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Abstract 

The extensive exploitation of fossil fuels and the increasing global demand for 
energy entailed producing alternative fuels to swamp fossil fuels. Production of 
biofuels from biological, agricultural, municipal, and other waste products can be 
an alternative option to fossil fuels. Presently, biofuel production from waste 
products has marginally reduced the dependency on fossil fuels for energy. 
Eco-friendly renewable energy fuels such as biodiesel, bioethanol, biobutanol, 
biohydrogen, and biogas resulting from biomass conversion from agricultural 
waste, microalgae, or biological wastes have significantly contributed to the 
wellness of the economy as well as the environment. Biofuels are generated by 
biological processes such as fermentation via applications of suitable 
microorganisms from different genera with diverse biofuel production
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mechanisms. The effect of wastes on the environment, potential waste products 
which could be used as raw material for biofuels production, types of biofuels 
produced from the waste products, and potential microorganisms used in biofuel 
production have been discussed in the present chapter. Emphasis has been given 
to putative biochemical pathways involved in bio-energy production, along with 
recent research and updates on utilising different sustainable resources for 
bio-energy production. Finally, the chapter has concluded with prominent 
challenges encountered during biofuel production from waste materials and 
potential mitigation strategies for them.
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7.1 Introduction 

The world population is expected to reach 9.7 billion by 2050 (FAO 2009). The 
increased population requires food and energy security, along with the augmentation 
and up-gradation of current technologies used to dispose of agricultural, food, and 
other wastes in an eco-friendly manner. The rapidly depleting fossil fuel sources, 
increasing energy demand, and rising environmental pollution levels have pushed 
the world to look for alternative, sustainable, and environmentally safe energy 
sources. Waste, an inevitable by-product of day-to-day human activities, could be 
an alternative source of energy. Due to the widening industrialisation and rapidly 
growing demand for food supply, waste generation will be an unavoidable threat in 
the near future. The emission of greenhouse gases and the accumulation of solid 
wastes are the associated risk factors with the waste. Hence, converting waste into 
energy could be an effective method to mitigate the energy crisis and pollution. The 
conversion of biodegradable (agriculture and food wastes) wastes into biofuel is a 
good choice, which is being explored extensively for energy production. 

The initial biofuel production approaches had severe drawbacks and needed 
inevitable improvement. For example, the production of first-generation biofuel 
(bioethanol from the substrates with high starch content, such as corn, wheat, etc.) 
uses to demand food materials for biofuel production. The negative aspect of this 
approach was that it required food crops. Hence it was snatching the food reserve as 
well as agricultural land. This increased the pressure on crop production from 2000 
to 2015 (FAO and OECD 2019). FAO reviewed the first-generation biofuel produc-
tion and warned about its dangers in 2009 (FAO 2009). If this approach was 
followed, it would have resulted in a serious risk to food security for humans and 
overuse of agricultural land. Hence, agricultural diversification and alternatives to 
food crops were searched for biofuel production. Currently, extensive research 
works on third and fourth generation biofuels.
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Various technologies are being used for biofuel production from biodegradable 
and non-biodegradable wastes, which can be classified into biochemical and ther-
mochemical processes (Jeguirim and Limousy 2018; Bharati et al. 2020). In bio-
chemical processes, microorganisms play a crucial role in transforming organic 
biomass into biodiesel, bioethanol, and biogas. Whereas in thermochemical pro-
cesses, bio-hydrogen and bio-oil are produced by combustion, gasification, and 
pyrolysis. The selection of the processes for biofuel production primarily depends 
on the feedstock’s nature and available pre-treatment methods (Singh and Das 
2019). 

Recent technologies have shown the potential of microorganisms in the produc-
tion of bioethanol and biogas. The innovation in bioethanol production from first-
and second-generation biofuel using yeast and genetically engineered bacterial 
strains has been well known for the past few years. Recent studies also reveal the 
high yields of alcohol from syngas using acetogenic bacteria in indirect fermentation 
(Liou et al. 2005; Maurya et al. 2020). Similarly, processing algal lipids is a 
promising and carbon-neutral approach to converting sunlight and CO2 into 
biodiesel. Hence, in this chapter, the classes of biofuels and the potential of 
microorganisms in converting deteriorating wastes into beneficial biofuels have 
been described in detail. 

7.2 Potential Biofuels Transformed from Wastes 

7.2.1 Types of Biofuels 

Biomass is one of the most valuable sources as it supplies food, feed materials, and 
energy in a human-dominated ecosystem of the Earth. In the context of a renewed 
return to a so-called biobased economy, as it was practised for many centuries before 
industrialisation, a new focus will be laid on the production of food, feed, bio-based 
materials, and bioenergy from biomass. Therefore, new value chains will have to be 
developed that include the primary production of biobased resources, their conver-
sion to higher-value goods, and their energetic use after their lifespan or from wastes 
produced alongside the value chains (Zörb et al. 2018) (Fig. 7.1). 

