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Abstract A Spiking Neural Network (SNN) processes neural information through
precise timing of spikes and is considered a brain-inspired computational model of
the third generation of the artificial neural network. SNN has a set of biologically
plausible spiking neurons that have proven effective in processing complex tem-
poral and spatio-temporal data. In addition, SNNs are computationally powerful,
energy-efficient as well as a dynamic systems. However, the formulation of effi-
cient supervised learning algorithms for SNNs is challenging due to their inherently
discontinuous and implicit non-linear mechanisms. It has become a significant chal-
lenge in this field.Moreover, there exist a few efficient supervised learning algorithms
developed for SNN. This paper provides a thorough review of supervised learning
algorithms developed for SNNs categorically. We have divided the supervised learn-
ing algorithms into several categories based on the core principles for optimisation,
such as gradient rule, asymmetric supervised Hebbian learning, remote supervision,
and metaheuristics.

Keywords Spiking neurons · Gradient rule · STDP · Remote supervision ·
Metaheuristics

1 Introduction

The Spiking Neural Network (SNN)—the “third generation” of Artificial Neural
Network (ANN) [47]—overcomes the flaws in ANN such as biological plausibility,
energy efficiency, and powerful computationally. It can mimic the human brain to a
great extent. SNN is biologically plausible [58, 86], energy-efficientwhile simulating
in neuromorphic hardware [20, 49, 86], and computationally powerful [19, 48] as
it can approximate the same function which other generations of ANN do with very
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less number of spiking neurons [48]. It primarily differs from SNN in information
coding, synapse model, and neuron model. The former uses rate coding which is
proven unlikely, and strong arguments are provided against the use of rate coding in
the human brain by Thorpe et al. [65, 83]. The latter uses precise timing of spikes
as information called temporal coding akin to the human brain [8, 11, 60]. There
exists single, as well as multiple synapse models in SNN, implemented using the
concept of kernel functions. In addition, SNN mainly uses Leaky-Integrate-and-Fire
(LIF) [1, 7, 44, 72, 73, 85], Hodgkin-Huxley model [29–32], Spike ResponseModel
(SRM) [18, 19, 43], and Izhikevich model [37] as neuron model. On the other hand,
traditional ANN generally refers to neuron models as activation functions. There
exist various linear as well as non-linear activation functions for traditional ANN,
the most popular being the logistic or sigmoid activation function [25], ReLU [57],
and softmax [23].

SNN can be defined as a finite set of N spiking neurons, a finite set of S ⊆ N × N
synapses establishing a connection between elements of set N , synaptic weights
between two synapses i and j , i.e., wi j ∈ IR, a response function between i and j
(where (i, j) ∈ S), Ψi j : IR → IR, and a spike firing threshold Θ . Spiking neurons
can mimic biological neurons where the relevant information between two spiking
neurons is carried through the synapse(s) connected between any two neurons in
terms of short electrical pulse with an amplitude about 10 mV and a duration about
1 ms [19, 60] called action potential or spikes. The synaptic terminals are those
junctions where the exchange of information takes place between any two biological
neurons through the receptive fields by the diffusion of neurotransmitters, and spik-
ing neurons can mimic the simple form of this concept mathematically. Generally,
information sender neuron is called the presynaptic neuron, and information receiver
neuron is called the postsynaptic neuron. When presynaptic neuron(s) send informa-
tion to a postsynaptic neuron, the internal state of the postsynaptic neuron changes.
At rest, in a biological neuron membrane, the potential value remains at about [–65
mV to –70 mV] [19, 60] when there is an absence of input stimuli. Upon receiving
input stimuli from presynaptic neuron(s), the value of the membrane potential of the
postsynaptic neuron called Postsynaptic Potential (PSP) may increase or decrease
according to the synapse model. An excitatory synapse model increases the PSP
value which is called Excitatory Postsynaptic Potential (EPSP) [19, 49, 86] and an
inhibitory synapsemodel decreases the PSP value which is called Inhibitory Postsy-
naptic Potential (IPSP) [19, 49, 86]. Note that a postsynaptic spiking neuron issues
spike only when its PSP reaches a certain threshold and not at each propagation cycle
like traditional ANN. The typical value of threshold in a biological neuron is about
–55 mV [19, 49].

