
Chapter 9 
Cause of Disease and Causal Inference 

Li Ye 

Key Points
• In epidemiology, cause and causal inference are used to explore the etiology of 

risk factors for diseases at a population level.
• A causal model is a concise and conceptual graphic that describes the relationship 

between cause and disease.
• Most epidemiologic study designs can be used for evaluating causation. The 

strength of these designs to evaluate causation varies.
• Mill’s canons represent logical strategies for inferring a causal relationship.
• Hill’s criteria are a list of guidelines to distinguish causal and noncausal associ-

ations; these criteria have been widely used and are the best known criteria for 
assessing causal inference. 

9.1 Introduction 

One of the major focuses of epidemiology is to find the causes of diseases or events. 
Understanding the causes of diseases is important not only for correct diagnoses and 
treatments but also for effective prevention and control strategies. Therefore, cause 
of disease and causal inference—the process by which we identify the cause of 
disease are essential in both clinical and preventive medicine. In epidemiology, 
cause and causal inference are used to explore the etiology of or risk factors for 
diseases as well as their impact on the development of disease at the population level, 
which can provide unique insights into the etiology of the disease and lead to a 
population-level understanding of the disease. This chapter describes the epidemi-
ologic concept of cause and the approaches to causal inference. 
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9.2 Cause of Disease in Epidemiology 

9.2.1 The Concept of Cause in Epidemiology and its 
Development History 

There are many definitions of cause in epidemiology. The following widely accepted 
definition is from Abraham Lilienfeld: a causal relationship would be recognized to 
exist whenever evidence indicates that the factors from part of the complex of 
circumstances that increase the probability of the occurrence of disease and that a 
diminution of one or more of these factors decrease the frequency of that disease. 
Another definition from Kenneth Rothman and Greenland [10] is also widely 
accepted due to its simplicity and clarity: an event, condition or characteristic, or a 
combination of these factors that play an essential role in producing an occurrence of 
the disease. Cause is an important concept in epidemiology. There are many other 
synonyms to describe cause, including causal agency, determinant, risk factor, 
exposure, etiological factor, etiological agent, etc. In epidemiology, cause is often 
referred to as a risk factor, which means the factor that increases the risk of disease. 

The cause of disease has long been explored. The most ancient idealism attributed 
the occurrence of diseases to the god or devil. In the fourth century BC, Hippocrates, 
the father of medicine, considered that diseases occurred because of the imbalance of 
“four body humors.” In the fifth century, Chinese ancestors founded a materialistic 
view of the cause, and they proposed diseases were from the imbalance of “Yin-
Yang” or “Five elements (wood, earth, water, metal, fire).” 

In the later nineteenth century, at the height of the era of germ theory, Robert 
Koch, the founder of modern bacteriology, proposed Koch’s postulates, which 
include four generalized principles for determining whether a specific microorgan-
ism causes a specific disease. Koch’s postulates contributed greatly to the formation 
of the concept of cause in epidemiology because identifying the microorganism was 
equivalent to identifying the cause of the disease. In fact, the discipline of epidemi-
ology as well as the concept of the cause of disease originated from etiology and 
epidemic studies on communicable diseases, among which the germ theory and 
Koch’s postulates represent landmark achievements. 

However, Koch’s postulates cannot explain the causes for most diseases, espe-
cially noncommunicable diseases, which have replaced communicable diseases as 
the main threat to human health since the middle of the twentieth century. More 
recently, the epidemiologic studies have focused more on the probability and 
multicausality of the occurrence of diseases, which finally led to the formation of a 
modern concept of cause, as described at the beginning of this subsection.
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9.2.2 Classification of Cause 

In modern epidemiology, the concept of cause actually means “multicausality”. 
Most diseases, whether communicable or noncommunicable, have more than one 
cause. Since the definition of cause, either by Lilienfeld or by Rothman, means that 
any “factor” or any “event, condition or characteristic” plays a role in affecting the 
occurrence of the disease, the cause in epidemiology covers a wide range of factors, 
including individual genetics, physiological influences, environmental influences, 
social structure, etc. According to the source of these factors, we can divide the 
causes into two general categories: host factors and environmental factors 
(Table 9.1). Host factors refer to various characteristics that are related to people 
or an individual, such as genetics, immune status, age, sex, race, and behavior. 
(Table 9.1). Environmental factors mainly include biological, physical, chemical, 
and social factors (Table 9.1). 

Table 9.1 Classification of the cause of disease 

Factor (cause) Description 

Host factors 
1. Genetics Chromosomal disorder, single gene disorder, polygenetic disorders, etc. 

