Crawl Smart: A Domain-Specific )
Crawler ey

Prakash Hegade, Ruturaj Chitragar, Raghavendra Kulkarni, Praveen Naik,
and A. S. Sanath

Abstract With billions of people using the internet, which consists of an estimate
of one billion websites, is explored by an individual with a diverse need and intent.
The search engines that present results to internet user queries evaluate the websites
on numerous parameters to sort the links from most to least relevant. It has become a
pick-and-shovel task to extract the most relevant information for a given concept or
user query. Classical crawlers that use traditional crawling techniques pull irrelevant
data with the relevant ones, resulting in ineffective CPU time usage, memory, and
resources. This paper proposes a knowledge-aware crawling system, Crawl Smart,
which learns from its own crawling experiences and improves the crawling process
in future crawls. The project’s key focus is a methodology that deploys a unique
data structure to overcome the challenges of maintaining visited pages and finding a
relation between the crawled pages after having them in the knowledge base, which
helps the crawler preserve focus. The data structure design, annotations, similarity
measures, and knowledge base supporting the Smart Crawl are detailed in the paper.
The paper presents the results that show the comparison between the knowledge-
aware crawler and the traditional crawler, assuring better results when used on large-
scale data.

Keywords Annotations + Crawler - Domain-specific -+ Knowledge-aware -
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1 Introduction

Internet has grown to an extent where any information the user is looking for, is
readily available and the challenge is to extract only the most relevant information
about a given concept. Be it a search engine or a user, the relevant data needs to be
parsed and extracted from the humongous web. Web crawling, used mostly by search
engines, are softwares that are used to discover and index websites [1]. Along with
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establishing relationships between the web pages, crawlers are used to collect and
process information that can be used to classify web documents and provide insights
into the collected data [2].

The process of crawling and parsing also leads to the extraction of irrelevant infor-
mation from the web. For example, classical crawlers adopt breadth-first mechanism
[3], i.e., searching all the links of a parent link, extract both relevant and irrelevant
data from the web, and hence result in wastage of CPU time, memory, and resources.
To resolve these challenges topic specific crawlers, also known as focused crawlers
[4] are introduced. These are better than classical crawlers in producing accurate data
for the given concept.

If a user wants to crawl a website, he first needs an entry point. Back in the early
days, users had to submit the website to search engines to tell them it was online. But
now users can quickly build links to their website and make it visible to the search
engines on the web. A crawler works with a list of initialized links called Seed URLSs.
These are passed on to a fetcher that extracts the content of the web page of the URLSs,
which is further moved on to a link extractor that parses the HTML and extracts all
the links present in it. These links are passed to a store processor, which stores them,
and a page filter that sends all the interesting links to a URL-seen module. The URL-
seen module checks whether the URL has already been seen before in this crawling
process, if not, it is sent back to the fetcher. This iterative process continues until the
fetcher gets no links to fetch the content [5].

The retrieval of information is design-dependent and does not always result in
styles that adapt the workflow. On the other hand, smart crawler or knowledge-aware
crawler, is context-dependent. Majority of re-crawling techniques assume the avail-
ability of unlimited resources and zero operating cost. But in reality, the resources
and budget are limited and it is impossible to crawl every source at every point of
time. This brings up the idea of providing a mechanism to the crawler with which
it can store its experience/knowledge about web pages and use it, when needed. We
aim to develop and deploy the knowledge-aware crawler focusing on the context
needed by the user. This is done by the integration of various modules from main-
taining crawled data in an appropriate structure to finding similarities and building a
knowledge base. Then, we contrast it with the traditional crawlers to know the gains
in the future crawls.

This paper is further divided into the following sections. Section 2 presents the
literature survey. Section 3 presents our Smart Crawl model design and deliberations;
Sect. 4 presents the results and discussion; and Sect. 5 presents the conclusion.

