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1 Introduction 

Nowadays, synthetic polymers with defined structures and good processability are 
attracting the attention of researchers. One of the interesting classes of synthetic poly-
mers is Polyurethanes (PUs). PUs are available in a broad range of segmented block 
structures. They are generally fabricated by the reaction of isocyanates, polyols (diols 
or triols), and chain extenders; those are the building materials of PUs (Fig. 1) [1–3]. 
Various types of isocyanates, diols, and chain extenders are commercially available. 
A few of them are given in Table 1; particularly used for the fabrication of biocompat-
ible PUs. The physicochemical properties of PUs can be tailored with the selection 
of appropriate types and molar ratios of building materials. The tuning of the phys-
ical properties and biodegradability are associated with the quality and percentage 
of the soft segment (ester bonds), while the hard segment (urethane bonds) is the 
main factor affecting the structural strength and mechanical properties [4–6]. Due to 
this versatility, PU became an attractive biomaterial for engineered structures. The 
investigation of PUs in the biomedical field has been started since the 1960s. The first 
generation implantable PU is commercially available in 1967 [5, 7–9]. Traditionally, 
PU is used as a bio-stable implant like vascular grafts, heart valves, catheters, and 
prostheses. Some commercially available medical grades PUs are given in Table 2. 
Since 1990, a major drive in the development of biodegradable PUs has been initi-
ated because the next generation medical implants require excellent biocompatibility 
with controlled degradation to address the materials need for modern medical utility. 
A deep understanding of the relationship between the molecular structure of PUs on

C. Sarkar (B) · S. Saha 
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, 
New Delhi 110016, India 
e-mail: ird600073@mse.iitd.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
S. Saha and C. Sarkar (eds.), Biodegradable Polymers and Their Emerging 
Applications, Materials Horizons: From Nature to Nanomaterials, 
https://doi.org/10.1007/978-981-99-3307-5_6 

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3307-5_6&domain=pdf
mailto:ird600073@mse.iitd.ac.in
https://doi.org/10.1007/978-981-99-3307-5_6


116 C. Sarkar and S. Saha

Fig. 1 Formation schemes 
of PU and PU-urea. Redrawn 
from [7]

mechanical properties and degradation in in vivo environments plays a key role in 
designing biodegradable PUs for biomedical applications. In this chapter, we cover 
the biodegradation and biocompatibility of PUs and their biomedical applications, 
particularly in tissue engineering and pharmaceutical fields. 

2 Biodegradability and Biocompatibility of Polyurethanes 

In PUs, degradation mainly relies on the chemical behaviour of its segmented block 
structure. Each segment link with each other through the urethane or carbamate 
[−RNHCOOR’−] group in their backbones [2, 4, 5]. As can be seen from Fig. 1, PUs  
are made up of three constituents: diisocyanate (aromatic or aliphatic), polyol (diols 
or triols), and chain extender (diols and diamines). They react and form segmented 
polymer chains with alternating soft and hard segments in their backbones. The soft 
segments are normally polyester or poly alkyl diol and the hard segments are usually 
an aliphatic or aromatic diisocyanate [8, 10, 11]. The degradation of PUs is gener-
ally tuned with the incorporation of hydrolysable segments into their backbones. In 
most cases, the degradation rate is governed by soft segments (ester bonds) of PUs; 
because hard segments (urethane bonds) are not easily hydrolysed. However, incorpo-
rating a hydrolysable chain extender made the hard segment of PUs to be degradable 
[4, 7, 12]. Studies show that the biological degradation of PUs is due to the cleavage 
of hydrolytic sensitive bonds present in their backbone. The kinetics of the hydrol-
ysis depends on their structural compositions [4, 13]. It is noticed that aliphatic
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Table 2 Commercially available medical grade PUs 

Comercial name Manufacturers 

Texin®, Texin®4210, Desmopan® DP 2590A, Desmopan® DP 
9370A, 

Bayer material science 

Tecoflex®, Carbothane®, Pellethane® Lubrizol 

Elastollan® SP806 BASF 

ChronoFlex® AdvanSource biomaterials 

Bionate® DSM biomedical 

Elast-Eon® RUA biomaterials 

Artelon® Lavender medical 

Lacthane® Polyganics 

NovoSorb BTM PolyNovo

ester bonds are more susceptible to hydrolytic cleavage than aromatic ester linkages 
[2, 4, 14]. Moreover, the degradation rate depends on the composition of polyesteric 
soft segments of PUs. PUs with hydrophilic soft segments [e.g., polyethylene glycol 
(PEG)] degrade more rapidly than PUs with hydrophobic soft segments [e.g., PCL] 
[2, 12, 15]. If soft segments are aliphatic polyesters like PCL, PLA, and PGA, then 
PUs are readily biodegradable. The crystallinity of soft segments also affects the 
degradation rate of PUs, amorphous segments degrade more rapidly than semicrys-
talline segments. Because the high content of crystallinity reduces water absorption 
capacity and restricts polymer chain mobility, thereby reducing the degradation rate 
of PUs [2, 12, 16, 17]. Tang et al. observed that the degradation rate also depends on 
the hydrogen bonding of the segmented structure. The hydrogen-bonded urethane 
degrades slower than the non or less hydrogen-bonded urethanes [18, 19]. 

