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Abstract The estimation of rainfall for a given return period is of utmost impor-
tance for the planning and design of minor and major hydraulic structures. This can 
be accomplished using an extreme value analysis (EVA) of rainfall, which involves 
fitting a series of annual 1-day maximum rainfall data to probability distributions 
including the 2-parameter normal, 2-parameter log normal, Pearson type 3, log 
Pearson type 3, extreme value type 1 (EV1), and generalized extreme value 
(GEV). The method of moments (MoM), maximum likelihood method (MLM), 
and L-moments (LMO) are used to determine the distributional parameters 
depending on the intended applications and the variable under consideration. The 
six probability distributions used in the EVA of rainfall for the Afzalpur, Aland, and 
Kalaburagi sites are adequately fitted when measured quantitatively by the 
goodness-of-fit and diagnostic tests (chi-square and Kolmogorov-Smirnov) and 
qualitatively by the fitted curves of the estimated rainfall. According to the study’s 
findings, the GEV (LMO) is the most suited among the six distributions tested in 
EVA for estimating rainfall for Afzalpur and Kalaburagi, while the EV1 (MLM) is 
more suited for Aland. An artificial neural network with Bayesian regularization has 
been implemented to model and predict monthly rainfall patterns from all three sites. 
The model performance analysis shows significant correlation of approximately 0.95 
for the training dataset and 0.40 for validation. 
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15.1 Introduction 

Assessment of extreme rainfall for a desired return period is of utmost importance for 
the planning and design of minor and major hydraulic structures, viz., dams, bridges, 
barrages, and storm water drainage systems. Such information can be applied to the 
planning and design of water resources projects linked to reservoir design, river bank 
protection works, soil and water conservation, etc., as well as to the prevention of 
floods and droughts (CWC 2010). In the post-commissioning stage, where it is 
necessary to analyze the risk of hydraulic structures failing, extreme rainfall occur-
rences are crucial (Baratti et al. 2012). Extreme rainfall with a desirable return 
duration is used, depending on the design life of the structure. Extreme value 
analysis (EVA), which involves fitting a probability distribution to the series of 
annual 1-day maximum rainfall (AMR) data, can be used to achieve this (Abida and 
Ellouze 2008). The robust forecasts of precipitation patterns at a significant lead time 
can be of great importance in managing water resources as well as mitigating the risk 
associated with prolonged and flash flooding (Das et al. 2020; Floods 2019; 
Goswami et al. 2018). Numerical weather prediction models are conventionally 
used to forecast these extremes by mathematically modeling the governing physical 
processes (Bauer et al. 2015; Dueben et al. 2021). Being inspired by the learning 
capability of neural networks, an advancement in machine learning from nonlinear 
complex data (Pisner and Schnyer 2020; Scher and Messori 2018), we have incor-
porated artificial neural networks (ANNs) to model and predict the monthly rainfall 
of all three considered stations with Bayesian regularization to overcome the issue of 
overfitting in the data. 

15.2 Literature Review 

For analyzing the rainfall data, a variety of probability distributions from the normal, 
gamma, and extreme value families of distributions will be provided (Arvind et al. 
2017; Esberto, 2018; Sasireka et al. 2019). The distributions that are most frequently 
applied and employed in EVA are the two-parameter normal (N2) and log normal 
(LN2), Pearson type 3 (P3), log Pearson type 3 (LP3), extreme value type 1 (EV1), 
and generalized extreme value (GEV) distributions. From this, it is clear that the N2 
and LN2 belong to the family of normal distributions, the P3 and LP3 to the family 
of gamma distributions, and the EV1 and GEV to the family of extreme value 
distributions (Bhuyan et al. 2010; Mujere 2011; Olumide et al. 2013; Haberlandt 
and Radtke 2014; Sharma and Sharma 2019; Singh et al. n.d.; Tank et al. 2021). The 
parameter estimation algorithms method of moments (MoM), maximum likelihood 
method (MLM), and L-moments (LMO) are used to determine the distribution’s 
parameters based on the planned applications and the variate under consideration 
(Acar et al. 2008; Malekinezhad et al. 2011; Vivekanandan 2020).
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Using Gumbel (also known as EV1), LN2, and LP3, AlHassoun (2011) 
conducted a study on establishing an empirical formula to estimate rainfall intensity 
in the Riyadh region. He came to the conclusion that among the three distributions 
examined for the assessment of rainfall intensity, the LP3 provides greater accuracy. 
In order to calculate the extreme rainfall depths at several rain gauge stations in 
southeast United Kingdom, Esteves (2013) used the EV1 distribution. For the 
purpose of creating intensity-duration-frequency curves for seven divisions in 
Bangladesh, Rasel and Hossain (2015) used the EV1 distribution. In the Bamenda 
Mountain region of Cameroon, Afungang and Bateira (2016) used the EV1 distri-
bution to estimate the maximum quantity of rainfall for various times. Eight prob-
ability distributions were used by Baghel et al. (2019) to analyze the frequency of 
daily maximum rainfall data in the Udaipur district. For the Anakapalli, 
Atchutapuram, Kasimkota, and Parvada sites, Vivekanandan and Srishailam 
(2020) examined the MoM and MLM estimators of the EV1, LN2, and LP3 
distributions utilized in the EVA of rainfall. The question of which distribution 
model best fits a given collection of data comes frequently when multiple probability 
distributions are used in the EVA of rainfall. Both quantitative and qualitative 
analyses may be able to provide an answer, and the conclusions are quantifiable 
and trustworthy. The effectiveness of fitting the selected probability distributions is 
assessed quantitatively using chi-square (χ2 ) and Kolmogorov-Smirnov (KS), and 
diagnostic (viz., D-index) tests, as well as qualitatively using fitted curves for the 
estimated extreme rainfall. The methods used in the EVA of rainfall and the 
evaluation of EVA results using GoF and diagnostic tests are succinctly discussed 
with an example, and the outcomes of the study are reported in the paper. 

