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Abstract 

With the advent of genome editing technologies that allow direct targeting and 
editing of genome sequences across nearly every eukaryotic cell, has made it 
possible to uncover hidden facts and regulation of genetic diseases and many 
other diverse applications by developing more precise cellular models. In the past 
decade, genome editing technologies have advanced rapidly and emerged as 
highly useful technologies in various fields ranging from basic to applied 
research, including biomedicine. Since the development of CRISPR-Cas gene 
editing system, at least 45 Cas protein families now being recognised. The term 
CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. 
CRISPR-Cas system present in bacteria can neutralise the invasion of virus by 
destroying the viral genome. Thus, CRISPR works as an immune system of 
bacteria and responsible for protecting them. 

needs to match the target sequence, as well as Cas (CRISPR-associated protein), 
an endonuclease responsible for DNA double-strand breaks that lead to genome 
editing. 

on or off genes in cells and organisms rapidly and efficiently. In this chapter, we 
have elaborated the CRISPR-Cas system history, its working mechanism and 
applications in various fields. We have also included the ethical issues and 
limitations of this advance technique. 
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12.1 Introduction 

12.1.1 History 

During 1970s to 1980s, the first genetically modified mice were created (Jaenisch 
and Mintz 1974), and the first genetically modified bacteria were able to produce 
insulin and somatostatin (Goeddel et al. 1979). An impressive modification has been 
made to organisms that have been very difficult, costly and time-consuming to 
achieve. Scientists undertook more research into genetic engineering techniques in 
order to overcome these challenges. It led to the development of innovative tools 
such as zinc finger nucleases (ZFNs), TALENs (Transcriptional activator-like effec-
tor nucleases) and now CRISPR-Cas system. Combined with the cleavage domain of 
the restriction enzyme Fokl, zinc finger nucleases can produce DNA double-strand 
breaks by using their specificity to recognise DNA as well as their robust, yet 
controlled, activity. In several organisms, ZFNs have been used to create site-
specific modifications; however, these have not been widely used in microbes 
(Urnov et al. 2010). ZFNs have several disadvantages, including context depen-
dency, design difficulty and inefficiency in multiple gene targeting. A TALEN can 
produce double-strand breaks due to its DNA-binding specificity combined with its 
cleavage domain. Despite minimal off-target effects, they are not easy to clone and 
have a limited capability to target multiple genes. 

CRISPR-Cas system simplicity and specificity are thought to make it superior to 
ZFNs and TALENs when compared. ZFN and TALEN proteins need to be produced 
separately for each DNA target, whereas CRISPR requires only matching a sequence 
of the guide RNA to a target region that will lead the Cas enzyme to a specific point 
where double-strand breaks can be introduced. It also has the advantage of being 
highly efficient since changes can be made directly through the system by inserting 
RNAs encoding the Cas protein and gRNA. Since, we can introduce multiple guide 
RNAs simultaneously, the CRISPR-Cas system can produce multiple gene 
modifications simultaneously (Jiang et al. 2015). 

The CRISPR-Cas system was first described in 1987 when an unusual repetitive 
DNA sequence was observed in the E. coli genome during the analysis of genes 
involved in phosphate metabolism. Bacteria began inserting 32 nucleotide spacer 
sequences at regular intervals between the repeats whenever they encountered phage 
DNA (Ishino et al. 1987). The term CRISPR was coined in 2002 by Jansen et al. The 
repeat sequences were later found in 90% of archaea and 40% of sequenced bacterial 
genomes, although their functions were unclear (Horvath and Barrangou 2010). 
CRISPR-Cas history was made in 2005 when it was discovered that the spacer 
sequences actually originate from the phage genome (Mojica et al. 2005).
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There were subsequent proposals that the CRISPR-Cas system could be used as a 
defence against phage attacks by bacteria and archaea. A spacer DNA similar to the 
DNA of phages can be added or deleted in Streptococcus thermophilus to increase or 
decrease its resistance to phage attack (Barrangou et al. 2007). Thus in 2007, 
CRISPR-Cas9 system was experimentally demonstrated as an acquired immune 
system in prokaryotes. Currently, researchers have revealed many Cas-proteins, 
CRISPR-associated genes, protospacer adjacent motif (PAM), CRISPR-RNA 
(crRNA) and transactivating crRNA (tracrRNA) which provide detail information 
about working mechanism of CRISPR-Cas system (Bolotin et al. 2005). 