SNNhas been usedwidely including in the task of classification and clustering. Its
implementation in the hardware requires less energy. IBM’s TrueNorth [9, 13], Intel
Loihi [12], Tsinghua Tianjic [61], and DARPAQuad Copter [28] are energy-efficient
neuromorphic hardware that use SNN. Note that it is computationally powerful [48]
and can efficiently handle non-linear data with a single spiking neuron (works fine
without hidden layer(s) aswell as hiddenneuron(s)),making the systemcomputation-
ally powerful. Since it can efficiently classify non-linear patterns without any hidden
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layer(s), the synaptic load is less than conventional neural networks. Furthermore,
SNN is used to develop the neuroprosthetic system where it exhibits properties that
has the ability to adjust to the nonstationarity of the neuro-musculoskeletal system
that is suitable to control neuro-prostheses [34, 64, 71].

2 Review of Supervised Learning Methods

The most challenging and crucial part of any supervised learning approach is hyper-
parameter tuning to optimise the predicted output keeping in mind the target outputs.
The optimising phenomenon is generally referred to as learning. With the flow of
time, various supervised learning algorithms to train SNNhave been developed utilis-
ing heterogeneous optimisation techniques. However, almost none of the algorithms
is satisfactory, provided there is a fair trade between computational efficiency and
biological plausibility. This section discusses the most popular supervised learning
algorithms developed for SNN, thoroughly and categorically. Also, in [39, 46, 76,
90], a detailed review of different learning algorithms developed for SNN to train in
a supervised manner using various approaches is presented lucidly.

2.1 Learning by Finding the Gradient

The gradient-based method is well-known and is widely used as an optimising tool
to train a neural network. In general, gradient or slope is used to find the direction
of error in the continuous curve, making it easy to move in that particular direction
to fine-tune the overall network error. However, the constraint is that the curve must
be continuous, which means it can only provide continuous input. Therefore, it is
complicated and challenging to apply this approach in SNN since all information
processing happens in discrete forms. For presynaptic spike-times xi , hiddenneuron’s
spike-times y j , synaptic delays for k synapses dk , and predicted spike-times zm , the
change in synaptic weights is represented using Eqs. (1), (4), (5), and (6) applying
gradient estimation approach. The change in weights between hidden and output
layers �wk

jm is given in Eqs. (1) and (4):

�wk
jm = −η × δm × ξ

(
t − y j − dk

)
(1)

where ξ(t) is the α-kernel which shapes the synapse, the definition is given in
Eq. (2):

ξ(t) = t

τs
exp

(
1 − t

τ

)
H(t) (2)
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where H(t) is the Heaviside function represented using Eq. (3), and τs is the synaptic
time constant:

H(t) =
{
1, if t > 0

0, otherwise
(3)

The value of δm is calculated for the lateral use in Eq. (4):

δm = (δm − zm)
∑q

j=1

∑r
k=1 wk

jm × ξ
(
zm − y j − dk

) ×
(

1
zm−y j−dk − 1

τ

) (4)

Now, the change in weights between the input and hidden layers �wk
i j is given in

Eqs. (5) and (6):
�wk

i j = −η × δ j × ξ
(
t − xi − dk

)
(5)

δ j =
∑s

m=1 δm
∑r

k=1 wk
jm × ξ(zm − y j − dk) ×

(
1

zm−y j−dk − 1
τ

)

∑p
i=1

∑r
k=1 wk

i j × ξ
(
y j − xi − dk

) ×
(

1
y j−xi−dk − 1

τ

) (6)

The final change in synaptic weights �wk
jm calculated using the value of δ j is given

using Eq. (6), which is added to the initial synaptic weights wk
jm to get the new

synaptic weights. Thus, the training happens in the case of a gradient-based approach
for SNN.There are i = 1, 2, 3, ..., I input neurons, j = 1, 2, 3, ..., J hiddenneurons,
and m = 1, 2, 3, ..., M output or readout neurons present in the network.

