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Preface 

The world is currently facing an urgent need for sustainable solutions to address 
the environmental challenges we are facing today. One of the major contributors to 
environmental pollution is the use of non-biodegradable materials, particularly plas-
tics. Plastic waste has become a significant problem, with devastating effects on our 
planet and its ecosystems. Fortunately, the development of biodegradable polymers 
has emerged as a promising solution to address this issue. Biodegradable polymers 
have the potential to replace conventional plastics and reduce the amount of waste 
that ends up in landfills or pollutes our oceans and other natural habitats. This book is 
intended to provide an in-depth understanding of biodegradable polymers and their 
applications. It covers various aspects of biodegradable polymers, including their 
synthesis, properties, processing, and potential applications. The book also explores 
the challenges and opportunities associated with the development and adoption of 
biodegradable polymers. 

The book is divided into 11 chapters. The introductory chapter, focusing on 
the classifications and synthesis of biodegradable polymers, sets the tone of the 
book. Chapter 2 “Processing of Biodegradable Polymers” provides knowledge about 
various processing techniques employed for biodegradable polymers and the effects 
of process conditions on the ultimate properties. Chapter 3 “Surface Modification 
of Biodegradable Polymers” provides critical insight into the methods of surface 
modification of biodegradable polymers and the application areas of such modi-
fied platforms. Chapter 4, titled “Carbohydrate-Based Biodegradable Polymers for 
Biomedical Applications,” deals with various carbohydrate polymers and their appli-
cations. Cellulose, the most abundant polymer on the Earth, and its derivatives 
are discussed in the Chap. 5 with major focus on synthesis, properties, and appli-
cations. Chapter 6, “Biodegradable Polyurethanes and Their Biomedical Applica-
tions,” provides valuable perception about utility of biodegradable polyurethane in 
various biomedical applications. Chapter 7 “Biodegradable Polymers—Carriers for 
Drug Delivery” discusses in brief about various natural and synthetic biodegradable 
polymers and their applications in drug delivery. Chapter 8 “Biodegradable Poly-
mers for Food Packaging Applications” discusses the food packaging application
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of various biodegradable polymers. Chapter 9 “Biodegradable Polymers for Agri-
culture” reviews the recent advancements in agricultural applications of biodegrad-
able polymers. Chapter 10 “Bio-polymeric Green Composites for Thermal Energy 
Storage Applications” focuses on the uses of biodegradable polymers in thermal 
energy storage for green buildings. The final chapter “Biodegradable Anisotropic 
Polymeric Particles and Their Emerging Applications” showcases some of the trail-
blazing works with biodegradable polymeric anisotropic particles ranging from pick-
ering emulsion stabilization to targeted drug delivery. The chapter also delivers crit-
ical insight into fabrication techniques of such anisotropic particles from recent 
scientific works. 

The chapters in this book have been written by researchers in the field of polymer 
science and engineering. They provide a comprehensive overview of the latest 
research and development in biodegradable polymers, from both academic and 
industrial perspectives. 

We hope that this book will serve as a valuable resource for researchers, students, 
and professionals interested in the field of biodegradable polymers. We also hope that 
it will inspire further research and development in this important area, and contribute 
to a more sustainable future for our planet. 

New Delhi, India Sampa Saha 
Chandrani Sarkar 
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Historical Overview of Biodegradable Polymers 

People started using biodegradable materials in biomedical field from very early 
age. For example, hair, wool thread, plant fiber, etc. were used as sutures by ancient 
Egyptians at the very early ages. The usage of natural latex and rubber was started by 
Olmecs, Aztecs people in 1500 BC [1]. The first documented suturing technique was 
provided in Samhita, by Indian surgeon Susruta in 500 BCE. He discovered catgut 
suture which is made from the intestine of sheep. Since then people started finding 
new bio-based materials. First man-made bioplastic, Parkesine was synthesized by 
Alexander Parkes in 1862. Parkesine was made from Cellulose [2]. 1n 1897, Galalith 
was synthesized from Casein by German chemists. It was used as a bioplastic at that 
time. Now this biomaterial is used as buttons [3]. After a few years, the first time 
scientist, Maurice Lemoigne developed bioplastic from bacteria in 1926. He had 
synthesized polyhydroxybutyrate (PHB) from Bacillus megaterium bacteria. The 
first man-made synthetic biodegradable polymer was Polyglycolic acid in 1954 [4]. 
By that time Hermann Staudinger (1881–1965) made an significant impact in the 
field of polymers. He was called “father of polymer chemistry.” He exactly described 
the definition of polymers [5]. And finally, in 1953 he was awarded with Noble Prize 
for his pioneering contribution in polymer science. 

References 

1. Aztec, Maya Were Rubber-Making Masters? https://www.nationalgeographic.com/science/art 
icle/100628-science-ancient-maya-aztec-rubber-balls-beheaded. Accessed 1 Mar 2023 

2. Rasmussen SC (2021) From parkesine to celluloid: The birth of organic plastics. Angew Chemie 
Int Ed 60:8012–8016 

3. Performance and Stability of Historic Casein Formaldehyde. https://www.researchgate. 
net/publication/321624509_Performance_and_Stability_of_Historic_Casein_Formaldehyde. 
Accessed 1 Mar 2023 

4. Subach DJ (2012) Biodegradable polymers. Chemist 74:31–53 
5. Percec V, Xiao Q (2020) The Legacy of hermann staudinger: Covalently linked macromolecules. 

Chem 6:2855–2861

vii

https://www.nationalgeographic.com/science/article/100628-science-ancient-maya-aztec-rubber-balls-beheaded
https://www.nationalgeographic.com/science/article/100628-science-ancient-maya-aztec-rubber-balls-beheaded
https://www.researchgate.net/publication/321624509_Performance_and_Stability_of_Historic_Casein_Formaldehyde
https://www.researchgate.net/publication/321624509_Performance_and_Stability_of_Historic_Casein_Formaldehyde


Contents 

1 Introduction to Biodegradable Polymers . . . . . . . . . . . . . . . . . . . . . . . . 1 
Mouli Sarkar, Anu Priya, Chandrani Sarkar, and Sampa Saha 

2 Processing of Biodegradable Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Goutam Panda, Chandrani Sarkar, and Sampa Saha 

3 Surface Modification of Biodegradable Polymers . . . . . . . . . . . . . . . . . 49 
Meenakshi Verma, Chandrani Sarkar, and Sampa Saha 

4 Carbohydrate-Based Biodegradable Polymers for Biomedical 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
Aiswarya Thattaru Thodikayil, Chandrani Sarkar, and Sampa Saha 

5 Cellulose-Based Biodegradable Polymers: Synthesis, 
Properties, and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
Mouli Sarkar, Ashank Upadhyay, Dharmendra Pandey, 
Chandrani Sarkar, and Sampa Saha 

6 Biodegradable Polyurethanes and Their Biomedical 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
Chandrani Sarkar and Sampa Saha 

7 Biodegradable Polymers—Carriers for Drug Delivery . . . . . . . . . . . . 149 
Nidhi Gupta, Chandrani Sarkar, and Sampa Saha 

8 Biodegradable Polymers for Food Packaging Applications . . . . . . . . 169 
Vikramsingh Thakur, Bhabani K. Satapathy, Chandrani Sarkar, 
and Sampa Saha 

9 Biodegradable Polymers for Agriculture . . . . . . . . . . . . . . . . . . . . . . . . . 191 
Kunal Verma, Chandrani Sarkar, and Sampa Saha 

10 Bio-polymeric Green Composites for Thermal Energy Storage 
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
Soumyadip Dutta, Chandrani Sarkar, and Sampa Saha

ix



x Contents

11 Biodegradable Anisotropic Polymeric Particles and Their 
Emerging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 
Subhashree Subhasmita Pradhan, Chandrani Sarkar, 
and Sampa Saha 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



Editors and Contributors 

About the Editors 

Sampa Saha is currently working as an associate professor in the Department of 
Materials Science and Engineering at Indian Institute of Technology Delhi, New 
Delhi, India. She received her PhD from Michigan State University, USA. Sampa 
Saha is editorial advisory board member of Journal of Macromolecular Science. She 
has published more than sixty peer-reviewed articles, five book chapters on polymer 
science and holds eight Indian patents. 

Chandrani Sarkar is currently working as a SERB-National Post-Doctoral Fellow 
at Indian Institute of Technology Delhi, New Delhi, India under the guidance of 
Dr. Sampa Saha. She received her PhD from Indian Institute of Technology (Indian 
School of Mines), Dhanbad. 

Contributors 

Anu Priya Department of Materials Science and Engineering, Indian Institute of 
Technology, Delhi, New Delhi, India 

Soumyadip Dutta Department of Materials Science and Engineering, Indian Insti-
tute of Technology Delhi, New Delhi, India 

Nidhi Gupta Department of Materials Science and Engineering, Indian Institute of 
Technology Delhi, New Delhi, India; 
Department of Applied Chemistry, National Yang Ming Chiao Tung University, 
Hsinchu, Taiwan; 
International College of Semiconductor Technology, National Yang Ming Chiao 
Tung University, Hsinchu, Taiwan

xi



xii Editors and Contributors

Goutam Panda Department of Polymer Technology, Guru Nanak Dev Rohini 
Campus, Delhi Skill and Entrepreneurship University, Delhi, India; 
Directorate of Training and Technical Education, Government of National Capital 
Territory of Delhi, Delhi, India; 
Department of Materials Science and Engineering, Indian Institute of Technology, 
Delhi, New Delhi, India 

Dharmendra Pandey Department of Materials Science and Engineering, Indian 
Institute of Technology, Delhi, New Delhi, India 

Subhashree Subhasmita Pradhan Department of Materials Science and Engi-
neering, Indian Institute of Technology Delhi, New Delhi, India 

Sampa Saha Department of Materials Science and Engineering (DMSE), Indian 
Institute of Technology, Delhi, New Delhi, India 

Chandrani Sarkar Department of Materials Science and Engineering (DMSE), 
Indian Institute of Technology, Delhi, New Delhi, India 

Mouli Sarkar Department of Materials Science and Engineering, Indian Institute 
of Technology, Delhi, New Delhi, India 

Bhabani K. Satapathy Department of Materials Science and Engineering, Indian 
Institute of Technology, Delhi, New Delhi, India 

Vikramsingh Thakur Department of Materials Science and Engineering, Indian 
Institute of Technology, Delhi, New Delhi, India 

Aiswarya Thattaru Thodikayil Department of Materials Science and Engineering 
(DMSE), Indian Institute of Technology, Delhi, New Delhi, India 

Ashank Upadhyay Department of Materials Science and Engineering, Indian 
Institute of Technology, Delhi, New Delhi, India 

Kunal Verma Department of Materials Science and Engineering, Indian Institute 
of Technology, Delhi, New Delhi, India 

Meenakshi Verma Department of Materials Science and Engineering, Indian 
Institute of Technology, Delhi, New Delhi, India



Abbreviations 

3D Three-dimensional 
3-HV 3-hydroxy valerate 
6-MP 6-Mercaptopurin 
AAC Antioxidant activity coefficient 
AAc Acrylic acid 
AADC Amino acid decarboxylase enzyme 
AAV Adeno-associated virus 
ABDO 2-Amino-1-butanol 
ABS Acrylonitrile Butadiene Styrene 
ACNF Acetylated cellulose nanofiber 
APS Ammonium persulfate 
ASTM American Society for Testing and Materials 
ATBC Acetyl-tri-n-butyl-citrate 
ATRP Atom transfer radical polymerization 
AVL α-propargyl-δ-valerolactone 
BC Bacterial cellulose 
BCNCs Bacterial cellulose nanocrystals 
BDA 1,4-Butanediamine 
BDI 1,4- butanediisocyanate 
BDO 1,4-Butanediol 
BEMA 2(2-bromopropionyloxy)ethyl methacrylate 
Bio PMF Biodegradable polymeric mulch film 
BPSCs Biodegradable polymeric seed coatings 
BUR Blow-up-Ratio 
14C Carbon-14 
CA Cellulose acetate 
Ca-alginate/PNIPAm@PDA Ca-alginate/ 

poly(N-isopropylacrylamide)@polydopamine 
CAB Cellulose acetate butyrate 
CAGR Compound annual growth rate 
CCA Carrot carbon aerogels

xiii



xiv Abbreviations

CCM Curcumin 
CD Carbidopa 
CHDI 1,4-Cyclohexane diisocyanate 
CHDM 1,4-Cyclohexanedimethanol 
CMC Carboxymethyl cellulose 
CMCS Carboxymethyl chitosan 
CMCelPolyArg Carboxymethylcellulose with poly-L-arginine 
CMR Cumulative measurement respirometric 
CN Cellulose nitrate 
CNC Cellulose nanocrystals 
CNF Cellulose nanofibers 
CS Cellulose Sulfate 
Detroit 562 Human pharyngeal carcinoma cells 
DHPC O-(2,3-dihydroxy propyl) cellulose 
DMR Direct measurement respirometric 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DOD Degree of deacetylation 
DPPH Diphenylpicrylhydrazyl 
DS Degree of substitution 
DSC Differential scanning calorimeter 
DTP 3,3'-dithiobis(propionohydrazide) 
DVS Divinyl sulfone 
DX Doxorubicin 
EAP Electro-active paper 
EBM Extrusion Blow Molding 
EC European Community 
ECM Extra-cellular matrix 
ED 1,2-Ethanediamine 
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
EG Ethylene glycol 
ELDI Ethyl 2,6-diisocyanatohexanoate 
FBPI Faba bean protein isolate 
FCM Food contact materials 
FDA Food and drug administration 
FDM Fused Deposition Modeling 
GA Gum Arabic 
GA3 Gibberellic acid 
GC-MS Gas Chromatography-Mass Spectrometry 
Gel Gelatin 
GlA Glycolic acid 
Glu Glutaraldehyde 
GNPs Gold nanoparticles 
GPC Gel Permeation Chromatography 
GSE Grape seed extract



Abbreviations xv

GSH Glutathione 
HA Hyaluronic acid 
HaP Hydroxyapatite 
HAZ Heat affected zone 
HCMC Hydrophobic Carboxymethyl cellulose 
HEC Hydroxyethyl cellulose 
HEMA 2-hydroxyethyl methacrylate 
HDI 1,6-Hexamethylene diisocyanate 
HPC Hydroxypropyl cellulose 
HPLC High-Performance Liquid Chromatography 
HPMA N-(2-hydroxypropyl)methacrylamide 
HPMC Hydroxypropyl methylcellulose 
IAA Indole Acetic Acid 
IBM Injection Blow Molding 
IPC Interfacial polyelectrolyte complexation 
IPDI Isophorone diisocyanate 
KB cells Human epidermoid carcinoma cell 
LA Lactic acid 
LbL Layer by layer 
LCST Lower critical solution temperature 
LD Levodopa 
LDI L-lysine ester diisocyanate 
LDPE Low-density polyethylene 
LHS Latent heat storage 
MAP Modified Atmosphere Packaging 
MC Methylcellulose 
MCC Microcrystalline Cellulose 
mcl PHA Medium chain length Polyhydroxy alkanoate 
MCSC Maleylated Cotton Stalk Cellulose 
MFI Melt Flow Index 
MLDI Methyl 2,6-diisocyanatohexanoate 
MMA Methyl methacrylate 
MMT Montmorillonite 
MO Methyl orange 
MOF Metal-organic framework 
MPS Mononuclear phagocyte system 
MW Molecular weight 
NAPL Non-aqueous phase liquid 
NASA National Aeronautics and Space Administration 
NC Nanocellulose 
NIAS Non-intentionally added substances 
NMP Nitroxide-mediated polymerization 
NMR Nuclear Magnetic Resonance 
NPK Nitrogen Phosphorous Potassium 
OH Hydroxyl



xvi Abbreviations

OTR Oxygen transmission rate 
PA Polyanhydrides 
PA Palmitic acid 
PADCs Poly(alkylene dicarboxylate)s 
PAG Photo acid generator 
PAM Polyacrylamide 
PAMAM Polyamido amine 
PBA Polybutylene adipate 
PBAT Polybutylene adipate-co-terephthalate 
PBS Polybutylene succinate 
PBSA Polybutylene succinate adipate 
PC Polycarbonate 
PCA Pumpkin carbon aerogels 
PCL Polycaprolactone 
PCl Palmitic Chloride 
PCL-co-PEG-coPCL Poly(lactic acid-ethylene glycol-co-lactic acid) 
PCMs Phase change materials 
PCUU Polycarbonate urethane urea 
PD Parkinson’s disease 
PDGF Platelet-derived growth factor 
PDMAPS Poly(3-dimethyl-(methacryloyloxyethyl) 

ammonium propane sulfonate) 
PDMS Poly(dimethylsiloxane) 
PE Polyethylene 
PEC Polyelectrolyte complex 
PECUU Polyester carbonate urethane urea 
PEG Polyethylene glycol 
PEG-b–PCL Poly(ethylene glycol)-b-poly(caprolactone) 
PEI Polyethyleneimine 
PEM Polyelectrolyte multilayer 
PEO Poly(ethylene oxide) 
PET Poly (ethylene terephthalate) 
PEUU Polyester urethane urea 
PFPE Perfluoropolyether 
PGA Polyglycolic acid 
PHA Polyhydroxy alcanoate 
PHB Poly-3-hydroxybutyrate 
PHBHx Poly-3-hydroxybuterate-co-3-hydroxyhexanoate 
PHBV Poly-3-hydroxybuterate-co-3-hydroxyvalerate 
PHEMA Poly(2-hydroxyethyl methacrylate) 
PK1 HPMA copolymer–doxorubicin conjugate targeting 

moiety 
PK2 HPMA copolymer–doxorubicin conjugate having 

galactosamine 
PLA Poly(D,L-lactide)



Abbreviations xvii

PLGA Poly(lactide-co-glycolic acid) 
PLAGA-PEG-PLAGA L-Lactide/glycolide/polyethylene glycol terpolymer 
PLL Poly-L-Lysine 
PMETA Poly(2-

[(methacryloyloxy)ethyl]trimethylammonium 
chloride) 

PNP p-Nitrophenol 
poly (MMA-co-HEMA) poly (methyl methcrylate-co-2-hydroxyethyl 

methacrylate) 
poly(NIPAM) Poly(N-isopropylacrylamide) 
POE Poly(ortho ester) 
PPC Polypropylene carbonate 
PPE Poly(phosphoesters) 
PPEGMA Poly(poly(ethylene glycol) methacrylate) 
PPF Poly(propylene fumarate) 
PPO Poly(propylene oxide) 
P-PUUs Piperazine based polyurethane urea 
PRINT Particle Replication in Non-wetting Templets 
PSR Processing Speed Ratio 
PTMO Poly(tetramethylene oxide) 
PU Polyurethanes 
PVA Polyvinyl alcohol 
PVC Poly (vinyl chloride) 
PVP Poly(vinylpyrrolidone) 
PS Polystyrene 
QDs Quantum dots 
RAFT Reversible addition-fragmentation chain transfer 
RBC Red Blood Cells 
rBMP Recombinant human bone morphogenetic protein 
RC Regenerated chitin 
RCA-1 Ricinus communis agglutinin 
REX Reactive Extrusion 
RFID Radio frequency identification 
RMS Root mean square 
ROMP Ring-opening metathesis polymerization 
ROP Ring-opening polymerization 
SA Salicylic Acid 
SAM Self-assembled monolayers 
SAP Super absorbent polymer 
SAXS Small-angle X-ray scattering 
SCC-4 Squamous carcinoma cells 
scl PHA Short chain length Polyhydroxy alkanoate 
SEM Scanning electron microscopic 
SHS Sensible heat storage



xviii Abbreviations

SIATRP Surface initiated atom transfer radical 
polymerization 

Si-HPMC Silicon impregnated Hydroxypropylmethyl 
cellulose 

SMCC Silicified microcrystalline cellulose 
SPI Soy protein isolate 
SSE Single Screw Extruder 
SSPCMs Shape-stabilized phase change materials 
SNP Sulfur nanoparticles 
TCE Trichloroethylene 
TCNCs Tunicate cellulose nanocrystals 
TE Thiol-ene 
TEGDA Triethylene Glycol Diacrylate 
TES Thermal energy storage 
TMC N,N,N-trimethyl chitosan 
TMDI 2,2,4-Trimethyl hexamethylene diisocyanate 
TORC Tetramethylpiperidinyloxy mediated oxidation 

regenerated cellulose 
TPP Tripolyphosphate 
TPS Thermoplastic starch 
TSE Twin Screw Extruder 
TTI Time-Temperature Indicator 
US-NIOSH United State-National Institute for Occupational 

Safety and Health 
UV Ultraviolet 
WAXD Wide-angle X-ray diffraction 
WVP Water vapor permeability 
XRD X-ray Diffraction 
ZNP Zien nanoparticles 
ZVI Zero Valent Iron



Chapter 1 
Introduction to Biodegradable Polymers 

Mouli Sarkar, Anu Priya, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

In our continuously ever-growing society, polymers play a vital role in our day-to-
day applications. Some of them do not persist in our ecosystem for too long as they 
are degraded away by microorganisms and other natural factors. But many others 
tend to remain in our environment and get accumulated as waste. Most of them are 
reprocessable, whereas some are not. Economically, it is relatively easier to manu-
facture materials from petroleum-based sources. Majority of the non-biodegradable 
polymers that are used today are plastics made up of polyethylene, polypropylene, 
polystyrene, etc. lead to waste-disposal problems. These plastics tend to stay in our 
environment because there is hardly any microorganism that may feed them. Due 
to their adaptability in modeling, durability, and simplicity of use, across a range of 
manufacturing and production processes, plastics are widely used and since then rate 
of production of plastic products has increased since 1970s. The production of plastic 
waste was manageable in 1970s but in early 1990s the plastic waste production was 
more than tripled. Today the generation of plastic waste is more than 400 million tons 
[1]. The increase in plastic waste has become a serious problem for the environment. 
Most of this plastic waste includes single use plastic bottles, food wrappers, plastic 
grocery bags, cigarette filters, etc. Millions of tons of plastic waste are introduced to 
the environment; these plastics waste sometimes are shipped to thousand kilometers 
and dumped or burned which in turn affects our ecosystem. It has been studied that 
polyethylene may need 100–1000 years for its degradation in nature depending on
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the product [2]. These non-biodegradable polymers on burning produce greenhouse 
gases which further cause global warming and severe respiratory problems. As these 
polymers are non-biodegradable, they stay in environment in form of microscopic 
plastic and contaminate our soil and water bodies. Despite the efforts being made 
to overcome these issues, 75–200 million tons of plastic wastes are found in our 
ocean. On the other side, plastics are causing the planet serious challenges by either 
clogging the water system or interrupting the food chain system. Almost 79% of the 
plastic waste are dumped in landfills [3]. Also, our petroleum source is limited, so it 
is highly expected those non-biodegradable polymeric materials should be replaced 
with recyclable and biodegradable alternatives. 

Biodegradable polymers are either extracted from renewable sources or obtained 
via polymerization in laboratory and degrade easily in nature. On their own, their 
shelf life and service life both are less because they degrade more easily than 
non-biodegradable polymers, but with continuous advancement in polymer tech-
nology this can be improved. Common biodegradable polymers—starch, cellulose, 
gelatin, chitosan, Polyhydroxy alkanoate (PHA), Polyvinyl alcohol (PVA), Poly-
butylene succinate (PBS), Polylactic acid (PLA), Polyurethanes (PU), Polycaprolac-
tone (PCL), and Poly(ortho ester) (POE) are being widely used in several sectors. 
The chemical structure and applications of these polymers are tabulated in Table 
1. The reason for their appreciable biodegradability is the presence of heteroatom 
in the backbone of the polymer as C–X linkages (X=O, N, S, etc.). The bond 
energies [C–O(~67 kcal/mol) < C–N(~72 kcal/mol) < C–C (~85 kcal/mol)] prove 
C–X bonds can be easily cleaved by environmental factors [4–6]. These polymers 
possess unique properties of degradation in the environment either by the microbial 
action or by the effect of natural factors [7]. The polymer degradation can happen 
in multiple ways—(1) chemical degradation which includes hydrolysis and oxida-
tion; (2) Physico-chemical degradation which occurs via photodegradation, thermal 
degradation, and mechanical degradation; and lastly (3) degradation via enzymatic 
pathway [5]. Besides these factors, molecular weight, morphology, crystallinity, 
tacticity, branching, and nature of side groups also affect the rate of degradation 
[8].

The easiest methods to evaluate the degradation of biodegradable polymers are— 
visual observation (formation of cracks or color changes with time), weight loss 
measurements by GPC (Gel Permeation Chromatography), HPLC (High Perfor-
mance Liquid Chromatography), GC–MS (Gas Chromatography- Mass Spectrom-
etry), clear-zone formation NMR (Nuclear Magnetic Resonance), and XRD (X-ray 
Diffraction) [6, 7]. Lastly, the most effective method is CMR (cumulative measure-
ment respirometric) or DMR (Direct measurement respirometric) which measures 
the amount of CO2 released with respect to certain reference materials [8].
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2 Classification of Biodegradable Polymers 

Biodegradable polymers can be classified with respect to many factors, i.e., sources, 
composition, synthesis procedure, processing method, applications, etc. Among all, 
the most important categorization is source and application based. Conventionally, 
biodegradable polymers are categorized into three major divisions—natural, semi-
synthetic, and synthetic biodegradable polymers (Fig. 1). Natural polymers are those 
which are directly obtained from biomass, and when monomers are obtained from 
natural source and polymerized in laboratory is called semi-synthetic polymers. 
Synthetic polymers are purely synthesized in laboratory through chemical routes 
[33, 34]. Natural, semi-synthetic, and synthetic polymers are discussed in detail with 
proper examples in subsequent sections. 

2.1 Natural Biodegradable Polymers 

Natural biodegradable polymers are the materials originating directly from nature, 
i.e., extracted from plants and animals. These polymers play a vital role in our daily 
life as all living beings are based on them—proteins and nucleic acid that occur 
in human and animal body, and polysaccharides are found in cell walls of plants 
and bacteria. In nature, all organisms’ growth cycles leads the formation of these

Fig. 1 Classification of biodegradable polymers. Redrawn from [35] 
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polymers—first, metabolic process generates different active monomers within cells, 
and those monomers get polymerized through enzyme catalyzed polymerization 
and produced natural polymers. The structure, properties, and applications of a few 
common natural biodegradable polymers are discussed below. 

Polysaccharides 

These are complex carbohydrate structures originating from bacteria or fungi. 
More than one unit of monosaccharides is connected via glycosidic linkages to 
form polysaccharides. Most of the polysaccharides are obtained from cell walls 
plants, crustaceans, and shrimp. Cellulose, starch, chitin, and gums are examples of 
polysaccharides [36]. 

Starch 

The chemical formula of starch is (C6H10O5)n. Starch is the major component for 
storing sugar in plant cells during photosynthesis and hence, acts as a reservoir of food 
for plants [37]. Amylose and amylopectin are two units of starch which are connected 
via α-1,4-glycosidic linkages in branched form [chemical structure given in Table 
1]. Starch contains alternating semi-crystalline growth rings which are made up of 
crystalline amylopectin and amorphous amylose moieties. Interestingly, the quality 
of starch depends on the ratio of amylose to Amylopectin. Most of the commercial 
starch is produced from corn, wheat, potato, and tapioca [13, 38, 39]. Because of 
their increased biodegradability, renewability, and superior oxygen barrier qualities, 
materials made from starch are the best solution for several commercial applica-
tions. However, the use of naturally occurring starch is restricted since it is highly 
hydrophilic in nature and presence of the intermolecular forces, and hydrogen bonds 
provide starch a significant impact on the polymer’s processability as a thermoplastic 
polymer, leading to a high glass transition temperature (Tg) and low melting point 
(Tm). So, further processing is needed where plasticizers such as glycerol, urea, 
sorbitol, or glycerine are added to the starch matrix to create thermoplastic starch 
(TPS) which can be utilized in making compost bags, food packaging, and films 
for marine, meat, and vegetable sectors [40, 41]. Granular Starch [42], Gelatinized 
Starch [43], Thermoplastic starch [44] are some examples of modified starch that 
has various applications. On the other side, starch that has been blended with ester 
groups to provide thermal stability, control water vapor transmission rate, mois-
ture absorption, and enhanced barrier qualities for various gases. Cassava starch, 
polyvinyl alcohol (which serves as an adhesive and thickening agent), glycerine 
(used as a plasticizer), talc powder (which acts as a lubricant), urea (which acts as a 
crossing link agent), and water were combined to create a biodegradable plastic pack-
aging film [45]. The film was subsequently investigated for various physicochemical 
changes and their impact on the food inside during storage, and the findings revealed 
the comparative characteristics of the film with the traditional polymer.
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Cellulose 

Cellulose is also a plant-derived linear polysaccharide where monomer sugar units 
are connected via β-1,4-glycosidic linkage [structure given in Table 1]. Cellulose is 
the basic component of wood, leaves, and stalks. Other sources are algae, bacteria, 
and tunicates. The presence of large hydroxyl (OH) groups controls the chemical 
and mechanical properties of cellulose [46]. The intramolecular H-bonds between 
OH-groups of glucose units of the same cellulose units provide rigidity and thermo 
stability of the chains, whereas intermolecular H-bonds between two different cellu-
lose chains are responsible for the development of the supramolecular structures 
[47]. This extensive H-bonding is responsible for poor solubility in both common 
organic and inorganic solvents. Cellulose is highly susceptible to acids but unre-
active to strong alkalis. The human body cannot digest cellulose, so it is easy to 
apply cellulose material in food packaging applications. Apart from that, OH-groups 
can be easily modified by chemical treatment [15, 48, 49]. These cellulose deriva-
tives (methylcellulose (MC), carboxymethyl cellulose (CMC), hydroxyethyl cellu-
lose (HEC), cellulose acetate (CA), and hydroxypropyl methylcellulose (HPMC), 
etc. have much more utility in the application field rather than crude cellulose. 

Gums 

Gums are complex carbohydrates and are hydrocolloids which are extensively used 
in food industries as either ingredients or food additives [50]. It has several properties 
like gelling, water solubility, thickening, emulsification, and stabilization. Gums are 
extracted from shrubs (Karaya, cashew), plant exudates (tragacanth), seed endosperm 
of Guar gum, algae, etc. [51]. Typically, they can create extremely viscous aqueous 
solutions at low concentrations. An exception is there, Gum arabic and other “low 
viscosity grade” gum require high concentration to form a highly viscous solution. 
Gums are formed by numerous sugars where complexation in structure may form 
due to branching. One of the most well-known and widely used gums is gum arabic, 
which is produced by the species Acacia Senegal. Gum ghatti and Karaya gum are 
the other two types which are extracted from the trunk of Anogeissus latifolia and 
Sterculia urens trees, respectively [52, 53]. 

Polyhydroxy Alkanoate (PHA) 

PHA is an optically active biodegradable polymer which is produced by fermenta-
tion of microbes and then by microbial cell lysis. The development of microorgan-
isms using agricultural waste as a growth medium has been studied as a potential 
source for bioplastics and biopolymers (polysaccharides). One such microbiologi-
cally produced plastic is polyhydroxyalkanoate, also known as PHA. It is produced by 
several bacterial species using inexpensive renewable resources, and it is completely 
degraded aerobically by microorganisms in a stimulated control environment to CO2
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and H2O. PHA is produced utilizing various natural isolates and recombinant bacteria 
strains. They are produced by the fermentation of sugar or lipids to store carbon 
and energy via bacteria. It is generally produced from saturated and unsaturated 
hydroxyalkanoic acids [54]. The monomer used can be unbranched or can be a 
homopolymer, copolymer, or terpolymer. PHA can be produced via bacteria under 
balanced and unbalanced growth conditions; this controls the kind and quantity of 
PHA in the cell [55]. 

PHA are polyesters derived from (R)-3-hydroxy alkanoic acids that are biocom-
patible, non-toxic, and have similar thermoplastic qualities to petrochemical plas-
tics. The length of the monomer’s carbon chain influences its categorization. The 
final characteristics of PHA, including Tm, Tg, and their degree of crystallinity, are 
greatly influenced by the chemical composition of the polymer, which is affected by 
the source growth environment, and the method of extraction of the polymer. As a 
result, they are suitable for a wide range of applications. Short chain length PHA (scl 
PHA) often exhibits characteristics that are most similar to those of traditional poly-
mers like polypropylene, but medium chain length PHA (mcl PHA) exhibits more 
elastomeric characteristics. The most extensively researched PHA polymer is poly-
3-hydroxybutyrate (PHB); it is brittle and highly crystalline. PHB is produced by 
certain steps—The first step involves combining two molecules of acetyl CoA to form 
acetoacetyl-CoA via 3-ketothiolase. Then the reductase Acetoacethyl-CoA reduces 
the acetoacetyl-CoA via NADH to form 3-hydroxybutyryl-CoA. Lastly, polymer-
ization of PHB-CoA occurs to generate PHB (Fig. 2). The production of PHB by 
bacteria is increasing significantly every year. PHB possesses distinguishable phys-
ical characteristics such that it can be processed into a transparent film with Tm > 
130 °C and is degradable without residue [56–58].

The thermal and mechanical properties of PHA can also be tuned by 
co-polymerization with different monomers examples—Poly-3-hydroxybuterate-
co-3-hydroxyvalerate (PHBV), Poly-3-hydroxybuterate-co-3-hydroxyhexanoate 
(PHBHx). With the increase in the side chain length, the degree of crystallinity 
decreases, hence Tm decreases and the copolymer becomes less brittle. 

Polypeptides 

Polypeptides are constituted of different amino acids through peptide bonds. 
Different proteins like—silk, wool, and collagen are all polypeptides. Collagen is 
an animal-based protein and consists mainly of glycine, proline, hydroxyproline, 
and lysine [59]. The flexibility and unique biological properties made collagen a 
perfect material to be used in biomedical fields. One of its denatured derivatives is 
gelatin which contains 19 amino acids. It is water soluble. Its physical and chemical 
properties highly depend on molecular weight distribution and amino acid composi-
tion. There are few plant-based polypeptides are also available—wheat gluten is one 
of the polypeptides derived from cereal grains. It contains two types of protein— 
gliadin, and glutenin [60]. Glutenin molecules are connected via disulfide bonds with 
gliadin chains to provide the gluten flexibility (Fig. 3). Wheat gluten is an extremely
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biodegradable material and the products obtained are non-toxic. This biopolymer 
acts as a good film-forming agent but without a plasticizer, it became brittle. Soy 
protein is another type of plant-based protein which is beneficial for health [61]. 

Fig. 2 Industrial production process of PHB. Redrawn from [59]

Fig. 3 Structure of gluten. Redrawn from [62]
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Lipids 

Lipids are hydrophobic and soluble in hydrocarbons. Phospholipids, sterols, wax, 
saccharolipids, sphingolipids, and polyketides fall under the class of lipids. Fatty 
acids are extracted from oils and fats in the form of triglycerides and depending on 
the functional groups present over the triglycerides, lipids can be synthesized using 
free radical or cationic polymerization [63]. Nowadays, lipids or fatty acids become 
a synthetic toolbox for an industrial chemist. The functional groups of lipids can 
be easily modified and produce different polymers from a single feedstock. Fatty 
acids mainly consist of poly anhydrides, polyester, and poly (ester-anhydrides) link-
ages. More prominently, the structure consists of an acid group and aliphatic carbon 
chain (length ranges from 4 to 22 carbons) with unsaturation, monounsaturation, or 
polyunsaturation in their backbone (Fig. 4) having varied properties [64]. 

2.2 Semi-synthetic Biopolymers 

Semi-synthetic polymers are also derived from nature, but they undergo chemical 
modifications after extraction. Monomers are derived from biomass and the extrac-
tion process and polymerization is carried out via chemical synthesis in laboratory. 
Some of the examples are discussed below.

Fig. 4 Structure of lipids. 
Redrawn from [64] 
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Polylactic Acid (PLA) 

PLA is an aliphatic biodegradable polyester that is frequently synthesized from 
hydroxyl acids. L and/or D-lactic acid (monomers) are microbial fermented and then 
chemically polymerized to make PLA [65]. Injection molding and extrusion are two 
common processing techniques that are used to transform polylactic acid (PLA). The 
concentration of lactic acid enantiomers within PLA chains has a significant impact 
on the ultimate properties of PLA, including the degree of crystallinity, Tm and Tg. 
PLA homopolymers (poly DL-lactic acid) containing optically pure L-lactic acid or 
D-lactic acid, and are semi-crystalline polyesters having Tm of about 175 °C and 
a Tg of around 55 °C, while PLA heteropolymers (poly DL-lactic acid) are amor-
phous since the polymer chains are disordered. Depending on the crystallinity, the 
biodegradability of PLA can be monitored. PLA shows slow degradation due to the 
presence of bulky CH3 group in its polymer chain which creates a steric hindrance 
to resist hydrolysis. 

The first approach produces PLA by using cyclic lactic acid dimer lactide, which 
is created during the lactic acid cycle also known as the Kori cycle [66]. The lactate 
is produced via an anaerobic reaction. The laboratory synthesis includes direct poly-
merization of lactic acid using condensation polymerization under a vacuum for the 
removal of a water molecule. This technique typically yields low-molecular-weight 
polymers with water as a by-product which leads to back biting. The alternative 
method includes fermentation of the lactic acid where the conversion of lactic acid 
into polylactic acid occurs via bacterial polyester fermentation. The bacteria such 
as Bacillus megaterium and Alcanivoraxbor are being employed for this process. 
These bacteria need sugar which is provided by corn to provide fuel for cellular 
activities, Alcanivoraxbor employed which needs sugar from plants, such as corn, 
to fuel their cellular functions, and the by-product of these cellular processes is the 
polymer, which is used to make polyesters. 

The most used industrial procedure to produce PLA is represented in Fig. 5. 
The first step includes the fermentation of sugar sources such as corn, which provide 
energy for the cellular function of microorganisms, the microorganism then produces 
lactic acid which is further polymerized via condensation polymerization and ring 
opening polymerization (ROP) to produce polylactic acid. High molecular weight 
PLA is synthesized via ROP of lactide in the presence of catalysts is Sn(Oct)2 [67].

Polyglycolic Acid (PGA) 

PGA is a completely linear aliphatic polyester and highly crystalline (crystallinity 45– 
55%). The melting point of PGA is also higher (220–225 °C) than PLA as PGA has 
higher crystallinity (Tg ~35 °C). But its low solubility limits biomedical applications. 
Higher molecular weight PGA is more soluble in organic solvent than low molecular 
weight PGA which is comparatively soluble in water. The degradation rate is higher 
for PGA as water can easily attack the carbonyl moieties leading to the formation of 
acids. PGA is also synthesized as the same procedure as PLA.
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Fig. 5 Industrial process for PLA/ PGA synthesis. Redrawn from [35, 68]

Chitosan 

Chitosan is an amino polysaccharide [structure given in Table 1]. It consists of 
copolymer N-glucosamine and N-acetyl-glucosamine units connected by β-(1,4) 
linkages produced by partial deacetylation of chitin [68]. Chitin is found in the 
exoskeleton of many crustacean animals, diatoms, algae, insects, etc. Crustacean 
shell waste majorly consists of protein (30–40%), calcium carbonate & calcium 
phosphate (30–50%), and chitin (20–30%). These ratios vary with species and with 
the season. Thus the preparation of chitin/chitosan also varies depending on the 
sources [69]. 

Chitin consists of polysaccharide groups connected by β-1,4-glycosidic link-
ages and has acetamide groups in C-2 position. It is an ordered fibrillar structure
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having inter/intramolecular H-bonding, forming a highly crystalline structure which 
is responsible for insolubility in water, whereas chitosan with a higher degree of 
deacetylation contains one water molecule per polysaccharide unit and lesser crys-
talline part than chitin. Chitosan is soluble at acidic pH (~6.2–6.4) and less soluble 
above pH ~ 7.4 [69, 70]. 

Industrially, the shells obtained from the crustacean insects are processed through 
the following steps: demineralization (DM) [elimination of CaCO3 in acidic 
treatment], deproteinization (DP) [alkaline treatment], decolorization (DC) [by 
hydrogen peroxide, sodium hypochlorite, or acetone], and deacetylation (DA) 
(Fig. 6). The nature and quality of the chitosan depend on the degree of deacety-
lation as chitosan differs from chitin by means of solubility, viscosity, and other 
several biological activities [36, 37]. 

Fig. 6 Synthesis of chitosan. Redrawn from [35, 71]
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2.3 Synthetic Biodegradable Polymers 

These polymers are completely synthesized in laboratory, hence can be easily tuned 
their properties. A few common synthetic biodegradable polymers are discussed 
below. 

Polyvinyl Alcohol (PVA) 

PVA is the most common synthetic biodegradable polymer. It is highly hydrophilic, 
thus readily degrades in soil. It is not possible to directly synthesize PVA from 
vinyl alcohol due to the existence of its tautomeric form, i.e., acetaldehyde. PVA is 
generally synthesized from vinyl acetate through different routes. One of the most 
crucial methods is free radical polymerization of vinyl acetate (Fig. 7) which forms 
the intermediate polyvinyl acetate via emulsion polymerization in the presence of 
ammonium persulfate (APS) initiator at 70–80 °C [71]. PVA is obtained by hydrolysis 
of acetate via a strong base in the presence of methanol. Physical and chemical 
properties of PVA are determined by its molecular weight [72]. Generally, high 
molecular weight PVA shows high crystallinity and high tensile strength. PVA is 
an odorless, white-colored translucent granular powder. PVA is resistant to oil and 
grease and has flexibility that provides excellent film-forming as well as adhesive 
properties. PVA also possesses high moisture barrier film-forming capability as well 
as strong oxygen and aroma barrier properties [34, 72]. 

Poly (Alkylene Dicarboxylate)s (PADCs) 

PADCs are the linear aliphatic polyesters. PBS is one of the family of PADCs. 
It is made up of 1,4-butanedial and succinic acid. PBS is synthesized by conden-
sation process using succinic acid and 1,4 Butanediol under a vacuum. Figure 8a 
represents the production of PBS via the thermal polycondensation method. This 
produces by-products such as alcohol and water that leads to the formation of low 
molecular weight PBS (<30,000). This issue can be overcome by using transition 
metal catalysts such as Ti(IV) isopropoxide or isobutaoxide or scandium triflates. 
PBS obtained by ring opening polymerization of p-dioxanone (Fig. 8b) are highly 
degradable. PBS is thermoplastic polyester having melting temperature, Tm ~113 °C. 
Injection, extrusion, and blow molding are used to process this polymer for versatile

Fig. 7 Synthesis of PVA from vinyl acetate. Redrawn from [73] 
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Fig. 8 Synthesis of PBS via a condensation reaction and b ring opening polymerization. Reprinted 
and redrawn from [82] 

applications. PBS is extensively used in mulch films, containers, and plastic bags. 
PBS degrades slowly due to its high crystallinity. For this, different co-polymers are 
also synthesized. One of the superior co-polymers of PBS is polybutylene succinate 
adipate (PBSA) which is synthesized by butane diol, succinic acid, and adipic acid. 
Adipic acid is incorporated to enhance the biodegradability of PBS [26, 74, 75]. 
Blending and composite formation of PBS with other materials like—PLA, adipic 
acid, butylene terephthalic acid, butylene furandicarboxylic acid are also adopted for 
improving its degradability [76 –79]. 

Polybutylene adipate (PBA) is also a part of PADCs family. It contains 1,4-
butanediol and adipic acid. PBA shows polymorphism in its melt crystallized form. 
Wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) 
prove that PBA has two crystalline forms α and β which grow at temperature 
above 32 °C and below 27 °C [80]. Since, aliphatic portion increases in PBA, crys-
tallinity becomes poorer than PBS, and hence biodegradation rate increases for PBA 
[76]. Another copolymer example is Polybutylene adipate-co-terephthalate (PBAT) 
(Fig. 9). It is a random co-polyester of 1, 4-butanediol, terephthalic acid, and adipic 
acid and synthesized by polycondensation of these monomers in presence of zinc, tin, 
or titanium catalyst. This biodegradable polyester is manufactured by BASF in the 
commercial name of Ecoflex®. In presence of terephthalate groups, PBAT possesses 
high flexibility and toughness. However, this high flexibility is the drawback for the 
polymer that it cannot be used in synthesizing strong materials. The degradation of 
PBAT was studied in compost simulation test and it was found to occur at around 
60 °C. PBAT is widely used in synthesizing mulch films and is considered to be the 
promising materials for bio-based products [81].

Polycaprolactone (PCL) 

PCL is a biodegradable aliphatic polyester. It is prepared by ring opening polymer-
ization of ε-caprolactone in presence of stannous octanoate [Sn(Oct)2] as a catalyst
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Fig. 9 a Structure of PBA and b its co-polymers PBAT . Redrawn from [82]

[82]. It is also formed as an intermediate product during the oxidation of cyclo-
hexanol via microorganisms (Fig. 10). The by-products of this enzymatic oxidation 
are ε-caprolactone and 6-hydroxy hexanoic acid. The most effective enzyme for 
the production of polycaprolactone is lipase. Industrial production of ε-caprolactone 
includes oxidation of the cyclohexanone by peracetic acid. PCL is a semirigid mate-
rial at room temperature. The ester bonds in PCL are easily degraded under phys-
iological conditions. The degradation is also carried out by enzymes like lipases 
and esterases [83]. Its melting temperature is around 60–65 °C and Tg is about − 
60 °C. The number average molecular weight of the PCL are in the range of 3000– 
80,000 g/mol [84]. PCL has good elastic properties that are suitable for implantable 
biomaterial, particularly as sutures and prosthetics. 

Fig. 10 Synthesis of caprolactone from cyclohexanol, and its polymerization via ring opening 
pathway and enzymatic pathway leads to the formation of PCL. Redrawn from [87]
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Fig. 11 Synthesis of PU via 
step polymerization. 
Redrawn from [88] 

Polyurethane (PU) 

As we have discussed in earlier section of this chapter biodegradable polymers and 
their crucial application, one such important biodegradable polymer is polyurethane. 
PU can degrade via both abiotic and biotic pathways. PU is commonly synthe-
sized by the reaction between isocyanates and diols in stepwise method which yield 
polymer with urethane bond (Fig. 11). The physico-chemical, mechanical, and degra-
dation properties of PU can be easily tuned by the changing of building materials, 
i.e., isocyanates and diols. Its tunable properties have made PU very attractive for 
surgeons and biomedical industries. PU’s one of the advanced uses in biomedical 
field is prosthetics. 