2. Immune status It involves in the occurrence of most diseases, both communicable and 
noncommunicable 

3. Age and sex People of different age or sex may be susceptible to different diseases 

4. Race Occurrence of disease has difference in race 

5. Personality Temperament, psychological status, psychiatric status, etc. may have effects 
on the occurrence or progression of diseases 

6. Behavior Bad behaviors or habits such as smoking, drinking, poor diet, lack of 
exercise, unsafety sexual behaviors, drug abuse, noncompliance with traffic 
laws, etc. 

Environmental 
factors 
1. Biological Pathogenic microorganisms (bacteria, viruses, rickettsiae, mycoplasmas, 

chlamydiae, spirochetes, actinomyces, etc.); parasites (protozoa, worms, 
insects, etc.); venomous animals and poisonous plants (snakes, ergot, 
mushrooms, etc.) 

2. Physical Temperature, humidity, altitude, noise, light, vibration, radiation, dust, fire, 
etc. 

3. Chemical Pollution, agricultural chemicals, food additives, microelement, heavy 
metal, etc. 

4. Social Social system, socioeconomic level, war, disaster, education, religion, living 
condition, lifestyle, occupation, family relationship, etc.
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9.2.3 Causation Models 

A causal model is a concise and conceptual graphics that describes the relationship 
between cause and disease. During the development of etiology, different causal 
models were proposed based on contemporary understanding of the diseases in 
different historical periods, which made a great contribution to the formation of 
the modern concept of cause. Casual models can be used to illuminate the associ-
ation between cause and disease as well as the relationship between multiple causes 
of a disease and to provide direction or clues to find a new cause. Essentially, the aim 
of causal models is to find causes and elucidate the dominant cause and ultimately 
determine the best prevention or intervention strategy. The most representative 
causal models are the triangle model, the wheel model, the chain of causation 
model, and the web of causation model. 

9.2.3.1 Triangle Model 

In 1954, John Gordon summarized the knowledge about the epidemiologic etiology 
of diseases at that time and put forward an epidemiologic triangle model (epidemi-
ologic triad) to describe the relationships between multifactorial causes and a 
disease, especially communicable disease. The model considers that host factors 
(age, sex, race, genetic profile, immune status, etc.), agents (biologic pathogens, 
chemical, physical, nutritional agents, etc.), and environmental factors (temperature, 
humidity, crowding, housing, water, food, radiation, pollution, noise, etc.) are the 
troika of a disease. These three aspects are indispensable for the occurrence of a 
disease and have an equal role in the occurrence of disease. Hence, the relationships 
can be described as an equilateral triangle (Fig. 9.1). The three kinds of factors 
interact and restrict each other, and thus, a dynamic balance exists that makes the 
occurrence of disease in a stable state. Once the balance is disturbed, the occurrence 
of disease increases or decreases. The triangle model is helpful even today for 
finding the cause of communicable diseases and controlling the epidemic. However, 
it is basically unsuitable for the description of noncommunicable diseases. 

Fig. 9.1 Epidemiologic 
triangle model
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9.2.3.2 Wheel Model 

In the middle of the twentieth century, noncommunicable diseases became the main 
threat to humankind. However, there is no obvious or absolute agent for most 
noncommunicable diseases, as a pathogen agent for communicable diseases. It is 
very difficult to describe the relationship between cause and noncommunicable 
disease using a triangle model. In 1985, Mansner and Kramer proposed the wheel 
model based on the triangle model. In this model, host factors play the core role in 
the occurrence of disease and are located in the center of the wheel, with genetic 
factors as the core of the center (Fig. 9.2). The host center is surrounded by three 
kinds of environmental factors, including biological, social, and physical environ-
mental factors. The main difference between the wheel model and the triangle model 
is that the wheel model considers that different factors have different importance for 
the occurrence of disease. Therefore, the area sizes of the center (host factors) and 
surrounding parts in the wheel (biological, social, and physical factors, respectively) 
can be adjusted to reflect the importance of different factors. The wheel model 
emphasizes the core role of host factors as well as the influencing effects of 
environmental factors. It is considered to be better than the triangle model and 
suitable for both communicable and noncommunicable diseases. However, the 
wheel model came from etiology knowledge in the 1980s and could not truly reflect 
the complex interactions between various factors. It is still limited for many 
noncommunicable diseases, especially chronic diseases. 