2 Literature Survey

Internet documents contain the latest and relevant contents, which is essential to
construct an encyclopedia, i.e., textual data and multimedia data such as images,
videos, audio, etc. With the help of the dynamic encyclopedia, we can easily crawl
through the web pages from the search engine results and find what is needed without
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the user interaction in filtering and combining data from individual search results. In
data science, mining [6] can be the key to finding relevant keywords from millions
of web pages without having to read everything.

Irrespective of the industry, annotations tools are the key to automatically index
data, synthesize text, or create a tag cloud using the most representative keywords
[7]. With automatic annotation extraction, we can analyze as much data as we need.
We can manually read the whole text and define key terms, but this takes a long time
[8]. Automating this task allows us to focus on other parts of the project. Extraction
of annotations can automate workflows, such as adding tags to web content, saving
us a lot of time. It also provides actionable, data-driven insights to help make more
informed decisions while crawling [9].

Manual procedures to extract statistics from textual information may be chal-
lenging for giant duties in which assets are limited, as they usually are. Computer-
assisted techniques appear to be a promising alternative: Hence, researchers can
complete specific tasks with a great speed. Every manual, automatic, or semi-
automatic technique for analyzing textual information has its set of blessings and
expenses that fluctuate depending on the venture at hand [10].

Over the period of time, crawlers on numerous criteria like, Parallel and Topical
web crawlers have been designed [11-13]. General evaluation framework for topical
crawlers has been discussed [14]. Measures to improve the performance of focused
web crawlers have been deliberated [15]. Crawlers used in developing search engines
have been surveyed [16]. Studies have been made on different types of web crawlers
[17]. Behaviors of the web crawlers have been modeled [ 18]. Advanced web crawlers
have been discussed [19]. Crawlers have been designed based on inferences and as
well by contextual inferences [20, 21].

Finding helpful information on an extensively distributed internet network
requires an effective search strategy. Web resources’ spread and dynamic nature
pose a significant challenge for search engines to keep your web content index up to
date because they must search the internet periodically [22]. There are many tech-
nical challenges faced in designing a crawler [23]. Some of them are avoiding visits
to the same link frequently, avoiding redundant downloading of web pages and thus
utilizing network bandwidth efficiently, avoiding bot traps, maintaining the freshness
of the database, bypass login pages and captchas, crawling non-textual content of
HTML pages, etc. Following a broad literature survey, we would be addressing the
following challenges through this project work, avoiding multiple visits to the same
link, avoiding redundant downloading of web pages, and knowing whether to crawl
a page or not, before opening it.
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3 Crawl Smart Model

This section presents the design and deliberations of the smart crawl. Our objective
is to design and develop a knowledge-aware crawler that learns the web with time,
by storing the context of the web pages it visits in the form of knowledge and then
using it to improve crawling in future.

3.1 Design Principles

The design principles of the crawler are:

To design a data structure for contemporary crawler challenges,
To annotate crawled data,

To establish relationships among the crawled data, and

To build a knowledge system with parsed data.

3.2 Model Design

The system model is presented in Fig. 1.
The crawler first looks for the query tag given as input, in the knowledge base. If
the tag is mapped to a link, that corresponding link is used to start crawling. Else,

Fig. 1 Crawl smart system model
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Fig. 2 Data structures to store crawled links: Trie and Hash Table

a random link belonging to the domain of the input query tag is chosen from the
pool of seed links, and crawling is initialized. For every crawled link, the crawler
first checks if there are any tags associated with the link in the knowledge base. This
step avoids annotating links that were already visited in the previous crawling. If
tags are available, it extracts the tags and uses them for the similarity metric. Else, it
extracts text from the link and annotates it. Here, a copy of the tags is inserted into
the knowledge base for future reference. Upon evaluating the similarity metric, if it
is above the threshold, then the link is considered for the next iteration; otherwise,
the link is discarded.

3.3 Data Design

The data structure designed for this work has two major components and is
represented in Fig. 2.