3 Applications of Biodegradable Polymers 

The biodegradable polymers are compatible with physiological conditions such that 
they are efficiently employed in the biomedical area. The applications are highly 
reliable in the case of pharmaceutics, implants, sutures, drug delivery, tissue engi-
neering, etc. [4]. The biomaterials are non-toxic and easily excreted or digested inside 
the body. Other than these, biodegradable polymers are now getting commercialized 
for application in the food, packaging, automobile manufacturing industries, and 
medical implants, etc. Details of some commercialized biodegradable products are 
given in next section. The constituent monomers and their ratios determine the prop-
erties of these products and their uses. Besides these, biodegradable polymers are 
utilized everywhere and in a wide range of products are available including kitchen-
ware, packaging, wrapping materials, bottles, food containers, clothing, accessories, 
automotive parts, electronics, furniture, and many others (mentioned in Table 2). 
Figure 12 shows different products made up of biodegradable polymers [89].
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Fig. 12 Different products made up of biodegradable polymers. Reprinted with permission from 
[87–89] 

3.1 Commercially Available Products Based 
on Biodegradable Polymers 

4 Conclusions 

Undoubtedly, biodegradable polymers have become promising materials that have 
potential to replace the non-degradable polymers synthesized from non-renewable 
sources. The petroleum-based plastics create a huge imbalance in the environment. 
With increase in population, people are getting habituated with the materials from 
cheaper sources at the expense of a compromised ecosystem. With the advancement 
of technology, and on growing global awareness to make a greener world, there is 
a dire need to commercialize the biodegradable polymers. They have introduced an 
appealing interest in the past few decades due to their excellent biocompatibility and 
biodegradability that ultimately facilitate the sustainable development of mankind. 
However, poor mechanical properties, molar mass, crystallinity, and toughness of
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those biodegradable polymers limit their applications. Since these polymers are easily 
affected by natural factors, thus they are prone toward bacterial or fungal attacks, in 
addition to abiotic factors such as oxidation, hydrolysis, and UV light. Moreover, they 
face difficulty in processing them, without which no commercialized product can be 
made. A careful modification in processing parameters may mitigate the degradation 
problem, albeit with enhanced cost, thus making them not economically competitive 
with other commodity plastics such as polyethylene. In the present time, few groups 
of biodegradable polymers have market presence and their products are available for 
daily use. Commercialization of biodegradable products mainly relies on their price, 
so future work should focus on the development of industrially viable, cost-effective 
biodegradable products made from biodegradable polymers. 
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ular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate 
adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers 
10:251 

80. Gan Z, Kuwabara K, Abe H, Iwata T, Doi Y (2004) Metastability and transformation of 
polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 5:371–378 

81. Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of 
poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3:19–26 

82. Mclauchlin AR, Thomas NL (2012) Biodegradable polymer nanocomposites. Adv Polym 
Nanocomposites Types Appl 398–430 

83. Rani GU, Sharma S (2022) Biopolymers, bioplastics and biodegradability: an introduction. 
Encycl Mater Plast Polym 474–486 

84. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly (ε-caprolactone) fiber: an overview. 
https://doi.org/10.1177/155892501400900309 9:74–90 

85. Bassas-Galià M (2017) Rediscovering biopolymers. Consequences microb interact with 
hydrocarb oils, Lipids Prod Fuels Chem. Springer, Cham 529–50 

86. Sarkar DJ (2018) Agriculture: polymers in Crop Production Mulch and Fertilizer 1–20 
87. Alkan C, Günther E, Hiebler S, Ensari, Ömer F., Kahraman D (2012) Polyurethanes as solid– 

solid phase change materials for thermal energy storage. Solar energy 86(6); 1761–1769 
88. Ghanbarzadeh et al (2013) https://doi.org/10.5772/56230 
89. Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn, F, Linka N (2013) An engineered 

plant peroxisome and its application in biotechnology. Plant Sci 210:232–240

https://doi.org/10.1300/J030v04n02_03
https://pslc.ws/macrog/pvoh.htm
https://doi.org/10.1177/155892501400900309
https://doi.org/10.5772/56230


Chapter 2 
Processing of Biodegradable Polymers 

Goutam Panda, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Famous American author and proponent of biomimicry, Janine Benyus once 
famously quoted, “What if, every time I started to invent something, I asked, ‘How 
would nature solve this?’” [1]. The very crux of this conviction stems from the fact 
that nature has enough in her cradle to teach humans invaluable lessons of life. The 
rich treasure of knowledge on biodegradable polymers, from starch to cellulose, 
from proteins to chitosan are one amongst such lessons that humans should conceive 
sooner than later. Moreover, a knowledge on their processing, furthermore, is befit-
ting, if the human civilization is keen on solving the burgeoning problem of plastic 
pollution and the question of non-biodegradability of conventional thermoplastics. 

At this juncture, it is important to clarify that processing of biodegradable poly-
mers is an evolving and complex discipline and must be dealt with caution. The 
difficulty and complexity of processing of biodegradable polymers primarily arises 
from the susceptibility of biodegradable polymers to degradation under the influence 
of high temperatures, moisture and acute shear conditions [2]. 

Therefore, due attention must be accorded while processing of biodegradable 
polymers through various techniques such as employing shallow cut screws with
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non-shearing conveying elements for reducing shear stresses inside the barrel [3], 
maintaining a favourable temperature profile to avoid temperature build-up [4] and 
using sophisticated drying systems to arrest hydrolytic degradation owing to mois-
ture [5]. This chapter outlines general commentaries with regard to processing 
of biodegradable, as well as discussion on conventional and advanced/emerging 
processing techniques. 

2 General Commentaries on Processing of Biodegradable 
Polymers 

Most biodegradable polymers often tend to degrade through various pathways when 
exposed to high temperature, moisture and shear conditions. 

2.1 Processing Window of Biodegradable Polymers 

Biodegradable polymers differ from commonly used thermoplastics in their structure 
and properties. Hence, processing these polymers is also quite unique. The most crit-
ical aspect of processing biodegradable polymers is their narrow processing window 
as shown in Fig. 1 [6]. To overcome this problem of narrow processing window it is 
often required to make engineering interventions in the processing equipment. One 
way is to use a special screw wherein mixing elements are specially designed to 
incorporate non-shearing elements which only convey and facilitate pumping action 
of the screw but that do not contribute to the unwanted shear heating [7]. This is 
particularly true for starch or lignin based, or cellulosic polymers, to cite a few.

Additionally, a favourable temperature profile should be maintained in the 
barrel to avoid temperature build-up. This can prevent the thermal degradation of 
biodegradable polymers. 

2.2 Effect of Moisture 

Pre-drying, to expel moisture is almost compulsory for biodegradable polymers 
since majority of them are hygroscopic in nature. Presence of moisture can not 
only decrease molecular weight (MW) but also cause brittleness in parts [8]. More-
over, humidity should also be controlled even during processing of biodegradable 
polymers [9], otherwise moisture can cause plasticization of the polymer leading to 
deterioration of the final properties of the polymer. While pre-drying of commonly 
available thermoplastics like Nylon, Acrylonitrile Butadiene Styrene (ABS) or Poly-
carbonate (PC) is relatively simple, the pre-drying process for certain biodegradable



2 Processing of Biodegradable Polymers 29

Fig. 1 Narrow processing 
window of biodegradable 
polymers as compared to 
wider processing window of 
conventional synthetic 
thermoplastics

polyesters like Poly (hydroxy alkanoate) (PHA) and Poly(lactic acid) (PLA) is quite 
complex. An extremely high pre-drying temperature would soften these biodegrad-
able polyesters and cause agglomeration. Furthermore, inadequate temperature can 
lead to improper drying of these biodegradable polymers. Given the complexities of 
drying and the sensitivity of biodegradable polymers to moisture, the drying equip-
ment must be carefully chosen. Sophisticated methods of pre-drying such as infrared 
crystallizing and drying units or rotating pulsed fluid-bed crystallizers may have to 
be retrofitted in processing equipment. Additionally, hopper agitators may be needed 
to prevent agglomeration accruing from high pre-drying temperature [10, 11]. 

2.3 Effect of Temperature 

Processing biodegradable polymers at high temperature can cause thermal degrada-
tion resulting in the formation of monomers. This can cause plasticization of polymer 
adversely impacting the final mechanical properties. Thus, a favourable tempera-
ture profile should be maintained to arrest the unwanted thermal degradation of the 
biodegradable polymers [10]. 

The characteristic temperature profile required for melt processing of Ecovio 
IS1335, a commercially available injection grade PLA is shown in Fig. 2. Typically,
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Fig. 2 Temperature profile 
in the processing of Ecovio 
IS 1335; adapted and 
modified from Ashter, Syed. 
(2016) [10] 

an even distribution of temperature in the polymer melt can be ensured with the 
aid of shallow scut screws with non-shearing mixing elements [11]. Moreover, the 
temperature has to be cautiously maintained so as to ensure appropriate distribution 
of heat in the polymer melt while facilitating the pumping action of the screw [12, 
13]. 

On the contrary, some other biodegradable polymers such as Metabolix Mirel 
P1003, a commercially available injection-grade PHB [poly (hydroxybutyrate)] may 
require a reverse temperature profile maintaining at 165°–170 °C at the nozzle, and 
175°–180 °C at the rear to avoid temperature build-up and arrest thermal degradation 
[14–16]. 

The temperature control while processing biodegradable polymers is not just 
limited to barrel but also extends to the mould. For example, the recommended mould 
temperature for the processing of Ecovio IS 1335 (i.e. PLA-based biodegradable 
polymer) is typically around 25 °C. Additionally, the design of the runner system 
and the gates should be such that an even distribution of temperature can be ensured. 

2.4 Effect of Shear 

As the rate of shear increases, most biodegradable polymers, like the conventional 
thermoplastics exhibit a typical pseudoplastic behaviour, i.e. showing reduction in
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apparent viscosity. This is largely attributed to the molecular alignments and disen-
tanglements in the long polymer chains. However, the viscosity drop in biodegradable 
polymers can be tricky, and a variety of non-Newtonian flows may be expected, from 
pasty flows sticking to the barrel to highly shear thinning ones, more so, they may not 
be able to endure the shear rates that are relevant for conventional thermoplastics. For 
example, native starches are highly sensitive to high shearing during melt extrusion, 
which affects the integrity of the starch granules by increasing the amylose content 
and paste viscosity [17]. Processing parameters such as screw speed, screw config-
uration and residence time are interrelated and must be tailored to suit the needs of 
processing. 

Typical compression ratios used for melt shearing in extruder are 2.2–2.8 or even 
lower, so as to arrest unnecessary pressurization and resulting heat build-up. Screw 
speed is recommended in the range of 50–150 rpm, or even lower can be expected. 
Furthermore, specially designed screw with lesser kneading blocks and predomi-
nance of non-shearing conveying elements may be recommended restricting high 
shear forces [18]. 

2.5 Other Peculiarities in Biodegradable Polymers 

Certain biodegradable polymers display peculiarities during their processing. Starch, 
for example, in its processible and mouldable form is commonly referred as Ther-
moplastic Starch (TPS) or plasticized starch where raw starches are plasticized with 
water, glycerol, sorbitol, etc. However, starch granules pass through a peculiar order– 
disorder phase transition known as gelatinization. Starch granules, in presence of 
water, experience near solubilization along with an irreversible destruction in their 
crystalline structure [19]. In absence of shear forces, around 70% water content is 
required for gelatinization of starch granules. The requirement of water is much less 
under the influence of shear forces since these forces are sufficient to mechanically 
disrupt the molecular bonds in starch granules resulting in easier penetration of water 
into starch granules [20]. 

Another peculiarity is witnessed in cellulose. When native cellulose is hydrolyzed 
by a strong acid, disintegration of its structure leads to the formation of Microcrys-
talline Cellulose (MCC) [21]. 

Similarly, soy proteins exhibit peculiar irreversible changes and complex physic-
ochemical interactions such as disulfide-disulfide interactions during melt extrusion. 
This often results in eccentric and unpredictable melt rheological properties. Use of 
plasticizers can improve processibility of protein-based polymers to some extent.
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3 Conventional Processing Techniques 

Biodegradable polymers, like any other petroleum-based thermoplastic polymer can 
be processed and moulded (with caution) by employing several processing techniques 
such as compression moulding, extrusion, injection moulding, blow moulding, blown 
film extrusion, etc. [22]. A brief discussion on each of them has been given below. 

3.1 Compression Moulding 

Compression moulding is a processing technique in which the moulding material, 
after being preheated, is placed in an open, heated mould cavity using a two-
part mould system [23]. Since biodegradable polymers are susceptible to shear 
heating and likely to undergo thermal degradation, it is noteworthy that compression 
moulding being a low shear process offers a lot of flexibility, and is a lot simpler 
when it comes to processing of biodegradable polymers. 

Compression moulding can be used to mould several biodegradable polymers 
such as Thermoplastic Starch (TPS), polyvinyl alcohol (PVA), Poly (lactic acid), soy-
based plastics [24, 25]. For certain starch-based, soy-based proteinaceous polymers 
and cellulosic polymers, blending with plasticizer glycerol or sorbitol may be neces-
sary prior to compression moulding. For example, audio speakers have been manufac-
tured by Technare GmBH with the aid of compression moulding using Arboblend 
resins. Arboblend comprises lignin, bio-polyesters, cellulose, bio-polyamide and 
bio-olefins. 

3.2 Melt Extrusion 

Melt extrusion may be described as system consisting of a heated barrel, a rotating 
screw and a die in which the screw rotates inside the heated barrel, ‘plasticizes’ the 
polymer and an extrudate of consistent diameter is conveyed through the die under 
pressure [26]. The schematic of a typical extruder is shown in Fig. 3 [27]. Being a 
high shear process, melt extrusion poses a mammoth challenge for process engineers 
due to high shear sensitivity of the biodegradable polymers.

Melt extrusion of biodegradable polymers can be carried out either by a Single 
Screw Extruder (SSE) or a Twin Screw Extruder (TSE) [27, 28]. It is wiser to process 
biodegradable polymers like starch with TSE instead of SSE as processing starch 
with an SSE may cause clogging of starch powder at the feeding port. Also, relatively 
shorter residence time in the barrel for TSEs not only ensures high output but also 
helps to prevent temperature build-up [29]. 

The extrusion processing of starch is complex and difficult to control than that of 
many other polymers. The processing of starch involves the plasticization (granule
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Fig. 3 a Schematic of a typical extruder used in pharmaceutical industry, b Schematic of single 
screw extruder (SSE) and Twin Screw Extruder (TSE). Reproduced with permission from [27]

transformation) of starch and macromolecular degradation of starch molecules. These 
in turn can affect the processability (rheology) and final product properties. To over-
come this problem, water cooling may be necessary since enormous amount of 
viscous heat is dissipated during extrusion, that may increase the temperature of 
plasticized starch by up to 50 °C [30]. 

Similarly, the challenge of narrow processing window begins to plague melt 
processing of PLA. Thermal degradation of PLA begins at around 240 °C, close to 
its melting temperature (Tm). Substantial decrease in MW owing to thermal degra-
dation occurs at 270 °C [31]. The residence times in the barrel thus should not be too 
long. Polyglycolic acid (PGA), like PLA, also has a very narrow processing window 
because the onset of thermal degradation begins only at Tm + 30 °C. However, since 
Polycaprolactone (PCL)-based polymers have a low Tm of 60 °C, they have relatively 
high thermal stability in the molten state. Due to this reason, PCL-based polymers 
have a broader processing window as compared to PLA and PGA [32, 33]. 

3.3 Injection Moulding 

Injection moulding, like melt extrusion is a high shear process used for moulding 
products where the design is more complex and intricate with complex shapes, 
where high dimensional precision is required. It is one of the most popular processes 
commonly known for non-degradable thermoplastic polymers. 

Although typical thermoplastics can be readily processed with a general-purpose 
screw as shown in Fig. 4 [34], most biodegradable polymers may require special-
ized screw configuration for injection moulding. As discussed in Sect. 2.4, most  
biodegradable polymers are susceptible to shear heating and the degradation associ-
ated therein. It is because of this reason that high shear screws like Nylon screws are 
best avoided for the injection moulding of biodegradable polymers. Special shallow-
cut single-flighted screws with a constant-taper design are well suited for injection 
moulding of biodegradable polymers. These screws typically have a compression
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Fig. 4 A typical 
general-purpose screw 
Reproduced with permission 
from Syed Ali Ashter [34] 

ratio of 2.2:1–2.5:1 compression and 20:1–25:1 L/D. The typical shot volume is 
around 30–70% of the barrel volume [35–37]. 

From a material stand point, nucleating agents may be needed for injection 
moulding of biodegradable polymers as they require longer cycle times due to 
slow crystallization. Another challenge encountered during the injection moulding 
of biodegradable polymers is the sticking of these polymers to the metal surfaces 
due to absorption of moisture. To overcome this problem, sophisticated pre-drying 
equipment that are often retrofitted with injection moulding machine include pulsed 
rotating fluidized bed crystallizing and drying units and infrared crystallizing and 
drying units [10]. 

During injection moulding of biodegradable polymers, injection moulded purging 
is absolutely necessary to prevent molten polymer from sticking to metal surfaces 
which can cause problems in further moulding cycles. 

The mould temperature also plays a crucial role in injection moulding of 
biodegradable polymers. For example, the mould temperature for PLA should not 
be more than 25°–30 °C, otherwise surface finish and final weight of moulded prod-
ucts made from PLA can be impacted due to cold tooling surfaces owing to lactide 
condensation [38]. 

Novamont’s Mater-Bi injection grade, a commercially available starch-based 
biodegradable polymer (Melt Flow Index (MFI) = 6–30 g per 10 min) can be 
processed with a single-flighted screw with a constant-taper design to keep the 
residence time under check [39]. Another commercially available starch-based 
biodegradable polymer such as Biomax TPS by DuPont can be processed with low-
compression screws with a compression ratio of 2.2:1 to 2.8:1 and an L/D of 20:1 
[40–42]. 

From a mould design aspect, processing of biodegradable polymers may require 
hot runner systems and heated nozzles due to homogeneity in melt temperature and a 
reliability in purging. Additionally, the gate point should have good thermal isolation 
to have a better control on moulding [42].
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Fig. 5 Schematic diagram of a EBM, b IBM screw. Reproduced with permission from Syed Ali 
Ashter [34] 

3.4 Blow Moulding 

Blow Moulding is typically used for moulding of hollow parts such as plastic bottles. 
The two commercially acknowledged variants of blow moulding are Extrusion Blow 
Moulding (EBM) and Injection Blow Moulding (IBM) as shown in Fig. 5 [43–45]. 

EBM slightly differs from IBM in the machine arrangement and moulding stages. 
In EBM, polymer in the shape of a hollow tube section, called as ‘parison’, drools out 
through a die whereas in IBM, molten polymer is fed into a manifold. Furthermore, 
in EBM air is blown through blowing rod into the parison to inflate it inside the 
mould, whereas in IBM, the core rod is rotated and a hollow chilled blow mould 
clamps the core rod [46, 47]. 

FKUR, a global biodegradable manufacturer, has introduced a grade called BIO-
FLEX which is a blend of co-polyester and PLA (no starch or starch derivatives). 
Due to its controlled branching and higher elongational viscosity and strain hardening 
parameter, it has been used for several blow moulding applications and manufactured 
daily used products as shown in Fig. 6 [48]. Husky has used a biodegradable polymer 
from Nature Works company (a corn-based PLA resin) and successfully stretch blown 
to a water bottle. It is world’s first compostable water bottle [49].

3.5 Blown Film Extrusion 

Blown film extrusion whose schematic is shown in Fig. 7, is a process equipped 
with an extruder which pumps polymer melts through the die, mandrel and finally 
air blown in the shape of a tube. This inflated ‘balloon-like’ tube is flattened using 
nip rolls and then finally wound as flat film on to the winder [49].

The Blow-up-Ratio (BUR) is defined by 

BUR = Bubble Diameter 

Die Diameter
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Fig. 6 Examples of products made by a injection blow moulding, b extrusion blow moulding, 
c Husky’s first compostable bottle made by Injection Stretch Blow Moulding Reproduced with 
permission from Syed Ali Ashter [34]

Fig. 7 A schematic set-up 
for Blown Film Extrusion 
Reproduced with permission 
from Syed Ali Ashter [34]

The problem with film blowing of biodegradable polymers is that most of 
them lack sufficient extensional viscosity and strain hardening parameter which are 
essential in the formation of a stable bubble during film blowing [50]. 

The poor visco-elastic properties and low melt strength of PLA cause difficulty 
in formation and stability of the inflatable bubble. Molten PLA often accumulates 
near the die resulting in melt sag. Film blowing process for PLA requires meticulous 
control of melt rheology. PLA films generally require low processing temperatures. 
Additionally, several processing parameters such as Processing Speed Ratio (PSR) 
and air pressure need to be tuned for film blowing of PLA [51]. Material modification 
strategies like blending of PLA with PCL or polybutylene succinate or modification
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of PLA with chain extenders like maleic anhydride and chain branching agents, etc. 
These are primarily used as film blowing grades of PLA [52, 53]. Typical Blow-up 
ratio (BUR) for PLA films is around 2:1–4:1. 

During the film blowing of TPS, the films become brittle and stiff beyond a critical 
limit of the shear viscosity [54]. Additionally, to obtain comparable mechanical prop-
erties in both transverse and longitudinal direction, TPS films are biaxially oriented 
[55]. 

3.6 Thermoforming 

Thermoforming is of numerous types and varieties depending upon the machine 
arrangement. A typical thermoforming process, however, comprises of heating and 
softening a polymeric sheet and then drawing or pushing it against a mould to form 
a rigid or semi-rigid shape [56]. 

Mostly amorphous polymers exhibiting a distinct rubbery region glass transition 
temperature (Tg) have good thermoformability. Semi-crystalline polymers are diffi-
cult to thermoform as they have a narrow thermoforming window. This aspect of 
material characteristics is equally valid for biodegradable polymers [57]. 

Amongst several biodegradable polymers, only PLA has been successfully ther-
moformed so far. Since PLA has a very narrow thermoforming window, control of 
the forming temperature is the trickiest part while thermoforming of PLA [58]. Ther-
moforming of TPS is challenging as TPS is high heat and moisture sensitive. Due to 
favourable heat transfer properties, aluminium is generally used as mould material 
for thermoforming of biodegradable polymers. Thermoforming can be accomplished 
with the aid of compressed air, vacuum or even mechanical actuation. The depth of 
drawing and wall thickness optimization are critical parameters in thermoforming. 
For optimized thickness of parts, plug-assisted thermoforming can be beneficial 
depending on the part design [59]. 

3.7 Fibre Spinning 

Spinning is a widespread technique used for formation of fibres. The two main vari-
ants are melt spinning and electrospinning. Melt spinning is deployed for polymers 
that can be readily converted into molten state. For polymers which are heat sensitive, 
solvent-based spinning or electrospinning is usually used [60]. 

Melt spinning of biodegradable polymers involves melt extrusion followed by 
expelling strands by means of a spinneret. Typically, a Single Screw Extruder (SSE) 
with 22:1–35:1 with the provision of cooling in the feed throat zone is well suited for 
processing of biodegradable polymers. In order to ensure temperature distribution, 
optimum dispersion of additives as well as melt polymer homogeneity, static mixers 
are used.
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Lenzing AG an Austrian company manufactures make viscose (regenerated cellu-
lose) fibres that can be used for multifarious applications in the biomedical field. 
Special PLA grades for fibre spinning, blended with cotton or viscose can be utilized 
for several applications such as carpets, geotextiles and agricultural textiles. A tea 
bag has been made from PLA fibre by a Finnish company [61]. 

Electrospinning involves leveraging electrostatic forces to manufacture fibre yarns 
from a polymer solution. A charged polymer drop at the tail-end of spinneret elon-
gates under the influence of electrostatic forces. At a critical voltage, the electro-
static forces exceed the surface tension of the polymer solution, forming a contin-
uous jet [62]. This causes rapid vaporization of solvent producing fibres. A typical 
electrospinning set-up is shown in Fig. 8. 

A wide range of biodegradable polymers including gelatin, chitosan, silk, 
collagen, PLA and their copolymers including their blends [63] have been success-
fully electrospun into nanofibers for several biomedical and tissue engineering 
applications [64, 65].

Fig. 8 A electrospinning set-up reproduced with permission from Syed Ali Ashter [34] 
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3.8 Emulsion 

When immiscible droplets are dispersed between two liquid phases, it is called an 
emulsion. For example, dispersion of water in oil stabilized by a suitable surfactant. 
Aqueous biodegradable polymeric emulsion consists of a biodegradable polymer 
such as Poly (hydroxy-alkanoate) (PHA) or PLA, a surfactant, a plasticizer and 
water. The mixing is generally done in a high-pressure reactor, with high stirring, 
at a temperature beyond the melting point of the polymer. The surfactant helps to 
decrease the interfacial surface tension whereas the plasticizer aids in reducing intra-
molecular cohesion. Rapid cooling of the reactor helps to arrest the recrystallization 
of the polymer. Aqueous biodegradable polymeric emulsions usually have a dry 
matter content of around 30–40%. The average particle size of the solid content is 
about 10–150 microns dispersed throughout the emulsion. Solvent based emulsion 
where instead of molten PLA, a solution of PLA in a good solvent was dispersed 
in water in presence of surfactant to make oil/water-based emulsion. Upon removal 
of solvent including water, PLA based polymeric particles were formed that can be 
used as active delivery vehicles for various applications such as drug delivery, active 
food packaging and agrochemical/plant nutrient delivery [66]. 

Emulsification of the biodegradable polymer is not only affected by concentra-
tion of the polymer, but also by the nature and concentration of the surfactants and 
plasticizers. An inappropriate choice of surfactant or plasticizer may result in the 
destabilization of the emulsion or failure of a polymer to emulsify in the first place. 

4 Emerging Processing Techniques Related 
to Biodegradable Polymers 

Apart from the conventional techniques, new advances and emerging techniques 
are also being employed for processing of biodegradable polymers. This includes 
additive manufacturing, reactive extrusion, micro-cellular foaming, femto-second 
laser processing and microfluidics, etc. to name a few. These are invaluable and 
novel techniques employed in pharmaceutical, packaging, aerospace and defense 
applications. However, it is worth emphasizing here that these techniques are at a 
nascent stage and their usage is not yet widespread. Moreover, a lot of researches are 
being undertaken on improving the effectiveness of these techniques. Nevertheless, 
brief introduction on these recent advances is certainly necessary to appreciate the 
nuances of contemporary developments.
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4.1 Additive Manufacturing 

Additive manufacturing, as opposed to conventional milling processes wherein a 
solid block is deducted and shaped by cutting, drilling, grinding and polishing, 
involves layer-by-layer deposition of materials as shown in Fig. 9 [67]. 

Additive manufacturing is numerous varieties such as three-dimensional (3D) 
printing, rapid prototyping, solid-freeform fabrication, Fused Deposition Modelling 
(FDM). Despite differences in their construct and working, all of them rely on the 
basic principle of layer-by-layer deposition and adhesion of materials to manufacture 
a product. 

In recent times, as shown in Fig. 10, commercial polyvinyl alcohol (PVA) has 
been fabricated into tablets by using FDM [68–71].

A scaffold made of electrospun Poly( 1-caprolactone) (PCL) is coated with a 
mixture of sirolimus and poly(lactide-co-glycolic acid) (PLGA) and 3D printed to

Fig. 9 A schematic of FDM 3D printer. Reproduced with permission from Gross et al. [68] 
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Fig. 10 3D representation of multilayer oral dosage forms: a sectioned multilayer device (alter-
nating 1-mm layers) and b sectioned DuoCaplets (caplet within a caplet). Reproduced with 
permission from Goyanes et al. [71]

manufacture bioresorbable stents [72, 73]. Several in-vivo studies over the years 
have confirmed that coated stents perform better than uncoated stents. This provides 
a futuristic scope for drug-eluting polymeric stents fabricated by 3D printing and 
other techniques of additive manufacturing [73]. 

4.2 Reactive Extrusion 

Reactive Extrusion (REX) is a dependable technique for processing of biodegradable 
polymers as it facilitates effective mixing and heat transfer, and thus helps to arrest 
uncontrolled increase in viscosity which is usually witnessed in a batch reactor. Apart 
from this, REX enables an appreciable control on the residence time through control 
of operational conditions and geometrical specifications of screw extruders. Thus, a 
substantially lower residence time may be expected for REX as compared to batch 
reactor. This is critical so far as processing of biodegradable polymers concerned 
as long residence times can cause long exposure to high temperatures leading to 
degradation of biodegradable polymers. The advantage of REX is that an extruder 
can be utilized as a reactor to handle high-viscosity polymers without solvents. 

Biodegradable polymers such as aliphatic polyesters, e.g. PCL and PLA can be 
polymerized with controlled molecular weight and polydispersity using REX. For 
REX of PCL via Ring-Opening (Co)polymerization (ROP) of 1-Caprolactone, a 
modular intermeshing co-rotating twin-screw extruder is preferable [74–76]. The 
screw configuration in this case is likely to consist of conveying elements only, so as 
to avoid undesirable thermal degradation caused otherwise due to kneading elements. 
Similarly, PLA can be manufactured via ROP of Lactic acid by employing Sn(Oct)2 
as catalyst through continuous one-stage reactive extrusion [77–81].
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4.3 Micro-cellular Foaming 

Micro-cellular foaming is a process where foam cells are formed within the material 
by dissolution of gas into solid or molten polymer [82, 83]. The formation of gas is 
facilitated by a blowing agent. Depending upon the blowing agents utilized, micro-
cellular foaming can be classified as physical foaming and chemical foaming. 

Foamability of biodegradable polymers is closely intertwined with extensional 
viscosity and strain-induced hardening behaviour, a measure of the ability of 
biodegradable polymers to withstand the stretching forces thus facilitating the 
bubble growth. Macromolecular designing incorporating some branching on linear 
molecules, increasing molecular weight or broadening the molecular weight distri-
bution can improve strain hardening parameter of polymers [84, 85]. 

By employing a variety of such techniques, several foam systems such as PCL/ 
N2 system and PCL/CO2 systems [86] have been successfully achieved. Similarly, 
PLA, a biodegradable polymer with poor visco-elastic properties can be chemically 
modified to introduce some degree of branching to make it foamable. 

4.4 Femtosecond-Laser Processing 

Femtosecond laser-based processing employs oscillating laser beams for fabrication. 
This processing technique has several advantages over conventional methods as it 
does not necessitate the use of a mould or chemical solvent. Moreover, customized 
fabrication is possible because of computer-aided scanning. 

Femtosecond lasers allow precise fabrication of 3D structures with visible and 
near-infrared wavelengths. Since femto-second laser pulse interacts with the poly-
meric material for an extremely short period, it results in smaller heat affected zone 
(HAZ). This allows fabrication of 3D structures from several biodegradable polymers 
having low Tg. 

Numerous attractive applications can be realized if the degradation rate of 
biodegradable polymers can be controlled such as controlled release in drug delivery 
systems and control degradation of scaffolds employed for tissue regeneration. 
Femtosecond laser processing provides tremendous flexibility and precision control 
in several sophisticated biomedical applications [87]. 

5 Summary 

Processing of biodegradable polymers poses a unique challenge even for trained 
processing engineers owing to a distinctly narrow processing window. Almost all 
biodegradable polymers are likely to undergo thermal and hydrolytic degrada-
tion under the influence of high temperature, moisture and high shear conditions.
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Some biodegradable polymers also exhibit peculiarities during their processing, 
for example, gelatinization in starch and disulphide-disulphide interactions in soy 
proteins. While low shear processes like compression moulding is relatively less 
challenging, high shear processes like melt extrusion and injection moulding pose 
greater challenge due to shear forces contributing to thermal build-up and aid in 
degradation of biodegradable polymers. Besides maintaining a cautious temperature 
profile, specially designed shallow-cut single-flighted screw with a constant-taper 
design, having a 2.2:1–2.8:1 compression ratio and 20:1–25:1 L/D help in reducing 
excessive shear and thermal degradation inside the barrel. The screw design should 
be such that there is a judicious balance of kneading and conveying elements. Longer 
residence time must be avoided. To overcome the problem of hydrolytic degrada-
tion due to moisture, sophisticated drying systems such as infrared crystallizing 
and drying units and rotating pulsed fluid-bed crystallizers may be retrofitted as 
per machine and process requirements. For processes like blow moulding, blown 
film extrusion, melt spinning and micro-cellular foaming, specially modified grades 
of biodegradable polymers with sufficient visco-elastic properties and strain hard-
ening parameters are required. REX can be chosen over conventional melt extrusion 
where controlled MW and polydisperse are important considerations. Other advanced 
processing techniques like electrospinning, additive manufacturing and femtosecond 
laser processing are instrumental in advancing their applications in biomedical arena 
such as tissue engineering, coronary stents, tissue scaffolds and capsules. 
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Chapter 3 
Surface Modification of Biodegradable 
Polymers 

Meenakshi Verma, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Biodegradable polymers are polymers that maintain good mechanical strength during 
their service life and degrade to form low molecular weight and non-toxic compounds 
such as water and carbon dioxide, when desired [1]. In the recent era, biodegradable 
polymers have shown promising role in biomedical science including the potential 
replacement of metallic implants [2]. For example, devices made out of biodegradable 
polymers could be implanted in the human body without the need of a second surgical 
procedure necessary to remove the implant (e.g., made of stainless steel) [3, 4]. Also, 
to fix a fractured bone, an implant made out of stainless steel has a tendency to cause 
refracture once the implant is removed. However, an implant based on biodegradable 
polymer degrades gradually to transfer the load slowly to the fractured bone, thus 
reducing the chance of refracturing the bone. Another impressive application shown 
by biodegradable polymers is their use in controlled delivery of drug [5]. A wide 
range of biodegradable polymers has been employed as carriers of drug useful for the 
treatment of diseases such that it kills only the infectious cells without harming the 
healthy ones [6, 7]. Biodegradable polymers also show significant applications in the 
domain of tissue engineering. They can be produced in the form of three-dimensional 
scaffolds to offer optimal support and environment for the growth of tissues [8]. 

Although biodegradable polymers have been shown as the promising candidates 
in the biomedical arena, their surface properties greatly influence their wide range 
of applications suggesting the need for its modification [9]. Surface modification of 
biodegradable polymers hase been widely utilized to achieve attractive long-term
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and short-term effects for their desirable functionality. Tunable bulk material prop-
erties of biodegradable polymers like tensile strength, elasticity, and density also 
aid in widening the scope of their application with further increase in their effec-
tiveness after the surface treatment. For example, extensive studies of biodegradable 
aliphatic polyesters as scaffold materials for applications in tissue engineering have 
been carried out, due to their non-toxicity, good mechanical properties, adjustable 
degradation rates, and low immunogenicity [10, 11]. However, there is ineffective cell 
attachment, spreading of cells and their proliferation caused by backbone hydropho-
bicity of the polymers which reduces the surface energy of these polymers [11]. 
Consequently, surface modification of these polyesters is required to enhance their 
affinity towards healthy cells [12]. Exploration in controlling the behavior of cells 
while interacting with artificial surfaces is the way for many applications in the field 
of biotechnology [13]. 

Further, microbial infections and their contamination have been viewed as 
hazardous complications faced by the medical, healthcare, and sanitation indus-
tries [14, 15]. Biomaterial-based biomedical implants exhibit infections caused by 
bacteria while using them inside the human body and have been considered as a 
major threat to human health. Generally, the interactions of bacteria with any surface, 
including the biomedical device comprising of biodegradable polymers lead to the 
growth of planktonic cells on the substrates which flourish to form biofilm. Removal 
of the proliferated biofilm on the surface becomes a very difficult task. Without 
intervention, the biofilm rapidly spreads to cause deadly infections. Thus, surface 
modifications with anti-infective coatings, i.e., resisting the microbes, promise a 
great potential in mitigating the infections associated with biomaterials used inside 
the body. Understanding these aspects for designing the biomaterials, it is crucial 
to control and manipulate the surface properties of the biomaterial without compro-
mising their bulk properties [16, 17]. Ultimately, surface treatment of polymers did 
exhibit excellent properties related to antibacterial and cytotoxicity permitting their 
use in biomedical applications [18]. 

Biodegradable polymers have also been extensively explored as drug delivery 
systems for carrying low-molecular-weight drugs [19]. Research additionally shows 
that there are failures in achieving favorable clinical outcomes in delivering the 
drug at the targeted site of action [20]. It has been found that a sufficient amount 
of drug is spread among the normal tissues or organs which are not included in the 
pathological process, frequently leading to harsh side effects. This envisions the need 
for the development of systems for targeted drug delivery involving the delivery of 
bioactive agents or drugs at the desired site of action [21, 22]. Thus, the biodegradable 
polymeric surface is modified chemically or with different substances to remain in 
systematic circulation for longer duration of time and reach the specific organ in 
order to release the drug [6, 23]. The improvement in biodistribution of drugs and 
pharmacokinetics could increase the compliance of patients and efficacy in therapy, 
thus enhancing the outcome of the treatment [6]. Moreover, biodegradable polymers 
have also been employed in the field of catalysis where they can be used as Pickering 
emulsion stabilizers and participate in interfacial catalysis to remediate the pollutants 
from water. In replacement of surfactants, surface-modified biodegradable polymers
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Fig. 1 Schematic representation of applications of surface-modified biodegradable polymers. 
Reproduced with permission from [26–28] 

are used as emulsion stabilizers as they are converted into particles to modify their 
surface in such a way that they can be adsorbed at the interface of oil and water to 
produce a stable emulsion consisting of these two phases [24, 25]. 

The methods of surface modification such as plasma treatment, corona treat-
ment, chemical modification, ultraviolet (UV) treatment, and their process param-
eters such as wavelength of UV, gas flow in plasma treatment, source in corona 
treatment, etc., greatly affect the performance and functionality of these biodegrad-
able polymer-based systems or devices suggesting the need for focusing on these 
methods. The selection of the modification method perpetually destines the prop-
erties in the enhanced polymer. Hence, this particular chapter pursues to focus and 
stipulate a broad outlook on several methods for the treatment of surface of biodegrad-
able polymers in addition to their use (Fig. 1). Emphasis has also been given on their 
durability, lifetime, and advantages/disadvantages of the particular method used for 
modifying the surface. 

2 Methods to Modify Surfaces 

There is a wide range of methods to achieve the surface treatment of biodegradable 
polymers. It is most commonly accomplished by modulating the surface energy 
of the material in order to manipulate its adhesiveness and other properties such
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as wetting, releasing, or absorbing by subjecting the polymer to various treatment 
processes such as chemical, ionic, or light-induced techniques to introduce different 
functional groups on the surface of the material [29–31]. The surface roughness of 
the biodegradable polymer can also be altered by chemical or mechanical processes 
in order to modify the polymer top layer [32]. However, the various methods to 
modify the surface of biodegradable polymers are discussed below. 

2.1 Physical Routes 

The use of techniques like extrusion, injection molding, and lamination modifies 
the surface of polymer during the fabrication [33–35]. Physical method for polymer 
surface modification induces micro and nanoscale roughness changing its wettability 
while maintaining the existing polymer’s chemical nature. The change in rough-
ness of the surface helps in attaining properties such as superhydrophobicity to 
attain several applications. The surface changes from hydrophilic to hydrophobic 
as the roughness of the surface is altered [36]. Surface modification of the polymer 
performed by physical methods is comparatively cost-effective, scalable, and simple. 
These methods do not require any use of chemicals to make the method eco-friendlier. 
This also increases the robustness of the modified polymer surface for use in industrial 
applications [37]. In this method, the modification is different from other methods for 
surface treatment where the treatment is accomplished as part of surface treatment 
rather than the modification on the surface of the already formed polymer surface. 
For example, Wang et al. prepared blend films of PLA/epoxidized soy oil/zeolite in a 
melt blow mold by extrusion (Fig. 2). Zeolite was used as a nucleating agent and oil as 
the plastizer to produce a film with a higher tensile strength [38]. The main advantage 
of the modification performed by physical methods over other methods is that they 
do not involve the use of any fluorine-based chemicals which are unsafe for environ-
ment. These methods are always preferred unless otherwise required. Nonetheless, 
the approach of physical modification is constrained to thermoplastic polymers to 
process in their solid or molten states, and not manipulating bulk properties of them 
involving elasticity and mechanical strength.

2.2 Chemical Modification of Biodegradable Polymeric 
Surface 

Specific chemical reactions are involved in the chemical modification of polymeric 
surface. Polymer brushes grafted on the surface of biodegradable polymers are an 
attractive class of surface modification of biodegradable polymers as they have 
controlled architectural features. These are the polymeric chains attached to a solid 
substrate via one end. The functional groups present on the surface are exposed to
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Fig. 2 Schematic representation of the preparation of blown film of PLA reinforced with zeolite 
and epoxy soybean oil as a plasticizer. Reprinted from Ref. [38] under a CC BY license

Fig. 3 Schematic representation of “grafting-from” and “grafting-onto” methods for surface 
modification. Reproduced with permission from Ref. [39]; Copyright 2020 Elsevier 

react with the particular functional group present in the polymeric chains to graft 
the polymer brushes bound to the material surface. As compared to the physical 
method, chemical reactions are involved in the chemical method to chemically bind 
the polymer brush to the surface of the substrate. It is a well-known fact that chemical 
bonds are stronger than physical bonds and thus, a graft layer attached chemically 
binds more firmly to the surface. Polymer brushes can be attached via a “grafting-to” 
approach (chains of polymer are covalently bound to the surface) or via a “grafting-
from” approach (initiator molecules present on the surface allows the growth of 
polymer chain from surface) [11] (Fig. 3). 

Grafting-To 

This approach involves the chemical reaction between the reactive groups present on 
the surface of the substrate and the functionalized polymers. The characterization of 
the grafted polymers and their structure in the grafting-to approach is more convenient
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as compared to the other technique. However, the effect of steric hindrance includes 
the difficulty for grafting the polymer chains which generally reduces the grafting 
density of the attached polymer. 

Grafting-From 

An active site present on the surface of the substrate is used to initiate the polymer-
ization in situ for the reaction of the monomer in this “grafting-from” approach. 
This approach involves the growth of polymeric chains from the surface of the 
substrate utilizing initiator moieties attached to the surface or self-assembled mono-
layers known as surface-initiated polymerization. As compared with the “grafting-to” 
approach, this approach can effectively control the grafting density and thickness of 
polymer brushes grafted on the surface with accurate precision. Moreover, densely 
grafted polymeric chains onto the polymeric surface can be achieved, since small 
initiator moieties and monomer molecules are interacting, thus devoid of crowding 
problem caused by steric congestion. 

2.3 Plasma Treatment 

Inert gases like hydrogen, oxygen, and nitrogen during the plasma treatment disso-
ciate to react with surface of the substrate for changing the surface properties 
like adhesion, wettability, and printability [40, 41] (Fig. 4). The gaseous mixture 
composed of particles like free-ions, electrons, and radicals having no net electrical 
charge is used to create plasma while interacting with electric field or radiation. 
Photon emission takes place as the electron returns to the ground energy level causing 
the plasma luminosity. There are two subcategories in which plasma can be divided 
based on the temperature of the gas, i.e., thermal and cold (non-thermal) plasma [42– 
44]. Thermal plasma consists of electrons at a very high temperature and charged/ 
neutral heavy particles which cannot be utilized in the modification of polymeric 
surface as they are heat sensitive. However, in non-thermal plasma, charged and 
neutral particles at low temperature are involved along with the electrons emitted at 
high temperature. He, Ar, N2, and O2 are inert gases that do not induce a polymer-
ized coating on the surface, rather they can induce or replace the functional groups 
present on the surface or generate free radicals contributing to the modification of the 
surface to create desired properties like improved hydrophilicity or adhesive proper-
ties [12]. Modification on the surface is achieved indirectly or directly. However, the 
methods involved directly induce the free radicals when treated with inert surface 
to manipulate them for applications which are targeted in nature, e.g. making them 
hydrophilic to repel bacteria and improve the anti-adhesion property of the surface. 
On the contrary, the methods involving the indirect methods comprised of grafting 
of polymer [45]. The methods used for plasma treatment of the surface of the sample 
decide its efficiency through the parameters such as type of gas used, frequency,
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Fig. 4 A scheme representing different gases involved in the treatment of plasma on a substrate. 
Reproduced with permission from Ref. [48]; Copyright 2009 ACS 

pressure, time, and power [46, 47]. However, the polymers face the recovery of 
their hydrophobicity due to their inherent nature in order to attain equilibrium by 
decreasing the surface energy. The reduction in surface energy takes place due to the 
several processes involved such as chemical rearranging on the surface treated with 
plasma, degradation and oxidation of the surface treated by plasma. 

2.4 Corona Treatment 

This treatment is associated with the non-local thermodynamic equilibrium of plasma 
being created in air or active or inert gas atmosphere [49]. The corona discharge helps 
in introducing the polar groups to improve the energy of the surface significantly 
to affect the surface properties such as roughness, adhesion, and wettability. The 
treatment of polymeric surface by the corona discharge has significantly undergone 
advancements in the last decade. In this treatment process, power devices with logic 
control have taken over the power supply being driven by the generator or manually 
providing the more consistent parameters for the process such as time of exposure, 
distance between the electrode and substrate, and the power (Fig. 5). Among these 
parameters, the most important is the density of the power facilitating the increase 
in surface energy by discharging ions in the presence of oxygen to create oxygenyl 
functional groups depending on the application such as printing, extrusion or coating, 
extrusion or printing of the material and variables involved in the process [50].
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Fig. 5 The schematic representation of the mechanism for corona treatment on solid substrate. 
Reproduced with permission from Ref. [51] under CC BY license 

2.5 Self-assembled Monolayers 

In 1946, Zisman was the first scientist to report about Self-assembled monolayers 
also known as SAM [52, 53]. They are assemblies of molecules formed sponta-
neously on a solid substrate by the gas or solution phase adsorption. However, 
the molecules present in the gas or solution phase spontaneously adsorb to orga-
nize themselves in a singular layer on the surface to call them the self-assembled 
monolayer. The common examples of polymer samples mounted on the surface are 
protein, polyethylene glycol, and deoxyribonucleic acid (DNA) [54]. Gong et al. 
synthesized carboxymethyl chitosan grafted Cis-3-(9H-purin-6-ylthio)-acrylic acid 
polymeric prodrug which self assembles in presence of aqueous media into the 
spherical micelles. These micelles were successful in the storage and release of 
6-Mercaptopurin (6-MP) in the presence of glutathione (GSH) [55] (Fig. 6).

2.6 Layer-by-Layer (LbL) Self-assembly 

Twenty years ago, Moehwald, Decher, and Lvov first propped the method of depo-
sition using LbL self-assembly [56]. In this method, self-organized polyelectrolytes 
are adsorbed alternately on the surface of the material and form the films in the 
form of polyelectrolyte multilayer (PEM) [47]. These PEM films are well known for 
providing a huge surface area to adsorb a large number of biomolecules and main-
taining their biological activity. The process parameters are adjusted and controlled 
to manipulate the growth of their internal structure. Aqueous conditions are utilized
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Fig. 6 Self-assembly of conjugates of chitosan–6-MP for self-assembly and the conjugates 
releasing 6-MP. Reproduced with permission from Ref. [55] under CC BY license

to prepare the PEM films under mild conditions leading to a great advantage for 
the use of bioactive agents and biopolymers. Therefore, wide use of the compo-
nents involved in the LbL process regulates their parameters and controls the cell 
adhesion behaviour [45]. For example, Khademhosseini utilized micropatterns of 
hyaluronic acid (HA) for immobilizing proteins and cells on a glass substrate. The 
authors also utilized the HA surface for understanding the subsequent adsorption of 
poly-L-Lysine (PLL) [57] (Fig. 7).

2.7 Ultraviolet (UV) Treatment 

The treatment of the surface by the UV has proved to be efficient, effective, and 
economical for non-contact purposes consisting of less number of processing steps. 
The treatment of surface by UV alters and modifies the adhesion and wettability of the 
polymeric surface. The surface modification is extended through the penetration into 
the surface of polymer by a magnitude of tens of microns and is analyzed utilizing the 
treatment conditions of UV involving intensity duration of treatment and wavelength. 
The poor adhesion of polymers is due to their decreased surface energy and thus, 
limits their applications. The adhesion or hydrophilicity of polymers can be enhanced 
by the oxidation process using UV–Ozone or UV [58, 59]. The oxidation of polymer 
with the breakage of polymeric chains into free radicals is caused by the irradiation 
by UV to react with the atmospheric ozone or oxygen and forms hydrophilic groups 
such as carbonyl or carboxyl. Time of irradiation, concentration of monomer, solvent, 
and photo initiator controlled the extent of the modification of the surface. Oxidation
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Fig. 7 Deposition of HA-PLL on solid substrate. Reproduced with permission from Ref. [57]; 
Copyright 2004 Elsevier

by UV also creates roughness at nanoscale on the surface having RMS (root mean 
square) value of 3–5 nm in addition to the formation of polar functional groups 
containing oxygen which also contributes to the increase in surface polarity and 
adhesion. For example, Gudko et al. explained the incorporation of nanoparticles 
prepared from cadmium sulfide (CdS) in the polymer polyvinyl alcohol (PVA) for 
enhancing the persistence to UV light. The defect formation was diminished due to 
the nanoparticle incorporation in the polymer [60] (Fig. 8).
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Fig. 8 a, c The schematic representation of control polymer sample and b, d nanocomposite of 
CdS/PVA in the process induced by UV. Reproduced with permission from Ref. [60] under a CC 
BY license 

3 Applications 

3.1 Targeted Drug Delivery 

A variety of different materials are employed as carriers of drugs such as synthetic 
or natural polymers, surfactants, lipids, and dendrimers [61–64]. Among these, a 
natural polymer known as chitosan has gained enormous consideration due to their 
outstanding biological and physical properties. Due to the presence of various reac-
tive functional groups, it has offered a pronounced opportunity for modification 
chemically to afford a varied range of derivatives like carboxyalkyl chitosan, N,N,N-
trimethyl chitosan (quaternized in nature), sugar-bearing chitosan, thiolated chitosan, 
cyclodextrin-linked chitosan, bile acid-modified chitosan, etc. [65–68]. The deriva-
tives of chitosan are fabricated to improve the properties specific to the chitosan 
native. The amphiphilicity is imparted in chitosan by the chemical modification 
of their surface to synthesize chitosan-based self-assembled nanoparticles for their 
potential applications in drug delivery. The nanoparticles contain a hydrophobic core 
acting as microcontatiner or reservoir for the different bioactive agents. Nanopar-
ticles can be intravenously injected due to their small size for the application of 
drug delivery. The targeting moieties are conjugated to the surface of the nanoparti-
cles loaded with the drug which improves the therapeutic efficiency of the drug. It 
has been extensively used as delivery system for the drugs such as low molecular
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weight drugs, peptides, and genes. For example, the idea of polymer–drug conju-
gates for releasing small molecular hydrophobic drugs to the targeted site where the 
action is required [68]. The drug–polymer conjugates consist of a polymer which 
is soluble in water and is conjugated chemically through a biodegradable spacer to 
the drug. This biodegradable spacer can be present in the stream of blood stably and 
cleaved by degradation of enzyme or by hydrolysis at the site of target. In general, 
the drug-conjugated polymer particles whose surface was decorated with targeting 
moiety, can be selectively accumulated at the site of tumor to be followed by the 
delivery of drug due to the spacer cleavage (Fig. 9). Due to this concept, various 
conjugates of drug-polymer have recently been utilized in clinical trials at phase I/ 
II level. One important example is N-(2-hydroxypropyl)methacrylamide (HPMA) 
drug conjugates based on copolymer like HPMA copolymer–doxorubicin conjugate 
(PK1) and a targeting moiety of HPMA copolymer–doxorubicin conjugate having 
galactosamine (PK2), employed for the primary or secondary liver cancer treatment. 

