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Abstract Morphological analysis and differential cell counting are important in
characterizing many diseases including malaria and leukaemia. The basic build-
ing block involved is cell segmentation and is a challenging but beneficial task in
cytopathology. Microscopy being the gold standard for cell analysis, approaches
have been discovered from traditional image processing operations to deep learning
techniques for cell segmentation frommicroscopy images. In the last few years, clas-
sification networkswere extended for image segmentation using the pixel-based clas-
sification method, known as semantic segmentation. Convolutional neural networks
exhibited good performance in image segmentation. However, the networks suffered
some limitations due to fully connected layers and pooling layers that restricted
the size of images to be given as input and resulted in the loss of spatial context.
In this research, experiments were carried out with two popular CNN architectures
UNet and SegNet, traditionally used for semantic segmentation of natural images. By
identifying the capacity of these networks for cell segmentation on natural images,
we have experimented on a custom-built RBC, WBC and platelet cell segmentation
dataset based on ALL-IDB. We critically evaluate the performance of both archi-
tectures with an intuitive explanation of their difference in performance. The UNet
outperformed SegNet that too with limited labelled training data giving a promising
Dice score of 0.97. With the experiments and analysis conducted in this work, we
propose that the UNet is a very good choice for cell segmentation in cytopathology
applications.
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1 Introduction

The cell is the basic unit in all living organisms. Our body comprises trillions of cells,
and analysing the behavioural and physical characteristics of these cells provides
clues to the health of the subject being examined. Cytology is the branch of medicine
that studies cells in living organisms. Cytopathology is considered as the branch of
pathology where usually a microscopic examination of cells and tissues is done for
diagnosing diseases. Traditionally, the microscopic examination is done manually,
which is time-consuming, costly and often the results depend on the skill of the
examiner. As timely detection and treatment are crucial for the patient, this is a good
candidate for automation.

Automation in cytology is widely used in the medical field to reduce manual
efforts and to get standard results. Image analysis methods are applied to cytology
samples like blood smear images for identification, quantification and classification
of diseases and abnormal conditions [1]. Microscopic analysis of blood samples is
used for differential cell counting, detection of anaemias, presence of malaria para-
sites [2], tuberculosis [3], different types of leukaemia, eosinophilia, thrombocytosis,
thrombocytopenia, etc. [4, 5].

Each cell possesses a standard signature which is contributed by the shape and
size of the cell, morphology of the nucleus, presence of granules and the amount of
cytoplasm. Depending on the disease, these cell signatures differ and the change in
the signature is assessed by the microscopic image analysis. Accurate quantification
of the cell signature depends on the detection of accurate spatial locations of cell and
cellular structures in the image [6]. Therefore, one of the focus areas in microscopic
image analysis is automated detection and segmentation of cellular structures [7].
It is not an easy task due to the challenges like the heterogeneous shape of cells
in the image, intracellular variability, occurrence of cells as a cluster, etc. Also, the
availability of publicly accessible annotated data that can be used to learn the model
is insufficient [6].

In recent decades, several tools and techniques have been developed for the seg-
mentation of cells. However, there is still a great demand for precise, standardized
and robust whole cell segmentation algorithms to reliably measure morphological
properties and subcellular structures in cell images [8].

To the best of our knowledge, little or no research has been carried out to segment
different types of cells with heterogeneous shapes from microscopic images in a
single pass using deep learning architectures when there is only a limited amount
of data available for training. In this research, we propose UNet architecture for
cell segmentation from microscopic images in the above settings by establishing its
power to segment out WBCs, RBCs and platelets in a single pass. We also assess the
effectiveness of data augmentation strategies in improving the performance of the
model.
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2 Related Works

An important step in the automation of cytopathology is cell localization and seg-
mentation. Traditionally, cell segmentation was performed by simple thresholding
[9]. Later, more advanced techniques based on watersheds [2], morphology [10] and
clustering-based techniques [11] were employed. All these techniques demanded
expert human knowledge for identifying the morphological features of the cells
under study. These methods were not suitable when there is no significant contrast
between various objects.

With the advent of deep learning algorithms, data became utmost important and
the focus shifted to data-driven models [12]. Image segmentation is now considered
as a pixel-level classification problem using labelled pixels.

