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Abstract The stress range of shear at the channel’s boundaries has a direct bearing 
on the flow of fluid inside the channel. Hence, understanding it is critical for defining 
the fluid field and velocity profile. Many engineering issues, such as design of flood 
control structures, energy loss calculation, and sedimentation, require shear stress 
computation. The proportion analysis between width and depth has strong influence 
over the stress distribution at shear in direct channels. Sinuosity, aspect ratio, and 
meander length affect shear stress distribution in meandering channels. Henceforth, 
the necessity of scrutinizing the methods used to determine the stress distribution in 
the channels. This paper analyzes the pros and cons of several methodologies that 
helps to estimate the allocating the stress ranges of shear via the prismatic channels. 
The review states that the vertical depth method, the normal depth method, the Guo 
and Julien method, the Prasad and Manson method, the Knight et al. method, the 
merged perpendicular method, and the Preston tube technique are the most popular 
methods that assist to estimate the distribution of boundary shear passing through the 
channels. This is due to the fact that these methods are straightforward, reliable, and 
easy to implement. After examining a number of other approaches, it was determined 
that the Preston tube technique was by far the most effective way in order to determine 
the stress range for boundary shear in all different kinds of channel sections. 
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1 Introduction 

It is well known wherein the allotment of stress ranges around boundary shear 
does not coordinate with route near the perimeter of wetted via channel cross-
partition. It follows a steady flow in cross-partition structures. This phenomenon 
has been thoroughly researched and documented. This is primarily due to turbu-
lence’s anisotropy, resulting in transverse Reynold’s stress gradients and secondary 
circulations. According to Tominaga et al. (1989) and Knight and Demetriou (1983), 
when secondary currents flow directing the wall, the boundary shear stress increases, 
and when they flow away from the wall, the shear stress decreases. Shear stress distri-
bution in a straight open channel is controlled using the factors count comprising 
the geometrical properties of cross-partition, the distribution of roughness along the 
longitudinal and lateral boundaries, and the concentration of sediment (Khodashenas 
et al. 2008). The collected information states that the variant solutions available to 
estimate the stress value of boundary shear via directly or indirectly. The indirect 
estimation of stress value of boundary shear is done using Preston method. Due to 
this limitation and deficits, it is difficult to estimate the observed and predicted stress 
distribution across the wetted area (Patel 1965). Pertaining to it, a variant set of empir-
ical, computational, and the analytical strategies are been introduced to forecast the 
stress value near the boundary shear. 

2 State-of-Art 

According to Leighly (1932), an estimation of stress distribution in public channel 
was studied using the conformal mapping process. Due to the mishandling of 
secondary order constraints, the weight analysis of water flow in upward comprised 
of boundaries that has to be balanced in orthogonal direction. The investigation 
of hydraulic radius was studied by Einstein (1942) has been widely used in many 
parts of academic sectors and also in practice. With the use of Bagnold’s three-point 
suspension technique, the shear distribution in rough and smooth public channels 
holding the cross-partition of trapezoidal and rectangular was studied by Ghosh and 
Roy (1970). It was measured and isolated on the part of tested public channels. The 
outcomes of the distribution of boundary under two-stage channels on the plain and 
coarse borders are portrayed by Ghosh and Mehta (1974). Finally, the shear distri-
bution is not consistent, and the placements of the various distances in free surface 
are summarized. 

The Rajaratnam and Ahmadi (1979) explored the interaction analysis between 
direct primary channels with symmetrical plain under a smooth boundary condition 
was studied. The investigation revealed that the longitudinal momentum of the water 
was carried via the main river to the floodplain. The bed shear in the floodplain 
rose dramatically as a result of flow interaction, although it decreased in the primary 
channel itself. The floodplain is located at the point where the main channel meets
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the floodplain. The interaction’s influence became less significant since the flow 
analysis of the depth in floodplain was inclined. As per the knight (1981), the frac-
tional analysis of shear is performed on the walls using breadth and depth proportion 
analysis. Along with that, the roughness size related to the bed and walls is being 
studied in Nikuradse. The separation of channels that has been explored in the labo-
ratory research is symmetrical. The analysis of the boundary shear is to calculate the 
stress value of shear has been done via the primary channels and the floodplain. It 
is possible to encounter the boundary shear. The identification of channel allocation 
to compute the discharge value was been studied. By the use of direct channels, the 
characteristics of boundary shear stress and its distribution are explored in Knight 
and Demetriou (1983). It was designed on the basis of measuring the shear force 
under different flows in different sub-partitions. 

