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Abstract Trajectory planning is often encountered in distribute tactical virtual simu-
lation. To improve the non-smooth problem caused by the nonunified step of compo-
nents in the simulation of naval battlefield, we proposed an improved DR algorithm, 
which is verified by simulation experiments, to provide a smooth trajectory inference 
method, and to achieve finer grain of trajectory inference in distributed interactive 
simulation. 
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1 Introduction 

The position of each intermediate time cannot be determined by interpolation for a 
model with continuous location information constraints provided by the simulation 
engine because at the beginning of each simulation moment [1], it does not know the 
precise location information, or refinement end position, which should be provided 
in the following simulation moment. 

Only the current location or entity information of the prior steps can be used to 
predict the position information of the subsequent refining points [2]. The model is 
then modified to reflect the comparison results in order to minimize prediction error at 
the subsequent simulation moment, which compares the entity position information 
provided by the simulation engine with the predicted information.
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A common state estimation and error correction approach in distributed interac-
tive systems is the DR algorithm. This paper enhances the current DR algorithm 
in accordance with the ship’s movement legislation starting from building of an 
improved model with limits on the location information [3]. To forecast and smooth 
out the movement of ships, an improved DR algorithm based on a movement model 
is suggested. 

2 DR Algorithm 

2.1 Principle of Dead Reckoning 

Dead Reckoning, known as DR, is a navigational technique that involves utilizing a 
previously established location to calculate the present position of a moving object, 
as well as adding estimations of its speed, heading, and course over the length of 
time [4]. 

As a result of the growing distance between the simulation nodes, and the number 
of nodes in the entire simulation system has expanded along with the size of 
distributed interaction simulation, the amount of interactive data exchanged between 
each node has raised system network load and decreased the effectiveness of system 
simulation operation, the system’s synchronization has been completely disrupted 
by the information transmission latency. 

The DR algorithm is a key component of DIS (Distributed Interactive Simulation), 
and it focuses on reducing the delivery of interaction information between each 
simulation node reasonably while compensating for transmission delays [5]. This 
lowers the network’s transmission load and boosts the effectiveness of the entire 
distributed interactive system. 

Local simulation nodes must forecast the state of the simulation node that changes 
in the interaction connection in order to limit interactive information transmission 
between distributed nodes and maintain the regular functioning of the full distributed 
simulation system at the same time. Each simulation node in the DR method has a 
low-level DR model for the state recursive in addition to a high-level exact model 
defining its own imitation of the state. 

The node with the DR model used to register the entity to the node locally is also 
preserved by other nodes that interact with this simulation node [6]. As illustrated in 
Fig. 1, when the accurate state surpasses the threshold, the node communicates the 
precise state information of the local entity to the simulation node participating in 
the interaction and modifies every attribute of this node’s DR model.
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Fig. 1 DR algorithm principle 

2.2 Commonly Used DR Algorithm 

The DR model is mainly used for the calculation of space state, and the DR model 
cannot be too complicated. Commonly space status DR algorithm include as follows. 

(1) First order algorithm 

The formula of the space location is: 
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zi = z0 + vz0iΔT 

(1) 

In addition to calculating the position, the inclination angle of the entity is often 
calculated in the simulation, and the inclination angle is calculated based on the 
rotation speed: 
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The formula of the inclination angle calculation is: 

⎧ 
⎪⎨ 
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ψ = ψi−1 + ψi−1ΔT 

θ = θi−1 + θi−1ΔT 

ϕ = ϕi−1 + ϕi−1ΔT 

(3)



18 L. Yao-yu et al.

(2) Second order algorithm 

During the actual usage of the DR algorithm, the space posture generally uses first 
order algorithm, and the calculation of the position is generally used in the second 
order algorithm, with expression as below: 

⎧ 
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xi = x0 + vx0iΔT + 
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2 
az0(iΔT )2 

(4) 

In the above formula, V is the speed vector, A is the acceleration, which is the 
rotation speed, and T is the calculation step (generally the simulation step size). 

3 Problems with Current DR Algorithms in Simulation 

In the naval tactical simulation system, the simulation engine, as an independent 
component, is responsible for the entire simulation scheduling control [7]. The virtual 
battlefield environment, as another independent component, drives the display of the 
three-dimensional scene, based on the physical state interaction information received 
from the simulation engine through the RTI (Run-time Infrastructure), shown in 
Fig. 2. 