Fig. 9 Schematic representation of the conjugates of chitosan and drug having a cleavable linker. 
Chemical structure of a glycol chitosan–doxorubicin conjugate with the cis-aconityl linkage and b 
chitosan–paclitaxel conjugate with the succinate linkage. Reproduced with permission from Ref. 
[60]; Copyright 2010 Elsevier
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3.2 Biomedical Implant 

For different biomedical applications such as biosensing, antibacterial coatings and 
delivery of drugs, and modification of surface by polymeric brushes regardless 
of their geometry have been widely studied [69]. Most importantly, anti-infective 
polymer brushes tethered on biomedical implants are known to provide bacteria-
free implant surface which generally serves as platform to proliferate bacteria 
causing infections when used inside the body. Therefore, polymer brushes are 
considered as the essential modifications in the applications of antibacterial coat-
ings due to their good mechanical stability, thickness, roughness, and morphology. 
During their adhesion on the surface, these polymer brushes are utilized for the 
barrier in adhesion of bacteria or these coatings can kill the bacteria through 
the mechanism known as contact killing. For instance, biodegradable surfaces 
of polylactide (PLA) were covalently modified to immobilize polymers of three 
different types showing effective antibacterial property. Three different polymers, 
namely, poly(2-[(methacryloyloxy)ethyl]trimethylammonium chloride) (PMETA), 
poly(poly(ethylene glycol) methacrylate) (PPEGMA), and poly(2-hydroxyethyl 
methacrylate) (PHEMA) were grafted on the PLA surface via the technique known as 
surface-initiated atom transfer radical polymerization (ATRP). These brushes were 
tested against both Gram-negative (Escherichia coli) and Gram-positive (Staphy-
lococcus aureus) bacteria. Verma et al. found that the PLA surface modified with 
PMETA exhibited the highest killing of bacteria. This work exhibited the creation 
of polymer brushes on the biodegradable PLA surface having excellent antibacterial 
property [70]. Dhingra et al. modified the biomaterials based on aliphatic polyester 
derived from tartaric acid through the growth of antibacterial (PMETA) polymer 
brushes and antifouling/antiadhesive (PPEGMA and PHEMA) polymer brushes 
using surface-initiated polymerization (specifically ATRP). The authors explained 
the process of synthesis for preparing the polyester based on tartaric acid in which the 
protected hydroxyl groups can be unmasked and conjugated to the initiating moiety 
of ATRP to grow the polymer brushes as mentioned above. The conditions used are 
mild to prevent the degradation of backbone of the biodegradable polymer. PMETA 
brushes contain cationic ammonium groups that exhibited the highest antibacterial 
property. The authors have further expanded the work by blending the polyester based 
on tartaric acid with PLA to form the 3D scaffold fabricated from 3D printing. These 
scaffolds were used to grow PMETA polymer brushes for evaluating the antibac-
terial study against Gram-negative and Gram-positive bacteria and the test of cyto-
compatibility against the mammalian osteoblast cells (Fig. 10). The authors reported 
a balanced antibacterial and cytocompatibility by the growth of PMETA brushes 
onto the surface. Therefore, a cytocompatible coating which is anti-infective, stable, 
and non-leaching can be used to address the infections originated from biomedical 
implants [71].
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Fig. 10 3D scaffold of aliphatic polyester based on tartaric acid and their antibacterial and cell 
compatibility study. Reproduced with permission from Ref. [63]; Copyright 2021 Elsevier 

3.3 Cell Adhesion 

Extracellular matrix (ECM) is a natural 3D structure that surrounds the cell when 
present in vivo. To maximize the environmental simulation in vivo around the cells, 
vast development in 3D scaffolds for meeting biological needs has been made. 
Behavior of cells is affected by these developed 3D biological scaffolds offering 
the most suitable tool for providing the real environment for growing cells. In this 
regard, Dhingra et al. developed a brush system consisting of a copolymer of poly(3-
dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (PDMAPS) and 
poly((oligo ethylene glycol) methyl ether methacrylate) (PPEGMA) grown on the 
aliphatic polyester as mentioned above. In a similar manner, a blend of PLA and 
polyester was used to prepare 3D scaffold to attach the mixed copolymer brush on its 
surface through SIATRP. Authors found 100% suppression of bacteria on the mixed 
brush system as mentioned above. In addition, 100% cytocompatibility was also 
found for mixed brush system comprising of PDMAPS and PPEGMA. These results 
show a promising and innovative mixed brush coating revealing the high potential 
in a durable implant used inside the body being anti-infective with preservation of 
healthy cells [72]. Further, treatment by hydrolysis technique is simple that it can be 
utilized for increasing the roughness of the surface in addition to the hydrophilicity 
through the NaOH treatment. This method was used by Yuan et al. for functional-
izing the porous microspheres of PLGA using PLL (poly-L-lysine) shown in Fig. 11. 
Briefly, the PLGA microspheres were hydrolyzed to form PLGA-OH to soak in PLL 
solution kept overnight. Treatment by hydrolysis results in the creation of a homo-
geneous and interconnected porous structure due to the dissolution of a thin polymer
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Fig. 11 a An illustration for the process involved in the formation of microspheres of PLL modified 
porous PLGA. b Fluorescence images of microspheres stained with FDA after culturing by MG63 
at different time. The scale bar is 200 µm. Reproduced with permission from Ref. [65]; Copyright 
2018 Elsevier 

around the pores. Finally, the authors found that the surface modification via the PLL 
treatment promoted the initial attachment of cell and also found the improvement in 
the interactions of cell matrix [73]. 

3.4 Interfacial Catalysis 

Biodegradable polymers can be converted into solid particles whose surfaces are 
modified to use them as an emulsion stabilizer. The anisotropically modified solid 
particles having polymer brushes in hemisphere which are hydrophilic in nature 
can employ a balance between hydrophilic and hydrophobic parts to use them as 
an ideal surfactant, commonly known as pickering emulsion stabilizer [25]. Zoppe 
et al. proposed an interesting work based on stabilization by pickering emulsion 
stabilizers using polymer brush-modified anisotropic particles (PBMAP) [74]. The 
authors have shown a system based on oil-in-water with heptane and water, respec-
tively. They utilized the thermosensitive polymer poly (NIPAM) to modify the 
surface of anisotropic nanocrystals of cellulose for emulsion stabilization to form 
poly(NIPAM)-g-CNCs. This system having brush-modified anisotropic particles was
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able to stabilize the emulsion in oil–water for up to 4 months as compared to unmodi-
fied naked anisotropic solid particles of cellulose nanocrystals (CNC). Poly(NIPAM) 
plays the role of reducing the interfacial tension among oil and water due to its 
hydrophilic nature after the emulsification at the oil–water interface. Apart from this, 
Ifra et al. experimented to form PLA based microparticles which are spherical and 
anisotropic Janus type. These particles were fabricated through a technique known 
as electrohydrodynamic co-jetting where two compartments consisting of macroini-
tiator containing polymers blended with PLA were co-jetted in side by side manner 
so that macroinitiator (used to grow polymer brushes later) is present on one side of 
the particle. The surface of these microparticles was utilized to graft pH-responsive 
poly(DMAEMA) polymer brushes on one compartment selectively through SIATRP. 
This modification of the surface of these microparticles imparted the amphiphilicity 
in them. Further, this system was used and applied in stabilizing emulsion comprised 
of octanol/water to form a pickering emulsion (Fig. 12). The authors found that the 
amphiphilic Janus particles as a pickering emulsion stabilizer by tuning the pH of the 
brush-modified particles was stable for more than 4 months [75]. They are considered 
to contribute towards the green chemistry and sustainability with the promise to work 
as an interfacial catalyst in various chemical reactions and cleaning of contaminated 
water by degrading the waste via iron nanoparticles embedded in Janus particles. 
Due to the amphiphilic nature, the particles were located at oil/water interface to 
facilitate interfacial catalysis for remediating water. 

Fig. 12 A Scheme showing the pickering emulsion being stabilized by brush-modified Janus parti-
cles. B Digital images of pickering emulsion stabilized by Janus microparticles modified with 
brush. C (a)  Brightfield micrograph of pickering emulsion stabilized by Janus particles modified 
with brush. (b) Fluorescence micrograph of droplet of pickering emulsion stabilized by dye-loaded 
Janus particles and modified by brushes. Reproduced with permission from Ref. [67]; Copyright 
2021 ACS
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4 Conclusion 

In recent years, a novelty in research related to biomedical field has aimed at devel-
oping new methods for modifying the surface of biodegradable polymers to achieve 
stable, infection-free, biomaterials. These modified biomaterials are widely applied 
in the area of targeted drug delivery, tissue engineering, wound healing, and infection-
resistant coating. Therefore, the novel surface modification methods for biodegrad-
able polymers have emerged with developed traditional technologies, thus facili-
tating the manufacturing of durable functional surfaces of polymers. In this chapter, 
the most common methods for polymer surface modification (physical, chemical, 
SAMs, plasma, corona, UV) have been described with a focus on the methods to 
alter the surface morphology and their properties in addition to their use in specific 
areas for biomedical field. An attempt has been made to compare the surface modifi-
cation methods with the prospective area of applications. However, alternative surface 
treatment routes for the modification of biomaterials are also emerging to achieve 
similar surface properties to meet the needs of future for biomedical field. A wide 
range of biodegradable polymers with their unexplored functionalities and properties 
are being investigated to improve their surface-property relationship for broadening 
their use in different applications in the real world. 
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Chapter 4 
Carbohydrate-Based Biodegradable 
Polymers for Biomedical Applications 

Aiswarya Thattaru Thodikayil, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Carbohydrates are the third major class of biopolymers derived from various natural 
sources like plants, algae, animals, and microbes. They are commonly known as 
“hydrates of carbon” having an empirical formula of CnH2nOn, n representing carbon 
atoms combined with water [1]. Carbohydrates are widely classified as mono, di, and 
polysaccharides based on the saccharide repeating units of the backbone chain. The 
term saccharide was derived from the Greek sakcharon (sugar). The saccharide units 
are connected through covalently linked O-glycosidic bonds. 

Monosaccharides are termed as simple sugars, composed of single sugar unit that 
cannot be broken into smaller units by hydrolysis. Galactose, mannose, glucose, 
and fructose belong to this category. Monosaccharides when combined through the 
glycosidic bonds formed from dehydration reactions result in larger carbohydrates 
namely disaccharides and polysaccharides (Table 1) [2]. Disaccharides are made 
up of two monosaccharide units chemically linked to each other through glycosidic 
bonds. Sucrose and lactose are some of the most common examples of disaccharides. 
Hydrolysis of disaccharides with acids/enzymes results in two similar or dissimilar 
monosaccharide molecules. For example, hydrolysis of sucrose gives glucose and 
fructose, whereas maltose gives two molecules of glucose. When more than 20 units 
of monosaccharides combine, long polysaccharide chains are formed. These chains 
can be branched (cellulose) or unbranched (chitin). Polysaccharides are majorly 
obtained from algae (alginate), microbes (dextran), plant (cellulose), and animal 
(chitosan) [3].
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Table 1 Properties and applications of various carbohydrates 

Carbohydrate Repeating units Properties Applications 

Polysaccharides 

Chitosan β-1-4 glycosidic bonds link 
D-glucosamine and 
N-acetyl-D-glucosamine units

• Enhanced stability
• Solubility in acidic 
aqueous

• Hemostatic and 
mucoadhesive 
properties 

Wound [4–6], drug 
delivery [7–9] 

Cellulose β-1,4-glucosidic bond link 
glucose units 

Large specific surface 
area, excellent 
mechanical stability, 
and tunable chemical 
properties 

Artificial [10, 11], 
drug delivery [12, 
13], 
Bioimaging [14] and  
biosensors [15, 16], 
Tissue engineering 
[17, 18] 

Starch Amylose and amylopectin Total degradability 
without toxic residues, 
thermoplastic behavior 

Protein and drug 
delivery [19, 20] 

Dextran α-linked d-glucopyranosyl Great water solubility Drug [21, 22] 

Hyaluronic 
acid 

Glucosamine linked 
D-glucuronic acid and 
N-acetyl-D-through β-1,4 and 
β-1,3 glycosidic bonds

• Higher transfection 
efficiency and 
reduced cytotoxicity

• Interact with CD44 
tumor receptor 

Drug delivery [23, 
24], wound healing 
[25, 26], tissue 
engineering [27, 28] 

Monosaccharides 

D-Glucose Increased binding 
affinity 

Targeted drug 
delivery [29] 

D-Mannose Target C-type lectin 
receptors present on 
alveolar macrophages 

Targeted drug 
delivery [30, 31], 
Bioimaging [32] 

Disaccharides 

Sucrose Can act as excipients 
with excellent 
emulsification and 
solubilization behavior 

Dermal drug delivery 
[33, 34] 

Lactose Enhance flowability of 
drugs 

Used as a carrier for 
dry powder inhalers 
(DPIs) [35, 36] 

Along with proteins and nucleotides, carbohydrates are crucial for the distinct 
biological functions. They play a pivotal role in energy storage, adhesion, stimuli 
responsiveness, molecular recognition, and cell–cell communication/response [37, 
38]. In addition to this, they are crucial for different physiological and biolog-
ical activities like cell proliferation, cell growth, and immune regulation activities.
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Fig. 1 Features of carbohydrates 

Their abundance, low cost, solubility, stability, biodegradability, and biocompati-
bility promote them as a powerful and feasible biomaterial for a wide spectrum of 
biomedical applications like as delivery of therapeutic entities, imaging, biosensing, 
etc. (Fig. 1) [39]. Their potential to carry out multiple biological and physiological 
activities makes them an exceptional choice for various biomaterials, ranging from 
drug carriers to implants. 

Often, they are used as an alternative solution to overcome poor biological activity 
of synthetic polymers. Monosaccharides and disaccharides are extensively function-
alized or immobilized over the surface of organic/inorganic biomaterials, to make 
them biologically active. However, one of the main reasons to use polysaccharides as 
matrix for biomaterials is their in vivo degradation behaviur. They undergo timely and 
controlled degradation in biological conditions releasing nontoxic, harmless prod-
ucts that can be easily metabolized and absorbed in the human body. Predominantly, 
human body absorbs polysaccharides as nutrients, coverts them to their smaller 
saccharide units, and eliminates through metabolic pathways [40]. 

2 Mono- and Disaccharide Based Biomaterials 

Mono- and disaccharides are being modified extensively over the years to give a wide 
range of glycoderivatives and fabricate different kinds of morphologies such as vesi-
cles, fiber, micelle, etc. Difficulty in monitoring the biological activity as well large
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chain length of mono/disaccharides prompted the development of carbohydrate tech-
nologies and fabrication of diverse saccharide-based morphologies (particle, tube, 
fiber, etc.) [41]. These morphologies enhance the detection limit of saccharides by 
increasing the multiple valence sites. Carbohydrates are crucial for diverse biological 
events and life processes; however, their interaction with proteins plays a key role in 
these activities. Carbohydrate-binding proteins (Lectins) on the cell surface initiate 
and mediate certain biological responses by specifically interacting and binding with 
their complementary carbohydrate structures. For example, monosaccharides like 
D-mannose, D-galactose, shows high affinity towards lectins. 

Among various morphologies, nanoparticles are dominating various biomed-
ical disciplines owing to their stability, effectiveness, and fabrication methods. 
Besides, carbohydrate-based nanoparticles are comparable in size with most biolog-
ical molecules and capable of mimicking sugar molecules, hence can be utilized 
as a probe for analyzing glycan–glycan/glycan–protein interactions. Carbohydrate-
based nanoparticles are widely used as biomarkers and carrier molecules of bioactive 
compounds antimicrobials, anticancer drugs [40]. 

3 Polysaccharide-Based Biomaterials 

The building block of polysaccharides determines their chemical structure. Based on 
the nature of monosaccharide unit, they form linear or branched structures. Polysac-
charides possess enhanced mechanical properties and different hydrophilic derivable 
groups such as hydroxyl, carboxyl, and amino groups that are amenable to physical 
and chemical modifications [42]. They can be easily tailored for the desired appli-
cations [43]. Polysaccharides are further classified based on their charge, examples 
are chitosan (positive charge) and alginate (negative charge). These charges help 
in fabricating polysaccharide-based nanoparticles via methods like covalent/ionic 
crosslinking, polyelectrolyte complexion, as well as self-assembly. Moreover, the 
availability of hydroxyl groups promotes non-covalent bioadhesion with several 
biological tissues (epithelia, mucous) ensuring effective drug targeting. A wide 
range of biomaterials like nanocarriers, membranes hydrogels/microgel/nanogels, 
scaffolds, nanocomposites, etc., are being derived from polysaccharides for various 
biomedical applications. For example, polysaccharides derived from algae have been 
significantly used for several biomedical applications like wound care, tissue engi-
neering, and drug delivery. In addition to this, the potential of polysaccharides-based 
biomaterials to store, preserve the conformation and bioactivity of biomolecules 
ensures their candidature as carrier for several bioactive molecules, especially for 
proteins that require its activity and conformation to be maintained till final delivery. 
Polysaccharides can provide adequate mechanical properties as a substrate/matrix, 
thus can be used as an alternative to many synthetic polymers to overcome their 
inadequate biological performance.



4 Carbohydrate-Based Biodegradable Polymers for Biomedical Applications 73

4 Carbohydrate-Based Nanoparticles 

As discussed earlier, carbohydrates are predominant cellular molecules that help 
in multiple biological processes. Their hydrophilicity, cell specificity, large-scale 
production and ease of modifying the binding affinity make them an ideal choice 
as carriers. Carbohydrate-based nanoparticles have been effectively used to deliver 
various therapeutics. It has been reported that carbohydrate polymers can boost up the 
brain’s potentiality in absorbing drugs and can cross the blood–brain barrier, a crucial 
characteristic to target brain diseases [44]. Nanoparticles are one of the potential drug 
delivery tools by virtue of their ability to deliver drug at the targeted site, improved 
drug uptake, reduced toxicity, and stability, and to control drug release properties at 
various physicochemical conditions and metabolic responses like pH, temperature, 
and ionic strength. For the effective drug delivery, two methods have been adopted, 
namely passive and active targeting. Delivering of drugs to macrophages/organ/cells 
through specific targeting ligands (active targeting) or based on the size of drug 
carrier or target organ/cell and their physicochemical properties (passive targeting). 
Administration of free forms of drug to cure macrophage-mediated diseases results 
in side effects due to their low bioavailability at the desired site and availability at 
undesired sites. An ideal drug carrier will delay the drug clearance process; reduce 
drug loss and dose frequency, especially for the one having a short life and narrow 
therapeutic window. 

Carbohydrate-based nanoparticles fall broadly into two categories, oligo/mono/di/ 
polysaccharides used as a matrix for nanoparticle fabrication and surface functional-
ization of organic/inorganic nanoparticles with various carbohydrate moieties. These 
nanoparticles have gained enormous attention by virtue of their carbohydrate–carbo-
hydrate/carbohydrate–protein interactions, and ability to imitate sugar molecules on 
the cell surface as they fall under similar size range of different biomolecules. 

4.1 Glycopolymer-Based Nanoparticles 

Nanoparticles with carbohydrate moieties on their surface are highly efficient bioac-
tive molecules, whereas pendent carbohydrate moieties from the synthetic glycopoly-
mers act as a multivalent ligand that can interact with the lectins, similar to natural 
glycoproteins. Self-assembly is one of the main strategies used for the fabrica-
tion of glycopolymer-based nanoparticles. This technique relies on the ability of 
amphiphilic copolymers to self-assemble into distinct morphologies with a size 
ranging from 10 to 100 nm. Kataoka and his co-workers had synthesized galactose 
and glucose bearing Poly(ethylene glycol)–Poly(d,l-lactide) (PEG-PLA) micelle via 
self-assembly. PEG-PLA block copolymers having protected sugar groups at PEG 
end chains were synthesized via ring-opening polymerization of ethylene oxide and 
D,L-lactide using a metalated protected sugar (initiator). Further, the deprotection 
of sugar group was done at room temperature using trifluoroacetic acid to remove

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ionic-strength
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ionic-strength
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the protective groups from the sugar moiety. Preparation of micelle of diameter less 
than 40 nm was done by dialyzing a solution of sugar-bearing block copolymer in 
N,N-dimethylacetamide against water. Binding efficiency of these micelles having 
sugar groups on the exterior to Ricinus communis agglutinin (RCA-1)lectin, that 
can recognize β-D-galactose residue proved that this micelle is apt for drug delivery 
applications [45]. Similarly, a series of mixed shell glycomicelles were prepared 
by Chen et al. using galactose and/or mannose-functionalized aliphatic polyesters. 
Here, the first step involved the synthesis of block (PCL-b-PAVL) and random (PCL-
co-PAVL) copolymers. Sequential ring-opening polymerization of α-propargyl-δ-
valerolactone (AVL) and ε-caprolactone (ε-CL) using stannous trifluoromethane-
sulfonate (catalyst) and ethanol(initiator)yielded block copolymer whereas, simul-
taneous addition of polymers obtained random copolymer formation. Further-
more, these alkyne-containing copolymers undergo click reaction with azido ethyl-
functionalized galactose and/or mannose groups. PCL-b-PAVL (BP) react with 2'-
azidoethyl-O-d-mannopyranoside/2'-azidoethyl-O-d-galacopyranoside to form P-
BP-Man and P-BP-Gal (block glycopolymers). Also, the simultaneous reaction of 
azido functionalized mannoside and galactoside with copolymers obtained P-BP-
MG, where Man and Gal pendants are distributed randomly along the sugar block. 
Likewise, the click reaction between random glycopolymer PCL-co-PAVL and azido 
sugars yielded P-CP-Man, P-CP-Gal, and P-CP-MG. Eight different glycol micelles 
having different architectures were prepared via self-assembly of glycopolymer solu-
tion in dimethyl sulfoxide (DMSO) upon the addition of water. Self-assembly of 
glycoblock (hydrophilic) and polyester backbone (hydrophobic)of block copolymer 
formed micelle having a polyester core and glycoblock shell. Single (BP-Man and 
BP-Gal) and blended (BP-M/G) sugar micelles were prepared from P-BP-Man and 
P-BP-Gal glycopolyesters. Random glycopolymers, P-CP-Man and P-CP-Gal, were 
used in same manner to yield glycomicelles, CP-Man and CP-Gal. Glycomicelle 
CP-M/G was made by blending these two random glycopolymers at a 7:10 Man/ 
Gal unit ratio (Fig. 2). Further investigation confirmed that the mixed shell (M/G) 
architecture showed higher lectin binding and cell uptake than single sugar compo-
nent (MG), this can be attributed to the higher sugar receptor interaction of M/G in 
the contact region compared to MG due to the phase separation resulting from the 
simultaneous interactions of two sugar units with the receptors on the cell surface 
[46].

4.2 Polysaccharide-Based Nanoparticles 

Polysaccharides have been contributing immensely to various biomedical applica-
tions due to their stability, hydrophilicity, ease of functionalization, and adhesivity. 
It’s a challenge to copy these naturally occurring carbohydrates in laboratory, so 
they are often modified chemically and tailored to achieve desirable properties. The 
presence of functional groups on their backbone provides facile chemical modifi-
cation for the development of nanoparticles [47]. Also, hydrophilic groups such as
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Fig. 2 a Schematic representation of the synthesis of glycopolyesters, b self-assembly of 
glyconanoparticles [Reproduced with permission from Ref. [42] under a CC BY license]

hydroxyl, amino, and carboxyl groups enhance their bioadhesion to various biolog-
ical tissues through noncovalent interactions. Their intrinsic ability to recognize 
specific cells promotes their application for targeted-drug applications via receptor-
mediated endocytosis. Techniques like ionic and covalent crosslinking, nanoprecipi-
tation, gelation of emulsion droplets, polyelectrolyte complexation self-assembling, 
etc., or combination between them are majorly used to fabricate polysaccharide-based 
nanoparticles (Fig. 3) [48].

Covalent Crosslinking 

Crosslinking phenomenon involves covalent binding between two macromolecular 
chains forming a three-dimensional network connecting the macromolecular chains. 
The covalent crosslinking is mainly introduced between the polysaccharide chains
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Fig. 3 Illustration of fabrication of polysaccharide-based nanoparticles via a Covalent crosslinking, 
b Ionic crosslinking, c Polyelectrolyte complexation, d Self-assembly of polysaccharides, e Nano-
precipitation method. [Reproduced with permission from Ref. [49]; Copyright 2018 Elsevier]

through a proper crosslinker (Fig. 3a). Molecules having at least two reactive func-
tional groups can act as covalent crosslinkers, e.g., dialdehydes (glutaraldehyde), 
and natural di- and tricarboxylic acids. Polysaccharide-based structures generated 
through covalently crosslinking method form a permanent stable network struc-
ture, these networks can absorb and permit biomolecule adsorption even if the pH 
conditions have been changed. Depending on the crosslinker used during reaction, 
the properties of these networks vary. They can be responsive to various stimuli 
like pH, temperature, and light. These characteristics make them attractive for 
macrophage-promoted drug release where intracellular pH is similar to the blood-
stream. Nanoparticle systems based on linear polysaccharide, chitosan, are mainly 
prepared using covalent crosslinking method using agents such as glutaraldehyde, 
dopamine, and acids such as citric acid, malic acid, etc. [50]. Likewise, hyaluronic 
acid (HA)-based nanoparticles are prepared by the covalent crosslinking of HA via 
carbodiimide chemistry for targeting macrophages. Pandit et al. designed nanohy-
brid nanoparticle using polyethyleneimine–hyaluronic acid (bPEI-HA) copolymer 
using carbodiimide chemistry. Nanoparticles were prepared by conjugating HA 
and branched polyethyleneimine (bPEI) through carbodiimide chemistry, where the 
copolymer was capped by mannose at the terminal chains [51]. 

Ionic Crosslinking 

Ionic crosslinking is a nontoxic, organic solvent-free method where the nanopar-
ticles are entirely prepared in water at mild conditions. Nanoparticles are obtained
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from the reaction between a charged polysaccharide chain and an oppositely charged 
crosslinker (Fig. 3b) [52]. Commonly used crosslinkers are salts of calcium, potas-
sium, and barium (cationic) and sodium tripolyphosphate (TPP), magnesium sulfate, 
and sodium sulfate (anionic).To prepare chitosan nanoparticles TPP is commonly 
used as a crosslinker. Addition of TPP to aqueous solution chitosan in acetic 
acid, results in the formation of inter- and intra-crosslinking between cationic 
amino groups of chitosan and anionic phosphate groups of TPP [53]. Among 
anionic polysaccharides, alginate gets crosslinked with small cations such as bivalent 
calcium, zinc, or barium ions to form nanoparticles [54]. 

Polyelectrolyte Complexation and Self-assembling 

This technique involves the construction of polyelectrolyte complex using inter-
molecular electrostatic interactions between oppositely charged polymers. Forma-
tion of a spontaneous interpolymeric aggregation or nano/micro-sized polyelec-
trolyte complex (PEC) occurs due to noncovalent electrostatic interactions between 
different polycations and polyanions chains when mixed in an aqueous solution 
(Fig. 3c) [55]. Factors such as intrinsic variables (molecular weight of polymers, 
chemical nature, and concentration of polymers, mixing ratio and fraction charge 
of polymer), extrinsic variables (ionic strength and distribution, temperature, pH), 
and process parameters (mixing speed, volume, order of addition) have a significant 
role in the preparation of nanoparticles through this method. James et al. prepared 
self-assembled polyelectrolyte complex (PEC) nanoparticles from sodium alginate 
(anionic) and ethylenediamine-modified gelatin (cationic). Addition of aqueous solu-
tion of anionic sodium alginate to cationic gelatin under vigorous vortexing at room 
temperature formed nanoparticles. This hybrid PEC nanoparticle was utilized for 
the delivery of curcumin to carcinoma cells [56]. Self-assembled micelles/vesicles 
can also be generated from amphiphilic polymers obtained by grafting hydrophobic 
fragments onto hydrophilic polymers or adding hydrophobic molecules onto the 
hydroxycarboxylic or amino groups of the polysaccharide backbone (Fig. 3d) [57]. 
Intra- or/and inter-molecular interactions between segments results in the formation 
of micelles or vesicles. For example, Sun and his co-workers synthesized anionic 
poly(ethylene glycol) (PEG)-carboxymethyl chitosan (CMCS) and calcium phos-
phate hybrid nanoparticles to deliver siRNA using pH-sensitive PEG grafted CMCS 
[58]. 

Nanoprecipitation 

This method is also called solvent displacement or interfacial deposition, solvent-
shifting process, or ouzo effect. For this phenomenon to occur, two miscible phases 
in aqueous and organic/oil phases are needed. The process mainly involves disso-
lution of hydrophobic solutes in water-miscible solvents (acetone, tetrahydrofuran) 
followed by the addition of this mixture to an excess of anti-solvent (water, buffer

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/polycation
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/polyanion
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solutions). This generates droplets or particles in a stable dispersion or emulsion 
(Fig. 3e). Excess solvent can be removed by evaporation, dialysis, or by lyophiliza-
tion. Monal et al. prepared chitosan nanoparticles through nanoprecipitation method 
by adding polyelectrolyte N-(methylsulfonic acid) chitosan dissolved in water and 
chitosan dissolved in acetic acid to methanol (nonsolvent diffusing phase). Water-
insoluble chitosan was converted to water-soluble polyelectrolyte N-(methylsulfonic 
acid) chitosan when reacted with sodium formaldehyde bisulfite. It was observed that 
upon decreasing polymer concentration and increasing nonsolvent to solvent ratio, 
particle size decreased [59]. Kaewprapan and his co-workers investigated the depen-
dence of polymer concentration on the nanoparticle size. Dextran fatty ester was 
synthesized using lipase catalyzed grafting of aliphatic hydrocarbon chains onto 
dextran. Nanoparticles were obtained by adding different concentrations of modified 
dextran having various degrees of substitution to aqueous solution under vigorous 
magnetic stirring. It was observed that higher polymer concentration in organic phase 
improves the collision and aggregation probability, thus reducing the particle size 
[60]. 

5 Carbohydrate-Derived Hydrogels and Microgels 

Hydrogels are three-dimensional crosslinked network structures capable of absorbing 
a large amount of water as well as biological fluids. They are prepared by self-
assembly of polar monomer units and macromolecular polymers through covalent, 
non-covalent interactions and/or by crosslinking between macromolecular chains. 
Under physiological conditions, they are insoluble in water; however, they can expand 
in aqueous or biological fluids. The swelling and absorption behavior of the hydrogel 
can be attributed to the availability of a large number of hydrophilic groups like 
carboxyl, hydroxyl, amino, etc., in their backbone that can form covalent/noncovalent 
bonds. Carbohydrate-based hydrogels are highly in demand by virtue of their intrinsic 
biodegradability, biocompatibility, good mechanical properties, adhesion, and abun-
dance in nature. These hydrogels are engineered to meet the desired applications, 
majorly to encapsulate diverse therapeutic molecules like proteins, genes, drugs, 
etc., prevent degradation of encapsulated biomolecules, wound management, and 
tissue engineering. Polysaccharides like alginate, cellulose, and chitosan are majorly 
utilized for preparing hydrogels. These hydrogels can promote cell division, cell 
growth, and healing. Besides, they are widely explored for tissue engineering and 
drug carrier as they can mimic in vitro tissues and control the drug release pattern. 
Hydrogels encapsulated with various bioactive molecules, deliver them in a sustained 
manner and can maintain their local concentration for a prolonged period through 
diffusion and expansion processes.
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5.1 Synthesis of Carbohydrate-Based Hydrogel 

Hydrogels are broadly classified into physically crosslinked and chemically 
crosslinked systems. Physical crosslinking involves noncovalent interactions like 
hydrogen bonding, ionic interactions, hydrophilic–hydrophobic interactions, or 
multivalent ion-supported ionic crosslinking. Multivalent ion-supported crosslinking 
works on the principle of gelation of polyelectrolyte solution upon adding oppositely 
charged multivalent ions or charged structures (micro/nanowires, tubes, and parti-
cles). Physically crosslinked hydrogels can encapsulate bioactive molecules by weak 
interactions and cleavable bonds. For example, anionic alginates can combine with 
divalent cations (Cd2+, Ni2+, Zn2+, and Ca2+) through coordination and electrostatic 
interactions. Transition metals bind with carboxyl groups of alginate with unidentate 
binding, but cations of alkaline earth groups form ionic bonds with alginates [61]. 

Chemically crosslinked hydrogels are formed by covalently binding multi-
functional molecules through strong irreversible linkages. Crosslinking agents 
such as glutaraldehyde, epichlorohydrin, tripolyphosphate, or 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) are used for chemical crosslinking. 
Polysaccharides are modified by grafting reactive functional groups in their chains 
to take part in crosslinking. Incorporation of reactive groups like thiols, alkene, and 
acrylates assists easy functionalization of polysaccharides because of the availability 
of hydroxyl, amine, and carboxyl groups in their chains. 

6 Carbohydrate-Based Nanocomposite 

Polysaccharides like chitin, chitosan, cellulose, starch, hyaluronic acid, heparin, 
alginate, dextran, cyclodextrin, etc., are considered as green alternatives to various 
synthetic polymers. A wide range of polysaccharides are being utilized as matrix 
for bionanocomposites due to hydrophilicity, molecular weight range, nontoxi-
city, non-immunogenicity, and can imitate the heterogenicity of native extracellular 
matrix. They are generally used in combination with nanofiller, nanoparticles, and 
nanosheets to improve their properties. Polysaccharide-based nanocomposites incor-
porated with bionanomaterials like silver, gold, or titanium oxide as nanofibers/ 
nanowires or nanocrystals are being utilized as scaffolds having higher specific area 
and Young’s modulus. Polysaccharides with micro- and nanoscale fibrous structures 
are mainly developed using gelation, dry, wet, melt, or electrospinning processes. 
These bionanocomposites are employed as bio platforms by a two-stage approach. 
Initially, blending of nanomaterials in polysaccharides (as matrix) with proper distri-
bution and dispersion, followed by electrospinning of this nanocomposite to fabri-
cate desired shape (Fig. 4). Electrospinning process has been used for the fabrication 
process as it can imitate the fibrous structure of natural ECM and is one of the 
convenient cost-effective techniques.
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Fig. 4 Fabrication of polysaccharide-based bionanocomposite via electrospinning technique 

7 Applications 

7.1 Theranostics and Bioimaging 

Theranostics includes treatment methods that involve simultaneous or sequential 
diagnostic imaging and molecular radiotherapy to cure diseases like cancer. The 
main aim is to target the receptors present in the cancerous cells followed by radiation 
treatment targeting these receptors. An ideal material to be chosen as a theranostic 
material should be capable of effectively delivering therapeutic components as well 
as imaging agents to targeted site with minimal side effects. 

Among various biomaterials, carbohydrates are considered as the apt choice 
due to their stability, prolonged half-life, low toxicity, target specificity, and 
stimuli response. Mansur and his coworkers had developed a green, fluores-
cent polysaccharide—AgInS2 quantum dots nanobioconjugates of 3.3–3.7 nm for 
in vitro bioimaging of brain cancer cells. The system was prepared by chemically 
modifying carboxymethylcellulose with poly-L-arginine (CMCelPolyArg) and using 
it as capping ligands for the synthesis of fluorescent AgInS2 quantum dots in an 
aqueous colloidal media. Cytotoxicity and cell internalization of this core–shell 
nanostructures are composed of semiconductor core stabilized by CMCelPolyArg 
shell. This system showed no cytotoxicity and was internalized by cell lines HEK 
293 T and U-87 MG thus can be a good candidate for bioimaging and biolabeling [62]. 
Tan et al. fabricated a core–shell nanomaterial using chitosan encapsulated photolu-
minescent Ag2S QDs entrapped with anticancer drug doxorubicin (DX) for both drug 
release and NIR imaging purpose. The synthesized oleic acid-capped Ag2S QDs were 
reacted with N-hydroxysuccinimide, followed by conjugating chitosan at its amino

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/doxorubicin
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Fig. 5 Schematic synthesis and mechanism of Ag2S(DX)@CS nanospheres [Reproduced with 
permission from Ref. [59]; Copyright 2018 Elsevier] 

sites. The oleoyl groups are hydrophobic and are susceptible to form local aggre-
gates. These hydrophobic aggregates efficiently entrap doxorubicin via hydrophobic 
interaction generating nanospheres. The pH-dependent oleoyl-CS chains accelerate 
the drug release under different pH conditions (Fig. 5). Strong hydrophobic interac-
tion between oleyl chains at pH ≥ 7.0 helps in the entrapment of DX in nanospheres, 
whereas, at lower pH, protonation of amines groups results in the expansion and 
repulsion of charged oleoyl-CS chains leading to the drug release. These core–shell 
nanospheres serve as both drug delivery as well as a bioimaging system [63]. 

7.2 Sutures 

Sutures or stitches are natural or synthetic threads that are used to repair wounds, 
body tissues, or close cuts. Suture materials can be non-absorbable or absorbable. 
Currently, degradable absorbable materials are preferred as nonabsorbable materials 
are required to be removed once the wound is healed. Even though synthetic biocom-
patible polymers like polyglycolic acid (PGA), poly(lactic-co-glycolic acid (PLGA) 
have been widely used as sutures, they can induce mild inflammatory reactions. 
However, inexpensive polysaccharides such as chitin, cellulose, alginate, and their 
derivatives provide inherent antibacterial activity, resemblances to the extracellular 
matrix (ECM), and their capability to support cell proliferation apart from biocom-
patibility and biodegradability. Li and his coworkers prepared braided sutures made 
of tetramethylpiperidinyloxy-mediated oxidation regenerated cellulose (TORC) that 
possess suitable mechanical like knot-pull tensile strength and clinical properties.
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Fig. 6 Schematic representation of suture preparation [Reproduced with permission from Ref. 
[61]; Copyright 2019 Elsevier] 

The knot-pull tensile strength was observed to be decreased with increased oxida-
tion times [64]. Similarly, Wu et al. and his group developed ideal suture material 
using bacterial cellulose nanocrystals (BCNCs)/regenerated chitin (RC) fibers by 
wet spinning technology. Cellulose nanocrystals enhanced the mechanical proper-
ties of the matrix as it prevents slippage of chitin molecules (Fig. 6). Further, in vivo 
murine skin wound closure experiments and enzymatic degradation studies were 
conducted to analyze in vivo biocompatibility and in vitro enzymatic degradation, 
the investigation ensured that the developed suture material developed can promote 
wound healing and can degrade successfully in model enzyme lysozyme-containing 
solutions [65]. 

Incorporation of bioactive molecules like pharmaceutical ingredients into the 
suture enhances its activity by providing adequate support and active molecule release 
to the desired site. For example, an ideal gene delivery system was developed by 
interfacial polyelectrolyte complexation (IPC) technique using functional chitosan/ 
heparin fiber generated from at interface. This technique involves spinning of intrin-
sically stiff chitosan (cationic) and heparin (anionic). These oppositely charged poly-
mers come in close contact with each other and bind to each other at the interface 
to form a microscale polymeric complex. Heparin can act as a molecular reservoir 
as it can store and release proteins and peptides in a controlled manner. The pres-
ence of heparin at the fiber surface promotes the immobilization of adeno-associated 
virus (AAV), a vector for gene therapy. This chitosan/heparin fiber demonstrated 
outstanding strength low immunogenicity, degradability over three-month time, flex-
ibility, and AAV binding at the surface ensured sustained gene expression at local 
incision sites for a longer period, thus this fiber can serve as a therapeutic suture [66].



4 Carbohydrate-Based Biodegradable Polymers for Biomedical Applications 83

7.3 Tissue Engineering 

The main aim of tissue engineering is assembling functional constructs that rebuilt, 
improve, preserve, or replace biological activities of injured tissues and organs. In 
this regard, the biomaterial used for tissue engineering purpose must provide suitable 
physicochemical and biological characteristics that can mimic the native extracel-
lular matrix (ECM) as it delivers various biological signals that assist cell migration, 
adhesion, and differentiation, during the time of its action (degradation and recon-
struction). Polysaccharides inherently possess similar structures and activities of 
ECM components such, as proteoglycans, glycosaminoglycans glycoproteins, and 
glycolipids [67]. In addition to this, use of these glycan moieties as biomolecular 
signals establish polysaccharides worthy in fabricating biomaterials for applications 
like tissue engineering [68, 69]. Cellulose, alginate, hyaluranon, chitin, and chitosan 
are mostly used for tissue engineering applications. Cellulose possesses abundant 
hydroxyl groups that provide platform for easy functionalization, chemical interac-
tions, and grafting. Goudarzi et al. fabricated poly (ε-caprolactone) (PCL)/gelatin 
(Gel)/CNF-modified acetylated CNF (ACNF) based bionanocomposite using elec-
trospinning technique for soft tissue engineering. Incorporation of ACNF enhanced 
the thermal, mechanical, and biological properties. ACNF nanocomposite showed 
higher biocompatibility and promoted cell proliferation as compared to PCL/Gel 
composite [70]. Cellulose nanofiber/polylactic acid (PLA)-based fibrous membrane 
was fabricated through electrospinning process and was used for bone tissue engi-
neering. Here, the CNF incorporation improved the thermal properties, Young’s 
modulus, tensile strength, crystallinity, and hydrophilicity of the membrane [71]. 
Chitin is a lightweight material possessing higher surface-to-volume ratio and lower 
thermal expansion compared to metals like steel, aluminum, and commonly used 
synthetic polymers. After cellulose, chitin has the highest stiffness among polysac-
charides. Duan et al. functionalized nanofibrous chitin microspheres using hydroxya-
patite (HA) for bone scaffolding applications (Fig. 7). The noncovalent between HA 
and chitin fibers boosts up the adhesion at their interface. This biomaterial mimics the 
ECM promoting healing process, in vitro cell adhesion and in vivo bone regeneration 
[72].

8 Future Scope and Conclusion 

Over decades, carbohydrate-based biomaterials are being used as a substitute for 
synthetic polymers for potential biomedical applications. Their exceptional reputa-
tion, inherent biocompatibility, biodegradability, low cost, ease of chemical modifica-
tion to attain desirable properties, promote them as an efficient substitute for synthetic 
biopolymers that have flaws like toxicity, inadequate biocompatibility, and compli-
cated synthetic approaches. Their resemblance to biological macromolecules such 
as natural extracellular matrix (ECM), and glycoproteins further encourages their

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proteoglycan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycosaminoglycan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycoprotein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/polysaccharides
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Fig. 7 Schematic representation of Microflake (NCMH1), Submicron-Needle (NCMH2), and 
Submicron-Sphere (NCMH3) [Reproduced with permission from Ref. [68]; Copyright 2017 ACS]

use in applications like drug delivery, wound management, and tissue engineering. 
The presence of amenable functional groups such as hydroxyl, amino and carboxyl 
groups located on the structures assist in tailoring their properties, thus serving as 
a distinct biological tool for several biomedical fields. Natural polysaccharides like 
chitosan, crellulose, alginates, cellulose, starch, etc., are being widely engineered 
onto various biologically biologically superior molecules through different tech-
niques like chemical modification, grafting, as well as atom transfer radical poly-
merization (ATRP), etc., to promote its candidature in biopharmaceutics. Carbohy-
drates can be modified to form amphiphilic polymers and distinct architectures that 
can conjugate a wide range of bioactive molecules. Besides, since polysaccharides 
are conventionally derived from natural resources, there exist limitations and chal-
lenges like batch-to-batch variations by virtue of their source differences, chance of 
microbial contamination, thickening, and viscosity reduction in the course of storage, 
as well as increased rate of hydration etc restricting their widespread applications. 
Fortunately, these flaws could be eliminated by modifying these polysaccharides 
through grafting, crosslinking, or blending them with natural or synthetic polymers. 
Extensive research is being carried out worldwide to further understand their several
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biological functions. Moreover, materials scientists in collaboration with biologists 
are attempting to develop new carbohydrate-based nano/microparticles that may 
selectively carry a set of drugs/proteins/enzymes to target a diseased organ and cure 
a complex disease. Also, there are many biomedical areas where the use of carbohy-
drates is limited; hence, an effective usage of these naturally occurring materials is 
a dire need of this era. 
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1 Introduction 

Biopolymers have significantly drawn attention for creating numerous biodegradable 
products. These biopolymers are synthesized within the biological cells through 
enzymatic pathways. Among several polysaccharides such as starch, cellulose, 
xanthan, pullulan, hyaluronic acid, chitosan, etc., cellulose gains popularity as it 
contains large numbers of OH groups that can be modified according to the require-
ments. It shields plants, and fungi from external chemical, biological, and mechanical 
disturbances. The large supramolecular structure containing large amounts of OH 
moieties makes cellulose hydrophilic as they are susceptible to water attack. About 
40–50 weight percent of the woody biomass in plants is made up of cellulose, the most 
common polymer, and a considerable amount of this biomass is found in crystalline 
forms [1]. Chemically, cellulose is a long linear chain of anhydro-D-glucopyranosyl 
units joined by β-(1,4)-glycosidic linkages (Fig. 1a) [2]. The cyclic hemiacetal groups 
contain equatorial OH groups (in the C1 position) which defines that the cellulose 
structure exists in β-form (or β isomer), whereas, in the case of α isomer, the OH 
group remains in the axial position. The different isomers differentiate cellulose from 
other polysaccharides in terms of its biodegradation through hydrolysis reaction [3].

X-ray diffraction, 13C CP/MAS, and solid-state NMR reveal two crystalline forms 
of cellulose structure, viz. Iα and Iβ. These varieties completely depend upon sources.
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Fig. 1 a Structure of cellulose; b Cellulose structure featuring inter and intramolecular H-bonding 
in the repeating unit and reducing (right) and non-reducing (left) end groups. Redrawn from the 
Ref. [4]

Valonia, bacterial cellulose, and the cell wall of Glaucocystis are rich in Iα, whereas 
tunicate (Halocynthia roretzi) or animal cellulose are rich in Iβ [5, 6]. The OH groups 
in the cellulose network control the chemical and physical characteristics of the 
cellulose chains. The intramolecular H-bonds between OH-groups of glucose units 
of the same cellulose units provide rigidity and thermostability of the chains, whereas, 
intermolecular H-bonds between two different cellulose chains are responsible for 
the development of the supramolecular structures as shown in Fig. 1b [4]. 

In addition to controlling their chemical reactivity, these OH groups can be modi-
fied by a variety of chemical reactions like esterification, acetylation, and nitra-
tion. Although cellulose is recognized to be the most plentiful and cost-effective 
biopolymer, its poor water solubility limits its commercial applications [7]. 

To address this problem, researchers have developed a variety of derivatives, 
including methylcellulose (MC), hydroxyethyl cellulose (HEC), carboxymethylcel-
lulose (CMC), as well as cellulose acetate (CA) and hydroxypropyl methylcellulose 
(HPMC). The advantage of functionalization is to make a significant impact on 
the properties of cellulose by breaking H-bonding [2, 8]. Due to their simplicity 
of processing, these cellulose derivatives are also employed extensively in the
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cosmetic and pharmaceutical industries. Mostly, industries employ them commer-
cially in a variety of forms, including tablet and capsule coating materials, stabi-
lizers, thickening agents, bioadhesives, mucoadhesives, pressure-sensitive adhesives, 
binders, gelling agents, flavor maskers, fillers, free-flowing agents, and hemostatic 
compounds [9, 10]. 

2 Sources 

French scientist Anselme Payen first extracted cellulose from the cell walls of 
the plant in 1938 and, later, the chemical structure was determined by Hermann 
Staudinger in 1920. Finally, synthetic cellulose was first chemically synthesized in 
the laboratory by Kobayashi and Shoda in 1992 [11]. 

