT04140487
TIM3 
inhibitor

MGB453 Phase 2 NCT04150029

NAE inhibitor Pevonedistat
(NEDD8-activating 
enzyme (NAE) inhibitor)

Phase 2 NCT04172844, NCT04266795, NCT03862157

Anti-PD-1 Pembrolizumab Phase 2 NCT04284787
MEK inhibitor Trametinib Phase 2 NCT04487106
LSD1 
inhibitor

CC-90011 Phase 1/2 NCT04748848

Multiple OX40, glasdegib, 
gemtuzumab ozogamicin

Phase 1/2 NCT03390296

Venetoclax with decitabine
HMA Decitabine PDA- 

approved
NCT04476199, NCT04589728, NCT03941964, 
NCT04763928, NCT03844815, NCT02203773, 
NCT04454580, NCT03404193

Venetoclax with decitabine and other agents
Grb2 anti-sense 
oligodeoxynucleotide

BP1001 Phase 2 NCT02781883

STAT inhibitor OPB-111077 Phase 1 NCT03063944
FLT3 inhibitor Quizartinib Phase 1/2 NCT03661307
FLT3 inhibitor Ponatinib Phase 2 NCT04188405
Venetoclax with other agents

(continued)
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Table 16.3 (continued)

Chemotherapy Intensive multi-agent chemotherapy Phase 2 NCT03709758, NCT03194932, NCT04628026, 
NCT03214562, NCT04797767, NCT03455504, 
NCT02115295, NCT03613532, NCT03214562, 
NCT02250937

CPX-351 Phase 2 NCT04038437, NCT03629171, NCT03826992
Cytarabine/LDAC FDA- 

approved
NCT04509622, NCT02287233

Sapacitabine Phase 1/2 NCT01211457
Pegcrisantaspase Phase 1 NCT04666649

HMA, IDH inhibitor Oral decitabine/cedazuridine 
(ASTX727) ± Ivosidenib/Enasidenib

Phase 2 NCT04657081, NCT04746235, NCT04774393

Ivosidenib ± azacitidine Phase 1/2 NCT03471260
Enasidenib ± azacitidine Phase 1/2 NCT04092179

FLT3 inhibitor Gilteritinib Phase 1 NCT03625505
Quizartinib ± azacitidine/LDAC Phase 1/2 NCT03735875, NCT04687761

JAK inhibitor Ruxolitinib Phase 1 NCT03874052
Anti-CD33 Gemtuzumab ozogamicin Phase 1 NCT04070768
Anti-CD47 ALX148 Phase 1/2 NCT04755244
Anti-CD123 IMGN632 ± azacitidine Phase 1/2 NCT04086264
RIT Lintuzumab-Ac225 Phase 1/2 NCT03867682
CDK inhibitor CYC065 Phase 1 NCT04017546

Dinaciclib (MK7965) Phase 1 NCT03484520
Alvocidib Phase 2 NCT03969420

MDM2 inhibitor HDM201 Phase 1 NCT03940352
Milademetan tosylate + LDAC Phase 1/2 NCT03634228

MCL-1 inhibitor S64315 Phase 1 NCT03672695
AMG 176 Phase 1 NCT03797261
AZD5991 Phase 1/2 NCT03218683

XPO1 inhibitor Selinexor Phase 1 NCT03955783
AURKB inhibitor Barasertib ± azacitidine Phase 1/2 NCT03217838
Statin Pitavastatin Phase 1 NCT04512105
Salicylate Salsalate + azacitidine/decitabine Phase 2 NCT04146038

AURKB aurora kinase B, Bcl-2 B-cell lymphoma 2, CD123 cluster of differentiation 123, CD33 cluster of differentiation 33, CD47 cluster of dif-
ferentiation 47, CDK cyclin-dependent kinase, Grb2 growth factor receptor-bound protein 2, HMA hypomethylating agent, IDH isocitrate dehy-
drogenase, JAK janus kinase, LDAC low-dose cytarabine, LSD1 lysine specific demethylase 1, MCL-1 myeloid cell leukaemia 1, MDM2 mouse 
double minute 2, MEK mitogen-activated protein kinase kinase, NAE neural precursor cell expressed, developmentally downregulated 8 (NEDD8)-
activating enzyme (NAE); PD-1 programmed death 1, RIT radioimmunotherapy, STAT signal transducer and activator of transcription, TIM3 T cell 
immunoglobulin and mucin domain-containing protein 3, XPO1 exportin 1

Other Bcl-2 inhibitors currently engaged in clinical tri-
als include VOB560, S 055746 (BCL201), S6548, and 
APG2575 (NCT04702425, NCT02920541, NCT03755154, 
NCT04501120).

16.5.2.1  Bcl-2/Bcl-xL Dual Inhibitors
ABT-737 demonstrated promising efficacy against AML cell 
lines in preclinical studies, but its clinical development has 
been limited by an unfavourable pharmacokinetic profile 
[85, 100]. A derivative of this agent, navitoclax (ABT-263), 
possesses superior pharmacokinetic properties, though its 
clinical investigation is still not of interest due to the major 
adverse effect of thrombocytopenia [85].

16.5.2.2  MCL-1 Inhibitors
MCL-1 is another attractive therapeutic target in AML due to 
its overexpression in AML and association with venetoclax- 
resistance. AZD5991 is an MCL-1 inhibitor which demon-
strated synergistic actions with bortezomib against AML 
xenograft in a murine study and is currently evaluated in 
combination with venetoclax in r/r AML patients in a phase 
I/Ib/IIa trial (NCT03218683) [101]. AMG 176 and AM-8621 
both showed single agent efficacy and synergistic activity 
with venetoclax, though only AMG 176 is selected for fur-
ther clinical investigations as monotherapy and in combina-
tion with azacitidine or venetoclax given its superior 
pharmacokinetic profile (NCT02675452, NCT03797261) 
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[102, 103]. Another agent, AMG 397, also showed favour-
able preclinical results and will be evaluated in r/r AML 
patients in a phase I trial (NCT03465540) [104]. In addition, 
S63845 demonstrated excellent anti-leukaemic efficacy as 
single agent and in combination with venetoclax, daunorubi-
cin, or S55746 (Bcl-2 inhibitor) in preclinical studies [105–
107]. A related agent, S64315, has been evaluated in AML 
patients in a phase I trial and will undergo further testing in 
combination with azacitidine, venetoclax, or VOB560 
(NCT02979366, NCT04629443, NCT03672695, 
NCT04702425). Other MCL-1 inhibitors with preclinical 
efficacies against AML include Compound 42, VU661013, 
MIMI, and Cardone compound 9 [108–111].

16.5.3  TRAIL Inducers

TNF-related apoptosis-inducing ligand (TRAIL) induces 
p53-independent apoptosis upon binding to its cell surface 
receptors, namely death receptors (DR) 4 and 5 [112]. 
Imipridone compounds have been found to promote TRAIL 
transcription and expression, subsequently inducing apopto-
sis. Among them, ONC201 demonstrated potent anti- 
leukaemic effect against AML cells and LSCs, both as 

monotherapy and in combination with cytarabine or azaciti-
dine [113–115]. Interestingly, its therapeutic activity relies 
on both the induction of TRAIL activity and stimulation of 
an integrated stress response (ISR) [113–115]. It is currently 
evaluated as monotherapy or in combination with LDAC, 
and as single agent post-HSCT maintenance in AML patients 
in phase I/II trials (NCT02392572, NCT03932643). 
ONC212, a more potent derivative of ONC201, exhibited 
single agent activity and synergism with venetoclax against 
AML cell lines and murine models [116, 117].

16.6  Targeting the TP53 Pathway

TP53 encodes the tumour suppressor p53 and is among the 
most commonly mutated genes in all human malignancies 
[118]. WT p53 promotes cell cycle arrest, inhibits prolifera-
tion, and induces cellular apoptosis upon cellular stress 
[119]. Its activity is counteracted by mouse double minute 2 
(MDM2), an E3 ligase which induces proteasomal degrada-
tion of p53 with the aid of MDM4 (Fig. 16.6). In AML, TP53 
mutations are associated with resistance to chemotherapeutic 
agents and dismal prognosis, which warrants the develop-
ment of novel targeted therapies against this entity [120].

Apoptosis

GSHMQ

ROS

Loss of tumour
suppressor functions

Degradation

ATO
Reactivation

ATO

Cell cycle arrest

MDM2

WT p53

ApoptosisCell cycle arrest

MDM2 inhibitors
e.g. idasunutlin, AMG 232,

siremadlin

mut-p53 mut-p53

Mut TP53 inhibitors
e.g. APR-246 , PRIMA-1

Conversion into
active form

Fig. 16.6 Agents targeting the TP53 pathway. ATO arsenic trioxide, GSH glutathione, MDM2 mouse double minute 2, MQ methylene quinuclidi-
none, mut-p53 mutant p53, ROS reactive oxygen species, WT wild type
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16.6.1  Mutant TP53 Inhibitors

APR-246, a methylated analogue of p53 reactivation and 
induction of massive apoptosis (PRIMA-1), is a pro-drug of 
methylene quinuclidinone. Upon conversion into its active 
form, APR-246 restores the active conformation of p53 and 
its ability to induce apoptosis and cell cycle arrest in leuke-
mic cells [120, 121]. APR0246 can also exert anti-tumour 
effect in a p53-independent manner via depletion of anti- 
oxidants and induction of oxidative stress [122]. Synergism 
with azacitidine in inducing G0/G1 cell cycle arrest, apopto-
sis, and downregulation of FLT3 signalling was also reported 
[123]. This agent demonstrated remarkable clinical efficacy 
in combination with azacitidine in TP53-mutant AML 
patients in an ongoing phase 1b/2 study [124] and is being 
further investigated in other trials (NCT03072043, 
NCT03931291).

