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Abstract Linear regression is one of the most celebrated approaches for model-
ing the relationship between independent and dependent variables in a prediction
problem. It can have applications in a number of domains including weather data
analysis, price estimation, bioinformatics, etc. Various computational approaches
have been devised for finding the best model parameter. In this work, we explore
and establish the possibility of applying the Conjugate Gradient Method for finding
the optimal parameters for our regression model, which is demonstrated by taking
the house price prediction problem using the Boston dataset. The efficiency of the
conjugate gradient method over the pseudo-inverse method and gradient descent
methods in terms of computational requirement are discussed. We show that the
weights obtained by the conjugate gradient are accurate and the parameter vector
converges to an optimal value in relatively fewer iterations when compared to the
gradient descent techniques. Hence, Conjugate GradientMethod proves to be a faster
approach for a linear regression problem in ordinary least square settings.

Keywords Machine learning · Linear regression · Conjugate gradient method ·
Gradient descent · Boston house price prediction

1 Introduction

In recent years Machine learning has become a field of eminence. Most of the daily
life challenges are being solved by machine learning algorithms. The root cause for
this upshoot in the field is due to the capability of ML algorithms to go beyond
human thinking. From a simple logical reasoning, ML develops into more complex
patterns capable of providing solutions unimaginable by humans. One such example
is Google’s AlphaGo, a computer program capable of playing the popular Chinese
game “Go.” Researchers stated that AlphaGo was capable of doing moves which
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even the world renowned champions couldn’t think of [12]. In a nutshell, we can say
that ML has the capability of thinking outside the box.

One such ML algorithm is Linear Regression. It is an algorithm under super-
vised learning. Regression models a target prediction value based on independent
variables. It has various applications including weather data analysis [4], sentiment
analysis [15], performance prediction [2], aerodynamics [27], price estimation [22],
bioinformatics [6, 8], etc., and many variants are popular in the literature [9, 25]. In
almost all practical situations, we can model the dependent variable meaningfully
from the independent variables. For example, the sales of products in a super market
depends upon the popularity index, season of the year, availability, festivals during
the year, etc. Thus a good model predicting the sales of different products could be
used by the owner to control the supply chain thereby maximizing the profit.

Themodel selection process has proved to be one of themain aspects of predictive
modeling. Once a particular model is fixed, the best parameters that make up the
model are computed by using an optimization algorithm based on several factors
like time complexity, convergence, and computational requirements. The main aim
of our machine learning model will be to find the best fitting parameters that can
minimize the recorded cost function on the training dataset. For a linear regression
model, the traditional method of computing the optimal parameters consisted of
the use of the gradient descent optimization approaches. In basic setting, the batch
gradient descent [16] is employed where the model parameter is updated in each
epoch and it demands one pass through all training samples (Eq. 9).

In this research work, we analyze different computational techniques to find the
optimal parameters using a basic linear regression model. The traditional gradient
descent method proved to be less efficient in finding the optimal parameters as the
number of iterations will vary depending on the initial parameter vector and learning
rate. Hence, we provide the necessary theory to show that the shortcomings of linear
regression can be tackled by the conjugate gradient method which requires exactly
“N” steps to find the “N-D” optimal parameter vector. In practical applications, as
we are looking for a parameter vector that performs decently well on the validation
set, we may get a descent solution in less than “N” iterations.

The remaining sections of this manuscript are organized as follows. Section 2
discusses different computational approaches used in the literature to find the opti-
mummodel parameters for regression. Section 3 provides the theoretical background
behind Linear regression and Conjugate Gradient Descent. The details of the dataset
used in this study and different experiments conducted to establish the merit of these
computational methods followed by results and discussion are provided in Sect. 4.
Finally, the paper is concluded in Sect. 5.

2 Related Works

As discussed in the previous section, linear regression is a popular ML technique
that is used to model the relationship between the independent variables (features)
to the output variable [5, 24, 28, 30, 31]. It has profound applications ranging from
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weather prediction [4], price and performance estimation [2, 18, 22, 29], to medical
research [6, 8], bioinformatics [14], etc.

The most critical job in linear regression is fixing the right model. Once the model
is fixed, the algorithm can give the best parameters for the model. The simplest
linear regression problem tries to model the right parameter vector θ that relates
feature vector X to the target variable Y . Thus we are looking for the best parameter
vector θ for the relation X θ = Y . In the literature, there are different computational
techniques to find these parameters. The simplest is based on the normal equation
(Eq. 12) [3, 17]. However, the normal equation-based method (Eq. 12) involves a
matrix inversion. This means that the method is going to be prohibitively expensive
when we need to consider large number of features, which is often the case [1, 7,
19]. The gradient descent-based techniques [13, 20, 26] are free from this issue and
are increasingly popular in this field. Here, in order to find a better parameter vector
(θ ) that minimizes a convex cost function J (θ), we move from the current vector
in the opposite direction of gradient as decided by a learning rate α (Eq. 13). The
demerit of the method is that the number of iterations required to reach the optimal
parameters will vary depending on the learning rate chosen and the initial parameter
vector used as demonstrated in Table 3.