Biomass can be converted into usable energy such as fuel, electricity, and heat via 
three different conversion pathways: thermo-chemical, physio-chemical, and bio-
chemical pathways (Madakka et al. 2020). Various biomasses can be converted into 
energy carriers in solid, liquid, and gaseous forms using either of these three 
pathways (Fig. 7.1). Thermochemical conversion includes the processes of 
carbonisation, gasification, or pyrolysis and will result in solid, gaseous, and liquid 
forms of bioenergy. In Physico-chemical conversion, the biomass is given mechani-
cal and chemical treatment, resulting in the extraction of plant oils. The plant oils are 
converted into biofuels after their transesterification. In biochemical conversion 
processes, alcoholic fermentation and anaerobic digestion transform the biomass 
into liquid, and gaseous energy carries.



166 U. Chaurasiya et al.

Fig. 7.1 Conversion paths from biomass to energy 

Fig. 7.2 Categorisation of biofuels based on their physical state and biomass Feedstock 

Biofuels are renewable fuels derived from biomass through thermo-, physio-, or 
biochemical reactions. Depending on the feedstock used, three generations of 
biofuels are identified in the literature (Fig. 7.2). “First-generation” biofuels are 
based on food crops, such as wheat, barley, rapeseed, sugarcane, and corn, and 
thus have direct competition with food and feed. These raw materials have been the



subject of much debate worldwide as their use may lead to food shortages. For this 
reason, the use of “second-generation” or “advanced” biofuels, based on non-food 
crops and lignocellulosic material that will have reduced or no food competition, 
increased. To avoid any competition with food or feed a “third-generation” of 
biofuels based on algae or other microorganisms has been the focus of research as 
those resources will have only little land requirements (Loeffler et al. 2018; Zörb 
et al. 2018; Kumar et al. 2019a). Nowadays, research on “fourth-generation” which 
consists of combining genetically engineered feedstock with genomically 
synthesised microorganisms, is also being carried out to increase the efficiency of 
biofuel production from biomass (Mansoori et al. 2021). 
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Biofuels are classified into solid, liquid, and gaseous energy forms according to 
their physical properties (Fig. 7.2). 

7.2.1.1 Solid Biomass 
The use of solid biomass to derive energy is known as solid biofuels and has been 
classified into four well-known types of solid biofuels. 

1. Firewood: Wood is the ancient biofuel source being used for thousands of years 
for the production of heat and light and other domestic purposes. Before its use as 
firewood, the wood needed to be dried with its moisture content reduced to about 
10–25%. Compared to green firewood, dried wood burns more quickly and 
efficiently. But, the burning of firewood or fuelwood also produces hazardous 
greenhouse gases, which cause a negative impact on the environment. 

2. Woodchips: wood chips are a processed form of firewood that is easier to handle 
and faster to burn. It is mostly used in areas where mechanical forestry equipment 
is available. 

3. Wood pellets: In the wood pellets, the wood is converted into sawdust and 
processed at high temperatures. At high pressure, the temperature rises, and the 
lignin melts and glues the sawdust into pellets. Afterwards, the pellets are broken 
into pieces of 2–3 cm in length. Nowadays, wood pellets made from seed husk, 
formed after oil extraction, have a high demand for animal feed. 

4. Charcoal: Charcoal has a much higher energy content compared to the other 
forms of wood biofuels. Charcoal is produced after the wood materials are heated 
below 400 °C temperature in the absence of air. 

7.2.1.2 Liquid Biofuels 
Liquid biofuels are transport fuels obtained from biomass. They are refined products 
of biomass feedstock. Bioalcohols (bioethanol and biomethanol) and biodiesel 
formed from bio-oil are examples of liquid biofuels. 

1. Bioethanol: Bioethanol is produced by direct and indirect fermentation pro-
cesses. In direct fermentation, ethanol is made from simple sugars obtained 
from either first-generation (wheat, beetroot, corn, and sugar cane) or second-
generation biofuels (Stover, straw, stem, and stalks) sources (Elshahed 2010). In 
first-generation biofuel, extraction of sugar syrup is relatively simple. Hence,
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microbial and enzymatic treatments are not required for pre-treatments. Sugar 
syrup is converted into ethanol using genetically engineered yeast and bacterial 
strains. Due to increasing debates on fuel Vs food during the past few years, 
various countries have moved from the first-generation biofuel to second-
generation biofuels. In the second-generation biofuels, the lignocellulolytic 
microbial (bacteria and fungi) strains are used for the initial hydrolysis of 
complex sugars (polysaccharides) into simple sugars (oligo, di, or 
monosaccharides). These simple sugars are then subjected to microbial fermen-
tation for bioethanol production (Lau and Dale 2009). Indirect fermentation is a 
promising approach for ethanol production. In this process, plant material is 
converted into syngas by pyrolysis. Syngas contains CO, CO2, and hydrogen 
(H2), which are then transformed into ethanol by anaerobic acetogenic bacteria 
(Tanner 2008). 

2. Biomethanol: The preparation of biomethanol involves the gasification of 
carbohydrates from biomass and their partial oxidation. Compared to producing 
methanol from fossil fuels, the production of biomethoanol from biomass is 
expensive. Hence only a tiny percentage of biomethanol is produced from 
biomass. Methanol is used as fuel, fuel additive, and an important base chemical 
for industries. Low flammability, high performance, and low emission of pollu-
tion are the advantages of using biomethanol (Pirola et al. 2018). 

