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Abstract. This paper studies a novel tool for describing fuzzy information, called
linguistic Fermatean fuzzy sets (LFFSs), in the process ofmulti-attribute decision-
making (MADM). Compared to linguistic intuitionistic fuzzy sets and linguistic
Pythagorean fuzzy sets, our LFFSs are more flexible and can depict more com-
plicated decision-making information then the former two. In this study, we first
introduce the notion of LFFSs. Afterwards, some other related concepts, such as
operational rules, ranking methods as well as distance measure are interpreted.
When considering aggregation operators for linguistic Fermatean fuzzy informa-
tion, we generalize the classical power average (PA) operator into LFFSs and
introduce the linguistic Fermatean fuzzy power average operator and its weighted
form. Subsequently, a newMADMmethod based on LFFSs and their aggregation
operator is developed. At last, an illustrative example is provided to show how our
proposed method can be applied in solving realistic MADM problems.

Keywords: Fermatean fuzzy sets · linguistic Fermatean fuzzy sets · power
average operator · linguistic Fermatean fuzzy power average operators ·
multi-attribute decision-making

1 Introduction

Multi-attribute decision-making (MADM) based on fuzzy information is an interesting
and promising research topic, which has received much attention in the past decades.
When considering fuzzy information based MADM methods, some researchers have
focusedon the issue of howdecisionmakers’ complicated anduncertain decision-making
information can be effectively depicted. As an extension of intuitionistic fuzzy set [1],
Pythagorean fuzzy set (PFSs) [2], originated by Dr. Yager, has been proved to be effec-
tive in depicting decision makers’ fuzzy information [3]. Later on, Dr. Garg [4] extended
PFSs and proposed the linguistic Pythagorean fuzzy sets (LPFSs), which use linguistic
term to denote themembership and non-membership degrees. Compared to the linguistic
intuitionistic fuzzy sets [5], LPFs can denote more complicated fuzzy decision-making
information. Soon after its appearance, MADM based on LPFSs has been a hot research
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topic. Liu et al. [6] investigated aggregation operators (AOs) and decision-making meth-
ods under LPFSs based on t-norm and t-conorm. Lin et al. [7] introduced interaction
operations for LPFSs and based onwhich a novel partitionedBonferronimeanwas devel-
oped for LPFSs. Xu et al. [8] generalized LPFSs into cubic LPFSs and under which a
power Hamy mean based decision-making method was presented. Sarkar and Biswas
[9] investigated novel MADM method in LPFSs under Einstein t-norm and t-conorm.

LPFS is a powerful tool in MADM, however, its disadvantage is still obvious. The
constraint of LPFS is that the square sum of the scripts of linguistic membership and
non-membership degrees should not exceeds the pre-defined linguistic term set. As a
matter of fact, this constraint cannot be always satisfied in actual decision-making situa-
tions, which motivates us to investigate novel fuzzy information representation tool. The
Fermatean fuzzy set (FFS) [10], originated by Yager, is with the constraint that the cubic
sum ofmembership and non-membership degrees is less than or equal to one. Obviously,
compared with PFSs, FFSs have larger information space and can depict more compli-
cated decision-making information. Hence, FFSs have been widely applied in solving
realistic MADM problems [11–13]. The powerfulness of FFS motivates us to inves-
tigate its extension to accommodate more complicated decision-making environment.
Just like extending PFSs to LPFs, this paper extends FFSs to linguistic Fermatean fuzzy
sets (LFFSs), which satisfy the condition that the cubic sum of script of linguistic mem-
bership and non-membership degrees should be less than or equal to the pre-predefined
linguistic term set. Hence, LFFS is more powerful and flexible than LPF. In the paper,
we further study properties and AOs of LFFSs. Afterward, we use LFFS to propose a
new MADM method.

The rest of this paper is organized as follows. Section 2 reviews some basic concepts
that will be used in the following sections. Section 3 proposes the concept of LFFSs
and investigate their desirable properties. Section 4 presents some AOs for linguistic
Fermatean fuzzy information and discuss their properties. A novel MADM method is
presented in Sect. 5. An illustrative example is provided in Sect. 6.

2 Basic Notions

2.1 Fermetean Fuzzy Sets

Definition 1 [10]. Let X be a given fixed set, then a Fermatean fuzzy set (FFS) defined
on X is expressed as.

