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Abstract The power diode is one of the most widely adopted devices in power 
electronics, thus intensive efforts has been made to reveal the underlying mechanism 
of its complex nonlinear behavior and develop reliable modeling and simulation 
methods. Existing circuit analysis tools often adopt implicit time integration methods 
such as the well-known backward Euler method, thus are faced with the solutions 
to nonlinear algebraic equations arising from time discretization. for large systems 
involving thousands of diodes and other semiconductor devices, e.g., the high voltage 
direct current (HVDC) transmission systems, the computational overheads can be 
prohibitive. In this manuscript, we focus on sorting out the most efficient nonlinear 
solver for tackling the nonlinearity of a single diode. Both Newton-type and fixed-
point solvers are tested. Numerical results indicate that Newton-type solvers are more 
robust, while fixed-point solvers may be more efficient under small time-step size. 
This conclusion should shed light on the choice of sub-solvers in decomposition-like 
algorithms for transient analysis of practical large-scale power electronics. 
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1 Introduction 

The power diode [1] may be one of the most widely adopted devices in power 
electronics, thus intensive efforts has been made to reveal the underlying mecha-
nism of the complex nonlinear behavior of the diodes and develop reliable modeling 
methods. Existing models of power diodes can be roughly divided into system-
level models and device-level models. System-level models, which approximate the 
diodes’ behavior by multi-value resistors and ideal switches, are favorable for low 
computational overheads, while the accuracy is not satisfying for many scenarios, 
e.g., loss calculation and electromagnetic interference (EMI) evaluation [2]. Device-
level models, either behavior-based or physics-based, take into account many phys-
ical phenomena, including emitter recombination, mobile charge carriers in depletion 
layer, and carrier multiplication, exhibit much more precise transient behavior than 
those of the system-level models. 

However, popular circuit simulation tools, e.g., PSPICE, Matlab Simulink, and 
ANSYS Simplorer, often adopt implicit time integration methods, among which the 
backward Euler (BE) method may be the most common choice, are faced with the 
solutions to nonlinear algebraic equations arising from time discretization. For small 
problems involving only a few diodes, the dimensions of the nonlinear systems are 
limited, and the computational overheads are not a big issue. On the contrary, for 
large systems, e.g., the high voltage direct current (HVDC) transmission systems 
[3], thousands of diodes and other semiconductor devices are involved. The resul-
tant dimensions of the nonlinear equations can be huge and bring up prohibitive 
computational costs. 

Therefore, for large-scale transient analysis, decomposition-like techniques, 
including the latency insertion method (LIM) [4] and transmission-line links [5], are 
often used to decouple and analyze the whole system in a divide-and-conquer manner. 
In these techniques, the sub-solvers that can efficiently resolve the nonlinearity of 
a single component are essential for overall efficiency. Thus, in this manuscript, 
we focus on sorting out the most efficient nonlinear solver for tackling the nonlin-
earity of a single diode. Most existing nonlinear solvers fall into fixed-point methods 
or Newton methods. In this work, both types of nonlinear solvers are tested on 
a behavior-based diode model integrated in ANSYS Simplorer and comparison 
regarding convergence and efficiency are carried out. 

2 Formulations 

2.1 Behavior-Based Model of Diodes 

The adopted model [6–8], which is a behavior-based dynamic model of power diodes 
integrated in ANSYS Simplorer, is presented in Fig. 1. The diode core of this model 
is described as
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Fig. 1 Behavior-based 
dynamic model of diodes in 
ANSYS Simplorer 
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where k = 1.380649 × 10–23 J/K is Boltzmann constant, q = 1.602177 × 10–19 C 
the elementary charge, T the temperature in Kelvin, and IS the saturation current. 

In addition to the static behavior modelled by the diode core, charging and 
discharging of junction and diffusion capacitance are taken into account by intro-
ducing voltage-dependent capacitances. There is a distinction between the evaluation 
of depletion and enhancement capacitance behavior, but the curves keep differen-
tiable at the transition from one region to the other. The transition happens when the 
effective junction voltage 

VPN  = VC − V S  H  I  FT  _J NCT (3) 

crosses 0 V. The voltage-dependent capacitances are given by the following piecewise 
function 
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It’s worth noting that to avoid possible oscillations, we involve a damping resistor 
RDAM  P  = DAM  P  I  N  G  · √

L/C , which is related to parasitic inductances as well 
as the internal capacitance. 

The reverse recovery behavior is described by a controlled current source, i.e., Irr 
in Fig. 1. The reverse recovery waveform and related shape parameters are presented 
in Fig. 2. The piecewise analytical formulations of the reverse recovery current are 
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where the unknown coefficients are calculated as 
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

tB = T AU  · ln(R1
(
exp

( tS 
T AU

) − 1
) + 1

)
ω1 = arcsin(R1)− π 

2 
tB−ts 

ϕ1 = π 
2 − arcsin(R1)− π 

2 
tB−ts 

ts 
tC = tS(1 + SF1) 
ω2 = arccos(R2) 

SF1·tS 
ϕ2 = − arccos(R2) 

SF1 
tend = tC + SF2 · tS − 2R3·SF2·tS 

R3−R2 

a = R3·Irr  max 

(tC+SF2·tS−tend )
2 

(7) 

Fig. 2 Reverse recovery waveform and shape parameters
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The unknown parameters in the above equations and figures can all be extracted by 
inputting the data from the manufacturer’s datasheet into the modelling tool integrated 
in ANSYS Simplorer. 