Understanding the rates of degradation and bioresorbable mechanisms in biolog-
ical environments is essential for clinical applications of PUs. The main functional 
groups susceptible to hydrolytic or enzymatic degradation are ester and urethane in 
biodegradable PUs [2, 7]. The degradation rate of the ester group is considerably 
higher than urethane which results high concentration of oligomeric products of PUs 
during the early stage of the degradation. These oligomeric molecules are excreted 
from the body via filtration through the kidneys. The safety of these oligomeric 
molecules is crucial to assess because of the difficulties in their isolation steps 
[7, 12]. Various studies on in vitro degradation of PUs have been conducted in PBS 
(phosphate buffer solution) medium at pH 7.4 and 37 °C for mimicking hydrolytic 
environment. The change in mass of PUs and pH of the medium are generally 
measured as a function of degradation [7]. Few studies showed that PUs made with 
aromatic isocyanates are less biocompatible due to the release of aromatic amines 
after degradation [2]. However, in vitro degradation tests are only applicable for the 
initial screening of materials. A well-designed in vivo study is essential for site-
specific applications of PUs. Numerous in vitro and in vivo studies have evidenced 
the biocompatibility of aliphatic PUs, which is favourable in biological environ-
ments. Standard cytotoxicity assays and in vitro cell studies with different cell lines
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like chondrocytes [20–27], fibroblasts [27–32], osteoblasts [15, 33–39], endothelial 
[15, 40–43], and stem cells [40, 44–47] on biodegradable PUs with a broad range of 
chemical composition have been reported. Studies demonstrated that biodegradable 
PUs have acceptable cytocompatibility. Researchers extensively studied the biomed-
ical application of biodegradable PUs both in tissue engineering and drug delivery 
field which are critically reviewed in subsequent sections. 

3 Polyurethanes in Tissue Engineering Applications 

In tissue engineering, biological substitutes should facilitate the regeneration of tissue 
and help in the restoration of its function. For this, the material should mimic the 
microstructure, physicochemical and mechanical properties of natural tissue [48, 49]. 
In our body, different tissues possess different structures and properties. Most studied 
tissues and adequate material properties are concise in Table 3. In the tissue engi-
neering process, biodegradable materials play a critical role to support and accelerate 
the new tissue formation. They should be biocompatible and have tunable degrada-
tion rates with nontoxic degradation products [50]. Biodegradable PUs are promising 
materials used in the synthesis of scaffolds to regenerate tissues. Numerous studies 
on the design and fabrication of PUs for tissue engineering applications have been 
reported [7, 51–53]. Biodegradable PUs have been studied for both soft tissue and 
hard tissue, details of which are given below. 

Table 3 Most studied tissues and adequate material properties 

Tissues Adequate modulus Adequate porosity and pore 
sizes 

References 

Cardiac tissues 5–50 kPa 75–96%, ≤300 μm [53–55] 

Skeletal muscle 5–170 kPa 90%, 50–200 μm [53, 56, 57] 

Cartilage 2.8–18.6 MPa 75–87%, 75–175 μm [58, 59] 

Nerve guide 0.30–30 MPa 60–80%, 30–50 μm [60] 

Vein 34 kPa (circumferential) 
102 kPa (longitudinal) 

6.5–7.6 nm [61, 62] 

Aorta 128 kPa 1–20 μm [62, 63] 

Bone 1.28–1.97 GPa, (cancellous) 
10.4–20.7 GPa (cortical) 

75–90%, 140–600 μm 
(cancellous) 
5–10%, 10–50 μm (cortical) 

[53, 64]
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3.1 Polyurethanes in Soft Tissue Engineering Applications 

Soft tissues are found throughout the human body. They support, connect and protect 
all the organs of the body, and give shape/structure to the body. There are different 
types of soft tissues—muscle, fibrous tissue, vessels, and nerves. Extreme activi-
ties lead to soft-tissue damage which causes pain, swelling, and bruising. Some-
times, it needs autografting. Due to certain limitations of autografting, biodegrad-
able synthetic materials are used as alternatives [65, 66]. In this chapter, various 
biodegradable PUs for soft tissue engineering applications have been discussed. 