9.2.3.3 Chain of Causation Model 

In multicausality theory, there are multiple causes of communicable and 
noncommunicable diseases. The multiple causes or risk factors can always be 
displayed in the form of a chain. Some factors are direct or proximal or most 
immediate causes, and others are indirect or distal causes. Some factors are

Fig. 9.2 Causation wheel 
model



independent causes; however, others are dependent causes that interact with other 
causes. To interpret the association of different causes and final disease as well as the 
complex relationship among multiple causes, a model of “chain of causation” was 
proposed to describe the causes in the form of a chain. For example, an accelerated 
life tempo can lead to an unhealthy diet or less exercise and then obesity, followed by 
insulin resistance, which often results from obesity and further results in elevated 
blood glucose. Finally, diabetes occurs when blood levels of glucose become 
chronically elevated (Fig. 9.3). It is worth mentioning that removing any factor in 
the chain can block the whole chain and thus prevent the occurrence of disease 
(Fig. 9.3).
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Fig. 9.3 Chain of causation (diabetes) 

9.2.3.4 Web of Causation Model 

In some cases, a disease has several and interrelated chains of causation. The 
causation chains of the disease link and interplay with each other, and thus constitute 
a complex network. MacMahon proposed the web of causation model to describe the 
complex relationships between causes and disease as well as the interlacing chains of 
causation. 

For example, the causation of liver cancer can be described as a network or a web. 
The four chains of causes of liver cancer consist of biological factors, physical and 
chemical factors, behavioral factors, and genetic factors (hereditary susceptibility). 
Multiple factors of the four chains also interact with each other and form a network, 
thus ultimately leading to the occurrence of liver cancer (Fig. 9.4). 

9.2.4 Sufficient Cause and Necessary Cause 

Modern epidemiology considers that the relationships between cause and effect are 
multiple and complex. A given disease can be caused by many factors; however, a 
single factor is not enough to cause the disease, as joint action from other causes is 
necessary. Obviously, the role and importance of different factors are different in the 
occurrence of a disease. From the logical view of cause and effect, all effects have 
sufficient and necessary conditions; thus, cause in epidemiology can also be divided 
into sufficient and necessary cause. 

In 1976, Kenneth Rothman used a sufficient-component causal model (Fig. 9.5) 
to explain the complex relationship between cause and effect. Rothman proposed 
that a sufficient cause is a factor or a combination of several factors that will



inevitably cause disease. A component cause is a factor that contributes to the 
occurrence of disease but is not sufficient to cause disease on its own. A necessary 
cause is any agent that is required for the occurrence of disease (for example, cholera 
bacillus for cholera occurring); without necessary cause, the disease will not occur. 
For instance, the three sufficient causes (I, II, III) shown in Fig. 9.5, comprise 
4 component causes. In this figure, there are three sufficient causes (I, II, III), 
and A, B, C, D, E, F, G, H, and I are component factors. Because A is present in 
all three sufficient causes, it is a necessary cause. 
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Fig. 9.4 Web of causation (liver cancer) 

Fig. 9.5 Sufficient cause 
and necessary cause 

Sufficient cause I   Sufficient cause II   Sufficient cause III 

The sufficient-component causal model interprets two paradoxes of the causation 
theory in epidemiology. First, why does a given disease occur without a specific 
cause? For example, alcohol abuse is the cause of cirrhosis; however, individuals 
who never drink may also develop cirrhosis. The possible reason is that cirrhosis 
develops through other sufficient causes, such as hepatitis B virus infection 
(Fig. 9.4). Second, why does a disease fail to occur in the presence of a specific 
cause? For example, smoking causes lung cancer; however, many smokers never 
develop lung cancer in their lifetime. This phenomenon can be explained by the fact 
that smoking is not a sufficient cause of lung cancer. In reality, most identified causes 
for noncommunicable chronic diseases are neither necessary nor sufficient. For 
example, hypertension is neither a necessary cause nor a sufficient cause for cardio-
vascular disease. Nevertheless, every component cause is necessary for sufficient 
cause that contains it. Removal of any component cause is equal to the removal of



the sufficient cause that contains this component cause, which is an important 
strategy for the prevention of a disease. 
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9.3 Epidemiologic Methods of Causation 

9.3.1 Epidemiologic Study Designs for Causation 

Etiological studies in epidemiology usually contain several common steps. The first 
step is to find the influencing factors that are associated with a disease or to develop a 
cause-and-effect hypothesis, usually by descriptive or analytical epidemiologic 
studies; the second step is to test the hypothesis often using analytical studies; and 
the last step is to verify the hypothesis, usually by experimental epidemiologic 
studies. 

Most epidemiologic study designs can be used for evaluating or establishing 
causation. However, the strength of these designs to evaluate causation is different. 
Table 9.2 outlines the relative strength of the different study designs in establishing 
causation. These study designs have been introduced in prior chapters, and their use 
in providing evidence for causation will be described as follows. 