Wood is the primary resource of cellulose. Others are bacterial cellulose, algal 
cellulose, and tunicate cellulose [2, 12, 13]. Bacterial cellulose is very pure, highly 
crystalline, and contains a high DP (degree of polymerization). It has been inves-
tigated that, annually a tree can produce 1011–1012 tonnes of cellulose during 
photosynthesis [14]. Figure 2a illustrates the different sources of cellulose. 

(a) (b) 

(c) (d) 

Fig. 2 Different sources of cellulose a tree, b bacterial culture, c algae, and d tunicate. Reproduced 
with permission from Courtenay et al. [13] and Hardouin et al. [15]
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2.1 Wood and Plant Cellulose 

The primary source of cellulose is wood and plants. The sources vary as corn, cotton, 
jute, pineapple leaves, flax, hemp, potato peel waste, cereal straws, oil palm biomass, 
cotton, etc. [2, 16]. The cellulose content in the plant varies with the location. In the 
soft woody part, it ranges from 30 to 75%, while, in the case of the hard woody part, 
it is around 40 to 50%. Fibers extracted from both these parts exhibit similarities 
in composition and structure. They are made of carbohydrates, (such as cellulose, 
hemicellulose, and lignin) having a complex structure. Hemicelluloses are found in 
terrestrial plants and algae. Xylan-type polysaccharides are mostly characterized by 
hemicellulose, whereas lignin is the highly branched 3D complex network having 
several functional groups. The nature of cellulose highly varies with the amount of 
lignin, hemicellulose, and fibers. 

2.2 Bacterial Cellulose (BC) 

Bacterial cellulose (BC) is often very pure (no lignin or hemicelluloses). It is highly 
crystalline having a high degree of polymerization. It becomes more significant that 
numerous bacteria belonging to the genera Acetobacter, Agrobacterium, Sarcina, 
and Rhizobium produce cellulose [17]. Agro-industrial wastes are commonly used 
as carbon sources to manufacture BC, and the yield of bacterial culture can reach 
40%. Most often, BC is acquired in pure form having a purity of more than 90%. 
BC is capable of being transformed into a variety of morphological forms, including 
spheres, films, fleeces, and hollow particles. Pure cellulose face masks also frequently 
have a higher biodegradability than commercial counterparts, which is an additional 
benefit. A fibrous network of cellulose chains gives them a porous structure, and 
they are typically wide ribbon-shaped fibrils (diameter ~100 nm), which contain 
numerous nanofibrils (diameter ~8 nm). As a result, distinctive nanomorphology has 
a wide surface area, high water holding capacity (~99% water), high wet strength, 
strong elasticity, and conformability. 

2.3 Algal Cellulose 

Another source of cellulose is algae. It is highly crystalline. Algae cellulose is specifi-
cally produced from brown species, red species (Gelidium elegans), and green species 
(Cladophora). Algal cellulose grows more quickly than plant cellulose, giving it a 
competitive edge in industrial applications. Oceans, lakes, ponds, and wastewaters 
are just a few of the environments where algae can develop, and they can produce 
cellulose [15]. Algal cellulose is not produced in its purest form because hemicellu-
lose, protein, and lignin are highly associated with them. Red algae and green algae
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are good sources of cellulose. The main types of carbohydrates found in red algae, 
or Gelidium elegans, are cellulose and agar. Green algal cellulosic cellulose exhibits 
outstanding qualities such as large specific surface area, high porosity (mesopores), 
and high crystallinity (~70%) among others. 

2.4 Tunicate Cellulose 

The only known animal source of cellulose is tunicates. They are marine invertebrate 
animals, and cellulose is extracted from the outer tissue of these animals. It contains 
a large amount of cellulose (~60%) and a small amount of nitrogenous compound 
(~27%). In tunicates, cellulose is also present as a nano fibrillar form arranged in a 
multi-layered structure at the surface of its epidermis. The shape and size of these 
nanofibril bundles vary with different species. Commonly, the length and width of 
nanofibrils are in the range of 100 nm–2 μm and 10 nm–30 nm, respectively. It also 
has a high specific surface area (150–170 m2 g−1). The extraction of cellulose from 
various sources is one of the important processes and most of the commercially used 
cellulose is primarily extracted from plant-based sources. In the following section, 
we are going to discuss the extraction process of cellulose from plant-based sources 
(Table 1). 

Table 1 Various sources of cellulose, cellulose content, properties, and their applications 

Various 
sources 

Cellulose 
content 

Properties Applications References 

Wood and 
plant 

30–95% Strength and properties of 
cellulose fibers vary with 
different varieties of wood 
and plants 

The application also varies 
with the source, but the 
major application areas are 
paper, textile, and 
pharmaceutical industries 

[2] 

Bacterial Approx. 
90% 

High degree of 
crystallinity (80–90%), 
high degree of 
polymerization, high 
mechanical strength, and 
degradation rate of BC is 
slightly higher than that of 
wood and plant cellulose 

Biomedical applications, 
tissue engineering, 
pharmaceutical industry, 
emulsion and hydrogel 
stabilizers, drug-delivery 
systems, and smart 
artificial skin 

[18–20] 

Tunicate Approx. 
60% 

Highly crystalline, high 
aspect ratio fibrils, high 
specific surface area 

The excellent properties of 
tunicate cellulose is a good 
choice for various chemical 
and mechanical 
applications 

[21, 22]

(continued)
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Table 1 (continued)

Various
sources

Cellulose
content

Properties Applications References

Algae Approx. 
70% 

High crystallinity (90%), 
low moisture adsorption 
capacity, and high 
porosity in the 
mesoporous range 

Algal nanocellulose has 
excellent potential for 
biomedical applications 
such as tissue engineering 
because of its nontoxicity, 
and facile chemical 
modification 

[23–25] 

3 Extraction of Cellulose 

Different types of structural polymers like polysaccharides and polyphenolic 
compounds make up the constituent of a typical plant. The cell wall of a plant 
comprises of cellulose, pectin, and hemicellulose. Cellulose is present in the form of 
fibrillar and is the major part of the biomass [16]. Conventionally, cellulose is isolated 
from plants starting with the pulping process. This process removes the extractable 
materials like lignin, and hemicellulose without degrading the fibrillar structure of 
cellulose. Bleaching is carried out as the next process which utilizes oxygen, ozone, 
and hydrogen peroxide. The final product after bleaching mainly contains alpha-
cellulose and hemicelluloses in residual amounts. This process extracts 40% cellu-
lose, 10–11% as secondary products like furfural, xylose, and acetic acid, and the 
remaining as waste material [26].  Salimi et al. elaborate on the stepwise extraction of 
cellulose [27]. In addition to fibrillated cellulose, cellulose nanoparticles can also be 
produced and a scheme to obtain the same is shown in Fig. 3, a detailed discussion 
of which is provided in the next section [28,29] 

Fig. 3 Scheme of extraction process of cellulose. Modified from Gopakumar et al. [28]
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3.1 Cellulose Particles 

Based on the size and morphology, the cellulose particles have been broadly char-
acterized into cellulose crystals and cellulose fibers. These differ in size, shape, 
crystallinity, aspect ratio, and physiochemical properties [2, 15, 20]. 

3.2 Cellulose Fibers 

Naturally found cellulose is present in the form of microfibrils which assemble and 
organize themselves in the form of cellulosic fibers. Three types of cellulose fibers 
are known viz. pulp fibers whose length is found in the range of 1–10 mm, staple 
fibers with a length of approximately 60 mm, and strand fibers with a length range of 
20–100 cm. Strand fibers contain multiple cells, whereas staple fibers contain a single 
cell. Cotton fibers are an example of staple fibers with a length range of 25–45 mm. 
These two types of fibers are obtained from wild plants and crops via a pulping 
process. The fibers obtained are further disintegrated into micro and nanofibrils by a 
mechanical process that includes homogenization and microfluidization. The length 
of cellulose nanofibrils obtained is generally 1 μm and the width ranges from 2 to 
100 nm. The fiber size is mainly depending on the pretreatment, fibrillation process, 
and source. Cellulose nanofibrils have superior mechanical strength with a tensile 
strength of ~1 GPa and an elastic modulus range of ~14–36 GPa [30]. 

3.3 Cellulose Crystals 

Enzymatic, mechanical, and chemical treatments of cellulose microfibrils lead to the 
formation of cellulose crystals. During treatment, the cellulose microfibrils get frag-
mented into microcrystalline cellulose and cellulose nanocrystals. Microcrystals have 
a high degree of crystallinity and form rod-like stiff particles. Microcrystalline cellu-
lose (MCC) was first introduced as an ingredient for direct tableting. The common 
source for pharmaceutical MCC is wood cellulose. Cellulose nanocrystals (CNCs) 
particles are harnessed from the cellulose microfibrils’ crystalline regions. CNCs 
are synthesized via sulfuric hydrolysis of cellulose, which leads to the disintegra-
tion of highly crystalline CNCs particles which are eventually extracted. The final 
characteristic of CNCs depends on the cellulose source and extraction parameters 
like temperature of hydrolysis, controlled time, and further modification like dialysis 
and neutralization. CNCs display exceptional mechanical and thermal properties like 
high TS, modulus, low density, and high thermal properties [31]. Due to the superior 
properties of CNCs, various potential applications have been explored [32].
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4 Properties of Cellulose 

4.1 Solubility 

As we have seen that plants contain hemicellulose and cellulose known as holocellu-
lose, lignin, and inorganic materials (such as ash). Cellulose can be simply hydrolyzed 
by acids to form water-soluble sugars and is resistant to strong alkalis. Cellulose is 
proportionally resistant to oxidizing agents. Hemicellulose forms a supportive matrix 
for the cellulose microfibrils which are hydrophilic in nature. This hydrophilicity 
helps its easy dissolution in alkali and easy hydrolysis in acids. The harder part 
(lignin) does not get hydrolyzed in acids but is soluble in hot alkali, gets condensed 
in the presence of phenol, and quickly oxidized. A mixture of dimethyl sulfoxide 
(DMSO) and 10–20% (w/v) tetra butyl ammonium fluoride trihydrate can dissolve 
cellulose without any pretreatment at room temperature. Cellulose is insoluble in 
water and other organic solvents which limits its applications. The OH groups present 
in the cellulose form H bonding restricting the entry of solvent molecules [33]. This 
is the main reason for the insolubility of cellulose. It can only be dissolved when 
this interaction is broken. This can be induced by the addition of functional groups 
in the cellulose backbone which break the intermolecular H-bonding and in turn 
solvate the chains. Due to the compact structure of cellulose, a complex solvent 
system that required minimum energy of dissolution is used in dissolving cellu-
lose, Initially, Copper complexes (Cuoxam) were used to dissolve the cellulose [34]. 
However, other metal complexes based on Co, Ni, Cd, and Zn are also being used 
for dissolving cellulose. Thus cellulose can be easily dissolved in phosphoric acid 
and trifluoroacetic acids by disrupting the Hydrogen bonds. Various ionic liquids are 
found to be suitable agents for dissolving cellulose since the solvents are eco-friendly, 
less toxic, having good thermal stability and recyclability. However, the high cost 
and energy-intensive nature of ionic liquids limit their usage. 

4.2 Mechanical Property 

Cellulose shows high crystallinity and high intermolecular interaction which mani-
fests itself in the form of superior mechanical properties, viz. tensile strength and 
modulus. The rigid cellulose nanocomposites have a modulus similar to that of Kevlar 
and Steel. Bacterial cellulose (BC) is softer and finds application in the replacement 
of collagen networks. Looking at the impressive mechanical properties of cellulose 
leads to potential applications in wound healing, tissue engineering, and drug delivery 
where a strong and stable building block is required [35].
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4.3 Hygroscopic Property 

Cellulose is highly hygroscopic and attracts water, this is by the virtue of hydrogen 
bonds present in the structure. Cellulose absorbs water almost 30% of its biomass and 
gets swollen, the water permeates into the structure via the amorphous region (disor-
dered domains) [36, 37]. This swelling of cellulose assists in the aqueous processing 
of cellulose and its composites. The hygroscopic nature of cellulose leads to lower 
wet strength and which might pose limiting parameters for various applications. 

4.4 Structure and Degradability 

The backbone of cellulose is structured on β-1,4-glycoside-linked glucose units. The 
rigid structure of cellulose can be attributed to the intermolecular hydrogen bonds 
leading it to good mechanical properties making it useful as a building material in 
plants. These superstructures produced are stable till significantly a higher temper-
ature. The degradation of cellulose happens below the theoretical melting point of 
260–270 °C. The melting point can be reduced by breaking the H-bonding in the 
structure, this can be effectively done by derivatizing the hydroxyl group of cellulose. 
Some of the most commonly used cellulose derivatives which are used industrially are 
cellulose acetate, cellulose acetobutyrate, ethyl cellulose, and benzyl cellulose. Ther-
moplasticity in these derivatives is achieved by complete derivatization of hydroxyl 
group. The average degree of substitution (DS) value is the number of substituted OH 
groups per anhydroglucose unit. The substitution level is inversely proportional to 
the biodegradability of cellulose derivatives as enzyme attack requires a free glucose 
unit [38]. 

4.5 Mechanism of Degradation 

One of the well-recognized degradation routes for cellulose is by the brown rot fungi 
which produce H2O2, which in turn assists in the production of hydroxyl radical 
(·OH). The attack by ·OH leads to the cleavage of the cellulose chains generating 
lactone as shown in Fig. 4. The ·OH radical is produced via the Fenton reaction 
(H2O2 + Fe2+ → H2O + Fe3+ + OH) in which iron is used from the wood itself. The 
hydrogen abstraction by ·OH is a fast reaction that leaves behind a carbon-centered 
radical which rapidly reacts with oxygen from the environment, which subsequently 
eliminates ·OOH [39].
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Fig. 4 Plausible mechanism of degradation of cellulose by Brown rot fungi, reproduced with 
permission from Hammel et al. [39] 

5 Functional Derivatives of Cellulose—Synthesis, 
and Biodegradability 

As we have depicted in the previous section that crystallinity and hydrogen bonding 
in the cellulose structure leads to difficulty in the processability of cellulose; hence, 
it is essential to functionalize the cellulose. Esterification, etherification, nucle-
ophilic substitution, oxidation, and copolymerization are the most common routes to 
achieve functionalization in cellulose. Functionalization has a two-fold advantage, 
viz. feasible processibility, and better plastic properties. The functionalization helps 
in breaking the crystalline structure and assists in solubilization which further assists 
in processing. The amount of substitution has an impact on biodegradability. As the 
size and degree of substituent groups increase, the biodegradability of the cellulose 
decreases [40]. 

The OH groups in cellulose being susceptible to reactions, is utilized for the func-
tionalization to undergo various kinds of reactions. Figure 5 shows the chemical 
structure of cellulose after functionalization. The degree of substitution affects the 
final properties of the polymer obtained. To design a new functionalized cellulose-
based polymer, it is essential to understand the changes in properties achieved with
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Fig. 5 Cellulose derivatives,
redrawn from [2]

the substitution. The various cellulose derivatives are discussed in detail below
(Table 2).

5.1 Cellulose Ethers

When OH in the anhydroglucose unit of cellulose is substituted with the alkyl group,
cellulose ethers are obtained. Cellulose ethers are synthesized by the reaction of
cellulose with NaOH and subsequently reacting with alkyl chloride as shown in the
scheme below (Fig. 6). Cellulose ethers consist of methylcellulose, ethyl cellulose,
hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethylcellulose and
their derivatives.

Methylcellulose (MC)

Methylcellulose is the simplest functionalized biodegradable cellulose ether. It has a
vast application in the food industry, tissue engineering, coating, and preparation of
mulch films. It comeswith the advantage of easy processability, large availability, and
low cost. The biodegradability however limits its application in high-end products.
Hence, two methods which helps to modulate the biodegradability of the polymers
with required properties are the incorporation of fillers with a high aspect ratio
to increase the tortuous path, and secondly by incorporation of crosslinks such as
glutaraldehyde (Glu) between the polymer chains. This will delay the hydrolysis and
provide an enhanced property with the loss in biodegradability [41].

Methylcellulose is synthesized in an alkaline medium in the presence of methy-
lating agents like methyl chloride or dimethyl sulfate [42]. Degree of substitution
depends on the synthesis conditions such as reaction time and methylating agent. As
the degree of substitution is increased from the range 1.4–2.0 to 2.4–2.8, the solu-
bility of methylcellulose is enhanced in water as well as in some organic solvents
[43].
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Fig. 6 The above scheme represents the summary of the synthesis of cellulose derivatives viz. 
esters and ether, redrawn from [2]

Carboxymethylcellulose (CMC) 

CMC is one of the most popular and commercially available cellulose ethers. It 
is biodegradable, non-toxic, water-soluble, and has better chemical stability. CMC 
has myriad applications by the virtue of its properties in the food industry, textile 
industry, paper industry, drugs and cosmetics, leather, films, filaments, paints, and 
lacquers [44]. CMC is an efficacious thickening agent, binder, and emulsion stabi-
lizer, and has film formability. CMC is synthesized by a reaction of cellulose with 
monochloroacetic acid in which the hydroxyl group (predominantly C2) is substituted 
by carboxymethyl groups (–CH2–COOH). 

The degree of substitution is typically between 0.6 and 1.25. The properties are 
dependent on the large molecular structure, degree of substitution, and molecular
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Table 2 Derivatives of cellulose 

Functionalization Derivatives R 

Cellulose ethers Methylcellulose H or CH3 

Carboxymethylcellulose H or CH2COOH 

Ethyl cellulose H or CH2CH3 

Hydroxyethyl cellulose H or CH2CH2OH 

Hydroxypropyl cellulose H or CH2CH(OH)CH3 

Cellulose esters Cellulose acetate H or (C=O)CH3 

Cellulose sulfate H or SO3H 

Cellulose nitrate H or NO2 

weight [45]. The sodium salt is soluble in water and hence CMC is usually used as 
its sodium salt. 

Ethyl Cellulose (EC) 

Ethyl cellulose is another commercial biodegradable cellulose ether that is formed 
when the hydroxyl group is substituted by the ethyl group. Ethyl cellulose is synthe-
sized by the reaction of cellulose alkali with ethyl chloride at 60 °C for several hours 
[46]. For commercial products, normally the degree of substitution lies in the range 
of 2–2.6 [47]. The properties of ethyl cellulose depend on the molecular weight, 
degree of etherification, and molecular uniformity. 

EC has an excellent film-forming capacity with superior barrier properties and 
hydrophobicity making it a suitable candidate for biomedical applications, majorly 
in drug delivery. Ethyl cellulose is generally brittle and hence plasticizers are added 
in order to enhance its flexibility, thermal stability, and processability [48]. 

Hydroxyethyl Cellulose (HEC) 

Hydroxyethyl cellulose is synthesized by reacting alkali cellulose with ethylene 
dioxide to achieve hydroxy ethyl group (–CH2–CH2–OH) at 2, 4 and 6 positions 
of glycosyl unit of cellulose. This OH group acts as a reactive center which can be 
utilized for further modification. Hydroxyethyl cellulose is highly soluble in water 
and other organic solvents. Mixing cellulose with HEC allows easy processing of it, 
and diversifies its biomedical application [49].
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Hydroxypropyl Cellulose (HPC) 

Hydroxypropyl cellulose is a biodegradable polymer in which the OH group is substi-
tuted by 2-hydroxypropyl. Like HEC, HPC also has a secondary alcohol group that 
can be utilized for further functionalization of the cellulose chains for biomedical 
applications such as tissue engineering. HPC forms a liquid crystal when dissolved 
in water depicting an interesting property of mechanochromism meaning it shows 
a change in color on the application of pressure. This property makes it a suitable 
candidate for application in sensing applications [50]. 

5.2 Cellulose Esters 

Cellulose esters offer the advantage of solubility in a common solvent and easy melt 
processability over cellulose. It also affords cellulose to be molded into 3D shapes, 
drawn into thin wires, and solution cast into films, sheets, or coating applications 
[51]. The modification can also be done over the surface of the cellulose substrate 
keeping the crystallinity intact to avail high mechanical properties [52]. Common 
cellulose esters are discussed below. 

Cellulose Acetate (CA) 

Cellulose acetate is synthesized from the acetylation of cellulose. The DS defines 
the properties of the CA. DS of 2.5 is the most common level that provides optimum 
molecular weight and rheological/solution properties. These properties help CA to 
be used in various applications like textiles, thermoplastic, films, and cigarette filters 
[53]. 

The key mechanism of biodegradation of CA is chemical hydrolysis and acetyl 
esterases as the first step which subsequently leads to the degradation of backbone 
which mainly contains cellulose. Various studies have confirmed that CA is indeed 
biodegradable in natural environment. One interesting study is done by Komarek 
et al. in which acetyl carbon was labeled with 14C and CO2 evolution was monitored. 
The study compared CA with DS of 1.85, 2.07, and 2.57, and found a reduction in 
degradation rate by increasing the level of acetylation [54]. 

Cellulose Nitrate (CN) 

Cellulose nitrate also known as nitrocellulose, is synthesized by the substitution of 
an OH group with a nitrate group by treating cellulose with concentrated nitric acid. 
The typical DS is 2.2–2.8 which eventually decides its properties and application. A 
major application of CN is in explosives, plastics, coating, and ink industries [55].
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CN is found to be 40% biodegradable only due to inhibition by various products 
formed during the degradation of main degrading enzymes [56]. 

Cellulose Sulfate (CS) 

Sulfonation of cellulose is carried out using sulfuric acid, sulfur trioxide, and chloro-
sulfonic acid. It is water soluble, antiviral, antibacterial, and has anticoagulant prop-
erties due to the presence of a sulfate group. CS shows excellent biocompatibility, 
film-forming ability, and biodegradability. These properties make it highly viable for 
application in tissue engineering and drug delivery [57]. In vitro studies showed favor-
able biodegradable properties of sodium cellulose sulfate (NaCS) and chitosan-based 
films. The DS also has an inverse effect on the biodegradability of CS [58]. 

6 Applications 

6.1 Packaging Industry 

Plastics are commercial materials derived mainly from synthetic polymers. These 
materials are cheap and remain intact throughout their packaging life. But synthetic 
polymer leads to some side effects on human beings, animals, and the environment. 
The usage of plastic bags cannot be reduced as they are easy to handle. That’s why to 
get rid of the sustainability issues, it is important to introduce biodegradable polymers 
to reduce the solid waste in the environment. Among the well-known biopolymers, 
cellulose has been extensively used in the food packaging industry [59]. 

In order to convert cellulose into a polymeric substance, first cellulose has to 
be extracted from natural resources. The best methods to extract cellulose were 
described by Han and Rowell and later by Borella et al. [52, 53, 60]. Recently, 
partially biodegradable biocomposites and green biocomposites gained much atten-
tion in synthesizing biobased products, which can be degraded easily by microor-
ganisms [3, 52, 53]. Biocomposites consist of biofiber and matrix polymer. Partially 
biodegradable biocomposites contain biodegradable biofiber and non-biodegradable 
polymer matrix whereas, biodegradable biocomposites consist of both biodegrad-
able fiber and polymer. Also, there exist hybrid biocomposites which contain two 
or more biofiber in combination with a polymer [61]. In recent days, biodegradable 
polymers blended with inert polymer matrices are becoming more attractive. In this 
case, upon disposal of the plastic in the environment, the biodegradable part can be 
degraded by microorganisms and the residual polymer component loses its integrity 
and fades away. A cellulose ester known as cellulose acetate butyrate (CAB) can be 
added to other cellulose ester-based film formers as well as employed as a reactive 
polyol during curing of the coating. The regenerated cellulose fiber, i.e., cellophane 
is used as breathable packaging material for baked food. Apart from that, cellulose
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esters and cellulose ethers are being used in the processing of film coatings, edible 
films, etc. [62]. 

6.2 Pharmaceutical Industry 

Cellulose-based polymers are gaining much importance in the field of pharmaceu-
ticals. Especially, cellulose ethers and cellulose esters are having unique physico-
chemical and mechanochemical properties by which they can be used broadly as 
healthcare products in the form of tablets, gelling agents, bioadhesives, mucoad-
hesives, etc. Another well-known derivative of cellulose MCC is a multifunctional 
excipient such as silicified MCC (SMCC) which is being extensively used instead of 
only MCC. Recently, cellulose is converted to nanocomposites which are also used 
as drug-delivery agents and as ion-sensing materials [63–65]. 

6.3 Electronic Industry 

In order to meet the sustainability issues, it is necessary to utilize renewable energy 
sources. Thus biodegradable materials such as cellulose derivatives are highly used 
in the field of the electro-technological field for their lightweight, low cost, trans-
parency, portability, and flexibility in electronic and solar energy conversion [66, 
67]. Cellulose fibers having a diameter of ~20 μm, would have been suitable for 
usage in solar cells, but their high surface roughness and porous structure render 
their effectiveness in coatings. Also, the fiber diameter is much larger than the wave-
length of visible light. So, traditional papers made of cellulose are opaque which 
is difficult for using the materials for transparent devices. Chang et al. showed that 
O-(2,3-dihydroxypropyl) cellulose (DHPC) produces a smooth surface with excel-
lent ductility and transparency and can be effectively used in a flexible solar cell. 
However, due to poor mechanical strength, this derivative of cellulose is further 
reinforced by rigid tunicate cellulose nanocrystals (TCNCs) [68]. 

6.4 Metal Industry 

Water bodies are playing a major role as a carrier of heavy metals, non-metals, and 
organic dyes. Cellulose backbone contains a huge amount of OH groups which can 
interact with metal ions through electrostatic force and hydrogen bonding. Besides, 
these OH groups can be converted into several other functional groups (phosphonate, 
sulfonate, amine, carboxyl, ether, ester, etc.) which change the surface charge over 
the cellulose matrix. These modifications provide excellent interaction with metal 
ions. Hajeeth et al. employed cellulose extracted from sisal fiber in the form of a
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cellulose-g-acrylic acid copolymer to adsorb Ni(II) and Cu(II) from aqueous solu-
tions [69]. Cellulose was also successfully modified to produce cellulose-amine and 
cellulose-thio adsorbents. The obtained sample showed strong adsorption potential 
towards Hg(II) in aqueous solutions [59]. Cellulose can also be used as an adsorbent 
when combined with montmorillonite (NaMMT). It was applied to eliminate Cr(VI) 
from the aqueous solutions. Other modified cellulose were listed in Table 3. 

6.5 Biomedical Industry 

Cellulose contains abundant OH groups over its backbone. Hence, cellulose hydrogel 
can be easily produced by physical crosslinking [91]. There are some water-
soluble cellulose derivatives, such as Methylcellulose, Hydroxypropyl Cellulose, 
Hydroxypropyl Methylcellulose, and Carboxymethylcellulose that are often used 
for the fabrication of cellulose-hydrogels. It was shown that, when OH moieties are 
partially substituted by methyl or hydroxypropyl groups, both hydrogen bonding 
and hydrophobic interaction play a key role in determining the gelation ability of the 
hydrogels [92]. In the case of chemically crosslinking structures, some di-functional 
reagents are employed to provide a three-dimensional shape to the cellulose hydrogel 
structure. Sannino et al. prepared super-hydro porous hydrogels based on crosslinking 
of CMC and HEC with a crosslinker such as DVS (divinyl sulfone) (Fig. 7). The main 
feature of these hydrogels is that they can change their sorption capability depending 
on the ionic strength and pH of the excipient. The super-adsorbent hydrogel has 
been efficiently applied for the treatment of edemas [93–95]. Apart from medication, 
cellulose-based hydrogels are often used in tissue engineering, sensors, agriculture, 
water purification, and chromatographic support which are discussed below [96–99].

In the biomedical field, hydrogels have never-ending applications. It has the 
ability to remove excess water from the body and is highly effective in the treat-
ment of edema. Polyelectrolyte-based cellulosic hydrogels, such as sodium salt of 
carboxymethylcellulose and hydroxyethyl Cellulose are highly pH-dependent and 
get removed from the body with feces without affecting the function of other body 
parts. The water uptake capability varies with the changing ratio of NaCMC/HEC 
[101]. Besides, superabsorbent cellulose-based hydrogels are being extensively used 
in personal care products like diapers as these hydrogels absorb liquid and keep that

Table 3 Several cellulose derivatives and their applications 

Purpose Cellulose components Applications References 

Metal adsorption Phosphorylated cellulose (nano 
paper) 

Copper ions 
adsorption 

[70] 

Tetraethoxysilane-cellulose acetate 
composite material 

Cr(VI) adsorption [71]

(continued)
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Table 3 (continued)

Purpose Cellulose components Applications References

Fe(III) metal based 
aminofunctionalized 
poly(glycidylmethacrylate)-grafted 
TiO2-densified cellulose 

As(V) adsorption [72] 

Sulfonated wheat pulp nanocellulose Pb(II) adsorption [73] 

Amino-propyl-triethoxy silane 
modified micro fibrillated cellulose 

Cu(II), Ni(II), Cd(II) 
adsorption 

[74] 

Cellulose functionalized 
methyl-iodide and 
triethylenetetramine 

Cr(VI) adsorption [75] 

Cellulose nanofiber Ag+ adsorption [76] 

Packaging Cellulose esters Laminates, optical 
films, and laminates 

[77] 

Cellulose acetate butyrate, and 
methylcellulose 

Coatings and 
additives in film 
former 

[78] 

Carboxymethylcellulose Thickener, stabilizer, 
and suspension agents 

[79] 

Cellophane Breathable packaging 
for baked goods and 
textiles 

[80] 

Methylcellulose with polyethylene 
glycol, and PEG400 plasticizers 

Edible film [62] 

Nanocellulose Food packaging [81] 

Hydrogels Si impregnated hydroxypropyl 
methylcellulose (Si-HPMC) 

Biomedical 
applications 

[82] 

Chitosan/methylcellulose/Na3PO4 
hydrogels 

Tissue engineering [83] 

Poly(N,N-dimethyl acrylamide)/ 
cellulose hydrogels 

Optical applications [84] 

Smart material Cellulose electro-active paper (EAP) Biosensors [85] 

O-(2, 3-dihydroxypropyl) cellulose 
(DHPC) with tunicate (TCNCs) 
cellulose nanocrystals as reinforcing 
agents 

Flexible solar cells [68] 

Sodium cellulose sulfate Biomaterials for 
microcarriers’ 
designing 

[58]

(continued)
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Table 3 (continued)

Purpose Cellulose components Applications References

Nitrocellulose Explosives [86] 

Biofuel Cellulose Energy production [87] 

Others Oxycellulose Bioadhesives and 
cosmetics 

[88] 

Hydroxyethyl cellulose Agriculture, textile, 
and paper industries 

[89] 

Hydroxypropyl cellulose Lubricant in artificial 
eyes and food 
additives 

[90]

Fig. 7 Scheme of formation of HEC and CMC crosslinked network, redrawn with permission from 
Ayouch et al. [100]

place dry, and also prevent diaper rash and any other fungal attack. These products 
are also cheap and safe to use. Furthermore, these superabsorbents prevent leakage 
and reduce the risk of fecal contamination, and gastrointestinal problems [102, 103]. 
In 1966, Harmon and Herper separately patented superabsorbent materials [104]. 

The superabsorbent cellulosic system contains three main parts (1) an envelope 
of non-oven tissue, (2) a plastic cover material, and (3) an absorbent made of wood 
pulp cellulose mixed with some hydroporous superabsorbent polymer (SAP). The 
latter two components were usually non-biodegradable. Hence, for the recovery of 
cellulose materials and recycling of the absorbent, usage of cellulose-based hydrogels 
was suggested. Among them, NaCMC and HEC crosslinked with DVS show similar 
properties to SAP and produce higher retention ability and swelling ratio [105].
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6.6 Agricultural Industry 

In order to optimize the water resources in the agricultural field, especially for the 
cultivation in the desert area, a constant water supply is highly needed. So, the super-
absorbent provides the required quantity of water throughout the time by releasing the 
water slowly through a diffusion-drive mechanism [106]. Cellulose-based hydrogels 
perform as an alternative to acrylate-based hydrogel which is not biodegradable. 
Some cellulose-based SAP hydrogels were suggested which have the absorption 
ability of almost one liter of water per gram of hydrogel [107, 108]. 

6.7 Biofuel Industry 

In recent days biofuel supplies 86% of the energy of the world. With the increment 
in population, energy usage is also expected to surge in the coming days. High usage 
of petroleum-based fuels leads to an impact on environmental changes like global 
warming and the reduction of biomass. In that case, cellulose is the most active 
renewable resource used in the production of energy in the world (chemical energy 
stored in biomass is approximately 6–7 times that of total human energy consump-
tion per year) [109]. Moreover, a human can not digest cellulose, so it is advanta-
geous to use this polymer as it does not compete with food resources. Production of 
biofuel from cellulosic materials is generally carried out by the processes of gasifica-
tion, pyrolysis, and hydrolysis. First, the woody biomass is disintegrated to produce 
isolated cellulose from other constituents of lignocellulosic materials. Next, cellulose 
is depolymerized (basically converted to glucose units), followed by conversion of 
glucose into biofuels via biological treatment, and finally purification of the biofuel. 
In the meantime, it is necessary to deoxygenate the biomass as it reduces the heat 
content thereby lessening the chance of blending with other fossil fuels [110]. The 
detailed procedure for the formation of biofuel was studied by Fatehi [87]. 

6.8 Paper Industry 

The major ingredient of paper is cellulose fibers. The quality of paper highly depends 
on the size and quality of cellulose fiber. Higher the cellulose content in the paper pulp, 
the better the quality of the paper. In earlier times, the paper used to be made up of 
bamboo fiber, and silk. Nowadays, it has been replaced by cellulose-based, plant fiber, 
which has excellent writable properties and is also cheap. Cellulose-based papers 
are highly porous, rough, and hydrophilic. Three kinds of pulp were studied such as 
chemical pulp, semi-chemical pulp, and mechanical pulp during paper production. 
Industrially, the chemical pulp is being extensively used as paper produced from 
this becomes strong, stable, and easy to bleach, as compared to other pulps [111].
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Recently, nano-fibrillated cellulose has become an industrially promising material 
for the formation of papers. It acts as a reinforcing material on the fiber surface. Also, 
the nano-fibrillated cellulose plays the role of filler and is incorporated in the voids 
and pores between the fibers [112]. 

7 Conclusion 

Cellulose being a ubiquitous and easily biodegradable polymer has an immense 
potential to replace petroleum-based non-degradable polymers. Cellulose possesses 
fascinating mechanical and thermal properties making it comparable with that of 
conventional polymers. Cellulose is majorly extracted from the plant via multiple 
stages of chemical treatment. Other sources include bacteria and marine invertebrate 
animals called tunicates. Hydrogen bonding present in the Cellulose makes them 
crystalline, thereby enhancing their mechanical property, but reducing solubility in 
various solvents, thus affects its solution processability. To enhance the process-
ability of cellulose and to provide better plastic properties, it has been function-
alized via various routes viz. etherification and esterification. The free OH group 
in cellulose assists in their functionalization to produce cellulose derivatives. For 
example, CMC and EC are some of the commercially available Cellulose ether 
derivatives used in myriads of application. Cellulose acetate, cellulose nitrate and 
cellulose sulfate are some of the common cellulose esters discussed in this chapter. 
By a virtue of their property, cellulose has a great potential to be used in various areas, 
viz. packaging, pharmaceutical, electronic, biomedical, biofuel, and paper industry. 
With the development of nanotechnology, cellulose–inorganic hybrid hydrogels are 
found to have multifunctional applications. Besides, microbial cellulose has become 
popular in the generation of biomedical devices such as in wound healing, organ 
replacement etc. Cellulose has become the most studied biopolymer that can be 
easily processed and industrialized . Therefore, the development of cellulose deriva-
tives along with other polymers as well as inorganic fillers has the potential to show 
extensive application in our daily life. Nonetheless, they suffer from challenges such 
as source variation, availability, lack of economically attractive extraction proce-
dures, etc., which require to be overcome in the near future for their widespread 
applications. 
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Chapter 6 
Biodegradable Polyurethanes and Their 
Biomedical Applications 

Chandrani Sarkar and Sampa Saha 

1 Introduction 

Nowadays, synthetic polymers with defined structures and good processability are 
attracting the attention of researchers. One of the interesting classes of synthetic poly-
mers is Polyurethanes (PUs). PUs are available in a broad range of segmented block 
structures. They are generally fabricated by the reaction of isocyanates, polyols (diols 
or triols), and chain extenders; those are the building materials of PUs (Fig. 1) [1–3]. 
Various types of isocyanates, diols, and chain extenders are commercially available. 
A few of them are given in Table 1; particularly used for the fabrication of biocompat-
ible PUs. The physicochemical properties of PUs can be tailored with the selection 
of appropriate types and molar ratios of building materials. The tuning of the phys-
ical properties and biodegradability are associated with the quality and percentage 
of the soft segment (ester bonds), while the hard segment (urethane bonds) is the 
main factor affecting the structural strength and mechanical properties [4–6]. Due to 
this versatility, PU became an attractive biomaterial for engineered structures. The 
investigation of PUs in the biomedical field has been started since the 1960s. The first 
generation implantable PU is commercially available in 1967 [5, 7–9]. Traditionally, 
PU is used as a bio-stable implant like vascular grafts, heart valves, catheters, and 
prostheses. Some commercially available medical grades PUs are given in Table 2. 
Since 1990, a major drive in the development of biodegradable PUs has been initi-
ated because the next generation medical implants require excellent biocompatibility 
with controlled degradation to address the materials need for modern medical utility. 
A deep understanding of the relationship between the molecular structure of PUs on
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Fig. 1 Formation schemes 
of PU and PU-urea. Redrawn 
from [7]

mechanical properties and degradation in in vivo environments plays a key role in 
designing biodegradable PUs for biomedical applications. In this chapter, we cover 
the biodegradation and biocompatibility of PUs and their biomedical applications, 
particularly in tissue engineering and pharmaceutical fields. 

2 Biodegradability and Biocompatibility of Polyurethanes 

In PUs, degradation mainly relies on the chemical behaviour of its segmented block 
structure. Each segment link with each other through the urethane or carbamate 
[−RNHCOOR’−] group in their backbones [2, 4, 5]. As can be seen from Fig. 1, PUs  
are made up of three constituents: diisocyanate (aromatic or aliphatic), polyol (diols 
or triols), and chain extender (diols and diamines). They react and form segmented 
polymer chains with alternating soft and hard segments in their backbones. The soft 
segments are normally polyester or poly alkyl diol and the hard segments are usually 
an aliphatic or aromatic diisocyanate [8, 10, 11]. The degradation of PUs is gener-
ally tuned with the incorporation of hydrolysable segments into their backbones. In 
most cases, the degradation rate is governed by soft segments (ester bonds) of PUs; 
because hard segments (urethane bonds) are not easily hydrolysed. However, incorpo-
rating a hydrolysable chain extender made the hard segment of PUs to be degradable 
[4, 7, 12]. Studies show that the biological degradation of PUs is due to the cleavage 
of hydrolytic sensitive bonds present in their backbone. The kinetics of the hydrol-
ysis depends on their structural compositions [4, 13]. It is noticed that aliphatic
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Table 2 Commercially available medical grade PUs 

Comercial name Manufacturers 

Texin®, Texin®4210, Desmopan® DP 2590A, Desmopan® DP 
9370A, 

Bayer material science 

Tecoflex®, Carbothane®, Pellethane® Lubrizol 

Elastollan® SP806 BASF 

ChronoFlex® AdvanSource biomaterials 

Bionate® DSM biomedical 

Elast-Eon® RUA biomaterials 

Artelon® Lavender medical 

Lacthane® Polyganics 

NovoSorb BTM PolyNovo

ester bonds are more susceptible to hydrolytic cleavage than aromatic ester linkages 
[2, 4, 14]. Moreover, the degradation rate depends on the composition of polyesteric 
soft segments of PUs. PUs with hydrophilic soft segments [e.g., polyethylene glycol 
(PEG)] degrade more rapidly than PUs with hydrophobic soft segments [e.g., PCL] 
[2, 12, 15]. If soft segments are aliphatic polyesters like PCL, PLA, and PGA, then 
PUs are readily biodegradable. The crystallinity of soft segments also affects the 
degradation rate of PUs, amorphous segments degrade more rapidly than semicrys-
talline segments. Because the high content of crystallinity reduces water absorption 
capacity and restricts polymer chain mobility, thereby reducing the degradation rate 
of PUs [2, 12, 16, 17]. Tang et al. observed that the degradation rate also depends on 
the hydrogen bonding of the segmented structure. The hydrogen-bonded urethane 
degrades slower than the non or less hydrogen-bonded urethanes [18, 19]. 

Understanding the rates of degradation and bioresorbable mechanisms in biolog-
ical environments is essential for clinical applications of PUs. The main functional 
groups susceptible to hydrolytic or enzymatic degradation are ester and urethane in 
biodegradable PUs [2, 7]. The degradation rate of the ester group is considerably 
higher than urethane which results high concentration of oligomeric products of PUs 
during the early stage of the degradation. These oligomeric molecules are excreted 
from the body via filtration through the kidneys. The safety of these oligomeric 
molecules is crucial to assess because of the difficulties in their isolation steps 
[7, 12]. Various studies on in vitro degradation of PUs have been conducted in PBS 
(phosphate buffer solution) medium at pH 7.4 and 37 °C for mimicking hydrolytic 
environment. The change in mass of PUs and pH of the medium are generally 
measured as a function of degradation [7]. Few studies showed that PUs made with 
aromatic isocyanates are less biocompatible due to the release of aromatic amines 
after degradation [2]. However, in vitro degradation tests are only applicable for the 
initial screening of materials. A well-designed in vivo study is essential for site-
specific applications of PUs. Numerous in vitro and in vivo studies have evidenced 
the biocompatibility of aliphatic PUs, which is favourable in biological environ-
ments. Standard cytotoxicity assays and in vitro cell studies with different cell lines
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like chondrocytes [20–27], fibroblasts [27–32], osteoblasts [15, 33–39], endothelial 
[15, 40–43], and stem cells [40, 44–47] on biodegradable PUs with a broad range of 
chemical composition have been reported. Studies demonstrated that biodegradable 
PUs have acceptable cytocompatibility. Researchers extensively studied the biomed-
ical application of biodegradable PUs both in tissue engineering and drug delivery 
field which are critically reviewed in subsequent sections. 

3 Polyurethanes in Tissue Engineering Applications 

In tissue engineering, biological substitutes should facilitate the regeneration of tissue 
and help in the restoration of its function. For this, the material should mimic the 
microstructure, physicochemical and mechanical properties of natural tissue [48, 49]. 
In our body, different tissues possess different structures and properties. Most studied 
tissues and adequate material properties are concise in Table 3. In the tissue engi-
neering process, biodegradable materials play a critical role to support and accelerate 
the new tissue formation. They should be biocompatible and have tunable degrada-
tion rates with nontoxic degradation products [50]. Biodegradable PUs are promising 
materials used in the synthesis of scaffolds to regenerate tissues. Numerous studies 
on the design and fabrication of PUs for tissue engineering applications have been 
reported [7, 51–53]. Biodegradable PUs have been studied for both soft tissue and 
hard tissue, details of which are given below. 

Table 3 Most studied tissues and adequate material properties 

Tissues Adequate modulus Adequate porosity and pore 
sizes 

References 

Cardiac tissues 5–50 kPa 75–96%, ≤300 μm [53–55] 

Skeletal muscle 5–170 kPa 90%, 50–200 μm [53, 56, 57] 

Cartilage 2.8–18.6 MPa 75–87%, 75–175 μm [58, 59] 

Nerve guide 0.30–30 MPa 60–80%, 30–50 μm [60] 

Vein 34 kPa (circumferential) 
102 kPa (longitudinal) 

6.5–7.6 nm [61, 62] 

Aorta 128 kPa 1–20 μm [62, 63] 

Bone 1.28–1.97 GPa, (cancellous) 
10.4–20.7 GPa (cortical) 

75–90%, 140–600 μm 
(cancellous) 
5–10%, 10–50 μm (cortical) 

[53, 64]
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3.1 Polyurethanes in Soft Tissue Engineering Applications 

Soft tissues are found throughout the human body. They support, connect and protect 
all the organs of the body, and give shape/structure to the body. There are different 
types of soft tissues—muscle, fibrous tissue, vessels, and nerves. Extreme activi-
ties lead to soft-tissue damage which causes pain, swelling, and bruising. Some-
times, it needs autografting. Due to certain limitations of autografting, biodegrad-
able synthetic materials are used as alternatives [65, 66]. In this chapter, various 
biodegradable PUs for soft tissue engineering applications have been discussed. 

Cardiovascular Applications 

Cardiac tissues are found in the wall of the heart which allows the heart to pump 
blood. Biodegradable materials with high tensile strength and elasticity are gener-
ally required for cardiovascular tissue engineering. For this, biodegradable PUs 
comprised of polyols like PCL, PEG, and their copolymers along with diisocyanates 
such as ELDI (Ethyl 2,6-diisocyanatohexanoate), HDI(1,6-Hexamethylene diiso-
cyanate), and BDI (1,4-butanediisocyanate) have been designed. PCL generally 
improves the elastomeric properties of PU whereas PEG makes it hydrophilic and 
affects the degradation rate [24, 67, 68]. Structural modification of PUs by chain 
extender is one of the prominent strategies used by researchers to develop biodegrad-
able PUs for soft tissue engineering. The incorporation of chain extenders based on 
amino acids has been explored by several groups to develop PUs for soft tissue engi-
neering [69–71]. Rechichi et al. designed chain extenders by reacting phenylalanine 
with 1,4-cyclohexanedimethanol and synthesized a series of PUs using MLDI, PCL 
or PCL-PEG-PCL [28]. Fromstein et al. showed the effect of blending amino-acid-
based PUs with other components like MLDI/PCL or MLDI/PEG on properties and 
degradation rate to assess their suitability for soft tissue engineering. The mechan-
ical properties of the blends varied from 6 to 20 MPa, while elongation at break 
varied in the range of 512–690% [44, 72]. Gorna et al. designed a series of PUs 
using PCL, PEG, HDI, IPDI, and chain extenders BDO and 2-amino-1-butanol in 
different ratios. They showed a wide range of tensile strength from 4 to 60 MPa, 
whereas the elongation varied from 100 to 950% [66]. Earlier studies were mainly 
focused on the development of materials that possess elastomeric properties which 
provide sufficient mechanical support to the cardiac system. Nowadays, biocom-
patible and bioactive materials having good mechanical properties are in demand. 
Many biocompatible cardiac materials made up of PCL-based PUs having urethane 
and/or urea groups in their backbone have been studied. Guan et al. fabricated a 
series of PU-urea elastomers using PCL-PEG-PCL, BDI, and 1,4-butanediamine. 
These showed good endothelial cell adhesion due to the immobilization of Arg-Gly-
Asp on its surface. Moreover, these PUs have good mechanical properties (tensile 
strengths ~8–20 MPa, strains ~325–560%) [15]. Sometimes, researchers incorpo-
rated gold nanotubes/nanowires in PUs in order to improve the electroactivity of
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material, and stimulate cardiomyocyte cells for accelerating cardiac tissue regenera-
tion [73]. Researchers also fabricated highly porous PUs for soft tissue engineering 
applications. Guan et al. fabricated a highly porous PUs scaffold (porosity ~80–97%) 
by a thermally induced phase separation process. Porous scaffold supported good 
cell adhesion and proliferation. However, the tensile strength of the scaffold was 
1 MPa, which is sufficient for soft tissue engineering applications [67]. Researchers 
prepared an elastomeric porous cardiac patch from biodegradable PU based on butyl 
diisocyanate, PCL, and putrescine, and showed degradation in the rat model. At 
4 weeks, ingrowth of fibroblast into PU patch was found and cellular infiltration of the 
implant enhanced. At 12 weeks, the PUU patch was completely degraded [74]. The 
same authors investigated PU cardiac patch for its effectiveness to promote vascular 
remodelling and improve function by implanting the patch onto sub-acute infarcts in 
Lewis rats. It was observed that the left ventricular wall was thickened and the patch 
was mostly remodelled [75]. PU patch accelerated the formation of new contrac-
tile phenotype smooth muscle tissue and enhanced contractile function. Researchers 
also synthesized myoblast seeded PUs scaffolds from MDI, 1,3-diaminopropane 
and ε-PCL-diol (530 Da) for direct intramyocardial cell transplantation [76, 77]. 
Hashizume et al. designed porous biodegradable PU and applied in a rat model of 
ischaemic cardiomyopathy for 16 week and found degradable cardiac patch benefit 
in treating ischaemic cardiomyopathy [78] (Fig. 2).