Initially, classification networks with fully connected layers were only used for
pixel-based classification. This was done using a patch of the image around the
pixel due to the fixed size restriction of fully connected layers [13]. Long et al. [14]
proposed a fully convolutional network (FCN) in which only convolutional layers
are present to allow input images of any size. Probabilistic graphical models like
conditional random fields (CRFs) and Markov random fields are used along with
FCN to integrate more semantic contexts [15, 16].

The pooling layers in convolutional neural networks discard the spatial context.
To solve this problem, architectures were developed that gradually recover spatial
information. One of them is the convolutional encoder-decoder-based architecture
where shortcut connections are provided between the encoder and the decoder. The
encoder-decoder based on the convolutional neural network was used for image seg-
mentation in [17].Badrinarayanan et al. [18] cameupwith an encoder-decoder frame-
work with a final pixel-wise classification layer, known as SegNet, and Ronneberger
et al. [17] came up with UNet architecture for the segmentation of images. It con-
sists of contracting and expansive paths similar to the encoder-decoder architecture.
Segmentation of neural structures was done by combining residual blocks in ResNet
architecture with UNet, called residual deconvolutional network [19]. The dense
mechanism was incorporated into UNet to reduce gradient vanishing problems [20].
To account for the loss of features during downsampling and upsampling operations,
dilated convolutions were introduced along with UNet [21]. Several other architec-
tures are being developed to better address the need for semantic segmentation [22].

Though UNet is experimented within diverse applications [23] including biomed-
ical segmentation, the power of these networks is seldom explored for the segmenta-
tion of multiple cellular structures at once using fewer data. We establish the efficacy
of UNet in similar settings by showing improved accuracy on the cell segmentation
on the benchmarked dataset ALL-IDB [24] using Dice’s coefficient and Intersec-
tion over Union (IoU) metrics. The model is applied to segment three types of cells,
namely red blood cells, white blood cells and platelets present in microscopic images
of blood samples in a single pass.
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Table 1 Distribution of pixels among the classes

Class Total no. of pixels Percentage of pixels (%)

RBC 208946235 46.82

WBC 13882586 3.11

Platelets 549005 0.12

3 Dataset

We used the dataset developed by Shahzad et al. [25] for semantic segmentation. It
is a manually generated dataset consisting of blood cell images and is an extension
of the ALL-IDB dataset [24].

ALL-IDB dataset is a public dataset containing 108 whole-slide microscopic
images of blood samples. The total count of blood elements is about 39000. The
images were captured with 300–500 magnification rate microscopes. The dataset
was originally released for the development of algorithms in detecting Acute Lym-
phoblastic Leukaemia (ALL). There were 59 images from healthy individuals and
49 images from ALL patients.

Blood images of humans contain at least three components, RBCs, WBCs and
platelets. RBCs appear round in shape and are 7–8 µm in diameter. Variation in size
and shape may indicate some abnormal conditions. WBCs are the largest among the
three with a diameter from 10 to 20µm. The dataset developed by Shahzad et al. [25]
includes individual masks for WBCs, RBCs and platelets in the image. The dataset
contains ground truth masks for 108 images of the ALL-IDB dataset. We have only
used 106 masks out of this in our study, due to a size mismatch between the original
images and masks for the remaining two images. The distribution of pixels across
different classes for the dataset is shown in Table 1.

4 Methodology

The overall methodology for semantic segmentation is to design a network that
extracts features through successive convolution operations and produces a segmen-
tation map. We have implemented the segmentation framework based on SegNet
and UNet architectures for the segmentation of RBCs, WBCs and platelets from
microscopic images. The overview of the framework is shown in Fig. 1.

4.1 Preprocessing

The dataset contains whole-slide microscopic images and the corresponding individ-
ual masks for RBCs, WBCs and platelets as shown in Fig. 2. To perform multiclass
segmentation, ground truth masks corresponding to RBC, WBC and platelets need
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Fig. 1 Overall view of the segmentation framework

(a) (b) (c) (d) (e)

Fig. 2 a Input image. b RBC mask. c WBC mask. d Platelet mask. e Pixel mask

to be combined for each image. Then pixel IDs are assigned for each pixel as per the
class to which it belongs. The resulting pixel labelled masks, as shown in Fig. 2e, are
used in the framework.