Arsenic trioxide (ATO), an agent primarily used for the 
treatment of acute promyelocytic leukaemia, also demon-
strated ability to induce proteasomal degradation of mutant 
p53 and restore normal function of WT p53 [125, 126]. Its 
combination with ascorbic acid selectively induced oxidative 
stress and apoptosis in TP53-mutant leukemic cells in a 
recent study [127]. In addition, this agent exhibited activity 
against NPM1-mutant AML cells by inducing mutant protein 
degradation in multiple studies [128–130]. The use of ATO 
as single agent and in combination with decitabine or all- 
trans- retinoic-acid (ATRA) is currently explored in patients 
with TP53 or NPM1 mutations in a number of clinical stud-
ies (NCT04689815, NCT03855371, NCT03031249).

16.6.2  MDM2 Inhibitors

Increased activity of MDM2 is associated with reduced p53 
activity [118]. Therefore, inhibition of binding between 
MDM2 and p53 prevents degradation of p53 and restores its 
tumour suppressor functions [131]. Nutlins are the earliest 
selective inhibitors of MDM2 to be discovered, with nutlin 3 
being widely used in preclinical studies investigating effects 
of MDM2 inhibition [131]. A small molecule MDM2 inhibi-
tor, RG7112, demonstrated anti-leukaemic efficacy as mono-
therapy and in combination with cytarabine in AML patients 
[132, 133]. Another agent, idasanutlin (RG7388), is a potent, 
selective, and orally available second generation MDM2 
inhibitor. Clinical studies of this agent as monotherapy and 
in combination with cytarabine had impressive responses. 
This agent was generally tolerable with gastrointestinal tox-
icity as a significant side effect [134]. In addition, idasanutlin 
exhibited synergistic activity with venetoclax in a preclinical 
study, which led to the initiation of a phase 1/1b trial with 
favourable results [135, 136]. Combination of idasanutlin 

with venetoclax or chemotherapy will be further evaluated in 
a phase 1/2 clinical trial (NCT04029688). Synergism 
between idasanutlin and XPO inhibitors (selinexor, elt-
anexor) was also discovered in a preclinical study [137].

Disappointingly, RO6839921, the pegylated prodrug of 
idasanutlin, showed inferior effectiveness compared to idasa-
nutlin in a recent study and will not undergo further clinical 
development [138].

Another MDM2 inhibitor, AMG 232 (KRT232), showed 
modest clinical activity in combination with trametinib, a 
MEK inhibitor. This combination regimen was tolerable and 
common adverse effects include nausea, gastrointestinal dis-
turbances, and poor appetite [139]. This agent will be tested 
in combination with cytarabine and venetoclax; cytarabine; 
decitabine; or with TL-895 (TKI) in subsequent trials 
(NCT04190550, NCT04113616, NCT04669067).

Siremadlin (HDM201) showed promising activity in a 
phase I trial with cytopenias and tumour lysis syndrome as 
the most significant side effects. It will undergo evaluation 
with midostaurin in r/r patients with TP53 and FLT3 muta-
tions, as well as with MBG453 (TIM3 inhibitor) or veneto-
clax in AML patients (NCT04496999, NCT03940352) 
[140]. Another MDM2 inhibitor, Milademetan (DS-3032b), 
has been evaluated as monotherapy in a phase 1 trial and is 
currently evaluated in combination with azacitidine, or 
LDAC with or without venetoclax (NCT03671564, 
NCT02319369, NCT03634228). Finally, APG-115 is cur-
rently evaluated with azacitidine or cytarabine in a phase 1 
trial (NCT04275518).

16.7  Targeting the PI3K/AKT/mTOR 
Pathway

The phosphoinositide 3-kinase (PI3K)-Protein kinase B 
(AKT)-mammalian target of rapamycin (mTOR) pathway is 
crucial to cellular metabolism and can be activated by a myr-
iad of upstream pathways [141]. In AML, upregulation of 
this pathway supports leukaemic cell activities and can occur 
as a result of aberrant upstream tyrosine kinases signalling or 
constitutive activation [141]. Unfortunately, increased activ-
ity of this pathway seems to be associated with decreased 
survival [141]. Thus, pharmacological inhibition of this 
pathway is a logical and attractive novel strategy in AML 
(Fig. 16.7).

Although PI3K/AKT/mTOR inhibition demonstrated 
anti-leukaemic efficacies in preclinical studies, these results 
did not translate into meaningful clinical benefits [141]. 
mTORC1 inhibitors, including sirolimus, everolimus 
(RAD001), deferolimus (AP23573, MK-8669), and temsiro-
limus (CCI-779), have been tested in multiple clinical trials 
as monotherapies or in combination with chemotherapy regi-
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Fig. 16.7 Agents targeting the PI3K/AKT/mTOR pathway. AKT protein kinase B, mTOR mammalian target of rapamycin, PDK 
3- phosphoinositide-dependent protein kinase-1, PI3K phosphoinositide 3-kinase, TSC1 tuberous sclerosis complex 1, TSC2 tuberous sclerosis 
complex 2

mens among AML patients with mostly limited success 
[142–147]. Although dual inhibition of PI3K and mTORC1 
was proposed as a mechanism against resistance to mTORC1 
inhibitors [148], two dual PI3K/mTOR inhibitors, gedatolisib 
(PF-05212384) and BEZ235, did not improve patient sur-
vival as single-agent and as an adjunct to chemotherapy, 
respectively [149, 150]. Other strategies to overcome resis-
tance, such as dual mTORC1/mTORC2 inhibition, are being 
explored for the treatment of AML [148].

16.8  Targeting Metabolic Pathways

Mitochondrial activity is fundamental to supporting cellu-
lar metabolisms of almost all types of body cells. This car-
ries paramount significance for the treatment of AML due 
to the presence of mitochondrial abnormalities, which can 
be exploited for selective AML cells targeting [151] 

(Fig. 16.8). In addition, other aberrant metabolic pathways 
discovered in LSCs are also being explored as targets for 
LSC eradication [151].

16.8.1  IDH1/2 Inhibitors

This role of IDH1/2 inhibition and development of IDH1/2 
inhibitors are further discussed in Chap. 11.

16.8.2  Oxidative Phosphorylation Inhibitors

Leukaemic stem cells (LSCs) reply on oxidative phosphory-
lation (OXPHOS) for their metabolism rather than anaerobic 
glycolysis, which is the predominant metabolic pathway in 
normal HSCs [152]. Since integrity of the mitochondrial 
electron transport chain (ETC) is essential for OXPHOS, its 
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Fig. 16.8 Agents targeting metabolic pathways. 2-HG 2-hydroxyglu-
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inhibition can disrupt metabolic activities of LSCs. IACS- 
010759, an inhibitor of complex 1 of the ETC, demonstrated 
selective anti-leukemic activity as monotherapy and syner-
gism with venetoclax and vinorelbine, a microtubule desta-
bilizer, against AML cells and xenograft models while 
sparing normal haematopoietic cells [153–155]. Compared 
to its predecessor BAY 87–2243, IACS-010759 also has a 
superior safety profile [152]. It is currently being studied in 
r/r AML patients in a phase I trial (NCT02882321). Another 
ETC complex 1 inhibitor, mubritinib (TAK-165), also exhib-
ited activity against AML cells in a preclinical study [156].

16.8.3  Fatty Acid Oxidation Inhibitors

Fatty acid oxidation (FAO) generates acetyl coenzyme A 
(Acetyl-CoA) for the TCA cycle, and ultimately, OXPHOS 
[152]. The rate limiting step in FAO is catalysed by carnitine 
palmitoyl transferase 1a (CPT1a), thus, inhibition of this 
enzyme selectively impedes metabolism of leukaemic stem 
cells [152]. ST1326 is a CPT1a inhibitor which induced 
growth arrest, mitochondrial disruption, and apoptosis in 
various leukaemic cell lines, with the highest activity towards 
AML cells [157].
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16.9  Targeting the Proteasome

The proteasome is a multimeric protein complex which 
mediates degradation of ubiquitinated proteins (Fig. 16.9). It 
controls a wide range of cellular activities, including cell 
cycle progression and survival [158]. Aberrant activities of 
the proteasome contribute to leukaemogenesis through vari-
ous mechanisms, such as the activation of NF-κB signalling 
via degradation of its regulatory protein IκBα. Inhibition of 
the proteasome attenuates these pathways and induces 
autophagy of abnormal proteins, such as FLT3-ITD [158].

16.9.1  Proteasome Inhibitors

Bortezomib inhibits the 26S subunit of proteasome complex 
2 [159]. This agent has been shown to exert anti-tumour 
activity via stabilization of p53, p27, IκBα, pro-apoptotic 
proteins BID and BAX, and other signalling proteins [159]. 
After demonstrating anti-leukaemic activity in preclinical 

studies, it was tested in AML patients in a number of clinical 
trials as monotherapy and in combination with other agents, 
including chemotherapy, hypomethylating agents, and 
HDAC inhibitors [158, 160]. Although it was minimally 
effective as a single agent, its combination regimens success-
fully induced remissions in varying portions of patients, with 
the highest response rates when added to intensive chemo-
therapy. Although bortezomib was generally tolerable, the 
risks of bortezomib-related peripheral neuropathy and poten-
tially, pulmonary toxicity, are concerning [158, 160]. Other 
side effects of this agent include febrile neutropenia, nausea, 
and gastrointestinal disturbances [158, 160]. A phase 2 trial 
evaluating its role as a chemo-sensitizing agent is underway 
(NCT04173585).

