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Abstract The real-time monitoring of tool wear is critical to ensure the high-quality 
machining. However, there are some problems in machining condition monitoring, 
such as large amount of data, redundancy of machining information and insufficient 
prediction accuracy, which affect the reliability of the tool wear monitoring process. 
This paper presents tool wear monitoring with multi-sensor instrument and tool 
wear compensation in milling process. Through the optimal feature combination of 
fusion signals, a tool wear prediction model based on 1DCNN-LSTM is constructed. 
Compared with the tool wear prediction model without feature selection, the predic-
tion accuracy and calculation efficiency of 1DCNN-LSTM model are significantly 
improved. 
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1 Introduction 

Tool condition is considered to be one of the most important factors in determining 
production quality, productivity and energy consumption [1]. As a widely used tool 
wear prediction technique, machine learning algorithm can establish a nonlinear 
mapping relationship between features and tool wear. Guan et al. [2] performed 
empirical modal decomposition of acoustic emission signals, and the feature vector 
composed of the autoregressive model of each modal function is extracted. Suo et al. 
[3] uses the multi-resolution wavelet method to analyze the milling force signal, 
extracts the energy and covariance of component into the BP neural network to 
achieve tool wear prediction. 

Dang et al. [4] collected vibration signals during the machining process, automat-
ically extracted features based on 1DCNN (one-dimensional convolutional neural
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network), and used extreme learning machine to predict tool wear. Zhou et al. [5] 
used Hilbert-Huang transform to extract tool wear features and predict too wear and 
tool remaining life based on LSTM (long short term memory) for tool wear and 
remaining tool life. Zhang et al. [6] carried out wavelet packet transform on milling 
force signals and used the energy in different frequency bands as feature vectors to 
predict tool wear state by using sparse auto-ecoding network model. Although the 
above single type of deep learning models can effectively extract spatial and has 
good prediction effect, it cannot mine information from both spatial and temporal 
dimensions. 

Yan et al. [7] proposed a long short-term memory convolutional neural network 
(LSTM-CNN) model, which uses LSTM and CNN to extract features of vibra-
tion and milling force signals from both sequence and multi-dimensional aspects. 
The mapping relationship between features and tool wear improves the prediction 
accuracy of tool wear. An et al. [8] proposed a hybrid model of CNN-SBULSTM 
(CNN with Stacked Bi-directional and Uni-directional LSTM), using CNN to extract 
features from internal from internal controller and external sensor signals, which 
performs features dimensionality reduction. Li et al. [9] proposed a 1DCNN-LSTM 
hybrid model which made full use of the learning ability of 1DCNN and the time 
series analysis ability of LSTM to fully mine the information related to tool wear state 
in vibration and acoustic emission signals, and achieved good tool wear recognition 
results. 

In this paper, the process signals are collected based on the multi-sensor fusion 
system, and the time domain, frequency domain and time–frequency domain features 
are extracted from the original signals to reduce the influence of noise. The adaptive 
moment estimation algorithm is used to optimize the 1DCNN-LSTM model, and the 
information related to tool wear is mined from both temporal and spatial dimensions 
in the tool wear feature data set to improve the accuracy of tool wear prediction. 

2 Theoretical Basis of 1DCNN-LSTM Model 

The 1DCNN-LSTM network model structure is shown in Fig. 1. In the prediction 
model, the useful information in the feature sequence of the input layer is fully 
excavated by two convolutional layers and two pooling layers alternately, and then 
the time series information of the output features of pooling layer 2 is extracted by 
LSTM. Finally the tool wear prediction value is obtained by the fully connected 
layer.

In order to improve the prediction accuracy of the model and the convergence 
speed of the iterative solution, each feature column and the actual wear value in the 
optimal feature combination are normalized: 

x ' = 
x − min(x) 

max(x) − min(x) 
(1)
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Fig. 1 1DCNN-LSTM network structure

The standardized features are input into the convolutional layer of 1DCNN for 
deep feature extraction. The convolution process is shown in Fig. 2. Taking a one-
dimensional cutting feature sequence of length N as an example, with a convolution 
kernel size of T × 1 and a step size of S, the resultant length G after convolution is 
calculated as: 

G = 
N − T 

s 
+ 1 (2)  

In the process of convolution kernel sliding, the convolution kernel with the input 
data to obtain the feature results, and the calculation formula is shown below: 

Xl 
j = f 

⎛ 

⎝ 
Ml−1∑
i=1

(
Xl−1 
i ∗ K l i j

) + bl j 

⎞ 

⎠i = 1, 2, . . .  Ml (3)

Fig. 2 Convolution process 
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where Xl 
j is the j th feature map of the lth layer, Ml is the input array for computing 

the jth output, Xl−1 
i is the ith input in the l−1th layer, K l i j  is the convolution kernel 

of the lth layer, bl j is the bias of the j th of the lth layer, and f (·) is the activation 
function. 