The images are also subjected to area opening operation to remove small objects
due to random noise or artefacts. Since the dataset is small, images are augmented
by flipping the image from left to right and top to bottom directions. Also, the
images are rotated by 90◦, 180◦ and 270◦. These types of augmentations aid the
transformation invariant mechanism of deep neural networks. The rotation angle is
in multiples of 90◦, and hence the augmentation does not affect the shape, texture,
symmetry and size of cells present. Flip augmentation operations will only reverse
rows or columns of the image without affecting the cells present. Therefore, these
simple augmentation strategies will not bias the segmentation of cells. Using the said
augmentation strategies, the model is expected to learn enough information that can
segment new cell images.
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4.2 Semantic Segmentation Framework

Semantic segmentation networks are designed to make dense predictions for the
image. Each pixel of the image is provided with a label of the class to which it
belongs. This helps in the identification of objects and their boundaries in the image.

In cell segmentation, a microscopic image is split into segments to capture the rel-
evant morphological information provided by cellular structures. Variations in shape,
size, texture and contrast among cellular structures and lack of global applicability
of existing approaches led to the usage of deep learning techniques for the cell seg-
mentation problem [26]. The latest development in semantic segmentation is the
encoder-decoder architecture. The structure of encoder-decoder networks helps in
capturing semantic information efficiently. It consists of an encoder network followed
by a decoder network. The encodermodule takes the input and produces intermediate
states which are given as input to the decoder module and produces the output. It
was initially used for machine translation applications and later used in sequence-
to-sequence prediction. The basic encoder-decoder architecture is shown in Fig. 3.

In the case of image segmentation, the encoder module gradually reduces the
feature maps and captures higher semantic information. Then the decoder module
gradually recovers the spatial information [27].

Fig. 3 Encoder-decoder architecture

Fig. 4 SegNet architecture
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We have tried to segment RBCs, WBCs and platelets from the ALL-IDB dataset
using the concepts of SegNet as well as UNet. A brief description of the architectures
is given in the next two paragraphs.

SegNet is a symmetric convolutional architecture comprising of an encoder and a
decoder. The schematic architecture as in the original paper is shown in Fig. 4 [18].
In the encoder, layers identical to convolutional layers of VGG16 [28] are present.
Each encoder consists of convolutional layers with batch normalization and ReLU
non-linearity, followed bymax-pooling and sub-sampling layers. Convolution with a
filter bank is performed on the input image resulting in a set of featuremapswhich are
passed to the batch normalization layer and the ReLU layer. Then the max-pooling
operation is done using 2 × 2 windows with stride 2. Only the max-pooling indices
are stored. This means that only the locations of maximum feature value in each
poolingwindoware stored for each encoder featuremap. For a 2 × 2 poolingwindow,
this is done using 2 bits. The fully connected layers are removed thereby making the
network small in size. For each encoder, there exists a corresponding decoder. The
max-pooling indices from the corresponding encoder are used for upsampling the
feature map to produce a sparse feature map. These are then convolved with filters
to produce a dense feature map. The key advantages of this technique are retaining
the boundary information and the reduction in the number of parameters required
for end-to-end training. The output from the final decoder is fed into the multiclass
softmax classifier to predict the class probabilities for each pixel [18].

The UNet architecture comprises a contraction path called an encoder and an
expansion path called a decoder. It is a U-shaped architecture since the encoder is
more or less symmetric to the decoder. Schematic architecture as in the original paper
is shown in Fig. 5 [17]. In the contraction path, repeated convolutions are applied
followed by ReLU activation and max-pooling operations. In the expansion path, the
feature map is upsampled and then convolved by a 2 × 2 convolution. This is then
concatenated with the corresponding cropped feature map from the contraction path.
The concatenated feature map is then convolved by 3 × 3 maps and is then followed
by ReLU activation. The feature maps from the contraction path are cropped because
border pixels may be lost during convolution operation. The feature map is subjected
to 1 × 1 convolution in the final layer to map it to the corresponding classes [17].