16.9.2  NAE Inhibitors

Neural precursor cell expressed, developmentally downregu-
lated 8 (NEDD8)-activating enzyme (NAE) promotes conju-
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Fig. 16.9 Agents targeting the proteasome. BAX apoptosis regulator 
BAX, BID BH3 interacting-domain death agonist, IκB α inhibitor of 
NF-κB alpha, NAE neural precursor cell expressed, developmentally 

downregulated 8 activating enzyme, NEDD8 neural precursor cell 
expressed, developmentally downregulated 8, Ub ubiquitin, UBC12 
ubiquitin-conjugating enzyme 12
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gation of NEDD8 to proteins, which results in their 
ubiquitination by Cullin-RING E3 ubiquitin ligase (CRL) 
and subsequent proteasomal degradation [161, 162].

Pevonedistat (MLN4924) is a first-in-class small molecule 
inhibitor of NAE.  In preclinical studies, it downregulated 
NF-κB signalling, triggered oxidative stress, and caused 
apoptosis in AML cells [161, 162]. In view of its synergistic 
action with belinostat in inducing DNA SSBs and apoptosis 
in AML cells [163], this combination regimen will be tested 
in a phase I study in r/r AML patients (NCT03772925). The 
combination of pevonedistat and venetoclax also showed syn-
ergism in a preclinical model and yielded promising prelimi-
nary results in a phase I/II study [164, 165], prompting other 
phase I to III trials regarding this regimen (NCT04172844, 
NCT04266795, NCT03862157). Synergism between pevone-
distat and LSD1 inhibitors was also demonstrated in another 
murine study [166]. These optimistic results paved way to 
phase I and randomized phase II trials evaluating the combi-
nation of pevonedistat and azacitidine, where it was effective 
and provided superior survival over azacitidine monotherapy 
along with a favourable safety profile [167, 168]. Common 
side effects of this agent include fever, peripheral edema, dys-
pnea, febrile neutropenia, nausea, gastrointestinal distur-
bances, and transaminitis. Pevonedistat will be evaluated in 
combination with LDAC (NCT03459859), cytarabine, and 
idarubicin (NCT03330821), HMAs (NCT04712942, 
NCT04090736, NCT03009240).

16.10  Targeting Nuclear Transport

16.10.1  XPO1 Inhibitors

Exportin 1 (XPO1), or chromosome maintenance protein 
1 (CRM1), is a nuclear exporter responsible for the export 
of substances from the nucleus [169]. Aberrant activity of 
XPO1 contributes to the pathogenesis of AML via shut-
tling tumour suppressors, such as NPM1 and p53, into the 
cytoplasm, which perturbs their functions [169] 
(Fig.  16.10). Upregulation of XPO1 is also associated 
with FLT3 mutations and confers inferior prognosis in 
AML [169].

Small molecule inhibitors of XPO1, known as selective 
inhibitors of nuclear export (SINE) or KPT-SINE, have 
diverse anti-leukaemic functions. These orally available 
agents irreversibly bind to the cysteine528 residue of XPO1 
and alter its conformation, preventing export of tumour sup-
pressors. They also induce differentiation via upregulation of 
the myeloid differentiation marker CD11b and downregulate 
WT and mutant FLT3 as well as c-KIT [169]. In addition, 
their strong activity against NPM1-mutant blasts is high-
lighted by a lower IC50 compared to NPM1-WT blasts 
[169]. An early KPT-SINE, KPT-185, demonstrated down-
regulation of FLT3 and induction of apoptosis in AML cell 
lines, while its analogue, KPT-276, prolonged survival in 
murine models [170].
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Selinexor (KPT-330), a first generation SINE, demon-
strated preclinical synergism with topoisomerase inhibitors 
(idarubicin, daunorubicin, mitoxantrone, etoposide), cytara-
bine, and sorafenib [171–173]. As monotherapy, Selinexor 
produced modest responses among patients in a phase I 
trial, but the subsequent randomized phase II Selinexor in 
Older Patients with Relapsed/Refractory AML (SOPRA) 
trial was terminated due to a failure of meeting the expected 
survival endpoint [174, 175]. Selinexor has been tested with 
multiple agents, including 7  +  3 induction (daunorubicin/
idarubicin and cytarabine), fludarabine and cytarabine, 
cladribine, cytarabine, G-CSF (CLAG), high-dose cytara-
bine (HDAC) and mitoxantrone, and decitabine, where it 
induced excellent responses among patients [172, 176–184]. 
In combination with sorafenib, it also exhibited anti-leuke-
mic efficacy in FLT3-mutant AML patients [185]. The use 
of selinexor as post-HSCT maintenance therapy has been 
explored with optimistic results in a phase I trial [186]. 
However, due to the CNS-penetrating properties of selinexor, 
its therapy is associated with dose-limiting toxicities such as 
cerebellar toxicity, anorexia, weight loss, and nausea [169, 
174, 175]. Other major side effects include gastrointestinal 
disturbances, myelosuppression, and asymptomatic hypo-
natraemia [172, 174–185]. Preclinical studies also sug-
gested that it may exert undesirable activity against normal 
haematopoietic cells [172]. Nevertheless, selinexor is cur-
rently studied as monotherapy in r/r paediatric AML, in 

combination with standard chemotherapy or with veneto-
clax in adult patients, and as post-transplant maintenance 
therapy (NCT02091245, NCT02403310, NCT02835222, 
NCT03955783, NCT02485535).

Eltanexor (KPT-8602) is a second-generation SINE with 
similar potency as selinexor. It is suggested to have an 
improved safety profile due to a lower degree of CNS pene-
tration and reduced effect on normal haematopoiesis [187]. 
It exhibited potent single-agent anti-leukaemic effect and 
synergism with venetoclax in preclinical studies [187–190].

16.11  Targeting Epigenetic Pathways

Epigenetic regulators, such as DNMTs and HDACs, regulate 
transcription via controlling DNA methylation and acetyla-
tion [191] (Fig. 16.11). Aberrant activities of these pathways 
result in transcription of oncoproteins and/or transcriptional 
silencing of tumour suppressors, resulting in leukaemogen-
esis [191].

16.11.1  Hypomethylating Agents

Hypomethylating agents exert anti-leukemic activities by 
inhibition of DNA methyltransferases (DNMT), causing 
demethylation and reactivation of tumour suppressor genes 
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[192]. Azacitidine and decitabine have been extensively stud-
ied and are widely used in AML patients. To enhance the ease 
of administration, an oral formulation of azacitidine (Onureg, 
CC-486) was developed and has recently been FDA-approved 
for the treatment of AML. In phase I trials, oral azacitidine 
demonstrated efficacy in DNA demethylation with a pro-
longed duration compared to subcutaneous azacitidine and a 
favourable safety profile, with common side effects being 
myelosuppression and gastrointestinal disturbances [193, 
194]. In a subsequent randomized placebo- controlled phase 
III trial evaluating its use as maintenance therapy, oral azaciti-
dine was significantly more effective at providing survival 
benefits [195, 196]. More randomized studies of oral azaciti-
dine compared with placebos as maintenance therapies are 
ongoing (NCT04173533, NCT01757535).

Guadecitabine (SGI-110) is a deoxyguanosine analogue 
of decitabine with resistance to cytidine deaminase (CDA), 
thus prolonging its activity. Several trials of this agent in 
AML patients showed remarkable responses with tolerable 
toxicities, such as myelosuppression and infections [197–
199]. However, subsequent phase III trials had disappointing 
results [200]. It is currently undergoing evaluation with tala-
zoparib in r/r AML patients and with donor lymphocyte infu-
sion (DLI) in post-HSCT patients (NCT02878785, 
NCT03454984, NCT02684162).

ASTX727, an oral formulation of decitabine with a cyti-
dine deaminase inhibitor, cedazuridine, is currently com-
pared with intravenous decitabine in a phase III randomized 
trial (NCT03306264). Its combinations with venetoclax, ivo-
sidenib, enasidenib, and ASTX 660, a dual antagonist of cel-
lular inhibitor of apoptosis protein (cIAP) 1 and X-linked 
inhibitor of apoptosis protein (XIAP), are also undergoing 
evaluation in clinical trials (NCT04657081, NCT04746235, 
NCT04774393, NCT04155580).

16.11.2  HDAC Inhibitors

Histone deacetylase (HDAC) and histone acetyltransferase 
(HATs) mediate deacetylation and acetylation of both his-
tone and non-histone proteins. They are integral to the regu-
lation of numerous cellular activities, such as gene 
transcription [201]. In AML, aberrant activation of HDAC by 
oncoproteins impairs the tumour suppressor function of p53, 
inhibits cellular differentiation, mediates aberrant signaling 
pathways (e.g. c-MYC), and induces abnormal proliferation 
[201]. Thus, the efficacies of multiple HDAC inhibitors have 
been studied in AML (Table 16.4) [201]. HDAC inhibitors 
can be classified into hydroxamines, benzamides, cyclic pep-
tides, aliphatic acids, and electrophilic ketones according to 
their spectrum of activities and molecular structures [201]. 

Table 16.4 HDAC inhibitors and their developments

Agent Phase Observations Ongoing/future trials References
Hydroxamines
Vorinostat (SAHA) II Preclinical Combination with azacitidine 

(NCT00392353, 
NCT03843528)

[202–218]

1.  Synergism in combination with tozasertib 
(AURKi, MK-0457), NPI-0052 (proteasome 
inhibitor), cytarabine, etoposide, obatoclax 
(GX15–070), adavosertib, BPRK-341 (FLT3 
inhibitor).