Cardiovascular Applications 

Cardiac tissues are found in the wall of the heart which allows the heart to pump 
blood. Biodegradable materials with high tensile strength and elasticity are gener-
ally required for cardiovascular tissue engineering. For this, biodegradable PUs 
comprised of polyols like PCL, PEG, and their copolymers along with diisocyanates 
such as ELDI (Ethyl 2,6-diisocyanatohexanoate), HDI(1,6-Hexamethylene diiso-
cyanate), and BDI (1,4-butanediisocyanate) have been designed. PCL generally 
improves the elastomeric properties of PU whereas PEG makes it hydrophilic and 
affects the degradation rate [24, 67, 68]. Structural modification of PUs by chain 
extender is one of the prominent strategies used by researchers to develop biodegrad-
able PUs for soft tissue engineering. The incorporation of chain extenders based on 
amino acids has been explored by several groups to develop PUs for soft tissue engi-
neering [69–71]. Rechichi et al. designed chain extenders by reacting phenylalanine 
with 1,4-cyclohexanedimethanol and synthesized a series of PUs using MLDI, PCL 
or PCL-PEG-PCL [28]. Fromstein et al. showed the effect of blending amino-acid-
based PUs with other components like MLDI/PCL or MLDI/PEG on properties and 
degradation rate to assess their suitability for soft tissue engineering. The mechan-
ical properties of the blends varied from 6 to 20 MPa, while elongation at break 
varied in the range of 512–690% [44, 72]. Gorna et al. designed a series of PUs 
using PCL, PEG, HDI, IPDI, and chain extenders BDO and 2-amino-1-butanol in 
different ratios. They showed a wide range of tensile strength from 4 to 60 MPa, 
whereas the elongation varied from 100 to 950% [66]. Earlier studies were mainly 
focused on the development of materials that possess elastomeric properties which 
provide sufficient mechanical support to the cardiac system. Nowadays, biocom-
patible and bioactive materials having good mechanical properties are in demand. 
Many biocompatible cardiac materials made up of PCL-based PUs having urethane 
and/or urea groups in their backbone have been studied. Guan et al. fabricated a 
series of PU-urea elastomers using PCL-PEG-PCL, BDI, and 1,4-butanediamine. 
These showed good endothelial cell adhesion due to the immobilization of Arg-Gly-
Asp on its surface. Moreover, these PUs have good mechanical properties (tensile 
strengths ~8–20 MPa, strains ~325–560%) [15]. Sometimes, researchers incorpo-
rated gold nanotubes/nanowires in PUs in order to improve the electroactivity of
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material, and stimulate cardiomyocyte cells for accelerating cardiac tissue regenera-
tion [73]. Researchers also fabricated highly porous PUs for soft tissue engineering 
applications. Guan et al. fabricated a highly porous PUs scaffold (porosity ~80–97%) 
by a thermally induced phase separation process. Porous scaffold supported good 
cell adhesion and proliferation. However, the tensile strength of the scaffold was 
1 MPa, which is sufficient for soft tissue engineering applications [67]. Researchers 
prepared an elastomeric porous cardiac patch from biodegradable PU based on butyl 
diisocyanate, PCL, and putrescine, and showed degradation in the rat model. At 
4 weeks, ingrowth of fibroblast into PU patch was found and cellular infiltration of the 
implant enhanced. At 12 weeks, the PUU patch was completely degraded [74]. The 
same authors investigated PU cardiac patch for its effectiveness to promote vascular 
remodelling and improve function by implanting the patch onto sub-acute infarcts in 
Lewis rats. It was observed that the left ventricular wall was thickened and the patch 
was mostly remodelled [75]. PU patch accelerated the formation of new contrac-
tile phenotype smooth muscle tissue and enhanced contractile function. Researchers 
also synthesized myoblast seeded PUs scaffolds from MDI, 1,3-diaminopropane 
and ε-PCL-diol (530 Da) for direct intramyocardial cell transplantation [76, 77]. 
Hashizume et al. designed porous biodegradable PU and applied in a rat model of 
ischaemic cardiomyopathy for 16 week and found degradable cardiac patch benefit 
in treating ischaemic cardiomyopathy [78] (Fig. 2).

Musculoskeletal Applications 

Since 1990s, biodegradable PUs scaffolds have been evaluated for the knee-joint 
meniscus. In the early years, MDI-based PUs were investigated for the healing of 
meniscal lesions. However, its toxic degraded product, i.e., MDA limits its applica-
tions. So, PUs scaffolds based on aliphatic diisocyanate BDI, poly(ε-caprolactone-
co-l-lactic acid) diol, and 1,4-BDA or 1,4-BDO have been studied for cartilage tissue 
regeneration and found suitable for regeneration of fibrocartilage [79]. Spaans et al. 
fabricated microporous PUs-based scaffold for replacement of knee-joint meniscus. 
They used 50/50 l-lactide/PCL polyol for soft segment and BDI/adipic acid/water 
for hard segment formation. The reaction between water and BDI forms CO2 gas 
which creates micropores (porosity ~70–80%). This microporous PUs scaffold facil-
itated fibrocartilage formation in the lateral meniscus of dogs after 18 weeks of 
implantation [80, 81]. Similarly, Grad et al. demonstrated porous PU fabricated from 
HDI, ε-PCL, and isosorbide diol favoured chondrocyte attachment, proliferation and 
provide mechanical support to grow functional cartilage-like extracellular matrix 
[23]. Field et al. formulated an in situ curable biodegradable PU based on dl-LA/GA 
and ELDI to repair meniscal cartilage tissue [82]. Researchers fabricated PU-based 
nanofibers using the wet-spinning process for anterior cruciate ligament reconstruc-
tion. PU-based fibres showed high strength and stiffness and retained almost 50% of 
their tensile strength for 9 months at physiological temperature [83]. In vivo studies
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Fig. 2 Representative macroscopic images a, d, g of using different polyurethane [polyester 
urethane urea (PEUU), polyester carbonate urethane urea (PECUU), polycarbonate urethane urea 
(PCUU)] cardiac patches after 16-week study in a rat model of ischaemic cardiomyopathy [scale 
bar ~5 mm]. The corresponding images b, e, h of Masson’s trichrome stained cross-sections of the 
heart after 16-week implantation of PEUU, PECUU, and PCUU [c, f, and  i are magnified images] 
[scale bar ~2 mm]. Yellow and black arrows indicate the edge and regions of the implanted PU. 
Red arrows indicate the suture lines. Reprinted with copyright permission from Elsevier [78]

