
Chapter 8 
Bias 

Lu Long 

Key Points
• Bias refers to various influencing factors in epidemiological research, including 

design, implementation, analysis, and inference, also known as systematic error. 
Three major threats to validity are selection bias, information bias, and 
confounding bias.

• Selection bias occurs when the characteristics of the subjects are different from 
the source population, which leads to the deviation of the research results from the 
real situation.

• Information bias, known as observational bias, refers to the inaccuracy or incom-
pleteness of the exposure or outcome information obtained during the implemen-
tation of the research, which results in the misclassification of the exposure or 
disease of the research subjects and affects the validity of the results.

• Confounding bias is due to the existence of one or more external factors that mask 
or exaggerate the link between research factors and diseases, thus partially or 
wholly distorting the actual association. 

8.1 Introduction of Bias 

Bias, also known as systematic error, refers to various influencing factors in epide-
miological research, including design, conduct, analysis, and inference. 

The existence of these influencing factors, including design errors, data acquisi-
tion distortion, incorrect analysis, or not logical inference, leading to the association 
between exposure and outcome is misestimated, and this actual relationship is 
systematically distorted, which leads to the wrong conclusion. Bias is an important 
issue that affects the authenticity of the results. Thus, we must fully understand the
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source of bias and its causes and minimize the occurrence of bias in our studies to 
ensure the authenticity of the study. There are two directions of bias, i.e., positive 
bias and negative bias. Positive bias means that the measured value of the study 
overestimates the true value, on the contrary, it is negative bias.
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We generally classify bias as selection bias, information bias, and 
confounding bias. 

8.2 Selection Bias 

8.2.1 Definition 

Selection bias means that the characteristics of the selected subjects are different 
from those of the unselected, which leads to a deviation of the research results from 
the real situation. 

8.2.2 Classification 

8.2.2.1 Self-Selection Bias 

Self-selection bias, or volunteer bias, is one source of selection bias. Self-selection 
bias is one type of bias that results from individuals disproportionately selecting 
themselves to join a group. For example, researchers selected soldiers from the 
Smoky Atomic Test in Nevada to investigate the leukemia incidence. In this 
study, 76% of the soldiers are members of the cohort with known outcomes, and 
the remaining 24% were identified as the cohort without known outcomes. Those 
who knew the outcomes, 82% were traced by the investigators, while others reached 
out to surveyors. We ordinarily consider self-reported subjects as a threat to validity 
because self-reporting may be related to the study results. 

In the Smoky Atomic Test study, among the 62% (2% × 76%) of cohort 
members, investigators traced four target cases and the 14% (18% × 76%) of cohort 
members also traced four target cases who reported themselves. We assume the 
leukemia incidence without known outcomes (24%) is similar to that of the subjects 
traced by the investigators. In that case, we should expect that only (24%/ 
62%) × 4 = 1.5, meaning that about one or two cases occurred among this 24% of 
the members without known outcomes, only a total of nine or ten cases in the entire 
cohort. If instead, we suppose that the 24% without known outcomes had the same 
incidence of leukemia as subjects with known outcomes. We would calculate that 
8(24%/76%) = 2.5, meaning that about two or three cases occurred among this 24%, 
in the entire cohort we will observe 10 or 11 cases. However, among the 24% + 14% 
of the cohort, all cases were untraced among the self-reported, leaving no case 
among those without known outcome. T. The total number of cases will be only
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8 in the entire cohort. This example indicates that self-selection bias is a small but a 
real problem in research. 
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8.2.2.2 Berksonian Bias 

Berkson’s bias or Berksonian bias is also known as admission rate bias. It usually 
occurs in a hospital-based case-control study because the selected case or controls 
represent only a subset of patients with a disease rather than an unbiased sample of 
the corresponding target population. Affected by medical conditions, residence, 
socio-economy, education, and other factors, patients have specific selectivity to 
hospitals, and hospitals also have a specific selectivity to patients, which results in 
problems in sample representativeness and bias in a hospital-based case-control 
study. 