This was done in relation to two channel features that lacked dimensions: the 
floodplain and the compound section. Knight and Hamed (1984) concentrated their 
attention on rocky floodplains, following in the footsteps of Knight and Demetriou 
(1983). The investigation of the lateral momentum transfer to disclose the discrep-
ancies in roughness is being studied among the primary channels and the floodplain. 
These floodplains are tightened in different stages to show the discrepancies. A set 
of equations has been formulated to analyze in vertical, horizontal, diagonal, and 
bisected interface plains to estimate the force value in shear. A set of equations 
that are based on four dimensionless channel properties has been supplied. Knight 
and Patel (1985) have given outcomes in finding out the relation between the stress 
distribution between the smooth and rectangular cross-partition that achieved the 
aspect ratios from one to ten. It was discovered that the distributions are controlled 
by the aspect ratio, as well as the aspect ratio’s influence on the amount and type of 
secondary flow cells. 

In order to investigate stress allotment in boundary shear by the use of smooth 
surface and complete circular parts, Knight and Sterling (2000) employed the Preston 
tube method as their method of analysis. It has been established that the Froude 
number and shape have an effect on the distribution of boundary shear stresses. After 
solving the continuity and momentum equations, Guo and Julien (2005) offered an 
approach to estimate the mean value for the bed and sidewall shear stress in smooth 
rectangular public-channel flows. This strategy was developed after the continuity, 
and momentum equations were solved. According to the findings of the experiment, 
the shear stresses are a result of three different components: (1) the shear stress at 
the interface between two different materials; (2) gravity; and (3) secondary flows. 
The amount of the total boundary shear force that may be attributed to the wall shear 
force was analyzed as part of a research that was carried out by Lashkar et al. (2010). 
They analyzed the data using nonlinear regression in order to construct equations 
that would allow us to calculate the percentages of shear stress near wetted regions 
that relying on the beds and sidewalls of rectangular cross-partition. In the case of 
meandering channels, the distribution of shear force was studied by Khatua and Patra 
(2010) that amends the sinuosity and geometrical properties of adopted channels. 
Similar to it, the Preston tube was studied by Naik and Khatua (2016) to determine 
the boundary of non-prismatic channels. Rather than the adoption of theoretical
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approaches, the findings of those methodologies were far better than the findings 
of shear stress with the use of energy related gradient process. Using the Preston 
tube method, Prasad et al. (2022) were able to make a prediction about the border 
shear stress in diverging compound channels. According to the data, the strategy 
achieves favorable outcomes in both the smooth bed and gravel bed circumstances 
when compared to other approaches. This is the case regardless of the kind of bed. 
There has been progress made in the understanding of the relationships between 
boundary shear, geometry, and sinuosity. It is also possible to evaluate the models 
using data obtained from other researchers who have publicized the results of their 
study. 

3 Classes of Variant Methodologies 

3.1 Geometrical Methods 

With the help of geometrical analysis, the cross-partitions are divided into the set 
of different sub-partitions. Each shear force may be calculated by first achieving a 
balance between the forces and fluid weight in each sub-region of the boundary that 
has been partitioned. Methods such as Leighly’s (1932), Einstein’s (1942), NDM, 
NAM, VAM, and NPM are also explored in this study. 

3.2 Empirical Methods 

Curve fitting to experimentally collected data is a common approach in empir-
ical research. Knight’s (1981) model may be the first of its sort. Other researchers 
have incorporated his approach into their work, including Knight and his colleagues 
(1984). Similar basic models for the boundary shear stress were proposed by Olivero 
et al. (1999). 

3.3 Analytical Methods 

Continuous, momentum, and energy transport equations are used in analytical 
approaches. It is possible to solve open-channel shear stress using some of these 
approaches. Yang and Lim (2005), Guo and Julien (2005), and Bilgil (2005) are  a  
few examples of analytical methods.
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3.4 Computational Methods 

The shear stress value near boundaries, the analysis of turbulence-based closure 
model, and the motion formulation are employed to yield the accurate outcomes. To 
forecast the shear stress at boundary in primary flow channels, Cacqueray et al. (2009) 
have considered the SSG-based Reynolds model in computational fluid dynamics 
software. Though it permits to resolve the formulation of motion, yet the determina-
tion of order in boundary shear is not comparable. Hence, the proper examination of 
sediments analysis is done to find out the allotment of stress value near the local shear. 
The accurate estimation of local shear stress is employed on all versions of turbu-
lence model. The other usage of empirical, analytical, and computational techniques 
has been studied. The main intention of these techniques was to estimate the mean 
value of wall and bed shear either through prismatic or direct channels. It is applied 
on the number of assumptions that could lead to the independent shear stress. The 
adoption of quantitative analysis has led to the estimation of boundary shear stress 
in coordination with prior models. Each of these approaches was chosen because it 
makes it possible to calculate the boundary shear stress in a comprehensive manner 
while at the same time being simple enough to be used in engineering applications. 

