
A Semi-analytical Approach for Dynamic 
Characteristics of Beams with the Effect 
of Static Load 

Xuan Yang, Yanbin Li, Qiang Chen, and Qingguo Fei 

Abstract This work introduces a semi-analytical approach to illustrate the linearized 
vibration of clamped–clamped beams in the nonlinear regime due to the effect of 
static load. The von Karman strain and Hamilton’s principle are utilized to derive the 
genernal nonlinear equations of beams under static and acoustic pressure load. The 
nonlinear dynamic problem is analyzed in two parts: the nonlinear static problem 
and the linearized vibration around the nonlinear static equilibrium state. The modal 
equation under initial large deflection is a variable coefficient partial differential 
equation and is difficult to obtain an analytical solution. An approximate solution 
is performed by the transfer-matrix method and local homogenization. The analysis 
shows that the variation of pressure load affects the static deflection and the dynamic 
characteristics of the beam. With the gradual increase of the pressure load, the deflec-
tion of the beam has a great influence on the higher-order modal shapes of the beam. 
And the peak value of the modal shapes near the center of the beam is lower than the 
sides. 

Keywords Beams · Linearized vibration · Transfer matrix method · Geometric 
nonlinearity · Modal analysis 

1 Introduction 

During the service of a hypersonic vehicle, it has to endure a very complex dynamic 
environment, such as high dynamic pressure and acoustic pressure load. Clamped– 
clamped structures exhibit complex geometric nonlinear response characteristics 
under combined loads. The strain does not exceed the elastic limit, but the static
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equilibrium and vibration differential equations with large deflection show nonlinear 
characteristics. 

Takabatake [1] clarify the effect of dead loads on the static characteristics of the 
beam. Furthermore, he considered the effect of dead loads on the dynamic charac-
teristics of beams [2, 3] and plates [4] utilizing suitable assumptions. Zhou et al. 
[5] developed a load-induced stiffness matrix that considers the stiffening effect 
of dead loads. And the natural frequencies of beams are calculated using Finite-
element methods. Saha et al. [6] studied the large amplitude free vibration of plates 
based on static analysis by an iterative numerical scheme. Banerjee et al. [7] utilized 
the nonlinear shooting and Adomain decomposition methods to analyze the large 
deflection of beams. Wang et al. [8] investigated the effect of static load on the 
vibro-acoustic characteristics of plates. Carrera et al. [9] developed a geometrical 
nonlinear total Lagrangian formulation to analyze the vibration modes of beams in 
the nonlinear regime. 

In this paper, a semi-analytical approach is established to illustrate the linearized 
vibration of clamped–clamped beams in the nonlinear regime due to the effect of 
static load. By using the Rayleigh–Ritz method and transfer matrix method, the 
effect of static pressure load on the natural frequencies and modal shapes of beams 
are studied. 

2 Basic Theory 

A clamped–clamped rectangular beam under pressure load, as shown in Fig. 1, is  
considered in this study. The L, b and h are the length, width, and thickness of the 
beam. The P is the pressure load. The axial displacement components in the midplane 
are assumed as zero. Suppose that (u, w) denotes the total displacements of a point 
along the (x, z) coordinates. The von Karman strain and Hamilton’s principle are 
utilized to derive the nonlinear static equilibrium equations and nonlinear governing 
equations of the beam. The basic assumptions made to derive the equation can be 
summarized as follows: 

(1) Assuming the deformation of the beam obeying the hypothesis of the Bernoulli– 
Euler beam equation. 

(2) All strain components are small enough to satisfy Hooke’s law.

Fig. 1 A clamped–clamped 
rectangular beam under 
pressure load 
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2.1 Semi-analytical Approach for Nonlinear Static Deflection 

The Von Karman nonlinear strain–displacement relationships are 

ε0x = −z 
∂2w0 

∂x2 
+ 

1 

2

(
∂w0 

∂x

)2 

(1) 

where ε0x is the normal strain at an arbitrary point of the beam. 
According to Hamilton’s principle, the static equilibrium equations can be derived 

by 

δ(Up − Wp) = 0 (2)  

where δ is the variational operator. Up and Wp represent the strain energy and the 
potential energy, respectively, which can be written as 

Up =
∫ L 

0 

1 

8 
E A

(
∂w0 

∂x

)4 

dx  +
∫ L 
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E I

(
∂2w0 

∂ x2
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Wp =
∫ L 

0 
P0w0dx (4) 

where E, A, and I are Young’s modulus, the cross-sectional area, and the cross-
sectional moment of inertia, respectively. Furthermore, P0 is the static pressure load 
and w0 is the deflection. 