For example, hospital-based case-control study was used to explore the relation-
ship between birth control pills and thrombophlebitis. Cases were recruited from 
people with thrombophlebitis in a hospital. And randomly selected as patients 
without thrombophlebitis in a certain ward of the same hospital as a control group. 
Suppose there are 5000 patients with thrombophlebitis and 5000 patients without 
thrombophlebitis. Oral contraceptive accounts for 15% in each of them. It is 
assumed that admission rates for these three conditions are relatively independent 
(Table 8.1). 

It can be calculated from Table 8.1 that the correlation of thrombophlebitis and 
oral contraceptive, OR = (750 × 4250)/(4250 × 750) = 1.0, which indicates that 
there is no correlation among oral contraceptive and thrombophlebitis. 

Now assume the admission rate of case group was 25% while control group was 
60%, and the admission rate of oral contraceptive was 40%. The composition of the 
comparative study samples is shown in Table 8.2. 

The admission rate of the 750 patients with thrombophlebitis and exposure to 
contraceptive was 25%, So the number of thrombophlebitis hospitalizations were 
750 × 25% = 187.5 ≈ 188; and 40% of the remaining were hospitalized due to 
exposure to contraceptive, and the number of hospitalized patients was 
(750–750 × 25%) × 40% = 225, and the total hospitalizations was 413. 

Table 8.1 Exposure and dis-
ease distribution in the total 
population 

Oral contraceptive 

Yes No 

Case 750 4250 5000 

Control 750 4250 5000 

Table 8.2 Distribution of 
exposure and disease in the 
hospital 

Oral contraceptive 

Yes No 

Case 413 1063 1476 

Control 570 2550 3120
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The admission rate of the 4250 patients with thrombophlebitis rather than expo-
sure to contraceptive was 25%, So the number of cases group was 
4250 × 25% = 1062.5 ≈ 1063. 

The admission rate of the 750 patients without thrombophlebitis who were 
exposed to contraceptives was 60%, so the hospitalizations were 
750 × 60% = 450, and 40% of the remaining patients were hospitalized because 
of exposure to contraceptives, the hospitalizations was 
(750–750 × 60%) × 40% = 120, with a total hospitalization of 570. 

The admission rate of the 4250 patients without thrombophlebitis and the oral 
contraceptives was 60%, So the number of total hospitalizations was 
4250 × 60% = 2550. 

According to the above data, OR = (2250 × 413)/(570 × 1063) = 1.53, oral 
contraceptive was positively correlated with thrombophlebitis. 

There was no association between oral contraceptives and thrombophlebitis in the 
total population, but a case-control study using hospital samples found a positive 
correlation. The degree of the association was influenced by the admission rate, 
which deviated from the true association in the population. This is Berksonian Bias. 

8.2.2.3 Detection Signal Bias 

Detection signal bias, known as unmasking bias, is also a common selection bias. If 
the exposure factor to be studied has no turel causal relationship to the disease, 
however, its presence may cause the subject to develop symptoms or sighs related to 
the disease to be studied, leading to earlier or more frequent visits to the doctor, 
which increases the detection rate of the disease and makes it more likely to be 
included as a case in the study. Suppose these patients are taken as case groups in 
case-control studies. In those cases, there will be systematic differences in certain 
characteristics (such as exposure factors) between admitted patients and 
non-admitted patients, leading to misestimating the true associations between expo-
sure factors and outcomes. For example, several studies found that oral estrogen was 
associated with endometrial cancer and believed that oral estrogen was a risk factor 
for endometrial cancer. However, many scholars later proposed that estrogens do not 
cause cancer to occur, but only allow cancer to be diagnosed. Because estrogen can 
stimulate the growth of the endometrium, making the uterus prone to bleeding. The 
women who take estrogen are more likely to seek medical attention, this made early-
stage endometrial cancer patients easier to be identified. In contrast, while case-
control studies with such patients as case group led to an increased proportion of oral 
androgens in endometrial cancer patients, thereby overestimating the association 
between estrogen and endometrial cancer.
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8.2.2.4 Neyman Bias 

Neyman bias, called prevalence-incidence bias, was first described by Neyman in 
1955 and occurred in the case-control study design. When carrying out case-control 
studies, we can select three cases: cases-incident cases, prevalent cases, and death 
cases. If all the admitted cases are survived cases, especially the cases with a long 
disease course, may be related to the survival, but not to the onset of the disease. It 
may, thus misestimate the etiological effect of these factors. On the other hand, 
survivors of disease may change some of their existing exposure. When they are 
investigated, they may mistake these changed exposure characteristics as their 
disease conditions, resulting in errors in the correlation between these factors and 
the disease. 