There have been numerous attempts to predict rainfall using different physical, 
empirical, and physio-empirical models. In many parts of the world, these models 
have been used to predict rainfall on an annual, seasonal, monthly, and daily scale 
(Bauer et al. 2015; Goyal et al. 2018; Nardi et al. 2018). Physical models are created 
taking into account the synoptic climate and the physical processes by which various 
climatic variables interact to produce rainfall in a location. In order to anticipate 
rainfall in physical models, numerical models are created to describe ingrained 
physical processes (Goyal and Ojha 2010). These models require data and knowl-
edge on numerous land-ocean-atmospheric variables and are typically quite compli-
cated. In spite of this, physical models frequently fail to provide accurate rainfall 
predictions, because they frequently use crude approximations of complicated phys-
ical events (Coles 2001; Su et al. 2012). Physical models have been replaced with 
empirical models based on statistical techniques. These models are typically created 
with a specific climate variable in mind, such as rainfall prediction, based on the 
connection defined by statistics between that variable and its antecedent variables. 
Statistical models are always region-specific; thus, the model created using the 
statistical relationship between local rainfall and other atmospheric factors is only 
applicable for the region (Goyal et al. 2012; Katz 2013). These models are also 
referred to as empirical models for this reason. In most instances, empirical models 
are more accurate than physical models and are easier to construct and apply. The 
primary flaw of empirical models is their total reliance on the historical data utilized



to construct them. As a result, they are unable to replicate rainfall in an unknown 
environment. For instance, empirical models cannot accurately predict the abrupt 
variations in rainfall that the region has experienced recently and is expected to 
experience in the future since the models were not constructed with such a wide 
range of data (Hewitson et al. 2014). In this circumstance, physical models are used 
as a forecasting option. The development of physical-empirical models, in which 
empirical models are based on the variables physically responsible for the region’s 
climate, has recently received attention in an effort to address the limitations of both 
types of modeling approaches (Vergés et al. 2016). 
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Regression analysis, including linear and higher-order polynomial (nonlinear) 
regressions, is typically used to create statistical models (Chen and Zhang 2022; Su  
et al. 2012). However, the relationship between rainfall and the climatic variables 
that cause it is frequently enigmatic and cannot be captured using commonly used 
statistical approaches. Complex regression analysis is frequently created using 
machine learning (ML) methods (Hinge et al. 2018; Sharma and Goyal 2020). 
Climate extremes in changing climate are getting worse, and robust prediction of 
these extremes is one of the most essential aspects in managing water resources and 
disaster management (Poonia et al. 2021a, b). As a result, the focus of meteorologists 
has been shifted to the development of machine learning (ML)-based physical-
empirical forecasting models in recent years. ANNs are one of the numerous 
possibilities explored and presented in the literature for prediction. They are a 
flexible and rich concept that may be used to tackle difficulties with clustering, 
time series, and function approximation in addition to classification tasks (Rautela 
et al. 2022). The adaptability of ANNs encouraged researchers to look into their 
suitability for classification and regression problems (Vu et al. 2019). Studies reveal 
that ANNs and other artificial intelligence techniques are capable of outperforming 
conventional statistical techniques. The Bayesian assessment of an ANN for predic-
tion indicates that the performance of the neural architecture is critical to its 
configuration, because it strongly influences the estimate efficacy of the framework 
(Burden and Winkler 2008). To avoid over fitting, however, in this study we 
concentrate on Bayesian regularization (BR) of the ANN employed for predicting 
monthly rainfall (Okut 2016). The huge amount of complex nonlinear meteorolog-
ical data from various sources necessitate great care to avoid over fitting ANN 
algorithm (Ye et al. 2021). We have implemented BR-ANN to explore the nonlinear 
relationships associated with monthly rainfall at three stations and predict it for 
the next. 

15.3 Methodology 

The cumulative distribution function (CDF) and quantile estimator of six distribu-
tions (viz., N2, LN2, P3, LP3, EV1, and GEV) adopted in EVA is presented in 
Table 15.1. The empirical equations involved in determining the MoM, MLM, and



σ xð Þ

σ yð Þ

F xð Þ=
G β,

α
, α> 0

1-G β,
x- ξ
α

, α< 0

F xð Þ=
G β,

α
, α> 0

1-G β,
ln xð Þ- ξ

α
, α< 0

F xð Þ= e , α> 0

x Tð Þ= ξþ β

LMO estimators of the distributions are presented in Table 15.2 (Rao and Hamed 
2000). 
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Table 15.1 CDF with quantile estimator six probability distributions 

Distribution CDF (F(x) or F(y)) Quantile estimator x(T) 

N2 
(μ(x), σ(x)) 

F xð Þ=φ x- μ xð Þ x(T) = μ(x) + K(T)σ(x) 

LN2 
(μ(y), σ(y)) 

F yð Þ=φ y- μ yð Þ  wherein y = ln(x) x(T) = exp (μ( y) + K(T)σ( y)) 

P3 
(ξ, α, β) 

x- ξ No explicit expression of the quantile 
function is available 

LP3 
(ξ, α, β) 

ln xð Þ- ξ No explicit expression of the quantile 
function is available 

EV1 
(ξ, α)

- e
- x- ξ 

αð Þ x(T) = ξ + α[- ln (- ln (F(x)))] 