3. Biodiesel: Biodiesel consists of alkyl (C1-C4) esters of long-chain fatty acids. 
The production of biodiesel involves the transesterification of biological lipids 
(raw plant oil, animal fat, and waste oil) in the presence of methanol. A base is 
also used during the transesterification of lipids to form a liquid fuel. Biodiesel is 
used either as a substitute or as an additive for diesel. The lipids from photosyn-
thetic algae are processed to produce biodiesel. This promising process is also 
popular as an eco-friendly and carbon-neutral process of biofuel production due 
to converting greenhouse gas CO2 into biodiesel using sunlight. The process also 
has high carbon-fixation efficiency because the growth rate of microalgae is much 
faster than oil crops, and the extraction of oil exceeds about 80% of the dry 
biomass (Chisti 2007). 

4. Bio-oil: Bio-oil is a pyrolysis product and comes along with other products such 
as biochar and syngas. Modification and optimising the conditions during pyrol-
ysis can increase the amount of bio-oil. Bio-oil is a mixture of many compounds 
such as acids, alcohols, aldehydes, esters, ketones, sugars, alkenes, aromatic and 
nitrogen compounds, and many others. However, bio-oil is difficult to burn due to 
excess moisture. Moreover, it is also volatile, corrosive, and adhesive. 

In recent studies, algae with high lipid profiles (e.g. arachidonic, 
eicosapentaenoic, and docosahexaenoic acids) have been used for the production 
of bio-oils. The major challenge in this process includes the development of low-cost 
extraction methods (Baskar et al. 2019).
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7.2.1.3 Gaseous Biofuels 
Gas and its products are extensively used for cooking, heating, transportation and 
electricity generation as they are very flexible in their use. Biogas, biohydrogen, and 
syngas are some types of gaseous biofuels. 

1. Biogas: The anaerobic digestion of organic waste, sewage sludge, animal wastes, 
or energy crops using microorganisms leads to a mixture of gases known as 
biogas. This process works in four stages: hydrolysis, acidogenesis, acetogenesis, 
and methanogenesis. In the hydrolysis step, the microorganism ferment complex 
biomass into long-chain and short-chain volatile fatty acids. The product formed 
in acidogenesis is utilised by acetogenic bacteria to produce H2, CO2 and acetate, 
which is finally used up by methanogens to produce methane (Borja and Rincón 
2017). 
Biogas is composed of approximately 60–65% methane (CH4) and 30–35% 
carbon dioxide (CO2). However, the exact composition depends upon the feed 
material. Other gases H2, hydrogen sulphide, and water vapours are also in lower 
amounts. Following the purification and concentration of biogas, it can be 
combined with heat and power units to generate heat and electricity. In addition, 
biogas can be injected into the gas grid or liquefied using pressure for fuel 
purposes. 

2. Biohydrogen: H2 is an ecologically pure biofuel because it does not release any 
harmful gases upon combustion. Pyrolysis of biomass, such as waste, crop straw, 
municipal solid waste, crop grain residue, pulp waste, or manure slurry, results in 
the synthesis of biohydrogen. H2 is also formed as a final product in the fermen-
tation process by the H2ase enzymes in microorganisms (Vignais and Billoud 
2007). 
In photobiological H2 production, photosynthetic microbes such as 
Cyanobacteria and green algae are also well known to produce low-cost H2. 
These photosynthetic microbes split the water molecules into electrons and 
oxygen. The hydrogenase enzyme can convert the produced electron into H2 

(Prince and Kheshgi 2005). 
3. Syngas: Synthesis gas (syngas) is produced by pyrolysis or gasification of plant 

biomass or biobased gases. Carbon monoxide (CO) and H2 are the main 
components of syngas, accompanied by CO2, CH4, hydrogen sulphide, water 
vapours, etc., depending on the biomass composition. Power to Gas technologies 
such as catalytic and biological methanation is becoming increasingly important 
(Martín 2016). 

The syngas can be injected into the grid, liquified for fuel, and used to produce 
other fuels such as diesel. Moreover, syngas is the leading source for producing 
various chemicals such as ethanol, methanol and ethane. The H2 separated from 
syngas is used in fuel cells for electricity generation (Wu and Tu 2016).
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7.3 Substrates for Biofuel Production 

Due to the shortage of fossil fuels and environmental issues, renewable, 
environment-friendly fuels are becoming more important nowadays. Fuel crisis 
and treatment and proper usage of organic wastes are among the significant global 
challenges. Both challenges can be addressed by using organic wastes for biofuel 
production. Based on their origin, organic wastes can be classified into agricultural/ 
forestry and non-agricultural/forestry wastes (Table 7.1). Agricultural wastes 
(by-products, co-products) are usually defined as non-food or feed plant or animal 
residues generated from either harvesting crops/trees or rearing animals. Compared 
to agricultural waste, the non-agricultural organic wastes (biowastes) include all 
organic wastes from the domestic, food, municipal, and industrial sectors. 

All these wastes can generally be used for the production of biofuels. Depending 
on their composition (content of carbohydrates, proteins, lipids, cellulose, hemicel-
lulose, lignin) and their dry matter they can be used to produce specific kinds of 
biofuels. 