3 Linear Regression

Linear regression attempts to model target variable Y using the linear relation X θ =
Y , where θ is the unknown parameter vector. Hence, solving a system of equations for
finding the parameter vector becomes the fundamental objective of a linear regression
problem. However, often we will be dealing with an over determined system, with
inherent noise in the observed features, which makes the solution non-trivial.

For establishing the applicability of different computational techniques to find
the right parameter vector for the linear regression problem, we experiment on the
Boston housing dataset (Sect. 4.1), where the task is to build a regression model to
predict the cost of a building from several features. Our fundamental objective is
to develop a relation between MEDV (final cost) and the other parameters in the
dataset. This relation can be shown as

⎡
⎢⎢⎢⎣

x11 . . . 1
x21 . . . 1
...

xn1 . . . 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

θ1
θ2
...

θ0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ŷ1
ŷ2
...

ŷn

⎤
⎥⎥⎥⎦ (1)

Equation 1 is of the form X θ = Ŷ , where the N × D dimensional matrix X holds
N data samples each with D features, θ is the D × 1 parameter vector, and Ŷ is the
predicted value of the output variables. As the objective is to find an approximate
solution to the above equation, we intend to find the parameter vector that minimizes
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the mean squared error (J) between the predicted and output variables, which can be
written in vector form as (Eq. 2).

J = 1

N

n∑
i=1

(
yi − ŷi

)2 =
∥∥∥Y − Ŷ

∥∥∥
2

N
(2)

Hence, this gives us an unconstrained optimization problem. Therefore the solu-
tion for such optimization is the local minima of the cost function and the given
problem can be further represented as a convex optimization problem, owing to the
positive definite nature of its Hessian matrix:

MSE(J ) = ||Y − Ŷ ||2
N

= [Y − Ŷ ]T [Y − Ŷ ]
N

(3)

J = [Y − Xθ ]T [Y − Xθ ]
N

(4)

The convex nature of a function can be confirmed by proving the Hessian matrix
of the MSE (Eq. 4) as positive semi-definite:

d J

dθ
= −2

N
(Y − Ŷ )X (5)

H = d

dθ

[−2

N
(Y − Xθ)X

]

= 2

N
XXT

(6)

The Hessian matrix H in Eq. 6 is positive semi-definite since zT Hz ≥ 0,∀z as
seen in Eq. 8

zT Hz = zT
(
2

N
XXT

)
z

= 2

N

[
zT X XT z

]

= 2

N
vT v = 2

N
‖v‖22

(7)

As norm of a vector cannot be negative,

‖v‖22 ≥ 0 ∴ zT Hz = 2

N
‖v‖22 ≥ 0 (8)
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Thus, MSE (Eq. 2) forms a convex function and the parameter vector that mini-
mizes J (the global minimum) can be easily found by setting the gradient to zero:

∂ J

∂θ
= −2

N

( n∑
i=1

(yi − ŷi )xi

)
= −2

N
(Y − Ŷ )X (9)

∴ d J

dθ
= 0 ⇒ (Y − Ŷ )X

⇒ XTY − XT Xθ = 0
(10)

∴ XT b = XT Xθ (11)

∴ θo = (
XT X

)−1
XT b (12)

Thus the optimal model parameter vector (θo) which minimizes MSE(J) can be
found by pseudo-inverse (Moore-Penrose Inverse) as shown in Eq. 12.

Note that Eq. 12 involves matrix inversion, and in many practical applications we
will be dealing with matrices having a large number of predictor variables [1, 7, 19].
This means that cost for finding the model parameter using Eq. 12 is going to be
prohibitively high for such cases. Gradient descent-based techniques can be used to
counter this problem.

The Gradient descent technique [13, 20, 26] finds the correct parameter without
involving any matrix inversion. Since the cost function J is convex, the method is
ensured to converge to the optimum parameter vector. The gradient descent method
involves moving in the opposite direction of the gradient at each iteration, in order
to find the optimal parameter as shown in Eq. 13.

θnew = θold − α
dJ

dθold
(13)

In the equation above (Eq. 13), the learning rate α decides the speed with which
we are moving from the current parameter vector (convergence). A higher learning
rate can even lead to divergence (as shown in Fig. 1a). An effective divergence for
the chosen learning rate can easily be identified by inspecting the value of the cost
function across two successive iterations. The cost, being a convex function (refer
Eq. 8), should always decrease for a good learning rate. Once we have chosen a good
learning rate, the gradient descent will always converge irrespective of the value of
the chosen α. However, a smaller learning rate can cause slower convergence (refer
Fig. 1b).