GEV 
(ξ, α, β) 

F xð Þ= e- 1- β x- ξð Þ  
αð Þ1=β , α> 0, β> 0 α 1- - ln F xð Þð Þð Þβ½ �

Wherein 

ξ : Location parameter 

α : Scale parameter 

β : Shape parameter 

T : Return period (in year) 

F(x) : CDF of a variable x (i.e., AMR) 

K(T) : Frequency factor of a return period (T) corresponding to the coefficient of skew-
ness (CS), say CS = 0.0 for N2 and LN2 

x(T) : Estimated extreme rainfall for a return period (T) 

G(. . .) : Incomplete gamma integral 

ϕ(. . .) : CDF of standard normal distribution 

μ(x) : Average of observed data (x) 

σ(x) : Standard deviation of observed data (x) 

μ(y) : Average of log transformed (y = ln(x)) series of observed data 
σ(y) : Standard deviation of log transformed series of observed data 

A relation between F(x) and T is given by F(x) = 1–1/T 

15.3.1 MoM of P3 Distribution 

The MoM estimators of P3 distribution (Bobee and Askhar 1991) can be determined 
by solving the system of equations, which is given as below:
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M0 
r = 

exp rξð Þ  
1- rαð Þβ ð15:1Þ 

where in 1-rα > 0, r = 1, 2, 3 

μ xð Þ=M0 
1, σ xð Þ2 =M0 

2 - M0 
1 

2 
and γ xð Þ=M0 

3 - 3M0 
2M

0 
1 þ 2 M0 

1 
3 ð15:2Þ 

where M0 
r is the r

th moment of x about the origin and μ(x) is the coefficient of 
skewness of the observed data. 

15.3.2 MLM of P3 Distribution 

The MLM estimators of P3 distribution (Bobee and Askhar 1991) can be determined 
by solving the following system of equations: 

N 

i= 1 
x ið Þ- ξð Þ=Nαβ 

N 

i= 1 

1 
α 

x ið Þ- ξð Þ=Nψ βð Þ  
N 

i= 1 

1 
x ið Þ- ξð Þ  = 

N 
α β- 1ð Þ  

ð15:3Þ 

Here, ψ(β) is the digamma function of estimator of the scale parameter (β). 
In Table 15.2, λ1, λ2, and λ3 are the first, second, and third, respectively, LMOs 

(Hosking 1990) that can be determined in Eq. (15.4), which is given as below: 

λ1 = b0, λ2 = 2b1 - b0, λ3 = 6b2 - 6b1 þ b0 and τ3 = λ3=λ2 ð15:4Þ 

wherein λr + 1  is the r + 1th LMO (Hosking and Wallis 1993), which is defined by: 

λrþ1 = 
r 

k = 0

- 1ð Þr- k r þ kð Þ! 
k!ð Þ2 r- kð Þ! bk ð15:5Þ 

wherein bk is an unbiased estimator (Saf 2009; Gubareva and Gartsman 2010) and 
given by: 

bk =N- 1 
N 

i= kþ1 

i- 1ð Þ  i- 2ð Þ:: . . .  i- kð Þ  
N- 1ð Þ  N- 2ð Þ:: . . .  N- kð Þ x ið Þ ð15:6Þ 

where x(i) is the observed data of ith sample and N is the total number of samples.
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15.3.3 Goodness-of-Fit Tests 

GoF tests are essential for checking the adequacy of probability distributions to the 
AMR series in rainfall estimation. Out of a number GoF tests available, the widely 
accepted GoF tests are χ2 and KS (Zhang 2002), which are used in the study. 

χ2 test statistic is defined by: 

χ2 = 
NC 

j= 1 

Oj xð Þ-Ej xð Þ  2 
Ej xð Þ ð15:7Þ 

where Oj(x) is the observed frequency value of x for j
th class, Ej(x) is the expected 

frequency value of x for jth class, and NC is the number of frequency classes (Charles 
Annis 2009). The rejection region of χ2 statistic at the desired significance level (η) is  
given by χ2 C ≥ χ2 1- η,NC-m- 1. Here, m denotes the number of parameters of the 
distribution, and χ2 C is the computed value of χ2 statistic by the probability 
distribution. 

KS test statistic is defined by: 

KS= Max 
N 

i= 1 
Fe x ið Þð Þ- Fc x ið Þð Þj j 15:8Þ 

where x(i) is the observed data for ith sample, Fe(x(i)) = r/(N + 1) is the empirical 
CDF of x(i) of ith sample, “r” is the rank assigned to sample values arranged in 
ascending order (i.e., x(1) < x(2) < . . . ..x(N)), and Fc(x(i)) is the computed CDF of 
x(i) of ith sample. 

Test criteria: If the computed values of GoF tests statistic given by the distribu-
tion are less than that of the theoretical values at the desired level of significance, 
then the distribution is considered to be acceptable for EVA at that level. 

15.3.4 Diagnostic Test 

Sometimes the GoF test results would not offer a conclusive inference, thereby 
posing a bottleneck for the user in selecting the suitable distribution for the applica-
tion. In such cases, a diagnostic test in adoption to GoF is applied for making 
inference. The selection of the most suitable distribution is performed through the 
D-index test (United States Water Resources Council (USWRC) 1981), which is 
defined as:



ð

15 Comparison of Probability Distributions for Extreme Value Analysis. . . 279

D- index= 1=μ xð Þð Þ  
6 

i= 1 

x ið Þ- x ið Þ�j j 15:9Þ 

Here, x(i) (i = 1 to 6) and x(i)* are the six highest observed and the corresponding 
estimated values of ith sample. The probability distribution having the least D-index 
is considered as a better suited for rainfall estimation. 