Musculoskeletal Applications 

Since 1990s, biodegradable PUs scaffolds have been evaluated for the knee-joint 
meniscus. In the early years, MDI-based PUs were investigated for the healing of 
meniscal lesions. However, its toxic degraded product, i.e., MDA limits its applica-
tions. So, PUs scaffolds based on aliphatic diisocyanate BDI, poly(ε-caprolactone-
co-l-lactic acid) diol, and 1,4-BDA or 1,4-BDO have been studied for cartilage tissue 
regeneration and found suitable for regeneration of fibrocartilage [79]. Spaans et al. 
fabricated microporous PUs-based scaffold for replacement of knee-joint meniscus. 
They used 50/50 l-lactide/PCL polyol for soft segment and BDI/adipic acid/water 
for hard segment formation. The reaction between water and BDI forms CO2 gas 
which creates micropores (porosity ~70–80%). This microporous PUs scaffold facil-
itated fibrocartilage formation in the lateral meniscus of dogs after 18 weeks of 
implantation [80, 81]. Similarly, Grad et al. demonstrated porous PU fabricated from 
HDI, ε-PCL, and isosorbide diol favoured chondrocyte attachment, proliferation and 
provide mechanical support to grow functional cartilage-like extracellular matrix 
[23]. Field et al. formulated an in situ curable biodegradable PU based on dl-LA/GA 
and ELDI to repair meniscal cartilage tissue [82]. Researchers fabricated PU-based 
nanofibers using the wet-spinning process for anterior cruciate ligament reconstruc-
tion. PU-based fibres showed high strength and stiffness and retained almost 50% of 
their tensile strength for 9 months at physiological temperature [83]. In vivo studies
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Fig. 2 Representative macroscopic images a, d, g of using different polyurethane [polyester 
urethane urea (PEUU), polyester carbonate urethane urea (PECUU), polycarbonate urethane urea 
(PCUU)] cardiac patches after 16-week study in a rat model of ischaemic cardiomyopathy [scale 
bar ~5 mm]. The corresponding images b, e, h of Masson’s trichrome stained cross-sections of the 
heart after 16-week implantation of PEUU, PECUU, and PCUU [c, f, and  i are magnified images] 
[scale bar ~2 mm]. Yellow and black arrows indicate the edge and regions of the implanted PU. 
Red arrows indicate the suture lines. Reprinted with copyright permission from Elsevier [78]

supported its biocompatibility and safety issues. The trade name of this material is 
Artelon® commercialized by Artimplant® AB, Goteborg, Sweden. This material has 
also been developed as a spacer for the trapeziometacarpal joint for the treatment of 
osteoarthritis [84]. 

Neural Applications 

Nerves are soft tissues of the human body that control the movement and func-
tions of the whole body. Nerve tissue collectively in the brain and spinal cord 
creates the central nervous system of the body, and nerves outside the brain 
and spinal cord create the peripheral nervous system. Peripherical nerve injury 
is the most common clinical problem. Researchers focus on the development 
of tubular structures that guide nerve regeneration [52, 85]. Biodegradable PUs 
offer attractive properties like tunable mechanical strength, flexibility, and high
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biocompatibility in fabricating tubular grafts for nerve regeneration. Borkenhagen 
et al. designed PU-based tubular structures made up of poly[glycolide-co-(ε-
caprolactone)]-diol, poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid]-
diol and 2,2,4-trimethylhexamethylene diisocyanate. This nerve conduit (10 mm 
long) was implanted in rats for 4, 12, and 24 weeks. They found regeneration of nerve 
tissue in the implanted site with no inflammatory reaction with degraded product [86]. 
Dezhznz et al. fabricated nerve conduits from biodegradable PU based on ε-PCL-diol, 
HDI, and PEO-diol. In in vivo study, myelinated axon regeneration and PU degrada-
tion were observed after 4 weeks and 12 weeks of implantation in rabbits, respectively 
[87]. Nowadays, researchers mainly focus on the development of fully functional 
nerve reconstruction in the minimum time span. The porous PU scaffold exhib-
ited good nerve regeneration potential due to high interconnectivity and varied pore 
sizes in the outer (42 μm), inner surfaces (9 μm), and cross-sectional (23 μm) area. 
Asymmetrical pores facilitate good wound inflammation waste drainage and better 
permeability for growth factor that leads quick nerve regeneration [88]. Researchers 
demonstrated new electroactive nerve conduits made up with PU based on poly (glyc-
erol sebacate) and aniline pentamer. Its higher electroactivity accelerated neuronal 
Schwann cells for high release of nerve growth factor that induced neurite growth 
and fast nerve regeneration [89]. 

Vascular Applications 

Blood vessels (veins, arteries, and capillaries) are functionally dynamic tissue 
with minimal regeneration potential. These vessels are long, elastic hollow tubes 
with varying thicknesses and architecture. Blood passes through these vessels and 
transports oxygen, nutrients, and waste products around the body. Various poly-
meric materials have been developed for blood vessel replacement. Clinical use of 
synthetic vascular grafts is limited mainly due to thrombosis and intimal hyper-
plasia. Thrombus formation is occurred by platelet adhesion and slow endothelial-
ization that leads to abnormal accumulation of vascular tissue in the graft lumen 
[90–93]. In order to solve these problems, a strategic approach like surface modi-
fication of synthetic vascular grafts has been adopted which enhanced the hemo-
compatibility and long stability of vascular grafts [91, 94]. PU is the most common 
polymer used for the production of blood-containing devices like blood bags and 
artificial hearts valve due to its good hemocompatibility and mechanical properties 
[90, 94]. Researchers modify the surface of PU with PEG and peptides in order to 
compliance with natural blood vessels [95–97]. Modified PU showed good mechan-
ical stability and less thrombogenicity. Researchers have designed PU film based 
on PCL, MDI, and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PHBV 
incorporation increased the mechanical properties and surface hydrophilicity of the 
film. Moreover, PU film showed exceptional cytocompatibility and hemocompati-
bility with poor platelet adhesion and haemolysis, suitable for vascular grafts [98].
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Fig. 3 a Scanning electron microscopic image and b 3D μCT image of electrospun PU vascular 
graft. Images of PU grafts just after implantation (no blood leakage observed) (c) and after 12 months 
implantation (well integrated with adjacent tissue with no inflammation and no thrombus formation) 
(d) [scale bars ~6 mm]. Reproduced with permission from Elsevier [100] 

Long-term mechanical stability of vascular graft is needed for complete regenera-
tion and restoration of the vascular wall structure. Researchers developed mechan-
ically robust, long-lasting PU-based elastomeric scaffolds for vascular grafts [99]. 
Bergmeister et al. fabricated vascular grafts from biodegradable PU and these grafts 
showed good performance at the implant site of Sprague Dawley rat for one-year 
study [100] (Fig. 3). 

3.2 Polyurethanes in Hard Tissue Engineering Applications 

Calcified tissue like bone is categorized as hard tissue of the body. It has good 
healing ability under specific biological environments. Throughout our life, it under-
goes a continuous process of remodelling. However, severely damaged bones need 
immediate replacement with functional bone substitutes. The suitability of bone 
substitutes depends on their mechanical and structural properties such as strength, 
modulus, porosity, and size of pores that support cell mobility, vascular ingrowth, and 
bone tissue formation [48, 49, 101]. In the next section, we have discussed various 
biodegradable PUs scaffolds for bone tissue engineering.
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Polyurethane Scaffolds 

Since last decade, the development of biodegradable PU scaffolds has increased 
dramatically due to their tailorable physicochemical and mechanical properties. 
These biodegradable PU scaffolds have certain limitations like poor cell adhesion, 
differentiation, and biomineralization properties that may be due to pH changes 
around the scaffold after degradation. Although it is known that osteoblasts prolif-
erate and differentiate at physiological pH 7.4 [102], researchers have attempted 
to control pH changes in the microenvironment by designing a 3D printed PU-urea 
scaffold based on poly (D, L-lactic acid) diol with piperazine moieties and isosorbide-
HDI/HDI. In the in vivo study, the scaffold exhibited excellent cytocompatibility and 
bone tissue formation ability after 8 weeks of implantation. This is due to the stable 
neutral pH maintained by piperazine after the degradation of the scaffold [103–107]. 
In another study, researchers designed chondroitin sulfate sodium (bone extracel-
lular matrix component) grafted PU-based scaffolds to promote osteoblast adhesion 
and bone tissue regeneration [108, 109]. Inorganic fillers were incorporated to gain 
mechanical properties as compared to bare polymers. Researchers have incorporated 
bioactive particles like hydroxyapatite (Hap, an inorganic component of bone) into 
the PU matrix and enhanced the mechanical properties as well as the bioactivity (e.g., 
osteoconductivity, supports bone tissue formation) of scaffolds [110–112]. Liu et al. 
incorporated Hap in PU during the PU formation step and designed a highly porous 
(pororsity ~83%) scaffold with good mechanical properties (compressive strength 
~554 kPa) [112]. Similarly, Nasrollah et al. prepared PU-Hap scaffolds via in situ 
polymerization and described the role of Hap in pore creation as well as cell attach-
ment and proliferation on the scaffold [113]. In another study, researchers showed 
that Hap-incorporated PU scaffolds significantly enhanced cell adhesion and prolifer-
ation both in cell study and animal study. Researchers demonstrated the suitability of 
highly porous (porosity ~78–81% and pore size ~300–1000 μm) Hap-incorporated 
PU foam in the biomineralization and bone tissue regeneration process. They found 
the formation of bone matrix and trabecular regeneration in their study that showed 
excellent biocompatibility and osteogenic differentiation of cells in presence of Hap 
incorporated PU foam [114]. Scientists implanted citric acid (calcium-complexing 
agent) incorporated PU scaffolds in oestrogen-deficient sheep and found high bone 
regeneration after 18–25 months [115]. All these studies showed that PU composite 
scaffolds can be potentially used in bone tissue engineering applications (Fig. 4).

Injectable Polyurethane Prepolymer Systems 

The injectable bone void fillers loaded with/without growth factors are commonly 
used for the treatment of bone defects. The formulation of two-component 
prepolymer systems that react upon mixing under mild conditions has the advantage 
of such delivery to the defect site through minimally invasive procedures. Researchers 
extensively investigated the potential of liquid two-part urethane formulation in such 
biomedical applications. The injectable prepolymer systems are formulated to form
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Fig. 4 Schematic presentation of piperazine-based PU-urea (P-PUUs) a Chemical formula of P-
PUUs, b 3D μCT images, and c H&E staining images [Scale bar ~1 mm (top image) and 500 μm 
(bottom images)] after 8 weeks implantation of scaffolds (different content of piperazine) in rat 
model. Reproduced with permission from the American Chemical Society [103]

cross-linked polymer networks upon completion of the urethane formation once the 
components are mixed together. These liquid two-part urethane systems should be 
formulated in such a way that no by-products (low molecular weight) are released 
during curing, and they cure with a low reaction exotherm (not exceeding body 
temperature) [7]. Gunatillake et al. developed multiple PU prepolymers systems for 
varied applications in the biomedical field including tissue engineering [116]. They 
mixed diisocyanates ELDI or MLDI (liquids at and above ambient temperature) with 
multifunctional core molecules (pentaerythritol, glucose or glycerol) and produced 
isocyanate end functional prepolymers (Prepolymer A) which were viscous liquids 
at ambient temperature. Polyester polyol like PCL /PLA /PGA /PLGA polyols was 
used as the second component (Prepolymer B). The reaction of the two prepoly-
mers (Prepolymer A and Prepolymer B) produced a cross-linked polymer network 
at ambient temperature. With the appropriate choice of polyols and diisocyanates, 
they produced a cross-linked PU network with a wide range of mechanical properties 
(Compressive strength ~260 MPa, compressive modulus ~2 GPa) [25, 35, 116, 117]. 
PU prepared by this approach showed good compatibility with osteoblasts. It is found 
that highly viscous liquids create some miscibility and injectability issues. To erad-
icate these issues, Guelcher et al. have employed a quasi-prepolymer approach and 
end-capped all the polyol hydroxyls with excess use of polyisocyanate (NCO:OH
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equivalent ratio >5:1). The excess diisocyanate kept the viscosity low of the quasi 
prepolymer, and formed PU networks by the reaction of the available isocyanate 
groups with a polyester polyol. The compressive strength and modulus of PU films 
were in the range of 82–111 MPa and 1200–1430 MPa, respectively. PU films were 
found to release nontoxic degraded products and supported the attachment and prolif-
eration of MC3T3 cells [118]. The degradation, safety, and suitability of injectable 
prepolymer systems were also evaluated in an animal model (in sheep). PE and ELDI 
were used as Prepolymer A, and PE and DL-lactic acid (molecular weight 456) or 
PE and glycolic acid (molecular weight 453) were used as Prepolymer B. The cured 
polymers in this study exhibited compressive strength and modulus in the range 
of 100–190 MPa and 1600–2300 MPa, respectively. So, researchers had used both 
precured scaffolds and prepolymer liquid mixture for in vivo study. Precured cylin-
drical scaffolds (diameter ~10 mm) were implanted in sheep femurs, and prepolymer 
mixture in liquid form was injected to fill the voids and allowed to set for 8–10 min 
before closing the surgical site. This study demonstrated that PU in both forms 
(injectable and precured) did not show any surgical issues, even new bone tissue 
formed and PU degraded gradually [117] (Fig. 5). 

Fig. 5 Formation of PU network  [119]. Adapted with permission from Elsevier [2]
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4 Polyurethanes in Drug Delivery Applications 

PUs are a common choice for the synthesis of drug delivery vehicles due to their 
tunable composition and tailor-made properties. Several drug delivery systems in 
different forms like micro/nanosystems (micelles, micro/nanoparticles), membrane/ 
film systems, and matrix systems such as gels or scaffolds based on degradable PUs 
have been reported [2–6, 119–121]. Various forms of PU-based drug delivery systems 
are tabulated in Table 4. In numerous reports, the release behaviour of PU systems is 
generally correlated with the composition, swelling, and degradation rate at different 
pH. The drug release from PU matrices relies on the loading content and solubility of 
the drug as well as the degradation rate and swelling of the matrices [2, 122]. Water 
swollen PU system showed a linear relationship between cumulative drug release of 
a hydrophilic drug such as tenofovir with time [123]. Moreover, a more linear release 
of dapivirine (another anti-retroviral agent) was observed from water-absorbed PU 
matrices than from non-water-absorbed PU matrices due to controlled dapivirine 
diffusion [123].

The stimuli-responsive structure of PU facilitated the modulation of the drug 
release profile by tuning the degradation and/or adjusting the glass transition temper-
ature of PU. Temperature increases the mobility of the PU chains, weakening the 
interactions between PUs and drugs; thereby leading to enhanced drug diffusivity 
[4, 122]. Fast degradation of PU matrix shows a more rapid drug release compared 
to non-degrading or slowly degrading PU matrix. Drug delivery vehicles based on 
PUs with quick degradation have been developed by introducing highly degradable 
PLA or PLGA into PU chains; tuning the degradation rates by changing their molar 
ratio in the final PU [124–127] (Fig. 6).

Multiresponsive such as temperature, pH, redox, or enzyme-sensitive PU drug 
delivery systems have been also reported. The first stimulus, i.e., the temperature 
normally permits drug carriers to enter into cancer cells, and the second stimulus 
(for example enzyme attack) initiates the disassembly of polymers leading to final 
drug release [52]. Redox-responsive PU (PLA-dithiodiethanol-PLA diol) based self-
assembled micelles were stable at physiological pH, whereas drug release occurred in 
the microenvironment of the cancer cells (acidic pH) [128]. Another stimuli assisted 
degradation is currently being explored and a major focus is on the development of 
enzymatic intracellular responsive PU systems for anticancer drug release [129]. A 
summary of several drug delivery systems based on PUs has been tabulated below. 

5 Tissue Adhesives Applications of Polyurethanes 

In most of the surgical procedures in the world, stapling/suturing is used for the 
purpose of tissue binding that keeps the tissues attached for healing and lessens 
bleeding. Uncontrolled bleeding and air/gas leaking are the few complications of 
these techniques. There is an emergence to develop an advanced tissue closure
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Table 4 Polyurethane-based drug delivery systems 

Delivery system Drug incorporated Outcome 

PU nanoparticles Adriamycin – Temperature-responsive PU nanoparticles 
were created by using PEG and LDI (L-lysine 
ester diisocyanate) 

– Drug release behaviour depends on the 
transition temperature of LDI-PEG600 [130] 

PU nanoparticle Doxorubicin (DX) pH and temperature-responsive PU 
nanoparticles were synthesized using HDI and 
MDI [131] 

PU nanoparticles DX pH sensitive PU nanoparticles showed high 
cellular internalization and high 
anti-proliferative effects on MCF-7 cells 
(human breast cancer) [132] 

PU nanoparticles paclitaxel Paclitaxel-loaded PU nanoparticles showed 
good distribution in healthy mice [133] 

PU microparticles Epigallocatechin 
gallate 

Epigallocatechin gallate-loaded PU showed a 
toxic effect on Detroit 562 cells (human 
pharyngeal carcinoma) and SCC-4 cells 
(squamous carcinoma) [134] 

PU microparticles DX PU microparticles showed effective 
transportation of DX into cells and high 
anti-tumour activity towards cancer cells and 
3D multi-cellular tumour spheroids [135] 

PU conjugates DX DX-loaded PU conjugates showed a high 
release of the drug under acidic conditions. It 
showed pH and ultrasound triggered drug 
release and inhibit tumour growth [136, 137] 

PU nano micelles Paclitaxel PU nano micelles are easily internalized into the 
cells and released paclitaxel within tumour cells 
under an acidic environment [138] 

PU nano micelles DX – Showed sustained release of DX at different 
pH. DX-loaded PU micelles exhibited high 
toxicity against RAW 264.7 and MCF-7/ 
ADR cancer cells [139–143] 

– They also showed high anti-tumour efficacy 
in in vivo studies 

– Folic acid-conjugated DX-loaded PU 
micelles easily internalized into KB cells 
(human epidermoid carcinoma cell), and 
showed high toxicity with the release of DX 

– Thermoresponsive PU nano micelles have a 
lower critical solution temperature at 41–43 
°C comparable to cancer tissue temperature. 
DX-loaded PU nano micelles exhibited high 
toxicity (almost 90%) towards MCF 7 cells

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU micelles DX – Redox-sensitive PU micelles showed 
controlled release of DX in the presence of 
glutathione (a reducing agent) and high 
cytotoxicity towards cancer cells [144–150] 

– DX-loaded PU micelles showed high 
anticancer activity and toxicity against C6 
cells (rat glioma cells), Saos–2 cells, MCF-7 
cells, and HeLa cells due to the quick release 
of DX under an intracellular reducing 
environment 

– Redox and pH-responsive PU micelles also 
showed toxicity to C6 cells due to the 
controlled release of DX 

– At low pH, DX was rapidly released and 
effectively transported into the cell nuclei and 
showed cytotoxic effects to cancer cells 

– The enzymatic degradation of PU micelles 
chiefly occurred at the ester linkage under the 
physiological condition for 8 weeks 

PU micelles Paclitaxel Showed pH-responsive release of paclitaxel 
from PU micelles into H460 cancer cells [151] 

PU micelles DX and paclitaxel Redox-responsive PU micelles exhibited high 
cytotoxicity towards tumour cells (HepG2) 
[128] 

PU microcapsules DX – pH-sensitive PU microcapsules showed a 
controlled drug release profile 

– Those microcapsules are easily internalized 
into Hela cells and BGC 823 [152] 

PU matrix Cefamandole nafate – Showed controlled release of drug and 
prolonged antimicrobial activity upto day 9 
[153, 154] 

PU matrix Metoprolol tartrate – Drug loading efficiency ~65% 
– Can be administered through the oral route 
[155] 

PU pellet Model drugs – Double-coated PU pellets fabricated by using 
(carboxymethyl)(ethyl)-cellulose and azo 
polymer for controlled release of drug 

– Colon-specific delivery [156] 

PU thermogel DX – Showed sustained release of DX and an 
anti-melanoma effect on tumours [157] 

PU core–shell 
nanogel 

DX – Redox-responsive PU gels were designed 
with hydrophilic PEG [158] 

– Reducing agent, Glutathione triggered the 
drug release at pH = 7.4 

PU film Chlorhexidine 
diacetate 

– Showed antibacterial activity against 
Staphylococcus species [159]

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU film Gemcitabine – Initial burst release [160] 
– Local drug delivery applications 

PU films Methotrexate – Methotrexate was released with almost 
zero-order kinetics for 96–144 h [161] 

PU core–shell 
nanofiber 

5-fluorouracil and 
paclitaxel 

Drugs were released in a controlled manner at 
both acidic and physiological pH [162] 

Gold-coated PU 
nanofibers 

Temozolomide Sustained release of temozolomide was 
observed for 30 days which inhibit the growth 
of U-87 MG human glioblastoma cells [163] 

Amphiphilic block 
segmented PU 
nanofiber 

Curcumin Curcumin-loaded triblock (PEG-PCL-PEG) 
segmented PU nanofibers were fabricated. 
These nanofibers showed a steady release of 
curcumin for 18 days and good antibacterial 
activity against Escherichia coli and 
Staphylococcus aureus [119] 

PU membranes Paclitaxel Temperature responsive PU membranes were 
fabricated with a lower critical solution 
temperature of 44 °C. Below this point, the PU 
matrix prevented the diffusion of paclitaxel; 
upon heating above this temperature, the matrix 
suddenly switched on and diffusion of the drug 
occurred [164] 

Waterborne PU 
membrane 

DX Waterborne PU membranes showed fine 
biodegradability, favourable cytocompatibility, 
hemocompatibility and sustained release of DX 
caused high toxicity to tumour cells [121] 

Waterborne PU 5-fluorouracil The release rate of 5-fluorouracil was tuned 
with the length of the chain extender and 
molecular weight of PEG [165] 

PU foam Gefitinib Gefitinib was released in a controlled manner 
for nine months. This can be used for the 
treatment of broncho tracheal cancer [166] 

PU foam Anticancer compounds 
DB-67 and DX 

– Drugs were covalently attached to PU foam 
– Differential release of drugs depends on the 
chemical structure of the drug and 
temperature [167] 

PUs scaffold Platelet-derived 
growth factor (PDGF) 

– Biphasic release of growth factor 
– PDGF-loaded PU showed wound healing 
potential in in vivo study [168] 

PU scaffold Recombinant human 
bone morphogenetic 
protein (rBMP) 

– Sustained release of rBMP enhanced new 
bone tissue formation [169]

(continued)
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Table 4 (continued)

Delivery system Drug incorporated Outcome

PU adhesive Thiamazole diclofenac 
and ibuprofen 

– Pressure-sensitive PU adhesive showed 
excellent stabilization of the drugs without 
any irritation in the skin [170] 

Modified PU Ibuprofen – Ibuprofen was incorporated in the polymeric 
backbone via ester linkages, and release was 
based on the degradation of ester bonds [171] 

PU dual delivery 
system 

Dapivirine, tenofovir – Sustained release of drugs over time [123] 

PU implant Cyclophosphamide – Controlled release of the cyclophosphamide 
[172]

Fig. 6 Formation scheme of PU-PLGA and PU-PLLA-PEG. Reproduced with permission from 
Elsevier [127]
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that replaces sutures. Therefore, tissue adhesive materials have been developed and 
are available in the market in different forms [52]. Based on the purpose, tissue 
adhesives are categorized in three different forms: (a) Haemostats are commonly 
used when blood loss occurs due to tissue damage, this material stops bleeding by 
involvement in the clotting process; (b) Sealants are commonly applied as a phys-
ical barrier during blood leaking. They act as a mid-range adhesive to tissues; (c) 
glues strongly adhere to tissues [173–175]. The performance of these materials is 
usually better in a dry environment; however, it is required to perform well in wet 
conditions also [176]. Besides this, a few other properties like fast curing time, no 
or low swelling, mechanical stability, and biocompatibility are the key requirements 
for tissue adhesive [177]. Polymeric tissue adhesives, chiefly PUs-based adhesives, 
have been extensively studied due to the reactivity of –NCO group in the PU back-
bone. The –NCO group reacts with water and –OH groups and accelerates tissue 
adherence in wet conditions. Thus, –NCO terminated PU adhesives can be easily 
cured in aqueous environment. However, the exothermic reaction water with –NCO 
group and toxic effects of these materials limit their applications [173, 178–182]. 
So, researchers developed saccharide based PU solutions for tissue adhesives appli-
cations. Numerous –OH groups from saccharide facilitated the adhesion process 
via hydrogen bonding because no free –NCO groups were available in the mate-
rial [183] (Fig. 7). Researchers also improved curing time (cured with minutes) 
by designing biobased photo-crosslinkable networks based on oxidized urethane-
modified dextran [184] or methacrylate end-capped PLA [185]. A few systems on 
biobased PU tissue adhesives have been developed so far. Still, research needs to 
be carried out to develop biobased PU adhesives for surgical adhesive applica-
tions. TissuGlu® is the PU-based (Lysine-derived Urethane) tissue adhesive which 
is commercially available in the market [52, 176]. Recently, Zou et al. designed a 
multifunctional wound adhesive using L-Arginine-based degradable polyurethane 
and gelatin-methacryloyl. It showed shape-adaptive adhesion and haemostatic effect 
of the damaged organ on rat liver haemorrhage model [186].

6 Conclusion and Future Prospective 

Over the last two decades, many research groups have widely explored the potential 
of biodegradable PUs for biomedical applications, especially in tissue engineering 
and drug delivery field. In this chapter, we have discussed the tailor-made properties 
of biodegradable PUs with varied soft and hard segments; their biocompatibility both 
in vitro and vivo environments. The biomedical applications of biodegradable PUs 
have been discussed in detail covering tissue engineering, drug delivery, and tissue 
adhesive applications. With many supporting studies to confirm biocompatibility, 
the ability to tailor mechanical properties, and degradation kinetics coupled with 
numerous processing options, biodegradable PUs offer attractive future opportunities 
to fulfil needs for next generation biomaterials. For translation research, studies 
should be more emphasized on preclinical evaluation because of the limited number
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Fig. 7 Xylose-based PU for tissue adhesives applications. Reproduced with permission by 
Balcioglu et al. [183]

of in vivo studies available on biodegradable PU. The efficacy and safety of PU system 
should be demonstrated. The clearance of degraded products by metabolizing organs 
should also be thoroughly assessed. 
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Chapter 7 
Biodegradable Polymers—Carriers 
for Drug Delivery 

Nidhi Gupta, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Drug delivery carriers are pharmaceutical formulations that can incorporate thera-
peutics and deliver them as efficiently as possible into the body’s systemic circu-
lation. They are intended to regulate the amount and duration of therapeutics in 
blood plasma, as most therapeutics have a short half-life, enzymatic hydrolysis, 
low stability, and first-pass metabolism on their way to the target [1, 2]. Carriers 
serve as a protective barrier during administration, enhancing pharmacological 
activity, stability, and site-specificity. Additionally, lowering the cost of multiple-
dose, extended therapies, and avoiding side effects to improve patient compliance 
[3]. These therapeutic carriers are pharmaceutical reformulations that are engineered 
based on the need and location of administration in the body. They are capable of 
carrying both hydrophilic and hydrophobic drugs and can be in the form of nano/ 
micro particulates, hydrogel, or implantable devices [4–6]. 

Biodegradable polymers have gained insight into the drug delivery system because 
of their inherent advantage of the controllable degradation rate, mechanical prop-
erty, specificity, and ease of forming into different shapes [7]. The degradation rate
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permits the release of active ingredients sustained over days to months, thereby main-
taining the therapeutic plasma concentration over a prolonged interval. Moreover, 
their degradants are naturally excreted from the body and are not immunogenic or 
harmful, which reduces the need for secondary surgical intervention, saving cost and 
time [8, 9]. Nevertheless, it has broadened the administration method for treatments 
from intravenous to oral, subcutaneous, and pulmonary and targeted, tailored each 
with the required need. These biopolymers encapsulate the payloads either by embed-
ding them into the matrix or conjugating them with the polymers to transport them 
into the body. Moreover, the therapeutics are delivered from these carriers, either by 
surface erosion that accompanies the release of an entrapped drug; cleavage of a cova-
lent bond between the conjugated therapeutics and polymer; from the bulk or surface 
of the polymer, followed by diffusion of active molecules or by diffusion-controlled 
of therapeutic with bioabsorption of the polymer [10]. 

Biodegradable polymers can be natural or synthetic, according to their origin. 
Natural polymers (polypeptides, polysaccharides, etc.) are susceptible to chemical or 
enzymatic attack, making them feasible to implant in the body [11]. At the same time, 
synthetic polymers (polyamides, polyesters, polyorthoesters, etc.) undergo cleavage 
under hydrolytic conditions. 

This chapter aims to introduce a different kind of biodegradable polymer, the 
mechanism of drug release, and the commercially available drug delivery devices in 
drug delivery applications (Fig. 1). 

Biodegradable polymer 
(Drug delivery) 

Natural Synthetic 

Proteins 

Polysaccharides 

Polyesters 

Polyamides 

Polyorthoesters 

Polyphosphoesters 

Fig. 1 Classifying biodegradable polymers for drug delivery applications
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2 Natural Biodegradable Polymers for Drug Delivery 

Natural polymers used for the development of pharmaceutical formulations are 
animal or plant-based proteins (collagen, albumin, and gelatin), polysaccharides 
(chitosan, dextran, and hyaluronic acid), and others—cellulose, starch, soy protein, 
zein, as well as proteins obtained from a microbial source. They are abundant in nature 
and have distinguished characteristics of biocompatibility, cell-activated proteolytic 
degradation, and low toxicity. However, they could be immunogenic and frequently 
need chemical alteration before being employed to create drug delivery carriers. 

2.1 Chitosan 

Chitosan, commonly referred to as soluble chitin, is the only cationic polysaccharide 
FDA-approved for use in medicinal delivery (Table 1) [12]. It is extracted from the 
exoskeleton of crustacean shells, insects, and fungal cell walls. It results from the 
deacetylation of chitin, which consists of random units of glucosamine and N-acetyl-
glucosamine in its main chain, which regulates the pace of its breakdown [13]. It 
is the perfect choice as a gene carrier since the positive charge helps build a stable 
combination with the negative chemicals. Additionally, the polymer’s inclusion of 
–OH and –NH2 enables the development of a hydrogen bond, giving it the bio-
adhesion property that enables it to pass through the tight junctions of epithe-
lial cells and improve drug delivery [14]. The mucoadhesive characteristic also 
contributes to a more prolonged therapeutic residence duration for a more steady 
and controlled medication release. It has strong hydrophilicity and thus can be used 
for preparing carriers of various sizes. These carriers can be degraded by various 
enzymes such as pepsin, lysozymes, cellulases, chitosanase, pectinases, and lipases; 
and are nontoxic and bioresorbable [15]. The therapeutics’ can be released from 
the carrier by surface erosion, bulk degradation, drug diffusion, drug adsorption, or 
a combination of erosion and degradation. The high physiochemical stability, easy 
functionality, mucoadhesive property, and non-toxicity make it an excellent choice 
for drug carriers, tablet coating, tablet excipients, wound dressing and healing, gene 
delivery, and diagnostics [16].

2.2 Hyaluronic Acid 

Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan with high molecular 
weight formed by linear repeating disaccharides units of β-1,3-N-acetylglucosamine 
and α-1,4-D glucuronic acid connected by alternating α-(1,4) and β-(1,3), respec-
tively (Table 1). HA is a mucopolysaccharide found in the extracellular matrix of 
connective tissues, the eye’s vitreous humor, umbilical cords, joint fluid, mucus, and
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Table 1 Chemical structure of biodegradable polymers used in drug delivery 

Natural Polymer Synthetic Polymer 

Chitosan 

Hyaluronic Acid 

Dextran 

α (1,3) 

α (1,6) 

Collagen 

Polyhydroxyalkonates 

PLA 

PCL 

PLGA 

Polyanhydrides 

Poly(phosphoesters)

skin. It is mainly derived from rooster comb, umbilical cord or synovial fluid (animal 
source), and vertebrates from microorganisms (Strptoccous bacteria) for commer-
cial use [17]. However, isolating end-stage products is problematic because of animal 
heterogeneity and the presence of endotoxins in microorganisms. However, due to its 
unique physiochemical features, it is being extensively investigated in drug delivery. 
It is an anionic polymer in physiological conditions due to the carboxylic groups in 
every disaccharide unit, which ionize at pH 7.4. It has a high water-binding capacity 
and interesting viscoelastic behavior due to the interchain interaction of hydrogen 
bonds [18]. It has poor mechanical properties but can be chemically modified by 
crosslinking or conjugation due to its backbone’s functional groups (carboxyl and 
hydroxyl). Thus, functionalized HA can be used for fabricating carriers like hydro-
gels or gel particulates. Moreover, HA receptors in the body (CD44 cells) aid in 
the targeted delivery of antitumor drugs. The HA degrades naturally in the body by 
enzymes such as hyaluronidase. Thus, HA and its derivatives can be used for devel-
oping sustainable and controlled-release carriers for various drugs such as antitumors, 
proteins, peptides, and nucleic acids [19, 20].
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2.3 Dextran 

Dextran is a branched, neutral polysaccharide with high molecular weight derived 
from bacteria or by chemical synthesis. It consists of α-1, 6 linked D-glucopyranosyl 
linear chains of varying length and some branches of α-1, 2/ 3/ 4 linkages that 
vary depending on the bacterial strain (Table 1). It is naturally synthesized extra-
cellularly by lactic acid bacteria using dextransucrase, a catalytic enzyme that aids 
in converting D-glucopyranose of sucrose to dextran. However, mass production is 
produced from both a batch-wise fermentation of Leuconostoc mesenteroides NRRL 
B512 F strain in the presence of sucrose, and chemically produced from cationic ring-
opening polymerization of levoglucosan. Dextran is biocompatible, hydrophilic, non-
immunogenic, and stable in moderate acids and bases. In vivo dextran is degraded 
enzymatically, allowing the development of carriers with controlled and sustained 
delivery of therapeutics [21]. Furthermore, the presence of the hydroxyl group 
enables easy chemical alteration of dextran’s physiological properties to yield acetal, 
ester, dialdehyde, and ether [22, 23]. Dextran’s esterification improves its flocculation 
efficiency in an acidic environment. Etherification changes the hydrophilic–lipophilic 
balance and ionic strength of the compound while decreasing enzymatic breakdown. 
A double bond in the side chains enables the photo-crosslinking of dextran, allowing 
the creation of hydrogels. Conjugation of drugs by covalent bonds prevents immune 
clearance and metabolism of drugs. Furthermore, the functionalization of dextran 
assists in tailoring stimuli responsiveness for the controlled delivery of drugs. Thus, 
it is a widely investigated carrier for proteins, plasmid DNA, and vaccines in the 
form of microspheres, hydrogels, or drug excipients [24]. 

2.4 Collagen 

Collagen is a natural protein, fibrous in nature, obtained from animal or human 
sources. It is present in connecting tissues and constitutes about 25–35% of the 
body’s protein. Up until this point, 28 different types of collagen have been reported. 
Atelocollagen is one of those that are utilized in drug delivery applications. It has low 
antigenicity because telopeptides are removed to obtain it. Collagen has been used as 
a drug delivery carrier due to its biodegradability, biocompatibility, adaptability, easy 
modification, hemostatic property, good absorption, and moldability (Fig. 2). They 
are developed as sponges for burns/wounds, shields in ophthalmology, injectable 
hydrogels for loading growth factor, pellets/tablets for protein delivery, and nanopar-
ticle formulations for antibiotics dressing and gene delivery [25–27]. The presence of 
–OH, –NH, and –COOH groups on collagen molecules aids in easy chemical modifi-
cation (Table 1). The mechanical, thermal, pH, and enzymatic stability is not provided 
alone by collagen, but in combination with other natural polymers such as chitosan, 
alginate, etc. Recombinant collagens and collagen-like peptides are being investi-
gated as potential substitutes for extracted animal collagens. The inability of these
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Fig. 2 Drug delivery devices of collagen [27]. Adapted with permission from Refs. [23, 27]. 
Copyright 2022 The Author(s). Licensee IntechOpen 

substitutes to assemble into common D-periodic fibrils, which frequently perform 
biologically significant activities, poses a significant obstacle to their usefulness. 
However, the recombinant bacterial collagen can be functionalized and crosslinked 
to give the material properties [28, 29]. 

2.5 Albumin 

Albumin is nature’s drug delivery carrier. It is the most common plasma protein, 
accounting for approximately 40% of protein mass at a serum concentration of 35– 
50 mg/mL. It is created in the hepatocytes of the liver, where 10–15 g of albumin 
are produced and released into the vascular space each day [30, 31]. Because of this, 
albumin has fewer adverse effects than other carriers if it extravasates into tissues and 
then returns to the vascular space via the lymphatic system. It helps maintain 80% 
osmotic pressure, maintains plasma pH, and has a 19-day circulatory half-life. Three 
homologous α-helical domains, I, II, and III, make up its structure (Fig. 3). Two 
helical sub-domains (A and B, respectively) comprise each domain. Due to unpaired 
cysteine and Sudlow’s sites I and II, it has seven fatty acid binding sites, seventeen 
disulfide binding sites, and one free thiol binding site [32]. As a consequence, it 
acts as a carrier for both endogenous and exogenous compounds. It has a binding 
affinity for hydrophobic molecules such as steroid hormones, fatty acids, folate, 
biliary acids, Vitamin D and C, and many other drugs. This bond between albumin and



7 Biodegradable Polymers—Carriers for Drug Delivery 155

Fig. 3 Crystal structure of human albumin [32]. Adapted with permission from Refs. [28, 32]. 
Copyright © 2016 Larsen et al. 

hydrophobic substances is reversible, thus facilitating easy transport and release of 
molecules onto the cell surface [33]. Moreover, the presence of a high level of amino 
acids on its surface, imparting it the negative charge, thus helps to conjugate drugs 
on the surface of nanoparticles by an electrostatic mechanism with charged drugs 
(positive/negative (Ganciclovir)) or amphipathic drug (Doxorubicin). Commercially 
available albumin-based formulations include Albuferon (hepatitis C), Levemir® 

and Victoza® (diabetes), Tc-Nanocoll 99 m (nuclear medicine), and Ozoralizumab® 

(arteritis treatment) [31, 34]. 

2.6 Polyhydroxyalkanoates (PHA) 

Polyhydroxyalkanoates (PHA) (Table 1) is the biopolyesters obtained from microor-
ganisms (Alcaligenes latus, Cupriavidus necator, and Pseudomonas aeruginosa) 
under the condition of limited nutrients (nitrogen, oxygen, sulphur, magnesium, 
or phosphorus) and excessive renewable carbon (fatty acids, carbohydrates, lipids 
organic acids, etc.). The PHA particles consist of a polyester core inside a phos-
pholipid and protein shell, providing hydrophobic properties. PHAs are naturally 
metabolized during physiological processes into substances like 3-hydroxybutyrate
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and hydroxyacyl-coenzyme-A [35, 36]. This contributes significantly to PHAs’ 
non-immunogenicity, biocompatibility, and excellent bioresorbability; making them 
attractive as drug delivery carriers. Moreover, the hydrolysis of PHA is very slow; it 
depends on the porosity of the surface and molecular structure of the monomer, thus 
allowing to the tune of the release of therapeutics over the desired period of weeks 
or months [37]. Among all PHAs, Poly-3-hydroxybutyrate (PHB) and copolymers 
of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) have been extensively used in 
drug delivery applications [38]. They are formed into biodegradable implants for 
local delivery of antibiotics for the prevention of postoperative and implant-related 
infection, microdevices (microspheres, microcapsules) for the controlled delivery of 
drugs like steroids, anesthetics, antibiotics, and vaccines; drug-releasing coating on 
stents to prevent arterial blockage [39]. 

Ionic polymers make up the majority of all-natural polymers. They can release 
therapeutics in response to changes in the environment’s pH. For example, cationic 
polymers like dextran, chitosan, and gelatin can release drugs in the acidic condi-
tions of tumors, i.e., in the endocytosollic cellular compartment. However, hyaluronic 
acid and gelatin-based anionic polymers can shield therapeutics from an acidic envi-
ronment. In addition, natural polymers are highly biodegradable, but it has certain 
limitations such as (1) difficulty to purify, (2) batch-to-batch variability, (3) difficulty 
in identifying chemical structure, (4) lack of reproducible degradation rate (5) broad 
molecular weight distribution, and (6) most of the natural polymers are water-soluble 
and need some crosslinker to use them as a drug delivery carrier, thus making them 
less attractive then synthetic polymers as they are biologically inert, reproducible, 
versatile, and their chemical properties can be precisely controlled. 

3 Synthetic Biodegradable Polymers for Drug Delivery 

Synthetic polymers are man-made materials with well-defined chemical structures 
and degradation rates whose properties can be tailored according to the thera-
peutic need. They generally degrade by hydrolysis with a reproducible degradation 
rate without having any immunological concerns associated with naturally derived 
polymers. The most extensively used synthetic biodegradable polymers in drug 
delivery include polyesters, polyanhydrides, polyphosphazenes, polyorthoesters, 
polyanhydrides, and polyamides. 

3.1 Polyesters 

The polyester-based biodegradable polymers most explored for the drug delivery 
carriers are poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic acid-
co-glycolic acid) (PLGA), and polycaprolactone (PCL). They are biocompatible,
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reproducible, and cost-affordable. They degrade in the physiological environment 
by hydrolysis, oxidation, or by enzymatic reaction of the ester bond. 

3.2 Polylactic Acid (PLA) 

PLA (Table 1) is an FDA-approved linear aliphatic biopolymer from renewable 
resources like sugarcane and corn. Ring-opening polymerization or the polyconden-
sation method is used to create it commercially. PLA comes in two optical forms: 
D-lactide (amorphous) and L-lactide (semicrystalline). The D- and L-isomer racem-
ization process or a hydroxyl acid comonomer component can be used to modify 
PLA’s physical properties and biodegradability [40]. Due to its biocompatibility 
and biodegradability, PLA nanomaterial has found widespread use in drug delivery 
devices. There are approximately 15 formulations for direct human contact with 
PLA. FDA has approved PLA as a drug delivery device for the regulated release 
of antibiotics, antidiabetic, antitumor, antipsychotic, antidiarrheal therapeutics, and 
opioid antagonists [41]. They appeal because their hydrolysis product, L-lactic acid, 
is not bioaccumulative in organs and is excreted via the renal route. Moreover, 
their degradation rate can be tailored by various methods such as using a hydroxyl 
acid comonomer; racemization of the D- and L-isomer; grafting with a hydrophilic 
polymer like PEG, or tuning the molecular weight of the polymer. Thus, it aids in 
controlling the pharmacokinetics properties of therapeutics [41, 42]. 

3.3 Poly(ε-caprolactone) (PCL) 

PCL is a semicrystalline, biocompatible, and biodegradable aliphatic polyester 
produced by ring-opening polymerization of 1-caprolactone (Table 1). It is an FDA-
approved, non-mutagenic, and innocuous polymer and has been utilized in wound 
dressing, contraceptive devices, and drug carriers [43]. In vivo, the degradation of 
PCL happens in two stages; it starts with the hydrolytic degradation of the ester bond 
first, as there is no enzyme present in the body to degrade it. Moreover, it takes about 
(4–6 months) for the weight loss process to start. The intercellular degradation of 
PCL happens when its molecular weight reaches below 5000. This leads to bulk 
degradation of PCL accompanied by enzymatic surface erosion. This process takes 
place very slowly and takes about 2–3 years to form 6-hydroxy caproic acid (end 
product), which further metabolizes into adipate [44]. Thus, it has both bioresorbable 
and biodegradable properties [28]. Moreover, the degradation rate of PCL can be 
tailored by blending or co-polymerizing it with hydrophilic polymers such as starch, 
chitosan, polyethylene glycol (PEG), and polyvinyl alcohol (PVA). Another essential 
feature of PCL is that it is rubbery at room temperature due to low glass transition 
temperature (−60 °C) and melting point (60 °C), thus providing high permeability 
to therapeutics. Thus, PCL has been explored for encapsulating bioactives, peptides,
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proteins, DNA, siRNA, and oligonucleotides. As a result, many drug delivery devices 
are approved. Capronor [45], for example, is a contraceptive implant for prolonged 
delivery of levonorgestrel. 

3.4 Poly(Lactic-co-Glycolide) (PLGA) 

PLGA is an amorphous polyester, a copolymer of polylactic acid and polyglycolide 
(Table 1). It is produced from direct polycondensation of lactic acid (LA) and glycolic 
acid (GA) or by polyaddition of lactides and glycolides (ring-opening polymeriza-
tion) [46]. Here, the physiochemical property of the polymer rests on the Lactide to 
Glycolide (LA: GA) ratio, as it influences the degradation rate. The higher the GA 
content, the faster the degradation. In vivo, PLGA undergoes hydrolytic degrada-
tion of ester linkage to hydroxyl and carboxylic acid as the end product. This ester 
cleavage from the backbone reduces the polymer to lower molecular weight chains 
by enhancing the hydrophilicity and reducing them to water-soluble fragments. That 
subsequently reduces to lactic acid and glycolic acids, which further metabolize to 
form carbon dioxide, water, and energy. PLGA carriers inside the body can also go 
through auto-catalytic degradation, where acid-by-product remains entrapped in the 
bulk of the polymer, acting as a catalyst to degrade the polymer to glycolic acid 
and lactic acid [47, 48]. This degradation mechanism sometimes is not beneficial 
for sensitive therapeutic proteins, which may degrade them. However, this issue can 
be solved by incorporating non-aqueous bases into the system. Thus, PLGA has 
prepared carriers of various geometry and sizes to incorporate proteins, antitumor 
therapeutic, hydrophobic/hydrophilic therapeutics, and growth factors. PLGA is used 
to prepare Eligard, which contains Leuprolide Acetate, a hormonal drug for treating 
prostate cancer. Nano/microcarriers, linked with targeting ligands for the targeted 
release of antitumor drugs and vaccines. PLGA-based carriers are also developed for 
the triggered release of therapeutics, i.e., in response to changes in pH, temperature, 
light, or chemical. For example, PLGA-PEG-PLGA copolymer is created to create 
thermoresponsive micelles, where PEG acts as a thermoresponsive component. In 
addition, pH-responsive polymers like chitosan and polypeptides are also added to 
PLGA-based carriers to trigger the release of therapeutics in the tumor microenviron-
ment. For improved affinity, specificity, and delineation of the diseased area, efforts 
have been made to develop carriers with both therapeutic and diagnostic capabilities 
[49, 50]. 

3.5 Polyanhydrides 

Polyanhydrides (PA) are distinguished by the anhydride bond in their backbone, 
connecting the repeating unit of the polymer backbone (Table 1). Their structure 
can be modified according to the need; thereby they can be classified as aromatic,
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aliphatic, unsaturated, or crosslinked PA. They are hydrolytically unstable polymers 
believed to split into two carboxylic acids in the presence of water. However, the 
hydrolysis of anhydride bond happens in the presence of a base, thus its degradation 
is pH depend and degrades faster in basic media. Moreover, the degradation mech-
anism of the matrix follows surface erosion, as the hydrophobicity of the polymer 
chain restricts the water diffusion into the matrix. Thus, the therapeutic release would 
be directly proportional to the rate of surface erosion, also known as a surface-
eroding polymer [51]. However, its degradation rate can be tailored by modifying 
the monomer. Hence, it can vary from a few days (aliphatic PA) to several years 
(aromatic PA). Moreover, its degradation products are nontoxic and non-mutagenic, 
thus it does not irritate in vivo. The sterilization by γ-irradiation does not affect the 
mechanical and physical properties of the polymer [52]. Hence, it is widely used 
in drug delivery applications, such as injectable formulations, implants for local-
ized release, microcarriers, nanodevices, and so on for delivering vaccines, proteins, 
peptides, and gene delivery, e.g., Polysebaccic acid used to deliver Tetracaine and 
lidocaine (ophthalmic anesthetic) [53, 54]. 