supported its biocompatibility and safety issues. The trade name of this material is 
Artelon® commercialized by Artimplant® AB, Goteborg, Sweden. This material has 
also been developed as a spacer for the trapeziometacarpal joint for the treatment of 
osteoarthritis [84]. 

Neural Applications 

Nerves are soft tissues of the human body that control the movement and func-
tions of the whole body. Nerve tissue collectively in the brain and spinal cord 
creates the central nervous system of the body, and nerves outside the brain 
and spinal cord create the peripheral nervous system. Peripherical nerve injury 
is the most common clinical problem. Researchers focus on the development 
of tubular structures that guide nerve regeneration [52, 85]. Biodegradable PUs 
offer attractive properties like tunable mechanical strength, flexibility, and high
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biocompatibility in fabricating tubular grafts for nerve regeneration. Borkenhagen 
et al. designed PU-based tubular structures made up of poly[glycolide-co-(ε-
caprolactone)]-diol, poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid]-
diol and 2,2,4-trimethylhexamethylene diisocyanate. This nerve conduit (10 mm 
long) was implanted in rats for 4, 12, and 24 weeks. They found regeneration of nerve 
tissue in the implanted site with no inflammatory reaction with degraded product [86]. 
Dezhznz et al. fabricated nerve conduits from biodegradable PU based on ε-PCL-diol, 
HDI, and PEO-diol. In in vivo study, myelinated axon regeneration and PU degrada-
tion were observed after 4 weeks and 12 weeks of implantation in rabbits, respectively 
[87]. Nowadays, researchers mainly focus on the development of fully functional 
nerve reconstruction in the minimum time span. The porous PU scaffold exhib-
ited good nerve regeneration potential due to high interconnectivity and varied pore 
sizes in the outer (42 μm), inner surfaces (9 μm), and cross-sectional (23 μm) area. 
Asymmetrical pores facilitate good wound inflammation waste drainage and better 
permeability for growth factor that leads quick nerve regeneration [88]. Researchers 
demonstrated new electroactive nerve conduits made up with PU based on poly (glyc-
erol sebacate) and aniline pentamer. Its higher electroactivity accelerated neuronal 
Schwann cells for high release of nerve growth factor that induced neurite growth 
and fast nerve regeneration [89]. 

Vascular Applications 

Blood vessels (veins, arteries, and capillaries) are functionally dynamic tissue 
with minimal regeneration potential. These vessels are long, elastic hollow tubes 
with varying thicknesses and architecture. Blood passes through these vessels and 
transports oxygen, nutrients, and waste products around the body. Various poly-
meric materials have been developed for blood vessel replacement. Clinical use of 
synthetic vascular grafts is limited mainly due to thrombosis and intimal hyper-
plasia. Thrombus formation is occurred by platelet adhesion and slow endothelial-
ization that leads to abnormal accumulation of vascular tissue in the graft lumen 
[90–93]. In order to solve these problems, a strategic approach like surface modi-
fication of synthetic vascular grafts has been adopted which enhanced the hemo-
compatibility and long stability of vascular grafts [91, 94]. PU is the most common 
polymer used for the production of blood-containing devices like blood bags and 
artificial hearts valve due to its good hemocompatibility and mechanical properties 
[90, 94]. Researchers modify the surface of PU with PEG and peptides in order to 
compliance with natural blood vessels [95–97]. Modified PU showed good mechan-
ical stability and less thrombogenicity. Researchers have designed PU film based 
on PCL, MDI, and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PHBV 
incorporation increased the mechanical properties and surface hydrophilicity of the 
film. Moreover, PU film showed exceptional cytocompatibility and hemocompati-
bility with poor platelet adhesion and haemolysis, suitable for vascular grafts [98].
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Fig. 3 a Scanning electron microscopic image and b 3D μCT image of electrospun PU vascular 
graft. Images of PU grafts just after implantation (no blood leakage observed) (c) and after 12 months 
implantation (well integrated with adjacent tissue with no inflammation and no thrombus formation) 
(d) [scale bars ~6 mm]. Reproduced with permission from Elsevier [100] 

Long-term mechanical stability of vascular graft is needed for complete regenera-
tion and restoration of the vascular wall structure. Researchers developed mechan-
ically robust, long-lasting PU-based elastomeric scaffolds for vascular grafts [99]. 
Bergmeister et al. fabricated vascular grafts from biodegradable PU and these grafts 
showed good performance at the implant site of Sprague Dawley rat for one-year 
study [100] (Fig. 3). 