The challenge of discontinuity is solved to some extent by Bohte et al. [5] by
introducing probably the first popular supervised learning algorithm to train an SNN
connected in feed-forward fashion and naming it as SpikeProp [5]. The exciting
part of the SpikeProp is its similar analogy with the most popular backpropagation
algorithm of ANN. SpikeProp eliminates discontinuity by allowing a single spike-
time while discarding the lateral spikes. Although SNN smoothly work with non-
linear classification problems if implemented efficiently, without the need of hidden
layer(s) and hidden neuron(s), SpikeProp used hidden layers and thereby suffered
from the heavy computational cost. The reason is that hidden layers increase the
synaptic load in the architecture, and, as a result, more computational power is
required.

SpikeProp uses the population coding scheme [19] combined with the concept
of time-to-first-spike [19] firing, i.e., in every neuron, the first firing time is most
important than the lateral ones. The utilisation of time-to-first-spike eliminates the
discontinuity problem by omitting the lateral spike-times and considering only the
early spike-time. It is observed that first spike-times are the most relevant in terms of
information carrier [51]. Thus, the input, hidden, and readout (i.e., output neurons)
are restricted to fire only a single spike. The SRM [19] is selected as the neuronmodel
for providing the dynamics of the membrane potential. In addition, the synapses are
connected in a one-to-one fashion between every pair of SRM neurons. The error
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direction was investigated in SpikeProp by finding the slope since the usage of the
time-to-first-spike as given in [5] turns discrete into the continuous nature of spiking.
Although SpikeProp was a success to some extent, it lags behind in propping up
weights if a neuron (postsynaptic neuron) no longer fires a spike after receiving the
input stimuli.

Moreover, inhibitory neurons are not investigated properly and use a minimum
value of learning rate. In [50], QuickProp and Rprop improve SpikeProp to some
extent, and it is observed that the small value of the learning rate or step size used in
SpikeProp can be increased to a large value that also leads to successful training to
a certain extent. Note that the convergence rate in online mode, biological plausibil-
ity (since the synapses are not well-explored, which is less similar to the biological
neurons), and the computational cost of SpikeProp is the flaw of this algorithm. In
[6, 21, 50, 68, 91, 92], the convergence rate and multiple spiking nature are fur-
ther investigated, which makes SpikeProp more generalised and a speedy algorithm
than the previous version in [5]. However, the major problem of SpikeProp being a
gradient-based supervised learning algorithm persists, that is, the stagnation at the
local minimum, and it is a problem with any gradient-based optimisation algorithm.

The surge or sudden jumps present in any optimisation algorithm that uses gradient
rule to determine the error-direction disturbs an optimisation algorithm’s consistency.
In addition, SpikeProp did not consider the mixture of inhibitory and excitatory
neurons because, in this case, there is always a threat to the convergence of the
algorithm, and it is also a barrier when we want a synapse model to be biologically
more realistic. In [68], Shrestha et al. also explore some of the demerits of this
kind along with the problem in formulating the loss function. Some other gradient-
based supervised learning uses a slightly different concept by utilising extended delta
learning rule developed in [53, 55]. In the algorithm, each spike-train is allowed to go
through convolution with the suitable kernel function, distinguishing the algorithm
from the others. The gradient descent approach-based SPAN algorithm proposed in
[54] uses the concept of the spike-pattern association, which works with a single
synapse connected in the form of α-shaped synaptic curve. It used the area under the
curve to compute the overall loss in the network while training is an exciting feature.

However, the common problem is aforementioned to persist. Therefore, moving
in a different direction in the search for another approach becomes necessary. This
approach is primarily based on the concept of Hebbian learning, especially asym-
metric Hebbian learning which is discussed in the next section.

2.2 Asymmetric Supervised Hebbian Learning

The Spike-Time-Dependent Plasticity (STDP) is a biological process that optimises
the information processing mechanism among neurons. It is considered the asym-
metric form ofHebbian learning that adjusts the synaptic efficacy or weights between
neurons, considering the timing of a neuron’s spike-time (relative timings) and input
spike-times. The correlation (temporal) between pre- and postsynaptic spiking neu-
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rons is taken into consideration. The plasticity generally means change; the meaning
maps to the synapse change (the change happens in terms of synaptic efficacy). Like
any other synaptic plasticity mechanism, along with the development and fine-tuning
of neuronal circuits while in the brain’s development phase, it is believed that STDP
handles the learning and storing corresponding information inside the brain [4, 69].
It explains activity-dependent development partially regarding two different con-
cepts: the Long-Term Potential (LTP) and the other is the Long-Term Depression
(LTD). When the repeated presynaptic spike arrives a few milliseconds before the
postsynaptic spikes, it is referred to as the LTP. On the other hand, when the repeated
presynaptic spike comes after the postsynaptic spikes, it is referred to as the LTD.