The gradient computed for the function requires to pass through all training sam-
ples as shown in Eq. 9. This means that the gradient used is batch gradient descent.
Although being a computationally easier technique when compared to the methods
based on normal equations (the pseudo-inverse method), gradient descent for param-
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Fig. 1 a Large learning rate leads to drastic updates causing divergent behavior b Small learning
rate requires many updates before reaching minima

eter updation has a drawback. In normal gradient descent, the number of iterations
required to converge to the right parameter depends on the chosen initial vector
and the learning rate α. For our dataset, we have experimented with different initial
parameter vectors and the results are provided in Sect. 4.3.

Conjugate gradient method [11, 23] is a special technique that can be used to
solve linear system of equations A θ = b, if A is symmetric positive definite (SPD).
It can be shown that the solution vector θ is going to be the parameter vector that
minimizes the convex optimization function given in Eq. 14 [13, 20]. The one-line
proof for the same is given in Eq. 15 where we have used the SPD nature of the
matrix A.

f (θ) = 1

2
θT Aθ − θT b + c (14)

d f

dθ
= 0 ⇒ Aθ − b = 0 ⇒ Aθ = b; if AT = A and A > 0 (15)

The conjugate gradient method [11, 23] can converge to the optimal solution in
exactly “D” steps for a D dimensional parameter vector [11] and it makes use of the
best learning rate in each iteration [21]. The pseudo-code for the algorithm is shown
in Algorithm 1.

As shown in the pseudo-code, the parameters are updated in each iteration using
the optimum learning rate α.

θ(k+1) = θ(k) + αkd(k) (16)

We propose to use conjugate gradient method for finding the optimal parameter
vector since XT X is symmetric ((XT X)T = XT X) and positive definite matrix (in
fact semi-definite by definition of semi-definite matrices) for practical applications.
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Algorithm 1 Conjugate Gradient Method
1: Set k = 0 and select initial parameter vector θ0
2: g(0) = � f (θ(0)) = Aθ(0) − b
3: if g0 = 0 then
4: stop
5: else
6: d0 = −g0
7: end if

8: αk = − gT
(k)d(k)

dT
(k)Ad(k)

9: θ(k+1) = θ(k) + αkd(k)
10: g(k+1) = � f (θ(k+1)),
11: if g(k=1) = 0 then
12: stop
13: end if

14: βk = gT
(k+1)Ad(k)

dT
(k)Ad(k)

15: d(k+1) = −g(k+1) + βkd(k)
16: Set k = k + 1, go-to Step 8

The regression problem given in Eq. 11 can thus be reformulated into Aθ = b form,
where XT X is A and b = XTY .

4 Results and Discussion

This section summarizes the results of the experiments conducted using different
computational techniques to find the optimalmodel parameters in Linear Regression.
A brief description of the dataset and features used in this study are provided in Sects.
4.1, and 4.2, respectively followed by the experimental outcome in Sect. 4.3.

4.1 Boston Housing Dataset

The Boston Housing Dataset [10] consists of housing values in suburbs of Boston.
The dataset has 506 instances and 13 continuous, binary valued attributes. The dataset
doesn’t have any missing value. More details on the dataset are given in Table 1.

Table 1 Overview of the Boston Dataset

Total number of
samples

Number of
features

Number of
numerical
features

Number of
categorical
variables

Number of
missing
features

506 13 12 1( CHAS ) 0
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Fig. 2 Correlation Matrix of
Boston House estimation
dataset

4.2 Selecting Features From the Dataset

In order to find the right parameters for predicting the cost using the Boston dataset,
we make use of selected features based on the correlation analysis of all the features.
The correlation analysis revealed that out of 13 features, top 5 features (ZN, CHAS,
RM, DIS, B) are the most important features as reflected by their high correlation
values with our target variable MEDV (Median Value of owner-occupied homes in
$1000s) as shown in Fig. 2. Note that the relatively high value for the correlation
is indicated by the darker shades for the features mentioned above in the row and
column of the MEDV feature. We have also compared the model performance by
considering all features whose results are provided in Sect. 4.3

4.3 Result Analysis

In order to compare the accuracy and computational requirements of conjugate gra-
dient method, we do the following experiments.

• Analyzed the effectiveness of themodel parameters in terms of theMSE andNorm
of the final parameter vector for all the 3 methods: pseudo-inverse, batch gradient
descent, and conjugate gradient method as shown in Table 2.