Combination with decitabine, 
cytarabine, G-CSF, 
fludarabine (NCT03263936)

Clinical Combination with 
fludarabine, clofarabine, 
busulfan (NCT02083250)

1.  Minimal activity as monotherapy.
2.  Synergism with idarubicin; idarubicin, and 

cytarabine; GO and azacitidine; decitabine; 
decitabine, and cytarabine; sorafenib and 
bortezomib.

3.  No additional survival benefit when added to 
azacitidine

4.  Minimal efficacy in combination with alvocidib
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Agent Phase Observations Ongoing/future trials References
Panobinostat 
(LBH589)

III Preclinical Single agent post-HSCT 
maintenance therapy 
(NCT04326764)

[219–236]
1.  Greater potency than vorinostat
2.  Synergism in combination with decitabine, 

azacitidine, venetoclax, adavosertib, BC2059 
(β-catenin inhibitor), SP2509 (LSD1 inhibitor), 
JQ1, quizartinib, bortezomib, CXCR4 
antagonists, doxorubicin, DZNep

Clinical
1.  Minimal activity as monotherapy
2.  Safe and effective in combination with idarubicin 

and cytarabine; daunorubicin, and cytarabine
3.  No additional survival benefit when added to 

azacitidine; cytarabine, and mitoxantrone
Belinostat 
(PXD101)

II 1.  Synergism with bortezomib; pevonedistat Combination with 
pevonedistat (NCT03772925)

[163, 
237–240]2.  Limited activity as monotherapy

3.  Anti-leukemic efficacy in combination with 
bortezomib

Pracinostat 
(SB939)

III 1.  Modest clinical activity as monotherapy Combination with GO 
(NCT03848754)

[241, 242]
2.  Combination with azacitidine effective in phase I 

trial, but phase III trial discontinued due lack of 
efficacy

Givinostat 
(ITF2357)

Preclinical 1.  Anti-leukemic efficacy in AML cell lines and 
murine models

[243, 244]

Tefinostat 
(CHR-2845)

Preclinical 1.  Anti-leukemic efficacy, especially in monocytoid 
AML cell lines

[245]

Abexinostat 
(PCI-24781)

I 1.  Phase I trial discontinued due to lack of efficacy [246]

Benzamides
Chidamide I/Ib 1.  Anti-leukemic efficacy against AML cell lines as 

single agent
Monotherapy 
(NCT03031262)

[247–258]

2.  Synergism in combination with decitabine; 
cytarabine ± sorafenib; anthracyclines; 
daunorubicin, idarubicin, cytarabine; venetoclax; 
MI-3 (menin-MLL inhibitor) and betulinic acid in 
preclinical studies

3.  Clinically safe and effective in combination with 
decitabine, cytarabine, aclarubicin, and G-CSF

Entinostat 
(MS-275)

II 1.  Anti-leukemic efficacy in AML cell lines and 
murine models

Combination with azacitidine 
(NCT01305499)

[259–266]

2.  Evidence of activity against FLT3-mutant AML
3.  Synergism with AZD6244 (MEK/ERK inhibitor); 

RAD001 (mTOR inhibitor); decitabine in 
preclinical studies

4.  Limited clinical activity as monotherapy
5.  Mixed clinical results in combination with 

azacitidine
Mocetinostat 
(MGCD0103)

I 1.  Anti-leukemic efficacy against AML cell lines [267, 268]
2.  Effective and safe in phase I trial

Cyclic peptides
Romidepsin 
(FK228)

II 1.  Effective against chemo-resistant AML murine 
models

[269–273]

2.  Synergism in combination with decitabine; 
azacitidine in preclinical studies

3.  Limited clinical activity as monotherapy
4.  Clinically safe and effective in combination with 

azacitidine
Trapoxin A Preclinical Anti-leukemic efficacy against AML cell lines [274, 275]

Table 16.4 (continued)

(continued)
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Agent Phase Observations Ongoing/future trials References
Aliphatic acids
Valproic acid 1.  Anti-leukemic synergism in combination with 

ATRA; cytarabine; GO; bortezomib; dasatinib; 
nutlin-3; proteasome inhibitors (NPI-0052, 
PR-171) and curcumin in preclinical studies

Post-HSCT maintenance in 
combination with azacitidine 
(NCT02124174)

[265–272, 
274–298]

2.  Unfavourable pharmacokinetic profile
3.  Clinically effective in combination with HU; 

6-MP; azacitidine; decitabine
4.  Mixed clinical results in combination with 

cytarabine
5.  Monotherapy and combination with ATRA 

ineffective in multiple trials
6.  Risk of neurological toxicity

6-MP 6-mercaptopurine, AML acute myeloid leukaemia, ATRA all-trans retinoic acid, AURKi aurora kinase inhibitor, CXCR4 C-X-C chemokine 
receptor 4, ERK extracellular-signal-regulated kinase, G-CSF granulocyte colony-stimulating factor (G-CSF), GO gemtuzumab ozogamicin, HU 
hydroxyurea, MEK mitogen-activated protein kinase kinase, MLL mixed-lineage leukaemia

Table 16.4 (continued)

Among them, vorinostat, panobinostat, and belinostat appear 
to be the most clinically promising. These agents are gener-
ally safe with only mild side effects, such as fatigue, nausea, 
and gastrointestinal disturbances.

16.11.3  LSD1 Inhibitors

Lysine specific demethylase 1 (LSD1) controls demethyl-
ation of H3K4 and can function both as a transcription acti-
vator and repressor [299]. Inhibition of LSD1 was shown to 
promote differentiation of AML cells [299]. Multiple agents 
targeting this enzyme have been studied as potential thera-
pies for AML.

Tranylcypromine (TCP) is a selective LSD1 inhibitor 
which induced differentiation of AML cell lines and demon-
strated synergistic effect with ATRA [300]. In a subsequent 
phase I/II trial, this combination was proven to be effective in 
AML patients [301]. This agent was tolerable, with hypoten-
sion, orthostatic dysregulation, vertigo, confusion, and cyto-
penias as its major adverse effects. Another trial regarding 
these two agents in AML is ongoing (NCT02717884).

Various analogues of TCP also demonstrated preclinical 
activities against AML cells [302–313]. Notably, iadadem-
stat (ORY-1001) exhibited remarkable preclinical anti- 
leukemic efficacy and was effective and tolerable as 
monotherapy in AML patients in a phase I trial [314, 315]. A 
phase II trial regarding its combination with azacitidine is 
underway (EudraCT No.: 2018–000482-36). Another agent, 
GSK2879552, synergized with ATRA to exert anti- leukaemic 
efficacy in preclinical studies, but disappointing survival 
benefits from a phase I trial led to termination of the study 
(NCT02177812) [316]. Another LSD1 inhibitor, CC-90011, 
is also undergoing evaluation in combination with veneto-
clax and azacitidine (NCT0474884).

16.11.4  BET Inhibitors

Bromodomain and extra-terminal domain (BET) is a family 
of epigenetic readers responsible for regulating gene 
 transcriptions [317]. Importantly, bromodomain-containing 
protein 4 (BRD4) is a member of this family which has been 
identified as a crucial mediator of various oncogenic path-
ways [299]. JQ-1 is a selective BRD4 inhibitor with potent 
preclinical anti-leukaemic efficacy as monotherapy and in 
combination with other agents, including cytarabine, ATRA, 
azacitidine, and ponatinib [318–321]. BI 894999 is another 
BRD inhibitor which also demonstrated marked single-agent 
anti-leukaemic activity and synergism with LDC000067, a 
CDK9 inhibitor in a preclinical study [322]. In addition, 
birabresib (OTX015/MK-8628) showed preclinical activity 
against AML cells as monotherapy and therapeutic synergy 
with either panobinostat or azacitidine [323]. It is now under-
going evaluation as monotherapy in a phase I/II trial 
(NCT02698189).

16.11.5  TET Inhibitors

Ten-eleven-translocation (TET) enzymes inhibit DNA meth-
ylation via oxidizing 5-methylcytosine (5mC) to 
5- hydroxymethylcytosine (5hmC) [299]. In AML, mutant- 
TET causes hypermethylation of various gene loci, resulting 
in impaired differentiation and uncontrolled proliferation 
[299]. Ascorbic acid serves as a co-factor for TET2 to restore 
its normal activity and is frequently found to be deficient in 
AML patients. It showed anti-leukemic efficacy in preclini-
cal studies and synergized with decitabine to prolong patient 
survival in a clinical trial [324–326]. A phase II trial of 
azacitidine in combination with ascorbic acid is currently 
underway (NCT03397173).
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16.11.6  Menin-MLL Inhibitors

Mixed-lineage leukemia (MLL) is a lysine methyltransferase 
which methylates H3K4, while menin functions as its co- 
factor. MLL translocations result in generation of oncopro-
teins and are generally markers of poor prognosis. Small 
molecule inhibitors with preclinical efficacies against MLL 
complexes include MM-401, MI-503, MI-463, and MIV-6R 
[327–330]. Strikingly, these agents also exhibited potent 
activity against NPM1-mutant AML cell lines, possibly due 
to the reliance of mutant NPM1 on Menin-MLL1 interac-
tions for its aberrant gene expression [331]. In particular, 
MI-503 and MI-3454 selectively targeted MLL1-rearranged 
and NPM1-mutant cells and prolonged survival in murine 
models [331, 332].