The learning window which is also called the STDP-function varies for different
synapse models. The rapid change in the learning window’s value forces the time
scale to be represented to the millisecond. Although it primarily learns in an unsu-
pervised manner and is considered a partial learning algorithm, most researchers
combine STDP with a concept called anti-STDP to train in a supervised manner.
There are various supervised algorithms for SNN which are developed using the
STDP. However, a few are successful to some extent, both computationally and
biologically.

The time difference �t between presynaptic spike (tpre) and postsynaptic spike
(tpost ) is represented as �t = (tpre − tpost). The change in synaptic weights for exci-
tatory synapsewexcitatory is given in Eq. (7). The exponentially decaying shape shown
in Fig. 1 indicates the dependency on the time difference of spikes, i.e., �t :

�wexcitatory =

⎧
⎪⎨

⎪⎩

A+ exp(�t
τ+ ), ∀�t < 0

A− exp(−�t
τ− ), ∀�t > 0

0, ∀�t = 0

(7)

where A+, and A− represents constant value (usually taken as 1.0) for the LTP and
LTD, respectively. The values of τ+ and τ− known as time constants shape the curve
for LTP and LTD, respectively.

In [70], a learning algorithm for SNN is proposed in which STDP and anti-STDP
are used to fit the algorithm in a supervised paradigm. In this algorithm, multiple
spiking activity is used where each spiking neuron can fire multiple spikes at a differ-
ent time step. The architecture of the network is feed-forward, having hidden layers.
The demerit of the algorithm is the negligence of the precise spike-times produced by
the neurons present in the hidden layers at the time of training. Qiang et al. proposed
an algorithm that uses temporal coding to represent real-valued continuous informa-
tion in the form of discrete spikes to train SNN in a supervised manner [93]. In [81],
Aboozar et al. proposed the supervised learning that is biologically plausible called
the BPSL algorithm, which is capable of firing multiple target spikes from a spik-
ing neuron. Although it is referred to as the biologically plausible algorithm, there
is a lack of proper implementation in the synapse model when essential biological
elements are considered.
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Fig. 1 The learning window
for STDP (relation between
synaptic weights and
spike-time difference) where
LTP is represented by the left
curve, and LTD is
represented by the right
curve
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In [88], John et al. proposed a supervised algorithm using synaptic weight asso-
ciation training and called it SWAT. It is used to classify the non-linear feed input
patterns into their respective target patterns. There is an exciting feature present
in the SWAT algorithm that uses the dynamic synapse model [10, 84], which is
capable of working in terms of the mechanism of long-term plasticity. SWAT has
biological properties to some extent. However, the major drawback of SWAT is the
computational cost since it has a huge synaptic load to be dealt with having high
computational power. The increase in synaptic load results from a huge number of
connections formed due to the presence of many hidden neurons in the network
topology. Therefore, it is challenging for a computer with moderate computational
power to adjust and fine-tune many network parameters. As far as SWAT training is
concerned, it is trained using the STDP algorithm transforming into the supervised
paradigm.

Tempotron algorithm, proposed in [24], which trains SNN in a supervised man-
ner, came with a slightly different picture. It allows a neuron to learn spike firing
decisions (whether to issue a spike or not) when its cell membrane is updated with
the potential of incoming input stimuli from several presynaptic neurons. The work-
ing of Tempotron’s response is like a switch “on” or “off” akin to a digital system.
Instead of precise spike-time learning, Tempotron decides the ability of a neuron’s
firing (acts like a decider). This algorithm also lags behind when there is the question
of a balanced trade-off between biological plausibility and computational efficiency.
In addition, Tempotron can be used only in a single-layered network topology which
is a barrier for multilayered network topology. Also, it is restricted to 0 or 1 as output
which does not encode information in precise spike timing.