9.3.1.1 Descriptive Studies 

The start of causation is to develop a cause-and-effect hypothesis. Descriptive 
studies are always used to generate hypotheses. Descriptive studies mainly include 
case reports, case series, cross-sectional studies, and ecological studies. Case reports 
and case series are useful for developing a hypothesis based on analysis of the 
characteristics of patients or case groups. Cross-sectional studies are always used to 
describe the distribution of disease in different populations, and the pattern or trend 
of disease occurrence over time or by geographic area, which can provide the clues 
regarding influencing factors. Ecologic studies explore the association of influencing 
factors and disease at the population or region level, which can also provide clues for 
influencing factors that cannot be measured at the individual level, for example, air

Table 9.2 The strength of evidence for causation by different epidemiologic study designs 

Type of study design Strength of evidence in causation 

Randomized controlled trials Strong 

Nonrandomized controlled studies Moderate 

Cohort studies Moderate 

Case-control studies Moderate 

Cross-sectional studies Weak 

Ecologic studies Weak 

Case reports Weak



pollution. Generally, the strength of descriptive studies to evaluate causation is weak 
compared with analytical studies or experimental studies due to a lack of evidence on 
the time sequence of events. Of all descriptive studies, the weakest for causation is 
case reports because they have neither defined populations nor comparison groups. 
Nevertheless, when causal relationships have already been established, well-
designed descriptive studies, especially cross-sectional studies with multiple time 
points or time series studies, can be very useful to quantify the effects of cause.
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9.3.1.2 Analytical Studies (Case-Control Studies, Cohort Studies) 

Analytical studies, mainly including case-control studies and cohort studies, are 
more reliable methods to form a hypothesis than descriptive studies. Analytical 
studies can also be used for hypothesis testing. Case-control studies, which are 
mainly used to confirm the association between factors and disease, compare the 
exposure levels between the case group and the control group. Because the research 
direction of case-control studies is from effects (diseases) to causes (factors), this 
study design is vulnerable to various biases. Cohort studies are either prospective or 
retrospective, and they can test hypotheses more effectively by comparing the 
incidence rates of exposure groups with control groups, and directly calculating 
the relative risk (RR) of factors in the temporal order of cause and effect. Well-
conducted cohort studies are a better design for causation than case-control studies 
because the former can minimize various biases, including selection, information, 
and confounding biases. 

9.3.1.3 Experimental Studies 

Experimental studies include clinical trials, field trials, and community trials. Clin-
ical trials are most frequently conducted among patients, with the aim of evaluating 
the efficacy of a new treatment or medicine. Therefore, clinical trials are known as a 
robust and reliable method to test or verify hypotheses, especially clinical random-
ized controlled trials (RCTs), which are considered the gold standard to evaluate a 
new treatment or medicine and the most rigorous method for hypothesis testing. 
Nevertheless, RCTs are subjected to many constraints, such as ethical issues, strict 
inclusion criteria, parallel control, and strict randomization, which greatly limit the 
feasibility of RCTs in causation studies. Quasi-experiments that lack parallel control 
or randomized assignment are also used in epidemiologic etiology, with less strength 
to evaluate causation. Other experimental studies, including field and community 
trials, are seldom used to study causation. Field trials mainly involve people who are 
disease-free, with the aim of preventing the occurrence of diseases. Community trials 
are conducted at the level of the community instead of the individual level. There-
fore, although experimental studies have strong strength to test and verify hypoth-
eses, most of the causative evidence so far has not come from this study design but 
comes from observational studies such as descriptive and analytical studies. For



example, most of evidence about the effects of smoking on health comes from case-
control and cohort studies. 
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9.3.2 Mill’s Canons-the Logical Basis of Causation 

The causa models mentioned in Sect. 9.2.3 of this chapter are mainly used to 
describe the relationships between the factors and diseases or between different 
risk factors. They cannot be used as a method to find causes or test causation. 
Mill’s canons were proposed by philosopher John Stuart Mill in 1843, intended to 
illuminate a causal relationship between a circumstance and a phenomenon, which 
provides the logical basis of causation studies. In epidemiology, Mill’s canons 
provide certain guidance for causation, especially the development of hypotheses. 
The canons with minor adjustments constitute five methods for the induction of 
hypotheses. 

9.3.2.1 Method of Agreement 

This method means that factors in common among different instances of a disease 
are perhaps the cause or a necessary part of the cause of the given disease. In other 
words, if two or more instances of a disease under investigation have only one factor 
in common, which is likely to be the cause of the given disease. For example, one 
school had an outbreak of diarrhea. It was found that all the students with diarrhea 
had consumed soy milk in the same canteen in the morning, so soy milk may be the 
cause of diarrhea. 

