
Trajectory Inference Optimization Based
on Improved DR Algorithm

Li Yao-yu, Hou Fei, Ren Wei, and Ma Man-hao

Abstract Trajectory planning is often encountered in distribute tactical virtual simu-
lation. To improve the non-smooth problem caused by the nonunified step of compo-
nents in the simulation of naval battlefield, we proposed an improved DR algorithm,
which is verified by simulation experiments, to provide a smooth trajectory inference
method, and to achieve finer grain of trajectory inference in distributed interactive
simulation.

Keywords DR algorithm · Trajectory planning · Distributed simulation

1 Introduction

The position of each intermediate time cannot be determined by interpolation for a
model with continuous location information constraints provided by the simulation
engine because at the beginning of each simulation moment [1], it does not know the
precise location information, or refinement end position, which should be provided
in the following simulation moment.

Only the current location or entity information of the prior steps can be used to
predict the position information of the subsequent refining points [2]. The model is
then modified to reflect the comparison results in order to minimize prediction error at
the subsequent simulation moment, which compares the entity position information
provided by the simulation engine with the predicted information.

L. Yao-yu (B) · M. Man-hao
Science and Technology On Information Systems Engineering Laboratory, National University of
Defense Technology, Changsha, China
e-mail: garett_1984@hotmail.com

H. Fei
Hunan Tobacco Company, Changsha, China

R. Wei
No. 31675 Troops, Zhangjiakou, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. P. T. Mo (ed.), Proceedings of the 8th International Conference on Mechanical,
Automotive and Materials Engineering, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-99-3672-4_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3672-4_2&domain=pdf
mailto:garett_1984@hotmail.com
https://doi.org/10.1007/978-981-99-3672-4_2

16 L. Yao-yu et al.

A common state estimation and error correction approach in distributed interac-
tive systems is the DR algorithm. This paper enhances the current DR algorithm
in accordance with the ship’s movement legislation starting from building of an
improved model with limits on the location information [3]. To forecast and smooth
out the movement of ships, an improved DR algorithm based on a movement model
is suggested.

2 DR Algorithm

2.1 Principle of Dead Reckoning

Dead Reckoning, known as DR, is a navigational technique that involves utilizing a
previously established location to calculate the present position of a moving object,
as well as adding estimations of its speed, heading, and course over the length of
time [4].

As a result of the growing distance between the simulation nodes, and the number
of nodes in the entire simulation system has expanded along with the size of
distributed interaction simulation, the amount of interactive data exchanged between
each node has raised system network load and decreased the effectiveness of system
simulation operation, the system’s synchronization has been completely disrupted
by the information transmission latency.

The DR algorithm is a key component of DIS (Distributed Interactive Simulation),
and it focuses on reducing the delivery of interaction information between each
simulation node reasonably while compensating for transmission delays [5]. This
lowers the network’s transmission load and boosts the effectiveness of the entire
distributed interactive system.

Local simulation nodes must forecast the state of the simulation node that changes
in the interaction connection in order to limit interactive information transmission
between distributed nodes and maintain the regular functioning of the full distributed
simulation system at the same time. Each simulation node in the DR method has a
low-level DR model for the state recursive in addition to a high-level exact model
defining its own imitation of the state.

The node with the DR model used to register the entity to the node locally is also
preserved by other nodes that interact with this simulation node [6]. As illustrated in
Fig. 1, when the accurate state surpasses the threshold, the node communicates the
precise state information of the local entity to the simulation node participating in
the interaction and modifies every attribute of this node’s DR model.

Trajectory Inference Optimization Based on Improved DR Algorithm 17

DR model of B

DR model of A

Precious Status
Model of A

DR model of A

DR model of B

Precious Status
Model of B

Error
exceeds

threshold

Error
exceeds

threshold

N

YY

N
Continue to use

current DR model
Continue to use

current DR model

Send precious status
data to update DR

model of B

Send precious status
data to update DR

model of A

Fig. 1 DR algorithm principle

2.2 Commonly Used DR Algorithm

The DR model is mainly used for the calculation of space state, and the DR model
cannot be too complicated. Commonly space status DR algorithm include as follows.