15.3.5 Bayesian Regularized Artificial Neural Network 

BR-ANN (Burden and Winkler 2008; Okut 2016) is a more robust variant of ANNs 
than the standard ANN (Sasireka et al. 2019). This robustness of BR-ANN is 
obtained through the BR of the ANN parameters. A popular error function (ED) of  
ANN is as follows: 

ED Djw, Mð Þ= 
n 

i= 1 

ti - ti 
2 ð15:10Þ 

where w denotes weight, M denotes ANN structure, n denotes size of training data, ti 
is the ith target output, and tiis the i

th model (BR-ANN) output. 
Regularizing ANN with the Bayesian technique aids in optimizing the ANN 

parameter by utilizing prior ANN parameter values. In order to do this, an additional 
term (Ew) is added to the BR-ANN’s target function as follows: 

ED Djw,Mð Þ= 
n 

i= 1 

ti - ti 
2 þ Ew ð15:11Þ 

In order to improve generalization and gradual conversion, Ew is employed to 
compensate the unrealistic weights. The function is minimized using an optimization 
technique based on gradients: 

F= β ED Djw,Mð Þ= 
n 

i= 1 

ti - ti 
2 þ α Ew wjMð Þ ð15:12Þ 

where the hyper-parameters that need to be optimized are represented by α and β and 
Ew(w|M) represent sum of square of the ANN architecture. BR-ANN is an efficient 
predictive model, because it can uncover theoretically complex input-output 
relationships.
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15.4 Application 

In this paper, a study on the comparison of six probability distributions (viz., N2, 
LN2, P3, LP3, EV1, and GEV) adopted in the EVA of rainfall is carried out. MoM, 
MLM, and LMO determine the distribution’s characteristics, which are also 
employed in the estimation of rainfall. The daily rainfall data recorded at the 
Afzalpur, Kalaburagi, and Aland locations from 1970 to 2018 and 1970 to 2017, 
respectively, are used. From the daily rainfall data, the AMR series is taken out and 
used for EVA CWPRS (2021) do not have data for the intermittent period, according 
to a review of the daily rainfall statistics. Additionally, it is highlighted that the 
observed rainfall at Kalaburagi, which was 1.5 mm in 1993 and 15.6 mm in 2015, is 
inconsistent and was not taken into account while analyzing the data. However, the 
data for the missing years are ignored and not taken into account in EVA because of 
the significance of the hydrological extremes. The AMR descriptive data are pro-
vided in Table 15.3. The index map shown in Fig. 15.1 shows the locations of the 
rain gauge stations taken into consideration for the investigation. 

From the descriptive statistics (Table 15.3), it is noted that the higher order 
moments (CS and CK) of the AMR series behave differently for Afzalpur when 
compared to the values for Aland and Kalaburagi. The CV of the AMR series of 
Afzalpur, Aland, and Kalaburagi varies between about 27% and 67%, as shown in 
Table 15.3. 

Table 15.3 Descriptive statistics of the observed AMR 

Minimum 
(mm) 

Maximum 
(mm) 

Afzalpur 79.1 52.6 5.061 30.614 37.1 400.3 

Aland 83.9 35.6 0.935 1.368 30.1 190.0 

Kalaburagi 81.7 22.3 0.367 -0.474 41.6 129.0 

SD standard deviation, CS coefficient of skewness, CK coefficient of kurtosis 

Fig. 15.1 Index map of the study area with locations of rain gauge stations
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15.5 Results and Discussion 

By applying the procedures as described above, a computer code was developed and 
used in the EVA of rainfall. The code computes the (1) parameters of N2, LN2, P3, 
LP3, EV1, and GEV (using MoM, MLM, and LMO) distributions; (2) extreme 
rainfall estimates for different return periods; and (3) GoF test statistic and D-index 
values. 

15.5.1 Estimation of Extreme Rainfall 

The MoM, MLM and LMO were used to determine the characterisitcs of N2, LN2, 
P3,LP3, EV1 and GEV distributions adopted in EVA, wherever applicable. These 
parameters are used in the following study. Tables 15.4, 15.5, and 15.6 provide 
estimates of the 1-day maximum rainfall for Afzalpur, Aland, and Kalaburagi for 
various return periods. The EVA and GoF test results of P3 (LMO) and LP3 (LMO) 
are not shown in Tables 15.4, 15.5, 15.6, and  15.7 due to the absence of LMO in P3 
and LP3 distributions. From the EVA results, it can be seen that, when compared to 
the values of other distributions for the return periods ranging from 20 to 1000 years, 
the LP3 (MLM) offered higher estimates for Afzalpur and Aland and the EV1 
(MLM) for Kalaburagi. 

15.5.2 Analysis of Results Based on GoF Tests 

Six distributions were used to compute the GoF test values for the AMR series of 
Afzalpur, Aland, and Kalaburagi. The results are shown in Table 15.7. In the current 
study, the number of frequency classes (NC) is taken into account to be six, and as a 
result, the degree of freedom (NC-m-1) is taken into account to be two for distribu-
tions with three parameters (m), namely, P3, LP3, and GEV, and three for distribu-
tions with two parameters (m), namely, N2, LN2, and EV1, when computing the two 
statistic values. According to the degree of freedom, the theoretical values at the 5% 
level of significance are observed to be 5.99 for P3, LP3, and GEV and 7.815 for N2, 
LN2, and EV1. Likewise, the theoretical values of the KS statistic at 5% level of 
significance with reference to the number of samples considered in EVA are 
observed as 0.196 for Afzalpur, 0.203 for Aland, and 0.200 for Kalaburagi. From 
the GoF test results, some of the observations drawn from the study were summa-
rized and presented below:

• χ2 test results didn’t support the use of MoM, MLM, and LMO estimators of five 
distributions (viz., LN2, P3, LP3, EV1, and GEV) for the EVA of rainfall for 
Afzalpur and Aland.