F = {〈x, αF (x), βF (x)〉|x ∈ X }, (1)

where αF (x) and βF (x) denote the membership and non-membership degrees of element
x ∈ X to the set F, such that 0 ≤ αF (x), βF (x) ≤ 1 and 0≤ (αF (x))3 + (βF (x))3 ≤ 1.
For convenience, the ordered pair f = (α, β) is called a Fermatean fuzzy number (FFN).

Basic operational rules for FFNs are presented as follows.

Definition 2 [10]. Let f = (α, β), f1 = (α1, β1), and f2 = (α2, β2) be any three FFNs,
and λ be a positive real number, then.
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(1) f1 ⊕ f2 =
((

α3
1 + α3

2 − α3
1α

3
2

)1/3
, β1β2

)
;

(2) f1 ⊗ f2 =
(
α1α2,

(
β3
1 + β3

2 − β3
1β

3
2

)1/3)
;

(3) λf =
((

1 − (
1 − α3

)λ
)1/3

, βλ

)
;

(4) f λ =
(

αλ,
(
1 − (

1 − β3
)λ

)1/3);

2.2 Power Average Operator

Definition 3 [14]. Let xi(i = 1, 2, . . . , n) be a collection of positive real numbers, then
the power average operator is defined as.

PA(x1, x2, . . . , xn) =
∑n

i=1(1 + T (xi))xi∑n
i=1(1 + T (xi))

, (2)

where T (xi) = ∑n
j=1;j �=iSup

(
xi, xj

)
and Sup

(
xi, xj

)
denotes the support degree for xi

from xj, satisfying the following properties:

(1) Sup
(
xi, xj

) ∈ [0, 1];
(2) Sup

(
xi, xj

) = Sup
(
xj, xi

)
;

(3) Sup
(
xi, xj

) ≥ Sup(xm, xn) if and only if
∣∣xi − xj

∣∣ ≤ |xm − xn|

3 Linghuistic Fermatean Fuzzy Sets and Their Properties

In this section, the definition of LFSs and their properties. First of all, the definition
of LFS are presented. Then, some other notions, such as operational rules, distance
measure, comparison method, etc.

3.1 Definition of Linghuistic Fermatean Fuzzy Sets

Definition 4. LetX be a given fixed set and S̃ = {sα|0 ≤ α ≤ l} be a continuous linguistic
term set with odd cardinality. A LFFS A definition on X is expressed as.

A = {(x, sa(x), sb(x))|x ∈ X }, (3)

where sa(x), sb(x) ∈ S̃ denote the linguistic membership and non-membership degree
of the element x to the set A, respectively, such that a3 + b3 ≤ l3. The linguistic hesitant
degree of x to A is expressed as π = s 3√l3−a3−b3

. The ordered pair γ = (sa, sb) is called
a LFFN.

Remark 1. It is noted from Definition 4 that all LIFSs and LPFSs are LFFSs. In other
words, LIFSs and LPFSs are two special cases of LFFSs.
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3.2 Operational Rules of Linguistic Fermatean Fuzzy Numbers

Based on the operational of FFNs and considering the basic operations of LIFNs and
LPVs, the operational rules for LFFNs are proposed as follows.

Definition 5. Let γ1 = (
sa1, sb1

)
, γ2 = (

sa2 , sb2
)
and γ = (sa, sb) be any three LFFNs

defined on a continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, and ξ be a positive real
number, then.

(1) γ1 ⊕ γ2 =
(
s(
a31+a32−a31a

3
2/l

3
)1/3 , sb1b2/l

)
;

(2) γ1 ⊗ γ2 =
(
sa1a2/l, s(b31+b32−b31b

3
2/l

3
)1/3

)
;

(3) ξγ =
(
s
l
(
1−(1−a3/l3)

ξ
)1/3 , sl(b/l)ξ

)
;

(4) γ ξ =
(
sl(a/l)ξ , sl

(
1−(1−b3/l3)

ξ
)1/3

)
.