3.2 Polyurethanes in Hard Tissue Engineering Applications 

Calcified tissue like bone is categorized as hard tissue of the body. It has good 
healing ability under specific biological environments. Throughout our life, it under-
goes a continuous process of remodelling. However, severely damaged bones need 
immediate replacement with functional bone substitutes. The suitability of bone 
substitutes depends on their mechanical and structural properties such as strength, 
modulus, porosity, and size of pores that support cell mobility, vascular ingrowth, and 
bone tissue formation [48, 49, 101]. In the next section, we have discussed various 
biodegradable PUs scaffolds for bone tissue engineering.
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Polyurethane Scaffolds 

Since last decade, the development of biodegradable PU scaffolds has increased 
dramatically due to their tailorable physicochemical and mechanical properties. 
These biodegradable PU scaffolds have certain limitations like poor cell adhesion, 
differentiation, and biomineralization properties that may be due to pH changes 
around the scaffold after degradation. Although it is known that osteoblasts prolif-
erate and differentiate at physiological pH 7.4 [102], researchers have attempted 
to control pH changes in the microenvironment by designing a 3D printed PU-urea 
scaffold based on poly (D, L-lactic acid) diol with piperazine moieties and isosorbide-
HDI/HDI. In the in vivo study, the scaffold exhibited excellent cytocompatibility and 
bone tissue formation ability after 8 weeks of implantation. This is due to the stable 
neutral pH maintained by piperazine after the degradation of the scaffold [103–107]. 
In another study, researchers designed chondroitin sulfate sodium (bone extracel-
lular matrix component) grafted PU-based scaffolds to promote osteoblast adhesion 
and bone tissue regeneration [108, 109]. Inorganic fillers were incorporated to gain 
mechanical properties as compared to bare polymers. Researchers have incorporated 
bioactive particles like hydroxyapatite (Hap, an inorganic component of bone) into 
the PU matrix and enhanced the mechanical properties as well as the bioactivity (e.g., 
osteoconductivity, supports bone tissue formation) of scaffolds [110–112]. Liu et al. 
incorporated Hap in PU during the PU formation step and designed a highly porous 
(pororsity ~83%) scaffold with good mechanical properties (compressive strength 
~554 kPa) [112]. Similarly, Nasrollah et al. prepared PU-Hap scaffolds via in situ 
polymerization and described the role of Hap in pore creation as well as cell attach-
ment and proliferation on the scaffold [113]. In another study, researchers showed 
that Hap-incorporated PU scaffolds significantly enhanced cell adhesion and prolifer-
ation both in cell study and animal study. Researchers demonstrated the suitability of 
highly porous (porosity ~78–81% and pore size ~300–1000 μm) Hap-incorporated 
PU foam in the biomineralization and bone tissue regeneration process. They found 
the formation of bone matrix and trabecular regeneration in their study that showed 
excellent biocompatibility and osteogenic differentiation of cells in presence of Hap 
incorporated PU foam [114]. Scientists implanted citric acid (calcium-complexing 
agent) incorporated PU scaffolds in oestrogen-deficient sheep and found high bone 
regeneration after 18–25 months [115]. All these studies showed that PU composite 
scaffolds can be potentially used in bone tissue engineering applications (Fig. 4).

Injectable Polyurethane Prepolymer Systems 

The injectable bone void fillers loaded with/without growth factors are commonly 
used for the treatment of bone defects. The formulation of two-component 
prepolymer systems that react upon mixing under mild conditions has the advantage 
of such delivery to the defect site through minimally invasive procedures. Researchers 
extensively investigated the potential of liquid two-part urethane formulation in such 
biomedical applications. The injectable prepolymer systems are formulated to form
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Fig. 4 Schematic presentation of piperazine-based PU-urea (P-PUUs) a Chemical formula of P-
PUUs, b 3D μCT images, and c H&E staining images [Scale bar ~1 mm (top image) and 500 μm 
(bottom images)] after 8 weeks implantation of scaffolds (different content of piperazine) in rat 
model. Reproduced with permission from the American Chemical Society [103]

cross-linked polymer networks upon completion of the urethane formation once the 
components are mixed together. These liquid two-part urethane systems should be 
formulated in such a way that no by-products (low molecular weight) are released 
during curing, and they cure with a low reaction exotherm (not exceeding body 
temperature) [7]. Gunatillake et al. developed multiple PU prepolymers systems for 
varied applications in the biomedical field including tissue engineering [116]. They 
mixed diisocyanates ELDI or MLDI (liquids at and above ambient temperature) with 
multifunctional core molecules (pentaerythritol, glucose or glycerol) and produced 
isocyanate end functional prepolymers (Prepolymer A) which were viscous liquids 
at ambient temperature. Polyester polyol like PCL /PLA /PGA /PLGA polyols was 
used as the second component (Prepolymer B). The reaction of the two prepoly-
mers (Prepolymer A and Prepolymer B) produced a cross-linked polymer network 
at ambient temperature. With the appropriate choice of polyols and diisocyanates, 
they produced a cross-linked PU network with a wide range of mechanical properties 
(Compressive strength ~260 MPa, compressive modulus ~2 GPa) [25, 35, 116, 117]. 
PU prepared by this approach showed good compatibility with osteoblasts. It is found 
that highly viscous liquids create some miscibility and injectability issues. To erad-
icate these issues, Guelcher et al. have employed a quasi-prepolymer approach and 
end-capped all the polyol hydroxyls with excess use of polyisocyanate (NCO:OH