To avoid overfitting caused by overabundance neurons, maximum pooling is 
added after convolution to retain important feature information and improve training 
efficiency. The specific calculation formula is as follows: 

P( j ) = max 
t∈K j 

(q(t)) (4) 

where P( j ) is the jth feature value after pooling, K j is the jth pooling domain, and 
q(t) is the element value of the convolutional feature in the jth pooling domain before 
pooling. 

The output of the 1DCNN is fed into the LSTM neural network for modeling and 
extracting temporal information. The LSTM neural network introduces a series gate 
mechanism based on RNN (recurrent neural network) to obtain long-term memory 
and alleviate the gradient disappearance and explosion problems, and its cell structure 
is shown in Fig. 3. 

LSTM selectively processes information by combining current information and 
cell state history information using ingates, forgetting gates and output gates. At 
each moment t, the ingates and forgetting gates combine the output value ht−1 of 
the previous moment and the input xt of the current moment to obtain the input 

coefficient it , the forgetting coefficient ft , and the candidate cell state 
∼ 
Ct after the 

activation function. At each moment t, the ingates and forgetting gates combine the 
output value ht−1 of the previous moment and the input xt of the current moment 
to obtain the input coefficient it , the forgetting coefficient ft , and the candidate 

cell state 
∼ 
Ct after the activation function. The cell state Ct at the current moment 

is obtained by combining the information filtered by f t oblivion from the cell state 
Ct−1 at the previous moment and the information filtered by it from the candidate cell 

state 
∼ 
Ct . The output coefficients ot calculated by ht−1 and xt through the activation 

function after the cell state update. The updated cell state Ct is multiplied with ot 
after the activation function to obtain the predicted value of the current moment ht .

Fig. 3 Structure of LSTM 
memory cell unit 
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The formulae for each threshold, internal memory cell, memory and candidate state 
are shown below: 

Ingate (Threshold): 

it = σ(wi ·
[
ht−1, xt

] + bi ) (5) 

Oblivion Gate (Threshold): 

ft = σ(w  f ·
[
ht−1, xt

] + b f ) (6) 

Output Gate (Threshold): 

ot = σ(wo ·
[
ht−1, xt

] + bo) (7) 

Internal memory unit (long-term memory): 

Ct = ft ∗ Ct−1 + it ∗ C̃t (8) 

Predicted values (short-term memory): 

ht = ot ∗ tanh(Ct ) (9) 

Candidate state (new knowledge inducted): 

C̃t = tanh((wc ·
[
ht−1, xt

] + bc)) (10) 

where: wi , w f , wo, wC are the parameter matrices to be trained; bi , b f , bo, bC are the 
bias terms to be trained; σ the sigmoid activation function with the output interval 
[0, 1]; tanh is the activation function with the output interval [−1, 1]. 

The output of the LSTM is used as the input of the fully connected layer, and 
the predicted value is obtained after the fully connected layer, which realizes the 
mapping of features to tool wear values. The calculation formula is as follows. 

xl = σ
(
wl x l−1 + bl

)
(11) 

where wl is the weight of the lth layer and bl is the bias of the lth layer. 
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used as 

the two evaluation indicators of model prediction accuracy, which are calculated as 
follows. 

RMSE: 

Prmse =
⌜||√1 

n 

n∑
k=1

(
y pre k − yk

)2 
(12)
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MAE: 

Pmae = 
1 

n 

n∑
k=1

||y pre k − yk
|| (13) 

where y pre k is the predicted value of milling cutter wear, yk is the true value of milling 
cutter wear, and n is the number of samples. 

3 Milling Tool Wear Prediction Based on 1DCNN-LSTM 

The workpiece is fixed on the dynamometer through the fixture, and the vibration 
sensor is installed on the side of the workpiece to facilitate accurate acquisition 
of vibration and force signals. In the whole process of tool wear, there are 300 
times of cutting, and finally 300 sets of milling force and vibration signal data are 
obtained. During the cutting process, the time domain, frequency domain and other 
characteristic data extracted from the sensor signal are usually time series data which 
have obvious spatial local and time dependence characteristics [10]. CNN has strong 
data mining capabilities, and can achieve good prediction results even with less 
preprocessing. However, it assumes that all inputs and outputs are independent, and 
correlations between features at different moments are ignored, leads to performance 
degradation in processing time series data. LSTM can effectively deal with the long-
term dependence problem, which exactly makes up for the deficiency of CNN in 
dealing with time series data [11]. 