Theorem 1. Let γ1 = (
sa1, sb1

)
, γ2 = (

sa2 , sb2
)
and γ = (sa, sb) be any three LFFNs

defined on a continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, then.
(1) γ1 ⊕ γ2 = γ2 ⊕ γ1;
(2) γ1 ⊗ γ2 = γ2 ⊗ γ1;
(3) ξ(γ1 ⊕ γ2) = ξγ 1 ⊕ ξγ2,ξ > 0;
(4) γ (ξ1 + ξ2) = γ ξ1 ⊕ γ ξ2, ξ1, ξ2 > 0;
(5) (γ1 ⊗ γ2)

ξ=(γ1)
ξ ⊗ (γ2)

ξ ,ξ > 0;
(6) (γ )ξ1 ⊗ (γ )ξ2=(γ )ξ1+ξ2 , ξ1, ξ2 > 0

3.3 Distance Measure Between Any Two Linguistic Fermatean Fuzzy Numbers

Definition 6. Let γ1 = (
sa1, sb1

)
and γ2 = (

sa2 , sb2
)
be any two LFFNs defined on

a continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, then the normalized Hamming
distance between γ1 and γ2 is defined by.

dis(γ1, γ2) =
∣∣a31 − a32

∣∣ + ∣∣b31 − b32
∣∣ + ∣∣π3

1 − π3
2

∣∣
2l3

. (4)

3.4 Comparison Method of Linguistic Fermatean Fuzzy Numbers

Definition 7. Let γ = (sa, sb) be a LFFN defined on a continuous linguistic term set
S̃ = {sα|0 ≤ α ≤ l}, then the score function of γ is defined as.

S(γ ) =
(
l3 + a3 − b3

2

)1/3

, (5)

and the accuracy function of γ is defined as.

H (γ ) =
(
a3 + b3

)1/3
. (6)
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For any twoLFFNs γ1 = (
sa1, sb1

)
and γ2 = (

sa2 , sb2
)
defined on a continuous linguistic

term set S̃ = {sα|0 ≤ α ≤ l}, then.
(1) If S(γ1) > S(γ2), then γ1 > γ2;
(2) If S(γ1) = S(γ2), then

If H (γ1) > H (γ2), then γ1 > γ2;
If H (γ1) = H (γ2), then γ1 = γ2.

4 Power Average Operators for Linguistic Fermatean Fuzzy
Numbers

In this section, the classical PAoperators is extended into the LFSs and some newAOs for
LFNs are proposed. In addition, significant properties of these AOs are also investigated.

4.1 The Linguistic Fermatean Fuzzy Power Average Operator

Definition 8. Let γi = (
sai , sbi

)
(i = 1, 2, . . . , n) be a collection of LFFNs defined on a

continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, then the linguistic Fermatean fuzzy
power average (LFFPA) operator is expressed as

LFFPA(γ1, γ2, . . . γn) = ⊕n
i=1(1 + TT (γi)γi)∑n
i=1 (1 + T (γi))

, (7)

where T (γi) = ∑n
j=1;j �=iSup

(
γi, γj

)
and Sup

(
γi, γj

)
denotes the support degree for γi

from γj, satisfying the following properties:

(4) Sup
(
γi, γj

) ∈ [0, 1];
(5) Sup

(
γi, γj

) = Sup
(
γj, γi

)
;

(6) Sup
(
γi, γj

) ≥ Sup(γm, γn) if and only if
∣∣γi − γj

∣∣ ≤ |γm − γn|
;

If we assume

ϕi = (1 + T (γi))∑n
i=1(1 + T (γi))

, (8)

then Eq. (7) can be

LFFPA(γ1, γ2, . . . γn) = ⊕n
i=1ϕiγi, (9)

where ϕ = (ϕ1, ϕ2, . . . , ϕn)
T is called the power vector weight, such that 0 ≤ ϕi ≤ 1

and
∑n

i=1ϕi = 1.
Based on the operational rules that presented in Definition 5, the following theorem

is derived.
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Theorem 2. Let γi = (
sai , sbi

)
(i = 1, 2, . . . , n) be a collection of LFFNs defined on a

continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, the aggregated value by the LFFPA
operator is still a LFFNs and

LFFPA(γ1, γ2, . . . , γn) =
(
s
l
(
1−∏n

i=1
(
1−a3i /l

3
)ϕi)1/3 , sl

∏n
i=1(bi/l)

ϕi

)
, (10)

Proof. When n = 1, the LFFPA operator is

LFFPA(γ1) = ϕ1γ1 =
(
s
l
(
1−(

1−a31/l
3
)ϕ1)1/3 , sl(b1/l)ϕ1

)