Table 2 Biodegradable polymers in drug delivery 

Natural polymer Synthetic polymer 

Advantage • Hydrophilic 
• Cell/tissue 
specific binding 
affinity 

• Safe  
• Easily available 

• Design desired physicochemical features (copolymer) 
• Enhancing polymer functionality in delivery: 
crosslinking and surface modification through easy 
addition of functional groups 

• Controlled release profile for optimal therapeutic 
efficacy 

• Non-immunogenic 
• Can control mechanical and physical property by 
inducing branching 

Disadvantage • Possible 
immunogenicity 

• Require 
purification 

• Batch-to-batch 
variation 

• No controlled over 
the specification 
of raw material 

• Uncontrolled 
degradation 

• Short release 
profile 

• Require binding moieties to attain site-specificity in 
cells or tissues 

• Require synthesis 
• Scale up challenge 
• Hydrophobic
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3.6 Poly(phosphoesters) (PPE) 

Similar to aliphatic polyesters, poly(phosphoesters) have the phosphoesters linkage 
as the repeat unit in its main chain (Table 1), where pentavalency of phosphorus allows 
modification in its side group, thereby altering its physical and chemical properties. 
They can be synthesized by various routes, such as polycondensation, polyaddition, 
transesterification, ring-opening polymerization (ROP), and enzymatic polymeriza-
tion [55]. Depending on their side chain (alkyl or alkoxy) and phosphorus oxidation 
state, they are classified as polyphosphates (polyphosphodiester, polyphosphotri-
ester), and polyphosphonate, polyphosphate, and polyphosphoramidate [56]. PPE 
follows hydrolytic or enzymatic degradation, much like polyesters. The presence of 
five-membered rings and oxygen in its backbone makes it more hydrophilic than 
polyesters. Moreover, the pendant chain’s functional reactivity and length allow for 
fine-tuning of PPE’s solubility, for instance, with methyl functionality, it is water-
soluble and ethyl insoluble, making it an excellent option for controlled drug delivery 
devices [57]. Further, the advantages and disadvantages of biodegradable polymers 
in drug delivery application is summarized in Table 2. 

4 Mechanism of Drug Release 

Polymeric drug delivery carriers can be implantable devices, hydrogels, or colloidal 
carriers (micelles, liposomes, or micro/nanoparticles). The drug delivery systems 
are selected based on the length of therapeutic release and the path of administration 
into the body. Based on this, the drug release can occur through diffusion, matrix 
degradation, or a combination of both [48, 58, 59]. In carriers made of hydrophilic 
polymers, erosion-based degradation typically occurs. In these cases, the carriers 
take water from the environment and deteriorate the matrix due to hydrolysis of the 
polymer chain, swelling, disentangling, and ultimately dissolving from the carriers. 
On the other hand, the polymer may experience chemical modifications that cause 
cleavage of covalent bonds, chain protonation, or ionization. Thus, the erosion of the 
polymeric carriers happens with both chemical and physical processes. 

4.1 Chemical Erosion 

It refers to the decomposition of polymer chains into oligomers through hydrolytic 
cleavage or by enzymes. However, the involvement of enzymes is difficult for high 
molecular weight polymers, as it is difficult for enzymes (bulky group) to enter the 
carriers. Thus, in vivo enzymes act in the later stage, after the fragmentation of the 
chain, and degrade only the surface of the carrier.
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Type I erosion: This kind of erosion is primarily seen in crosslinked polymers that 
form a three-dimensional network, for example, hydrogels. The crosslinking makes 
the polymer insoluble in water. It can only swell in an aqueous environment to the 
extent that is allowed by its crosslink density. It is used for sparingly water-soluble 
drugs. 

Type II erosion happens in the polymer matrix, which becomes hydrophilic by the 
cleavage of the side chain or the pendant group by ionization or protonation, thereby 
making them water-soluble without any change in molecular weight—for example, 
cellulose acetate-derived polymers which become water-soluble by ionization of 
carboxylic group. 

Type III erosion: The hydrophobic polymer matrix follows this kind of erosion in 
which the polymer backbone is broken into small fragments, forming low molecular 
weight chains that further metabolize by enzymes or hydrolysis to water-soluble 
molecules, e.g., PLA, PLGA, poly (ortho esters). 

The three mechanisms described can be combined; they are not mutually 
exclusive. 

4.2 Physical Erosion 

The physical erosion of carriers happens in two ways: Surface erosion or Bulk erosion 
(Fig. 4). Surface erosion is a heterogeneous process; water diffusion through the 
matrix is slower than the rate of polymer degradation. Here, erosion happens from 
the surface and works downward layer by layer, maintaining the physical integrity 
as it degrades. Thus, the rate of erosion is directly proportional to the surface area 
of the matrix. It happens in the crystalline polymer. When it comes to bulk erosion, 
water penetrates the carrier at a faster rate than matrix degradation. Hence, it is 
a homogeneous process; degradation happens in the entire matrix. Additionally, 
the matrix’s volume affects the erosion rate. It happens in hydrophilic polymer, as 
hydrolysis happens at a uniform rate.

Surface or Bulk erosion is not exclusive; many materials undergo a combination 
of both. 

4.3 Release Kinetics Model 

There are mathematical models that can be used to predict the in vivo bio performance 
and the release mechanism of therapeutics from the polymeric carriers. The widely 
used kinetics model was linearly fitted to the concentration of therapeutics released 
over time [61, 62]. 

Zero order: 
Mt 

M∞ 
= k0 · t (1)
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Fig. 4 Schematic 
representation of bulk and 
surface erosion of polymer 
as modified from Verde 
et al.[60]

First order: 
Mt 

M∞ 
= ek1·t (2) 

Higuchi Model: 
Mt 

M∞ 
= kH · t1/2 (3) 

Hixson-Crowell: M1/3 
0 − M1/3 

t = ks · t (4) 

Korsmeyer-Peppas Model: 
Mt 

M∞ 
= k · tn (5) 

where, 
Mt : cumulative drug release at a specific time t, 
M∞: cumulative drug release at infinite time, 
M0: Initial amount of drug, 
k0, k1, kH and ks, k are the release constant. 
The zero-order model is employed in slow and prolonged drug delivery systems 

such as in tablets with hydrophobic drugs, or in ophthalmic or transdermal systems. 
The First Order is applicable for porous matrix containing water-soluble drugs. 
The Higuchi Model applies to saturated systems with various modified-release of 

pharmaceutical dosages, such as hydrophilic drugs from matrix carriers. Also, it is 
applicable for carriers with different geometries, such as spherical, cylindrical, etc. 

In the Hixon–Crowell model for cylindrical tablets, n characterizes the release 
mechanism.
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0.45 ≤ n: follows Fickian diffusion, 
0.45 < n = 0.89 non-Fickian transport, 
n = 0.89 zero order release, 
n > 0.89 Super Case II transport. 

5 Commercially Available Biodegradable Polymer-Based 
Formulations 

Some of the commercially available biodegradable polymer-based drug delivery 
carriers are: 

GLIADEL®: This drug delivery device is a wafer loaded with the chemotherapy 
drug Carmustine for treating brain tumors (glioblastoma multiforme). It is an implant 
developed from poly[bis(p-carboxyphenoxy)propane–sebacic acid] in a 20:80 molar 
ratio (Fig. 5) [63, 64]. 

Alburx®: This intravenously administered drug delivery carrier raises the blood’s 
albumin level by containing 5–25% of human albumin (a natural polymer). Therefore, 
used for treating trauma patients such as accidental blood loss, burns, etc. [65]. 

Lupron®: PLGA and PLA microspheres are used to carry luteinizing hormone-
releasing leuprolide acetate to treat endometriosis [66]. 

Decapeptyl SR®: It is a PLGA-based drug delivery carrier that delivers Triptorelin 
acetate to treat prostate cancer [67]. 

Triptodur®: It comes in the form of an extended-release injectable suspension devel-
oped from PLGA to treat advanced prostate cancer or precocious puberty in children 
[68].

Fig. 5 Gliadel wafers with 
BCNU implanted into a 
brain tumor [64, 65]. 
Adapted with permission 
from Refs. [59, 65]. 
Copyright © 2011 Elsevier 
B.V. All rights reserved 
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INFUSE Bone Graft: In the form of an absorbable sponge made from collagen, it is 
created for the delivery of bone morphogenetic protein-2 in spinal-fusion procedures 
[69]. 

Nutropin Depot®: It is an injectable suspension of PLGA micronized particles for 
delivering recombinant growth hormone in pediatric patients [70]. 

Abraxane®: It is used for the first-line treatment of breast cancer. It is 130 nm size 
albumin-bound nanoparticles loaded with Paclitaxel, an antitumor drug [71]. 

Eligard®: It is a PLGA-based formulation used for extended-release of Leupro-
lide acetate for subcutaneous injections. It is used in advanced prostate cancer for 
palliative treatment, i.e., to relieve pain and other symptoms [72]. 

Trelstar®: It is a PLGA-based suspension used to treat prostate cancer in men [73]. 

Zoladex®: It is an injectable implant of lactide/glycolide copolymer developed by 
AstraZeneca used to continuously deliver goserelin over 12 weeks to treat breast and 
prostate cancer [73]. 

OncoGel™: It is a formulation of tri-block copolymer(PLGA-PEG-PLGA) for 
delivering paclitaxel locally for the management of tumor [74]. 

Furthermore, several biodegradable polymer-based drug delivery carriers have 
been undergoing clinical trials or have been recently concluded [75]. 

6 Conclusion 

In the delivery of drugs, polymers are very helpful in improving the pharmacoki-
netics of therapeutic. As these natural and synthetic polymers are biocompatible, 
their degradation products are non-mutagenic, not toxic, and get biosorped into the 
system. Moreover, these polymeric carriers’ easy modification with wide side chain 
functionality aids in the site-specificity of therapeutic. Also, their pH/temp respon-
siveness allows the triggered release of therapeutics, thereby improving drug delivery 
efficiency and making it more patient-compliant. 
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Chapter 8 
Biodegradable Polymers for Food 
Packaging Applications 

Vikramsingh Thakur, Bhabani K. Satapathy, Chandrani Sarkar, 
and Sampa Saha 

1 Introduction 

Food packaging is a crucial step in the food supply chain, fulfilling critical tasks 
such as containing and transporting food, mitigating damage, and safeguarding 
against tampering and theft. Moreover, it plays a pivotal role in safeguarding food 
quality by acting as a barrier against external factors that can cause contamination 
or unintended alterations to the package. Polyolefins, poly (vinyl chloride) (PVC), 
polystyrene (PS), and poly (ethylene terephthalate) (PET) are frequently utilized 
plastics that can cause pollution, leading to negative impacts on the environment, 
including land, waterways, oceans, and living organisms, ultimately disrupting the 
ecosystem’s delicate balance. This situation can adversely affect nutrient cycles, 
habitat changes, aquatic ecosystems, the loss of keystone species, and severe health 
risks for people. Despite the presence of regulations prohibiting non-biodegradable 
plastics, researchers are still actively seeking new eco-friendly alternatives. The 
Asia Pacific, market of biodegradable food packaging is projected to enhance at 
a compound annual growth rate (CAGR) of 6.35% from 2021 to 2027, driven by a 
growing awareness of environmental conservation, particularly in the aftermath of the 
pandemic. In 2021, Europe produced around 436,000 metric tons of biocomposite/ 
bionanocomposites of polymers like Polylactic acid (PLA), Poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) (PHBV), Polycaprolactone (PCL), and Polyhydroxybutyrate 
(PHB). The most promising application of biodegradable materials is in edible pack-
aging, mainly protein-based films. The purpose of packaging is to protect, contain, 
and communicate to the customer, it can be served with biodegradable polymer in
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the form of bionanocomposites and blends. The inclusion of plasticizers, nanofillers, 
and polymer/oligomers can improve the functional properties (barrier and flexi-
bility), which are prerequisites for food packaging materials. Smart biodegradable 
packaging can be either/both as active and/or intelligent and can provide a sustain-
able system. The various commercial products of biodegradable polymers were 
successfully prepared based on approaches like polymer blends and biocomposite/ 
bionanocomposites. The addition of active and/or intelligent agents in biodegradable 
polymers is emerging and continuously growing as a smart solution for packaging. 
Though biodegradable polymers are sustainable, the inclusion of compounds and 
their release in the food can be perilous and cause toxicity concerns. So, the usage of 
the aforementioned constituents in a biodegradable matrix needs to be studied for the 
release of small molecules in food. This book chapter comprises the biodegradable 
polymers’ classification, biodegradable blends, bionanocomposites, various appli-
cations, commercial products, and toxicological concerns in food packaging areas 
(Fig. 1). 

Fig. 1 Biodegradable polymers in food packaging: types and applications
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2 Classification of Biodegradable Polymers in Food 
Packaging 

Biopolymer-based food packaging made from polysaccharides, proteins, and 
aliphatic polyesters has been studied as a green alternative to conventional plastics. 
These materials can be cast into stiff, brittle films that are biocompatible, safe, and 
biodegradable. The classification of biodegradable polymers depends on the source 
and application used in food packaging applications (Fig. 2) that are discussed below. 

2.1 Polysaccharides-Based Packaging Material 

Polysaccharides are popular in food packaging due to their biodegradability, renewa-
bility, and excellent barrier properties. Starch, cellulose, chitosan, alginate, and 
pectin are a few examples of frequently used polysaccharides. Starch is a natural 
polysaccharide with strong mechanical qualities derived from a variety of plants like 
corn, cereals, wheat, barley, potatoes, and cassava. Whereas the Cellulose is a by 
product of plant cell walls and is a strong water and oil barrier. Unlike plant-based 
source, Chitosan, made from the shells of shellfish, possesses resistant to oxygen 
and water and has strong mechanical qualities. Seaweed-derived alginate is straight-
forward to prepare and has strong barrier qualities. Fruit and vegetable pectins have 
good mechanical qualities and are simple to prepare. Overall, polysaccharides are a 
promising replacement for traditional plastic packaging and are appropriate for use 
in sustainable packaging. 

Chitosan has a charge density that influences its chain conformation and, as a 
result, it possesses barrier and mechanical properties of the resulting films. There-
fore, the degree of deacetylation (DOD) and solubility are crucial components in 
determining film morphology. The investigation shows that higher DOD can signif-
icantly enhance the barrier and rheological characteristics of food packaging films 
[1]. The usage of chitosan as a polysaccharide in food packaging, whether in the

Fig. 2 Biodegradable polymers depending on source and application 
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form of packing films or coatings directly on food materials, has been extensively 
researched. Chitosan in the form of films or coating has been used as both neat 
chitosan films and chitosan films combined with other polymers/biopolymers such 
as proteins (Whey, Soya), polysaccharides (Starch), and other biopolymers [2, 3]. 

Starch in food packaging as a biodegradable polymer is used due to its film 
formability and digestability. Starch-based films are beneficial as they release glucose 
at a controlled rate, allowing the glycemic index to be expected. The decreased 
digestion of starch-based films may be helpful in diabetes patients’ dietary planning 
[4]. However, the safety and health consequences of these films should be carefully 
considered during their development and use. 

2.2 Proteins-Based Packaging Material 

Proteins, which are made up of 20 amino acids with varying energies at different 
places, can be improved by physical and chemical means such as heat, pressure, and 
metal ions. Edible protein-based films can minimize moisture and flavor loss while 
also carrying active ingredients. Although protein-based biopolymers have excel-
lent gas barrier capabilities, their mechanical properties are poor due to their high 
cohesive energy density, brittleness, and moisture sensitivity. Natural or biodegrad-
able plasticizers can increase the viscoelasticity and extensibility of protein-based 
biopolymers, hence alleviating the abovementioned issues [1, 5]. Soy protein has a 
considerable film-forming ability and a diversity of functional qualities, including 
water and fat absorption, fiber formation, and emulsification. Soy protein isolate 
(SPI) is frequently utilized to make soy protein films with varying characteristics. The 
Young modulus and elongation at the break of soy protein films increase as molecular 
weight increases, and alkaline solutions generate better films than acidic solutions. 
Irradiation and heat curing are two post-treatments that can improve the performance 
of soy protein films [6]. Despite modest mechanical qualities, Soy protein-based 
films have strong oxygen barrier properties but poor water vapor barrier properties, 
most likely due to their hydrophilicity [7]. Another important protein-based possible 
biodegradable polymer for the food sector is Zein due to its hydrophobic nature, 
which is produced from corn kernels. In contrast to commodity polymers, it has a 
high-water vapor permeability (WVP) and poor mechanical properties. Plasticizers 
can be added to increase brittleness, but doing so also reduces the material’s ability 
to act as a gas and water barrier, which further need to enhance by nanofillers [8]. 
Zien nanoparticles (ZNP) can also be used along with protein-based polymer, which 
is safe and can be employed as edible food packaging [9]. Oymaci and Altinkaya 
prepared a bionanocomposite film of 150 μm of whey protein/ZNP, which shows 
improved moisture barriers (WVP of ∼0.052 g mm/m2 h kPa) with a slight increase 
in mechanical properties [10].
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2.3 Polylactic Acid-Based Packaging Material 

Polylactic acid (PLA) is a commonly utilized biodegradable biopolymer attributed 
to its biocompatibility, transparency, and capacity to degrade. However, PLA appli-
cations are constrained by their brittleness, poor heat resistance, and low barrier 
qualities. Numerous studies have concentrated on altering PLA to improve its infe-
rior properties [11]. PLA can be utilized as blends, nanocomposites, and micro/ 
nanofibers for food packaging applications [12]. The source of PLA is Lactic acid, 
where several enantiomers alter the crystallinity and physical characteristics of the 
final product. The distribution and amount of LA enantiomers inside the polymer 
chains determine the characteristics of the PLA. PLA with a high L-isomer content is 
crystalline, whereas meso-form (PDLLA) with a high d-isomer percentage (>15%) 
is amorphous [13]. The mechanical and barrier performance is influenced by the 
crystallinity, radius of gyration, spherulite size, long period (Lp), and morphology, 
which are all influenced by the orientation and packing of polymer chains [14]. 
However, PLA has outstanding thermomechanical stability, though its usage in food 
packaging applications is constrained by its poor extensibility and high permeability 
to low molecular weight gases and vapors. It has been observed that the ability of 
PLA to block out oxygen and water vapor might degrade the quality of packaged 
foods [15]. The PLA-based system can be used as blended and/or bionanocomposites 
which were discussed in Sects. 2.6 and 2.7, respectively. 

2.4 Polyhydroxy Alcanoates Based Packaging Material 

The polyhydroxy alcanoates (PHAs) family of polymers is emerging as the popular 
biodegradable polymers in the commercial market attributed to its beneficial proper-
ties, such as high biodegradability under various conditions and ease of processing. 
These bio-produced polyesters can potentially replace thermoplastics made from 
petroleum as a sustainable alternative. Bacterial cells grown on renewable raw mate-
rials such as waste can produce PHAs and can be used in packaging, adhesives, 
films, and additives. Focusing on food packaging, this section briefly introduces 
PHAs, covering their properties, processing methods, readily available biopoly-
mers, and potential applications. Poly-3-hydroxybutyrate (PHB) is a biopolymer 
made up of D (-)-3-hydroxybutyrate, which is generated by several bacteria under 
constrained environments. However, its application is restricted due to its brittle-
ness and constrained processing window [16]. Another strategy is to combine PHB 
with 3-hydroxy valerate (3-HV) monomer to produce poly (3-hydroxybutyrate-co-
3-hydroxy valerate) (PHBV), which has a lower melting point, better brittleness, and 
a wider processing window. The 3-HV content influences the copolymer’s flexibility 
and melting characteristics. PHAs have some advantages for food packaging, but 
their brittleness and manufacturing limitations still constrain their use. Combining
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PHA with other polymers or plasticizers, which can lower the processing temper-
ature and lessen brittleness, is one way to enhance its performance. For example, 
polybutylene succinate (PBS) blended with PHBV has been shown to have advan-
tageous thermal and mechanical characteristics. The molecular insertion of PBS 
(ductile) chains to the stiff PHBV matrix postponed degradation and improved heat 
stability. It was found that the addition of PBS to the blend matrix to a critical level 
prevented crystallization and preserved lamellar size, potentially improving barrier 
characteristics when compared to pure PHBV [17]. 

2.5 Synthetic Biodegradable Polymer-Based Packaging 
Material 

Poly(ε-caprolactone) (PCL) is a biodegradable thermoplastic polymer which has 
gained a significant amount of attention lately owing to its thermal processability, low 
melting point, and melt flow index (MFI). It is made by polymerizing caprolactone 
and can be commonly blended with other classes of biopolymers, for example, with 
PLA, to improve qualities like adhesion, dyeability, and stress crack resistance. PCL 
is also compatible with and can improve the characteristics of various other polymers, 
including PVC, polystyrene, and polycarbonate. Blending PCL with PLA reduces 
brittleness while enhancing thermal stability significantly. Poly (butylene adipate-co-
terephthalate) (PBAT) is a co-polyester created by condensing 1,4-butanediol with 
terephthalic and adipic acid. It has outstanding qualities when the terephthalic acid 
concentration exceeds 35%, but the degradation rate reduces when the concentration 
exceeds 55%. PBAT is a soft and flexible material that is used to make films, bottles, 
and molded items. PBAT can be combined with other biodegradable polymers, such 
as cellulose, to improve hydrophilicity and mechanical and thermal properties. PBAT 
is made from both petroleum-derived and bio-derived ingredients, the latter of which 
being adipic acid and 1,4-butanediol [18, 19]. Polypropylene carbonate (PPC) is the 
most common food packaging material used as aliphatic polycarbonate, formed via 
the process of copolymerization of propylene carbonate and CO2. 

In comparison with PBAT, polyolefins, starch, and their blends, PPC films have 
higher yield strength and barrier characteristics for oxygen and water vapor. However, 
they have lesser tear resistance than PBAT and have several drawbacks, such as 
poor thermal stability, low mechanical characteristics, and performance variability 
depending on the catalyst employed in the manufacture. Even though PPC is amor-
phous, due to its shrinkage and low glass transition temperature (Tg) of 25–45 °C, it 
further needs modification by nanofillers and processing aids [20].
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2.6 Blends of Biodegradable Polymers in Food Packaging 

Available polymer blending techniques have been used in many industrial fields to 
improve the thermomechanical properties of biopolymers. By using the unique prop-
erties of each component, such as the high stiffness of PLA, PHBV, and the extra 
stiffness of PBAT or PCL, combined with special compatibilizers, biodegradable 
polymer blends can be made into products with a balance of stiffness and strength. 
Although biodegradable ingredients must be included or less than 1% untested ingre-
dients required to ensure the biodegradability of the final mixture according to ASTM 
(American Society for Testing and Materials) D6400-2, the inclusion of ingredients 
with high barrier properties can result in high oxygen/water vapor barrier fusion 
[21]. Therefore, even though they can effectively improve the barrier qualities, non-
biodegradable polymers with excellent barrier performance such as polypropylene 
(PP) or ethylene vinyl alcohol copolymer (EVOH) should not be considered for 
blending with biodegradable plastics [22]. The barrier performance of PLA, PBAT, 
and PBS can be improved by blending with biopolymers having barrier performance, 
such as PPC and polyhydroxyalkanoates family. Although these polymers possess 
low interfacial interaction with brittleness, blending eventually does not improve 
the barrier properties desired for food packaging. Some recently studied biopolymer 
blends are PLA/PPC [23], PLA/PHB [24, 25], PLA/PHBV [26], and PBAT/PPC [27, 
28] indicating the improvement in the water vapor barrier properties but compro-
mising on the mechanical properties of blends due to the higher loading of brittle 
biopolymers. The PHB gives nucleation effect in PLA, leading to lower chain flex-
ibility and a lower oxygen transmission rate (OTR). However, the nanofillers were 
incorporated into the bio blends to improve the mechanical properties. Arrieta et al. 
immobilized cellulose nanocrystals (CNC) in the PLA/PHB blend, and the resultant 
ternary system are flexible and have UV stability. The CNC acts as a reinforcement 
for the PHB and leads to increased elongation at break and tear strength, which 
are the functional characteristics of food packaging [29]. The nanofiller incorpora-
tion was discussed in detail in Sect. 5. Numerous studies have investigated ways 
to increase PLA’s ductility without sacrificing other desirable qualities in order to 
address the problem of low elongation at break. Although plasticization has been a 
typical strategy, it can result in plasticizers migrating to the surface, which may not 
be ideal for all applications. 

The brittle blends can also be plasticized using non-toxic plasticizers which 
are approved for the food packaging application, such as acetyl-tri-n-butyl-citrate 
(ATBC), glycerol, and Poly(ethylene glycol) (PEG) [30, 31]. In PLA/PHB, the plas-
ticizer can also enhance the disintegration of PLA, that may be slowed down due to 
PHB [32]. Biopolymer performance can be enhanced by mixing flexible polymers 
in the PLA. This frequently uses PCL, a thermoplastic biodegradable polyester with 
good mechanical properties. In the PLA /PCL immiscible blends, the thermal and 
mechanical properties of PLA are enhanced with the addition of PCL deepening 
of composition. Ivan et al. prepared PLA/PCL of 70/30 that shows intact shape-
memory behavior with improved mechanical properties [33]. The PLA/PCL (70/30)
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nanofibers mat prepared via electrospinning shows similar trends to conventional 
blends. Further addition of nano filler/active agents can improve the targeted prop-
erty; for example, in a recent study, the inclusion of curcumin in PLA/PCL nanofibers 
led to enhance antimicrobial properties [34]. In conclusion, the incorporation of PCL 
increased PLA’s heat stability and crystallization while lowering its hardness. 

The oxygen gas barrier is also a concern regarding the biopolymer blends, which 
can be improved by blending with starch and PVA. Incorporating PVA in PLA/PVA 
blends can also improve the biodegradability of the resulting material since PLA is 
typically hydrophobic and has a low hydrolytic degradation rate due to its inability to 
absorb water [35, 36]. On the other hand, blending PVA with starch can decrease the 
mobility of the polymer molecules due to the presence of many H-bonds. This can be 
addressed by using plasticizers such [37] as water, polyols, glycerol, or urea, which 
can reduce brittleness, increase flexibility and processability, and lower the glass 
transition temperature of the blend [38, 39]. Suitable compatibilizers, plasticizers, 
and nanofillers are created to balance the mechanical toughness and oxygen/water 
vapor barrier of biodegradable polymer blends. The barrier characteristics of polymer 
blends are greatly influenced by their shape. Extending the oxygen diffusion path 
by stretching a phase (PBS) into micro or nanofibrils under a strong flow field, this 
in situ micro/nano fibrillation proved to be an effective way to enhance the oxygen 
barrier of these blends, as shown in Fig. 3 [40]. 

Fig. 3 a PLA/PBS blends prepared by Slit die extrusion followed by quenching containing PBS 
nanosheets and b Cryofracture SEM (scanning electron microscope) image of PLA/PBS (80/20) 
blend after etching of PLA phase (adopted with permission [40] Copyright © 2015, American 
Chemical Society)
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2.7 Bionanocomposites in Food Packaging 

The notion of bionanocomposites, which have improved functions and are biodegrad-
able and environmentally benign, has been introduced by advancements in 
biopolymer nanotechnology. Bionanocomposites, also referred to as green nanocom-
posites, improve the barrier, mechanical, and thermal properties of biopolymers. 
The desired properties may be attributed due to a strong interfacial adhesion of 
the biopolymer and the nanofillers, which improves molecular mobility and relax-
ation behavior. The shapes of nanofillers, which can be either organic or inorganic, 
comprise of nanoparticles, nanorods, nanotubes, nanowhiskers, and nanofibers. 
Nanofillers have a substantially higher surface-to-volume ratio due to their tiny 
size. With active or intelligent packaging techniques, bionanocomposites can provide 
superior mechanical and barrier qualities. Another strategy to overcome the short-
coming of biodegradable films is Layer by layer assemblies (bilayer/multilayer). In 
the recent study, the bilayer film of chitosan/PCL containing nanocellulose (NC) 
and grape seed extract (GSE) was prepared by coating as well as by compression. 
The purpose of such bilayer structure is to improve the stability of the inner layer 
as in the aforementioned study is to improve the sustainability of NC and GSE [41]. 
The bilayer assemblies prepared by coating show improved barrier and mechanical 
strength as compared to compression. In a similar system of Chitosan /PCl, Zinc oxide 
(ZnO) was incorporated, which shows improved UV stability and barrier properties 
[42]. 

The gas and vapor barrier qualities of PVA blends are effectively reinforced 
by cloisite 30B nanoclays, raising initiation degradation temperature (Ti) while 
decreasing weight loss. The PVA/Cloisite 30B nanoclay blends’ tensile character-
istics were mainly improved with a loading of 5 wt% [43]. A higher concentration 
of Cloisite 30B nanoclays was added to starch/PVA (20/80) blends, improving the 
tear strength by ∼80% of the food packaging film. Additionally, applying organ-
ically modified montmorillonite decreased water absorption for PLA, PPC, PBS, 
and PHBV [37]. Ilsouk et al. prepared PBS/5 wt% beidellite clay nanocompos-
ites that increased the amounts of exfoliation and nanofiller dispersion and reduced 
the water vapor permeability by 37% as compared to pristine polymer [44, 45]. 
Chomachayi et al. added silk fibroin nanoparticles to the PLA/PCL binary blend 
of a 70/30 mixture to improve interfacial adhesion and reduce PCL droplet diam-
eter in the PLA matrix. However, the increased intermolecular interactions slowed 
the crystallization process. Because of the effective dispersion of the nanoparti-
cles in the polymer matrix, the inclusion of nanoparticles resulted in a consider-
able improvement in the blend’s microhardness and barrier characteristics [46]. Ma 
et al. prepared PBAT/PPC/nano-silica with melt mixing; the ternary system shows 
improved storage modulus of the nanocomposite due to an increase in the crystal-
lization of PBAT in the blend due to nano-silica acting as nucleating sites. It was 
evident that the double percolation network formed for the blends at 5% nano-silica 
for PBAT: PPC of 70:30 [28]. The advancement in bionanocomposites and their
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applications were shown in Table 1. Active and intelligent/smart packaging are two 
types of bionanocomposite-based food packaging, as outlined in Sect. 2.7. 

A group of researchers from the University of Tabriz Iron recently studied the 
silver, copper oxide, and zinc oxide nanoparticles incorporated in the starch matrix 
by solution casting [54]. The bionanocomposites containing 0.67 weight percent 
of each nanoparticle led to a synergistic enhancement in the water vapor barrier, 
and antimicrobial properties were observed as compared to neat starch film. Among 
other nanoparticles, Zn nanoparticles show better interaction with the matrix due to 
electrostatic interaction and hydrogen bonding [55]. The zinc oxide nanoparticles 
were also incorporated into the PBAT matrix, and it was observed that 10-weight 
percentage loading achieved a tensile strength of 45 MPa as compared to the PBAT 
neat film of 37.9 MPa [19].

Table 1 Advancement in biodegradable bionanocomposites and their properties 

Bionanocomposites Functionality Observations References 

Cellulose nanofibers 
(CNF) 
functionalized star 
ZnO 

Active packaging: 
Antimicrobial properties 

ZnO with 3 wt% shows a 
reduction in the population of 
bacterial by ∼50% 

[47] 

Gelatin/CNF/ 
mushroom-mediated 
sulfur nanoparticles 
(SNP) 

Active packaging: 
Antibacterial, UV 
protection 

SNPs show decisive action of 
antibacterial against the 
foodborne bacteria 

[48] 

Methyl cellulose/ 
chitosan nanofibers/ 
ZnO 

Active packaging: 
Antibacterial, 
Antioxidant 

The film gives ∼84% 
antioxidant capacity 

[49] 

Electrospun 
nanofibrous sheet of 
PCL/zien with 
halloysite nanotubes 

Active packaging: 
Improvement in Tensile 
strength with a slight 
improvement in barrier 
properties (WVP), 
Antioxidant, 
Antibacterial 

Shows good DPPH 
(diphenylpicrylhydrazyl) 
antioxidant capacity with 
antimicrobial properties against 
gram-negative (E. coli) and  
gram-positive (B. subtilis) 

[50] 

Starch/zein 
nanoparticles (ZNP) 

Edible packaging: 
Improved barrier, 
mechanical 

The 9 wt% ZNP shows an 
improvement in the tensile 
strength and barrier 
performance in comparison 
with starch film 

[51] 

Faba bean protein 
isolate (FBPI)/ 
cellulose 
nanocrystals (CNC) 

Edible packaging: 
Improved barrier, 
mechanical 

The enhancement in the Young 
modulus of ∼77% at ∼7 wt%  
loading of CNC 

[52] 

Chitosan/gum 
Arabic/blood orange 
anthocyanins 

Smart packaging: 
Antioxidant, Freshness 
indicator, antibacterial 

Anthocyanins worked as 
plasticizers lead to improve the 
elongation at a break of ∼76% 

[53] 
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3 Applications 

3.1 Biodegradable Polymer in Smart Food Packaging 

Biodegradable smart packaging is an emerging concept that employs intelligent 
and active substances to enhance the quality of packaged products. Researchers are 
exploring the use of biodegradable materials as alternatives to electronic components 
in smart packaging systems. Smart packaging is broadly classified as active and intel-
ligent packaging. Active packaging refers to packaging which is designed to actively 
engage in order to enhance shelf life and food quality, e.g., release active ingredients 
such as antibacterial and antioxidant. Whereas intelligent packaging provides infor-
mation about the food quality. Various active and intelligent packaging materials 
derived from natural sources have been developed for direct and indirect food appli-
cations. For instance, as studied by Andrade et al., green tea and rosemary extract 
was incorporated in PLA films for the packaging of beef and almond. The research 
revealed that dried leaf rosemary extract and green tea at both concentrations of 2% 
had antioxidant activity, showing an inhibition percentage of blocking ∼10% of 2,2-
diphenylpicrylhydrazyl (DPPH) radicals. The antioxidant activity coefficient (AAC) 
which is a measure of antioxidant capacity is calculated by dividing the antioxidant 
capacity of a substance (expressed in units of antioxidant activity) by the concentra-
tion of the substance (expressed in units of weight or volume). The obtained values 
reflect the antioxidant activity per substance unit. In a recent study, AAC was calcu-
lated for PLA-based films using the Beta-carotene bleaching assay and shows a value 
of ∼177, indicating the synergistic effect of using green tea extract and rosemary 
extract [56]. As a sustainable and biodegradable film for smart food packaging appli-
cations, a PLA/PPC blend containing curcumin (CCM) was also designed (Fig. 4a). 
CCM-loaded blends demonstrated high antioxidant activity, limited migration, and 
color changes in response to NH3 vapor, indicating food freshness [57]. Compared 
to conventional petroleum-based packaging, active and smart packaging offers more 
remarkable preservation and has a lower impact on the environment and human 
health.

Active Food Packaging 

Food packaging can use active materials to release or absorb gases and other ingre-
dients, extending the shelf life of food goods. Depending on whether the active 
ingredients are continuously dispersed into the food package or are contained on 
the package itself, active packaging can be categorized as either migratory or non-
migratory. The use of active function in biodegradable films is described in more 
detail below and is included in Table 2. The naturally sourced antioxidants found in 
commercial packaging help to prevent enzymatic browning and oxidative rancidity 
to prolong the food shelf life. These antioxidants promote health by preventing oxida-
tive stress and lowering the risk of numerous diseases. Leaf extract, oils, acids, and
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Fig. 4 a Manufacturing of PLA/PPC/curcumin for active packaging CC-BY [57] Copyright 
© 2022, b Natural halochromic substance for Intelligent packaging (adopted with permission 
Copyright © 2021, American Chemical Society)

other substances are used to create a biodegradable film or coating containing antimi-
crobial compounds to prevent the growth of bacteria, yeast, and mold that can cause 
foodborne illness. Essential oils and plant extracts are particularly rich in organic 
acids and phenolic compounds. 

Table 2 Various active agents for active food packaging 

Active agents Types of foods Examples Benefits References 

Ethylene 
scavenger 

Climatic food 
and vegetable 

Potassium permanganate, 
halloysite, zeolite, 
palladium chloride, ZnO, 
and TiO2 

Reduce 
browning, mold 
growth, and 
retain vitamins 
(Vit. C) 

[58, 59]

(continued)
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Table 2 (continued)

Active agents Types of foods Examples Benefits References

Oxygen 
scavenger 

Cheese, cooked 
meat products, 
fruits, and 
vegetables 

Photosensitive dyes, iron, 
palladium (Pd), ascorbic 
acid, and laccase 

Improve shelf 
life and slow the 
ripening process 

[60] 

Antioxidant Meat, fish, 
powdered food, 
seed, oils, and 
fried food 

Catechin, quercetin, citric 
acid, resveratrol, green tea 
extract, essential oil, etc. 

Reduce 
oxidation and 
enhance 
oxidative 
stability 

[60, 61] 

Antimicrobial 
agents 

Nuts, seafood, 
meat, processed 
fruits, instant 
meals, and milk 

Essential oil, thymol, 
nanosilver, nisin, vanillin, 
sorbic acid, chitosan, 
potassium sorbate, etc. 

Reduces 
bacterial growth 
and improves 
shelf life 

[59, 62] 

CO2 emitters Seafood and 
meat 

Sodium bicarbonate, 
ferrous carbonate, and 
citric acid 

Improve shelf 
life and cut down 
the MAP cost 

[63] 

Intelligent Food Packaging 

By offering mechanical and barrier qualities, preventing or retaining specific 
substances, detecting and avoiding microbial damage, etc., all of these can be served 
by the active packaging. They can interact with food items to increase the fresh-
ness and shelf life of the package. On the other hand, intelligent packaging provides 
improved functionality through real-time quality monitoring, communication and 
marketing, and the integration of numerous sensors and indications. Intelligent pack-
aging can be classified as direct and indirect. The gas sensor, Radio frequency 
identification (RFID) tags, and thermochromic sensor are indirect intelligent pack-
aging, whereas other classifications contain freshness indicators, microwave done-
ness indicators, shock indicators, and biosensors. Physical and/or chemical changes 
can be communicated through intelligent packaging. For example, natural pH-
sensitive dyes are used to observe the chemical changes obtained inside the food 
headspace. The natural pH-sensitive colorants extracted from the source, like beat 
root, carrot, cabbage, etc., have been studied for freshness indicators (Fig. 4b). Among 
other natural colorants, Anthocyanins are the most common halochromic substances 
obtained naturally and used in intelligent packaging; attributed to their non-toxic, 
antioxidant, biodegradable, and ecologically friendly characteristics, anthocyanins, 
bioactive chemicals with phenolic groups, are being researched for their potential 
as additives for smart packaging films. These films can potentially be employed 
as pH-sensitive bionanocomposites that can detect color changes brought on by 
food spoilage. Black carrot anthocyanins, chitosan/polyvinyl alcohol, and bentonite 
nanoclay (3 wt%) show enhanced mechanical, thermal, and antibacterial capabilities, 
according to the study [64].
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Enzymatic or microbiological activity that conventional packaging materials are 
devoid of may induce clam rotting. By casting, photochromic smart films with the 
ability to detect the freshness of seafood have been created from chitosan, oxidized 
chitin, and purple cabbage anthocyanins. Chitosan/PVA nanocomposites containing 
ZnO oxide nanoparticles combined with anthocyanins from purple sweet potatoes 
and roselle flowers showed pH sensitivity and antibacterial activity [65]. Addition-
ally, these nanocomposites have also improved in terms of water contact angle and 
mechanical properties. Compared to roselle-based films, the purple potato antho-
cyanin films demonstrated excellent antioxidant and antibacterial properties, making 
them promising materials for intelligent and active food packaging that can recog-
nize color changes brought on by enzymatic or microbial changes in nanocomposites 
[58]. 

Temperature monitoring is crucial to guarantee food quality and safety during 
storage and transit. Temperature abuse can result in quality degradation and reduce 
the shelf life of the package. It is crucial to keep an eye on the temperature during 
the storage time in order to infer the product’s quality status and true shelf life. A 
Time–Temperature Indicator (TTI) can show variations in temperature over time 
and provide information on a food’s temperature history. These modifications can 
be detected by a temperature-dependent change in the polymer coating’s color or 
by a color change in the thermochromic indicator that results in depreciating the pH 
arising from a temperature-induced reaction. 

3.2 Modified Atmosphere Packaging (MAP) 

MAP is a popular approach for packaging and preserving perishable items like 
fruits and vegetables. This necessitates altering the gas composition at the package’s 
headspace, which slows respiration, delays ripening, and prevents moisture loss. 
Biodegradable packaging materials for fresh food are tested alternatives to ordinary 
plastic. According to research, the oxygen-absorbent wrapping biologically extends 
the shelf life of strawberries. The biodegradable disintegration of the biodegradable 
layers is ideal for fresh items such as sweet potatoes, cabbage, tomato, berries, and 
lettuce. Chitosan coatings containing anti-browning compounds and MAP were also 
evaluated for their ability to minimize browning and extend the shelf life of freshly 
cut lotus roots. In this regard, a typical eco-friendly packaging material is PLA. 
PLA is a conventional sustainable material used for packaging animal products and 
seafood [66]. 

3.3 Edible Films 

Cellulose nanofibers have been added to fruit and vegetable puree-based biopolymer 
nanocomposites to enhance their characteristics. TiO2, being FDA (Food and Drug
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Administration) approved nanoparticle, has been vastly investigated to improve the 
antibacterial properties of whey protein, which has been investigated for its poten-
tial as an edible film with oxygen barrier capabilities. Although soy protein has been 
investigated as a biodegradable, edible material, its effectiveness has been constrained 
by its high stiffness and moisture resistance. Soy protein has been combined with 
plasticizers like starch to enhance the flexibility of the film without compromising the 
barrier properties. However, the fillers, like montmorillonite (MMT) clay, increase 
their barrier and mechanical properties. The mechanical strength of the nanocom-
posite has been observed to be increased due to the interaction between the soy 
protein and MMT clay [67]. Adding MMT clay (negative charge), in particular, 
∼320% and ∼175%, increased Young’s modulus and tensile strength, respectively, 
were observed for the soy protein nanocomposite with 20% loading. This is attributed 
to the surface electrostatic interaction due to the charge difference [68]. 

4 Types of Food Packaging Products 

The packaging sector frequently uses biodegradable films, which were developed 
initially to replace non-biodegradable plastic. Regulated breathing, effective barrier 
properties, and sturdiness are crucial characteristics of packaging films. PLA-based 
blown films have proven successful because of their mechanical and transparent 
features. However, the degree of crystallinity affects the sealability, necessitating 
the employment of a co-extrusion technique when laminating the polyesters [69]. 
The food packaging film grade PLA available in markets are Ingeo (Nature works), 
Futerro, Hisun, and Biofront (Teijin). Since a single biodegradable polymer has a 
low melting point and sluggish crystallizations, it is unsuitable for creating blown 
films. Hydrogels and other biodegradable gels are excellent in preventing microbial 
contamination. Complex hydrogels, which provide an alternative to the manufac-
turing of biological polymers, can be created by combining hydrogels made of several 
polymeric components. Due to their flexibility, toughness, and resistance to rips, 
humidity, and temperature changes, biodegradable bags are primarily utilized in the 
food business, including PBAT (Ecoflex®) and Ecovio®. Loose fill is made of starch-
based foams, and trays and shells of starch-based foam need to be coated when they 
encounter food. In the market, Green cell™, Biofoam (Synbra), and Novamont foam 
are the replacement for PP foam as a biodegradable alternative. Fruits and vegetables 
that require a regulated environment to retain their quality might be packaged in ther-
moformed trays or containers made of biodegradable polymers [70]. Tropical fruits, 
including mangoes and melons, have been stored in biodegradable trays and cups 
constructed of oriented PLA or with bionanocomposites of PLA/wood (Jeluplast®). 
Commercially available smart packaging sensors/indicators include Fresh Tag Sensor 
Q™, Tell-Tab™ (gas sensor), Cook-Chec (3M), and Ripesense™.
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5 Toxicity Concerns 

The negative effects on the environment and health risks associated with the use 
of biopolymer/bionanocomposites have made it possible to use biodegradable poly-
mers in food packaging. Biopolymers, such as PLA, starch, and PHAs, have poorer 
barrier characteristics than conventional polymers and must be enhanced with addi-
tives. Nevertheless, their practical usage as packaging materials has been limited 
due to drawbacks such as lower barrier qualities to small molecules such as water 
and oxygen. Plastic materials must not leak more than a set number of components 
per food contact surface to ensure the safety of food products. Food simulants are 
used to analyze and quantify nanoparticle transfer from packaging materials to food 
products. Nanofillers such as nanosilver, nanoclay, CNC, ZnO, and TiO2 are utilized 
to decrease migration risk due to their thermodynamic features of polarity and solu-
bility in biodegradable polymers. For example, according to US-NIOSH (United 
States-National Institute for Occupational Safety and Health), silver nanoparticles 
are employed as antibacterial agents in food packaging, with an allowed limit of 
0.01 mg/m3 for all kinds of silver. Concerns have also been raised about the safety of 
metal nanocomposite film materials used for food packaging, as metal nanoparticle 
migration into food could pose health hazards. Fan et al. used food simulation fluid to 
evaluate nano-Ag migration in PLA/nano-Ag composite sheets under simulated food 
packaging circumstances. However, the migration of nano-Ag is under an acceptable 
limit, but there is a rise in WVP in the initial migration [71]. 

Apart from nanofillers, the degradation products such as oligomers and side reac-
tion products are the principal source of non-intentionally added substances (NIAS) 
in biopolymer-based food contact materials (FCM). PLA oligomers include cyclic 
lactide, and linear or cyclic oligomers are not on the Directive 10/2011/European 
Community list, where the concentration must be less than 0.01 mg/kg of food, 
except for LA. According to studies, PHB and PBAT leaching solutions decrease 
Daphnia survival within 48 h of exposure. Thirty-seven non-volatile compounds, 
including significant amounts of cyclic oligomers such as butanediol, adipic acid, 
and phthalic acid, are present in PLA/Bio-PE blend films and granules. 

6 Future Challenges and Opportunity 

Biodegradable polymers have relatively low mechanical and barrier qualities and 
their hydrophilic character, which prevents the development of moisture barrier capa-
bilities; biopolymer-based packaging materials confront difficulties. These draw-
backs have been identified, and nanocomposite technology has been suggested as a 
potential remedy. Ongoing research looks into bionanocomposites to meet consumer 
needs for safe, natural, and minimally processed foods with a long shelf life. Addi-
tionally, bionanocomposites can outperform the limitations of biopolymers and can 
offer more advanced functionality and barrier characteristics. There hasn’t been much



8 Biodegradable Polymers for Food Packaging Applications 185

research on the nanotoxicology and nanoecotoxicology of biodegradable polymers, 
even though nanoparticles are used to enhance the qualities of polymers for food 
packaging. The multilayer structure consisting of biopolymer is a growing area of 
research with the use of techniques like co-extrusion, heat sealing, spin coating, and 
electrospinning. Rapa et al. in a recent study, deposited electrospun PHBV and Fe-
doped ZnO nanoparticles having beaded morphology on the PLA films to enhance the 
antimicrobial properties. However, the migration of nanoparticles is still a challenge 
for biopolymers which need to be studied for different food stimulants. Another chal-
lenge of biodegradable polymers is the migration of oligomers, additives, plasticizers, 
and monomers that need to be studied thoroughly for food packaging applications. 

Moreover, utilizing food simulants for migration studies does not properly imitate 
real-world conditions. When diffusion occurs from only one side of the mate-
rial, the actual release of migrants is slower. Also, the release of nanofiller can 
hamper filler functionality on the migration. The usage of nanofibers for smart pack-
aging applications majorly involves electrospun biodegradable nanofibers, and most 
research focuses on pH indicators and thermal control. The multilayered assemblies 
of biopolymer in the layer-by-layer structure open the research diversely. The contin-
uous fueling of innovation in the field of smart packaging materials by adding active 
agents, substances, and fillers needs to be evaluated to possess no toxicology concern 
on the environment and health. 