However, in actual conditions, it is difficult to obtain only “one common factor”. 
There may be a few other factors shared by patients with the same disease, but most 
of the factors are not the cause of the disease. In the example mentioned above, most 
students with diarrhea may have also eaten another food in common in the same 
cafeteria that morning. Therefore, the method of agreement in this example is 
actually not sure that soy milk may be the cause of outbreaks of diarrhea. Generally, 
a hypothesis cannot be formed by one method. 

9.3.2.2 Method of Difference 

If some instances in which the disease occurs, and other instances in which the 
disease does not occur, they have all other factors in common except one existing 
only in the former. That one may be the cause or a necessary part of the cause of the 
disease. The method of agreement concerns whether patients share certain common 
factors. The method of difference compares the differences in certain characteristics 
between patients and nonpatients. For example, if one student had diarrhea while the



other did not, the only different food that two students consumed in the canteen was 
soy milk, and the soy milk may be the cause of diarrhea. 
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Similar to the situation of the method of agreement, in the method of difference, 
the assumption that “all other factors are the same” between patients and nonpatients 
is hard to make in practice. In the above example, the two students may be different 
from each other in many other aspects. The method of difference cannot exclude 
other factors and hypothesize that only soy milk is the cause of diarrhea. 

9.3.2.3 Joint Methods of Agreement and Difference 

This method is actually a combination of the method of agreement and the method of 
difference, however, it is not a simple combination but alternately contains 
multiround use of two methods. Briefly, if two or more instances in which the 
disease occurs have only one factor in common, while two or more instances in 
which the disease does not occur have nothing in common except the absence of the 
factor commonly existing in the former instances, then, the factor may be the cause, 
or a necessary part of the cause, of the disease. Generally, the joint methods of 
agreement and difference are much more likely to find a risk factor than the method 
of agreement or difference alone. The main reason is that joint methods of agreement 
and difference essentially introduce contrast in the investigation, which greatly 
increases the logicality. 

We return to the example of soy milk and diarrhea. If all of the students with 
diarrhea had consumed soy milk, the students without diarrhea must have not 
consumed soy milk in the same canteen. This is the joint method to indicate that 
soy milk was likely to be the cause of diarrhea. 

9.3.2.4 Method of Concomitant Variations 

According to the method of concomitant variations, whatever one event varies in any 
manner whenever another event varies in some particular manner. The former event 
is either a cause or an effect of the latter; in other words, these two events are 
connected through cause-and-effect association. In essence, method of concomitant 
variations emphasizes dose-dependent relationships. When there is a dose-
dependent relationship between two events, cause-and-effect associations are more 
likely exist. 

In the above examples, if students who consumed more soy milk had more severe 
diarrhea, there was a dose-dependent relationship, namely, concomitant variations, 
so the probability of the soy milk as the cause of diarrhea was higher.
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9.3.2.5 Method of Residue 

Suppose a disease is caused by many factors; when you remove the previously 
known factors as well as the instances of disease caused by those factors, the residue 
of factors may be the cause for the remaining instances of disease. For example, in 
1972, a number of dermatitis cases occurred in Shanghai, China. Possible factors, 
including industrial waste gas, plant pollen, blood-sucking arthropods, and poison-
ous moths, as well as dermatitis cases caused by these factors were excluded. The 
residual factor, Euproctis similis, emerged. Therefore, researchers suspected that this 
outbreak of dermatitis was caused by Euproctis similis, and finally confirmed this 
hypothesis. 

Although Mill’s canons are considered as a logical basis for causation studies and 
still have certain guidance significance for current epidemiologic etiologies, they 
have great limitations in actual practice in causation studies. Generally, Mill’s 
canons are suitable to find both sufficient and necessary causes, such as acute 
infectious agents and to judge strong causal associations. However, for most dis-
eases, especially noncommunicable chronic diseases, the risk factors are almost all 
nonsufficient and nonnecessary causes, and one disease always has multiple suffi-
cient causes. In these cases, the Mill’s canons are not suitable for effectively 
assessing the causal association. At most, the canons just play a role in the formation 
of a hypothesis. 

9.4 Causal Inference 

Causal inference is the term used for the process by which we identify the cause of 
disease. In other words, it is used to determine whether the observed association is 
causal. In essence, the relationship between cause and disease is a kind of cause-and-
effect association in philosophy. Various risks or exposure factors are the cause, and 
diseases are the effect. The term association is another important concept in 
epidemiology. 