(1) First order algorithm

The formula of the space location is:

⎧
⎪⎨

⎪⎩

xi = x0 + vx0iΔT

yi = y0 + vy0iΔT

zi = z0 + vz0iΔT

(1)

In addition to calculating the position, the inclination angle of the entity is often
calculated in the simulation, and the inclination angle is calculated based on the
rotation speed:

⎡

⎢
⎣

ψ
θ
ϕ

⎤

⎥
⎦ =

⎡

⎣
cos ψ tgθ sin ψ tgθ 1
− sin ψ cos ψ 0

cos ψ sec θ sin ψ sec θ 0

⎤

⎦

⎡

⎢
⎣

ωx

ωy

ωz

⎤

⎥
⎦ (2)

The formula of the inclination angle calculation is:

⎧
⎪⎨

⎪⎩

ψ = ψi−1 + ψi−1ΔT

θ = θi−1 + θi−1ΔT

ϕ = ϕi−1 + ϕi−1ΔT

(3)

18 L. Yao-yu et al.

(2) Second order algorithm

During the actual usage of the DR algorithm, the space posture generally uses first
order algorithm, and the calculation of the position is generally used in the second
order algorithm, with expression as below:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi = x0 + vx0iΔT +
1

2
ax0(iΔT)2

yi = y0 + vy0iΔT +
1

2
ay0(iΔT)2

zi = z0 + vz0iΔT +
1

2
az0(iΔT)2

(4)

In the above formula, V is the speed vector, A is the acceleration, which is the
rotation speed, and T is the calculation step (generally the simulation step size).

3 Problems with Current DR Algorithms in Simulation

In the naval tactical simulation system, the simulation engine, as an independent
component, is responsible for the entire simulation scheduling control [7]. The virtual
battlefield environment, as another independent component, drives the display of the
three-dimensional scene, based on the physical state interaction information received
from the simulation engine through the RTI (Run-time Infrastructure), shown in
Fig. 2.

Fig. 2 HLA-based system federation structure

Trajectory Inference Optimization Based on Improved DR Algorithm 19

Fig. 3 Time advancement of each entity

The virtual battlefield environment must deliver data points in the right granularity
in order to portray a continuous and fluid fighting process [8]. There are not enough
data points available for a virtual combat setting when using tactical deduction since
the simulation advancement step is typically bigger than the actual position stance
required. As a result, in the virtual combat environment, it is required to use smaller
steps to progress, split multiple intermediate periods inside the simulation engine,
and determine the entity’s position at the moment.

Because the physical location information provided by the subsequent simulation
moment of the simulation engine is uncertain, the method of interpolation cannot
be used for entities with a simulation engine to provide location information in the
environment of the virtual battlefield at the initial moment of the advancement of
the simulation engine [9]. Only previous data may be used to anticipate where each
intermediate stage will be, and this prediction must be limited by the precise position
data from the entity in the next simulation. Referring to Fig. 3.

AssumingΔT is the step size of the simulation engine, and the step size of virtual
battlefield environment is Δt/5, which means, it needs adding four intermediate
status data between the data provided by the simulation engine, in order to ensure
the consistency of the logic time of the simulation engine and the virtual battlefield
environment, both components adopted the controlled and limited time management
strategy in HLA (High Level Architecture). In a Δt, the interaction process of the
two components is as follows:

(1) At the time T, the simulation engine requested the state information of the entity
of T + Δt from the RTI, and requests to advance to T + Δt;

(2) Three-dimensional visualization component calculates the status information
of the entity at T + Δt/5 by the status information of the entity at the time of T,
and requests to advance to T + ΔT/5;

(3) Three-dimensional visualization State component is promoted at Δt/5. At T
+ 4ΔT/5, after a request to advance to T + ΔT, the RTI transmits the status
information of the T + ΔT of the simulation engine to the three-dimensional
component;

20 L. Yao-yu et al.

t t+Δt/5 t+2Δt/5 t+3Δt/5 t+4Δt/5 t+Δt

L1 L2

Fig. 4 Smoothing process

(4) The simulation engine and the three-dimensional visualization component are
advanced to T + ΔT.