2.2 Time Discretization of a Reference Problem 

The test model, which is the reference problem considered in our context, is depicted 
in Fig. 3. The governing equations of this model are 

⎧⎪⎨ 
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where the intermediate variables 
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The differential-algebraic equations (DAEs) given by Eqs. (8) and (9) are  
discretized by the widely adopted backward Euler (BE) scheme, which is uncon-
ditionally stable and can suppress unphysical oscillations of the numerical solutions. 
The resultant discretized DAEs are

Fig. 3 The reference model 
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where the superscripts represent the time levels of the variables. In each time advance, 
the implicit nonlinear system described by Eqs. (10) needs to be solved by a proper 
solver. The choice of the nonlinear solver is our focus hereinafter. 

2.3 Fixed-Point and Newton-Type Nonlinear Solvers 

Firstly, for each time advance we reformulate Eqs. (10) as  F(x) = 0, where x = 
[Vai , IT , uCs, · · · ,CS]T is a column vector holding all unknown variables. 

Existing nonlinear solvers can be divided into fixed-point solvers and Newton-
type solvers. Many well-known relaxation-based methods, including Jacobi method, 
Gauss-Seidel method, and successive-over-relaxation (SOR) method, belong to 
fixed-point solvers. In our context, we divide the unknowns into x1 = [Vai , IT , uCs]T 
and x2 = [Vam, IF , · · ·  ,CS]T , namely, unknowns explicitly involved in time deriva-
tives are attributed to x1. The flowchart of the fixed-point method is presented by 
Fig. 4.

As for Newton-type methods, among which Newton-Raphson (NR) method may 
be the most famous representative, the essence is to linearize the nonlinear systems 
and convert the task into a series of linear equations named Newton correction equa-
tions, the coefficient matrices of which are the Jacobian matrices of the nonlinear 
systems at current solutions. These methods usually require explicit evaluation and 
storage of the Jacobian matrices, which are very costly. Therefore, in this work a new 
variant of NR method, named the Jacobian-free Newton-Krylov (JFNK) method, is
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Fig. 4 Flowchart of the 
relaxation-based fixed-point 
method [9]
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chosen. JFNK method is a nested algorithm consisting of the Inexact Newton (IN) 
method for the solution of nonlinear equations, and Krylov subspace methods for 
solving the Newton correction equations. By using the finite difference technique, 
the matrix-vector products required for Krylov iterations are approximated without 
forming and storing Jacobian matrices. The readers can refer to [10] for detailed 
implementations. 

3 Numerical Results and Discussions 

In this section, the proposed nonlinear solvers are tested on the reference problem. 
The type of diodes considered here is Infineon D2700U45X122. Firstly, the curves 
and data from the datasheet are inputted into the device characterization tool inte-
grated in ANSYS Simplorer to extract necessary parameters in the previous equa-
tions. The results are given in Table 1, and the simulated transient current and voltage 
are depicted in Fig. 5.

The diode model and nonlinear solvers are implemented with MATLAB codes. 
For validation of our implementation, the turn-on process of the diode is analyzed. 
The total simulation time is 10 ms and the time-step size of MATLAB codes is 
0.01 ms. The performance comparison of the nonlinear solvers is shown in Table 
2. It’s observed that the fixed-point method is obvious faster the JFNK method. 
Although the average iteration of JFNK method is less than that of the fixed-point 
method, for each iteration JFNK method demands two evaluations of nonlinear func-
tion F(x), which may be the main reason of its lower efficiency. However, for a small 
portion of the time steps, both methods fail to converge to the desired error tolerance 
1E-6 within 100 iterations, which is the predefined maximum number of iterations 
for each time advance. In this sense, JFNK method is a more robust solver since it 
fails for fewer time advances.
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Table 1 Model parameters extracted using ANSYS Simplorer 

Parameter Explanation Unit Value 

Is Saturation current A 1.406 

M0 Ideality factor 1 1.188 

RB0 Bulk resistance Ω 7.796E−4 

C0 Zero voltage junction capacitance F 1E−7 

Vdiff Diffusion voltage V 0.5 

α Capacity exponent 1 0.5 

δ Capacity minimum factor 1 4.089E−4 

TAU Effective lifetime s 5.358E−7 

DAMPING Relative damping factor 1 2.924 

L_ak Stray inductance H 2E−7 

INOM Nominal current A 2700 

Fig. 5 Transient waveforms 
of the diode during the 
turn-on process

(a) Diode current during the turn-on process. 

(b) Diode voltage during the turn-on process. 
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Table 2 Performance 
comparison of the solvers Indicator Value 

JFNK Fixed-point method 

Execution time (s) 47 32 

Evaluation of F(x) 40,512 21,984 

Number of failed time steps 23 30 

When the time-step size is increased to 0.05 ms, it’s a totally different story. 
Fixed-point method fails in most time steps and leads to incorrect waveforms. This 
is because the convergence of fixed-point methods is pretty sensitive to initial values, 
and larger time-step size induces more significant difference between current and 
new-time solution. For comparison, JFNK method fails in 98 time advances yet the 
waveforms are still acceptable. Nevertheless, the total number of the evaluations 
of F(x) increased to 62,298 mainly because it takes much more iterations for the 
inner Krylov solver to converge. Therefore, increased time-step size results in lower 
efficiency and of course worse accuracy. 

4 Conclusions 

In this manuscript, a modeling approach requiring merely the manufacturer’s 
datasheet is adopted for transient modeling of power diodes. Then we test two types 
of nonlinear solvers for resolving the nonlinearity of the diodes. Two conclusions 
are drawn from the numerical results. Firstly, Newton-type methods are more robust 
methods, yet they may be less efficient under small time-step size due to the costs 
for dealing with the Jacobian matrices of the nonlinear systems, either explicitly 
or implicitly. Secondly, deliberate choice of time-step size is crucial for successful 
implementations of both types of nonlinear solvers. 
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