Other more supervised learning algorithms are primarily based on STDP; a few
of the most used are discussed in this literature review. J. Wang et al. proposed
the OSNN algorithm in [89] which is an online supervised learning algorithm for
SNN. TheOSNNhas an adaptive network structure trained in an online fashion using
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supervised learning patterns. In [56, 80], a supervised learning algorithm is proposed
where the concept of STDP and anti-STDP is used to make the algorithm work as
supervised learning. It is well-known that STDP primarily works in an unsupervised
fashion. It is not considered a fully functional learning algorithm due to its plasticity
updatingmechanism, which changes the sign of synaptic efficacy instead of updating
a fair value based on all presynaptic neurons’ spike firing times. It is a barrier to
STDP-based supervised learning. Note that the Hebbian approach-based supervised
learning algorithmhas a commonproblem,which is the continuous change in synapse
parameters even if neuron fire spikes exactly match the target spikes. Thus, there is
a need for some extra work for adding additional learning rules or constraints to the
original algorithm to provide stability. Moreover, in supervised Hebbian learning, all
undesired timings of the spike are usually suppressed by the “teaching signal” during
the training phase. Therefore, corelation happens only between pre- and postsynaptic
spikes, around the desired timings of the spike. Since this type of corelation is absent
in all other circumstances, synaptic strength cannot be weakened even if a neuron
fires spikes at undesired times during the testing phase.

It is observed from the literature that spiking neurons have the ability to success-
fully classify non-linear patterns into their respective target classes without using any
hidden layer(s), and this powerful feature of spiking neurons is not implemented in
the aforementioned learning algorithms except SEFRON proposed in [38]. SEFRON
did not use any hidden layer. However, it was successful in classifying the non-linear
patterns, thereby decreasing the synaptic load. It explores the computational power
to a certain extent by utilising a single spiking neuron. However, we analysed and
observed that the number of network parameters could be reduced to half, keeping
the classification accuracy unhampered, which we experimented successfully.

2.3 Learning with Remote Supervision

Ponulak et al. [62] proposed a distinguished learning algorithm called ReSuMe that
is based on the concept of “remote supervision”. It is argued that ReSuMe elimi-
nates the significant drawbacks found in the supervised Hebbian learning approach.
Apart from this, ReSuMe also implements some exciting features. The primary prin-
ciple is to impose the input-output characteristics into the SNN for yielding the
target spike trains in response to the corresponding input spikes. Unlike supervised
Hebbian learning, ReSuMe does not directly feed the desired signals to the learn-
ing neurons. Nevertheless, it can co-determine the synaptic connection’s plasticity.
The algorithm ReSuMe also uses the supervised Hebbian approach for learning,
but its “remote supervision” feature primarily distinguishes it from the others that
use the supervised Hebbian learning approach. The concept of “remote supervision”
is biologically justifiable based on an experimentally observed neurophysiological
phenomenon—heterosynaptic plasticity [63, 75, 87]. The working rule of ReSuMe
is briefly explained in Eq. (8):
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d

dt
w(t) = [Sd(t) − S l(t)

]
⎡

⎣a +
∞∫

0

W(s) × S in(t − s)ds

⎤

⎦ (8)

where Sd(t), S l(t), and S in(t) represent the desired, presynaptic (input), and postsy-
naptic (output) spike trains, respectively. The parameter a denotes the amplitude of
the contribution (non-correlated) to the d

dt w(t), and the convolution function given
in Eq. (8) is the modification (Hebbian-like) of w. The value of s represents the
time-delay between spikes of synaptic sites and over s, and the integral kernelW(s)
is defined as shown in Eq. (8). A positive value of a corresponds to the excitatory
synapses where the shape ofW(s) becomes similar to the STDP rules, and a negative
value of a corresponds to the inhibitory synapses where the shape ofW(s) becomes
similar to the anti-STDP rules.