16.11.7  DOT1L Inhibitors

Disruptor of telomeric silencing 1-like (DOT1L) is a his-
tone methyltransferase mediating the methylation of 
H3K79 [299]. Since its function is integral to the oncogenic 
activities of MLL fusion complexes, it can be used as a 
potential target against MLL-rearranged AML [299]. 
Pinometostat (EPZ5676) is a DOT1L inhibitor with remark-
able preclinical efficacy against MLL-rearranged cell lines 
and showed  modest single-agent clinical activity along 
with a favourable safety profile [333–335]. It is currently 
being tested in combination with standard chemotherapy in 
MLL-rearranged AML patients (NCT03724084). SYC-522 
is another agent with preclinical efficacy against MLL-
rearranged AML [336].

16.11.8  EZH Inhibitors

Drosophila enhancer of zeste homolog (EZH) is a subunit of 
polycomb repressive complex (PRC) 2, which regulates tri-
methylation of H3K27 and mediates gene transcription 
[299]. Interestingly, they can function both as a tumour sup-
pressor and oncoprotein in AML [299]. The selective EZH2 
inhibitor 3-Deazaneplanocin A (DZNep) and its analogue 
D9 both showed efficacy against MLL-rearranged AML 
cells [337–339]. UNC1999 is a dual inhibitor of EZH1 and 2 
with preclinical efficacy against AML models with MLL 
gene rearrangement [340]. Finally, valemetostat (DS-3201) 
is another dual EZH1/2 inhibitor currently evaluated as 
monotherapy in a phase I trial (NCT03110354).

16.11.9  PRMT Inhibitors

Protein arginine methyltransferases (PRMTs) are media-
tors of arginine methylation of histone as well as non-his-

tone proteins and their overexpression is frequently found 
in AML [299]. AMI-408 is a specific inhibitor of PRMT1 
with growth suppressive effect on AML cell lines and 
murine models [341]. ERZ015666, an inhibitor of PRMT5, 
induced differentiation of AML cells and showed efficacy 
in murine models with MLL rearrangements [342]. 
GSK3326595 is another PRMT5 inhibitor currently under-
going evaluation in combination with azacitidine in a phase 
I trial (NCT03614728).

16.12  Targeting DNA Damage Response 
Pathways

DNA damage response (DDR) is essential for the mainte-
nance of genomic stability via halting cell cycle progression 
for DNA repair [343]. In the case of substantial DNA dam-
age beyond repair, the apoptotic cascade would be initiated 
[343]. Studies have shown that AML cells have defective 
DDR mechanisms and are thus more susceptible to com-
bined inhibition of chemical and DDR pathways [344]. 
Importantly, IDH-mutant AML is proposed to be sensitive to 
further inhibition of DDR due to their intrinsic defects in 
homologous recombination (HR).

16.12.1  PARP Inhibitors

Poly (ADP-ribose) polymerases (PARP) are a superfamily of 
18 enzymes responsible for DNA single strand breaks (SSBs) 
repair and survival of cells with DNA damage [345]. Some 
subtypes of AML, such as those with IDH1/2 and FLT3 
mutations, are proposed to be more sensitive to the effects of 
PARP inhibitors [345]. PARP inhibitors are nicotinamide 
analogues which function via the inhibition of DNA SSB 
repair by PARP and induction of cytotoxic allosteric effects 
by trapping PARPs to damaged DNA [345, 346].

Olaparib is a potent and selective PARP inhibitor which 
showed excellent potency against AML cell lines and syner-
gistic activity with two anti-CD33 antibody drug conjugates, 
GO and IMGN779, in preclinical studies [347, 348]. Olaparib 
is in a trial as monotherapy for r/r IDH-mutant AML 
(NCT03953898).

Other PARP inhibitors with promising preclinical activi-
ties against AML include veliparib, talazoparib (BMN-673), 
niraparib, rucaparib, and PJ34 [345, 349, 350]. These agents 
showed synergistic activity against AML cell lines in combi-
nation with IMGN632 (anti-CD123 antibody drug conju-
gate), MS275 (HDAC inhibitor), entinostat (MS275, HDAC 
inhibitor), and AZD1775  in preclinical studies [351–354]. 
Among them, results of veliparib as single agent or in com-
bination with temazolomide (alkylating agent) or topotecan 
and carboplatin in r/r ALM patients were impressive [355, 
356]. Two trials regarding the use of these two combinations 
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in AML patients are ongoing (NCT00588991, 
NCT01139970). Talazoparib also demonstrated potent effi-
cacy against IDH1-mutant AML cells [357]. Trials of tala-
zoparib as monotherapy and in combination with decitabine 
are currently underway (NCT03974217, NCT02878785).

16.12.2  ATR Inhibitors

Ataxia telangiectasia and Rad3-related kinase (ATR) is 
responsible for detecting DNA SSBs. It subsequently acti-
vates downstream repair pathways or apoptotic cascades 
depending on the extent of DNA damage [343]. VX-970 and 
AZ20 are two ATR inhibitors which demonstrated single 
agent efficacy against AML cell lines [358, 359]. AZ20 also 
synergistically induced anti-leukemic activity with cytara-
bine in another preclinical study [360].

16.12.3  ATM Inhibitor

The function of ataxia telangiectasia mutated kinase (ATM) 
resembles that of ATR except for its detection of double 
strand breaks (DDBs) instead of SSBs in DNA [343]. 
AZD0156, an ATM inhibitor, prolonged survival of 
 MLL- rearranged mice in a preclinical study [359]. In another 
study, KU-59403 also induced apoptosis in AML cell lines 
[361].

16.12.4  CHK Inhibitors

Checkpoint kinase (CHK) 1 and 2 inhibit CDK 1 and 2 and 
cause cell cycle arrest upon activation by ATR and ATM 
[343]. Their overexpression in AML is associated with infe-
rior prognosis [362]. Prexasertib (LY2606368), MK-8776 
(SCH900776), and rabusertib (LY2603618) are CHK inhibi-
tors which synergistically induced apoptosis in combination 
with CPX-351  in TP53-WT and TP53-deleted AML cells 
[363]. Rabusertib also exhibited synergism with venetoclax 
against AML cells [364]. MK-8776 demonstrated activity at 
overcoming chemotherapeutic resistance and synergized 
with cytarabine and vorinostat [362, 365, 366]. However, the 
combination of MK-8776 with cytarabine did not provide 
survival benefit over single agent cytarabine in r/r AML 
patients in a subsequent trial [367]. A phase I trial of prexas-
ertib in combination with cytarabine and fludarabine is 
underway (NCT02649764).

16.12.5  WEE1 Inhibitors

Wee1-like protein kinase (WEE1) is activated by CHK and 
induces cell cycle arrest by inhibition of CDK1 and 2 [343]. 

Adavosertib (AZD1775, MK-1775) exhibited synergism 
with panobinostat and olaparib, respectively, in AML cell 
lines [224, 354]. It also synergistically overcame cytarabine- 
resistance when combined with cytarabine in leukemic cells 
[368]. Unfortunately, a trial of adavosertib as monotherapy 
was terminated due to safety concerns and another trial of its 
combination with belinostat was terminated for unspecified 
reasons (NCT03718143, NCT02381548).

16.13  Targeting the Cell Cycle

The cell cycle is a 4-phased process and progression through 
each phase is under strict regulation by several mediators, 
including cyclin-dependent kinases (CDKs) and cell cycle 
checkpoints. Aberrant progression of the cell cycle results in 
uncontrolled proliferation and leukaemogenesis [151].

16.13.1  CDK Inhibitors

Cyclin-dependent kinases (CDKs) are regulators of cell 
cycle progression which are activated upon binding of 
cyclins. Among them, transcriptional CDKs (CDK7, 8, 9) 
are mainly responsible for regulating transcription 
(Fig. 16.12). Inhibition of CDKs can halt the cell cycle and 
inhibit aberrant gene expression, giving rise to anti-leukemic 
effects. Information regarding various CDK inhibitors is 
summarized in Table  16.5. Among them, palbociblib and 
alvocidib are the most widely studied in AML. These agents 
have an excellent safety profile with myelosuppression as a 
significant side effect.

16.13.2  Aurora Kinase Inhibitors

The aurora kinase (AURK) family consists of three mem-
bers, AURK A, B, and C. These enzymes are responsible for 
entry into the M phase and normal progression of mitosis 
[393]. In AML, their overexpression has been observed and 
is associated with poor-risk cytogenetics. Alisertib 
(MLN8237) is an AURKA inhibitor with oral bioavailability. 
Investigational use of this agent in a phase II study in combi-
nation with induction chemotherapy among poor-risk AML 
patients illustrated its clinical effectiveness and safety [394]. 
Barasertib (AZD1152) is an AURKB inhibitor which dem-
onstrated anti-leukaemic efficacy along with a less desirable 
safety profile in a phase I/II study in AML patients, with 
major side effects being febrile neutropenia and oral mucosi-
tis [395]. In another trial, it was tested in combination with 
LDAC and showed favourable outcomes and tolerability 
[396]. A trial of barasertib as monotherapy or in combination 
with venetoclax and/or azacitidine is underway 
(NCT03217838).
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16.13.3  PLK Inhibitors

Polo-like kinases (PLKs) promote cell cycle progression via 
inducing degradation of WEE1 and activating CDK1 [397, 
398]. It also inhibits apoptosis by activating Bcl-xL [398]. In 
AML, its overexpression is frequently observed [399].

Rigosertib (ON01910) is a dual inhibitor of PLK1 and 
PI3K. In addition to exhibiting preclinical anti-leukemic effi-
cacy, it was effective and tolerable as monotherapy and in 
combination with azacitidine in clinical trials [400–402]. 
Major adverse events were gastrointestinal disturbances, 
myelosuppression, and pneumonia. A phase II study of oral 
rigosertib in combination with azacitidine is underway 
(NCT01926587).