Fig. 2 HLA-based system federation structure
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Fig. 3 Time advancement of each entity 

The virtual battlefield environment must deliver data points in the right granularity 
in order to portray a continuous and fluid fighting process [8]. There are not enough 
data points available for a virtual combat setting when using tactical deduction since 
the simulation advancement step is typically bigger than the actual position stance 
required. As a result, in the virtual combat environment, it is required to use smaller 
steps to progress, split multiple intermediate periods inside the simulation engine, 
and determine the entity’s position at the moment. 

Because the physical location information provided by the subsequent simulation 
moment of the simulation engine is uncertain, the method of interpolation cannot 
be used for entities with a simulation engine to provide location information in the 
environment of the virtual battlefield at the initial moment of the advancement of 
the simulation engine [9]. Only previous data may be used to anticipate where each 
intermediate stage will be, and this prediction must be limited by the precise position 
data from the entity in the next simulation. Referring to Fig. 3. 

AssumingΔT is the step size of the simulation engine, and the step size of virtual 
battlefield environment is Δt/5, which means, it needs adding four intermediate 
status data between the data provided by the simulation engine, in order to ensure 
the consistency of the logic time of the simulation engine and the virtual battlefield 
environment, both components adopted the controlled and limited time management 
strategy in HLA (High Level Architecture). In a Δt, the interaction process of the 
two components is as follows:

(1) At the time T, the simulation engine requested the state information of the entity 
of T + Δt from the RTI, and requests to advance to T + Δt; 

(2) Three-dimensional visualization component calculates the status information 
of the entity at T + Δt/5 by the status information of the entity at the time of T, 
and requests to advance to T + ΔT/5; 

(3) Three-dimensional visualization State component is promoted at Δt/5. At T  
+ 4ΔT/5, after a request to advance to T + ΔT, the RTI transmits the status 
information of the T + ΔT of the simulation engine to the three-dimensional 
component;
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Fig. 4 Smoothing process 

(4) The simulation engine and the three-dimensional visualization component are 
advanced to T + ΔT. 

The virtual battlefield environmental element cannot be totally consistent with 
the entity information given by the simulation engine since it uses the anticipated 
approach to retrieve the entity information of intermediate instant at ΔT. There 
is an excessive discrepancy between the entity information given by the simulation 
engine and that expected by the battlefield environment (that is, exceeding the pre-set 
threshold). The three-dimensional scene display is prevented from changing instantly 
on the one hand, while the DR model of the predicted DR needs to be updated. 

Let the entity state predicted by T + 4ΔT/5 is S4, the entity state predicted at the 
time of T + ΔT is S5, and the entity state of the T + ΔT get from the simulation 
engine is S5'. At the  time of T  + 4ΔT/5, S5' can be obtained through the virtual 
battlefield environment request. The traditional smooth method is usually used to 
adding several intermediate points between T + 4ΔT/5 and T + Δt, transiting from 
S4 to S5' by interpolation. 

If the increasing entity state data point and logic time are matching, the simulation 
operation won’t have a logical difficulty, according to the logic of simulation calcu-
lation. The adjustment of simulation time sequence has no bearing on the amount of 
time between each drawing in 3D performance. The sole aspect in how logic time is 
controlled is the quality of its own picture. As a result, as seen in Fig. 4, performance 
discrepancies will result from increasing the data point. 

The entity state change rate in the Δt is certain. If four points are added between 
T + 4ΔT/5 and T + Δt, the change in the state of the entity between the data plotters 
before the t + 4Δt/5 time is 5 times that after the t + 4Δt/5 moment, and the interval 
between the data of each data has not changed significantly. 

The three-dimensional performance shows the three-dimensional scene’s 
changing condition. As a result, the conventional smooth treatment has to be enhanced 
to accommodate the rendering of three-dimensional real-time scenes. 

4 Trajectory Inference Oriented Improved DR Algorithm 

The entity that can provide location and posture information of the positioning engine 
for tactical simulation warfare deductions is often low-speed, such as ships and 
submarines [10]. The movement rule is quite straightforward for these slowly moving 
objects, and the transition from one state of motion to another often takes long time.
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These qualities allow for the simplification of this sort of entity’s movement models 
and the extraction of a restricted movement mode. The value utilized in the subsequent 
simulation step will depend on the discrepancy between the real values transmitted 
by the current prediction value and the actual value of the simulation engine. 