8.2.2.5 Loss of Follow-Up 

Cohort studies, clinical trials, and clinical prognosis studies generally require follow-
up of subjects. For the long observation period, the follow-up process cannot avoid 
the absence of outcome events due to relocation of subjects, death due to other 
reasons (competitive risk), or withdrawal from the study due to poor treatment 
effects, adverse reactions, and other reasons. Loss of follow-up will affect the 
representativeness of the research objects, thus affecting the authenticity of the 
results. Therefore, this bias is called loss of follow-up bias. 

8.2.3 Control 

It is difficult to eliminate or correct its effects on the results once select bias occurs. 
Therefore, scientific research design should be performed to reduce and avoid 
such bias. 

8.2.3.1 Scientific Research Design 

In the research process, we(researchers) should clear the global and the sample 
population and predict the various bias that may be generated in the sample selection 
process based on the nature of the study. In the case-control study, we should avoid 
selecting cases in a single hospital, and we can set up community control and 
hospital control at the same time. Even if the cases can only be selected from the 
hospital, they should also be randomly sampled in the different areas and different 
levels of hospitals. In the cohort study, we can establish various controls, including 
comparing incidence in exposed populations and all populations or compare inci-
dence in exposed populations and other unexposed populations, to reduce the effects 
of selective bias.
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8.2.3.2 Develop Strict Inclusion and Exclusion Standards 

In both observational research and experimental research, we must have developed a 
strict, clear unified standard about inclusion and exclusion, including disease diag-
nostic criteria and exposure criteria, enabling the selected research object to better 
represent the overall. After the exclusion standard determines the selection, it strictly 
complies with the study’s implementation phase and cannot be changed casually. 

8.2.3.3 Maximize Response Rates 

Various measures should be taken to obtain the cooperation of the subjects as far as 
possible, improve the response rate, reduce or prevent the occurrence of loss of 
follow-up, and control the selection bias. During the study, we should increase the 
subjects’ understanding of the significance of the study through various ways. When 
the non-response rate or loss of follow-up rate is more than 10%, we should be 
cautious in analyzing the research results. A random sampling survey should be 
conducted on the non-responders or lost respondents if possible, and the results of 
the sampling survey should be compared with those responders. If there is no 
significant difference, it shows that the non-response or loss of follow-up has little 
effect on the results; oppositely, we should explain appropriately. Strategies to 
reduce loss to follow-up include: screening of willingness prior to registration, 
detailed collection of participants’ contact information, using effective incentives, 
and maintaining regular contact with participants. In addition, the sample size can be 
appropriately increased to reduce the impact of the loss of follow-up or non-response 
on the results after the corresponding sample size is calculated in the design stage. 

8.2.3.4 Randomization Principle 

Randomization can be divided into two different forms of random sampling and 
random allocation. Random sampling means the opportunity of each target object 
extracted into the study queue is equal, making the research sample representative, 
avoiding bias due to the subjective, arbitrary choice of research objects; random 
allocation is the equivalent opportunity for participants to be assigned to the exper-
imental group or control group without the effect of researchers and participants’ 
subjective wishes or unconscious objective reasons. The purpose of random distri-
bution is to make the non-research factors evenly distributed in each group and to 
increase the transferability among groups.
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8.3 Information Bias 

8.3.1 Definition 

Information bias, known as observational bias, refers to the inaccuracy or incom-
pleteness of the exposure or disease information obtained during the implementation 
of the research, which results in the wrong classification of the exposure or outcome 
of the research subjects and affects the authenticity of the results. Information bias 
generally occurs when there are errors in the measurement, which is also known as 
classification error or misclassification for discrete variables. Misclassification can 
divide into differential misclassification and nondifferential misclassification. Com-
pared with nondifferential misclassification, differential misclassification has a 
greater impact on study results. Due to the directions of differences in the 
misclassification among groups, the effect value may be overestimated or 
underestimated. 