UNet concatenates the full feature map from the corresponding encoder in the
contraction path to the feature map from the decoder. Due to this, UNet makes use of
more features for recovering the spatial context. Therefore, UNet canwork efficiently
with augmented datasets with a small number of images. As in SegNet, it doesn’t
reuse the max-pooling indices. UNet requires more memory compared to SegNet as
the entire feature maps from the encoder are stored and used in the decoder. SegNet
only stores the max-pooling indices from the encoder [29].
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Fig. 5 UNet architecture

5 Experimentation and Results

To train and compare the above presented deep architectures, namely SegNet and
UNet, we have implemented the architectures and have experimented on the ALL-
IDB dataset for RBCs, WBCs and platelets segmentation. The models are trained on
106 images of the ALL-IDB dataset. The implementation was done using Keras and
TensorFlow frameworks on a single GPU machine with 16 GB RAM and NVIDIA
GEFORCE GTX-1050 Ti. To quantify the performance of the models, Dice’s coef-
ficient, IoU and Pixel Accuracy (PA) measures are used as evaluation metrics.

Dice’s coefficient measures the overlap accuracy of segmentation images with the
ground truth images. The value of Dice’s coefficient can range from 0 to 1, where
a value of 1 indicates perfect segmentation. Dice’s coefficient is given by Eq.1 in
terms of True Positives (TP), False Positives (FP) and False Negatives (FN):

Dice’s Coefficient = 2TP

2TP + FP + FN
(1)

IoU (Eq.2) is defined by the ratio of the area of overlap and the area of union
between the predicted image and the ground truth mask. The value of the IoU metric
can range from 0 to 1, where a value of 1 indicates perfect segmentation:

IoU = TP

TP
+ FP + FN (2)

Pixel accuracy is given by the percentage of pixels classified correctly as shown
in Eq.3. It provides the overall accuracy of the cell segmentation:

Pixel Accuracy = TP + TN

TP + TN + FP + FN
(3)

We tried to assess semantic segmentation accuracy using pixel accuracy. It has
to be noted that accuracy measure suffers from class imbalance problems since the
images contain background class as the majority class. Hence, Dice’s coefficient and



Deep Learning-Based Semantic Segmentation … 389

IoU measures were used along with it in the current model. They are both posi-
tively correlated metrics and are used particularly for class imbalanced problems as
they measure relative overlap between predictions and ground truth. The IoU metric
weighs false positives more than Dice’s coefficient. Dice’s coefficient measures the
average performance of the segmentation, whereas IoU measures worst-case perfor-
mance. Therefore, the models are optimized such that Dice’s coefficient and IoU are
maximized.

Sincewe are segmentingRBCs,WBCs andplatelets, this is amulticlass pixel-wise
classification problem. To train both networks, we have used the Adam optimizer
[30]. Adam is a gradient-based optimization algorithm using an adaptive learning
rate. Training has been done on a batch size of 5 for SegNet and 8 for UNet for 100
epochs. Batch size is kept to a minimum due to memory limitations. The models are
trained from scratch without any transfer learning. The initial learning rate is fixed at
0.001 and is reduced by a factor of 0.1with respect to the reduction in the validation of
Dice’s coefficient. Since the problem deals with multiclass segmentation, categorical
cross-entropy is taken as the loss function, and the ground truth segmentation mask
is provided after one-hot encoding.

Initially, both the models are trained using original images without applying aug-
mentation techniques to the dataset. Later, different combinations of data augmenta-
tions are applied, and the impact is analysed on the performance of the models. The
effect of applying data augmentation before and after splitting into train and vali-
dation sets is also analysed. In addition to this, we try to measure the performance
of models when the train and validation sets are both augmented after splitting. The
results and analysis are discussed below.

The dataset consisting of 106 images are split into train and validation sets without
any augmentation in an 80:20 ratio in the first case.When they are usedwithUNet and
SegNet models, 0.95 and 0.82 are obtained as Dice’s coefficient values respectively
which is listed as Case I in Table 2. To improve the performance of the models, the
number of training images is increased by applying augmentation techniques. The
training images are first rotated by 90◦, 180◦, 270◦ and added to the training set. This
resulted in 0.964 and 0.85 as Dice’s coefficient values for UNet and SegNet (Case

Table 2 Performance metrics

Model Case Dice’s coefficient IoU Pixel accuracy (%)