7.3.1 Biofuels from Different Types of Biomass 

Wastes with high content of dry matter like forestry residues and by-products from 
forest, straw, bagasse, solid animal waste, and other vegetal materials can be used to 
produce solid biofuels. These solid biofuels can substitute common wood-based 
biofuels. A homogenous fraction is a good choice for producing liquid biofuels from 
biowastes. Lipid-rich wastes from restaurants, catering, retail premises and food 
processing plants are suitable materials for producing liquid biodiesel. Waste bio-
mass rich in starch, sugar, and lignocellulosic material is a good choice for the 
production of bioethanol and biomethanol (Yadav et al. 2020). However, this 
method is still in the infancy stage of development (Hirschnitz-Garbers and Gosens 
2015). The production of bio-oils by pyrolysis of wastes is currently under 
optimisation at an industrial scale. Once optimised, this method can also use 
different biowastes to produce bio-oils (Karmee 2016). Gaseous biofuels 
(biohydrogen and syngas) are also released by pyrolysis or gasification of wastes.

Table 7.1 Classification of organic wastes (modified—according to Pimiä et al. 2014) 

Types Organic wastes 

Agricultural/forestry wastes Forestry and agricultural residues, Manure 

Non-agricultural/forestry 
wastes 

food and kitchen waste

• Food waste Household waste, Restaurant waste, Catering waste 

Retail premises waste, waste from food processing plants

• Industrial waste Nature textiles, paper, processed wood

• Municipal waste Garbage, Biodegradable garden and park waste, sewage 
sludge



Unlike bio-oil production from waste, the production of biogas from waste is already 
an optimised method being practised worldwide. Biogas is another gaseous biofuel, 
produced utilising a variety of putrescible organic wastes, such as agricultural 
residues, manure, food wastes, industrial wastes, sewage, and the organic fraction 
of municipal solid waste (MSW). The high lignin and lignocellulosic contents lower 
the specific biogas yield (De Simio et al. 2008).
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7.3.2 Pre-treatment of Waste Prior to Microbial Treatment 

Biofuel usually starts with a preliminary feedstock preparation step involving 
cleaning and size reduction by milling, grinding, or chopping. All these steps 
consume a large amount of energy. Subsequently, the process follows four major 
steps: (1) pre-treatment, which involves degradation of the complex lignocellulosic 
network into smaller units, (2) Hydrolysis/saccharification to obtain fermentable 
sugars, (3) fermentation to convert sugars into ethanol, and (4) Purification (recovery 
and dehydration) to obtained good quality ethanol (Fig. 7.3). 

7.3.2.1 Pre-treatment 
Naturally occurring forms (crystalline structure) of cellulose have high resistance to 
hydrolysis. The presence of lignin also limits enzymatic hydrolysis by adsorption of 
enzymes. Pre-treatment performs de-lignification, degradation of hemicelluloses and 
reduction in cellulose content. Pre-treatments can be physical (e.g. milling, grinding, 
and microwave), chemical (acid, alkali, ozonolysis, organosolv, and ionic liquids), 
physicochemical (steam explosion, ammonia fibre explosion, CO2 explosion, liquid

Fig. 7.3 Biochemical pathway of biofuel production from waste



hot water, and wet oxidation), or biological. During pre-treatment, lignocellulosic 
biomass several compounds such as (1) furfural and HMF (5-hydroxymethyl-2-
furaldehyde), originating from the degradation of hexoses and pentoses, (2) acetic 
acid, originating from hemicelluloses, and (3) phenolic compounds originating from 
lignin are generated. These compounds are toxic to microorganisms, inhibit their 
growth, and extend the lag phase. So, several detoxification technologies are used to 
remove these toxic compounds.
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7.3.2.2 Hydrolysis/Saccharification 
It is a crucial step in which sulphuric acid or hydrochloric acid or enzymes are used 
to convert cellulose and hemicelluloses into their monomers, i.e. fermentable sugars 
using the process of acid or enzymatic hydrolysis at low temperature, followed by 
microbial fermentation for the production of biofuel (Branco-Vieira et al. 2018). 

7.3.2.3 Fermentation 
Different enzymes like xylanases, laccases, chitinases, cellulases, and proteases play 
a dedicated role in bioconversion. For example, xylan and cellulose as substrates are 
used for biofuel production. Bioconversion of the sugars to bioethanol occurs 
through fermentation, involving microorganisms (Adegboye et al. 2021; Soni et al. 
2020). 

7.3.2.4 Purification 
Lastly, the product obtained needs to undergo the process of purification and 
distillation, which involves separating the bioethanol, in pure form, from the fer-
mentation broth. The quantity of bioethanol obtained from the fermentation process 
mainly depends on the amount of sugar produced during pre-treatment and hydroly-
sis/saccharification. The total yield of bioethanol can be measured in terms of the 
volume of ethanol produced per dry weight of raw material (Adegboye et al. 2021). 