8.3.2 Classification 

8.3.2.1 Differential Misclassification 

Differential misclassification refers to classification errors that rely on the actual 
values of other variables. The most common differential misclassification is recall 
bias. Suppose an interview of congenital malformations in a case-control study, we 
generally obtain the etiological information from the mother. We selected mothers 
who have recently given birth to a deformed baby as a case, whereas mothers who 
had recently given birth to an apparently healthy baby as a control. The mothers of 
deformed infants are better able to recall exposures than mothers of healthy infants, 
leading to a kind of differential misclassification, referred to as recall bias. Because 
the birth of a deformed infant can stimulate the mother to recall all events that may 
have played some role in the unfortunate outcome. The difference produced by this 
recall bias is an apparent effect unrelated to any biological effect. Recall bias is likely 
to arise in any case-control study that requires recall of past experiences. Klemetti 
and Saxen [9] considered time as a critical indicator of recall accuracy. 

When establishing or verifying a research hypothesis, if personal biased views are 
reflected in the process of data collection, it will lead to interviewer bias. The 
resulting inducement bias is also classified as interviewer bias if the researcher 
intentionally induces the subject to provide the required information. In cohort 
studies or experimental epidemiological studies, more detailed examination of 
exposure or intervention group may be performed if the investigator has previously 
assumed that the exposure or intervention is associated with the occurrence of 
outcome. It leads to a misjudgment of the study results.
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Not all misclassification will exaggerate the association under study, but exam-
ples of the opposite can also be found. When investigating sensitive issues with the 
subjects, they will deliberately minimize the information. For example, patients with 
sexually transmitted diseases such as syphilis and gonorrhea may be reluctant to let 
investigators know about their history of exposure to unprotected sex because of 
stigma, and the resulting bias may underestimate the association between unpro-
tected sex and sexually transmitted diseases. 

8.3.2.2 Nondifferential Misclassification 

Classification error that is independent of other variables is called nondifferential 
misclassification. 

Presumably, bias due to independent nondifferential misclassification of expo-
sure or disease is predictable in the direction, i.e., toward the null. Some researchers 
have used complex procedures to demonstrate that misclassification is 
nondifferential, Unfortunately, decomposing continuous or categorical data into 
fewer categories can transform non-differential errors into differential misclassifica-
tions even under blinding is accomplished or in cohort studies where disease out-
comes have not yet emerged. Non-differentially alone does not guarantee a bias 
toward the null. Even if nondifferential misclassification is implemented, it may 
come at the cost of increasing the total bias. 

Both disease and exposure can occur nondifference misclassification. When the 
proportion of subjects misclassified by disease does not depend on the subject’s 
status with respect to other variables in the analysis, including exposure, it will occur 
non-differential disease misclassification. Similarly, when the proportion of subjects 
misclassified by exposure does not depend on subject status to other variables in the 
analysis, including disease, it will occur nondifferential exposure misclassification. 

We will give an example to illustrate how an independent nondifferential disease 
misclassification with full specificity does not bias the risk ratio estimate but rather 
biases the absolute magnitude of the risk difference estimate downward by a factor, 
equal to the probability of false negatives. Suppose there is a cohort study in which 
30 cases occur in 300 unexposed subjects and 60 cases occur among 200 exposed 
subjects. The actual risk ratio is 3, and the actual risk difference is 0.20. Assumes no 
false positives for disease detection, sensitivity is only 70% for both exposure 
groups. The expected numbers of exposure cases detected will be 0.70 × 60 and 
unexposed cases detected will be 0.70 × 30, which means that the expected risk ratio 
is estimated to be ((0.70 × 60)/200)/((0.70 × 30)/300) = 3 and the expected risk 
difference is estimated to be (0.70 × 60)/200 – (0.70 × 30)/300 = 0.14. Thus, 
although disease misclassification did not bias the risk ratio but the expected risk 
difference estimate was 0.14/0.20 of the actual risk difference. 