1DCNN is mainly used to deal with one-dimensional time series data, so 1DCNN 
is chosen to process the input feature sequence in this paper. Based on the local 
feature extraction ability of 1DCNN and the time dependence of LSTM, this paper 
designs a tool wear prediction model based on 1DCNN-LSTM. Taking the selected 
optimal feature combination sequence and the measured actual tool wear value as 
the input of the model, the nonlinear relationship between the feature and tool wear 
is established by training the model, and the tool wear prediction is finally realized. 

The total number of layers in the network of the model is 8, mainly containing 
2 layers of convolution, 2 layers of pooling, 1 layer of LSTM and 1 layer of fully 
connected layers. The input layer is the optimal feature combination sequence Ak , 
Ak = {Ak1, Ak2, …,  Akd}, k = 1, 2, …, 300, denoting the number of tool walks, 
and d is the number of feature dimensions in the optimal feature combination. In 
order not to miss feature information during convolution, the step size is set to 1. The 
size of the convolution kernel determines the weight distribution in the convolution 
process, and 3 × 1 convolution kernel is chosen, and the number of filters chosen in 
this paper is 16. The pooling domain size is chosen from the commonly used 2 × 1, 
where the step size is 2. The number of hidden layer neurons in LSTM is the same 
as the dimension of feature vectors in the input model.
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Train the entire model with Categorical-Cross entropy Loss, and the cross entropy 
error is calculated as follows: 

Loss(θ ) = −  
n∑

i=1 

y pre i log yi (14) 

where y pre i is the predicted value of milling cutter wear, yi is the true value of milling 
cutter wear, θ is the network parameter, and n is the number of samples. 

The algorithm performs the minimum solution along the direction where Loss(θ ) 
decreases the fastest and achieves a fit between the predicted and true values after 
several iterations. Since the traditional gradient descent algorithm is easy to fall into 
the local optimal and the update speed is slow when solving the model, the ADAM 
algorithm is used to optimize the model. 

ADAM uses the first-order and second-order moment means of the gradient 
to perform adaptive learning rate calculation and parameter update, respectively, 
ensuring that the learning rate of each parameter is dynamically adjusted within a 
determined range, making the parameter changes are relatively stable. The model 
calculates the error of each network layer by back propagation to achieve an accurate 
finding of the optimal solution for each network layer parameter θ. Let  ε be the step 
size and take the value of 0.001; the moment estimation index decay rates ρ1 and ρ2 
are usually set to 0.9 and 0.999, respectively. The constant δ = 10−8 is introduced to 
make the calculated value stable with error limit e = 10–8.The computational flow 
of the ADAM algorithm is shown in Table 1. 

Table 1 Flowchart of Adam’s algorithm 

ADAM algorithm: 

1: Initialization parameters: initialize the training parameter θ0 when t = 0; initialize the 
first-order s0 ← 0 and the second-order moment variable r0 ← 0 
2: While θ(t) does not reach convergence do (start iteration) 
3: t = t + 1 (time step t increases) 
4: gt = ∇θLoss(θt−1) (to obtain the tth round objective function gradient) 
5: st ← ρ1 · st−1 + (1 − ρ1) · gt (Update the biased first-order moment vector) 
6: rt ← ρ2 · rt−1 + (  1 − ρ2) · gt ⊙ gt (Update the biased second-order moment vector) 

7: s
∆

t ← st/(1 − ρt 1) (Correction of deviation of first-order moments) 

8: r
∆

t ← rt/(1 − ρt 2) (Correction of deviation of first-order moments) 

9: if ||s∆/(√r
∆ + δ)||2 ≥ e do: (Determine whether the conditions are met) 

10: θt = θt−1 + Δθ (Update parameters) 
11: else: (End of judgment) 
12: end while (Iteration stop)
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4 Analysis of Different Tool Wear Models 

In order to verify and compare the prediction effect of the 1DCNN-LSTM tool 
wear prediction model proposed in this paper, the other two methods are used for 
comparison: 

(a) LSTM model with the optimal feature combination sequence as input, denoted 
as LSTM; 

(b) 1DCNN-LSTM model with three-way force and vibration raw signal as input 
(Raw Data 1DCNN-LSTM, denoted as RD-1DCNN-LSTM). 