Analytical solutions for the deflection are obtained using Navier’s solution tech-
nique. The solution, which satisfies the clamped–clamped boundary conditions, can 
be assumed as follows. 

w0 = 
n⎲

m=1 

amsin 
π x 
L 

sin 
(2m − 1)π x 

L 
(5) 

Substituting Eq. (5) into the Eq. (2). According to the Rayleigh–Ritz method 
and the variational principle, the static equilibrium equations can be variationally 
calculated as 

∂(Up − Wp) 
∂am 

= 0 m = 1, 2, . . .  n (6) 

The value of coefficients am can be solved by numerical methods.
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2.2 Semi-analytical Approach for Modal Analysis 

The governing nonlinear equations of vibration with Von Karman strain can be 
expressed as 

ρ A ẅ − 
3 

2 
E Aw'2 w'' + E I  w(4) = P (7) 

where P is the combined load of dynamic pressure P0 and acoustic pressure P1. 
And the transverse displacement w can be divided into static deflection w0(x) and 
dynamic vibration w1(x, t). The Eq. (7) can be expressed as 
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1 + E I  w (4) 0 + E I  w (4) 1 = P (8) 

It is assumed that dynamic pressure is much greater than acoustic pressure. The 
deformed state w0(x) is defined as the reference state, and the vibration w1(x, t) is  
act on this reference state. The rotations under acoustic pressure are neglected. The 
Eq. (8) can be rewritten as 

ρ A ẅ1 − 
3 

2 
E Aw'2 

0w
''
0 − 

3 

2 
E Aw'2 

0w
''
1 + E I  w (4) 0 + E I  w (4) 1 = P (9) 

Due to the dynamic pressure being much greater than acoustic pressure, it is 
assumed that the w1 is much better than w0. And the influence of w1 on w0 is ignored. 
The relationship between static deflection w0 and dynamic pressure P0 is expressed 
as 

E I  w (4) 0 − 
3 

2 
E Aw'2 

0w
''
0 = P0(x) (10) 

The static deflection w0 can be obtained by Sect. 2.1. And  Eq. (9) can be rewritten 
as 

ρ A ẅ1 − 
3 

2 
E Aw'2 

0w
''
1 + E I  w (4) 1 = P1(x, t) (11) 

The governing equation of free vibration, with the effect of static load, can be 
simpler as 

ρ A ẅ1 − 
3 

2 
E Aw'2 

0w
''
1 + E I  w (4) 1 = 0 (12)  

Based on the separation of variables, the modal equation can be derived from 
Eq. (12), expressed as
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E I  φ(4) − 
3 

2 
E Aw'

0 
2 
φ'' − ω2 ρ Aφ = 0 (13) 

in which ω is the natural frequency of the beam, and φ is the mode function. Equa-
tion (13) is a variable coefficient partial differential equation and is difficult to calcu-
late an analytical solution. An approximate solution is performed by the transfer-
matrix method based on local homogenization. The beam is divided into n segments 
and the modal equation of the ith beam is 

E I  φi 
(4) − 

3 

2 
E Aw'

0 
2 
(xi )φ

''
i − ω2 ρ Aφi = 0 (14)  

According to the homogenization theory, let 

δ2 i = 1 

xi+1 − xi

∫ xi+1 

xi 

3Aw0
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dx β4 = 

ω2ρ A 
E I  

(15) 

The general solution of Eq. (14) is  

φi (x) = Ai sin βi1(x − xi ) + Bi cos βi1(x − xi ) 
+ Ci cosh βi2(x − xi ) + Di sinh βi2(x − xi ) (16) 
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In which, xi ≤ x ≤ xi+1, (i = 1, 2, 3, …, n). Ai, Bi, Ci, and Di are constants, which 
are to be determined using the boundary conditions. The displacement and force are 
continuous between the ith segment and the i + 1th segment which can be written as 

φi (xi+1) = φi+1(xi+1) φ'
i (xi+1) = φ'

i+1(xi+1) 
φ''
i (xi+1) = φ''

i+1(xi+1) φ'''
i (xi+1) = φ'''

i+1(xi+1) (18) 

The transfer matrix can be expressed as 

Φi (xi+1)ψi = Φi+1(xi+1)ψi+1 

ψi+1 = Φ−1 
i+1(xi+1)Φi (xi+1)ψi (19) 