9.4.1 Association Vs. Causation 

Two events, the suspected cause and the effect, obviously must be associated if they 
are to be determined as causally related. However, not all associations are causal, 
namely, cause-and-effect associations. Various other associations, including chance 
association, spurious association, and noncausal association, which are caused by 
various reasons such as random error, bias, or confounding, should be excluded 
before a causal association is assessed. Figure 9.6 outlines various associations 
caused by different reasons.
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Fig. 9.6 Association and causation 

9.4.1.1 Chance Association 

First, we need to judge whether an association between two events, for example, an 
exposure and an outcome, is a statistically significant association rather than a 
chance association due to random error, e.g., sampling error and random measure-
ment error (Fig. 9.6). In epidemiology, the strength of association can be expressed 
as rate ratios, odds ratios, or attributable risks, which are introduced in prior chapters. 
The exclusion of chance association is based on statistical comparison of these 
indicators between the exposed group (or case group) and the control group. 
When the P value was less than 0.05, we considered that there was a statistical 
significant difference, namely, a statistically significant association. The A value less 
than 0.05 is defined as a low-probability event, which means that the result is reliable 
in at over 95% probability, and there is less than a 5% chance that the result is caused 
by random error. Because random error cannot be avoided and exists in all study 
designs as well as each step of a study, well-designed and well-conducted studies are 
essentially important to effectively reduce chance association caused by random 
error, despite almost no study being perfect in either design or conduct practice. 

9.4.1.2 Spurious Association 

If the association is statistically significant and the probability of random error is 
very limited, then we could evaluate whether the association is spurious, which 
generally comes from nonrandom systematic errors known as selection or informa-
tion bias (Fig. 9.6). Spurious association means that the association truly exists, but 
is not true due to selection or information bias. Thus, it is also called as false 
association. Selection bias is generally caused by the difference in exposure- or 
outcome-related characteristics between subjects selected for study and those not



selected or between the exposed (or case) group and the control group. For example, 
in a case-control study on birth defects, the case group of newborns with birth 
defects, while the control group contained consists of those without birth defects. 
The collection of exposure information was primarily based on the memory of 
mothers of the newborns. In information collection, the mothers of newborns with 
birth defects, who were stimulated by adverse pregnancy were able to recall various 
exposures during pregnancy in detail, such as taking over-the-counter drugs, fever, 
or cold. However, mothers in the control group were less likely to make an effort to 
recall the details and did not respond carefully to the relevant exposure events, 
because no adverse pregnancy occurred. Therefore, the results obtained may be 
influenced by recall bias. The association between potential exposure factors and 
neonatal birth defects may be overestimated, and it may be a false association. 
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9.4.1.3 Noncausal Association 

Even though a true association exists, it is still necessary to know whether the 
association occurs indirectly by another extraneous factor (called a confounding 
factor), which always leads to a noncausal association. If confounding was not 
found, a noncausal association could be excluded and a causal association may 
exist (Fig. 9.6). Confounding bias is caused by an extraneous factor (confounding 
factor) that is closely related to both exposure and outcome but not an intermediate 
link in the causal chain of the exposure and the outcome. Confounding bias can lead 
to underestimation or overestimation of the association between the exposure and the 
outcome. For example, investigation may find an association between smoking and 
alcoholic liver, obviously, which is not reasonable in biological plausibility. The link 
between smoking and alcoholic liver is a noncausal association because alcohol 
drinking consumption is a confounding factor, which that is often associated with 
smoking and directly related to alcoholic liver. Confounding occurs commonly in 
epidemiologic studies. However, it can be well controlled through careful designs 
such as matching, restriction, and randomization or through analyses such as stan-
dardization, stratification, and multivariate analysis. 

9.4.1.4 Causal Association 

After excluding chance association, spurious association, and noncausal association 
caused by random error, selection/information bias, and confounding bias, the 
association between the exposure and the outcome is likely to be causal, and still 
needs to be further assessed by various judgments. We call this process causal 
inference (Fig. 9.6). Among various judgments, the best known and widely used is 
Hill’s criteria. The details of Hill’s criteria are introduced in the next subsection.
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9.4.2 Evaluating Causal Association—Hill’s Criteria 

The existing association between two events or two variables after exclusion of 
chance, spurious, and noncausal associations is just probably to be a cause-and-
effect association, which is required for further judgment based on totality of 
evidence. Judgment of causal association is neither simple nor straightforward, 
and various sets of guidelines have been proposed for the judgment. In 1965, the 
British statistician Sir Austin Bradford Hill proposed a list of nine guidelines to 
evaluate causal association, which has been widely used and is certainly the best 
known set of criteria for the considerations of causation, sometimes with modifica-
tions (Table 9.3). 