The excitingmerit ofReSuMe is its independence from the spiking neuronmodels.
Therefore, it can work with a variety of spiking neuron models. Also, ReSuMe can
learn the target temporal as well as spatio-temporal spikes efficiently. In addition, it
converges quickly towards the optimum value. There exist algorithms that explore
ReSuMe in a better manner, such as in [77, 78], the ReSuMe algorithm is further
investigated, where synaptic delays were added. The delay used is the static constant
values is not random. In addition, in [79], multiple neurons are successfully trained
using the training rules of ReSuMe instead of training a single neuron. However,
ReSuMe has many disadvantages despite the advantageous features: ReSuMe claims
to be suitable for online learning, but due to the fixed network topology, it is not
adaptive to the incoming stimuli. Also, ReSuMe is unable to predict inputs just after
single usage of the training patterns. Although ReSuMe is biologically plausible,
local behaviour restricts its learning ability.

Another exciting supervised learning algorithm that works on the ReSuMe prin-
ciple developed to train SNN is called Chronotron, proposed by Florian et al. in [16].
The Chronotron is experimented with using three different models: first is the gradi-
ent descent learning (called gradient descent E-learning) where delta learning rule is
used, second is the I-learning where gradient descent E-learning and ReSuMe learn-
ing rule are combined andused.The third one is theReSuMe learning rule. Supervised
learning is implemented using a sophisticated distance metric called VictorPurpora
in Chronotron, an exciting feature of the algorithm. However, Chronotron trained
the synaptic efficacies in a batch mode by fixing the network topology, making it
unsuitable for online learning.

2.4 Learning with Metaheuristics

Heuristic methods are used as a powerful and comprehensive tool for solving chal-
lenging optimisation problems. Although heuristics provide “good balanced” solu-
tions relatively very close to the global optimum in affordable cost and time, their
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design and development become complicated as they depend on “problem-specific”
characteristics [59]. Therefore, to solve the flaw mentioned above, metaheuris-
tics came into existence [22]. Metaheuristics are “problem-agnostic” rather than
“problem-specific” and have become remarkably popular inmany optimisation areas,
such as developing learning algorithms for ANN. However, the power of metaheuris-
tics is significantly less explored and experimented with within the case of SNN. In
this section, the metaheuristic approaches which are used to train SNN are briefly
discussed.

Metaheuristics such as evolutionary algorithms are mathematically simpler and
can work on the real numbers directly, and do not waste time encoding these real
numbers into other formats. Therefore, most of the complex classification problems
want this strategy. In [67], an evolving network of spiking neurons is proposed, which
is based on the Thorpe model [82] called eSNN. The advantages of eSNN include
the fast real-time simulation achieved at a low computational cost in a large network
architecture. Also, without retaining past data, the model can accumulate knowledge
at the time of data arrival. The usage of fuzzy rules for yielding the inference engine
is an exciting feature of eSNN. However, eSNN has many disadvantages, such as the
“infinite repository” problem. For each new arrival of patterns in online fashion, its
repository of neurons grows infinitely. Also, due to the usage of averaging synaptic
weights with rank order, eSNN cannot handle input patterns having the same rank
(despite having different spike-times), as well as rank order, and also can increase
the number of neurons in the network, which may lead to the loss of relevant stored
information.

In [14], synaptic efficacies of SNN were optimised to reduce the overall net-
work error using evolutionary techniques where the concept of “self-regulatory”
(called the algorithm as SRESN) is appropriately implemented, which regulates the
learning process. The current stored knowledge can automatically evolve the output
layer neurons based on training patterns. SRESN can add a neuron, change network
parameters, or forgo learning from samples based on the class-specific and sample
knowledge stored in the network. Thus, SRESN works in a “self-regulatory” mode
of learning. This method has both online and offline modes of training. However,
SRESN does not use synaptic delays, which is an essential factor, to provide better
computational cost compromising the biological plausibility.

Evolutionary methods are also used to improve the gradient-based SpikeProp
algorithm [5], which uses the Particle Swarm Optimisation (PSO) technique [41],
and it is referred to as SpikeProp-PSO. It enhanced the learning process of SpikeProp
using the angle-driven dependency-learning rule. However, it increases the computa-
tional cost. Also, it is biologically less plausible since the biological elements present
in synapses are neglected.