282 N. Vivekanandan et al.

T
ab

le
 1
5.
4 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
fo
r 
di
ff
er
en
t 
re
tu
rn
 p
er
io
ds
 b
y 
si
x 
pr
ob

ab
ili
ty
 d
is
tr
ib
ut
io
ns
 f
or
 A

fz
al
pu

r 

D
is
tr
ib
ut
io
n

M
et
ho

d 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
(m

m
) 
fo
r 
a 
re
tu
rn
 p
er
io
d 
(i
n 
ye
ar
) 

2
5

10
20

25
50

10
0

20
0

50
0

10
00

 

N
2

M
oM

79
.1

12
3.
3

14
6.
4

16
5.
5

17
1.
1

18
7.
0

20
1.
4

21
4.
5

23
0.
4

24
1.
5 

M
L
M

79
.1

12
2.
8

14
5.
7

16
4.
6

17
0.
1

18
5.
9

20
0.
1

21
3.
1

22
8.
8

23
9.
8 

L
M
O

79
.1

10
7.
5

12
2.
3

13
4.
6

13
8.
1

14
8.
4

15
7.
6

16
6.
0

17
6.
2

18
3.
3 

L
N
2

M
oM

65
.8

10
9.
5

14
3.
0

17
8.
1

18
9.
9

22
8.
1

26
9.
1

31
2.
9

37
5.
7

42
7.
2 

M
L
M

71
.4

99
.6

11
8.
5

13
6.
7

14
2.
6

16
0.
7

17
8.
9

19
7.
4

22
2.
4

24
1.
9 

L
M
O

71
.4

97
.2

11
4.
1

13
0.
3

13
5.
4

15
1.
3

16
7.
1

18
3.
1

20
4.
4

21
8.
4 

P
3

M
oM

59
.3

81
.6

12
0.
2

17
1.
7

19
0.
3

25
2.
5

32
0.
0

39
1.
3

48
9.
8

56
6.
7 

M
L
M

60
.8

83
.7

12
3.
2

17
6.
0

19
5.
0

25
8.
8

32
8.
0

40
1.
1

50
2.
0

58
0.
9 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

L
P
3

M
oM

64
.3

93
.2

12
1.
2

15
6.
6

16
9.
9

21
8.
2

27
9.
5

35
7.
2

49
2.
9

62
7.
8 

M
L
M

80
.2

11
1.
0

14
4.
1

18
8.
2

20
5.
3

26
9.
5

35
4.
6

46
7.
6

67
5.
4

89
3.
1 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

E
V
1

M
oM

70
.4

11
6.
9

14
7.
7

17
7.
2

18
6.
6

21
5.
4

24
4.
0

27
2.
6

31
0.
2

33
8.
7 

M
L
M

72
.2

98
.8

11
6.
5

13
3.
4

13
8.
8

15
5.
3

17
1.
7

18
8.
1

20
9.
7

22
6.
0 

L
M
O

73
.3

10
4.
4

12
5.
0

14
4.
8

15
1.
1

17
0.
4

18
9.
6

20
8.
7

23
3.
9

25
2.
9 

G
E
V

M
oM

66
.0

10
2.
9

13
3.
5

16
8.
5

18
0.
9

22
3.
9

27
4.
3

33
3.
7

42
9.
0

51
6.
4 

M
L
M

68
.1

95
.2

11
7.
6

14
3.
2

15
2.
3

18
3.
5

22
0.
1

26
3.
1

33
1.
9

39
4.
8 

L
M
O

66
.4

93
.8

11
9.
3

15
1.
2

16
3.
2

20
7.
1

26
3.
2

33
5.
3

46
3.
0

59
2.
0



15 Comparison of Probability Distributions for Extreme Value Analysis. . . 283

T
ab

le
 1
5.
5 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
fo
r 
di
ff
er
en
t 
re
tu
rn
 p
er
io
ds
 b
y 
si
x 
pr
ob

ab
ili
ty
 d
is
tr
ib
ut
io
ns
 f
or
 A

la
nd

 

D
is
tr
ib
ut
io
n

M
et
ho

d 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
(m

m
) 
fo
r 
a 
re
tu
rn
 p
er
io
d 
(i
n 
ye
ar
) 

2
5

10
20

25
50

10
0

20
0

50
0

10
00

 