12.1.2 Mode of Action of CRISPR-Cas System 

Researchers have used CRISPR-Cas system as a gene editing tool capable of making 
targeted genetic changes to any organism’s DNA. In response to foreign DNA 
invasion by a phage or plasmid, CRISPR/Cas9 is most commonly used, which 
combines Cas9 endonuclease with a short guide RNA (gRNA) that contains two 
parts: a target-specific CRISPR RNA (crRNA) and a helper transactivating RNA 
(tracrRNA). Cas9 is guided by gRNA to specific genomic loci based on comple-
mentary nucleotides base pairing between the crRNA and target sequences 
(Pattanayak et al. 2013). The target DNA sequence containing the protospacer 
adjacent motif (PAM) on the 5′ end also have complementary sequences to the 
gRNA (Anders et al. 2014). A PAM sequence is necessary for the Cas enzyme to 
complement and distinguishes between the bacterial DNA from invaders DNA 
(Marraffini and Sontheimer 2010). In recent studies, researchers have shown that 
gRNAs derived from the fusion of guide sequence-containing crRNAs with 
tracrRNAs work as individual components (Jinek et al. 2012). Cas9 endonuclease 
binds specific sequences to induce specific double-strand breaks (DSBs), the repair 
of which is carried out by two distinct mechanisms: 

(a) Non-Homologous End Joining (NHEJ): It is an error prone mechanism that 
results in random insertions or deletions during the repair procedure (Jeggo 1998). 

(b) Homology-Directed Repair (HDR): A method that results in precise nucleo-
tide edits but is less efficient, as DNA is repaired using either endogenous or 
exogenous templates (Komor et al. 2017; Hsu et al. 2014). For this reason, 
CRISPR/Cas9 can be employed to manipulate genetic sequences by inducing 
NHEJ or HDR. A CRISPR region is found in the bacterial genome; that helps 
them defend themselves against viruses. 

Three main steps are involved in CRISPR-Cas system working mechanism 
(Fig. 12.1): 

1. Adaptation-Short segments of viral DNA are inserted into the CRISPR sequence 
as new spacers after they have been processed. 

2. Processing and assembly-In bacterial DNA, CRISPR repeats and spacers are 
transcribed, and this produces short RNA molecules known as CRISPR-RNAs.
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Fig. 12.1 Represents the working mechanism of CRISPR-Cas system in bacteria 

3. Targeting/Interference-The machinery of bacteria is guided by CRISPR-RNAs to 
destroy the viral genetic material, since CRISPR-RNA sequences are copies of 
viral DNA acquired through adaptation; the sequences are exact matches of the 
viral genome, thus serving as an ideal guide. 

12.2 Applications 

The highly efficient and cost-effective CRISPR-Cas technology has many potential 
benefits and applications range vastly in translational biotechnology, from the 
introduction of point mutations to deletions, insertions, multiple-gene knock-
downs and chromosomal rearrangements (Xue et al. 2014; Zhu et al. 2017). It has 
also potential applications in public health, species conservation, agriculture and 
basic research such as the ability to manipulate genetic sequences can be utilised to 
combat diseases such as malaria, dengue fever, Chagas and Lyme diseases. CRISPR 
could be used to analyse disease genes in viable human embryos and assist in 
immunotherapy, organoid engineering and development and identifying disease 
targets. In addition, it can be used to cure HIV, Haemophilia, Cancer, Duchenne 
muscular dystrophy, Amyotrophic lateral sclerosis, Sickle-cell anaemia, Cystic 
fibrosis and infertility. Some of the most potential applications of CRISPR-Cas 
system have been discussed below. 