7.4 Biological Agent in Biofuel Production from Waste 

7.4.1 Bacteria 

Microorganisms are considered alternative sources for the production of biofuels. 
Bacteria have significant advantages over higher plants and microalgae for 
synthesising intracellular as well as extracellular fatty acids to produce 
environment-friendly fuel oil (Kumar et al. 2020). Fast-growing bacteria can poten-
tially use a wide range of feedstocks for biodiesel production. Bacteria effectively 
use agricultural by-products for their growth and utilise sugar and proteins pre-set in 
waste materials (Mihajlovski et al. 2020). Some of the well-known potential biofuel-
producing strains of bacteria have been summarised in Table 7.2. Activated sludge 
contains a microbial population of heterotrophic bacteria responsible for wastewater 
treatment. These bacteria use the organic compounds in wastewater for their growth



and store the organic material in the form of lipid droplets. Oleaginous bacterial 
species belonging to the order Actinomycetales (Mycobacterium, Streptomyces, 
Nocardia, and Rhodococcus) can accumulate lipid up to 20% or more of their 
biomass (Cea et al. 2015). Acidothermus, Bacillus, Clostridium, Pseudomonas, 
and Rhodothermus degrade cellulose. A wide assortment of Gram-positive and
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Table 7.2 Microorganisms in biofuel production 

Organisms Biofuel type References 

Acinetobacter calcoaceticus Lipid Choi et al. (2014), Moshtagh 
et al. (2021) 

Alkalibaculum bacchi Ethanol Allen et al. (2010), He et al. 
(2022) 

Bacillus sp. (B. mycoides, 
B. amyloliquefaciens, 
B. pumilus) 

Butanol Kanno et al. (2013), Shabbir 
et al. (2022) 

Clostridium acetobutylicum Acetone, butanol, and 
ethanol 

Ennis et al. (1986), He et al. 
(2022) 

Clostridium beijerinckii Isopropanol, butanol, and 
ethanol 

Hettinga et al. (2009), 
Comwien et al. (2015), He 
et al. (2022) 

Clostridium carboxidivorans Ethanol, butanol Fernández-Naveira et al. 
(2016), He et al. (2022) 

Clostridium phytofermentans Ethanol He et al. (2022) 

Clostridium ragsdalei Ethanol Devarapalli et al. (2017), He 
et al. (2022) 

Clostridium thermocellum Ethanol Ng et al. (1981), He et al. 
(2022) 

Costridium 
saccharoperbutylacetonicum 

Butanol Shukor et al. (2014), He et al. 
(2022) 

Cryptococcus curvatus Lipids Yu et al. (2011), Kamal et al. 
(2022) 

E. coli Ethanol, 1-Propanol, 
1-pentanol isobutanol, 
1-butanol 

Asghari et al. (1996), Zhang 
et al. (2008), Ku et al. (2022) 

Lactobacillus brevis Butanol Russmayer et al. (2019), 
Esquivel-Hernández et al. 
(2022) 

Lipomycesstarkeyi Lipids Yu et al. (2011), Zhang et al. 
(2022) 

Pseudomonas putida Butanol Sahoo et al. (2019), Sarwar 
et al. (2022) 

Rhodococcus opacus Lipid Le et al. (2017), Nair and 
Sivakumar (2022) 

Rhodosporidium Toruloides Lipids (Glucose and xylose) Xie et al. (2012), Gao et al. 
(2022) 

S. cerevisiae Ethanol Sharma et al. (2022) 

S. stipitis Ethanol da Silva et al. (2022) 

Zymomonas mobilis Ethanol Li et al. (2022)



Gram-negative cellulose-degrading bacterial species includes Clostridium 
thermocellum, Streptomyces sp., Ruminococcus sp., Pseudomonas sp., 
Cellulomonas sp., Bacillus sp., Serratia sp., Proteus sp., Staphylococcus sp., and 
Bacillus subtilis (Kashyap et al. 2019; Khedr et al. 2019). Geobacillus is an obligate 
thermophilic bacteria which can generate and enhance the productivity of important 
bioenergy sources such as ethanol, isobutanol, 2,3-butanediol, biodiesel, and biogas 
at the temperature range of 35–75 °C (Novik et al. 2018).
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Biogas is an effective source of renewable energy. Anaerobic microorganisms 
produce biogas by organic decomposition of domestic and agricultural waste as a 
substrate. CH4 is the main combustible element of biogas, forming 50–75% volume 
of biogas. Remaining 25–50% volumes consists of non-combustible gaseous 
elements, such as CO2, N2 (<1%), O2 (0–1%), and nitrogen siloxanes (0–0.02%), 
halogenated hydrocarbons (<0.6%), CO <0.6%, hydrogen sulfide (0.005–2%), and 
water vapours (5–10%) (Wellinger and Lindberg 1999). Thermovirga, Soehngenia 
and Actinomyces are H group-containing bacteria that have more capacity to gener-
ate CH4 than the black group. These microbial communities (black and H group) 
have been categorised with the help of Illumina sequencing. Archaeal species like 
Methanosaeta, Methanolinea, Ethanospirillum, and Methanoculleus are reported in 
both groups (Wang et al. 2017). Bioaugmentation strategies for enhancing biogas 
production plays a crucial role during the anaerobic degradation of cow manure. 
These bacterial strains include Rikenellaceae, Clostridiaceae, 
Porphyromonadaceae, Bacteroidaceae, and Ruminococcaceae. Flavefaciens and 
Ruminococcus albus showed CH4 production at 41 °C (Ozbayram et al. 2018). 