N
2

M
oM

83
.9

11
3.
8

12
9.
5

14
2.
4

14
6.
2

15
7.
0

16
6.
7

17
5.
5

18
6.
3

19
3.
8 

M
L
M

83
.9

11
3.
5

12
9.
0

14
1.
8

14
5.
5

15
6.
1

16
5.
7

17
4.
5

18
5.
1

19
2.
6 

L
M
O

83
.9

11
3.
0

12
8.
2

14
0.
8

14
4.
5

15
5.
0

16
4.
4

17
3.
0

18
3.
5

19
0.
8 

L
N
2

M
oM

77
.2

10
8.
8

13
0.
1

15
0.
8

15
7.
4

17
8.
0

19
8.
9

22
0.
1

24
8.
9

27
1.
4 

M
L
M

76
.9

11
0.
0

13
2.
6

15
4.
8

16
1.
9

18
4.
2

20
6.
9

23
0.
1

26
1.
7

28
6.
4 

L
M
O

76
.9

11
0.
7

13
4.
0

15
6.
9

16
4.
2

18
7.
3

21
0.
8

23
4.
9

26
7.
8

28
9.
7 

P
3

M
oM

78
.4

11
1.
1

13
1.
6

15
0.
2

15
6.
0

17
3.
3

18
9.
9

20
6.
0

22
6.
6

24
1.
8 

M
L
M

77
.8

11
0.
8

13
1.
8

15
1.
2

15
7.
2

17
5.
4

19
2.
9

20
9.
9

23
1.
8

24
8.
0 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

L
P
3

M
oM

76
.9

11
0.
4

13
3.
4

15
6.
0

16
3.
3

18
6.
1

20
9.
2

23
3.
0

26
5.
4

31
6.
9 

M
L
M

75
.9

11
1.
9

13
5.
2

15
8.
1

16
5.
4

18
8.
5

21
2.
0

23
6.
0

26
8.
8

32
1.
0 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

E
V
1

M
oM

78
.1

10
9.
5

13
0.
3

15
0.
3

15
6.
6

17
6.
2

19
5.
5

21
4.
8

24
0.
3

25
9.
5 

M
L
M

78
.0

10
9.
8

13
0.
9

15
1.
1

15
7.
5

17
7.
2

19
6.
8

21
6.
3

24
2.
0

26
1.
5 

L
M
O

78
.0

10
9.
9

13
1.
0

15
1.
3

15
7.
7

17
7.
5

19
7.
2

21
6.
8

24
2.
6

26
2.
2 

G
E
V

M
oM

78
.7

11
0.
5

13
0.
9

14
9.
9

15
5.
8

17
3.
7

19
1.
1

20
7.
9

22
9.
5

24
5.
3 

M
L
M

78
.3

10
9.
8

13
0.
3

14
9.
7

15
5.
8

17
4.
4

19
2.
6

21
0.
6

23
3.
9

25
1.
3 

L
M
O

79
.5

11
1.
2

13
0.
9

14
8.
8

15
4.
2

17
0.
6

18
6.
0

20
0.
6

21
8.
7

23
1.
7



284 N. Vivekanandan et al.

T
ab

le
 1
5.
6 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
fo
r 
di
ff
er
en
t 
re
tu
rn
 p
er
io
ds
 b
y 
si
x 
pr
ob

ab
ili
ty
 d
is
tr
ib
ut
io
ns
 f
or
 K

al
ab
ur
ag
i 

D
is
tr
ib
ut
io
n

M
et
ho

d 

E
st
im

at
ed
 1
-d
ay
 m

ax
im

um
 r
ai
nf
al
l 
(m

m
) 
fo
r 
a 
re
tu
rn
 p
er
io
d 
(i
n 
ye
ar
) 

2
5

10
20

25
50

10
0

20
0

50
0

10
00

 