UNet I 0.95 0.83 94

II 0.96 0.87 96

III 0.97 0.88 96
IV 0.98 0.93 96

V 0.98 0.91 97

SegNet I 0.82 0.54 78

II 0.85 0.59 81

III 0.88 0.68 85

IV 0.92 0.78 90

V 0.89 0.72 87
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(a) (b) (c) (d)

Fig. 6 Effect of applying augmentation techniques. a Training loss—UNet. b Validation loss—
UNet. c Training loss—SegNet. d Validation loss—SegNet

)b()a(

Fig. 7 Effect of splitting data to train and validation sets before and after applying augmentation
for a UNet and b SegNet models

II in Table 2). Further, the training images are flipped along both axis directions
separately and added to the training set (Case III in Table 2). In this case, values
increased to 0.97 and 0.88. The values for IoU and accuracy are also increased with
augmentation. The training and validation loss learning curves for UNet and SegNet
models applied to the dataset without augmentation and with different combinations
of augmentation are shown in Fig. 6. The models show minimum loss when used
with the dataset augmented by rotation and flipping operations. However, training
and validation loss for SegNet doesn’t even fall below 0.1.

The training and validation loss learning curves for UNet and SegNet models in
which the dataset is split before and after applying augmentation are shown in Fig. 7,
and metrics are summarized in Case IV of Table 2. The 106 images in the dataset
are first augmented and then split into train and validation sets. The performances
using these augmented sets are evaluated and compared with the dataset consisting
of augmented train images and original validation images. Minimum validation loss,
maximum Dice’s coefficient and maximum IoU are obtained in Case IV, as rotated
training images are present in the validation set and thismight have lead to overfitting.

Further, the effect of augmentation on the validation set is also analysed. As given
in Case V of Table 2, we found that a slightly higher value for Dice’s coefficient is
obtained with the augmented validation set for UNet and SegNet. However, this rise
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(a) (b) (c)

Fig. 8 a Original image. b Ground truth mask. c UNet segmentation result

(a) (b)

(c) (d)

Fig. 9 a Original image. b Ground truth. c UNet result. d SegNet result



392 S. B. Asha and G. Gopakumar

is caused by the augmented images in the validation set and may not be good for
unseen images.

The performance metrics are evaluated on the validation set after each epoch, and
the values for the best trained model with respect to maximum Dice’s coefficient in
all the above-discussed cases are summarized in Table 2.

With respect to the various cases, the best performance was achieved by UNet
using a training set augmented with rotation and flipping operations.

Semantic segmentation on a validation image is shown in Fig. 8. UNet can identify
pixels belonging to RBCs, WBCs and platelets from the microscopic blood images.
Postprocessing techniques are required to separate the overlapped RBCs and WBCs
in predictions. We observed that the predictions made using the SegNet model using
this small dataset are not accurate enough as indicated by the metrics. The result of
segmentation on a sample image by both models is shown in Fig. 9.

SegNet was proposed for the segmentation of road or indoor scenes, and it focuses
on reducing memory requirements at the cost of accuracy [31]. Therefore, in the case
of microscopic images, the encoding-decoding process in SegNet may result in the
loss of relevant features to identify the cellular structures. This may be the reason
behind the poor performance of SegNet on our dataset, whereas UNet was originally
designed toworkwith limited images.UNet concatenates the entire low-level features
extracted in the encoder to the decoder which helps in identifying the blood cells
correctly. This leads to the better performance of the UNet model and makes UNet
an ideal candidate for biomedical cell segmentation.

6 Conclusion

The effectiveness of applying deep learning architectures for the multiclass cell
segmentation problem in microscopic images was assessed. When the traditional
CNN demands at least a few thousand images to get decent segmentation results,
a very good Dice score of 0.97 was obtained when experimented with UNet archi-
tecture even when trained from scratch with very limited images from the ALL-
IDB dataset. Also when compared with the SegNet architecture, multiple cell
types that differ in size and shape are segmented correctly using UNet in a sin-
gle pass even without applying augmentation. Further, the effect of augmenta-
tion techniques for improving the model was evaluated, and the results of apply-
ing augmentation before and after splitting the dataset into training and validation
sets were analysed. The test images were drawn at random and the validation set
offered a Dice score of 0.97 making it an ideal candidate for the cell segmentation
task.
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