In order to facilitate the description of the state of movement of the entity, the 
following conventions are made: 

(1) The three-dimensional coordinate system is adopted, where the X–Y plane is 
the sea level, and Z represents the height value; 

(2) Do not consider the movement of the entity with waves; 
(3) Do not consider the entity rolling, only the pitch and partiality of the entity, set 

the pitch angle α, the angle of yaw β; 
(4) The cruise speed vc, acceleration a, angular velocity vβ, and vertical direction 

vh are constant; 
(5) The physical state information sent by the simulation engine includes at least 

locations (x ', y', z'), speeds v' and directions β '. 

The movement can be classified into a uniform straight-line motion in the X–Y 
plane, accelerating (decelerating) straight movement, turning (changing the direc-
tion), and climbing (sinking) movement in the direction of Z, in accordance with the 
aforementioned agreement combined with the entity’s movement law. Combining 
these is possible in Basic mode. It is simple to build a mathematical description of 
these fundamental sports modes in accordance with the law of movement. 

The virtual battlefield environment states first started making predictions based 
on starting movement speed and motion paths for uniform speed movements. The 
virtual battlefield’s environmental state compares based on the physical status infor-
mation received and the entity information of its own forecast at each stage of simu-
lation engine. The movement mode adjustment is carried out in accordance with the 
distinctions between the two, as shown in Fig. 5.

The disparities between received data and predicting data need to be handled 
properly in order to preserve the three-dimensional scenario display’s continuity 
and smoothness. Traditional smooth treatment procedures cannot be used due to the 
demands of three-dimensional performance. 

Based on the characteristics that the movement state of the entity to be predicted is 
low, which can only be completed within a number of simulation steps, the predicted 
data is still utilized at this point in time to drive the performance of the three-
dimensional geometric model of the entity even if the simulation engine is much 
advanced. 

The following actions are taken in the next simulation engine advance phase 
to align the anticipated data with the received data and account for the difference 
between the present received entity data and the new animation.

(1) According to the time of T, use predicted physical state data St and the receiving 
physical state data St' to determine the movement mode in the next step; 

(2) Calculate the physical state data at T + Δt based on T and St';
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Fig. 5 Movement mode switching

(3) Interpolation calculates the entity state data for each intermediate time point 
within Δt by St and St + Δt. 

According to the above description, the improved DR algorithm can be described 
as shown in Fig. 6 as follows:
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S: Entity status in virtual battlefield, S’: Entity status received from simulation 
engine 

Do 
Compute (&S, t) for each Entity at the current time. 
Draw(S) for each Entity into the 3D scence 
If the current time is the Simulation Engine time 

GetValue(&S’) from RTI 
Compare(S, S’) : 
If the difference is beyond the threshold 
SelectNewMoveStyle(difference) 

TimeAdvance(NextTime) 
While 

Fig. 6 Improved DR algorithm for virtual battlefield environments 

5 Experimental Verification 

We employ the intricate models and their associated algorithms in this paper, using 
OpenGL on the VC .NET platform, to achieve the trajectory inference of all weapons, 
as shown in Fig. 7. This allows us to represent the ballistic and trails of missiles/ 
torpedoes and helicopters in a way that is intuitive and understandable. 

Fig. 7 Application example of trajectory refinement continuous behavior model
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Explanation as follows: 

(1) Virtual ballistic display of the vertical plane of anti-ship missiles; 
(2) Virtual ballistic display for vertical launch of anti-submarine missile vertical 

plane; 
(3) Virtual ballistic display for the vertical plane of an underwater submarine-

launched anti-ship missile; 
(4) The virtual ballistic display of the vertical plane of the anti-submarine torpedo 

on the water; 
(5) Virtual track of the helicopter’s in horizontal plane; 
(6) Virtual track display for helicopter recall in horizontal plane. 

The results show, this improved DR algorithm could provide a smooth trajec-
tory inference method to achieve finer grain of trajectory inference in distributed 
interactive simulation. 
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