N
2

M
oM

81
.7

10
0.
4

11
0.
2

11
8.
3

12
0.
7

12
7.
4

13
3.
5

13
9.
1

14
5.
8

15
0.
5 

M
L
M

81
.7

10
0.
2

10
9.
9

11
7.
9

12
0.
3

12
6.
9

13
2.
9

13
8.
4

14
5.
1

14
9.
8 

L
M
O

81
.7

10
0.
7

11
0.
7

11
8.
9

12
1.
3

12
8.
2

13
4.
3

14
0.
0

14
6.
8

15
1.
6 

L
N
2

M
oM

78
.8

98
.7

11
1.
1

12
2.
4

12
6.
0

13
6.
6

14
7.
0

15
7.
1

17
0.
4

18
0.
4 

M
L
M

78
.7

99
.3

11
2.
1

12
3.
9

12
7.
6

13
8.
8

14
9.
6

16
0.
3

17
4.
2

18
4.
7 

L
M
O

78
.7

99
.9

11
3.
3

12
5.
6

12
9.
4

14
1.
1

15
2.
4

16
3.
6

17
8.
3

19
0.
5 

P
3

M
oM

80
.3

99
.9

11
1.
0

12
0.
5

12
3.
4

13
1.
7

13
9.
4

14
6.
7

15
5.
8

16
2.
3 

M
L
M

80
.1

99
.6

11
0.
7

12
0.
4

12
3.
3

13
1.
8

13
9.
7

14
7.
2

15
6.
6

16
3.
4 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

L
P
3

M
oM

77
.9

99
.2

11
3.
2

12
6.
7

13
1.
0

13
7.
8

14
5.
5

15
2.
8

16
1.
9

16
8.
4 

M
L
M

78
.7

99
.5

11
2.
5

12
4.
5

12
8.
2

13
9.
5

15
0.
5

16
1.
4

17
5.
5

18
6.
2 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

E
V
1

M
oM

78
.0

97
.7

11
0.
8

12
3.
3

12
7.
2

13
9.
5

15
1.
6

16
3.
7

17
9.
7

19
1.
7 

M
L
M

78
.1

99
.8

11
4.
2

12
8.
0

13
2.
4

14
5.
9

15
9.
3

17
2.
7

19
0.
3

20
3.
6 

L
M
O

77
.8

98
.7

11
2.
5

12
5.
8

13
0.
0

14
2.
9

15
5.
8

16
8.
6

18
5.
5

19
8.
3 

G
E
V

M
oM

80
.1

10
0.
1

11
1.
5

12
1.
1

12
3.
9

13
1.
9

13
9.
0

14
5.
2

15
2.
4

15
7.
2 

M
L
M

82
.5

10
3.
2

11
4.
8

12
4.
7

12
7.
6

13
5.
9

14
3.
1

14
9.
6

15
7.
0

16
1.
9 

L
M
O

79
.6

10
0.
2

11
2.
2

12
2.
6

12
5.
7

13
4.
7

14
2.
9

15
0.
3

15
9.
1

16
5.
0



15 Comparison of Probability Distributions for Extreme Value Analysis. . . 285

T
ab

le
 1
5.
7 

C
om

pu
te
d 
an
d 
va
lu
es
 o
f 
G
oF

 a
nd

 d
ia
gn

os
tic
 t
es
ts
 s
ta
tis
tic
 b
y 
si
x 
pr
ob

ab
ili
ty
 d
is
tr
ib
ut
io
ns
 f
or
 A

fz
al
pu

r,
 A

la
nd

, a
nd

 K
al
ab
ur
ag
i 

D
is
tr
ib
ut
io
n

M
et
ho

d 

C
om

pu
te
d 
va
lu
es
 o
f 
G
oF

 (
vi
z.
, χ

2
 a
nd

 K
S
) 
an
d 
di
ag
no

st
ic
 (
vi
z.
, D

-i
nd

ex
) 
te
st
s 

A
fz
al
pu

r
A
la
nd

K
al
ab
ur
ag
i 

χ2
 

K
S

D
-i
nd

ex
χ2

 
K
S

D
-i
nd

ex
χ2

 
K
S

D
-i
nd

ex
 

N
2

M
oM

37
.2
50

0.
23

4
4.
82

8
5.
26

7
0.
08

8
1.
86

6
1.
73

9
0.
07

5
0.
45

2 

M
L
M

25
.2
50

0.
21

8
4.
79

3
6.
73

4
0.
09

1
1.
42

6
1.
73

9
0.
07

5
0.
47

9 

L
M
O

13
.2
50

0.
20

1
3.
71

4
7.
20

0
0.
09

4
1.
87

1
1.
73

9
0.
07

6
0.
41

3 

L
N
2

M
oM

22
.2
50

0.
20

2
4.
51

0
9.
00

0
0.
11

4
1.
81

3
0.
69

6
0.
05

1
0.
38

7 

M
L
M

23
.2
50

0.
20

5
3.
37

9
10

.1
00

0.
12

0
1.
79

9
0.
69

8
0.
05

3
0.
34

0 

L
M
O

24
.2
50

0.
20

8
3.
38

1
11

.2
00

0.
12

6
1.
81

2
0.
70

0
0.
05

5
0.
32

0 

P
3

M
oM

36
.2
50

0.
27

7
3.
20

0
11

.1
33

0.
09

5
1.
81

0
0.
95

7
0.
07

4
0.
37

5 

M
L
M

37
.2
50

0.
27

8
3.
28

0
11

.1
35

0.
09

8
1.
07

7
0.
97

5
0.
07

8
0.
39

0 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

L
P
3

M
oM

8.
25

0
0.
11

8
3.
28

7
8.
52

5
0.
10

5
1.
89

8
2.
78

3
0.
06

9
0.
30

1 

M
L
M

9.
12

5
0.
12

0
4.
33

5
8.
75

0
0.
10

8
1.
95

5
2.
82

5
0.
07

1
0.
32

3 

L
M
O

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A
 

E
V
1

M
oM

29
.7
50

0.
18

9
4.
81

8
8.
46

7
0.
10

8
1.
81

3
3.
56

5
0.
07

5
0.
41

5 

M
L
M

30
.2
50

0.
19

2
3.
40

4
8.
72

5
0.
11

0
1.
03

0
3.
67

5
0.
07

8
0.
36

2 

L
M
O

8.
75

0
0.
13

7
3.
70

8
9.
80

0
0.
10

3
1.
81

0
3.
04

3
0.
04

8
0.
36

9 

G
E
V

M
oM

12
.2
50

0.
17

1
3.
97

1
10

.3
33

0.
10

1
1.
81

3
0.
95

7
0.
04

4
0.
34

6 

M
L
M

7.
25

0
0.
12

5
3.
23

4
10

.3
33

0.
10

0
1.
07

5
0.
82

7
0.
06

0
0.
38

3 

L
M
O

6.
25

0
0.
08

4
3.
21

6
10

.3
33

0.
09

8
1.
81

6
0.
69

6
0.
07

5
0.
31

9



• χ2 test results supported the use of MoM, MLM, and LMO estimators of all six 
distributions adopted in EVA of rainfall for Kalaburagi.

• KS test results didn’t support the use of MoM, MLM, and LMO estimators of N2, 
LN2, and P3 distributions for EVA of rainfall for Afzalpur.

• KS test results confirmed the applicability of MoM, MLM, and LMO estimators 
of all six distributions adopted in the EVA of rainfall for Aland and Kalaburagi.
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15.5.3 Analysis of Results Based on Diagnostic Test 

In addition to the GoF test, the D-index was used to determine which of the six 
distributions in the EVA model best fit the criteria for estimating rainfall. These 
values were calculated using the N2, LN2, P3, LP3, EV1, and GEV distributions and 
are shown in Table 15.7. Based on the results of the diagnostic tests, it can be 
deduced that the D-index values of P3 (MoM) for Afzalpur, EV1 (MLM) for Aland, 
and LP3 (MoM) for Kalaburagi are less than those of other distributions used in 
the EVA. 

15.5.4 Selection of Probability Distribution 

Based on the EVA results from the diagnostic tests and GoF quantitative assessment, 
it was determined that the analysis produced conflicting inferences, necessitating 
qualitative evaluation. As a result, the best fit for rainfall estimates was again 
evaluated using fitted curves of the estimated severe rainfall along with D-index 
values, and a decision was taken as a result.