Volasertib (BI6727) is a selective PLK1/2/3 inhibitor. 
Encouraging results from preclinical studies in AML models 
paved way for subsequent clinical trials in AML patients 
[403]. In summary, volasertib was safe and effective as 

monotherapy and demonstrated synergism in combination 
with LDAC and decitabine, respectively, among AML 
patients in phase I and II trials [404–407]. However, 
responses of its combination with LDAC did not meet expec-
tations in the randomized phase III POLO-AML-2 trial 
[408]. Significant side effects of volasertib include myelo-
suppression and fatigue. It is currently undergoing evalua-
tion as monotherapy or in combination with cytarabine in 
several trials (NCT00804856, NCT01721876). Another oral 
PLK1 inhibitor, onvansertib (NMS-1286937), demonstrated 
impressive efficacy and safety in combination with 
decitabine, but limited activity with LDAC in a phase Ib 
study [409].

BI2536 also exhibited anti-leukemic effect in a preclini-
cal study and had modest single agent activity in AML as 
reported in a phase I/Ib trial [410–412]. Other PLK1 inhibi-
tors with preclinical efficacies against AML include TAK- 
960 and NMS-P937 [413, 414].
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16.13.4  CDC25 Inhibitors

Cell division cycle 25 (CDC25) is a protein phosphatase 
which modulates cell cycle progression via dephosphoryla-
tion of CDKs [415]. In a preclinical study, several CDC25 
inhibitors, namely NSC95397, ALX1, ALX2, ALX3, and 
ALX4, inhibited proliferation of AML cells, but did not 
demonstrate cytotoxic effects [415].

16.13.5  RSK Inhibitor

p90 Ribosomal S6 Kinase (RSK) is a downstream mediator 
of the Ras/MAPK/ERK pathway and controls a wide range 
of cellular pathways, including the promotion of cell cycle 
progression via activation of CDC25 and CDK1 [416]. In 
AML, upregulation of RSK has been discovered in patient 
samples and is indicative of poor prognosis. BI-D1870 is an 
RSK inhibitor which exerts potent anti-leukemic activity via 
S phase cell cycle arrest, impeding mitotic exit, and induc-
tion of DNA damage [416, 417]. It was effective as mono-
therapy and showed synergism with vincristine in AML cell 
lines [416, 417].

16.14  Targeting the Bone Marrow 
Microenvironment

The bone marrow microenvironment (BMM) plays crucial 
roles for the normal development of HSCs and other haemato-
poietic cells. In AML, the complex interactions between leu-
kaemic cells and the BMM are integral to their development 
and disease progression [418]. With overwhelming evidence 
suggesting the substantial abnormalities in the BMM of AML 
patients, multiple therapeutic strategies to target these aberrant 
pathways are being explored (Fig. 16.13) [418].

16.14.1  SDF1/CXCR4 Inhibitors

C-X-C chemokine receptor (CXCR) type 4 is a HSC surface 
G-protein-coupled chemokine receptor for stromal-derived 
factor 1 (SDF1), also known as CXCR12, which is produced 
by mesenchymal stromal cells. Their interactions promote 
survival, quiescence, and marrow homing of HSCs. 
Leukaemic cells exploit this mechanism by upregulating 
their expressions of CXCR4, which grants them chemoresis-
tance due to protection by marrow stromal cells.

CD44

E-selectin

SDF1

CXCR4

E-selectin inhibitors
e.g. uproleselan

CXCR4 inhibitors
e.g. plerixafor

Marrow homing
Survival

Mesenchymal stromal
cell

Leukaemic cell

Marrow endothelial cells

Fig. 16.13 Agents targeting the bone marrow microenvironment. CD44 cluster of differentiation 44, CXCR4 C-X-C chemokine receptor type 4, 
SDF1 stromal-derived factor 1
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Plerixafor (AMD3100) is a small molecule inhibitor of 
CXCR4 commonly used as an off-label stem cell mobilizing 
agent. Promising results from preclinical studies prompted 
several trials of plerixafor in combination with chemothera-
pies [419, 420], decitabine [421], as well as with G-CSF with 
or without sorafenib [422]. These studies all showed impres-
sive survival outcomes and demonstrated the remarkable 
potential of plerixafor as a chemo-sensitizing and AML blast 
mobilizing agent. It will be tested as a chemo-sensitizing 
agent prior to pre-transplant conditioning in a phase II trial 
(NCT02605460).

16.14.2  E-Selectin Inhibitors

E-selectins are molecules expressed by vascular endothelial 
cells which mediate cellular adhesion. Leukaemic cells 
express CD44, the ligand for E-selectins, to promote their 
engraftment in the bone marrow. Uproleselan (GMI-1271) is 
an inhibitor of e-selectin which showed preclinical efficacy 
in overcoming chemoresistance and synergism with chemo-
therapeutic agents [423]. Its use in several clinical trials in 
combination with chemotherapy yielded profound response 
rates, excellent tolerability, and even reduction in risks of 
mucositis [424–426]. Phase III trials evaluating comparing 
responses to chemotherapy with or without uproleselan are 
underway (NCT03616470, NCT03701308).

16.15  Immunotherapy

Immunotherapy represents a new era of therapies in AML 
and has been intensively studied in recent years. Broadly, 
these strategies can be classified into antibody-based or T/
NK-cell-based depending on their mechanism of actions. 
The former involves targeting cell surface antigens of leuke-
mic cells, while the latter relies on activation of immune 
responses against leukaemic cells. Compared to  conventional 
chemotherapy, they are generally more tolerable due to 
reduced toxicity on normal cells.

16.15.1  Antibody-Based Immunotherapies

16.15.1.1  Antibody-Drug Conjugates
Antibody-drug conjugates (ADJs) are synthesized via the 
conjugation of cytotoxic agents to antibodies against various 
cell surface antigens of AML cells or LSCs. Upon cell sur-
face receptor binding, they are endocytosed and release their 
cytotoxic moieties to induce leukaemic cell death 
(Fig. 16.14).

Anti-CD33 ADJs
CD3 is expressed primarily on LSCs and not in normal hae-
matopoietic cells [152]. Thus, targeting this cell surface anti-
gen allows selective eradiation of LSC while sparing normal 
haematopoietic cells [152]. Gemtuzumab ozogamicin (GO; 
Mylotarg) is an FDA-approved anti-CD33 ADJ with the 
cytotoxic agent calicheamicin as a conjugate. GO was first 
FDA-approved for the treatment of AML in 2000, but was 
withdrawn in 2010 in view of its non-superior survival ben-
efit compared to standard 7 + 3 induction and high risks of 
toxicities, such as veno-occlusive diseases (VODs), and hep-
atotoxicity [427]. Despite these discouraging events, GO 
was continually studied at fractionated and lower doses with 
optimistic results. Notably, the phase III randomized ALFA- 
0701 study showed that the addition of GO to standard 
induction chemotherapy provided marked survival benefits 
with only a slight increase in risks of VODs [428, 429]. 
Another randomized phase III trial (AML-19) also reported 
that GO improved patient survival to a larger extent than best 
supportive care [430]. Following these encouraging results, 
GO was re-approved by the FDA for newly diagnosed and 
relapsed AML patients. However, it should be noted that sub-
sequent controlled trials still reported higher risks of VODs 
and early mortality with GO therapy than in control groups 
[431]. Apart from VODs, other toxicities of GO include 
haemorrhage, infections, gastrointestinal disturbances, 
febrile neutropenia, and myelosuppression.

Further trials of GO include its use as monotherapy 
(NCT03737955) or in combination with pracinostat 
(NCT03848754) and venetoclax (NCT04070768); talozopa-
rib (NCT04207190); OX40, venetoclax, avelumab, glas-
degib, and azacitidine (NCT03390296); mitoxantrone and 
etoposide (NCT03839446), CPX-351 (NCT03904251, 
NCT03878927, NCT03672539), midostaurin and standard 
induction therapy (NCT03900949, NCT04385290), CLAG 
(NCT04050280), CLAG, and mitoxantrone (CLAG-M) 
(NCT03531918); fludrabine, cytarabine, G-CSF, idarubicin 
(NCT00801489); cytarabine, daunorubicin, erwinase, and 
etoposide (NCT04326439). It will also be tested as induction 
therapy followed by glasdegib (NCT04093505) or non- 
engraftment donor leukocyte infusion (NCT03374332),

Vadastuximab talirine (SGN33A) is another anti-CD33 
ADJ linked to a pyrrolobenzodiazepine dimer. In preclinical 
studies, it exhibited remarkable anti-leukaemic activity in a 
diverse panel of cell lines, including those with TP53-mutant 
and multi-drug-resistant phenotypes [432]. It induced 
remarkable responses as monotherapy in AML patients in a 
number of trials, with some achieving MRD negativity [433, 
434]. Although it also showed potent efficacy and induced 
MRD-negativity in combination with azacitidine in a phase I 
trial [435, 436], the subsequent randomized-phase III 
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CASCADE trial was discontinued due to increased mortality 
in the experimental arm [437]. Treatment-related deaths 
were attributed to severe infections rather than VODs [437].

IMGN779 also targets CD33 and is conjugated to 
DGN462, an alkylating agent. It showed anti-leukaemic 
activity against multiple AML cell lines and murine models, 
with the highest activity in cells harbouring FLT3-ITD [438, 
439]. Its use in a phase I trial yielded impressive response 
rates and tolerability [440].

Anti-CD123 ADJs
CD123 functions as an interleukin (IL)-3 receptor and medi-
ates downstream proliferation induced by IL-3 [152]. It was 
also found to be highly expressed on LSCs and is an attrac-
tive target for eliminating leukaemic colony forming activi-
ties [152].