12.2.1 Genome Screening 

Short hairpin RNAs (shRNAs) for RNA interference (RNAi) have been used in 
recent years to perturb transcript levels (Paddison et al. 2004). In this approach, the



gene expression was incompletely abrogated and there were significant off-target 
effects which led to unexpected results in transcriptional analysis (Jackson and 
Linsley 2010). In some studies, Cas9, pooled guide RNA libraries and next-
generation sequencing (NGS) have been used to adapt CRISPR for genome-scale 
screening (Schumann et al. 2015). CRISPR-Cas9 modified genomes can be used for 
genome-wide screening either by examining 20,000 genes or by studying one gene 
or signalling pathway in particular. Screening CRISPRs generally involves loss-of-
function assays, which utilise indel-prone NHEJ repair or sequence repression. 
Certain applications also require the use of gain-of-function screens, which use 
endogenous HDR and CRISPR activation methods (Klann et al. 2017). 
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12.2.2 Cell Therapy 

CRISPR-Cas technology has undergone a radical shift primarily linked to stem cells 
and immune cells (Chen et al. 2013). The treatment of cancer and autoimmune 
diseases using ex vivo gene-edited T cells has shown promising results (Bikard et al. 
2013; Ren et al. 2017). An example is chimeric antigen receptor T Cells. By 
electroporation of this chimera with Cas9 ribonucleoproteins (RNPs), it is possible 
to target other receptors such as CXCR4, CCR5, PD-1 and CD7 on human cancer 
cells named as CAR-T cells therapy (Schumann et al. 2015). CRISPR-Cas9 technol-
ogy has been approved for the treatment of muscle-invasive bladder cancer, 
castration-resistant prostate cancer, metastatic renal cancer and metastatic 
non-small cell lung cancer. 

CRISPR/Cas9 was considered for the treatment of Cystic Fibrosis (CF) (Schwank 
et al. 2013). A successful correction of the most common mutation responsible for 
CF in intestinal organoids was achieved using adult intestinal stem cells. Study 
showed that the function of the CF transmembrane conductor receptor (CFTR) was 
restored once the mutation had been corrected. 

12.2.3 HIV Treatment 

HIV can also be treated with CRISPR/Cas9, though antiretroviral therapy is effective 
for treating HIV, there is no cure currently as the virus has been permanently 
incorporated into the host genome. It is possible to target HIV genome activity by 
using CRISPR/Cas9 technology. It inhibited the expression of the HIV gene and 
replication in the cells that are latently infected with HIV, without causing any toxic 
effects on the cells. Alternatively, cells can be immunised against HIV. As a result, 
this may prove to be a good therapeutic advancement in the quest to eradicate HIV. 
After further refinement, these findings may enable gene therapies or transplantation 
of genetically altered bone marrow stem cells or inducible pluripotent stem cells to 
eradicate HIV infection (Hu et al. 2014).
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12.2.4 Editing of Human Zygotes 

CRISPR/Cas9 for human germline editing appears to be at an infancy, based on the 
limited number of studies. However, human germline editing holds great promise for 
curing many genetic disorders which are lethal to human. The current accuracy of 
embryo mapping is limited due to off-target effects, embryo mosaicism and lack of 
access to the embryo. CRISPR/Cas9 germline studies in China revealed significant 
technical issues and made it apparent that further research on human zygotes is 
needed as well as comprehensive deliberation before any clinical use should be 
considered (Kang et al. 2016; Tang et al. 2017). CRISPR-Cas9 has achieved the 
highest success in human germline editing to date with intracytoplasmic sperm 
injection (ICSI) (Ma et al. 2017). CRISPR-Cas9 was further demonstrated to be 
effective in removing genetic mutations from embryos, but not in correcting the 
mutations in an established embryo (Tang et al. 2017). 

12.2.5 Agriculture 

Using CRISPR-Cas tools to edit the genomes of plant species has revolutionised 
agricultural science and provided new opportunities for crop improvement. Geneti-
cally engineered plants become more resistant to microbial pathogens (Dong and 
Ronald 2019). A biotechnological approach using CRISPR-Cas9 is able to alter the 
genetic code in a stable, permanent and heritable manner in order to reach a specific 
goal in agriculture. 

The causative agent of citrus canker disease, Xanthomonas citri is one of the most 
important citrus pathogens, which severely reduces yields (Peng et al. 2017). One of 
the target genes present in plant was altered by the CRISPR-Cas9 system to provide 
resistance against X. citri. The promoter of XLOB1 (lateral organ boundaries) gene 
has been mutated, which in turn results in the loss of the ability to acknowledge and 
respond to bacterial effectors hence showed increase resistance against infection (Jia 
et al. 2016) (Fig. 12.2). 