The virtual battlefield environmental element cannot be totally consistent with
the entity information given by the simulation engine since it uses the anticipated
approach to retrieve the entity information of intermediate instant at ΔT. There
is an excessive discrepancy between the entity information given by the simulation
engine and that expected by the battlefield environment (that is, exceeding the pre-set
threshold). The three-dimensional scene display is prevented from changing instantly
on the one hand, while the DR model of the predicted DR needs to be updated.

Let the entity state predicted by T + 4ΔT/5 is S4, the entity state predicted at the
time of T + ΔT is S5, and the entity state of the T + ΔT get from the simulation
engine is S5'. At the time of T + 4ΔT/5, S5' can be obtained through the virtual
battlefield environment request. The traditional smooth method is usually used to
adding several intermediate points between T + 4ΔT/5 and T + Δt, transiting from
S4 to S5' by interpolation.

If the increasing entity state data point and logic time are matching, the simulation
operation won’t have a logical difficulty, according to the logic of simulation calcu-
lation. The adjustment of simulation time sequence has no bearing on the amount of
time between each drawing in 3D performance. The sole aspect in how logic time is
controlled is the quality of its own picture. As a result, as seen in Fig. 4, performance
discrepancies will result from increasing the data point.

The entity state change rate in the Δt is certain. If four points are added between
T + 4ΔT/5 and T + Δt, the change in the state of the entity between the data plotters
before the t + 4Δt/5 time is 5 times that after the t + 4Δt/5 moment, and the interval
between the data of each data has not changed significantly.

The three-dimensional performance shows the three-dimensional scene’s
changing condition. As a result, the conventional smooth treatment has to be enhanced
to accommodate the rendering of three-dimensional real-time scenes.

4 Trajectory Inference Oriented Improved DR Algorithm

The entity that can provide location and posture information of the positioning engine
for tactical simulation warfare deductions is often low-speed, such as ships and
submarines [10]. The movement rule is quite straightforward for these slowly moving
objects, and the transition from one state of motion to another often takes long time.

Trajectory Inference Optimization Based on Improved DR Algorithm 21

These qualities allow for the simplification of this sort of entity’s movement models
and the extraction of a restricted movement mode. The value utilized in the subsequent
simulation step will depend on the discrepancy between the real values transmitted
by the current prediction value and the actual value of the simulation engine.

In order to facilitate the description of the state of movement of the entity, the
following conventions are made:

(1) The three-dimensional coordinate system is adopted, where the X–Y plane is
the sea level, and Z represents the height value;

(2) Do not consider the movement of the entity with waves;
(3) Do not consider the entity rolling, only the pitch and partiality of the entity, set

the pitch angle α, the angle of yaw β;
(4) The cruise speed vc, acceleration a, angular velocity vβ, and vertical direction

vh are constant;
(5) The physical state information sent by the simulation engine includes at least

locations (x ', y', z'), speeds v' and directions β '.

The movement can be classified into a uniform straight-line motion in the X–Y
plane, accelerating (decelerating) straight movement, turning (changing the direc-
tion), and climbing (sinking) movement in the direction of Z, in accordance with the
aforementioned agreement combined with the entity’s movement law. Combining
these is possible in Basic mode. It is simple to build a mathematical description of
these fundamental sports modes in accordance with the law of movement.

The virtual battlefield environment states first started making predictions based
on starting movement speed and motion paths for uniform speed movements. The
virtual battlefield’s environmental state compares based on the physical status infor-
mation received and the entity information of its own forecast at each stage of simu-
lation engine. The movement mode adjustment is carried out in accordance with the
distinctions between the two, as shown in Fig. 5.

The disparities between received data and predicting data need to be handled
properly in order to preserve the three-dimensional scenario display’s continuity
and smoothness. Traditional smooth treatment procedures cannot be used due to the
demands of three-dimensional performance.

Based on the characteristics that the movement state of the entity to be predicted is
low, which can only be completed within a number of simulation steps, the predicted
data is still utilized at this point in time to drive the performance of the three-
dimensional geometric model of the entity even if the simulation engine is much
advanced.