The effects of nondifferential misclassification of exposure are similar to the 
effect of nondifferential misclassification of disease. We hypothesized a cohort study 
comparing the incidence of liver cancer in smokers with the incidence among 
nonsmokers to explore nondifferential exposure misclassification. The incidence



rate was assumed to be 0.01% per year for nonsmokers, and 0.05% per year for 
smokers. We surppose2/3 of the study population are smokers, but only 50% admit 
this. This would then result in only 1/3 of subjects being identified as smokers with a 
disease incidence of 0.05% per year. And the remaining 2/3 of the population is 
made up of equal numbers of smokers and nonsmokers. Among those classified as 
nonsmokers, their average incidence would be 0.03% per year rather than 0.01% per 
year. The rate difference has been reduced by misclassification from 0.04% to 
0. 02%, while the rate ratio has been reduced from 5 to 1.7. 
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These examples present how a nondifferential misclassification of a dichotomous 
exposure will produce a bias toward the null value (no relationship) if the 
misclassification is unrelated to other errors. The association will be completely 
obliterated and the direction of association will be reversed by bias, if the 
misclassification is severe enough (although the reversal will only occur if the 
classification method is worse than randomly classifying people as “exposed” or 
“unexposed”). 

We cannot dismiss a study simply because of the presence of substantial 
non-differential misclassification of exposure, it is incorrect. This is because the 
implications may be greater if there is no misclassification, which provides a 
probability of misclassification that applies uniformly to all subjects. Thus, the 
impact of nondifferential misclassification depends heavily on whether the study is 
considered positive or negative. Emphasizing measurement rather than qualitative 
descriptions of study results can reduce the likelihood of misinterpretation, but even 
so, it is important to keep in mind the direction and possible magnitude of bias. 

8.3.3 Control 

Whether differential misclassification or nondifferential misclassification is mainly 
due to problems in measurement or data collection methods, resulting in errors in 
acquired data. Therefore, we mainly adopt the following methods to control 
information bias. 

8.3.3.1 Material Collection 

The main purpose of the survey design is to standardize the tables in the study, which 
is crucial for internal validity, so that valid, reliable, and complete data could be 
collected efficiently. In addition, pretesting survey instrument in populations similar 
to the study population can identify flaws in the survey design and instruments 
before full data collection begins. We’d better use the blinding method to collect data 
to avoid the influence of subjective psychology of research objects and investigators 
on the survey results.
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8.3.3.2 Objective Research Indicators 

Try to use objective indicators or quantitative indicators to avoid information bias, 
such as applying laboratory examination results and consulting the medical records 
or health examination records of the subjects as the source of investigation infor-
mation. Suppose it is necessary to collect data by means of inquiry. In that case, we 
should adopt closed questions and answers as far as possible to prevent the occur-
rence of report bias and measurer bias. For questionnaires concerning lifestyle and 
privacy, the respondents should be informed in advance that all responses are 
confidential and will be properly kept appropriately. 

8.3.3.3 Investigation Skills 

The investigative skills of investigators are particularly important when obtaining 
information, especially the research that requires the participation of investigators. 
We can improve their investigation level by training investigators and formulating 
investigators’ manuals to reduce information bias. 

8.4 Confounding Bias 

8.4.1 Definition 

Confounding bias is due to one or more external factors that mask or exaggerate the 
link between research factors and diseases, thus partially or entirely distorting the 
actual relationship between them. Confounding is produced by confounders (expo-
sures, interventions, treatments, etc.). 