Biodiesel, consisting of mono-alkyl esters, is produced by the transesterification 
of edible and non-edible oil/fat from plant and animal origin. The use of biodiesel 
over conventional fossil fuel-based diesel offers several advantages, such as less 
emission of greenhouse gases, other gaseous pollutants and particulate matter 
(Behera et al. 2019). Oleaginous bacteria Rhodococcus opacus produce 80% 
biodiesel of its cellular dry weight using wastewater from corn stover (Le et al. 
2017). Moreover, Serratia sp., a chemolithotroph, uses municipal secondary sludge 
as growth media for biodiesel production. These bacteria apply several strategies for 
their adaptation to produce lipids, bioplastics, exopolysaccharides and fatty acids 
(Kumar et al. 2020). 

Bioethanol is an important alternative to fossil fuels and contributes to the 
economy by using domestic and environmental wastes. It is a safe, efficient and 
non-toxic biofuel produced without any by-products (Younesi et al. 2005; Eriksson 
and Kjellström 2010). The organic fraction of MSW comprises 50% lignocellulose-
rich material. Zymomonas mobilis and Rhodococcus opacus have the potential of 
producing ethanol from MSW (Dornau et al. 2020). Brigham (2019) reported that 
Knallgas bacteria produce different types of high-energy-density transportation fuels 
by utilising CO2,  H2, and O2. Ralstonia eutropha is a Knallgas bacterium, which has 
been genetically engineered to produce n-butanol, isobutanol, and terpene under 
chemolithoautotrophic conditions. Many extremophilic bacterial species, mainly 
thermophilic microorganisms, produce cellulase enzyme which increases the rates 
of cellulose hydrolysis. Clostridium thermocellum, Thermoanaerobacter



thermohydrosulfuricum, and Clostridium stercorarium subsp. thermolacticum not 
only efficiently degrades cellulose and hemicelluloses through hydrolysis but also 
readily ferments the pentose and hexose sugars (Di Donato et al. 2019). Ethyl 
alcohol is produced using syngas fermentation, in which anaerobic microorganisms 
(Clostridium ljungdahli, C. tetanomorpum, and Clostridium strain P11) utilise 
accessible carbon and energy source to produce ethanol biofuels (Williams et al. 
2015; Kundiyana et al. 2010). 
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7.4.2 Yeast/Fungi 

Fungi degrade the biomass of agricultural waste through biochemical and thermo-
chemical processes to produce biofuels. Biochemical conversion leads to bioethanol 
and biodiesel production (Maurya et al. 2020). Endophytic fungi produce 
compounds such as alkanes, cyclohexanes, cyclopentane, alkyl alcohols/ketones, 
benzenes, and polyaromatic hydrocarbons found in biodiesel (Raven et al. 2019; 
Kumar et al. 2023). Rhizopus Oryzae fungi have been demonstrated to efficiently 
catalyse the methanolysis of vegetable oils for biodiesel production in solvent-free 
systems (Nagaraj et al. 2010). Some of the fungi used for biofuel production have 
been presented in Table 7.3. 

Filamentous fungus Aspergillus sp. produces biodiesel with good fuel quality 
(acid number, 0.40 mg KOH/g of acid; iodine value, 11 g I2/100 g oil; density, 
0.8342 g/cm3 ) using corncob waste liquor (CWL) as substrates (Subhash and Mohan 
2011). Moreover, Aspergillus niger and Trichoderma harzianum have been reported 
to perform the alkali and enzymatic hydrolysis of rice husks (Solanki et al. 2019; 
Abbas et al. 2022). This hydrolysed husk can be used for bioethanol production via 
fermentation using Saccharomyces cerevisiae (Ahmad et al. 2017). Similarly, the 
co-culture of Aspergillus niger and Saccharomyces cerevisiae produce ethanol from 
the rice wastewater (Hatami et al. 2015; Gujjala et al. 2019). Furthermore, Subhash 
and Mohan (2015) reported that Aspergillus awamori uses CWL, paper mill effluent 
(lignocellulosic wastewaters) and cellulosic waste (de-oiled algae extract, DAE) as 
feedstock for single cell oil (SCO) production. DAE improvises biomass production 
by reducing production time; however, the high feedstock cost is a major limiting 
factor. Oleaginous fungi are cultured with lignocellulosic materials for lipid produc-
tion, which produces biofuel at a comparatively lower cost due to the abundance of 
low-cost feedstock, such as glycerol, sewage water, whey and molasses. Oleaginous 
microorganisms have multiple advantages (Zheng et al. 2012), such as (1) capacity 
to accumulate 80% of lipid and increase the quality of fatty acids, (2) having good 
lipid profiles, suitable for making high-quality biodiesel, (3) capacity to utilise 
monosaccharides, glycerol, acetic acid, cereal, corncob, sweet sorghum, wheat 
straw, orange peel, apple pomace and oil for lipid production, (4) low capital cost 
and low energy expenditure is required for oil production, through solid-state 
fermentation, and (5) ease of oil harvesting from cell broth by using simple filtration 
after pellet formation, and reduction in the viscosity of the fermentation broth to



improve the mixing and mass transfer performance, compared to traditional high-
cost centrifugation methods. 
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Table 7.3 Role of important microbes in fuel production from different feed stocks 

Organism Biofuel Feedstock References 

Trichoderma asperellum Biohydrogen Sweet sorghum Shanmugam 
et al. (2018) 