7 Conclusion 

This book chapter discusses the food packaging application of various biodegradable 
polymers. In this regard, the physical, mechanical, barrier, and thermal properties 
of biodegradable polymers must be improved by using techniques like plasticiza-
tion, blending, and/or processing them into bionanocomposites to fulfill the purpose 
of packaging. The morphology of filler nanoplates is being extensively researched 
to improve the mechanical and barrier characteristics of biopolymers. For example, 
adding PVA in the blend of biodegradable polymer and/or as a multilayered structure 
can enhance the mechanical properties, thermoplasticity, and oxygen barrier prop-
erties of the blend, making it a promising material for eco-friendly packaging. Such 
approaches have produced active and intelligent packaging solutions that improve 
customer/consumer friendliness and transparency while raising the bar for food 
safety and quality. Using nanotechnology in barrier packaging materials such as 
by the adoption of the approach of nanocomposites, nanoparticle-based antimicro-
bials, and sensors to detect changes in food may potentially transform current pack-
aging methods and technologies. Bionanocomposites and polymers that offer better 
performance while lowering environmental impact are the key to the future of food 
packaging. The lower molecular weight of nanoparticles makes them more quickly 
absorbed and distributed throughout the body, possibly resulting in harmful cellular 
interactions. In addition to toxicity, it is essential to consider the sustainability of 
bioplastics, such as land use, greenhouse gas emissions, and social impact.
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Chapter 9 
Biodegradable Polymers for Agriculture 

Kunal Verma, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Agriculture plays a critical role in sustaining human life by providing food, fiber, 
and fuel. However, conventional agricultural methods can have significant environ-
mental consequences, including land erosion, water contamination, and greenhouse 
gas emissions [1]. In agricultural applications, polymers are extensively used for 
intelligent agrochemicals and ultra-absorbents. Unfortunately, most of these poly-
mers are non-biodegradable, causing severe pollution in the soil. Biodegradable poly-
mers are needed to address these ecological issues. Unlike conventional polymers, 
which can take hundreds of years to decompose, biodegradable polymers typically 
degrade within months or years, depending on the polymer structure and environ-
mental conditions. These characteristics make them a sustainable option that can 
help to reduce non-degradable waste in the ecosystem and preserve the health of our 
planet. The demand for biodegradable products is increasing due to public awareness 
of the harmful effects of conventional polymers and government regulations banning 
non-degradable synthetic polymers. This demand is expected to grow across various 
industries, including agriculture. According to a market research report, the global 
market for biodegradable polymers in the agricultural sector is projected to reach 
$6.48 billion by 2027, with a growth rate of 10% from 2022 to 2030 [2]. 

Biodegradable polymers generally decompose into water, carbon dioxide, or 
biogas under specific conditions, making them an environmentally-friendly option 
as compared to traditional polymers and other materials. The choice of a biodegrad-
able polymer for different applications is based on the physical properties of the
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Fig. 1 Chemical structures of some commonly used biodegradable polymers in agriculture

polymer. Natural polymers like cellulose, starch, alginate, chitosan, pectin, gelatin, 
and zein are commonly used for agricultural applications. Synthetic polymers like 
poly(lactic acid) (PLA), poly(vinyl alcohol) (PVA), poly(butylene adipate terephtha-
late) (PBAT), polyhydroxyalkanoates (PHAs), and poly(butylene succinate) (PBS) 
are also commonly used in agricultural sector. The structures of these polymers are 
shown in Fig. 1 [3–8]. A scheme is given in Fig. 2. shows the uses of these biodegrad-
able polymers in different agriculture sectors, including mulch films, seed coatings, 
superabsorbent polymers, and agrochemical delivery systems. 

2 Biodegradable Polymers in Agriculture Sectors 

Recent studies have focused on using biodegradable polymers and their compounds 
as materials to manage soil health, water quality and food quality for improving 
production in agriculture sector [9–14]. Table 1 summarizes the different polymers
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Fig. 2 Biodegradable polymers used in different agriculture sectors inspired from [9–14]

Table 1 Different agro-products, their functions and polymers used in their manufacturing 

Agro-product Function Polymer used References 

Mulch film Soil moisture 
conservation, soil 
temperature 
management, weed 
control, nutrient 
conservation, pest 
control, improved yield 

PLA, cellulose, PBS, 
starch, PCL, PBAT 

[15–20] 

Seed coating Soil moisture 
conservation, soil 
temperature 
management, weed 
control, nutrient 
conservation, pest 
control, improved yield 

Chitosan, PLA, PHAs, 
starch, cellulose, 
gelatin 

[8, 21–23] 

Agrochemical delivery Slow release of 
agrochemicals, low 
pollution, improved 
efficiency of 
agrochemicals, improve 
soil quality, increased 
yield 

PLA, PHAs, chitosan, 
starch, alginate, 
poly(lactic-co-glycolic 
acid) (PLGA), 
poly(ethylene glycol) 
(PEG) 

[3, 12, 19, 24–31] 

Soil improvement Water retaining agent 
Nutrient carrier 

Chitosan 
Ethyl cellulose 
Sodium alginate 

[32–35]
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based agro-product, their functions, and polymers used in their manufacturing. A 
brief overview of each agricultural product has been provided below.

2.1 Mulch Films 

Soil mulching is one of the most important uses of biodegradable polymers in culti-
vation. Mulch films are thin sheets of material used in agriculture to cover the soil 
surface in order to alter the microclimate of the soil, preserve moisture, reduce weeds, 
and safeguard crops. Mulching is a method used to coat soil with a covering of 
crop in order to keep moisture and control soil temperature [20, 36]. Mulch films 
are utilized in numerous farming practises, including the cultivation of vegetables, 
fruits, and decorative plants. Mulch films can increase crop harvesting and quality 
in veggie production by suppressing weeds, preserving soil hydration, and control-
ling soil temperature. By stopping the leaching of pesticides and fertilizers into the 
earth, they can also help to decrease their use. Biodegradable polymeric mulches 
have several benefits over conventional mulches (generally non-degradable), such as 
increased water absorption, decreased weed development, and increased agricultural 
output [18–20, 23, 36, 37], most importantly, no consumption of land-filling sites as 
they degrade on the soil without leaving any toxic residue in them. Figure 3 shows the 
biodegradation of mulch film by environmental conditions and microbial enzymes. 

In a comparative study, the effects of LDPE (low density polyethylene) and Bio 
PMF (biodegradable polymeric mulch film) debris in either macro- or micro-sizes

Fig. 3 Biodegradation of a mulch film. Reproduced with permission from Mansoor et al. [20] 
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on soil’s hydrological and physiochemical parameters were evident, and these prop-
erties of tested sandy soil changed slightly due to residual amounts of PMFs. For 
example, the existence of LDPE debris reduced field capacity while the presence 
of Bioplastic debris increased it. When compared to micro-sized plastic detritus, 
macro-sized plastic debris showed more differences between the control. As a result, 
the detrimental impacts on plant development may be explained in part by the effects 
of plastic debris on soil properties [38]. 

According to a study which compared the effects of (polybutylene adipate tereph-
thalate) PBAT-based mulch films and polyethylene (PE) mulch films on rice plants, 
microplastics affected nitrogen biosynthesis and photosynthesis. Microplastics inhib-
ited rice root growth by inhibiting the phenylpropanoid biosynthesis pathway, 
decreasing lignin content, and inducing oxidative stress in rice roots during the vege-
tative stage, which ultimately led to the downregulation of nitrogen transporter genes 
and interference with nitrogen metabolism. Repression of nitrogen transporter genes 
reduced nitrogen transport from rice roots to shoots, leading to nitrogen deficiency, 
oxidative stress, and a decrease in chlorophyll content in shoots [39]. 

A study conducted in 2021 found that many polysaccharide-based mulch films 
on the market work as well as PE-based mulch films. But they have some problems, 
like being expensive, hard for farmers to use, and not good at keeping water out [36]. 

2.2 Seed Coatings 

Seed coatings are another utilization of biodegradable polymers in horticulture. The 
purpose of seed coatings is to shield seedlings from insects, diseases, and weather 
stressors (Fig. 4).

To increase agricultural output and decrease environmental effects, seed coatings 
can be customized to the particular requirements of various crops [21, 22]. Traditional 
coverings, which contain hazardous, non-degradable polymers, need to be replaced 
with biodegradable polymers. Biodegradable seed coatings are a viable option to non-
biodegradable coatings. During the germination and the initial development phases, 
biodegradable polymeric seed coverings shield seedlings from biotic and abiotic 
stressors [22]. These coatings can provide a regulated discharge of nutrients, provide 
protection against bugs and diseases, and enhance the soil’s physical qualities. Addi-
tionally, seed coatings can increase seed handling and planting accuracy, resulting 
in higher agricultural outputs. Hydroxyethylcellulose, chitosan (CS), gelatin-gum 
arabi, PLA, PHAs, and starch-based polymers are the most prevalent compostable 
polymers utilized for seed coverings. These materials are safe, biodegradable, and 
versatile to the seed and crop’s particular requirements [40, 41]. More recently, a 
biopolymer mixture of starch, gelatin and poly(vinyl alcohol) have been used due to 
its good adherence to seeds [42]. Biodegradable polymeric seed coatings (BPSCs) 
are applied to grains, veggies, fruits, and oilseeds, among other products. They are 
typically applied by seed-treating devices like rotating drum, rotary coating, fluidized
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Fig. 4 Benefits of seed coatings [21]

bed and electrospinning (Fig. 5) that evenly cover the seeds. The coated seeds can 
then be buried with standard sowing tools. 

Electrospinning technique is an advanced method to design scalable and sustain-
able seed coating using biodegradable polymers. This technique is also used to

Fig. 5 Schematic of different seed coating methods. Reproduced with permission from Pirzada 
et al. [42] 
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develop biostimulants and insecticides incorporated with polymeric seed cover-
ings [21, 22]. Because, these additives provide extra advantages, such as increased 
plant development, better plant resilience to pests and diseases, and decreased 
environmental effects. A study demonstrated a novel seed rejuvenation way by 
infusing hormones gibberellic acid (GA3) and indole acetic acid (IAA) in electro-
spun nanofiber. In this investigation, groundnut and black gram seeds coated with 
GA3 and IAA-loaded nanofiber delivered hormones at the appropriate time, location, 
and concentration to enhance seed quality. GA3-loaded nanofiber and IAA-loaded 
nanofiber-coated seeds increased germination (78 and 88%) and seedling vigor (2987 
and 3458), respectively, by 10 and 20% over uncoated seeds. In black gram, seeds 
invigorated with GA3 and IAA-loaded nanofiber recorded 78 (8% increase over 
control) and 86 (16% increase over control) percentages of germination and seedling 
vigor, respectively [43]. 

In another study, researchers designed copper loaded nanofibers using electro-
spinning and precisely distributed agrichemical (Cu2+) around the seed at low dose. 
These model seeds coated with nanofiber seed coating were found to enhance germi-
nation and plant growth regardless of fungal disease present (Fusarium species) [44] 
(Fig. 6). 

Despite the many advantages of compostable polymeric seed coverings, there are 
still some obstacles to overcome. The expense of the coatings, which is presently 
higher than non-biodegradable coatings, is one of the greatest challenges. Addition-
ally, the compatibility of the coatings with various seed sizes and forms, as well as 
their ability to endure a variety of environmental circumstances, must be investigated 
further.

Fig. 6 Seed coating process using electrospun Cu2+ loaded nanofibers, and nanofiber-coated seeds. 
Germination of nanofiber-coated seed in the presence or absence of a fungal pathogen. Reproduced 
with permission from Xu et al. [44] 
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Biodegradable polymeric seed coatings (BPSCs) have the ability to increase food 
production, reduce environmental effects, and promote healthy agricultural practises. 
Additional study and development in this field could lead to the production of more 
efficient and cost-effective seed coatings for a variety of crops [8, 11, 17, 21, 37]. 

2.3 Agrochemical Delivery 

As agriculture continues to play an important part in satisfying the world’s food 
demand, there is an increasing demand for more efficient and sustainable agricultural 
methods. This can be accomplished by utilizing polymeric materials for agrochem-
ical delivery. Modern agricultural methods frequently employ agrochemicals such 
as fertilizers, pesticides, herbicides, and growth regulators to increase crop output 
and safeguard harvests from bugs and diseases [9, 12, 28, 45]. However, the indis-
criminate use of these substances can harm the ecosystem and human health as well. 
Biodegradable polymeric materials are a potential option to conventional chemical 
delivery methods. Several biodegradable polymers, like polylactic acid (PLA), poly-
hydroxyalkanoates (PHAs), starch-based polymers, and cellulose-based polymers, 
can be used to control the distribution of pesticides, herbicides, and plant nutrients, 
depending on their biocompatibility, biodegradability, and controlled release char-
acteristics [28, 46]. The most common way to get agrochemicals to where they need 
to go is to load the desired herbicide, pesticide, insecticide, or nutrient into a suitable 
polymeric matrix [11, 12, 30, 47]. This can be either done by preparing hydrogel, 
films, microparticles, nanoparticles, emulsions and electrospun mats (Fig. 7). 

Fig. 7 Different carriers for agrochemical delivery. Reproduced with permission from Li et al. [48]



9 Biodegradable Polymers for Agriculture 199

The selection of an agrochemical relies on the intended purpose and the targeted 
produce. They can be used as a coating to seedlings to regulate the release of agro-
chemicals during the germination and development phases of the produce. Addition-
ally, they can be utilized as sheets for soil mulching and hydrogels for the regulated 
release of agrochemicals in the soil [49, 50]. 

One interesting example in this regard is cellulosic nanogel. A new cellulose-based 
nanogel was produced by cross-linking glyoxal-modified carboxymethyl cellulose 
(CMC) and 3,3'-dithiobis(propionylhydrazide) (DTP). Palmitic chloride (PCl) was 
used to splice hydrophobic branches onto cellulose strands in order to increase the 
loading efficiency of typical agrochemicals such as salicylic acid (SA) (Fig. 8). 
When subjected to pH and redox changes, the acylhydrazone and disulfide bonds 
give the nanogel with reversible sol–gel transitions. PCl-grafted nanogels have a 
maximal loading capacity of 40.6%, which is 31% greater than the original nanogels. 
A controlled release experiment revealed that HCl and Glutathione (GSH) solutions 
greatly hastened the release of SA, and nanogels with abundant carboxyl and thiol 
groups can complex with heavy metal ions; for example, around 89% of copper (II) 
ions can be removed from synthetic soil leachate [51].

Another study examined the controlled release of fertilizers using two types of 
polyhydroxybutyrate (PHB) systems. PHB is preferred because of its biodegrad-
ability and water-insoluble which allows large-scale pesticide encapsulation. One 
system used free NPK (Nitrogen phosphorous potassium) (PHB/NPK) while the 
other incorporated NPK into bentonite nanoparticles (PHB/m-Bent with NPK). 
The properties of the systems were found to influence the release rate of the 
active compounds and their biodegradation rates. The latter system (PHB/m-Bent 
with NPK) with better thermal and thermo-mechanical properties exhibited a more 
controlled release rate of compounds than those with lower properties due to 
better structural configuration. Controlled release assays showed that the PHB/NPK 
systems released 19–33% of their components in the first 24 h, and 37–53% during the 
entire testing period. In contrast, the release of NPK from the PHB/m-Bent systems 
was only 4–11% during the entire test. The PHB matrix underwent biodegradation 
regardless of the presence of NPK, and the PHB/NPK and PHB/m-Bent systems 
exhibited greater structural fragility, which may have facilitated the biotic process 
of degradation and the release of active compounds. The study suggests that the 
PHB systems have the potential for positive environmental and economic impacts 
due to their ease of processing and reduced release of active compounds into the 
environment, thereby decreasing the ecotoxicity [52]. 

In another example, Ca-alginate/poly(N-isopropylacrylamide)@polydopamine 
(Ca-alginate/PNIPAm@PDA) microspheres with a core–shell structure that are pH, 
temperature, and sunlight responsive have been created (Fig. 9). They can be used to 
control the release of water and chemicals in agriculture [53]. Similarly, L-Lactide/ 
glycolide/polyethylene glycol terpolymer (PLAGA-PEG-PLAGA), PLAGA-PEG/ 
dextrin-g-PCL (TER/dextrin), and PLAGA-PEG/maltodextrin-g-PCL (polycapro-
lactone) (TER/maltodextrin) were used to create herbicide-loaded microspheres with 
a low size distribution. The controlled degradation rate of particles, combined with 
the gradual release of both soil-applied pesticides (metazachlor and pendimethalin),
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Fig. 8 Synthesis of salicylic acid loaded cellulose nanogel process using hydrophobic 
carboxymethyl cellulose (HCMC) and its pH responsive behavior. Reproduced with permission 
from Hou et al. [51]

gave agricultural plants with efficient weed protection for two to three months 
after entry into the soil. When compared to the PLAGA-PEG-PLAGA terpolymer, 
oligosaccharide-based polymers had the quickest degradation and release rate among 
the evaluated microspheres [54].

Numerous benefits are associated with the use of compostable polymeric mate-
rials for agrochemical distribution. First, it lowers the quantity of chemicals needed, 
thereby reducing environmental contamination and human exposure to hazardous 
substances. In addition, it offers a more controlled discharge of agrochemicals, thus 
reducing the risk of groundwater contamination. Biodegradable polymers can also 
increase the efficacy of agrochemical distribution by lowering the necessary quan-
tity of active components and prolonging the period of release. A table (Table 2) is  
given on various types of biodegradable polymeric agrochemical carriers for different 
plants.
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Fig. 9 Stimuli–responsive release behaviors of Ca-alginate/PNIPAm@PDA microsphere. Repro-
duced with permission from Zheng et al. [53]

Table 2 Various types of biodegradable polymeric agrochemical carriers. Reproduced with 
permission from Sikder et al. [19] 

Polymer used Agrochemical 
used 

Release 
property 

Nature of 
carrier 

Applied crop/ 
plants 

References 

Poly(PEG-co-PLGA) Metolachlor Diffusion 
control 

Micelle Oryza 
sativa, Digitaria 
sanguinalis 

[19] 

Polyethylene 
glycol-aliphatic diacid 
conjugate 

Imidacloprid Diffusion 
control 
depends on 
diacid 

Micelle Mango, guava [55] 

Polylactide Imidacloprid Diffusion 
control 

Nanoparticle Rose, sunflower, 
wheat 

[56] 

PCA−PEG−PCA triblock 
copolymer 

Imidacloprid Diffusion 
control 
depends on 
PEG chain 

Nanoparticle Corn, millets, 
barley 

[56] 

Cross-linked polymer 
(acrylamide–itaconic acid) 

Potassium 
nitrate 

Depends on 
the nature of 
cross-linking 
agent 

Cross-linked 
nanoparticle 

Rice, tomato, 
sugarcane, 
legumes 

[57] 

PHB, PHBV, poly(vinyl 
alcohol) 

Ametryn Release 
depends on 
surface 
property of 
the particle 

Particle 
formed by 
emulsion 

Corn, sugarcane, 
banana, 
pineapple 

[58] 

Poly(ε-caprolactone) Atrazine Release 
depends on 
morphology 
and loading 
content 

Nanocapsule/ 
nanosphere 

Corn, sorghum [59]
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Nevertheless, the use of biodegradable polymeric materials for pesticide distri-
bution poses a number of challenges. Most important one is the greater expense 
of these materials as compared to conventional delivery methods. In addition, the 
rate of degradation of these materials can differ based on environmental circum-
stances, which can influence their efficacy. Biodegradable polymeric materials can 
reduce environmental pollution and increase agricultural production while reducing 
the risks connected with agrochemical abuse. Future creation of more effective and 
cost-effective biodegradable polymeric materials for agrochemical distribution is 
anticipated, even though there are still obstacles to be surmounted. 

2.4 Herbicides and Polymeric Biocides 

Weeds are unwanted vegetation that disrupts agricultural output. They fight for 
resources with crops, resulting in significant output loss. Herbicide-based weed 
control is a highly efficient and dependable vegetation management approach. Herbi-
cides account for a sizable portion of the worldwide pesticide industry. However, 
herbicides are lost in the agroecosystem in a variety of ways (like chemical break-
down, photo-degradation, microbial decomposition, run-off, leaching, and volatiliza-
tion), reducing herbicidal action and polluting the ecosystem and groundwater 
[60]. 

The adverse effects of biologically active compounds are mitigated by a novel 
controlled release formulation method. This method safeguards the agent delivery, 
enables controlled release to the target, and maintains its optimal concentration for a 
predetermined period of time, resulting in high precision and longevity [12, 34, 59]. 
Two techniques - solvent evaporation and ion gelation method [60] are used to mix 
biological agents and polymeric materials to attain controlled release rate of agents, 
from encapsulation or heterogeneous dispersion of them. The polymeric biocide 
has many advantages, including the ability to use lower amounts than conventional 
biocides because it releases the required amount of active agent over a long period 
of time, reducing the number of applications. Since, a single application lasts a long 
time, thus eliminating the time and cost of repeated over applications. As a result, 
less active materials are required, reducing ecotoxicity, and eliminating the need for 
widespread application [59, 61]. 

Factors such as chemical properties of the active agents, their structure, nature 
of the active-agent-polymer bonding (esters, urea, urethanes, amides, acetals), the 
distance of the active agent from the polymer backbone, and presence of a permanent 
spacer group to prevent steric hindrance etc., influence the release rate of the active 
group from the polymer matrix and the duration of its effective action. Chemical 
makeup of the polymer backbone and groups encircling the functional moieties, 
dimensions and structure of the polymer molecule are controlled by polymerizing 
parameters, comonomers, solubility, cross-linking, and stereochemistry [17, 19, 31].
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2.5 Polymeric Molluscicides 

Mollusks are soft-bodied crustaceans of the Mollusca family. They are typically fully 
or partly encased in a calcium carbonate shell produced by the soft mantle that covers 
the body. Snails and slugs account for almost 80% of their population. These organ-
isms thrive on the crop plant by eating leaves, fruits and seeds thereby reducing crop 
yield and quality. An effective way to tackle them is by using molluscicides. These are 
biologically active compounds which kills molluscs by interfering with their biolog-
ical pathways while remaining unharmful for humans. Some majorly used mollus-
cicides include metal salts (iron (III) phosphate, aluminium sulphate), Metaldehyde, 
niclosamide and acetylcholinesterase inhibitors. Since molluscicides are respon-
sible for controlling various molluscs, significant quantities of these compounds 
are required to combat bilharziasis by controlling and eradicating schistosoma snails 
in tropical countries where cultivated areas are expanding. Bayer Co. created and 
marketed niclosamide (5,2-dichloro-4’-nitrosalicylanilide) as an active molluscicide 
to cure bilharziasis under the brand name of Bayer 73. However, large-scale use of 
this molecule has resulted in fiscal and environmental toxicity problems [62]. 

Molluscicides have been chemically combined with functionalized polymers in an 
attempt to enhance snail eradication while decreasing the negative effects of using 
a comparatively large dosage of niclosamide. Polymeric molluscicides containing 
Niclosamide via ionic and covalent interactions have thus been made by chemically 
modifying polymers like gelatin and alginate [63]. 

There are some drawbacks to compostable polymeric materials for agrochem-
ical delivery. Regulating pesticide release from biodegradable plastics is difficult. 
Polymer, pesticide, and ambient factors affect the release rate, making it difficult 
to predict and control [16]. Storing and application of biodegradable polymers and 
herbicides must be steady. Heat, light, and moisture degrade agrochemicals, lowering 
their efficacy. If mishandled, biodegradable plastics can also degrade [64]. Biodegrad-
able material and pesticide compatibility can be tricky. The agrochemical must spread 
through the polymer matrix and fight it without weakening or losing its mechanical 
properties to reach the target [50]. 

Biodegradable polymers are less popular for agricultural applications because 
they are more expensive. Manufacturing, refining, and application costs must be 
examined to ensure the technology is financially viable. Regulating compostable 
polymeric pesticide dispersal systems is tough. To ensure safety and efficacy, regu-
latory agencies may require extensive testing and evaluation of these new systems 
[12].
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3 Superabsorbent Polymers 

Superabsorbent polymers (SAPs) are defined as polymers that can absorb and retain 
large quantities of aqueous solutions or body fluids, relative to their own weight 
(Fig. 10) [65]. SAPs absorb and store water by forming a network of cross-linked 
polymer chains that trap water molecules [66]. It is usually a highly hydrophilic 
substance with a cross-linked network structure that is commonly available as micro-
beads. These beads are capable of absorbing and retaining significant amounts of 
water or aqueous solutions, even when subjected to pressure [67]. These SAPs beads 
are classified as non-degradable petroleum based SAPs, degradable natural polymer 
based SAPs and degradable synthetic polymer based SAPs (Fig. 11). 

Biodegradable polymers have been utilized as a super absorbent polymers in 
agriculture to improve soil water retention and nutrient availability. Because these 
polymers have the ability to absorb and hold a large quantity of water and gently 
release it to the soil over time. This lowers the need for regular irrigation while also 
enhancing plant development. Starch-based polymers, cellulose-based polymers, and 
polyacrylamide (PAM)-based polymers are the most frequently used superabsorbent 
polymers for soil enhancement. Starch-based polymers are produced from maize or 
potato starch and have a high capacity for water absorption, making them ideal for use

Fig. 10 Functioning of superabsorbent polymers for water retention inspired from [65]
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Fig. 11 Classification of superabsorbent polymers. Reproduced with permission from Chen et al. 
[68]

in sandy soils. Because of their exceptional water-holding ability and biocompati-
bility, cellulose-based polymers such as carboxymethyl cellulose (CMC) and hydrox-
ypropyl methylcellulose (HPMC) are also widely used [18, 40, 46]. Researchers have 
synthesized SAP using acrylic acid and they modified the SAP particles by cross-
linking it with polycations (Fig. 12) [69]. This SAP absorb and store water by forming 
a network of cross-linked polymer chains that trap water molecules through capil-
lary forces, electrostatic, and hydrogen bonding [69]. Cellulose-based polymers are 
frequently used as seed coverings to provide water to plants during sprouting [70]. 
In a study, researchers found that inclusion of SAP improved the ability of dirt and 
sand to retain water. The water retention ability of the soil rises as the quantity of 
SAP in the soil increases. Biodegradability of the carboxymethylcellulose/acrylic 
acid super absorbent polymer (CMC/AAc SAP) was monitored. It was observed that 
CMC/AAc SAP showed around 40% weight reduction in 4 weeks under compost 
environmental conditions. The findings of the experiments indicate that the SAP has 
a beneficial impact on the germination of wheat and lady’s finger seeds as well as the 
development of juvenile plants due to its high water retention capacity [71]. Another 
form of biodegradable superabsorbent polymer used in horticulture is cellulose-based 
polymers. Biodegradable superabsorbent polymer was synthesized from maleylated 
cotton stalk cellulose (MCSC) based cross-linker and acrylic acid (AAc) (MCSC-g-
PAA) using UV photopolymerization as a green and environmentally benign form 
of initiation and biodegradable MCSC as cross-linker [72]. These polymers can soak 
water up to 100 times their weight and are obtained from sustainable sources such 
as wood pulp or cotton.

The use of biodegradable polymers as soil superabsorbents has several benefits, 
including reduced water usage and nutrient leaching, improved plant development 
and output, and reduced soil erosion. These polymers can be tailored to particular
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Fig. 12 a Schematic of synthesis of SAP using acrylic acid, neutralized acrylic acid and, TEGDA 
(Triethylene glycol diacrylate) and b incorporation of PEI (Polyethylene imine) and PAMAM 
(Polyamido amine) branches for surface cross-linking. Reproduced with permission from Lee et al. 
[69]

soil conditions and plant needs, and their biodegradability prevents them from accu-
mulating in the ecosystem. Chitosan has a high-water absorption capacity and is 
frequently used as a soil amendment to increase water retention and prevent fertil-
izer leaching [73]. It is a biodegradable polymer made from chitin; a natural polymer 
found in crab exoskeletons. It has been shown to boost crop yields in a range of 
products such as rice, wheat, and maize. 

A study demonstrated that cornstarch-based SAPs can also improve the soil’s 
water-holding capacity, keeping more water conserved more nitrogen in the soil, and 
thus boosting water and nitrogen availability to tomato plants when compared to soil-
only and soil-with-fertilizer-only regimens. Moreover, water and nutrient retention 
rates ranging from 35 to 91% based on SAP quality are extremely hopeful for water 
and nutrient conservation. Increased nutrient availability is also linked to greater 
water availability [74].
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Another polymer water-soluble polymer polyvinyl alcohol (PVA) is used to make 
hydrogels, which are used as soil conditioners, seed coatings, and plant development 
boosters. To increase water retention and decrease soil erosion, nowadays, PVA 
is frequently combined with other biodegradable polymers like starch, gelatin and 
cellulose [64, 75]. 

While superabsorbent polymers have shown great potential in increasing soil 
quality and plant development in farming uses, they do have some drawbacks. One 
of the primary concerns about the use of superabsorbent polymers in agriculture is 
their possible environmental effect. While biodegradable polymers can decompose 
naturally, they may discharge hazardous compounds into the earth or water as they 
decline, which can be detrimental to the ecosystem and human health [55, 64]. Some 
polyacrylic acid based superabsorbent polymers can have an effect on soil acidity, 
which can contribute to a decrease in soil health and plant development if not used 
properly. Because superabsorbent polymers are expensive, their use in agriculture 
may be limited, especially for small-scale farmers who may not have the means to 
engage in them [16]. Superabsorbent polymers can influence nutrient availability, 
possibly leading to imbalanced plant development if not used appropriately [76]. 

Government agencies control the use of superabsorbent polymers in agriculture, 
and getting their permission can be a time-consuming and costly procedure [1, 4, 
77] with limited understanding. The use of superabsorbent polymers in agricul-
ture is a comparatively novel area, and much remains to be discovered about their 
optimal application rates, long-term impacts on soil health, and interactions with 
other agricultural inputs [55, 64]. 

4 Conclusion and Future Scope 

Agriculture has always been regarded as a source of food, energy, and fiber for 
humans. Opportunities have emerged as a result of trends and external events that 
have affected production and patterns. Numerous publications discuss how improved 
soil conditions have led to an increase in the yield of various plants. This chapter 
highlights the importance of using biodegradable polymers in the agricultural sector. 
Biodegradable polymers are considered a better alternative to conventional non-
degradable polymers because they can serve several purposes, including mulching, 
seed coatings, plant nutrition, protection from pests, soil enhancement, and targeted 
delivery of agrochemicals. Biodegradable mulch film, for example, can retain water, 
protect against weeds, release agrochemicals, and prevent pests. Seed coatings, on 
the other hand, can protect seeds from pest and pathogen, thus promoting growth. 

Biodegradable polymers can also serve as carriers for herbicides, pesticides, and 
plant nutrients, and can be designed in different shapes and sizes depending on the 
desired activity. SAPs (super absorbent polymers) can improve soil water retention 
and aeration while encapsulating plant nutrients and growth promoters. In terms of 
super-swelling behavior, chemistry, and creating a variety of applications, SAPs have 
produced a very appealing field. As we replace synthetics bio-based materials like
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polysaccharides and polypeptides, the environment we walk in is becoming greener. 
Making natural-based SAPs seems clearer in light of the high cost and rising price 
of crude oil. This opens the door for more advancement in this field in the near and 
far future. It is possible to create biodegradable polymers using waste streams from 
the agroindustrial sector and yearly regenerated crops. A more hygienic and secure 
method of conducting chemistry is through the use of enzymes, microorganisms, 
or plants to produce monomers and polymers. However, the requirement for devel-
oping low-cost methods that would support the phytostabilization of severely metal-
contaminated soils has been partly addressed by biodegradable polymers. Despite 
challenges such as availability of raw materials, processing conditions, and high 
costs, the use of biodegradable polymers in the agricultural sector is growing, and 
research in this area remains prominent. 

While biodegradable polymers offer a sustainable solution, further research is 
needed to understand their potential impact on the environment and determine the 
most effective methods for their disposal. Current technologies are limited, and there 
are no 100% biodegradable, bio-based, and economically attractive polymers with 
the best mechanical properties. As the population grows, the need for better and more 
sustainable technologies in agriculture will continue to rise, making the development 
of biodegradable polymers an essential area of research. 
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Chapter 10 
Bio-polymeric Green Composites 
for Thermal Energy Storage Applications 

Soumyadip Dutta, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Industrial and economic development is largely ruled by the net energy production 
and consumption. Starting from the stone age, human beings are looking for energy 
resources to sustain their life, and even in this twenty-first century after several 
technological advancements, we are still looking for sustainable and reliable energy 
resources. This everlasting exploration seems to be because of the harsh realization 
of the human civilization on how different human activities have been exploiting 
the environment through the emission of green-house gases leading to pollution and 
global warming. According to the researchers, constant burning of fossil fuels can 
take this world to an alarming stage where earth will not be a suitable place for any 
of the living beings to stay anymore. Mostly the energy consumed by the human 
population comes after several energy conversions and energy wastage at different 
stages of energy dissipation. Primarily the mechanical energy trapped from different 
sources are converted into electrical energy for electricity supply at household and 
industrial scale. The chemical energy inside the batteries is utilized to get electrical 
energy. But the researchers are mostly inquisitive about the restoration and utilization 
of thermal energy because of the on-going research of this versatile and valuable 
energy form. 

The current civilization is mostly dependent on the non-renewable energy 
resources but its high depletion rate and its tendency to harm the environment has 
caused the world to look for alternatives to fulfil the accelerated energy demands of
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the rising population. Different countries are coming up with the idea and imple-
mentation of electric mobility and utilization of solar energy. Dependency on solar 
energy has its corresponding disadvantage of being inoperative in the absence of 
daylight. As a sustainable method of storing energy, thermal energy storage (TES) 
systems have attracted interest and attention from all over the world. The TES system 
can be of two types—Sensible heat storage (SHS) system and Latent heat storage 
(LHS) system [1] (see Fig.  1). A thermal energy storage system means to store and 
release energy according to the requirement which proves out to be more flexible 
in manufacturing and functioning. SHS simply works by absorbing heat energy on 
increasing the temperature or releasing the energy on its temperature fall [2]. For 
example, materials like cast iron, reinforced concrete and NaCl [3] are known to be 
good SHS systems having a working temperature around 200–500 °C. LHS works 
by the change of phase and absorbing and releasing the latent heat –for example, 
materials like paraffin wax, fatty acids and glycols [1]. The concept of latent heat is 
very simple but useful at the same time. Latent heat is stored or released in a greater 
efficiency and amount as compared to sensible heat which enhances its applicability 
to bridge the gap between rising energy demand and supply. The materials which 
are used for thermal energy storage and make this wonder happen are called phase 
change materials (PCM). PCMs are finding applications in wide areas ranging from 
passive cooling of buildings, thermoregulated textiles and cold chain logistics to 
solar power harvesting [4]. 

One major problem of using PCMs without a good supporting matrix is that 
the PCMs tend to leak from the storage medium due to constant expansion and 
compression in volume during phase transition. But the interaction of the PCM with 
the matrix material plays a crucial role in its melting and freezing behavior and so 
polymers have been highly appreciated as a matrix material with which the PCM
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Fig. 1 Flowchart showing classification of thermal energy storage systems. Redrawn from ref. [5] 
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has good compatibility. Even the researchers have been convinced about the flexi-
bility of polymers for necessary physical or chemical modifications to enhance its 
compatibility with the PCM and give reproducible properties. Also, the increasing 
environmental awareness caused the scientific community to consider biopolymers 
as a suitable matrix for shape stabilization of the product due to its biocompatibility 
and increasing tendency of the civilization to move towards green revolution [5]. Use 
of bio-polymers to replace the traditional synthetic polymers has multifaceted bene-
fits such as reduction in plastic pollution, reduction in carbon footprint, sustainable 
development through green technologies etc. A major problem of synthetic poly-
mers is the leaching of harmful chemicals from the product during use and also after 
discarding, which can lead to various diseases like cancer. This can be averted with 
increased use of biopolymers as they are biocompatible and biodegradable so they 
would not interfere with nature’s harmony. So, the focus of this chapter will be on 
the exploration of various biopolymers used to encapsulate PCM to fabricate TES. 
In order to understand the TES, we would like to discuss about PCM first and then 
on their entrapment in bio-polymeric materials. 

2 Phase Change Materials 

Phase change materials (PCM) help to utilize the latent heat of phase transition at 
almost constant temperatures and makes the surrounding environment cool at high-
temperature and warm at low temperature (Fig. 2). It can undergo solid–solid [6], 
solid–liquid [1] and liquid–gas [7] phase transition to perform its thermoregulatory 
function.

2.1 Working Principle of PCMs 

Phase change is a process in which the material changes from one state of matter to 
another-thus absorbing or releasing the heat during a change of phase. In order to 
explain the concept of utilization of latent heat in phase change materials let’s take 
an example of water. The heat energy required to melt the 1 g of ice  from 0 °C  ice to  
0 °C water is 334 J/g [8] and the heat required to raise the temperature of 0 °C water 
to 1 °C water is 4.18 J/g. Hence this proves that the latent heat of melting is almost 
80 times more than the sensible heat required to raise the temperature of the PCM. 
Solid–solid PCMs have a very high-temperature of phase transition [6] (<250 °C) 
thus limiting its application as it is beyond the temperature range of practical usage. 
Liquid–gas PCMs come with the great advantage of very high enthalpy of fusion 
but cannot be stored due to its huge variation in volume [1]. The solid–liquid PCMs 
have emerged as the most researched and used PCM material, which shows less 
volume variation during phase transition and has a phase transition temperature in 
the application range, thus making the material more appreciable and explorable. In
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Fig. 2 Phase transition curve of phase change materials. Redrawn from [1]

solid to liquid phase transition, the ambient temperature should be near the melting 
temperature of the material, so that it can melt and absorb the heat and reduce the 
surrounding temperature, on cooling when the temperature reaches its solidification 
or fusion temperature, the material gets rid of the heat thus making the surrounding 
warm. It is to be noted that during phase transition, the absorption or emission of heat 
takes place at a constant temperature (isothermally). PCMs are the most appealing 
material in this domain of thermal energy storage which has popularized the process 
of phase change and utilization of latent heat. This is because, as previously said, 
latent heat is a very huge amount of heat compared to sensible heat and it mostly gets 
wasted. So PCMs and their shape stabilization and appropriate fabrication techniques 
help to make use of this latent heat. 

2.2 Classification of PCM 

Phase change materials are broadly classified into two categories—Inorganic PCM 
and Organic PCM. 

Materials like salt hydrates [9], metals [10] and alloys fall into the category of 
inorganic PCMs (see Table 1). They have the advantage of high latent heat of fusion 
and high thermal conductivity. They are also known for their good flame retardancy. 
Inorganic PCMs have a high heat storage density of about 300–400 kg/dm3 [1] which 
is almost double than that of the organic PCMs. These materials are available over 
a wide range of phase change temperatures. But the drawback which have hindered 
their widespread use are supercooling [11] which makes it an inappropriate material
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Table 1 Thermal properties of different inorganic PCMs [9–11] 

Compound Melting temperature, Tm (°C) Heat of fusion, ΔHm (kJ/kg) 

Salts 

AlCl3 192 280 

LiNO3 250 370 

NaNO3 307 172 

KNO3 333 266 

KOH 380 150 

KClO4 527 1253 

LiH 699 2678 

MgCl2 714 452 

Salt hydrates 

Na2P2O7·10H2O 70 184 

Ba(OH)2·8H2O 78 266 

(NH4)Al(SO4)2·12H2O 95 269 

MgCl2·6H2O 117 169 

Mg(NO3)2·6H2O 89.3 150 

for repeated use due to the growing non-uniformity in melting and freezing transition. 
Its tendency to phase separates on repeated heating and cooling and its corrosiveness 
towards metals limits their use. Eutectic mixtures which is a mixture of salt hydrates 
are also used as inorganic PCM. The mechanism of inorganic PCM, for example 
of salt hydrates, is different than that of organic PCMs, in the former case, it is 
followed by hydration and dehydration of the salt [9]. On heating, the salt hydrate on 
reaching the melting temperature gives solid anhydrous salt and water in liquid state. 
On cooling solid salt hydrate is formed from the binary phase by the release of the 
heat of fusion. Some examples are calcium chloride tetrahydrate, sodium carbonate 
decahydrate and magnesium chloride hexahydrate having melting temperature in the 
range of 14–60 °C and enthalpy of 120–260 °C [12]. 

Organic PCMs include alcohols [13], paraffin waxes [1], fatty acids [14] and 
glycols [15] which are known for their broad transition temperature range from 0 to 
200 °C and high latent heat of fusion, high heat storage density, non-toxic nature, 
biocompatibility, very low supercooling tendency, good chemical stability and a 
much better and sustainable energy resource (see Table 2 for the details of some 
important organic phase change materials).

The main advantage of using PCM for thermoregulation over other materials used 
in this application is its ability to make use of the latent heat during phase transition 
which usually gets wasted. Moreover, as discussed before, this latent heat which
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Table 2 Thermal properties of different organic PCMs [1, 16–20] 

PCM Melting temperature, 
Tm (°C) 

Heat of fusion, ΔHm (J/g) Molecular weight (g/ 
mol) 

Tridecane 4.5 231 184.37 

Tetradecane 5.7 217 198.34 

Nonadecane 31.5 230 268.50 

Eicosane 36.5 240 282.50 

Heneicosane 40.0 161 296.58 

Docosane 43.6 157 310.61 

Fatty acid 

Capric acid 30.8 159 172.26 

Lauric acid 42.8 191 200.32 

Tridecylic acid 41.8 157 214.34 

Myristic acid 52.8 194 228.37 

Pentadecylic acid 52.5 165 242.40 

Palmitic acid 62.4 204 256.43 

Stearic acid 69 214 284.48 

Arachic acid 75 227 312.53 

Alcohols 

Dodecanol 24.1 216 186.34 

Tridecanol 31.6 223 200.36 

Tetradecanol 37.8 231 214.39 

Hexadecanol 49.1 238 242.45 

Octadecanol 57.8 246 270.50 

Nonadecanol 61.1 255 284.53 

Eicosanol 64.5 247 298.55 

Docosanol 70.4 263 326.61 

Polymer-molecular weight 

PEG-600 17–22 127 

PEG-1500 48.83 164.6 

PEG-4000 58.8 205.7 

PEG-8000 63 189.5 

PEG-10000 67 197.2

is being absorbed or released by the PCM is very huge in amount as compared to 
sensible heat. Thus, the heat charging and discharging ability of a PCM can bring a 
considerable, appreciable and desirable difference in temperature which can almost 
disrupt the use of different air conditioners if commercialized at an industrial scale, 
probably with lower price.
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3 Shape Stabilized PCMs (SSPCMs) 

3.1 Definition and Working Principle 

The shape and structure of a matrix material helps to hold the PCM so that it can get 
a framework to perform its functions. Here the PCM is entrapped inside a molecular 
network by some chemical bonding or physical interactions like H-bonding [21] or  
forming a core–shell structure where the PCM forms the core [22]. Such interactions 
between the PCM and the framework helps to prevent its leakage and enable it 
to be used for longer cycles of subsequent heating and cooling (Fig. 3). Till now 
researchers have used metallic and inorganic shells to hold the PCM because of 
their high conductivity and re-usability for long term applications. But the major 
drawback in the rigidity of such matrix cannot inhibit the seepage of PCMs from 
them. This is the reason why the scientific community became so inquisitive of using 
polymeric framework to hold the PCM. The polymeric framework not only provides 
flexibility to the volumetric variations of the PCM but also provided high surface 
area for good heat charging and discharging. Polymer, being an insulator is expected 
to lower the enthalpy of the product. But the researchers have found several ways 
of chemical modification of the shape-stabilized product, incorporating different 
conductive fillers like carbon nanotubes [23], graphene platelets [24], carbon black 
[25], silver nanofibers [26] and various other conductive architectures to produce a 
form-stable, shape stabilized PCM incorporated product. Even different fabrication 
techniques like solution casting [27], electrospinning [28], vacuum impregnation 
[29], extrusion [29], wet composite spinning [30], physical adsorption, intercalation 
and exfoliation [31] have been reported to show different thermal characteristics 
for the same amount of PCM loading. But during exploration of such a versatile 
matrix for TES, downturns of polymeric framework were overlooked because of 
the resourcefulness and flexibility in designing a shape stabilized product and its 
function to endure repeated thermal shock. 

Fig. 3 Schematic representation of the working principle of polymeric shape stabilized phase 
change material. Redrawn from [1]
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3.2 Recent Advancement in Shape Stabilization 

Microencapsulation of PCM inside polymeric capsules by emulsion or solution poly-
merization is being popularized to produce PCM loaded microcapsules which shows 
high heat transfer efficiency due to increased surface area. A porous supporting 
framework are being discussed recently due its high storage capacity, good PCM 
and heat entrapment, high pore volume [32] and hence high surface area. The inter-
action between the PCM molecules and the pore surface helps to prevent leakage 
by different hydrophilic and hydrophobic interactions [33], Vander Waal’s and 
hydrogen bonding-like in case of graphene [34] based and cellulose based aerogel 
[35], expanded graphite [36] and metal foam based PCM [37]. Such interactions 
are also governed by the pore size, pore geometry, porosity etc. Here the thermal 
conductivity is increased where the number of interconnected pores is more than the 
closed pores. Bigger pores tend to be more interconnected which makes the material 
more thermally conductive [38]. Incorporation of PCM inside a 3D printed matrix 
[39] helps to fabricate products having high porosity and light weight which helps 
to increase the PCM loading. Even among the metals, 3D aluminum honeycomb 
[40] network provides high thermal conductivity and excellent mechanical prop-
erties. Even copper shells [41] are extensively used to load PCM. Recently a new 
shape-stabilized PCM system has been developed where the supporting material is 
a metal–organic framework (MOF) [42] having very high porosity and surface area 
for high heat transfer efficiency. Even a conductive pathway by bridging graphitic 
sheets has been used by employing expanded graphite to trap high loading of PCM. 
Researchers have also fabricated some 3D structures of polymeric network where 
the PCM is swollen by physical interactions or chemical cross-linking of polymers 
or grafting, like in case of polyurethane based PCM [43]. This type of composite 
can easily absorb extra heat from the source producing the heat and dissipating that 
through passive radiative cooling and convection currents. 

3.3 Applications of SSPCM 

PCMs have been well explored for various applications (Fig. 5). PCM based vest body 
cooling system for the application of thermoregulatory textiles [44], Mine rescue 
chamber cooling system [45], Heat exchangers and other heat venting systems [46, 
47], Thermoregulatory textiles for soldiers working at conditions like at a tempera-
ture of 45–50 °C [48], Appropriate packaging for medicines and vaccines to eradicate 
the use of refrigerated trucks [49], PCM filled jacket for heat cabinets to trap solar 
energy, even the convection from the heat charging and discharging of the PCM can 
also be trapped to generate power and used in water pumps for water suction [50] 
PCM incorporated in construction materials on rooftop, walls and ceilings to keep 
the temperature of the building at a comfortable level and reduce the use of electricity
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for air conditioners and air coolers, as depicted in Fig. 4. Recently microencapsu-
lated PCM have been used in concrete gypsum or bentonite-based wallboard for 
the purpose of thermoregulation in order to reduce the maximum and minimum 
temperature of the walls and rooftop of the building [51, 52]. The National Aero-
nautics and Space Administration (NASA) has shown the utility of PCM in space 
suits to protect the astronauts from abrupt temperature changes in space [53]. PCM 
have also been used for heat panels in high thermally conductive carbon fiber rein-
forced polymer composite for micro-satellites where the PCM helped to increase the 
apparent heat capacity with small mass gain and the supporting matrix helped in heat 
dissipation [54]. PCM loaded packets helped to absorb the heat of exothermic elec-
trochemical reactions in Li-ion batteries due to their high latent of fusion [20, 55]. 
Thermal shielding for different flexible electronics and electronic gadgets involves 
PCM based composites. For example, PCM has been employed in expanded graphite-
based composite that can be used for electro-driven TES system [56]. Moreover, 
shape stabilized PCM may be applied for passive radiative cooling in buildings [57, 
58]. 

Fig. 4 PCM loaded polymeric roofing helps in temperature regulation of buildings during daytime 
and night-time. Redrawn from ref. [7]
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Fig. 5 Different applications of bio-polymer-based thermal energy storage systems 

4 Bio-polymeric Matrix Stabilized PCMs 

4.1 State of the Art and Applications 

Polymer is such a type of material which gives strength due to its high molecular 
weight and flexibility due to the entanglements in the long chain and depending upon 
different types of physical and chemical interactions, it has a diverse field of applica-
tion. These long chain molecules can easily be tuned in terms of its structure and prop-
erties as per their application. Metallic frameworks have very high conductivity but 
their endurance to volumetric expansion of the PCM in the molten state is very poor. 
Hence researchers have come up with the idea of incorporating conductive fillers 
inside the supporting polymeric matrix which not only enhances the heat transfer 
efficiency but also increases the mechanical strength so that it can work in extreme
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climatic conditions. For applications of macro or micro-encapsulation of PCM inside 
a polymeric matrix, it provides a very conducive platform for different volumetric 
variations of the PCM. Moreover, such PCM loaded microcapsules provide high 
surface area for better heat transfer. The polymeric frameworks also provide good 
thermal and chemical stability and protect the PCM from the external environment. 
But since the world is moving towards Green revolution, so in that case also polymers 
have proved their expertise as we have biocompatible and biodegradable polymers 
too. 