6 Biodegradable Polyurethanes and Their Biomedical Applications 129

equivalent ratio >5:1). The excess diisocyanate kept the viscosity low of the quasi 
prepolymer, and formed PU networks by the reaction of the available isocyanate 
groups with a polyester polyol. The compressive strength and modulus of PU films 
were in the range of 82–111 MPa and 1200–1430 MPa, respectively. PU films were 
found to release nontoxic degraded products and supported the attachment and prolif-
eration of MC3T3 cells [118]. The degradation, safety, and suitability of injectable 
prepolymer systems were also evaluated in an animal model (in sheep). PE and ELDI 
were used as Prepolymer A, and PE and DL-lactic acid (molecular weight 456) or 
PE and glycolic acid (molecular weight 453) were used as Prepolymer B. The cured 
polymers in this study exhibited compressive strength and modulus in the range 
of 100–190 MPa and 1600–2300 MPa, respectively. So, researchers had used both 
precured scaffolds and prepolymer liquid mixture for in vivo study. Precured cylin-
drical scaffolds (diameter ~10 mm) were implanted in sheep femurs, and prepolymer 
mixture in liquid form was injected to fill the voids and allowed to set for 8–10 min 
before closing the surgical site. This study demonstrated that PU in both forms 
(injectable and precured) did not show any surgical issues, even new bone tissue 
formed and PU degraded gradually [117] (Fig. 5). 

Fig. 5 Formation of PU network  [119]. Adapted with permission from Elsevier [2]
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4 Polyurethanes in Drug Delivery Applications 

PUs are a common choice for the synthesis of drug delivery vehicles due to their 
tunable composition and tailor-made properties. Several drug delivery systems in 
different forms like micro/nanosystems (micelles, micro/nanoparticles), membrane/ 
film systems, and matrix systems such as gels or scaffolds based on degradable PUs 
have been reported [2–6, 119–121]. Various forms of PU-based drug delivery systems 
are tabulated in Table 4. In numerous reports, the release behaviour of PU systems is 
generally correlated with the composition, swelling, and degradation rate at different 
pH. The drug release from PU matrices relies on the loading content and solubility of 
the drug as well as the degradation rate and swelling of the matrices [2, 122]. Water 
swollen PU system showed a linear relationship between cumulative drug release of 
a hydrophilic drug such as tenofovir with time [123]. Moreover, a more linear release 
of dapivirine (another anti-retroviral agent) was observed from water-absorbed PU 
matrices than from non-water-absorbed PU matrices due to controlled dapivirine 
diffusion [123].

The stimuli-responsive structure of PU facilitated the modulation of the drug 
release profile by tuning the degradation and/or adjusting the glass transition temper-
ature of PU. Temperature increases the mobility of the PU chains, weakening the 
interactions between PUs and drugs; thereby leading to enhanced drug diffusivity 
[4, 122]. Fast degradation of PU matrix shows a more rapid drug release compared 
to non-degrading or slowly degrading PU matrix. Drug delivery vehicles based on 
PUs with quick degradation have been developed by introducing highly degradable 
PLA or PLGA into PU chains; tuning the degradation rates by changing their molar 
ratio in the final PU [124–127] (Fig. 6).

Multiresponsive such as temperature, pH, redox, or enzyme-sensitive PU drug 
delivery systems have been also reported. The first stimulus, i.e., the temperature 
normally permits drug carriers to enter into cancer cells, and the second stimulus 
(for example enzyme attack) initiates the disassembly of polymers leading to final 
drug release [52]. Redox-responsive PU (PLA-dithiodiethanol-PLA diol) based self-
assembled micelles were stable at physiological pH, whereas drug release occurred in 
the microenvironment of the cancer cells (acidic pH) [128]. Another stimuli assisted 
degradation is currently being explored and a major focus is on the development of 
enzymatic intracellular responsive PU systems for anticancer drug release [129]. A 
summary of several drug delivery systems based on PUs has been tabulated below. 