• Analyzed mean squared error and the number of iterations taken to converge to the
right parameters using the batch gradient descent and conjugate gradient method
considering:

– 5 relevant features that show a good correlation with the target variables. The
result is shown in Table 3.

– All features as shown in Table 4.
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Table 2 MSE and Norms of parameter vector found out using various models

Model Considering 5 Features Considering all Features

MSE Norm of the
parameter vector

MSE Norm of the
parameter vector

Pseudo-inverse 19.6389 24.7827 19.5794 23.5260

Batch gradient
descent

21.6390 23.1947 29.4010 20.2504

Conjugate
gradient method

21.5661 23.2704 20.7954 23.5237

Table 3 MSE and number of iteration for Batch and Conjugate Gradient methods considering five
features from the dataset

Input vectors Batch gradient descent Conjugate gradient method

MSE Number of
iterations

MSE Number of
iterations

v1 21.6389 110 21.56 3

v2 21.6492 111 21.59 3

v3 21.62 112 21.57 3

v4 21.63 110 21.55 3

v5 21.61 113 21.47 3

Table 4 MSE and number of iteration for Batch and Conjugate Gradient methods considering all
features from the dataset

Initial vector Batch gradient descent Conjugate gradient method

MSE Number of
iterations

MSE Number of
iterations

v1 29.40 39 20.80 8

v2 28.87 40 20.79 8

v3 29.27 40 20.80 8

v4 29.43 39 20.75 8

v5 28.81 40 20.76 8

In Table 2, we observed that the MSE using pseudo-inverse has the least value in
both cases (i.e., considering 5 strongly correlated features and taking all features),
MSE for the other 2 models have almost same values. Being the function convex, and
since all methods resulted in identical norm and close MSE values, it is reasonable
to believe that these methods converged to the same solution.

In Table 3, we have performed the analysis of these algorithms using five different
random vector initialization. In all the test cases, when compared to the batch gra-
dient descent, the cost function converged to the minimum in relatively less number
of iterations when using the conjugate gradient algorithm. The average number of
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Fig. 3 a Graph for MSE versus Iterations (Taking most correlated features); b Graph for MSE
versus Iterations (Taking all features)

iterations required by the batch gradient descent algorithm is 111.2 which is very
high compared to the average number of iterations required by the conjugate gra-
dient algorithms. The mean squared error obtained is also slightly less while using
the conjugate gradient algorithm when compared to the batch gradient descent. The-
oretically, the conjugate gradient method must converge to the optimal parameter
vector in exactly 5 steps [17] for all the test cases given in Table 3, but we will get
a decent solution even for lesser number of iterations. This can be seen from the
results provided in Table 3, where it takes only 3 iterations to converge to the decent
solution (on the validation set) irrespective of the initially chosen vector.

Similarly inTable 4,when considering all the feature vectors,weget similar results
as that obtainedwhen using only five features. The average number of iterations taken
to converge to the minima is 40 when using the batch gradient descent algorithm
and is 8 when using the conjugate gradient method, this confirms that conjugate
gradient method takes lesser iteration when compared to gradient descent techniques
irrespective of the number of features taken. As mentioned in the last paragraph, it
can be proven [17] that the conjugate gradient method will take exactly “N” steps
to converge to the optimal N dimensional parameter vector [17]. For the results in
Table 4, we had used 14 features and the average number of iterations to find the best
parameter was 8. Clearly, this did not cross 14 iterations in any trial as indicated by
the theory [23].

The above results can be further confirmed by plotting a graph for number of
iterations vs the cost/error values. As we can see in Fig. 3a, the cost value is min-
imized at around 100 iterations for batch gradient descent, whereas the conjugate
gradient method provided a decent solution even with 3 iterations. This shows the
efficacy of finding regression parameters using conjugate gradient method in similar
settings. Similar result can be found in Fig. 3b, where we used all features in the
price prediction.
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5 Conclusion

In this research work, we propose to use the conjugate gradient method for finding
the optimal parameters for linear regression in an ordinary least square setting. As the
conjugate gradient method demands the use of symmetric positive definite matrices,
we have reformulated the linear regression problem as XT Xθ = XTY . We have then
identified that it can be reposed as Aθ = b where A = XT X , the symmetric positive
(semi) definite matrix. The manuscript provides the necessary theory, proof, and
experimental results on the Boston House Price Prediction, to show the effectiveness
of the conjugate gradient method in finding the optimal parameters for the linear
regression model. Unlike the Pseudo-Inverse method, the proposed approach does
not involve matrix inversion which is important especially when dealing with a large
number of features. Contrary to gradient descent, the proposed approach converges
to the N-D parameter vector in exactly “N” iterations, irrespective of the initial
parameter vector. Hence, this method proves to be a faster and an effective technique
to solve linear regression problems.
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