Bio-polymers, unlike synthetic petroleum sourced polymers, are not harmful to 
nature. They show excellent biocompatibility, non-toxicity, good mechanical proper-
ties, and sustainability [13]. Many researchers have utilized various bio-polymers as 
PCM-based TES systems’ support systems and have found excellent results [59–64]. 
However, bio-polymers have a low thermal conductivity, limiting their application 
area. Bio-polymers do not jeopardize the ecological balance of nature. There is always 
a concern regarding the toxicity of the supporting material when we use synthetic 
polymers like polystyrene [65], poly(methyl methacrylate) [1], urea formaldehyde 
[1], melamine formaldehyde [1] and polyurethane [43]. These materials are not 
biodegradable and even with due course of time synthetic polymers like urea and 
melamine formaldehyde release toxic formaldehyde during their service life which 
leads to environmental pollution [1]. Hence bio-polymers like chitosan, poly(hydroxy 
butyrate-co-hydroxy valerate), polylactic acid [1], polycaprolactam [59], cellulose 
etc. have been used to build networks for PCM loading. 

Globally a lot of effort is being put into sustainable building materials, and 
biopolymers are extremely lucrative due to their availability, non-toxicity, biodegrad-
ability, easy processability and commercial availability. Many material scientists are 
reporting bio-polymeric support for PCMs in TES systems. 

A research group utilized carboxymethyl cellulose as the structural component, 
where stearic and lauric acid were used as the PCM. The latent heat storage value was 
∼115 J/g, which is much lower than the pristine PCM. The composite was observed 
to undergo 100 heating and cooling cycles (Fig. 6c), exhibiting around 5% reduction 
in thermal energy storage capacity. The loss of heat storage capacity coupled with 
low value of the same makes the system less effective for long term applications 
[63]. The direct synthesis of carbon aerogel from biomass is a viable method for 
creating supporting materials for phase transition materials (PCMs). In a recent work, 
hydrothermal and post-sintering techniques were used to create carbon aerogels 
(CCA and PCA) made from carrots and pumpkins. The carbon aerogels’ specific 
surface area and pore distribution were assessed using N2 adsorption–desorption 
isotherms. It was discovered that the specific surface area of the carrot carbon aerogel 
sintered at 800 °C (CCA800) was 33.80 m2 g−1, which is individually 168%, 165%, 
and 287% higher than the specific surface areas of the carrot carbon aerogel sintered 
at 1000 °C (CCA1000, 12.59 m2 g−1), pumpkin carbon aerogel sintered at 800 °C 
(PCA800), and pumpkin carbon aerogel sintered at 1000 °C (PCA1000). The carbon 
aerogels exhibited a high loading of palmitic acid (PA)/thiol-ene resin (TE) composite 
as a PCM without leakage because of its porosity (Fig. 6b). In comparison to 50PA/ 
TE, 50PA/TE@PCA1000 display increased thermal conductivity by 60.5%, and a
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Fig. 6 a Schematic representation of MPCM composite synthesis with GE/GA shell (Reprinted 
with permission from Ref. [67]. Copyright 2020, Elsevier.), b SEM images of carrot derived (i) 
aerogel, (ii) CCA800, (iii) CCA1000 and pumpkin derived (iv) aerogel, (v) PCA800, (vi) PCA1000. 
(Reprinted under Creative Commons license from Ref. [64]. IOP publishing Ltd), c DSC curve of 
CPCM1 before and after 100 thermal cyclings. (Reprinted with permission from Ref. [63]. Copyright 
2015, Elsevier) 

DSC (differential scanning calorimeter) analysis revealed that it had a latent heat of 
88.26 J/g [64]. 

Guo et al. reported the successful encapsulation of paraffin wax inside polymeric 
walls of Polylactic acid for use in thermal energy storage. They achieved ~80% of 
the value of heat absorption in the composite to that of pure Paraffin. However, the 
bio-polymeric shell was unable to stop PLA leakage of PCM from the system, which 
decreased its energy storage capacity over repeated thermal cycles. Instantaneously, 
they proposed supplementary techniques for restricting phase change material from 
seepage, such as complex cellular architecture, inter-penetrating polymer network 
structure etc., which could be used to reduce heat loss in the shell structure, improve 
energy utilization proficiency, improve thermal conducting properties, and increase 
energy storage effectiveness [66]. 

Recently Balaji reported using lotus stem as fibrous filler in epoxy resins where 
paraffin wax was used as PCM. The composites were fabricated into plate-like struc-
tures and further stacked into cuboid block-like formations. The thermal energy 
storing capacity of the whole block was found to be around 19.22 kJ, which was 
much lower than the neat PCM used. The thermal stability was improved by incor-
porating natural fiber reinforcements but provided little improvement in the mechan-
ical strength of the composites. Low thermal conductivity and even lower thermal 
energy storage capacity make the platform unattractive for practical usage [68]. Singh 
and co-workers utilized capric acid encapsulated composites, which was made by 
using protein-polysaccharide (Gelatin, GE/Gum Arabic, Ga) interactions (Fig. 6a).
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High mechanical and thermal stability were reported as they used glutaraldehyde 
as the cross-linker and heat deflecting silica coating correspondingly. The thermal 
characteristics were found to be similar even after 50 thermal cycles. However, the 
core–shell structures showed rapid loss of PCM materials at a 30–170 °C temperature, 
limiting their applicability [67]. 

By using a multiemulsification and cross-linking technique, Liu and colleagues 
were able to create chitosan microcapsules with many uses that contained Fe3O4 and 
n-eicosane as PCM. The end product, the microcapsules, demonstrated good thermal 
energy release-storage capabilities, high thermal storage capacity, and a latent heat 
storage value of about 80 J/g [69]. 

In an intriguing study, Zhang and colleagues used coacervation technology to 
create eco-friendly side-chain crystallizable octadecyl acrylate encased chitosan. 
With a transition temperature range of 32–47 °C and a maximum encapsulation 
effectiveness of 69%, they were able to achieve a melt enthalpy of 136 J/g. The 
microcapsules were evaluated for medical use, where a suspension of microcapsules 
and PVA was made, and then coated uniformly over a bandage. Chitosan has antibac-
terial qualities that inhibit bacterial invasion. According to the study, it is possible 
to maintain a comfortable temperature at the site of the wound where the bandage is 
placed, aiding in wound healing [70]. 

Microencapsulation of phase change materials (PCM) in a polymeric shell is 
very important to prevent phase change materials (PCM) from leaking into the envi-
ronment. These microcapsules should ideally provide a platform for storing and 
releasing PCM’s latent heat without requiring any physicochemical change of the 
core (PCM) or shell (polymer) constituents. The composition of shell materials influ-
ences several features of PCM capsules, including heat transfer efficiency, thermal 
conductivity, water dispersibility, and durability. Using the emulsion solvent evapo-
ration method, a random copolymer of poly (methyl methcrylate-co-2-hydroxyethyl 
methacrylate) poly (MMA-co-HEMA) with an optimum ratio of 75/25 methyl 
methacrylate (MMA)/2-hydroxyethyl methacrylate (HEMA) was used as the shell 
material to encapsulate paraffin wax (PCM). The microcapsules were manufactured 
with a shell thickness of 0.8 µm and a high encapsulation efficiency of 92.34% and 
heat storage capability of 99.85%. PHEMA (poly(2-hydroxyethyl methacrylate) with 
water absorbable shells have improved heat conductivity from 0.1 to 0.49 W/(mK) at 
25 °C as compared to the dry capsule. After 500 heating/cooling cycles, the capsules 
show no substantial change in thermal characteristics or water dispersibility, indi-
cating that they are durable. The thermal behavior of this innovative water dispersible 
microencapsulated PCM was tested after it was blended with natural rubber latex at 
various blend ratios to determine its applicability. The biodegradable natural rubber 
based composite that was created had a strong thermoregulation property as well as 
increased mechanical strength [71]. 

A simple fabrication technique for producing novel porous microcapsules encap-
sulating n-Eicosane as phase change material (PCM) with a random copolymer of 
poly (methyl methacrylate0.9-co-2-hydroxyethyl methacrylate0.1) (poly(MMA0.9-
co-HEMA0.1) as shell material has been developed. The porous microparticles 
(particle size: 31.8 ± 9 µm; porosity: 30 ± 13%; shell thickness: 1.60 ± 0.2 µm)



226 S. Dutta et al.

with a hollow core (shell thickness: 1.60 ± 0.2 µm) were synthesized using hot 
water aided double emulsion (water/oil/water) technique. Surprisingly, the micro-
capsule system was discovered to entrap >95% n-Eicosane, resulting in a consider-
ably high thermal energy storage capability (95%). High phase transfer repeatability 
and long durability were observed in porous microcapsules with a phase transition 
enthalpy of 160 J/g. The heat charging and discharging conditions for the microcap-
sules were also disclosed by the non-isothermal and isothermal differential scanning 
calorimetric studies. Infrared thermography demonstrated that in comparison to clean 
hydrophobic PCM, porous particles with partially hydrophilic shells (due to the poly-
HEMA unit) had better water dispersibility and efficient thermal management. As a 
result, the microencapsulated phase transition material in porous microcapsules can 
be a clever mix of good thermal energy storage and wettability. Because of the accept-
able phase transition temperature (37 °C) demonstrated by the selected PCM, such 
microcapsules could potentially be used as thermal energy storage materials for space 
conditioning in buildings (n-Eicosane). Our research showed that water dispersible 
porous polymeric particles may store a substantial amount of thermal energy (>95%), 
which has never been reported before [72]. Using the similar concept, biodegradable 
polymer-based porous particles can be fabricated and applied for the same purpose. 

Zhang and colleagues used cellulose acrylate as a framework to store poly(n-
alkyl acrylate), and they were able to accomplish this using 83 wt% PCM and 
also an enthalpy value of about 95 J/g was observed for the system. Since this 
copolymer offered good temperature control and TES had a degradation temperature 
of only 280 °C, it was suggested that it can be used in the textile and temperature-
sensitive pharmaceuticals sectors [73]. Samui and colleagues created a novel, quick, 
and economical method for making PCM utilizing microwave technology with 
the aim of increasing the PEG loading while preparing the mixtures of cellulose 
acetate and PEG to make form-stable PCMs. Without any leakage from the matrix, 
a very high storage capacity of up to 96.5 wt% PEG was achieved, along with an 
exceptional enthalpy value of 155 J/g; but it came up short of virgin PEG’s enthalpy 
[74] (Table 3).

Over the past ten years, research has focused on the shape stabilization of organic 
PCMs; nevertheless, the poisonous nature of synthetic polymer-based shell material 
poses a risk. In an effort to reduce leakage problems, various biopolymers are used as 
a skeleton. However, a bio-polymeric framework has the drawback of having low heat 
conductivity, which can be overcome by the combination of conductive fillers and 
nanomaterials. Due to their superior surface-to-volume ratio, nanoparticles are doped 
in PCMs to improve thermal conductivity and boost the nucleation rate during the 
charge–discharge of thermal energy. The integration of hybrid nanofillers, partic-
ularly hybrid nanofluids with mixed nanoparticles, has been increasingly popular 
because it enhances the rate of heat transmission and has a shape-stabilizing effect. 
Thus, a significant future scope lies in this area to develop more efficient green 
composite based TES.
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5 Conclusion 

In this chapter, an effort has been made to explore bio-polymeric matrix-stabilized 
PCMs for thermal energy storage applications based on renewable biopolymers. The 
thermal conductivity, heat latent, phase transition temperature, supercooling degree, 
shape stability and thermal cycling stability of PCMs have been explored in the 
chapter. An overview of the various bio-polymeric materials used as support for 
SSPCMs has been discussed along with their applications and recent advancements 
in the field of research. PCMs stabilized in a polymeric matrix behave thermally very 
differently from PCMs in bulk. As a result, mesopores and small macropores are most 
helpful in preventing PCM leakage. Excellent pore volume, porosity, and specific 
surface area ensure high thermal energy storage density. Comparatively, carbon-
based supporting materials, particularly interconnected three-dimensional highly 
graphitized network based carbon materials, are more successful at improving the 
thermal conductivity of pure PCMs. The majority of current studies on SSPCMs are 
for organic PCM-based low temperature thermal energy storage systems. However, 
there is still a lack of research on high-temperature thermal energy storage devices 
that use inorganic PCMs embedded in high-temperature stable porous materials. 
For various thermal energy storage devices, it has taken a lot of work to create 
changeable SSPCMs with good thermal and mechanical properties. Even though 
several composite PCMs have made some noteworthy improvements with improved 
performances, raising the awareness of composite PCMs. Future research will need 
to address a number of difficulties, including the limited heat conductivity of bio-
polymeric supports, the time-consuming inclusion of PCMs, the low loading amount, 
etc. The creation of biopolymer supported SSPCMs composite has a number of 
interesting elements and difficulties that demand intensive research. 
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Chapter 11 
Biodegradable Anisotropic Polymeric 
Particles and Their Emerging 
Applications 

Subhashree Subhasmita Pradhan, Chandrani Sarkar, and Sampa Saha 

1 Introduction 

Nature has always been a source of motivation for the development of anisotropic 
functional materials which show distinct features of a machine or substance that point 
in opposite directions due to the heterogeneous structures or ingredients they include 
when compared to their isotropic counterparts [1, 2]. Their essential characteristics 
for various physicochemical and biomedical applications are directly affected by 
the precision with which polymeric material’s morphology is controlled [3, 4]. For 
example, tooth enamel is the hardest mineral material in the human body because it 
contains highly mineralized, perpendicular collagen fibers. That architecture inspires 
the construction of aligned reinforcements in load-bearing materials to accomplish 
the highest possible mechanical performance in the required direction [5]. Similarly, 
it was discovered that prolate-shaped particles bind to cells more effectively than 
oblate-shaped or spherical particles due to the better interaction of anisotropic shaped 
particles with macrophages. However, oblate-shaped particles were seen to have 
enhanced cell uptake by 300% when compared with spheres, while prolate-shaped 
particles reserved cell uptake by 50%. In terms of their effectiveness as drug delivery 
vehicles, those with an anisotropic shape have longer circulation times and more 
precise targeting than their spherical counterparts [6]. Similarly, many articles have 
been written to show how anisotropy excels over its isotropic counterparts [7–22]. 

Anisotropy can arise from a variety of sources, like natural materials, synthetic 
materials, shapes, chemical composition, and surfaces. Anisotropy can be created in
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a variety of natural and manmade materials (synthetic), either as-is or after being 
subjected to various modifications Fig. 1. Taking biodegradability into account, we’ll 
focus on the biodegradable polymeric materials that contribute to the generation of 
different types of anisotropy. However, shape anisotropy is a geometric property, 
as the name would imply, and there are many different shapes such as rod, disk, 
ellipsoid, cup, trojan, needle, cubic, cylinder, toroidal spiral, and so on [18, 23–32]. 
The particle composition, however, is consistent despite the anisotropy in shape. In 
the second case, it is the presence of different compositions in different directions 
of the same system, however, that causes compositional anisotropy to arise within a 
single system, examples include spherical particles with multiple compartments and 
the Janus particle, i.e., two dissimilar compartments with various compositions in a 
single particle. In contrast, surface anisotropy develops when isotropic or anisotropic 
particles are subjected to surface modifications or functionalization techniques that 
give rise to the formation of surface patches [23, 24]. Such a system can be generated 
by allowing spatioselective growth of the polymer chain from a specific part of a 
surface causing the particle to swell in water in a way that is not uniform, thereby 
introducing anisotropy into the particle system. 

Over the past few years, the synthetic strategies for well-controlled anisotropic 
polymeric materials in terms of shape, size, functionality, composition, pattern, and 
special arrangement have been the focus of significant research and development. 
Seeded polymerization, microfluidic techniques, electrohydrodynamic jetting, clus-
terization, and self-assembly are some of the current breakthroughs in polymer 
science and production techniques that have made it possible to generate anisotropy 
by precisely controlling the geometry, morphology, surface properties, and function-
alization of polymeric materials. Anisotropic polymeric materials have attracted a 
lot of attention because of their potential applications in fields as varied as aerospace, 
sensing, soft robotics, and tissue engineering, but so far, they have only been studied

Fig. 1 Classification of 
anisotropic materials 
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in their potential as targeted and triggered biomedical carriers, Pickering emulsion 
stabilizers, and catalysts. 

Recent studies should also move their focus to sustainably generated anisotropic 
materials along with the aforementioned classification, production, and uses of those 
materials. Biodegradability must be a concern as most of these anisotropic poly-
meric materials are prepared from synthetic or non-biodegradable sources, which 
leads to serious end-user problems and an additional route for environmental pollu-
tion. Unfortunately, not much studies have been reported to determine the origins 
(synthetic/natural), degradability, and ultimate purpose of these anisotropic poly-
meric materials. An in-depth investigation into biodegradable anisotropic polymeric 
materials is the focus of this chapter. 

2 Classification of Anisotropic Particles 

An organized comprehension of anisotropic biodegradable materials can be obtained 
by classifying the former according to their source, shape, and the material from 
which they are composed Table 1. Let us discuss them in the following section.

2.1 Based on Source 

Beginning with the source we proceed to divide it into biodegradable and non-
biodegradable, but biocompatible categories. 

Anisotropy Originating from Natural Polymers 

Biodegradable polymeric materials have come a long way in their use and devel-
opment for various applications in recent years. Biodegradable polymers can be 
produced in one of two ways: either naturally, by microbes, animals, and plants; or 
artificially/synthetically, by chemical synthesis from biological starting components 
(such as corn, sugar, starch, etc.). Synthetic chemicals used in the production of 
biodegradable polymers come from petroleum sources. Here are detailed examples 
of biopolymers that can be used to create anisotropic particles. Some examples of 
biodegradable polymers, Cellulose and its derivatives [6] are utilized in the fabrica-
tion of anisotropic polymeric materials such as rod-shaped [3], spindle-type [4], and 
anisotropic cellulose particles [5, 8, 9, 12]. Another example, Dextrans, which serves 
as a coating on biodegradable material, and is used to create anisotropic polymeric 
particles by being coated over various anisotropic and isotropic particles [9–11].
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Table 1 Classification of anisotropic biodegradable polymeric materials 

Based on source 

Natural polymer generating anisotropy Synthetic polymer generating anisotropy 

Cellulose [3–5, 8, 9, 12] Polylactic acid [14–21] 

Sugar derivatives [7] Poly(lactic-co-glycolide) [27–32] 

Starch derivatives [9, 12] Polycaprolactone [33–38] 

Based on type of anisotropy 

Anisotropy by shape 

Type of shape Examples of polymers 

Crescent [14], cup [2, 16], trapezoidal [17], 
cylindrical [21], disk-shaped particles, cellulose 
(rod-shaped) [3], spindle-type [4] 

PLA 

Ellipsoid [29], rods [30], disk [31, 32] PLGA 

Spindle-type [54] Cellulose 

Wormlike [26] PEG–PCL 

Cell shaped [57] Chitosan 

Anisotropy by composition 

Biphasic (disk) [18, 19] PLA/PLGA 

Sphere, microcylinders (biphasic) [46] PLGA/PLGA/gold nanoparticles 

Sphere (biphasic) [58] PLGA/PCL 

Spheres (biphasic) [20] PLGA/PLLA 

Spheres (biphasic) [59] Pectin/pectin or pectin/alginate 

Surface anisotropy 

Anisotropic patchy particle [60] PLA/PLGA+ alkyne functionalized PLGA 

Anisotropic patchy particle [61] PLA/PLGA+ acetylene functionalized PLGA 

Polymer brush-modified anisotropic cup 
particles [15, 16] 

PLA-Poly (MMA-co-BEMA) 

Based on type of substrate 

Type Reference n 

Flat/rectangular Cellulose, spindle-type [3, 53, 54] 

Spherical PLA, PLGA, PCL, cellulose, PEG [3–8, 
10–16, 18–21, 23, 29, 31–33, 56]

Synthetic Polymers Generating Anisotropy 

When it comes to making anisotropic biopolymeric materials, polylactic acid (PLA) 
is by far the most popular choice. They can adapt to a wide range of shapes, compo-
sitions, and surface anisotropies like PLA-based crescent [14], cup [15, 16], Trape-
zoidal [17], cylindrical [21], disk-shaped [18] and Janus [19, 20] type biodegradable 
particles, etc. Secondly, Polycaprolactone which has been reported in the making 
process of Disk like, hemispheres [23], ice-cream cones [24], Janus hemispherical
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[25–27], biphasic [2] and wormlike [28] anisotropic biodegradable polymeric parti-
cles. There is a copolymer consisting of PLA and PGA (Polyglycolide acid). Some 
prominent examples of anisotropic particles prepared out of these copolymers include 
ellipsoid [29], rods [30], disk [20, 31] shaped, and non-spherical [18, 32] polymeric 
particles. 

In addition to the aforementioned biopolymers, polymers such as polyhydroxy 
butyrate (PHB), polyhydroxy valerate (PHV), Poly (ortho esters), Polyanhydrides, 
Poly dioxanes, should be investigated further for their potential usage in the 
construction of anisotropic polymeric particles. 

2.2 Based on the Type of Anisotropy (Shape, Composition, 
and Surface) 

Since we have just given a cursory overview of the above group in the introductory 
paragraph, let us go into some more in-depth discussion of them here. 

Shape 

Particles that belong to this class have a uniformly smooth surface and are constructed 
from the same kind of substantial materials, but their dimensions in a straight line vary 
from one another. Therapeutic DNA, RNA, and gene delivery have all benefited from 
the use of anisotropic particles, which research has shown are more efficient than their 
spherical counterparts. It has been established in several outstanding reviews, that 
the shape of particles is an important attribute that impacts their performance, and as 
a result, researchers are motivated to emphasize on the explorations of non-spherical 
particles [27, 28, 33, 34]. Instances include, better antigen-specific T-cell activa-
tion was observed with elliptical particles than with spherical ones and rod-shaped 
particles improved biodistribution and delivery of the therapeutic agent. Micellar 
rod with a higher aspect ratio also showed improved delivery of the anti-tumor 
drug to the cancerous cells. PLGA particles having cylindrical-shape also showed 
effective delivery of the chemotherapeutic agent in an environmentally triggered 
fashion [35–38]. Microfluidics [39], lithography [40], seed polymerization [41], and 
electrospraying [42] are all examples of synthetic methods to produce anisotropic 
particles. A broad variety of anisotropic shapes have been created utilizing these 
techniques; significant ones are discussed in-depth below the fabrication section. 
Biopolymers such as PLA can able to generate a broad range of anisotropic shapes 
such as Crescent [14], cup [2, 16], Trapezoidal [17], cylindrical [21], disk-shaped 
particles, Cellulose (rod-shaped) [3], spindle-type [4], PLGA (ellipsoid) [29], rods 
[30], disk [31, 32], Polycaprolactone (Disk, hemispheres) [23], ice-cream cone [24], 
Janus hemispherical [23–25], biphasic [25], wormlike [26] etc.
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Composition 

Polymeric materials that exhibit anisotropy due to chemical heterogeneity fall 
within this category. Anisotropic compositional materials can be manipulated by 
altering their internal architecture. In this sense, we refer to particles like dumb-
bells, acorns, bicompartmental snowmen, and multicompartmental particles with an 
ordered polymer domain or composition [43]. Electrohydrodynamic-co-jetting [44], 
seeded polymerization [19], droplet microfluidics [45], self-assembly [46], and a 
few more technologies are prominently used to fabricate compositionally anisotropic 
particles. 

Surface 

These are patterned particles that have at least one well-defined patch on the surface. 
This patch represents the location on the materials’ surface through which the 
particles experience anisotropy. Isotropic or anisotropic particles can be function-
alized through the spatioselective change of their surfaces, which can result in the 
production of anisotropic surface particles or anisotropic patchy particles [2]. An 
additional fascinating category of patchy anisotropic particles would be those with 
polymer-brush-modified patches on their surfaces. Anisotropy can be created onto 
the particles, as has been demonstrated recently by several research groups [15, 
16, 47], either by spatioselective attachment of polymer brush or by immobiliza-
tion of polymer brush onto non-spherical (already anisotropic) particles. There is a 
plethora of approaches for creating patchy particles with different functions. Among 
these, post-modification techniques such as colloidal assembly, lithography, emul-
sion polymerization, and electrohydrodynamic-co-jetting techniques predominate 
[48–50]. Electrohydrodynamic-co-jetting is the most straightforward approach to 
producing biocompatible patchy particles since it allows for the simultaneous manu-
facturing of bicompartmental, tricompartmental, and multicompartmental particles 
with orthogonal functionalities. Spatioselective surface modifications/patch creation 
onto the surface of individual compartments is made possible by the presence of 
many, functionally distinct compartments within a single particle. Polymer brushes, 
which are an assembly of polymer chains attached to the surface via one end, have 
been reported to be immobilized onto substrates using a variety of methods during 
the past few years. The brushes can be ‘grafted to’ or ‘grafting from’ a surface. 
Polymer brushes use covalent or noncovalent interactions to attach themselves onto 
a surface via “grafting from or to” technique. Usually, surface-initiated polymer-
ization techniques like atom transfer radical polymerization (ATRP), reversible 
addition-fragmentation chain transfer (RAFT), ring-opening metathesis polymeriza-
tion (ROMP), and nitroxide-mediated polymerization (NMP) have been employed 
to grow from initiator-immobilized substrates (NMP) [51]. ATRP has surpassed the 
others in popularity as the most practical and straightforward option. Biopolymers 
used for producing such types of anisotropic particles are cellulose [5, 8, 9, 12], PLA 
[19, 20], PCL [25, 52], etc.
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2.3 Based on Type of Substrate 

Substrate often refers to pre-existing materials that were either the source of or 
the target of modification in order to generate the anisotropy. Organic and inorganic 
substrates are the two most common types. It is possible to further categorize organic 
substrates into biodegradable materials and nondegradable materials. Biodegradable 
substrates can be flat rectangular or spherical. Biodegradable substrate can be used in 
any shape, as long as it is flat, rectangular, or round and either isotropic or anisotropic 
because they are amenable to further modification for getting anisotropy. Examples 
of flat surface/rectangular substrate [3, 53, 54], spherical [3–8, 10–16, 18–21, 23, 29, 
31, 32, 55, 56]. 

3 Fabrication Techniques 

Here, we will discuss in greater depth regarding the techniques we mentioned in 
Sect. 2 for creating anisotropic materials (Fig. 2). 

3.1 Droplet Microfluidics 

Droplet microfluidics allows the precise production of a wide range of particle shapes 
and compositions, including spherical and Janus particles. Direct encapsulation of 
actives or pharmaceuticals into polymeric particles is made possible by this method, 
which also has enormous potential in a wide variety of biomedical applications, 
including drug delivery and other biomedical applications [62, 63]. Microfluidic

Fig. 2 Fabrication techniques for creating anisotropic materials re-drawn from [1, 2, 27] 
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Fig. 3 Schematic illustration of anisotropic particle production using droplet microfluidics inspired 
from[63, 64] 

devices, however, offer a flexible alternative to conventional emulsion approaches, 
allowing for the exact production of a single drop at a time, thus facilitating the manu-
facture of monodispersed particles and so resolving the challenges. Microdroplet 
synthesis into particles contains three basic steps: (1) droplet generation by microflu-
idic generator, (2) droplet shape via microchannel, and (3) particle solidification via 
microdroplet solidification [64] (Fig. 3). 

3.2 Electrospraying (Electrohydrodynamic-co-Jetting) 

Electrospraying, also known as electrohydrodynamic jetting, is another simple 
method for creating anisotropic polymeric micro/nanoparticles of predetermined 
shapes and morphologies for use in biomedical applications, such as drug encapsu-
lation [42, 64–68]. Electrospraying requires a syringe with a needle attached to it, 
a syringe pump that regulates the flow rate of the polymer solution, a high-voltage 
source, and a grounded collector. The high-voltage applied to the drop of poly-
meric solution at the needle’s tip causes electrostatic repulsive forces between the 
surface charges and coulombic forces exerted from the external field to overcome the 
droplet’s surface tension, distorting it into a Taylor cone. In the case of low-viscous 
solutions, this Taylor cone sprays an electrified jet in the form of secondary droplets, 
leading to polymeric particle formation on the grounded electrode. Solution param-
eters (such as polymer concentration, viscosity, molecular weight of the polymer, 
electrical conductivity, etc.), processing parameters (such as applied voltage, flow 
rate, etc.), and equipment parameters (e.g., needle-to-collector distance, needle diam-
eter, etc.) can all be adjusted to modify the size and shape of the polymeric particles.
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Fig. 4 Fabrication of anisotropic polymeric particles using electrohydrodynamic-co-jetting. Recre-
ated with permission from Ref. [15]. Copyright 2019 Elsevier 

In simple words changing the charge density, viscosity, and surface tension of a poly-
meric solution causes a change in the solution’s morphology or overall appearance. 
The electrospraying method can be used with a wide variety of solvents, medicines, 
polymers, monomers, etc., which is just one of its many benefits. A narrow size 
distribution with a small standard deviation can be achieved, and the shape and size 
of the particles can be controlled with high precision [15] (Fig. 4). 

3.3 Particle Replication in Non-wetting Templets (PRINT) 

PRINT, or particle replication in nonwetting templates, is a cutting-edge soft lithog-
raphy process that allows for the creation of particles of varying shapes and sizes, even 
down to the sub-100-nm range. It’s a straightforward and easy method for control-
ling particle size, shape, and surface functionality, and for enclosing various bioactive 
chemicals [69–74]. The PRINT process casts molds from perfluoropolyether (PFPE) 
elastomers using silicon masters with predetermined patterns. Different patterned 
surfaces can be used to create a wide range of shapes. Liquid PFPE precursor is typi-
cally poured onto a silicon master, evenly distributed, and cured with light to create an 
elastomeric mold. Subsequently, using the roll to roll technique, a liquid monomer or 
polymer solution (preparticle liquid) is flooded into the mold, and the particle liquid is 
sucked into the cavities via capillary action. The particles are then consolidated using 
techniques including, thermal effect, lyophilization, ultraviolet irradiation, solvent 
evaporation, etc. To create polymeric particles, poly(dimethylsiloxane) (PDMS) is 
used as a mold material; it is then crosslinked using the soft lithography method. PVP 
[poly(vinylpyrrolidone)] layer imprinted on a PDMS mold has recently been used 
to create non-spherical PCL particles such as hemispheres and disks. Researchers
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Fig. 5 The PRINT 
technique, depicted in a 
schematic form. a A roller  
(black) equipped with a 
high-surface-energy polymer 
sheet evenly distributes the 
preparticle solution (red) in 
the elastomeric mold 
(green), removing any excess 
solution as it goes. In step b, 
the particle solution is cast. 
Harvesting film is used to 
collect particles from the 
mold c (yellow). The 
particles in the solution 
become unbound after the 
film is dissolved,  
demonstrating d the fluidity 
of the solution. Recreated 
with permission from 
Refs. [69, 71] Copyright 
2010 Elsevier 

demonstrated the versatility of Fe3O4 nanoparticles by combining them with doxoru-
bicin (DX) and using them as theranostics. Because the PEO phase dissolves in 
aqueous media during mold release, a PCL/PEO (poly(ethylene oxide)) immiscible 
polymer phase was also used to produce hemispherical hollow PCL particles [72] as  
shown in Fig. 5. 

3.4 Film Stretching 

This technique involves immobilizing previously fabricated particles in a thin film, 
heating the film above the Tg (glass transition temperature) of the polymeric parti-
cles, and then stretching the film, thus causing the particles to deform [75]. The 
polydispersity of fabricated particles is dependent on the polydispersity of the spher-
ical stock particles, which can only be controlled by selecting the appropriate source 
spherical particles, but the film stretching method has the potential benefit of allowing 
the manipulation of many different shapes from a single stock of polymeric particles. 
Changing the ratio of stretching to compressing, the thickness of the film and the 
liquefaction method (in which particles are liquefied by using a solvent or heating 
the particles above Tg) have all been found to influence the particle’s final form and 
size [75].
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3.5 Emulsion Technique 

The method is to be counted among the top sought-after approaches due to its ease 
of use, low cost, and scalability in the production of compositionally anisotropic 
particles [76–79]. It has been shown that this method may be used to manufac-
ture compositionally anisotropic/Janus particles that are loaded with drugs, and the 
mechanism for controlling particle morphology has been identified. PCL and PLGA 
are two examples of biopolymers that have been employed to manufacture compo-
sitionally anisotropic particles through the application of this method [24, 52, 80] 
(Fig. 6). 

Other procedures, notably those pertaining to grafting techniques [27, 81] like 
“grafting to” where polymer brushes are produced by reacting end-functionalized 
polymer molecules with a suitable substrate. However, when it comes to synthesizing 
polymer brushes with a high grafting density, the “grafting from” approach is the most 
promising method. And “grafting through” which is the combination of the above 
two. All of these are examples of advanced methods currently in use for producing 
anisotropy using biodegradable polymers.

Fig. 6 The experimental procedure for making biodegradable anisotropic particles is depicted 
schematically above. Reproduced with permission from [51, 53, 80, 81]. Copyright 2012 ACS, 
2020 Elsevier 
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4 Applications 

Anisotropic particles, regardless of their form, composition, or surface anisotropy, 
have the potential to find applications in a wide variety of fields, including those in 
which their isotropic equivalents are already being utilized. In a variety of contexts, 
the use of anisotropic particles confers significant benefits above those of isotropic 
ones. Despite this, because the major focus of this article is on biodegradable 
anisotropic particles, a concise discussion on the numerous uses of these materials 
in a variety of fields has been stated below. Applications include targeted as well 
as triggered medication delivery, the Pickering emulsion stabilizer, Catalysis etc. 
(Fig. 7). 

4.1 Targeted and Triggered Drug Delivery 

Since the drug release rate is greatly influenced by the geometry of the carriers, 
many types of anisotropic particles have been studied in recent decades for use 
in drug delivery applications. By loading anisotropic brush-modified particles with 
anthracycline doxorubicin (DX) as a model anticancer drug and then studying prop-
erties like drug encapsulation and release performance, cytotoxicity, and cellular 
uptake, Zhao et al. [52] provide a compelling comparison of spherical micelle and 
anisotropic particles modified by polymeric brushes as transporters of therapeu-
tics. Using dialysis, DOX was injected into a sphere of PCL-b-PEO. However, the 
wormlike molecular brushes were found to have a faster release of DX despite having 
lower drug loading efficiencies and drug loading content than the spherical micelles of

Fig. 7 Schematics for the 
application of biodegradable 
anisotropic polymeric 
materials 
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PCL-b-PEO diblock copolymers. The biocompatible PCL-b-PEO diblock copolymer 
was used to improve DX encapsulation because the hydrophobic core of the spher-
ical micelles can expand as needed to accommodate more DX thanks to the flexi-
bility of the chains within them. But polymer brushes could not identify additional 
drug molecules due to the PCL core’s stiff backbone resulting in comparatively less 
DX loading. However, the in vitro release profile demonstrated that the wormlike 
brush resulted in a faster drug release than the spherical micelle. Again, this tran-
spired because of the molecular brush’s design, which allowed rapid transport of 
the medication from its central location to the surrounding environment. Further-
more, cellular uptake findings utilizing HeLa and HepG2 cells demonstrated that 
the wormlike brushes were easily internalized into HeLa and HepG2 cells within 
1 h, in contrast to their spherical counterparts. It is possible that non-spherical poly-
meric core-based nanoparticles, when combined with brush-induced anisotropy, will 
be seen as a potential material in drug delivery systems, advancing the same line of 
research. Another example of wormlike micellar particles, consisting of PEG-b–PCL 
[poly(ethylene glycol)-b-poly(caprolactone)] block copolymer, with a diameter of 
150 nm and a length of 1 mm, were created to encapsulate an anticancer medication 
like methotrexate [26]. When compared to spherical particles, which had a loading 
efficiency of 2.1 ± 0.08% and an encapsulation efficiency of 20.10% after being 
synthesized by ring-opening polymerization (ROP) (Full form), it was discovered 
that wormlike particles had a loading efficiency of 3.5 ± 0.14% and an encapsula-
tion efficiency of 65.6 ± 0.12%. These values were significantly higher than those of 
the spherical particles (formed by self-organization rapid precipitation). In contrast, 
wormlike particles released methotrexate at a much slower rate, which is useful 
in situations where a constant supply of the drug is needed. The bicompartmental 
PLA/PLGA particles were disk-shaped, and they were loaded with levodopa (LD) 
and carbidopa (CD) to treat Parkinson’s disease (PD), as was mentioned before [31]. 
Lack of dopamine is the root cause of Parkinson’s disease, a neurodegenerative 
condition. Levodopa’s ability to be absorbed in the small intestine, pass the blood– 
brain barrier, and be converted into dopamine makes it an effective treatment for PD. 
Carbidopa can be used instead of levodopa because only a fraction of an oral dose of 
levodopa reaches its intended side due to its metabolism by the 1-amino acid decar-
boxylase enzyme (AADC) (an AADC inhibitor). Because of this, it would be quite 
useful to have LD and CD sent together on a constant basis. Similar to the commer-
cially available tablet Syndopa®, disk-shaped particles with anisotropic roughness 
were found to be an effective carrier for both LD and CD when placed in separate 
compartments, retaining the required drug ratios, LD/CD = 4:1. Due to their shape 
(disk) and chemical compositions in different compartments, the produced particles 
were anisotropic (Janus). The biphasic feature helped to independently control the 
drug release rate, and the disk form was favored because it provides a higher surface 
area for adherence to the intestine, boosting drug absorption. To investigate the 
impact of polymer hydrophilicity/hydrophobicity and crystallinity on drug release 
rate, two systems were created with either LD or CD in PLGA or PLA compartments 
(LD/CD = 4:1), and their release profiles were investigated. Because of the greater 
hydrophilic nature of amorphous PLGA, drug release occurs more rapidly from the
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smooth PLGA compartment than from the crystalline PLA compartment. A bicom-
partmental particle system with LD in a PLGA phase and CD in a PLA phase has been 
shown to be a promising PD drug carrier, as it releases both medicines at similar and 
sustained rates (80% of drugs in the initial 5 h and 90% of drugs in 24 h). Anisotropy’s 
function in defining the desired drug release profile was further demonstrated by the 
ease with which drug release rates for both medications could be manipulated due 
to differences in crystallinity between the two separate compartments (Fig. 8). 

In another example, where researchers have discovered that particle form is a 
major factor in biodistribution. Numerous experiments have been conducted to deter-
mine whether the shape of a particle (rod, cylinder, quasi-hemispherical, spherical, 
and so on) affects its distribution in the body or not. A 2013 study by Chu et al. 
[37] discovered that smaller characteristics are preferable because they have a lower

Fig. 8 Bicompartmental microparticles as a dual drug delivery system for Parkinson’s disease 
management. Reproduced with permission from reference. Copyright 2019 Springer [31] 
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chance of being cleared by organs of the mononuclear phagocyte system (MPS) 
and thus have more time to perform their function inside the body. Regarding this 
topic, they reported the simple manufacture of docetaxel-loaded (a chemotherapeutic 
agent) monodisperse and shape-specific PLGA particles using the PRINT approach. 
Another PLGA-based anisotropic particle was reported [37] where the film stretching 
approach was used to alter the shape of spherical PLGA particles made using an 
emulsion process to prolate ellipsoidal and oblate ellipsoidal ones. Later, RBC (Red 
Blood Cells) was used to create a biomimetic lipid membrane by coating the parti-
cles. In this study, mice received intravenous injections of both coated and uncoated 
particles of spherical, prolate ellipsoidal, and oblate ellipsoidal shapes. The half-life 
of all the coated samples dramatically increased in contrast to the uncoated one, as 
shown by the blood samples collected at regular intervals. Half-life was the longest 
for prolate ellipsoidal RBCs, which were coated with RBCs, as opposed to spherical 
RBCs or oblate ellipsoids. After 24 h of incubation, the particles’ distribution was 
studied across multiple organs, and it was discovered that the particle concentrations 
accumulated in each organ varied significantly depending on the particles’ shapes. 
The accumulation of uncoated prolate ellipsoidal particles was lower in the liver after 
24 h than that of oblate ellipsoidal and spherical particles, while it was higher in the 
heart. In addition, coated particles are concentrated in the spleen and uncoated parti-
cles in the kidney; this difference was likely attributable to the superior clearance and 
destruction of uncoated particles compared to coated ones. It is possible that non-
spherical polymeric core-based nanoparticles, when combined with brush-induced 
anisotropy, will be seen as a potential material in drug delivery systems, for instance, 
spindle-type cellulose nanocrystals (CNCs) have been reported by Hu et al. [54] to  
possess biocompatibility in addition to excellent physical and chemical properties. 

The aforementioned research certainly elucidates the significance of anisotropic 
drug carriers’ morphology in the development of high-performing drug delivery 
systems. However, other classes’ in-depth theoretical/computational investigation 
into the effects of anisotropy on particle properties needs to be carried out in order 
to facilitate particle design suited to a given application. 

4.2 Catalysis and Pickering Emulsion Stabilization 

While the study of metal catalysis for simple chemical reactions was quite popular, 
there is less enthusiasm for the subject because of the growing complexity of hetero-
geneous systems. New generation catalysts typically comprise of various polymers, 
biopolymers, and clay materials. There are many advantages of using biodegradable 
and milder catalysts in place of old and harmful ones, including atom economy, low 
energy demand, straightforward purification methods, more selectivity, and reduced 
pollution. Consequently, a hybrid system involving anisotropic polymeric materials 
such as metallic nanoparticles modified by polymer brushes was required to take the 
role of the ordinary metal catalyst [81–84]. Moreover, being amphiphilic in nature, 
polymer brush-modified Janus-type biodegradable polymeric particles may act as
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interfacial catalysts to demonstrate catalysis at oil/water (o/w) interface. The o/w 
interface was stabilized by Pickering emulsion stabilizers which are nothing but 
amphiphilic solid particles. 

In other words, for a stable emulsion to be created without the use of surfactants, 
solid particles known as Pickering emulsion stabilizers are adsorbents at the oil– 
water interface. Particle-stabilized emulsions is another name for them. They have 
carved out a niche for themselves in a variety of industries, including medicines, inter-
facial catalysis, oil recovery, pollution treatment, and others [85–88]. Amphiphilic 
polymer particles are frequently utilized as Pickering emulsion stabilizers, but their 
end-of-life consequences are rarely considered. Biodegradable polymer particles are 
increasingly being considered as potential stabilizers, in addition to their traditional 
use of functionalizing silicas and clay particles. However, most of the time they are 
only employed in specialized industries like healthcare, and there aren’t many exam-
ples exploiting their eco-friendly nature useful in a wide range of contexts, including 
interfacial catalysis. 

In a recent article by Ifra et al. [90] anisotropic Janus-type spherical 
microparticles (using PLA and copolymer of MMA (Methyl methacrylate) and 
2(2-bromopropionyloxy)ethyl methacrylate (BEMA), poly(MMA-co-BEMA) with 
macroinitiators on only one side were manufactured using the electrohydrodynamic 
co-jetting method onto which pH responsive poly(DMAEMA) brushes were grown 
using SIATRP with the help of the macroinitiator, allowing for the production of 
amphiphilic Janus particles. Janus particles which were modified by the polymer 
brushes were then used to make stable an octanol/water emulsion similar to the Pick-
ering emulsion; the stability of this emulsion can be modified by adjusting the pH; it 
was stable for more than four months. In addition, iron nanoparticles were electro-
jeted into one of the compartments, and gold nanoparticles (GNPs) were selectively 
immobilized onto the surface of brush-modified compartments only, to serve as the 
interfacial catalyst (acquired by in situ synthesis). In the end, the Janus particles were 
investigated to reveal two distinct catalytic processes, namely the dechlorination of 
TCE (trichloroethylene) by iron (0) nanoparticles and the PNP (p-nitrophenol) or MO 
(methyl orange) reduction by GNPs, both of which took place in two distinct phases 
(octanol and water) Fig. 9. While iron nanoparticles dechlorinated roughly 90% of 
TCE in about 7 days, presumably likely due to the trapping of TCE within the parti-
cles just like the freely available GNPs, they took only 1 min to completely reduce 
PNP or MO. The fact that they can be recycled and reused several times increases 
their appeal from a green chemistry standpoint and, by extension, their range of 
potential uses. In this study, researchers created unique amphiphilic Janus particles 
that show potential as a powerful interfacial catalyst for a wide range of organic 
processes, including the purification of polluted water.

Another example of a biodegradable polymeric system for the above applica-
tion where the use of cellulose nanocrystals grafted with thermo-responsive poly 
(NIPAM) (poly(N-isopropylacrylamide)) (full form)brushes, were able to success-
fully construct heptane-in-water Pickering emulsions that can change their viscosity 
in response to temperature changes [5]. Over the course of four months, emulsions 
made with poly(NIPAM)-g-CNCs at concentrations of 0.05–0.5 wt% showed no



11 Biodegradable Anisotropic Polymeric Particles and Their Emerging … 251

Fig. 9 Graphical illustrator of Pickering emulsion stabilization and catalysis using anisotropic 
colloidal surfactants decorated with dual metallic nanoparticles. Recreated with permission from 
Refs. [89, 91]. Copyright ACS 2022

signs of instability compared to the unmodified CNC. The resulting heptane droplets 
from poly(NIPAM)-g-CNCs had polydisperse drop size distributions, with sizes 
ranging from 30 to >100 nm depending on the quantity of grafted nanoparticles but 
when heated for 1 min at temperatures exceeding the LCST (lower critical solution 
temperature) of poly(NIPAM), entire emulsions were destroyed. Rheological tests 
shed light on the emulsion stabilization phenomenon by showing that the viscosity of 
the emulsion rose, as they got closer to the LCST of poly(NIPAM). The weakening 
of electrostatic and steric interactions of poly(NIPAM)-g-CNCs at the oil–water 
interface provides an explanation for the mitigating impact of salt under elevated 
temperatures. The aggregation of grafted nanoparticles at the oil–water interface 
was also observed as bigger layered sheets were assembled. The above piece of 
work indicates a significant advancement in biomedical and cosmetic applications 
that can be anticipated from the creation of thermally sensitive Pickering emulsions 
using naturally available biodegradable substrates with adjustable stability. 

Problems associated with in situ ground water treatment using reactive Zero Valent 
Iron (ZVI) nanoparticles include rapid oxidation and severe agglomerations of ZVI, 
which ultimately impede their transport through the subsurface and actions towards 
degradation of non-aqueous phase liquid (NAPL) and water-soluble contaminants. 
To overcome the stated problem using biodegradable polymeric material, Kalpana 
et al. [91] used electrohydrodynamic co-jetting to create amphiphilic bicompart-
mental Janus particles (711 nm size) loaded with 50-nm ZVI nanoparticles. One of
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Fig. 10 Application of anisotropic particles for ground water remediation. Recreated with 
permission from Refs. [90]. Copyright 2022 Elsevier 

the two compartments of the Janus particles comprised of PLA (polylactic acid), 
PE (hexamethylene 2,3-O-isopropylidenetartarate) and PAG (photo acid generator), 
whereas other hemisphere of the Janus particles was made of PLA only, though 
ZVI were present in both the compartments. When UV-irradiated, PAG part releases 
acid to deprotect PE’s hydroxyl groups for making the PE compartment hydrophilic. 
The encapsulated ZVI nanoparticles were found to react and remove hydrophilic 
(methyl orange dye) and hydrophobic (trichloro ethylene) pollutants. UV-treated 
Janus particles were 9 times more reusable and had a far more stable dispersion 
(3 weeks) and reactivity (twenty-four days in polluted water) than the non-treated 
ones. Besides these, the fabricated amphiphilic Janus particles could remove contam-
inants at the NAPL/water interface in groundwater due to their low attachment effi-
ciency onto sand particles (0.07) and great transportability (>95%) via porous media 
(sand column) (Fig. 10). 

Applications for anisotropic particles are still in their infancy because their 
synthesis and modification involve intricate procedures. The vast majority of these 
substances are promising candidates for drug delivery and theranostic applications. 
Numerous unexplored applications exist for these materials. 

5 Future Scope 

Research on biodegradable anisotropic particles has rapidly evolved in recent years, 
from their construction to their applications across a wide range of fields. Different 
types of these materials, each with its specific size, shape, usefulness, and features
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have been manufactured using selective synthetic techniques. Anisotropic parti-
cles can be synthesized using a wide number of synthetic processes like their spher-
ical counterparts, or using the same method but adjusting the process parameters to 
achieve different results. Biodegradable anisotropic particles are gaining popularity 
as a research topic because of their potential to eliminate the drawbacks of spher-
ical particles. There is still a lot to be overcome in their development, despite the 
many obstacles (such as poor repeatability, a lack of product, and a lack of command 
over form and particle size distributions). In conclusion, the prospective uses of 
biodegradable anisotropic particle need to be brought into the actual world. Collabo-
ration between material scientists, chemists, biologists, and physicists is essential to 
this progress. Ultimately, interdisciplinary efforts will provide more well-designed 
functional materials and devices based on biodegradable anisotropic particles that 
exhibit fascinating features and have considerable future potential, particularly in the 
biomedical sector. 
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