Differential Evolution (DE) [74] is a powerful optimisation tool known for its
simplicity and good performance, which is combined with eSNN [67] to develop
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another supervised learning algorithm called DEPT-ESNN [66]. The primary goal
of DEPT-ESNN is to select the optimum number of eSNN parameters such as modu-
lation factor, similarity factor, and threshold. InDEPT-ESNN,DEplays a vital role by
providing suitable values for the mentioned eSNN parameters adaptively rather than
trial-and-error. The advantage of DEPT-ESNN includes its simple implementation
and generalisation. But biological elements present in synapses are not considered,
which makes DEPT-ESNN biologically less plausible.

Although metaheuristic approaches are a bit time-consuming and can work with
a single spiking scheme, they have many advantages that are not achievable using
other optimisation approaches. Therefore, there is a need for more exploration of
metaheuristic approaches to develop an efficient learning algorithm compatible with
SNN. Note that other powerful metaheuristics such as Genetic Algorithm (GA) [3,
26, 33] and Grey Wolf Optimisation (GWO) [52] are neither explored nor success-
fully experimented directly, providing a properly balanced trade-off between the
computational cost and biological plausibility, with SNN trained in the supervised
manner.

The aforementioned supervised learning algorithms, irrespective of the approach
used, did not explore the synapsemodel thoroughlywhich is found from the literature.
Although in somealgorithms such as [5, 77–79] synaptic delays [40] is used, those are
constant synaptic delays, andwherever the usage of themixture of excitatory neurons
and inhibitory neurons is observed, those are not appropriately implemented like
GABA-switch [17, 45]. Synaptic delays are significant when biological plausibility
is concerned. In the GABA-switch mechanism, switching from excitatory neuron
to inhibitory and vice versa happens randomly. The robustness of an algorithm is
tested against noise, and in the biological process, the presence of noise is evident
while sharing information among neurons [15]. Therefore, it should be robust for a
model to be biologically plausible, which is less explored as far as SNN is concerned.
Another important phenomenon observed in a biological neuron is the spontaneous
firing of spikes [27, 42] which is almost neglected in most of the synapse models of
an SNN architecture.

Moreover, there is a lack of a balanced trade-off between the computational cost
and biological plausibility in almost all the aforementioned supervised learning algo-
rithms developed to train an SNN topology. A balanced trade-off between the com-
putational cost and biological plausibility is essential in the case of SNN because if
the computational complexity is very high, it is difficult to handle a high-dimensional
dataset.

Tables 1 and 2 show a brief summary of the gradient and STDP-based supervised
learning algorithms, and a brief summary of remote-supervision and metaheuristic
supervised learning algorithms.
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Table 1 A brief summary of gradient and STDP-based supervised learning algorithms
Approach Algorithm Advantages Disadvantages

Gradient (1) Able to solve complex
non-linear classification
problems

(1) When a post-synaptic
neuron stops firing/responding
to its corresponding input
patterns, there is no mechanism
using which synaptic weights
can be “propped up”

SpikeProp [5] and Variants [6,
21, 50, 68, 91, 92]

(2) Computationally powerful
for classification

(2) Even though neurons fire at
most one spike due to the
time-to-first-spike encoding,
the synaptic load is very high;
mathematically challenged

(3) QuickProp improves the
convergence speed using
momentum, Rprop also seems
to speed up SpikeProp

(3) Only excitatory neurons
with a simple synapse model
are used, and arbitrary values
of synaptic delays are used—a
barrier to biological plausibility

Common problem: Gradient-based optimisation algorithms may be stuck at the local minimum

STDP SWAT [88] (1) Uses dynamic synapse
model
(2) Can handle large non-linear
datasets

(1) Huge synaptic load—it is
computationally very costly

(2) More number of network
parameters to adjust; very less
biological elements are used in
the synapse model

Tempotron [24] (1) Applicable to a wide range
of input classes, and it is
flexible to information
encoding scheme

(1) Suitable only for
single-layered network
topology. (2) Lack of precise
spike-timing information due to
the restricted output either as 0
or 1 during a predetermined
interval; less biologically
plausible

SEFRON [38] (1) Lower computational cost

(2) Less network parameters
are to be adjusted as there is no
hidden layer(s)