4.1 Comparison of Model Stability 

The LSTM model and 1DCNN-LSTM model were established in Python 3.8.2 and 
Tensorflow 2.0.1 frameworks, and the same training parameters were set for the three 
model methods: the optimizer for the training model was Adam, the basic learning 
rate was 0.001, the batch size was 30, and the number of iterations was 1000. The 
models were fully trained with the feature data, and then the stability of the model 
training process was verified by the feature data sets of Experiments 1 and 2, and the 
variation of the loss function values of the three models RD-1DCNN-LSTM, LSTM, 
and 1DCNN-LSTM are shown in Figs. 4, 5 and 6.

It can be seen from three figures, it reach a small value of loss function within 
1000 iteration cycles. The loss on the training set is very small from the loss on the 
test set, both floating around 0.58. Therefore, the training process of the models is 
normal and the training parameters are reasonable. Among them, the RD-1DCNN-
LSTM model tends to be stable after the iteration period reaches 600, and the LSTM 
model tends to be stable after the iteration period reaches 300. However, the model 
proposed in this paper is in a stable state only after 20 iterations, indicating that the 
proposed model is easy to train and can obtain high efficiency. The change trends of 
the loss function values in the two Experiment are similar, indicating the universality 
of the model. 

4.2 Comparison of Model Prediction Effects 

The tool wear prediction effects of the three models, RD-1DCNN-LSTM, LSTM 
and 1DCNN-LSTM are shown in Figs. 7, 8 and 9.

From Figs. 7, 8 and 9, it can be seen that the RD-1DCNN-LSTM model has the 
worst prediction effect among the three models. It is because that the interference 
of various factors such as environment makes the original data set contains a large 
amount of invalid redundant information, and the multi-domain features contain less 
interference factors. The prediction effect of the 1DCNN-LSTM model is better than
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Fig. 4 Variation of loss 
function values for 
RD-1DCNN-LSTM model: 
a ap = 0.1 mm, b ap = 
0.2 mm

that of the single LSTM model with smaller error values, indicating that the proposed 
model has stronger learning ability. In order to better prove the effectiveness of the 
proposed method, the evaluation criteria MAE and RMSE and the time cost of model 
operation are calculated as shown in Table 2.

As shown in the Table, compared with the LSTM and RD-1DCNN-LSTM models, 
the MAE of the 1DCNN-LSTM model was reduced by 7.0 and 11.4, with a decrease 
rate of 52.9% and 65.0% (experiments No. 1 and 2 mean), RMSE decreased by 
10.1 and 15.3, with a decrease rate of 54.9% and 65.3% (experiments No. 1 and 2 
average), and the runtimes decreased by 2839.4 and 1565.9 s, with a decreased rate 
of 75.4% and 62.8% (experiments No. 1 and 2 mean), indicating that the proposed 
model can predict tool wear more effectively. Therefore, the validity and feasibility 
of the model can be shown from the time cost and evaluation criteria.
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Fig. 5 Variation of loss function values for LSTM model: a ap = 0.1 mm, b ap = 0.2 mm
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Fig. 6 Variation of loss function values for 1DCNN-LSTM model: a ap = 0.1 mm, b ap = 0.2 mm
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Fig. 7 Prediction effect of 
RD-1DCNN-LSTM model: 
a ap = 0.1 mm, b ap = 
0.2 mm
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Fig. 8 Prediction effect of 
LSTM mode: a ap = 
0.1 mm, b ap = 0.2 mm
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Fig. 9 Prediction effect of 1DCNN-LSTM model: a ap = 0.1 mm, b ap = 0.2 mm
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Table 2 RMSE and MAE of different models on the data set 

No RMSE MAE Running time (s) 

1 2 1 2 1 2 

1DCNN-LSTM 7.8 8.3 5.5 6.7 905.3 948.3 

RD-1DCNN-LSTM 20.8 25.9 15.4 19.5 2413.3 2572.0 

LSTM 15.5 20.8 10.7 15.6 3729.9 3802.4 

Compared to RD-1DCNN-LSTM −13.0 −17.6 −9.9 −12.8 −1508.0 −1623.7 

Compared to LSTM −7.7 −12.5 −5.2 −8.9 −2824.6 −2854.1 

Rate compared to RD-1DCNN-LSTM 
(%) 

−62.5 −68.0 −64.3 −65.6 −62.5 −63.1 

Rate compared to LSTM (%) −49.7 −60.1 −48.6 −57.1 −75.7 −75.1
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