CRISPR technology is not restricted to gene editing. It is possible to use CRISPR-
Cas9 to activate (CRISPRa) or repress (CRISPRi) sequence-specific genes without 
altering the genome (Qi et al. 2013). In order to achieve this, deactivated Cas9 
enzymes were developed (dCas9) that do not possess the catalytic domain for 
cleaving DNA but retain their ability to bind to target sequences (Gilbert et al. 
2014). Cas9 has the ability to repress transcription by binding to target genes and 
preventing RNA polymerase activity. In prokaryotic genomes, CRISPRi works 
effectively, but is less effective when applied to eukaryotic genomes (Gilbert et al. 
2013). 

In a similar manner, CRISPRa has been made possible by pairing dCas9 with 
transcriptional activators, such as viral proteins (VP)16/VP64 or p65 and targeting 
them to gene promoters, resulting in gene transcription upregulation (Konermann 
et al. 2015; Perez-Pinera et al. 2013).
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Fig. 12.2 Application of CRISPR-Cas9 system to edit the disease-causing gene in citrus plant 

12.3 Limitations and Ethical Issues 

There are incredible promising applications of CRISPR-Cas9 technology for the 
betterment of human life. But there are still some challenges to overcome. In vivo 
gene editing is highly challenging due to difficulties in the delivery of nuclease-
encoding genes and guide RNAs to the appropriate cell types. As a means of safe 
delivery of cas9 nuclease genes and guide RNAs, a suitable vector must be used. In 
addition, there are potential off-target effects in the genome; non-intentional changes 
to the genome will have long-term effects on patients, including cancer. 

CRISPR-Cas9 may have the greatest impact on human and its environment due to 
its potential applications and findings (Mulvihill et al. 2017). From an ethical 
perspective, use of CRISPR technology did not have the ethical issues pertaining 
to gene therapy and genetic engineering. In general, gene editing ethics can be 
divided into two groups: One which aims to correct defective genes (gene therapy) 
and the other one which aims to enhance physiologically normal genes (genetic 
enhancement). CRISPR technology does not violate the ethical issues if the gene 
editing is limited to the somatic cells. However, the genetic engineering of germline 
cells which could be inherited to the next generation should be carefully ethically 
reviewed (Sykora 2018). One of the major controversies about CRISPR technology 
emerges from its potential application in human embryos. Although group of 
scientists believe that experiments on human embryos after 14 days are ethically 
unacceptable, and no authority, whether it is the government, a law enforcement



agency, a panel of experts, a court, or a religious group, is allowed to decide the 
status of an embryo (Charo 1995). Patent holders stand to make a profit from 
CRISPR applications. Gene therapy and other CRISPR-based products will most 
likely to be initially expensive. As a result, it is ethically questionable whether the 
high price-tag will limit access to CRISPR products to a special class of people in the 
society. CRISPR was mostly developed and characterised through grants from 
government funds, so taxpayer money was used to fund much of the research and 
development (Chen et al. 2015) and it is ethically wrong to deny these individuals for 
the potentially life-saving benefits of this technology. 
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12.4 Conclusions 

Offering the most versatile and powerful genome editing system, CRISPR-Cas 
technique has opened a new horizon in genome engineering and allowed us to 
uncover the amazing molecular secrets hidden within the living system. There are 
still challenges to overcome. Developing resistance against plant pathogens using 
CRISPR could prove a promising approach to conquer the breeding barriers. We can 
investigate the gene regulation of human diseases at DNA, transcriptional and 
translational level by this revolutionary technology. As with every powerful tool, 
there are also potential risks involved. It is imperative that well-controlled, repro-
ducible experiments and clinical trial research should be conducted in order to make 
truly informed decisions regarding ethically contentious areas. In the present, this is 
problematic since many international laws discourage research of this type or ban it 
outright; they also inhibit research from being funded. Due to this, it is difficult to 
determine the risks and benefits of a technology. Overall CRISPR-Cas system has 
been exploited for the benefit of human health in every aspect from curing of 
diseases to improvement of food and we hope in future it will also help in other 
untouched areas for the betterment of human and animal life. 
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