Suppose that when n = k, then the LFFPA operator is

LFFPA(γ1, γ2, . . . , γk) =
(
s
l
(
1−∏k

i=1
(
1−a3i /l

3
)ϕi)1/3 , sl∏k

i=1(bi/l)
ϕi

)

When n = k+1, the LFFPA operator is

LFFPA(γ1, γ2, . . . γk+1) = ⊕k
i=1ϕiγi

⊕ ϕk+1γk+1

=
(
s
l
(
1−∏k

i=1
(
1−a3i /l

3
)ϕi)1/3 , sl∏k

i=1(bi/l)
ϕi

)
⊕

(
s
l
(
1−

(
1−a3k+1/l

3
)ϕk+1

)1/3 , sl(bk+1/l)
ϕk+1

)

=
(
s
l
(
1−∏k

i=1
(
1−a3i /l

3
)ϕi∗

(
1−a3k+1/l

3
)ϕk+1

)1/3 ,

s(
l
∏k

i=1(bi/l)
ϕi

)
∗l(bk+1/l)

ϕk+1

)

=
(
s
l
(
1−∏k+1

i=1

(
1−a3i /l

3
)ϕi)1/3 , sl∏k+1

i=1 (bi/l)ϕi

)

Therefore, the proof of the Theorem 2 is complete.

Theorem 3 (Idempotency). Let γi = (
sai , sbi

)
(i = 1, 2, . . . , .n) be a collection of

LFFNs defined on a continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, if γi = γ =
(sa, sb) for all i, then.

LFFPA(γ1, γ2, . . . , γn) = γ (11)
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Proof: According to the aggregations of According to γi = γ = (sa, sb), we can have
Sup

(
γi, γj

) = 1 for all i, j = (1, 2, 3, . . . , n), (i �= j), then ϕi = 1
n hold for all i. Then,

we can get.

LFFPA(γ1, γ2, . . . , γn)

=
(
s
l
(
1−∏n

i=1
(
1−a3i /l

3
)ϕi)1/3 , sl

∏n
i=1(bi/l)

ϕi

)

=
⎛
⎝s

l

(
1−∏n

i=1(1−a3/l3)
1
n

)1/3 , s
l
∏n

i=1(b/l)
1
n

⎞
⎠

=
⎛
⎝s

l

(
1−(1−a3/l3)

1
n ∗n

)1/3 , s
l(b/l)

1
n ∗n

⎞
⎠

=
(
s
l(a3/l3)

1/3 , s
l(b/l)

1
n ∗n

)

= (sa, sb) = γ

Theorem 4 (Boundedness). Let γi = (
sai , sbi

)
(i = 1, 2, . . . , n) be a collection of

LFFNs defined on a continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l}, and γ − =
min(γ1, γ2, . . . , γn) and γ + = max(γ1, γ2, . . . , γn), then.

γ − ≤ LFFPA(γ1, γ2, . . . , γn) ≤ γ +. (12)

Proof. According to the Definition 5, we can obtain

ϕiγi ≤ ϕiγ
+

and∑n
i=1ϕiγi ≤ ∑n

i=1ϕiγ
+.

which means that LFFPA(γ1, γ2, . . . , γn) ≤ γ +.
Similarly, we can also prove that γ − ≤ LFFPA(γ1, γ2, . . . , γn). Thus the proof of

Theorem 4 is completed.

4.2 The Linguistic Fermatean Fuzzy Power Weighted Average Operator

Definition 9. γi = (
sai , sbi

)
(i = 1, 2, . . . , n) be a collection of LFFNs defined on a

continuous linguistic term set S̃ = {sα|0 ≤ α ≤ l} and the corresponding weight vector
be	 = (	1,	2, . . . 	n)

T , such that
∑n

i=1	i = 1 and 0 ≤ 	 i ≤ 1. Then the linguistic
Fermatean fuzzy power weighted average (LFFPWA) operator is expressed as.

LFFPWA(γ1, γ2, . . . , γn) =
∑n

i=1	i(1 + T (γi))γi∑n
i=1	i(1 + T (γi))

, (13)
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where T (γi) = ∑n
j=1;j �=iSup

(
γi, γj

)
and Sup

(
γi, γj

)
denotes the support degree for γi

from γj, satisfying the following properties presented in Definition 8.
If we assume

ψi = 	i(1 + T (γi))∑n
i=1	i(1 + T (γi))

, (14)

then Eq. (10) can be.