Trie. It is a rooted tree, where a Parent Node is linked to one or more nodes, called
the Child Nodes. The root node has no parent node, and the Leaf nodes have no child
nodes. Apart from these properties of a tree, every child node of a Trie has a unique
integer ID concerning its parent.

Hash Table. The Hash Table is a map, mapping the node value entering the Trie
to a unique key generated by the hash function. The size of the Hash Table is kept
dynamic.

3.4 Abstract Data Type Representation

The Abstract Data Type (ADT) Representation of the data structure can be described
as shown in Fig. 3.
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abstract typedef <<eltype>> NODE (eltype);
abstract addChild(value)
NODE(eltype) value;
postcondition: childNodes == childNodes + 1
children[childNodes] == value

abstract typedef <<eltype>> PREFIX_TREE (eltype);
abstract insertNode(parent,child)
PREFIX_TREE(eltype) parent;
PREFIX_TREE(eltype) child;
precondition: hash[parent] |="
postcondition: parent.childNodes == parent.childNodes + 1
parent[parent.childNodes] == child
hash[child] == hash[parent] + delimiter + parent.childNodes
abstract NODE getNode(value)
PREFIX_TREE(eltype) value;
precondition: hash[value] I="
abstract NODE getParent(child)
PREFIX_TREE(eltype) value;
precondition: hash[child] I="

Fig. 3 Abstract data type representation

The objective of this work is to design a data structure that can efficiently store the
relationship between the crawled data. Now, the web can be seen as a hierarchy of
tens of millions of web pages, resembling the Trie data structure, making it suitable to
store crawled data along with their relationships. Also by the concept of hashing, we
can make sure that no link is inserted more than once in the trie. The two components
of the data structure interact with each other to uniquely identify a particular value
placed in the Trie using a Hash key. The hash function which generates a unique
hash key for every input is recursively defined as

Algorithm Hash (node)
//Tnput: node
//Output: hash value of the node
//Description: computes a hash key for every input ‘node’
if node = root then
return string(0)

X «<—Number of children of parent Node
return Hash(parent) + delimiter + string(X+1)
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Algorithm getNode(key,delimiter)
//Input: key, delimiter
//Output: node
//Description: searches for a node with given ‘key’
Initialize node to root
IDs < split the key with respect to the delimiter into a list
IDs«—drop the first element of the IDs list
for id in key:

node «—idth child of node

if node = null:

exit for loop

endIf
endFor
return node

Theorem 1 Hash(node) hash function generates unique hash value for every key.

Proof Every node in the Trie must be either a root node or a child node, and not
both at a time. Now consider two nodes x and y from a Trie with at least two nodes.

Case I x and y are directly connected

If x is a parent of y, then
hash(y) = hash(x) + delimiter 4+ somelD = hash(y) # hash(x)
If y is a parent of x, then
hash(x) = hash(y) + delimiter + someID => hash(y) # hash(x)
Thus, hash(x) # hash(y)

Case 2 x and y are siblings, i.e., they have a common parent

Let z be the parent of x and y. Now,
hash(x) = hash(z) + delimiter + ID1
hash(y) = hash(z) + delimiter 4+ ID2
Since ID1 # ID2, hash(x) # hash(y)

Case 3 x and y are not related to each other
Let x1 be the parent of x and y1 be the parent of y.

— Ifx1 and y1 are directly connected, then hash(x1) # hash(y1), by case 1.
hash(x1) + delimiter 4+ ID1 # hash(y1) + delimiter + ID2
hash(x) # hash(y)
— If x1 and y1 are siblings, i.e., if they have a common parent
hash(x1) # hash(y1), by case 2.
hash(x1) + delimiter 4+ ID1 7 hash(y1) + delimiter + ID2
hash(x) # hash(y)
— If x1 and y1 are not related to each other
hash(x1) # hash(y1) {termination condition falling under case (01) or (02)}
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hash(x1) + delimiter 4+ ID1 # hash(y1) + delimiter + ID2
Thus, hash(x) # hash(y) for all x and y.