• According to the results of the diagnostic tests, EVA could be performed using P3 
(MoM) for Afzalpur, EV1 (MLM) for Aland, and LP3 (MoM) for Kalaburagi.

• The MoM estimators of the distributions, however, are frequently less precise 
than MLM and LMO, as were previously mentioned. As a result, while choosing 
the best fit for estimating rainfall in Afzalpur and Kalaburagi, the D-index values 
obtained from P3 (MoM) and LP3 (MoM) are not taken into account.

• In light of the foregoing, it is determined that the D-index value of GEV (LMO) is 
the second subsequent minimum for Afzalpur and Kalaburagi after excluding the 
D-index values obtained from MoM of P3 and LP3 distributions from the 
selection.

• The GEV (LMO) is more matched among the six distributions chosen in EVA for 
rainfall estimation for Afzalpur and Kalaburagi, whereas EV1 (MLM) is better 
suited for Aland, according to the qualitative assessment (plots of EVA results) of 
the outcomes. Figure 15.2 shows the plots of the estimated 1-day maximum 
rainfall with 95% confidence limits based on the chosen distribution and actual 
AMR data for the Afzalpur, Aland, and Kalaburagi sites.
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Fig. 15.2 Plots of estimated 1-day maximum rainfall by the selected distribution and observed 
AMR data for Afzalpur, Aland, and Kalaburagi
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15.5.5 Efficiency Analysis of BR-ANN 

Since a neural network demands comparatively more data to recognize the probable 
pattern (correlation) associated in a time series, the monthly rainfall dataset of all 
three sites, Afzalpur, Aland, and Kalaburagi, have been taken for 64 years, starting 
from January 1951 to December 2014. We have distributed this data for all three 
sites in the percentage of 70:30 for training and validation (testing) purposes to avoid 
overfitting in the performance evaluation of the predicting capability of ANN. 

The performance of the ANN model with the BR technique used in predicting the 
targeted output has been expressed for training, validation, and the collective 
monthly rainfall data of all three sites, as shown in Fig. 15.3 (Afzalpur), Fig. 15.4 
(Aland), and Fig. 15.5 (Kalaburagi). The efficiency of predicting outputs and targets 
through fit and errors has also been presented collectively for training and testing for 
all three sites. The model shows a high correlation between output and targeted input 
monthly rainfall data while training for all three stations. Since the model was trained 
for the training dataset, it has a higher correlation of approximately 0.95 between

Fig. 15.3 Scatter plot showing correlation between the outputs of BR-ANN and input monthly data 
(target) of (a) training dataset; (b) testing dataset; and (c) all dataset of Afzalpur; (d) time series plot 
of predicted monthly rainfall using BR-ANN



model output and target, whereas it gets reduced to approximately 0.40 in the case of 
validation (testing).
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Fig. 15.4 Scatter plot showing correlation between the outputs of BR-ANN and input monthly data 
(target) of (a) training datasets; (b) testing dataset; and (c) all the dataset of Aland; (d) time series 
plot of predicted monthly rainfall using BR-ANN 

15.5.6 Conclusions 

This study compared the MoM, MLM, and LMO estimators of six probability 
distributions (N2, LN2, P3, LP3, EV1, and GEV) used in the EVA of rainfall for 
Afzalpur, Aland, and Kalaburagi with the aim of identifying the best distribution for 
rainfall estimation through quantitative (GoF tests using χ2 and KS, and diagnostic 
test using D-index) and qualitative (fitted curves of the estimated rainfall) assess-
ments. The monthly rainfall patterns of all three stations have also been proposed to 
model and predict using an ANN with Bayesian regularization technique. The 
inferences made from the study were condensed and are given below based on the 
EVA data and BR-ANN predictions:
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Fig. 15.5 Scatter plot showing correlation between the outputs of BR-ANN and input monthly data 
(target) of (a) training datasets; (b) testing dataset; and (c) all the dataset of Kalaburagi; (d) time 
series plot of predicted monthly rainfall using BR-ANN

• χ2 test results didn’t support the use of all six distributions for EVA of rainfall for 
Afzalpur. For Aland, the χ2 test result indicates the N2 distribution is acceptable 
for EVA.

• χ2 test results supported the use of all six distributions for EVA of rainfall for 
Kalaburagi.

• KS test results didn’t support the use of N2, LN2, and P3 distributions for EVA of 
rainfall for Afzalpur.

• KS test results confirmed the applicability of all six distributions for EVA of 
rainfall for Aland and Kalaburagi.

• The GEV (LMO) is the superior choice among the six distributions chosen in 
EVA for rainfall estimation for Afzalpur and Kalaburagi, while EV1 (MLM) is 
better suited for Aland, according to the qualitative assessment (plots of EVA 
findings) of the outcomes, which was weighed with D-index values.

• The BR-ANN model has shown high correlation (approximately 0.95) in 
predicted output values and targeted input data at monthly scale from all three 
sites while training the datasets.



• The proposed model has shown comparatively lesser correlation between output 
and target values in validation, which means the model can be further optimized 
by hyper tuning the Bayesian regularization parameters.
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By considering the data length (i.e., 48 years for Afzalpur, 45 years for Aland, 
and 46 years for Kalaburagi) of the AMR series available for the study, the study 
suggested that the estimated rainfall for the return period beyond 200 years may be 
cautiously used due to uncertainty in the higher-order return periods while designing 
the hydraulic structures in the respective sites. Some other machine learning algo-
rithms, such as support vector machine (regression), Bayesian linear regression, etc., 
and some deep learning models, such as recurrent neural network, long short-term 
memory, etc., can also be explored to model nonstationary and complex rainfall 
patterns in a comparative analysis. 
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