Consortium of T. viride and A. niger Biohydrogen Oat straw Zhao et al. 
(2019) 

A. tubingensis, Trichosporono 
idesspathulata, Candida tropicalis, 
Rhodotorula mucilaginosa 

Biodiesel Palm empty fruit 
bunch 

Intasit et al. 
(2020) 

Mucor circinelloides Biodiesel Sugarcane 
bagasse, corn 
milling 

Carvalho et al. 
(2018) 

Penicillium citrinum Biodiesel Musa balbisiana 
cola peels 

Bardhan et al. 
(2019) 

Aspergillus awamori, Aspergillus 
oryzae 

Biohydrogen, 
Bioethanol 

Food waste Han et al. (2016) 

Gymnopus contrarius Biohydrogen Rice straw Sheng et al. 
(2018) 

Clostridium thermocellum Biohydrogen Waste date palm Swathy et al. 
(2020) 

Pleurotus ostreatus, Trametes 
versicolor 

Biogas Chicken manure 
with sawdust and 
wheat straw 

Basinas et al. 
(2022) 

Orpinomyces sp., Piromyces sp., 
Anaeromyces sp., Neocallimastix 
frontalis 

Biogas Animal manure Yıldırım et al. 
(2017), Bhujbal 
et al. (2022) 

Cladosporium sp., Verticillium sp. Biogas Feathers, 
biological 
sludgeslime 

Wrońska and 
cybulska (2018) 

Oleaginous yeast such as Rhodotorula glutinis accumulates 25% lipid of its 
biomass for biodiesel production from monosodium glutamate wastewater (Zheng 
et al. 2012). Saccharomyces cerevisiae can use hexose monosaccharides (glucose, 
mannose, and galactose) and disaccharides (sucrose and maltose) to produce 
bioethanol via fermentation of lignocellulosic hydrolysates (Branco et al. 2019). 
Yeast strains such as Kluyveromyces fragilis, Candida sp., Rhodosporidium sp., 
Rhodotorula sp., and Lipomyces sp. accumulate 70% triacylglycerols of their bio-
mass (Subhash and Mohan 2011). Hemicellulose and lignins of plant cell walls are 
acetylated, which yield acetic acid after hydrolysis as an unavoidable component. 
Acetic acid is toxic to the fermenting microorganisms, negatively influencing sugar 
fermentation and, subsequently, biofuel yield. Additionally, Trichosporon 
fermentans could be used for microbial lipid production from detoxified rice straw 
acid hydrolysate. But the obtained lipid content was lower than glucose as the sole 
carbon source (Huang et al. 2012). Yeast, Saccharomyces cerevisiae, is widely used 
for the production of ethanol from corn and sugarcane, but it cannot metabolise



xylose. But Scheffersomyces stipitis can convert xylose to xylulose by expression of 
nicotinamide adenine dinucleotide phosphate (NAD(P)H)-linked xylose reductase 
(XR) and nicotinamide adenine dinucleotide (NAD)-linked xylitol dehydrogenase 
(XDH) genes. This xylulose can be metabolised after its phosphorylation via the 
pentose-phosphate pathway (Wei et al. 2013). Moreover, endophytic fungal isolates 
Colletotrichum sp., Alternaria sp., and Aspergillus sp. have the ability of lipid 
accumulation, as whole-cell biocatalysts, under the nutrient optimum and nutrient-
stressed conditions (Subhash and Mohan 2011). 
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Biogas production efficiency is influenced by the type and quality of the raw 
materials used. Waste products from the poultry industry, agricultural crop wastes, 
and animal residues fulfil the requirements of good raw materials due to having a 
significant proportion of fats and proteins (Wrońska and Cybulska 2018). Anaerobic 
fungi are known to produce plant carbohydrate hydrolysing enzymes for cell wall 
polysaccharide decomposition. Anaerobic fungi are promising candidates for 
mechanical and enzymatic degradation of plant polysaccharides to improve biogas 
production (Dollhofer et al. 2015). Anaerobic fungus Piromyces rhizinflata degrades 
volatile fatty acid and augments the lignocellulose biomass (corn silage and cattail) 
as feedstock for CH4 and H2 production (Nkemka et al. 2015). Similarly, the fungus 
Auricularia auricula-judae is used to decay sweet chestnut (Castanea sativa) leaves, 
hay and wood to decompose cellulose, hemicelluloses and lignin for the production 
of biogas (Mackuľak et al. 2012). 

7.4.3 Photosynthetic Microorganisms 

Photosynthetic microorganisms, as a platform for biofuel production, have gained 
substantial recognition as an option that could significantly reduce environmental 
pollution by using CO2 emitted from various sources (Machado and Atsumi 2012). 
These photosynthetic microorganisms directly fix  CO2 as their primary carbon 
source for biofuel production and replace the requirement of fermentable sugars. 
Algae and cyanobacteria are the pioneer and desired organisms for this strategy of 
biofuel production. Both these groups of organisms can grow much faster than 
plants, do not need arable land for their production and can be grown in submerged 
water (Dismukes et al. 2008). Research on algae has centred on enhancing their 
potential to produce large amounts of lipids pertinent to biodiesel production (Pate 
et al. 2011; Kumar et al. 2017). Cyanobacteria coupled with prokaryotic organisms 
such as E. coli is beneficial to both as a photosynthetic microorganism and naturally 
transformable host. Studies reveal that cyanobacteria have already been manipulated 
to produce a number of different biofuels (Dismukes et al. 2008; Machado and 
Atsumi 2012; Gao et al. 2016). For instance, Synechococcus elongatus sp. strain 
PCC 7942 was successfully manipulated for ethanol production via the external 
addition of enzymes such as pyruvate decarboxylase and alcohol dehydrogenase, 
redirecting the carbon from pyruvate (Deng and Coleman 1999). Continuous 
research works have significantly improved the production of ethanol using 
cyanobacteria (Gao et al. 2012, 2016). Further researches are being conducted