Thus, Hash(node) hash function generates a unique hash value for every key.

3.5 Annotations

Data annotation is similar to tagging which allows users to organize information by
combining them with tags or keywords. We annotate the textual content of a web
page to come up with metadata that explains the context of the web page in brief.
When the same web page is encountered again, these annotations help us know
the context of the page, without parsing the entire page once again. Since more
than 80% of the textual data from the web is unstructured or not categorized in a
predetermined way, it is extremely difficult to analyze and process them. Hence, the
crawlers can extract the keywords from the web to analyze the context of the web
page more effectively. Our annotation module can be seen in Fig. 4. The model uses
Term Frequency—Inverse Document Frequency (TF-IDF) model that comes from the
language modeling theory: TF-IDF is presented in Eq. 1.

Wij = 1 * log( N / dfy;) W

Here, t;; = term frequency score, df;; = document frequency score, and W;; = Weight
of a tag in the text. Although a tag can have multiple words and there are resources in
the modeling theory to analyze them, they are heavily time- and resource-consuming,
and hence out of the scope of this work.

» Calculate TF
values

*
Tokenize and Return top N

* Proprocess Text| » find the no. of Sort the results | = woywords with
sentences score

Text from
wobpage

s
» Calculate IDF

values

Fig. 4 Annotation module
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Algorithm getAnnotations(text,N)
// Input : text, N
// Output : dictionary
// Description : dictionary of top ‘N’ tags from ‘text” mapped to their score
refinedWords «— getTotalWords(text)
sentences « getTotalSentence(text)
tfScore «calculateTF(refined Words,length(refinedWords))
idfScore « calculate] DF (refinedWords, sentences)
for word in tf Score:
if idfScore[word] = 0:
tfldfScore[word] <0
else
tfldfScore[word] « tfScore[word] x idfScore[word] x 10
endIf
endFor
return tfldfScore

3.6 Similarity Module

The similarity module is presented in Fig. 5. The major components of this module
are WordNet, spaCy, and Knowledge Base. This module has components derived
from Natural Language Processing. The input to the system is from the user in the
form of a tag. This tag is then matched with the annotations present in the knowledge
base, if the threshold of the match is crossed then the respective link in knowledge
base is returned as result, if no annotations in knowledge base match the entered tag,
new crawl is initiated with the input query as a tag.

Crawler Decides '

Fig. 5 Similarity module r—

User Subject
Input Tag I HTML Page |||
™ T — Annctate
. Annotations of |
Page-2
Knowiedge :
: : Base s
Similarity using Similarity using
Wordnet Spacy

Check if any one of
the similarity score
is True.

I Similarity Score
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Algorithm is SimilarWordnet(word, sent)
// Input : word, sent
// Output : Boolean value
// Description : checks if the input tags are similar using WordNet
for sysnet in wordnet.synsets(word):
for lemma in sysnet.lemmaNames():
if lemma in sent :
return true
return false

Algorithm is SimilarWordnet(word, sent)

// Input : word, sent

// Output : Boolean value

// Description : checks if the input tags are similar using Spacy
word = word1+” ”+word2
tokens = nlp(word)
tokenl, token2 = tokens[0], tokens[1]
if foken.similarity(token2) = threshold:

return true

return false

3.7 Knowledge Base

The crawler has a knowledge base where all the previously crawled links along with
their annotations (tags) are maintained. Since the user provides the input query as
a word, the crawler should look for links with tags matching the input query in the
knowledge base. So, the tags should be mapped to their respective links. During the
crawling, the crawler looks for the tags of a particular link in the knowledge base. So
the links should be mapped to their respective tags. Also, a link can have more than
one tag, and it needs to be mapped to each of them. Similarly, a tag can be a part of
one or more links, and it should be mapped to each of them. Thus, knowledge base
is a bidirectional multi-mapping. The internal storage is presented in Fig. 6.