LFFPWA(γ1, γ2, . . . , γn) =
∑n

i=1
ψiγi, (15)

whereψ = (ψ1, ψ2, . . . , ψn)
T is called the power weight vector, such that

∑n
i=1ψi = 1

and 0 ≤ ψi ≤ 1.
Theorem 5. Let γi = (

sai , sbi
)
be a collection of LFFNs defined on a continuous

linguistic term set S̃ = {sα|0 ≤ α ≤ l}, the aggregated value by the LFFPWA operator
is still a LFFNs and

LFFPA(γ1, γ2, . . . , γn) =
(
s
l
(
1−∏n

i=1
(
1−a3i /l

3
)ψi)1/3 , sl∏n

i=1(bi/l)
ψi

)
, (16)

The specific proof process of Theorem 5 is omitted here because it is similar to the
proof of Theorem 2. In addition, it is easy to prove that the LFFPWA operator has the
property of boundedness.

5 The Procedure of A novel Multi-Attribute Decision-Making
Method

In this part, based on LFFSs and their AOs, a novelMADMmethod is presented. Assume
that, there arem alternative, which can be denoted byA = {A1,A2, . . . ,Am}. Them alter-
natives are evaluated under n attributes, which can be denoted byC = {C1,C2, . . . ,Cn}.
The weight of the attributes is 	 = (	1,	2, . . . ,	n)

T , such that 0 ≤ 	i ≤ 1 and∑n
i=1	i = 1. Suppose S̃ = {sα|0 ≤ α ≤ l} be a continuous linguistic term set with

odd cardinality, and decision makers use LFFNs defined on S̃ to express their evaluation
opinion over alternatives. In the following, we present the main steps of our proposed
MADM method.

Step 1: Collect decisionmakers’ evaluation opinion.Based on the pre-defined linguis-
tic term set S̃, decisionmakers use a LFFN γij = (

saij , sbij
)
express their evaluation value

for attribute Cj(j = 1, 2, . . . , n) of alternative Ai(i = 1, 2, . . . ,m). Hence, a linguistic
Fermatean fuzzy decision matrix is D = (

γij
)
m×n is constructed.

Step 2: Normalize the original decision matrix according to the following formula.

γij =
{(

saij , sbij
)
,Ci ∈ I1(

sbij , saij
)
,Ci ∈ I2

(17)

where I1 and I2 denote benefit type attributes and cost type attributes, respectively.



38 X. Feng et al.

Step 3: Calculate the Sup
(
γip, γiq

)
as follows.

Sup
(
γip, γiq

) = 1 − dis
(
γip, γiq

)
, (18)

where dis
(
dip, diq

)
denotes the Hamming distance between γip and γiq, and p, q =

1, 2, 3, . . . , n(p �= q),
Step 4: Compute the T

(
γij

)
according to

T
(
γij

) =
∑n

p=q=1,p �=q
Sup

(
γip, γiq

)
, (19)

Step 5: Compute the power weight ψ
(
dij

)
associating with the LFFN γij according

to

ψ
(
γij

) = 	i
(
1 + T

(
γij

))
∑n

i=1	i
(
1 + T

(
γij

)) , (20)

Step 6: Obtain the overall values of the alternatives {A1,A2, . . . ,Am} by using the
LFFPWA operator, i.e.,

γi = LFFPWA(γi1, γi2, . . . , γin). (21)

Step 7: Calculate the score values γi(i = 1, 2, . . . , n) according to Eq. (5).
Step 8: Determine the optimal alternative according to the score values of each

alternatives.
We provide the following flowchart to between demonstrate the calculation steps of

our proposed MADM method (Fig. 1).

6 An Illustrative Example

This section applies our proposed method in a real MADM method to show its
effectiveness.