Tagraxofusp (SL-401) consists of an anti-CD33 antibody 
conjugated to part of the diphteria toxin [152]. It will be eval-
uated as monotherapy or in combination with venetoclax 
with or without azacitidine in AML patients (NCT04342962, 
NCT03113643).

IMGN632 is conjugated to DNA mono-alkylating portion 
of the indolinobenzodiazepine pseudodimer. It showed 
encouraging activity and favourable safety profile in a phase 
I trial [441]. Since it demonstrated synergism with azaciti-
dine and venetoclax in a preclinical study [442], its combina-
tion with venetoclax, azacitidine, or both agents will be 
tested in a phase I/II trial (NCT04086264). Its use as mono-
therapy in AML patients will also be tested (NCT03386513).

16.15.1.2  Radioimmunotherapy
Radioimmunotherapy (RIT) involves the use of monoclonal 
antibodies linked with radionuclides, which then bind to leu-
kaemic cell surface antigens and continually release ionizing 
radiation, resulting in selective anti-leukaemic effects 
(Fig. 16.14) [443]. In AML, RITs mainly utilize Iodine(I)-131 
and Yttrium(Yt)-90 and are usually studied as pre-transplant 
conditioning regimens.

131I-anti-CD45 RIT markedly improve post-transplant 
outcomes in various clinical trials in combination with 
 various conditioning regimens, including total body irradia-
tion (TBI), busulfan and cyclophosphamide, as well as fluda-
rabine and low-dose TBI [444–447]. The use of 90Y-anti-CD45 
RIT also resulted in remarkable survival outcomes and pro-
longed donor engraftment [448, 449].

While the above two agents emit β-radiation, 
225Actinium(Ac)-lintuzumab (225Ac-anti-CD33) emits short- 
ranged α-radiation. Although it induced blast reduction in 
patients, no remissions were seen in a phase I trial combining 
this agent with LDAC in newly diagnosed patients [450]. 
225Ac-lintuzumab and 211Astatine(At)-anti-CD45 will 
undergo further testing either as therapy for r/r patients or as 
part of conditioning regimens in multiple clinical trials 

(NCT03867682, NCT03441048, NCT03670966, 
NCT03128034).

16.15.2  T-Cell-Based Immunotherapies

T cells are integral to the normal functioning of the adaptive 
immune system. In particular, cytotoxic T cells are respon-
sible for the elimination of cells carrying abnormal antigens, 
including leukaemic cells. However, these activities often 
impaired in AML, giving rise to immune evasion of leukae-
mic blasts. Thus, intensifying the anti-tumour responses of T 
cells is an attractive strategy against AML.

16.15.2.1  Immune-Related Adverse Events
Although immune-cell-based immunotherapies are gener-
ally considered to be more tolerable than conventional thera-
pies, their resulting alterations in immune responses cause a 
distinct group of side effects termed “immune-related 
adverse events”. They can present in a multitude of ways, 
including as skin rash, pneumonitis, and colitis, among oth-
ers [451]. Fortunately, the majority of these events are toler-
able and not lethal. In addition, cytokine release syndrome 
(CRS) is especially common with the use of multivalent anti-
bodies and CAR-T, with presentations ranging from mild 
flu-like symptoms to severe multi-organ failures and enceph-
alopathy [452]. Cautious monitoring and proper manage-
ment of CRS are keys to preventing significant morbidities 
and mortality.

16.15.2.2  Immune Checkpoint Inhibitors
Immune checkpoints (ICs) inhibit aberrant T-cell responses 
against normal body cells and are paramount to self- 
tolerance. However, leukemic cells can also express check-
point ligands, which cause anergy of T-cells upon their 
binding, resulting in immune evasion and uncontrolled pro-
liferation. Therefore, inhibition of these pathways allows 
reactivation of immune responses against leukemic cells 
(Fig. 16.15).

PD-1/PD-L1 Inhibitors
Programmed death 1 (PD-1) is expressed on the surface of T 
cells while its ligand, Programmed death ligand 1 (PD-L1), 
is expressed on leukaemic cells [453]. Nivolumab, an anti- 
PD- 1 antibody, induced impressive responses in combina-
tion with azacitidine in older r/r AML patients in a phase II 
trial [454]. Addition of ipilimumab to this regimen further 
improved survival outcomes at the cost of increased toxici-
ties and immune-related adverse events [455]. The above 
study is still currently ongoing (NCT02397720). Another 
trial of nivolumab with cytarabine or idarubicin showed 
remarkable remission rates with measurable residual disease 
(MRD) negativity in more than half of the cohort [451]. 
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Fig. 16.15 Mechanisms of actions of immune checkpoint inhibitors 
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containing protein 3

Nivolumab is generally tolerable with mostly immune- 
related adverse events, such as skin rash, transaminitis, and 
nephritis. However, another trial of nivolumab as post- 
transplant therapy demonstrated minimal efficacy and unac-
ceptable adverse effects [456]. In view of these encouraging 
results, it will be further evaluated in multiple trials, includ-
ing combination with azacitidine in r/r paediatric AML 
patients, as monotherapy in post-transplant relapsed patients, 
and as post-chemotherapy or post-HSCT maintenance as 
monotherapy or in combination with ipilimumab 
(NCT03825367, NCT01822509, NCT02275533, 
NCT02532231, NCT03600155, NCT02846376). Its combi-
nation with NY-ESO-1 vaccination and decitabine will also 
be tested in a clinical trial (NCT03358719).

Pembrolizumab is another anti-PD-1 antibody which has 
been tested in combination with azacitidine, decitabine, and 
following HDAC in AML patients; their respective trials all 
showed optimistic outcomes and tolerable adverse effects 
which were mostly immune-related [457–459]. Further trials 
will evaluate this agent in combination with decitabine, 
galinpepimut-S, azacitidine, venetoclax, with intensive che-
motherapy as frontline therapy, with azacitidine in NPM1- 

mutant AML patients with molecular relapse, and as 
monotherapy in patients with post-HSCT relapse 
(NCT03969446, NCT03761914, NCT04284787, 
NCT04284787, NCT03769532, NCT02981914, 
NCT03286114).

Avelumab, an anti-PD-L1 mAb, showed anti-leukaemic 
efficacy and tolerability in combination with decitabine in a 
phase I trial and is currently involved in a phase I/II trial with 
venetoclax, PF-04518600, glasdegib, GO, and azacitidine 
(NCT03390296) [460].

However, durvalumab (MEDI-4736), another anti-PD-L1 
antibody, did not provide additional survival benefits when 
added to azacitidine in a randomized phase II study [461].

CTLA-4 Inhibitors
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is 
expressed on the surface of T cells. It competitively binds to 
CD80 or CD86 expressed by leukaemic cells with a higher 
affinity than CD28 [453], inducing T cell anergy. Ipilimumab 
is an anti-CTLA-4 antibody which induced responses in 
AML patients who experienced relapse after HSCT, with 
graft-versus-host disease (GVHD) as the dose limiting toxic-
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ity in some patients [462]. It is undergoing evaluation in 
combination with decitabine, as monotherapy in patients 
with post-transplant relapse, as post-HSCT maintenance 
either as monotherapy, in combination with nivolumab, or 
in combination with donor lymphocyte infusion 
(NCT02890329, NCT01822509, NCT03600155, 
NCT02846376, NCT03912064).

TIM-3 Inhibitors
T cell immunoglobulin and mucin domain-containing pro-
tein 3 (TIM-3) receptors on T cells are activated by the bind-
ing of galectin-9 on leukemic cell surface [453]. Sabatolimab 
(MBG453) is an anti-TIM3 antibody. In a phase Ib trial, its 
combination with either azacitidine or decitabine showed 
promising anti-leukaemic activity [463]. This agent was tol-
erable, with myelosuppression and immune-related adverse 
effects being major side effects. Trials will further explore its 
combination with azacitidine and venetoclax, HDM201, and 
decitabine (NCT04150029, NCT03940352, NCT03066648). 
Its use in MRD-positive post-transplant patients will also be 
tested (NCT04623216).

CD47 Inhibitors
CD47 functions as an immune checkpoint by binding to 
Signal regulatory protein alpha (SIRPα) receptors on macro-
phage and preventing phagocytosis of CD47-positive cells 
[464]. The anti-CD47 mAb magrolimab is currently under-
going clinical evaluation in combination with azacitidine 
with optimistic preliminary results from a phase Ib trial 
[465]. It has been granted fast track designation by the FDA 
and will be tested in combination with azacitidine and vene-
toclax in a phase I/II trial (NCT04435691). A phase III trial 
comparing magrolimab combined with azacitidine against 
standard therapy is also underway (NCT04778397).

16.15.2.3  Targeting Co-Stimulatory Pathways

OX40 Agonists
OX40 is a cell surface receptor predominantly expressed by 
activated T cells, while its ligand, OX40L, is widely 
expressed by activated antigen presenting cells. The binding 
of OX40L to OX40 provides a co-stimulatory signal neces-
sary for further T cell activation, clonal expansion, and anti- 
leukaemic immune responses [466] (Fig. 16.15). (PF-8600) 
is an anti-OX40 agonist monoclonal antibody currently 
investigated in combination with venetoclax, avelumab, 
glasdegib, GO, and azacitidine in a phase I/II trial 
(NCT03390296).

16.15.2.4  Multivalent Antibody Therapies
Multivalent antibody therapies facilitate interactions between 
immune cells and leukaemic cells. These recombinant anti-
bodies are constructed by the combination of antibodies tar-

geting these two types of cells and thus carry specificity 
against multiple antigens. This allows them to bring immune 
cells to the proximity of leukaemic cells for exerting anti- 
tumour effects (Fig. 16.16). Broadly, they can be divided into 
non-IgG-like and IgG-like, where only IgG-like multivalent 
antibodies retain the Fc region to promote additional immune 
pathways, such as antibody-dependent cell-mediated cyto-
toxicity (ADCC) and complement-dependent cytotoxicity 
(CDC) [467]. Currently, bivalent antibodies are the most 
widely studied in AML.