4 Results and Discussion

The input to the system is a keyword given as a query by the user. The system needs
to start with a link, sometimes also known as a seed link, which is in context to
the input query, and crawl all the further links using the algorithm described in the
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Fig. 6 The knowledge base
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previous chapters. Adhering to the system capacity, power constraints, and scope,
we scale down the input tests and give some relaxations in the performance metrics,
according to the following assumption: user makes no spelling errors in the input
query. The results of traditional and our crawler are tabulated in Table 1. We have
used the website geeksforgeeks to tabulate the results as the site allows the bots to
visit respective pages (rules as stated as of 01 December 2021). The system will stop
crawling links once it has crawled at most 10 links.

Five more queries were considered in this test, only on the smart crawler. But
in this test, two successive iterations were conducted on the same set of queries to
compare the performance of the crawler in both, the absence and presence of links
in the knowledge base. The results obtained were plotted as shown in Figs. 7 and 8.
The time comparison can be seen in Fig. 9.

Observations: The smart crawler was able to fetch more relevant links than the
traditional crawler for the same set of queries. Also, the smart crawler took an average
crawling time of (67.96 &£ 60.092) seconds, for the execution of a query in the first
iteration, while it took an average of (2.3 % 1.4) seconds in the second iteration.
The difference observed in the average time taken to crawl the links for a particular
query indicates that the presence of the context of a web page being crawled in
the knowledge base has successfully reduced the crawling time of the crawler by
avoiding it from going through the content of the web page again.
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Table 1 Results for the input query “sorting”

P. Hegade et al.

Traditional crawler

Smart crawler

www.geeksforgeeks.org/sorting-algorithms/?
ref=ghm

www.geeksforgeeks.org/sorting-algorithms/?
ref=ghm

#main

www.geeksforgeeks.org/sorting-algorithms/

www.geeksforgeeks.org/

www.geeksforgeeks.org/recursive-bubble-sort/

www.geeksforgeeks.org/topic-tags/

www.geeksforgeeks.org/insertion-sort/

www.geeksforgeeks.org/company-tags

www.geeksforgeeks.org/recursive-insertion-
sort/

www.geeksforgeeks.org/analysis-of-algori
thms-set-1-asymptotic-analysis/?ref=ghm

www.geeksforgeeks.org/radix-sort/

www.geeksforgeeks.org/analysis-of-algori
thms-set-2-asymptotic-analysis/?ref=ghm

www.geeksforgeeks.org/timsort/

www.geeksforgeeks.org/analysis-of-algori
thms-set-3asymptotic-analysis/?ref=ghm

www.geeksforgeeks.org/pigeonhole-sort/

www.geeksforgeeks.org/analysis-of-algori
thems-little-o-and-little-omega-notations/?
ref=ghm

www.geeksforgeeks.org/cycle-sort/

www.geeksforgeeks.org/lower-and-upper-
bound-theory/?ref=ghm

www.geeksforgeeks.org/cocktail-sort/

www.geeksforgeeks.org/analysis-of-algori
thms-set-4-analysis-of-loops/?ref=ghm

www.geeksforgeeks.org/stooge-sort/
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Fig. 9 Comparison of time required

5 Conclusion and Future Scope

The objective of the work is to design a crawler, which is aware of a link or a URL
page and can decide whether to crawl the link or not without opening or requesting
the HTML page of the link. This has been achieved through the knowledge base
which acts as a memory for the crawler. Regardless of whether a new link opened
and annotated is used in the current crawling process or not, it will be added to the
knowledge base. This saves time in requesting, downloading, and annotating a web
page that has already been downloaded in the past. Thus, the crawler learns the web
gradually with time and improves its performance as more and more links get added
to the knowledge base, similar to a machine learning model.
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