5 Tissue Adhesives Applications of Polyurethanes 

In most of the surgical procedures in the world, stapling/suturing is used for the 
purpose of tissue binding that keeps the tissues attached for healing and lessens 
bleeding. Uncontrolled bleeding and air/gas leaking are the few complications of 
these techniques. There is an emergence to develop an advanced tissue closure
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Table 4 Polyurethane-based drug delivery systems 

Delivery system Drug incorporated Outcome 

PU nanoparticles Adriamycin – Temperature-responsive PU nanoparticles 
were created by using PEG and LDI (L-lysine 
ester diisocyanate) 

– Drug release behaviour depends on the 
transition temperature of LDI-PEG600 [130] 

PU nanoparticle Doxorubicin (DX) pH and temperature-responsive PU 
nanoparticles were synthesized using HDI and 
MDI [131] 

PU nanoparticles DX pH sensitive PU nanoparticles showed high 
cellular internalization and high 
anti-proliferative effects on MCF-7 cells 
(human breast cancer) [132] 

PU nanoparticles paclitaxel Paclitaxel-loaded PU nanoparticles showed 
good distribution in healthy mice [133] 

PU microparticles Epigallocatechin 
gallate 

Epigallocatechin gallate-loaded PU showed a 
toxic effect on Detroit 562 cells (human 
pharyngeal carcinoma) and SCC-4 cells 
(squamous carcinoma) [134] 

PU microparticles DX PU microparticles showed effective 
transportation of DX into cells and high 
anti-tumour activity towards cancer cells and 
3D multi-cellular tumour spheroids [135] 

PU conjugates DX DX-loaded PU conjugates showed a high 
release of the drug under acidic conditions. It 
showed pH and ultrasound triggered drug 
release and inhibit tumour growth [136, 137] 

PU nano micelles Paclitaxel PU nano micelles are easily internalized into the 
cells and released paclitaxel within tumour cells 
under an acidic environment [138] 

PU nano micelles DX – Showed sustained release of DX at different 
pH. DX-loaded PU micelles exhibited high 
toxicity against RAW 264.7 and MCF-7/ 
ADR cancer cells [139–143] 

– They also showed high anti-tumour efficacy 
in in vivo studies 

– Folic acid-conjugated DX-loaded PU 
micelles easily internalized into KB cells 
(human epidermoid carcinoma cell), and 
showed high toxicity with the release of DX 

– Thermoresponsive PU nano micelles have a 
lower critical solution temperature at 41–43 
°C comparable to cancer tissue temperature. 
DX-loaded PU nano micelles exhibited high 
toxicity (almost 90%) towards MCF 7 cells

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU micelles DX – Redox-sensitive PU micelles showed 
controlled release of DX in the presence of 
glutathione (a reducing agent) and high 
cytotoxicity towards cancer cells [144–150] 

– DX-loaded PU micelles showed high 
anticancer activity and toxicity against C6 
cells (rat glioma cells), Saos–2 cells, MCF-7 
cells, and HeLa cells due to the quick release 
of DX under an intracellular reducing 
environment 

– Redox and pH-responsive PU micelles also 
showed toxicity to C6 cells due to the 
controlled release of DX 

– At low pH, DX was rapidly released and 
effectively transported into the cell nuclei and 
showed cytotoxic effects to cancer cells 

– The enzymatic degradation of PU micelles 
chiefly occurred at the ester linkage under the 
physiological condition for 8 weeks 

PU micelles Paclitaxel Showed pH-responsive release of paclitaxel 
from PU micelles into H460 cancer cells [151] 

PU micelles DX and paclitaxel Redox-responsive PU micelles exhibited high 
cytotoxicity towards tumour cells (HepG2) 
[128] 

PU microcapsules DX – pH-sensitive PU microcapsules showed a 
controlled drug release profile 

– Those microcapsules are easily internalized 
into Hela cells and BGC 823 [152] 

PU matrix Cefamandole nafate – Showed controlled release of drug and 
prolonged antimicrobial activity upto day 9 
[153, 154] 

PU matrix Metoprolol tartrate – Drug loading efficiency ~65% 
– Can be administered through the oral route 
[155] 

PU pellet Model drugs – Double-coated PU pellets fabricated by using 
(carboxymethyl)(ethyl)-cellulose and azo 
polymer for controlled release of drug 

– Colon-specific delivery [156] 

PU thermogel DX – Showed sustained release of DX and an 
anti-melanoma effect on tumours [157] 

PU core–shell 
nanogel 

DX – Redox-responsive PU gels were designed 
with hydrophilic PEG [158] 

– Reducing agent, Glutathione triggered the 
drug release at pH = 7.4 

PU film Chlorhexidine 
diacetate 

– Showed antibacterial activity against 
Staphylococcus species [159]

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU film Gemcitabine – Initial burst release [160] 
– Local drug delivery applications 

PU films Methotrexate – Methotrexate was released with almost 
zero-order kinetics for 96–144 h [161] 

PU core–shell 
nanofiber 

5-fluorouracil and 
paclitaxel 

Drugs were released in a controlled manner at 
both acidic and physiological pH [162] 

Gold-coated PU 
nanofibers 

Temozolomide Sustained release of temozolomide was 
observed for 30 days which inhibit the growth 
of U-87 MG human glioblastoma cells [163] 

Amphiphilic block 
segmented PU 
nanofiber 

Curcumin Curcumin-loaded triblock (PEG-PCL-PEG) 
segmented PU nanofibers were fabricated. 
These nanofibers showed a steady release of 
curcumin for 18 days and good antibacterial 
activity against Escherichia coli and 
Staphylococcus aureus [119] 

PU membranes Paclitaxel Temperature responsive PU membranes were 
fabricated with a lower critical solution 
temperature of 44 °C. Below this point, the PU 
matrix prevented the diffusion of paclitaxel; 
upon heating above this temperature, the matrix 
suddenly switched on and diffusion of the drug 
occurred [164] 