Taking Stark and Mantel’s study on neonatal Down’s syndrome as an example. 
Population monitoring data indicated that Down’s syndrome was associated with 
birth order. Assume the incidence of Down’s syndrome in the first-born child was 
0.06% while in the fifth-born child was 0.17%. The risk of Down’s syndrome 
increased with the increase of birth sequence, which seemed birth order to be a 
risk factor for Down’s syndrome. However, we should consider maternal age at 
delivery as a confounder, closely related to birth order and Down’s syndrome risk. 
Further study found that the incidence of Down’s syndrome in children delivered by 
pregnant women younger than 20 years old was 0.02%, and gradually increased with 
the age of delivery, and the incidence of Down’s syndrome in children delivered by 
pregnant women over 40 years old was as high as 0.85%. The study indicates that the 
maternal age at childbirth is related to the occurrence of the disease. Therefore, it is 
suggested that the association of birth sequence with Down’s syndrome risk may be 
influenced by the confounding factor of maternal age at birth.
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In this part, we briefly refer to confounding bias, but we will discuss confounding 
and how to control it in the next part. 

8.4.2 Confounding 

When estimating the effect of an exposure on exposed individuals, Confounding can 
occur when the exposed and nonexposed subgroups of the population have different 
background disease risks. These subgroups can have different disease risks even if 
they are not exposed to any of the effects in both subpopulations. More generally, 
confounding occurs when the exposed and unexposed groups are not fully compa-
rable or “exchangeable” in terms of exposure response, i.e., the exposed and 
unexposed groups may exhibit different risks even if both experience the same 
level of exposure. In general, a factor associated with both the exposure and the 
outcome could be a confounder. The following are three necessary but not sufficient 
conditions to be a confounder of the effect of the exposer. 

First, confounder must be predictors of the disease without the exposure under 
study. Confounders are not necessarily the genuine cause of the disease under study. 
However, they are only “predictive” within the level of exposure apart from casual 
relations. For example, race, age, gender, etc., may be considered as potential 
confounders. Thus, one almost always sees adjustments made for age and sex. 

Second, the confounder must be related to the study exposure. For example, 
confounder should be related to exposures in the control group in case-control study. 
If the factor is not associated with exposure in the control group, an association 
between cases may still occur because both the study factor and the potential 
confounder are risk factors for disease, but this is a consequence of those effects 
and therefore does not cause confounding. 

Third, confounder cannot be intermediate variables between exposure and out-
come. In other words, confounders cannot be intermediates in the causal pathway 
between exposure and disease, or a condition caused by the outcome. To do 
otherwise would introduce a serious bias. Hypothetically, in a study of overweight 
and the risk of cardiovascular disease, it would be inappropriate to control for 
diabetes as confounder if diabetes was a consequence of being overweight and is 
also a part of the causal chain leading to overweight and cardiovascular disease. On 
the other hand, assuming diabetes is studied directly as a primary interest, over-
weight would be regarded as a potential confounder if it also involved exposure to 
other risk factors for cardiovascular disease. 

We discussed the misclassification of disease and exposure in information bias. 
Here we need to refer to the misclassification of confounders. The ability to control 
confounding in the analysis will be hindered If a confounder is misclassified. 
Although independent nondifferential misclassification of exposure or disease usu-
ally causes the study results to be biased in the direction of the null hypothesis, 
independent nondifferential misclassification of a confounder usually reduces the 
degree of control for confounding, which may lead to bias in either direction. For this



reason, misclassification of confounder can be a serious concern. If the confounding 
is robust and the exposure–disease relationship is weak or zero, misclassification of 
the confounder can yield highly misleading results, even if such misclassification is 
independent and non-differential. 
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8.4.3 Control 

In the study design and analysis, confounding bias can be controlled by adjusting for 
all confounders or a sufficient subset of them at the same time. There are usually 
three methods to control for bias during the design stage. 