9.4.2.1 Temporal Relationship 

In causal inference, temporal relationship is essential: the cause must precede the 
effect; or, in other words, an exposure to cause a disease must precede the develop-
ment of the disease. Of all Hill’s guidelines, this is an absolute requirement. 
Different study designs have different strengths to provide evidence of temporal 
relationships. Cohort and experimental studies have obvious temporal relationships 
because they are performed prospectively. However, in cross-sectional studies, 
difficulty may arise in judging temporal relationships because the proposed cause 
and effect are measured at the same time point. In case-control studies, sometimes it 
is assumed that one event precedes another without actually establishing the order, 
and in other cases, it may be difficult to determine which the first is. Nevertheless, 
there are some strategies to find evidence supporting temporal relationships. For 
example, when the cause is an exposure that can be divided into different levels, it is 
essential that a sufficiently high level should be reached before the disease occurs. 
Repeated measurement of exposure at multiple time points or in different locations

Table 9.3 Hill’s criteria for causation 

Criteria Comments 

Temporality The cause precedes the effect (essential criterion) 

Strength The strength of association between the cause and effect (odds ratio, relative 
risk) 

Dose-response Increased exposure is associated with increased effect 

Consistency Similar results are shown in other studies 

Biologic 
Plausibility 

The association is consistent with biologic mechanism 

Reversibility Removal or reduction of exposure is followed by decreased effect 

Specificity One cause leads to one effect, and vice versa 

Analogy Exposure and effect are similar to those in a well-established causal 
association 

Experiment Evidence from animal, intervention or mechanism studies



may also strengthen the evidence of temporal relationships. Although temporal 
relationships are necessary for causal inference, an existing temporal sequence 
alone is weak evidence for causation. Many things occur before an event: however, 
they have no relationship with the event. For example, someone may sneeze in 
Beijing city, and 30 minutes later, there’s a heavy rain fall in Nanjing city. Obvi-
ously, there is no causal link between these two events.
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9.4.2.2 Strength of Association 

The stronger an association is, which is usually expressed by the relative risks (odds 
ratio, OR; relative risk, RR), the more likely a causal association is. A strong 
association less likely comes from either bias or confounding. Thus, the 13.70-fold 
higher risk of lung cancer among male smokers compared with nonsmokers is much 
stronger evidence than the finding that smoking is related to coronary heart disease, 
for which RR is only 2.00. What is a “weak’ or “strong” association? There is no 
universal standard, but epidemiologists generally consider a relative risk (OR, RR) 
greater than 2.0 (or less than 0.5) to be moderately strong and a risk greater than 5.0 
(or less than 0.2) to be strong. Nevertheless, a weak association does not mean that it 
can be overlooked for causal inference. Sometimes the strength of an association 
may depend on the prevalence of other possible causes. For example, the relation-
ship between diet and coronary heart disease is a cause-and-effect association; 
however, the diets in populations are rather homogeneous, although greater variation 
may be observed among different individuals or in different stages of one person. In 
addition, a weak association, when combined with other guidelines, for example, 
consistently observed in different designs or in different settings, may also provide 
stronger evidence than a strong association that is only found in one or two studies. 

9.4.2.3 Dose-Response Relationship 

When changes in the level of possible cause are associated with corresponding 
changes in the incidence or prevalence of the disease, a dose-response relationship 
exists. Generally, the presence of a dose-response relationship in unbiased studies is 
considered strong evidence for causation. However, the absence of a dose-response 
relationship does not mean that the association is noncausal, because not all causal 
associations exhibit a dose-response relationship. For instance, there may be a 
“threshold” effect in which any exposure above a certain level will lead to disease. 
In addition, although a dose-response relationship is a strong evidence for causation, 
it cannot exclude confounding factors.
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9.4.2.4 Consistency 

Consistency means that, when several studies are conducted at different times in 
different settings or among different patient groups, the same or similar results are 
derived. Consistency is a kind of evidence strengthened for causal inference because 
the possibility that all different studies make the same “mistake” is minimized. 
However, a lack of consistency does not exclude a causal association. Different 
results may come from variation in study design or quality or different exposure 
levels and other conditions that may affect the impact of a causal factor on the effect. 

9.4.2.5 Biologic Plausibility 

A causal association generally should have biological rationality. The association 
between cause and effect is consistent with the current biologic knowledge and often 
enhances convincing causal inference. However, the lack of biological plausibility 
does not deny a causal association, which may simply reflect a lack of scientific 
knowledge or evidence. Increasing knowledge of biological mechanisms may sup-
port this association in the future. In other words, biologic plausibility, when present, 
enhances evidence for causation; when absent, other evidence for causation should 
be sought. 