Example: Let’ consider a software systems selection problems. An enterprise is now
considering to select a suitable software system, and there are four alternatives (A1, A2,
A3, and A4). The four software systems are evaluated by a group of experts under for
attributes, i.e., contribution about organization performance (C1), effort to transform
from current system (C2), benefit of the software system (C3), and outsourcing software
developer reliability (C4). The weight vector of attributes is	 = (0.2, 0.3, 0.25, 0.25)T .
Let S = {s0 = “Extremely poor”, s1 = “Very poor”, s2 = “Poor”, s3 = “Slightly poor”,
s4 = “Fair”, s5 = “Slightly good”, s6 = “Good”, s7 = “Very good”, s8 = “Extremely
good”} be a linguistic term. Decision makers use LFFNs defined on S to express their
evaluation values. In the following, we use our propose method to help the enterprise to
determine the best software system.

Step 1: Decision makes use a LFFN γij = (
saij , sbij

)
to denote the evaluation value of

the attribute Cj(j = 1, 2, 3, 4) of alternative Ai(i = 1, 2, 3, 4), and the original decision
matrix is constructed, which is listed in Table 1.
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Fig. 1. The schedule of the proposed method

Table 1. The original decision matrix denoted by LFFNS.

A1 A2 A3 A4

C1 (s3, s2) (s1, s3) (s2, s4) (s1, s4)

C2 (s4, s3) (s2, s4) (s3, s4) (s0, s3)

C3 (s3, s1) (s2, s3) (s1, s2) (s2, s1)

C4 (s4, s1) (s3, s2) (s2, s1) (s2, s4)

Step 2: Normalize the original decision matrix. It is obviously that all the attributes
are benefit and hence the original decision matrix does not need to be normalized.
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Step 3: Calculate the Sup
(
γip, γiq

)
according to the Eq. (18). For convenience, we

use Spq to denoted the Sup
(
γip, γiq

)
. Then, we can obtain

S12 = S12 = (0.5520, 0.6480, 0.8480, 0.6960)

S13 = S31 = (0.9440, 0.9440, 0.4960, 0.4960)

S14 = S41 = (0.7040, 0.7920, 0.4960, 0.9440)

S23 = S32 = (0.4960, 0.7040, 0.3440, 0.7920)

S24 = S42 = (0.7920, 0.5520, 0.3440, 0.6400)

S34 = S43 = (0.7040, 0.8480, 0.9440, 0.4960)

Step 4: Compute the T
(
γij

)
according to the Eq. (19) and have

T =

⎡
⎢⎢⎣

2.2000, 1.8400, 2.1440, 2.2000
2.3840, 1.9040, 2.4960, 2.1920
1.8400, 1.5360, 1.7840, 1.7840
2.1360, 2.1280, 1.7840, 2.0800

⎤
⎥⎥⎦

Step 5: Compute the power weight ψ
(
γij

)
by Eq. (20)

ψ =

⎡
⎢⎢⎣

0.2079, 0.2768, 0.2554, 0.2599
0.2102, 0.2706, 0.2714, 0.2478
0.2088, 0.2796, 0.2558, 0.2558
0.2069, 0.3095, 0.2296, 0.2540

⎤
⎥⎥⎦

Step 6: Aggregate the evaluation values and obtain the overall evaluation values
γi(i = 1, 2, . . . , n) of alternatives

γ1 = (s1.8339, s4.1326); γ2 = (s0.5952, s4.4910);

γ3 = (s1.1968, s4.7724); γ4 = (s0.5921, s4.7744)

Step 7: Calculate the score values of alternatives and we have

S(γ1) = 3.1173; S(γ2) = 2.5871;
S(γ3) = 2.0808; S(γ4) = 2.0155.
Step 8. According to the score values shown in Step 7, we can get the ranking orders

of alternatives, i.e., A1 � A2 � A3 � A4 and A1 is the optimal alternative.
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7 Conclusions

This paper introduced a novel MADM method for decision makers to determine the
ranking order of alternatives. In order to this, we first proposed the concept of LFFS,
which is a powerful tool to depict decision makers’ complicated evaluation values.
LFFS absorbs the advantages of FFS and linguistic term set and hence it has obvious
superiorities over LPFS and LIFS. Afterwards, some new AOs for LFFSs based on PA
were presented and their important properties are investigated in detail. Furthermore,
based onLFFSs and theirAOs, a novelMADMmethodwas originated and its calculation
steps were clearly presented. Finally, our method was applied in solving a real case to
demonstrate its effectiveness. Our future research directions include the following two
aspects. First, shall consider MADMmethods under LFFSs based on consensus to make
the final decision-making results more acceptable and reliable. Second, we will consider
large-scale group decision-making problems based on LFFSs.
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