The following actions are taken in the next simulation engine advance phase
to align the anticipated data with the received data and account for the difference
between the present received entity data and the new animation.

(1) According to the time of T, use predicted physical state data St and the receiving
physical state data St' to determine the movement mode in the next step;

(2) Calculate the physical state data at T + Δt based on T and St';

22 L. Yao-yu et al.

Fig. 5 Movement mode switching

(3) Interpolation calculates the entity state data for each intermediate time point
within Δt by St and St + Δt.

According to the above description, the improved DR algorithm can be described
as shown in Fig. 6 as follows:

Trajectory Inference Optimization Based on Improved DR Algorithm 23

S: Entity status in virtual battlefield, S’: Entity status received from simulation
engine

Do
Compute (&S, t) for each Entity at the current time.
Draw(S) for each Entity into the 3D scence
If the current time is the Simulation Engine time

GetValue(&S’) from RTI
Compare(S, S’) :
If the difference is beyond the threshold
SelectNewMoveStyle(difference)

TimeAdvance(NextTime)
While

Fig. 6 Improved DR algorithm for virtual battlefield environments

5 Experimental Verification

We employ the intricate models and their associated algorithms in this paper, using
OpenGL on the VC .NET platform, to achieve the trajectory inference of all weapons,
as shown in Fig. 7. This allows us to represent the ballistic and trails of missiles/
torpedoes and helicopters in a way that is intuitive and understandable.

Fig. 7 Application example of trajectory refinement continuous behavior model

24 L. Yao-yu et al.

Explanation as follows:

(1) Virtual ballistic display of the vertical plane of anti-ship missiles;
(2) Virtual ballistic display for vertical launch of anti-submarine missile vertical

plane;
(3) Virtual ballistic display for the vertical plane of an underwater submarine-

launched anti-ship missile;
(4) The virtual ballistic display of the vertical plane of the anti-submarine torpedo

on the water;
(5) Virtual track of the helicopter’s in horizontal plane;
(6) Virtual track display for helicopter recall in horizontal plane.

The results show, this improved DR algorithm could provide a smooth trajec-
tory inference method to achieve finer grain of trajectory inference in distributed
interactive simulation.

References

1. Amit N, Kumar SA, Kumar AL (2021) Learning-based hybrid routing for scalability in software
defined networks. Comput Netw 198

2. Damian SQJ, German M, Ignacio B (2021) A cloud framework for problem-based learning on
grid computing. J Parallel Distrib Comput

3. Piotr B, Gianluca D, Michal R et al (2021) Unified and standalone monitoring module for
NFV/SDN infrastructures. J Netw Comput Appl 175

4. Pulimeno M, Epicoco I, Cafaro M (2021) Distributed mining of time-faded heavy hitters. Inf
Sci 545 (prepublish)

5. Wee J, Choi J-G, Pak W (2019) Wildcard fields-based partitioning for fast and scalable packet
classification in vehicle-to-everything. Sensors 19(11)

6. Alamri A, Ansari WS, Hassan MM et al (2013) A survey on sensor-cloud: architecture,
applications, and approaches. Int J Distrib Sens Netw 2013(2)

7. Jang SM, Yoo JS (2008) An efficient load balancing mechanism in distributed virtual
environments. ETRI J 30(4)

8. Nativi S, Mazzetti P, Geller GN (2013) Environmental model access and interoperability: the
GEO model web initiative. Environ Modell Softw 39(Jan)

9. Lu PJ, Lai MC, Chang JS (2022) A survey of high-performance interconnection networks in
high-performance computer systems. Electronics 11(9)

10. Ha MJ, Kim J, Galloway Peña J et al (2020) Compositional zero-inflated network estimation
for microbiome data. BMC Bioinf 21(Suppl 21)

	 Trajectory Inference Optimization Based on Improved DR Algorithm
	1 Introduction
	2 DR Algorithm
	2.1 Principle of Dead Reckoning
	2.2 Commonly Used DR Algorithm

	3 Problems with Current DR Algorithms in Simulation
	4 Trajectory Inference Oriented Improved DR Algorithm
	5 Experimental Verification
	References