4 Relatable Survey of Prior Methods 

4.1 Vertical Depth Method (VDM) 

In this way, the local shear stress τ i that is acting on one wetted perimeter point 
denoted by the symbol i is relative to the depth estimation of local water, denoted by 
the symbol hi. 

τi = ρghi J (1) 

where 

P density representation of water; 
g acceleration representation of gravity; 
J slope value of the observed energy. 

The VDM is adaptable to any cross-partition geometry that is considered. On the 
other hand, it does not encounter the second-order constraints among the channel 
flow and the relatable floodplains. Added upon, the distribution of roughness under 
wetted perimeter is consistent across the process.
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Fig. 1 Visualizations of the VDM and NDM in schematic form (Khodashenas et al. 2008) 

4.2 Normal Depth Method (NDM) 

The thought process of vertical depth analysis is not used in the estimation of 
boundary shear stress of the slope at steep side. Thus, NDM was introduced by Lund-
gren and Jonsson (1964). This is because the steep side slope has a greater potential 
for shear deformation. They decided to use the normal depth method (NDM) rather 
than the vertical depth method (VDM). This method involves replacing hi in Eq. (1) 
with hNi, where hNi is the depth analysis of the flow which is being circulated along 
the line of the wetted part. It is expressed as follows (Fig. 1): 

τi = ρghNi  J (2) 

4.3 Merged Perpendicular Method (MPM) 

The geometric analysis of the local shear under non-rectangular regions is studied 
by Khodashenas and Paquier (1999). The merged perpendicular method (MPM) is 
predicated on the theory of detaching the radius of hydraulic explored by Einstein 
(1942). This concept is characterized as “a cross-sectional zone bounded by walls 
splitting into three sub-areas, corresponding to sidewalls and bed, respectively.” 
With the help of transmission lines, the wetter regions are categorized into several 
sub-regions. These lines are perpendicular to the perimeter of the wetted region in 
accordance with the procedure (Fig. 2).

i. The perimeter p of the wetted region is partitioned into different tiny segments 
coordinating with the length Pil. 

ii. The boundary of each segment is used to draw the perpendiculars Li−1 and Li. 
These are scrutinized as first order.
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Fig. 2 Illustrations in schematic form of the MPM-determined regions 

iii. The common point that meets the perpendicular has the option to elongate for 
the single line transmission. This is termed as bisector. Henceforth, the angle 
between the planes and intersection of perpendiculars is represented as 

L̂ i,i−1 = 1/2
(
L̂ i + L̂ i−1

)
, wherein the “^” denoting the analysis between the 

planes and line Li. 

iv. In the case of joining, the common points of order j and k are added up to form 
order j + k. The angle formed among the line and the plane is used to estimate 
the weighted mean of those lines and planes. 

Consider an instance, the order of 1 and 2 are 3. Similar to it, Fig. 2 presents the 
estimation of angles as: 

L̂ i ,i−1,i+1 = 1/3
(
2L
∧

i,i−1 + L̂ i+1

)

v. Every segment of local hydraulic is used to measure the radius as Rhi = Si/Pi. 
This shows the discrepancies with the final lines and the flow area. Therefore, 
the stress value of the local shear τ i is then 

τi = ρgRhi J 

The numerical integration of the local values is used to get the mean boundary 
stresses, which are denoted by the symbols τ (b) and τ (w) represent, respectively, the 
bed and the sidewall. 

Relied on the stress value of local shear, the corners in convex are higher than 
the corners in concave due to the lower flow of velocity. This proves that MPM 
model yields better solution than the other models such as VDM, NAM, and NDM 
(Khodashenas and Paquier 1999). This is because the MPM takes into account the 
fact that the local shear stresses obtained at convex corners are larger than in concave
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corners. This approach, on the other hand, does not take into account the processing of 
main channels via momentum to the floodplains and the structural flow of secondary 
constraints. In addition, when the wetted zone is subdivided into smaller sections, 
the roughness distribution that exists outside the wetted perimeter is not taken into 
consideration. 