Non-IgG like Multivalent Antibodies
BiTE
Bispecific T-cell engagers (BiTEs) contain both the heavy 
and light chain variable domains (VH and VL) of the single 
chain variable fragments (scFv) from two antibodies target-
ing T cells (e.g. CD3) and leukaemic cells (e.g. CD33, 
CD123), respectively.

AMG330 is an anti-CD33 x anti-CD3 BiTE with encour-
aging preclinical efficacy and is now currently evaluated in 
a trial with r/r or MRD-positive AML patients 
(NCT02520427) [468, 469]. AMG673 is another anti-CD33 
x anti-CD3 BiTE. Preliminary results from an ongoing first-
in-human phase I study revealed anti-leukaemic efficacy 
(NCT03224819) [470]. Manageable adverse effects, such as 
CRS and myelosuppression, were observed. AMV564 has 
the same antigen specificity as the above BiTEs, but is tetra-
valent, i.e. it contains two VH and VL chains from each 
types of antibody, which further promotes target binding. 
Favourable preclinical data promoted a phase I trial, which 
showed promising preliminary results (NCT03144245) 
[471, 472].

Dart
Dual-affinity retargeting (DART) antibodies are similar in 
principle to BiTEs, except the VH and VL chains from the 
two antibodies are cross-linked to further increase efficiency 
[467]. Flotetuzumab (MGD-006) is anti-CD3 x anti-CD123 
DART which induced T-cell activation against CD123- 
positive leukaemic blasts in preclinical studies. Preliminary 
results from the subsequent in-human trial showed potent 
anti-leukaemic activity and manageable side effects, which 
mainly included CRS [473].

IgG-Like Multivalent Antibodies
XmAb14045 is an anti-CD123 x anti-CD3 multivalent anti-
body. Its long serum half-life of 6.2 days can be attributed to 
the binding of its bispecific Fc domain to neonatal Fc recep-
tor (FcRn), which prevents its degradation [452, 467]. This 
agent demonstrated preclinical anti-leukaemic efficacy and 
induced T-cell activation. Although a phase 1 study in AML 
patients was suspended following occurrences of patient 
mortalities and major toxicities, including CRS and pulmo-
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nary edema, the partial suspension was shortly lifted by the 
FDA [474, 475]. A subsequent phase I study reported encour-
aging efficacy with manageable adverse events, such as CRS 
(NCT02730312) [476, 477]. The clinical activity and tolera-
bility of XmAb14045 will be further elucidated in another 
trial (NCT02730312).

16.15.2.5  Chimeric Antigen Receptor T Cells 
Therapy

Chimeric antigen receptor T (CAR-T) cells therapy involves 
the use of genetically engineered T cells expressing chimeric 
antigen receptors (CAR) against leukaemic cell surface anti-
gens. After infusion of CAR-T cells, binding of CAR to leu-
kaemic cells triggers cytotoxic responses and leukaemic cell 
death (Fig. 16.17) [427].

CYAD-01 is a CAR-T cell product expressing the natural 
killer group 2D (NKG2D) fused to a CD3ζ signalling 
domain. NKG2D is normally expressed by natural killer 
cells, CD8+ T cells and NK-T cells. It is activated upon bind-

ing to NKG2D ligand (NKG2D-L) expressed by leukaemic 
cells, while a co-stimulatory signal is provided by DNAX- 
activating protein 10 (DAP10) [478]. Astonishingly, CYAD- 
01 is capable of inducing a co-stimulatory signal via 
DAP10-independent pathways. In a phase I trial, it was 
determined to possess anti-leukaemic activity. However, fre-
quent adverse effects, including CRS and pneumonitis, were 
observed [479]. Another phase I trial with the use of NKG2D 
CAR-Tx cells in AML patients is underway (NCT04658004).

CAR-T cell products can also be engineered to target 
more than one leukaemic antigens to further improve 
potency. Notably, a compound CAR-T (cCAR-T) product 
constructed to target C-type lectin-like molecule-1 (CLL1) 
and CD33 was evaluated in a phase I study with remarkable 
results, with seven out of nine patients achieving remission 
and MRD-negativity [480, 481].

Other CAR-T products with preclinical successes in AML 
include c-Kit-targeting and FLT3 scFv-targeting CAR-Ts 
[482, 483]. CAR-T is undergoing intensive studies in numer-
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Fig. 16.17 Mechanism of action of chimeric antigen receptor (CAR) T cells. NKG2D natural killer group 2D, NKG2D-L NKG2D ligand

ous clinical trials, including novel CAR-T strategies such as 
donor-derived CAR-T (NCT04766840), CD123/CLL1 
CAR-T (NCT03631576), CD38-targeted CAR-T 
(NCT04351022), and IL3 CAR-T (NCT04599543), among 
many others.

16.15.3  NK Cell-Based Immunotherapies

NK cells are paramount effectors of anti-tumour immune 
responses. After binding of an antibody to a cell surface anti-
gen, the Fc receptors of NK cells bind to the Fc region of the 
antibody, resulting in activation of NK cells and release of 
cytotoxic materials for target cell killing. This process is 
known as antigen-dependent cellular cytotoxicity (ADCC). 
NK cell-based immunotherapies aim at harnessing the cyto-
toxic activity of intrinsic or foreign NK cells against leukae-
mic cells (Fig. 16.18).

16.15.3.1  Unconjugated Antibodies
Unlike ADJs, unconjugated antibodies exert cytotoxicity by 
stimulating ADCC as well as CDC activated by their Fc 
domains. Daratumumab is an anti-CD38 mAb which demon-
strated anti-leukaemic activity against AML cell lines via 
induction of ADCC and CDC [484]. Interestingly, it also tar-
gets leukaemic blasts via perturbing cellular metabolism 
[485]. It is currently studied as monotherapy and in combina-
tion with FT538 (NCT04714372, NCT03067571). A study 
of daratumumab in combination with DLI for patients who 
relapsed post-HSCT is also underway (NCT03537599).

Isatuximab is another anti-CD38 mAb with potent anti- 
leukaemic activity in a preclinical study [486]. It will undergo 

further evaluation in combination with chemotherapy in r/r 
paediatric AML patients (NCT03860844).

Talacotuzumab (CSL362) is a CD123 which demon-
strated high potency against CD123  in preclinical studies 
[487]. However, its uses as monotherapy or in combination 
with decitabine were only minimally effective in multiple 
clinical trials and caused high incidences of treatment termi-
nation [488, 489].

16.15.3.2  CAR-NK Cells Therapy
CAR-NK cells are engineered to express receptors which 
enhance ADCC and are administered in conjunction to 
unconjugated antibodies [490]. FT538 is a CAR-NK cell 
product expressing an IL-5 receptor alpha fusion protein and 
high affinity non-cleavable CD16 [490]. It demonstrated 
promising preclinical efficacy against multiple myeloma 
cells and will undergo further testing in a phase I trial with 
daratumumab in r/r AML patients (NCT03067571) [491].

16.15.4  Vaccination

Vaccination of tumour-associated antigens is a strategy created 
to induce antigen presentation of dendritic cells to T cells, which 
then generate anti-leukaemic immune responses and prolonged 
immunological memory against leukaemic cells (Fig.  16.19) 
[427]. They can potentially prevent future relapses by inducing 
eradication of all remaining abnormal blasts in the haematopoi-
etic system. Given the dismal prognosis of r/r AML, their devel-
opment carries substantial significance for patients.

Wilm’s tumour 1 (WT-1) antigens are attractive targets 
for peptide vaccination due to their high expression in leu-
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kaemic cells [427]. Galinpepimut-S and OCV-501 are exam-
ples of WT-1 vaccines which showed potency at inducing 
immunological responses and improving survival in AML 
patients in CR1/2 in phase I or II trials [492–494]. The com-
bination of galinpepimut-S with pembrolizumab is currently 
under evaluation (NCT03761914). Ombipepimut-S (DSP- 
7888) is another WT-1 peptide vaccine evaluated in AML 
(NCT04747002).

Owing to evidence suggesting that allogeneic dendritic 
cells (DCs) induce stronger immune responses compared to 
autologous ones, an allogeneic DC vaccine, DCP-001, was 
manufactured and examined in a phase I trial with optimistic 
outcomes and tolerability [495]. This vaccine is under clini-
cal investigation in a phase II trial among AML patients in 
remission (NCT03697707).

In addition to the above agents, NY-SEO-1 vaccination is 
currently studied in a phase I trial in combination with 
decitabine and nivolumab (NCT03358719). This vaccine 
formulation comprises three components: (1) a mAb against 
DEC-2015 (CD205), a dendritic cell surface receptor which 
promotes antigen presentation; (2) NY-SEO-1, a leukaemic 
cell surface antigen; and (3) polyinosinic-polycytidylic acid 
complexed with poly-L-lysine and carboxymethylcellulose 
(Poly-ICLC), a double-stranded mRNA complex which 
serves as an immune stimulant [496, 497]. No preliminary 
results are available at the moment.

16.16  Conclusion

Given the plethora of aberrant pathways in AML, the afore-
mentioned novel strategies only provide a glimpse of the 
endless therapeutic options against this aggressive haemato-
logical malignancy. Although the current prognosis of AML 
remains suboptimal, intensive efforts on the development of 
novel agents may soon bring about unprecedented pharma-
cological breakthroughs.
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