8.4.3.1 Random Allocation 

The first method is randomization, where participants are randomly assigned to 
exposure categories (applicable to experiments only). Ideally, we can create study 
cohorts with the equal incidence rate and eliminate the potential for confounding. 
But it must be practically and ethically feasible to assign exposure subjects. If just a 
few factors determine incidence, and the investigation personnel are aware of these 
factors, the ideal plan might call for exposure assignment that would result in the 
identical, balanced distributions of these disease causes in each group. Nonetheless, 
in studies of human disease, there are always immeasurable causes of disease that 
cannot be forced to be balanced amongst treatment groups. Randomization is one 
approach that permits one to probabilistically limit the confounding of unmeasured 
factors and to quantitatively account for the potential residual confounding arising 
from these unmeasured factors. However, this is usually only one alternative that 
may be beneficial for potential exposures. For instance, it is impractical and 
unethical to conduct randomized trials of the health effects of smoking, and therefore 
randomized trials may fail to prevent all confounding. 

8.4.3.2 Restrict 

The second control method is restriction, i.e., limiting the conditions of the study 
subject to a narrow range of values of the potential confounders. If a variable is 
prohibited from changing, it will not generate confounding if it is prohibited from 
varying. The restriction is a promising way to prevent or at least reduce confounding 
by known factors, it is both extremely effective and inexpensive. However, the 
advantages of restricting the study must be balanced against the disadvantages of 
reducing the study population when potential subjects are less plentiful. This 
approach has several conceptual and computational advantages, but may severely 
reduce the number of study subjects available and ultimately limit the extrapolation 
of results.
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8.4.3.3 Matching 

The third control method is matching, where study subjects are matched on the basis 
of potential confounders. Matching may be done by subject to subject, called 
individual matching, or for groups to groups, called frequency matching. Individual 
matching refers to the selection of one or more reference subjects with equal 
matching factor values to those of the index subject, whereas frequency matching 
refers to the selection of a whole stratum of reference subjects with similar matching-
factor values to that of a stratum of index subjects. Individual matching would 
prevent age-gender-race confounding in cohort studies but is seldom done because 
it is very labor-intensive. In addition, matching does not completely eliminate 
confounding but does facilitate its control in case-control studies because matching 
for strong confounder will usually improve the precision of effect estimates. We 
have to discuss the concept of overmatching, which is often occurred in matched 
studies. In case-control studies, matching may be less accurate if the match factor 
related to exposure is only a weak risk factor for the disease of interest. When the 
number of matching factors exceeds 3, finding a suitable control becomes increas-
ingly difficult. 

8.4.3.4 Data Analysis 

The above three control methods are usually implemented during the design phase. 
The analysis phase can also employ a number of methods to control for confounding 
bias. In the most straightforward situation, controlling for confounding in the 
analysis includes stratifying the data according to the level of confounders and 
calculating an effect estimate that summarizes the association between the strata of 
confounding factors. In a stratified analysis, it is usually not possible to control for 
more than two or three confounders at the same time, because finer stratification 
often results in many strata that contain no exposed or non-exposed individuals. 
Such strata are noninformative; therefore, a stratification that is too fine is a waste of 
information. In addition, we can use multi-factor analysis and standardized analysis 
to control confounding bias.


	Chapter 8: Bias
	8.1 Introduction of Bias
	8.2 Selection Bias
	8.2.1 Definition
	8.2.2 Classification
	8.2.2.1 Self-Selection Bias
	8.2.2.2 Berksonian Bias
	8.2.2.3 Detection Signal Bias
	8.2.2.4 Neyman Bias
	8.2.2.5 Loss of Follow-Up

	8.2.3 Control
	8.2.3.1 Scientific Research Design
	8.2.3.2 Develop Strict Inclusion and Exclusion Standards
	8.2.3.3 Maximize Response Rates
	8.2.3.4 Randomization Principle


	8.3 Information Bias
	8.3.1 Definition
	8.3.2 Classification
	8.3.2.1 Differential Misclassification
	8.3.2.2 Nondifferential Misclassification

	8.3.3 Control
	8.3.3.1 Material Collection
	8.3.3.2 Objective Research Indicators
	8.3.3.3 Investigation Skills


	8.4 Confounding Bias
	8.4.1 Definition
	8.4.2 Confounding
	8.4.3 Control
	8.4.3.1 Random Allocation
	8.4.3.2 Restrict
	8.4.3.3 Matching
	8.4.3.4 Data Analysis