In which 

ψi =
[
Ai Bi Ci Di

]T 
(20) 

θi (x) =
[
sin βi1(x − xi ) cos βi1(x − xi ) cosh βi2(x − xi ) sinh βi2(x − xi )

]
(21)
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Φi (x j ) = [  θi (x j ) θ '
i (x j ) θ ''

i (x j ) θ '''
i (x j )]T (22) 

The relationship between the nth segment and 1st segment is 

ψn = Γ ψ1 (23) 

Γ = 
i=nΠ
i=1 

Φ−1 
i+1(xi+1)Φi (xi+1) (24) 

In clamped boundary conditions, the natural frequencies are determined from the 
roots of the polynomial 

⎡ 
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Γ1 
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]
Γ 

(26) 

The structural modal frequency can be obtained by numerically solving Eq. (25). 
And then the coefficient of the general solution of each beam segment and the 
approximate modal shape can be obtained. 

3 Numerical Results and Discussions 

3.1 Verification of the Proposed Method 

The following parameters are adopted for the clamped–clamped beam: E = 200 
GPa, μ = 0.3, L = 350 mm, ρ = 7.93 × 10−9 t/mm3, b = 5 mm, and h = 3 mm. 
The static press is assumed as 0.01 MPa. The accuracy of this method is verified by 
ABAQUS. Through the convergence analysis, this paper takes 10 segments to solve 
the structural modal parameters. The Beam element B31 is adopted in ABAQUS, 
which includes 140 elements and 141 nodes in total. The deflection curve of the beam 
calculated by the two methods is shown in Fig. 2. The maximum error is 0.019 mm. 
The modal frequencies of the beam calculated from the proposed and ABAQUS are 
compared in Table 1. Results show that the modal frequencies and modal shapes 
obtained from the proposed method agree well with that from ABAQUS.
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Fig. 2 Comparisons of the 
deflection 

Table 1 Comparisons of modal frequencies 

Mode 1 2 3 4 5 

Initial Present 126.4 348.4 683.1 1129.2 1687.0 

ABAQUS 126.5 348.1 681.8 1125.8 1679.6 

Error % 0.08 0.09 0.19 0.30 0.44 

With pressure Present 130.5 365.7 700.7 1147.0 1704.7 

ABAQUS 136.2 352.7 687.4 1131.0 1685.0 

Error % 4.19 3.68 1.93 1.41 1.17 

3.2 Results and Discussion 

The effect of pressure load variation on the dynamic characteristics of the beam 
was investigated in this section. The reference pressure load Pr = 0.01 MPa and the 
pressure load P was set as P/Pr = 0, 1, 3, 5. The modal frequencies and modal shapes 
of the beam under varied pressure loads are shown in Figs. 3 and 4 respectively. 

Results show that the modal frequencies rise with the pressure load increase. 
The growth rate of structural deflection gradually was reduced due to geometric 
nonlinearity. And the increase of modal frequencies gradually slows down. With the 
gradual increase of the load, the shape of first and second-order modal shapes of the

Fig. 3 The modal 
frequencies under pressure 
load
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1st modal shape 2nd modal shape 

3rd modal shape 4th modal shape 

5th modal shape 

Fig. 4 The modal shapes under pressure load

beam does not change significantly, which could be expressed by an approximate 
trigonometric function. But the third, fourth and fifth-order modal shapes change 
significantly, and the peak value of the modal wave near the center of the beam is 
lower than the sides. 

4 Conclusion 

The large displacement of structures may modify the modal behavior of struc-
tures significantly. This work introduces a semi-analytical approach to illustrate the 
nonlinear vibration of clamped–clamped beams with the effect of static, considering 
the correlation of moderate rotations and nonlinear vibration. 

First, based on the Rayleigh–Ritz method, the static deformation analysis under 
pressure is carried out through the semi-analytical method. Then, based on the static 
deformation analysis, the governing differential equation of the beam under initial 
large deformation is established. The modal equation under initial large deflection 
is a variable coefficient partial differential equation. Finally, the equation is approx-
imately solved by the transfer-matrix method based on the local homogenization 
theory. 

The analysis shows that the variation of pressure load affects the static deflection 
and the dynamic characteristics of the beam. With the gradual increase of the load,
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the deflection of the beam has a great influence on the modal shape of the beam and 
the peak value of the modal wave near the center of the beam is lower than the sides. 
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