4.4 Guo and Julien Method (GJM) 

The mean estimation of bed and sidewall shear under rectangular part is estimated 
using Guo and Julien method. It assists to resolve the momentum and continuity 
criteria of the formulated part. With use of mapping the conformal constraints, the 
average of bed and stress value of sidewalls are calculated. On the other side, it 
eliminates the second constraints and also added the eddy viscosity which is shown 
in Eq. 3. By the use of Eq. 4, these two factors are integrated. 

The formula for calculating the mean value of stress under bed shear is as follows: 
The secondary constraints are 

τ (b) 
ρgh  J  

= 
4 

π 2 
b 
h 

∞∑
n=1 

(−1)n 
t2n−1 − 1 
(2n − 1)2 

with t = e− π h 
b (3) 

With corrections factors 

τ (b) 

ρ gh  J  
= 

4 

π 
Arct g exp

(−π h 
b

)
+ 

π 
4 

h 
b

(−h 
b

)
(4) 

The average of the shear stress at sidewalls is given as: 

τ (w) 

ρgh  J  
= 

b 
2h

(
1 − τ (b) 

ρgh  J

)
(5) 

4.5 Prasad and Manson Method (PMM) 

An analytical equation was presented by Prasad and Manson (2002) for the purpose 
of determining the proportion of shear force, %SFw. It is analyzed on the cross-
partition of trapezoidal shape with the prismatic transfer mode. It was not taken into 
consideration that there were secondary currents. The proportion among the width 
and depth, b/h, is multiplied by to arrive at the percentage shear force, %SFw.
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%SFw = 100τ (w) 

τ (w) + τ (b)

(
P (b) 
P (w)

) =
{
25

(
4 − b h

)
b 
h ≤ 2 

100 
b 
h 

b 
h ≥ 2

}
(6) 

Here, the perimeter of bed is represented as P(b), and the perimeter of the sidewall is 
represented as P(w). Pertaining to it, the percentage analysis of shear stress value is 
resolved by exploration of τ (b) and τ (w) as: 

τ (b) 

ρgh  J  
= (1 − 0.01%SFw)

(
1 + 

P (w)) 
P (b)

)
(7) 

τ (w) 

ρgh  J  
= (1 − 0.01%SFw)

(
1 + 

P (b) 

P (w)

)
(8) 

4.6 Knight et al. Method (KAM) 

Empirical formulae are provided in order to measure the fraction of the shear force 
that is being taken up by the sidewall with the cross-partitions of trapezoidal and the 
roughness estimation of borders by following prismatic transfer mode. A significant 
number of different experimental data sets were used in order to refine this model. 
These featured, among other things, subcritical (F < 1) flows in straight channels 
with rectangular and trapezoidal cross-sections, as well as supercritical (F > 1) flows  
in straight channels. 

Where F = u/(gS/b)1/2 represents value of Froude constant, flow of the velocity 
as u, width of the surface as b, and the cross-partition area as S. Experiments that 
were carried out later on by Knight and Sterling (2000) investigated stress range of 
boundary shear under smooth circular regions under flatbed. They discovered that 
for P(b)/P(w) > 1, denoting the contribution of the force in shear walls by considering 
a uniform stress values as: 

%SFw = Ccf  exp
[
−3.23 log10

(
P (b) 

P (w)C2 
+ 1

)
+ 4.6052

]
(9) 

For F < 1:  C2 = 1.50, Ccf = 1 for  P(b)/P(w) < 6.546, Ccf = 0.587 5(P(b)/P(w))0.28471 
for P(b)/P(w) ≥ 6.546, and 

For F >1:  C2 = 1.38, Ccf = 1 for  P(b)/P(w) < 4.374, Ccf = 0.6603(P(b)/P(w))0.28125 
for P(b)/P(w) ≥ 4.374.
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4.7 Preston Tube Technique 