Waterborne PU 
membrane 

DX Waterborne PU membranes showed fine 
biodegradability, favourable cytocompatibility, 
hemocompatibility and sustained release of DX 
caused high toxicity to tumour cells [121] 

Waterborne PU 5-fluorouracil The release rate of 5-fluorouracil was tuned 
with the length of the chain extender and 
molecular weight of PEG [165] 

PU foam Gefitinib Gefitinib was released in a controlled manner 
for nine months. This can be used for the 
treatment of broncho tracheal cancer [166] 

PU foam Anticancer compounds 
DB-67 and DX 

– Drugs were covalently attached to PU foam 
– Differential release of drugs depends on the 
chemical structure of the drug and 
temperature [167] 

PUs scaffold Platelet-derived 
growth factor (PDGF) 

– Biphasic release of growth factor 
– PDGF-loaded PU showed wound healing 
potential in in vivo study [168] 

PU scaffold Recombinant human 
bone morphogenetic 
protein (rBMP) 

– Sustained release of rBMP enhanced new 
bone tissue formation [169]

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU adhesive Thiamazole diclofenac 
and ibuprofen 

– Pressure-sensitive PU adhesive showed 
excellent stabilization of the drugs without 
any irritation in the skin [170] 

Modified PU Ibuprofen – Ibuprofen was incorporated in the polymeric 
backbone via ester linkages, and release was 
based on the degradation of ester bonds [171] 

PU dual delivery 
system 

Dapivirine, tenofovir – Sustained release of drugs over time [123] 

PU implant Cyclophosphamide – Controlled release of the cyclophosphamide 
[172]

Fig. 6 Formation scheme of PU-PLGA and PU-PLLA-PEG. Reproduced with permission from 
Elsevier [127]
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that replaces sutures. Therefore, tissue adhesive materials have been developed and 
are available in the market in different forms [52]. Based on the purpose, tissue 
adhesives are categorized in three different forms: (a) Haemostats are commonly 
used when blood loss occurs due to tissue damage, this material stops bleeding by 
involvement in the clotting process; (b) Sealants are commonly applied as a phys-
ical barrier during blood leaking. They act as a mid-range adhesive to tissues; (c) 
glues strongly adhere to tissues [173–175]. The performance of these materials is 
usually better in a dry environment; however, it is required to perform well in wet 
conditions also [176]. Besides this, a few other properties like fast curing time, no 
or low swelling, mechanical stability, and biocompatibility are the key requirements 
for tissue adhesive [177]. Polymeric tissue adhesives, chiefly PUs-based adhesives, 
have been extensively studied due to the reactivity of –NCO group in the PU back-
bone. The –NCO group reacts with water and –OH groups and accelerates tissue 
adherence in wet conditions. Thus, –NCO terminated PU adhesives can be easily 
cured in aqueous environment. However, the exothermic reaction water with –NCO 
group and toxic effects of these materials limit their applications [173, 178–182]. 
So, researchers developed saccharide based PU solutions for tissue adhesives appli-
cations. Numerous –OH groups from saccharide facilitated the adhesion process 
via hydrogen bonding because no free –NCO groups were available in the mate-
rial [183] (Fig. 7). Researchers also improved curing time (cured with minutes) 
by designing biobased photo-crosslinkable networks based on oxidized urethane-
modified dextran [184] or methacrylate end-capped PLA [185]. A few systems on 
biobased PU tissue adhesives have been developed so far. Still, research needs to 
be carried out to develop biobased PU adhesives for surgical adhesive applica-
tions. TissuGlu® is the PU-based (Lysine-derived Urethane) tissue adhesive which 
is commercially available in the market [52, 176]. Recently, Zou et al. designed a 
multifunctional wound adhesive using L-Arginine-based degradable polyurethane 
and gelatin-methacryloyl. It showed shape-adaptive adhesion and haemostatic effect 
of the damaged organ on rat liver haemorrhage model [186].

6 Conclusion and Future Prospective 

Over the last two decades, many research groups have widely explored the potential 
of biodegradable PUs for biomedical applications, especially in tissue engineering 
and drug delivery field. In this chapter, we have discussed the tailor-made properties 
of biodegradable PUs with varied soft and hard segments; their biocompatibility both 
in vitro and vivo environments. The biomedical applications of biodegradable PUs 
have been discussed in detail covering tissue engineering, drug delivery, and tissue 
adhesive applications. With many supporting studies to confirm biocompatibility, 
the ability to tailor mechanical properties, and degradation kinetics coupled with 
numerous processing options, biodegradable PUs offer attractive future opportunities 
to fulfil needs for next generation biomaterials. For translation research, studies 
should be more emphasized on preclinical evaluation because of the limited number
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Fig. 7 Xylose-based PU for tissue adhesives applications. Reproduced with permission by 
Balcioglu et al. [183]

of in vivo studies available on biodegradable PU. The efficacy and safety of PU system 
should be demonstrated. The clearance of degraded products by metabolizing organs 
should also be thoroughly assessed. 
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