9.4.2.6 Reversibility 

When the removal of a factor that is likely to be a cause of disease results in a 
decreased risk of disease, there is a greater possibility that the association is causal. 
An example is that people giving up smoking decreases their risk of lung cancer 
compared with people who continue to smoke. Reversible associations are strong but 
not infallible evidence for causation because they cannot exclude confounding 
factors, which can also conceivably account for a reversible association. 

9.4.2.7 Specificity 

Specificity refers to the strict corresponding relationship between a cause and a 
disease: that is, a certain factor can only cause one certain disease, and vice versa, the 
disease is just caused by a certain factor. This guideline is currently only applicable 
for some acute communicable or genetic diseases because for most diseases, either 
communicable or noncommunicable, there are many risk factors for the same effect 
or many diseases come from one factor. Therefore, specificity is considered the 
weakest evidence of all the guidelines for causation.
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9.4.2.8 Analogy 

Analogy is sometimes used in causal inference. Suppose there is a well-established 
cause-and-effect association: for instance, factor A leads to effect B. If a similar 
association is observed between factor C and effect D, which are also similar to 
factor A and effect B, respectively, we can consider that factor C is likely to be the 
cause of effect D. In general, analogy is weak evidence for causation. 

9.4.2.9 Experimental Evidence 

Experimental data, from studies in animals or other organisms, from intervention 
studies in humans, or from mechanistic studies, may also provide evidence 
supporting causal associations. In medicine, evidence from a well-conducted exper-
imental clinical trial is always considered the strongest evidence for causation. 
However, in epidemiology, the results from a single or few experiments are gener-
ally not considered to be convincing or strong evidence for causation. 

Among the nine guidelines described above, temporal relationships, and strength 
of association are necessary conditions to judge causality. That means that if there is 
a causal association, temporal relationships and statistically significant associations 
must exist; otherwise, causal associations can be denied. The other seven guidelines 
belong to unnecessary conditions, which are just general criteria for causal inference. 
A lack of any one or even all seven guidelines does not preclude causal association. 
Moreover, it is worth mentioning that all nine guidelines are not sufficient conditions 
for causation. Thus, even though a relationship between two events satisfies all nine 
guidelines, we cannot absolutely draw a conclusion that the relationship is causal. 
Causal inference is always tentative, and judgment must be made on the basis of the 
available evidence. Although there are no completely reliable criteria for determin-
ing whether an association is causal or not, Hill’s criteria are widely accepted and 
have been applied in practice. Nevertheless, Hill’s criteria are essentially guidelines 
for causal inference but not a “gold standard” to judge a causal association. 

9.4.3 An Example of Causal Inference Using Hill’s Criteria 

Primary hepatocellular carcinoma (HCC) is one of the most common malignancies 
worldwide. Many researchers have investigated the causes of HCC and indicated 
that alcohol abuse (habitual heavy drinking) is likely to be a risk factor for HCC. The 
Causal inference was performed and summarized as follows.
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9.4.3.1 Temporality of Association 

Cohort studies have indicated that habitual heavy drinking always precedes the 
occurrence of HCC. Some cases of HCC had several years or even several decades 
of heavy drinking history. 

9.4.3.2 Strength of Association 

Many case-control studies have indicated that the risk (OR) of HCC among habitual 
heavy drinkers is 2–4-fold greater than that among nonhabitual drinkers or non-
drinkers. Furthermore, a few cohort studies found that the relative risk (RR) of heavy 
drinking was 2–5-fold higher than that of nondrinking groups. 

9.4.3.3 Consistency 

The association between habitual heavy drinking and HCC has been repetitively 
studied in many different countries by different study designs at different times. The 
results from different studies consistently indicated that heavy drinking is associated 
with the occurrence of HCC. 

9.4.3.4 Dose-Response Relationship 

Previous studies have found that more alcohol consumption and a longer heavy 
drinking history result in a higher incidence of HCC. This is an obvious dose-
response relationship. 

9.4.3.5 Biologic Plausibility 

The relationship between alcohol abuse and HCC is consistent with the current 
understanding of alcohol metabolism in the liver. Alcohol is metabolized in the liver, 
and its metabolism produces free radicals that cause lipid peroxidation, damage 
mitochondria in liver cells, and lead to alcoholic liver injury. 

9.4.3.6 Experimental Evidence 

A number of animal studies have shown a similar relationship between alcohol 
administration and hepatic injury. 

Taken together, the evidence is strong for the conclusion that habitual heavy 
drinking is a risk factor for HCC.
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