As a result of how simple it is to use and make the tubes using Preston. It is a kind 
of technique of measuring stress value of shear that is used rather often. Because 
of the development of diverse features such as length value of the roughness and 
the displacement analysis of zero-plane, it is challenging to apply this method to 
a rough bed, despite the fact that it is straightforward and dependable when used 
to a bed with a smooth surface. Mohajeri et al. (2017) established a novel Preston 
tube technique that is applicable for determining the volume of stress value of bed 
shear in both rough and smooth loose-flow channels. This new device could make 
formula usage of wall similarity model and the double averaging method. This is 
in contrast to Preston tube comprising of three tubes of Pitot with a static Prandtl 
tube. In coordinating to it, other strategies such as laws of logarithmic, stress profile 
analysis using Reynolds, slope measurement of energy, and the prior use of Preston 
tube were also tested in order to assure the collection of data quality. In order to 
do mathematical estimates of the boundary shear stress, Patel (1965) presented the 
correlations that are as follows: 

x∗ = log10

(
� pd2 

4ρν2

)
(10) 

y∗ = 0.5x∗ + 0.037 for 0 < y∗ < 1.5 and 0 < x∗ < 2.9 (11) 

y∗ = 0.8287 − 0.1381x∗ + 0.1437x∗2 − 0.0060x∗3 

for 1.5 < y∗ < 3.5 and 2.9 < x∗ < 5.6 (12)  

y∗ = log10

(
τ d2 

4ρν2

)
(13) 

Here, the diameter of outer region of Preston tube is represented as d, �p is the 
pressure difference between static and total pressure, the density of the liquid is 
given as ρ, and ν is the viscosity of fluid in kinematic. The equations listed above 
were tested, and one of the following was selected as the best fit for calculating the 
stress value of wall shear relying on the count of x* values. The aggregate force value 
of shear to the unit length is carried on the compound parts of walls that combine 
with the perimeter of entire region. This allowed for the accurate determination of the 
total shear force. The analyzed component of the weight force exerted by the liquid 
along the streamwise direction was compared to the total shear that was measured. It 
portrays the reliability of the considered ranges. In situations when the experiments 
were not repeated, the error percentages ranged within ± 5%.
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5 Conclusions 

Several unique approaches are introduced to perform a comparative study on the 
boundary shear stress distribution using prismatic channels. In specific to, a simple 
cross-sectional shapes like circular, rectangular covering the planar and compound 
sections under uniform boundary roughness. The experiments were conducted on 
the strategies such as Preston tube technique, the vertical depth method, the normal 
depth method, the merged perpendicular method, the Guo and Julien method, the 
Ramana Prasad and Russell Manson method, the Knight et al. method, and the merged 
perpendicular method. 

Each strategy has shown the incredible support of employing it. Consider an 
instance, the mean calculation of bed and the sidewall shear stresses with respect 
to the stress value of local shear stress and perimetric distance are explored and 
discussed. In line to the experimental analysis, the stress value of local boundary shear 
and the mean of bed and sidewall shear have strong influence over the cross-sectional 
shape and the roughness estimation of boundary. However, the VDM strategy cannot 
express accurately of the local shear stress. The most accurate prediction of mean 
value of bed and the wall shear is obtained by using GJM method. The adoption 
of varying the eddy viscosity, factors related to presented and observed effects 
are employed. This conclusion illustrates the need of taking into consideration the 
secondary current repercussions. Therefore, the PMM and the KAM strategies has 
been widely employed to forecast the stress value of the wall and the shear. It is 
mainly tested on the flatbeds in cross-sections of rectangular and circular. Estimates 
of the local shear stress may be obtained using MPM for cross-sections that have 
a trapezoidal, rectangular, or circular shape. The MPM has the advantage of being 
able to adapt to geometries that have an uneven cross-section as well. For compound 
cross-sections, the MPM provides a fair estimate of the local shear stress provided 
that the cross-section is not curved, does not have a sharp edge, and does not intersect 
the main channel-floodplain interface zone of all compound partition. Because the 
MPM does not take into account lateral flow exchange among primary channel and 
the floodplain that could unleash the discrepancies. It affects the exchange of lateral 
flow in the MPM. In other words, the lack of inclusion of lateral flow exchange in the 
MPM is the cause of these local discrepancies. The outcomes of Preston tube method 
have the ability to measure the accuracy ranging from ± 15.0 to ± 24%, respectively, 
depending on whether the bed is smooth or rough. Because of these precision ranges, 
it is certain that this device will be useful in open-channel flow research in the future. 
The procedures described here are effective engineering tools that are not difficult 
to implement into numerical models. Even when looking at flows in flumes with 
trapezoidal or complex cross-sections, it might be difficult to identify the boundary 
shear stress distribution. This is because of the practical difficulties involved. Any 
cross-sectional shape that has a roughness distribution that is not uniform may be 
quickly treated using these procedures. For the overall validation of the approaches 
that have been provided, there has to be a greater number of boundary shear stress
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measurements taken in smooth, intermediate, and rough channels with a variety of 
cross-sectional forms. 
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