(1) Stability and robustness are
not assured
(2) Computational complexity
can be reduced to half keeping
classification accuracy
unhampered; less biologically
plausible

Others [56, 70, 80, 81, 89, 93]
[77–79]

(1) Can be used for a wide
range of classification problems
including large datasets. In
[77–79], synaptic delays are
considered. [93] performs well
with the MNIST dataset

(1) Learning rule is based on
STDP, not a fully functional
supervised learning algorithm.
Synaptic delays considered in
[77–79] are not random. A
higher value of constant
synaptic delays can affect
learning. In [70], spikes fired
by hidden neurons are
neglected while training

Common problem: STDP is not considered a fully supervised learning algorithm, also stability cannot be guaranteed
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Table 2 Abrief summary of remote-supervision andmetaheuristic-based supervised learning algo-
rithms
Approach Algorithm Advantages Disadvantages

Remote Supervision (1) Solves the flaw in
SpikeProp and is
independent of the spiking
neuron models

(1) Due to the fixed network
topology not adaptive to
incoming stimuli

ReSuMe [62] (2) Efficiently learns target
temporal and
spatio-temporal
spike-patterns

(2) After only single use of
the training patterns, it is
impossible to predict inputs

(3) Quickly converges
towards optimised values

(3) Moderately biologically
plausible; but local
behaviour restricts its
learning ability

Chronotron [16] (1) Supervised learning is
implemented using a
sophisticated distance
metric called VictorPurpora

(1) Trained the synaptic
efficacies in batch mode by
fixing the network
topology, making it
unsuitable for online
learning

Common problem: Network topology should be fixed before training, which is not adaptive

Metaheuristic PSO-SpikeProp [2] (1) Enhanced learning
process of SpikeProp using
angle-driven
dependency-learning rule

(1) Poor performance;
increase in computational
cost and biological
elements present in
synapses are not considered

DEPT-ESNN [66] (1) Simple implementation
and generalisation

(1) Moderate performance;
biologically not plausible

(1) Fast real-time
simulation provided low
computational cost in case
of large network
architecture

(1) For each new arrival of
patterns in online fashion,
its repository of neuron
grows infinitely

eSNN[67] (2) Without retaining past
data, the model is capable
of accumulating knowledge
in case of data arrival

(2) Due to the usage of
averaging synaptic weights
with rank order, it cannot
handle input patterns
having the same rank

(3) The exciting feature is
the fuzzy rule generation

(3) The rank order might
lead to an increase in the
number of neurons in the
network, which can lead to
information loss

Common problem: Very time consuming; not guaranteed to find the optimal solution, but finds near-optimal solution
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3 Conclusion

The supervised learning algorithms discussed in this paper, irrespective of the
approach used, did not explore the synapse model thoroughly that is found from
the literature. Although in some algorithms such as [5, 77–79] synaptic delays [40]
are used, those are constant synaptic delays, and wherever the usage of the mixture
of excitatory neurons and inhibitory neurons is observed, those are not appropriately
implemented like GABA-switch [17, 45]. Synaptic delays are significant when bio-
logical plausibility is concerned. In the GABA-switch mechanism, switching from
excitatory neuron to inhibitory and vice versa happens randomly. The robustness
of an algorithm is tested against noise, and in the biological process, the presence
of noise is evident while sharing information among neurons [15]. A model should
be robust to be biologically plausible, which is less explored in the case of SNN.
Another important phenomenon observed in a biological neuron is the spontaneous
firing of spikes [27, 42] which is almost neglected in most of the synapse models of
an SNN architecture.

Althoughmetaheuristic approaches are a little time-consuming and canworkwith
a single spiking scheme, they have many advantages that are not achievable using
other optimisation approaches. Therefore, there is a need for more exploration of
metaheuristic approaches to develop an efficient learning algorithm compatible with
SNN. Note that other powerful metaheuristics such as Genetic Algorithm (GA) [3,
26, 33] andGreyWolfOptimisation (GWO) [52] are rarely explored successfully and
experimented directly, providing a properly balanced trade-off between the compu-
tational cost and biological plausibility, with SNN trained in the supervised manner
except [35] and [36].
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