worldwide on other photosynthetic microorganisms to improve and strengthen the 
ability of biofuel production from waste. 
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7.5 Waste Product Impact on Climate 

Wastes are all the by-products released from industries, households, or other sources 
humans cannot use further. Waste management is a more significant challenge for 
both the small and big cities of developing countries. Urbanisation and increasing 
population are the major issues responsible for increasing the burden of waste. 
According to the Global Waste Management Outlook 2015 (GWMO), 2.0 bil-
lion tonnes/year of waste is produced by MSW and 7–10 billion tonnes from 
households, commerce, industries and construction site (Everett 2012; Al-Dhrub 
et al. 2017). These wastes may be in solid, liquid or gaseous forms whose disposal 
improperly leads to negative consequences on the health of humans, animals and the 
environment (Misra and Pandey 2005). Improper and uncontrolled disposal 
generates heavy metal pollution in the water, air, and soil. Open burning causes 
the release of CO2, SO and other air pollutants in the atmosphere. The release of 
waste in the water bodies also affects the aquatic ecosystems enhancing eutrophica-
tion (Ferronato and Torretta 2019). In the present climate change scenario, the 
melting of glaciers, increasing temperatures, seasonal variations, the emergence of 
various pathogens, and adverse consequences on agricultural production are the 
major threats to human society. Further, these wastes and their mismanagement will 
boost the future climate change rate. Nowadays, the conversion of different waste 
materials to generate energy and its use for societal welfare along with a significant 
positive impact on the environment is one of the top priorities (Tabasová et al. 2012; 
Kumar et al. 2019b). These strategies are required to control the rate of climate 
change and mitigate its adverse consequences. 

Due to recent anthropogenic activities, the degree and amount of waste are 
increasing. The considerable increase in a waste generation began due to population 
explosion and industrialisation (Wilson 2007; Pikoń and Czop 2014). It has been 
reported that approximately 1.3 billion tonnes of MSW is generated per year, and it 
could rise to approximately 2.2 billion tonnes/year by the end of 2025 (Hoornweg 
and Bhada-Tata 2012). There are various waste management techniques through 
which the wastes can be transformed for the production of manures for agriculture 
purposes, eco-friendly energy sources, and pollution reduction (Widmer et al. 2005; 
Aljaradin and Persson 2012). 

7.5.1 Impacts of Waste Disposal on the Environment 

The waste material could be in solid, liquid or gaseous form and biodegradable or 
Non-biodegradable in nature. Food production through agriculture and its consump-
tion is one of the main factors related to environmental impacts in the world. Food 
production involves using resources such as fuels, land, water and raw materials



linked to economic and environmental impacts. Most food packaging materials are 
made up of non-biodegradable plastics which are obstinate towards microbial 
disintegration and hence do not meet the requirements of compost forming (Pikoń 
and Czop 2014). Disposal of food wastes into water bodies affects the aquatic 
ecosystem, causing eutrophication and algal blooms due to increased nutrient 
concentration in water bodies (Scherhaufer et al. 2018). 
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In developing nations, there is a major problem with management of solid waste 
(sewage and industrial sludge) due to several constraints; hence, landfilling with 
waste products in low-level areas is preferable. Sewage contains a large number of 
toxic substances which are harmful to human and animal health, as well as to the 
environment. MSWs majorly hold solid matter and are subject to landfilling for its 
management. The degradation of MSWs in landfills leads to the formation of 
different hazardous gases. The level of CO2, which usually remains high, regularly 
drops as the CH4 concentration builds up if the degradation procedure is shifted from 
aerobic to anaerobic conditions. Other gases, including H2, nitrogen, etc., are 
produced in minor amounts during the degradation process. Burning solid waste at 
the landfilling site produces toxic gases that pollute the air, causing respiratory 
problems. These gases contribute to global warming and climate change. Solid 
waste undergoes a sequence of complex biochemical and physical processes, leading 
to the production of leachate and gaseous emissions. When leachates reach the water 
resources, they pollute surface water and groundwater (Aljaradin and Persson 2012). 

7.5.2 Non-biodegradable Wastes 

Hazardous and non-biodegradable solid wastes, which enter from the municipal 
waste directly disposed-off in the environment, play a significant role in environ-
mental degradation. The majority of plastics are composed of polyaromatic hydro-
carbon compounds and produce greenhouse gases, which cause a negative impact on 
the environment. Plastic restricts the water absorption in the soil due to seized soil 
capillaries and simultaneously affects the microbial diversity, water holding capac-
ity, and loss of moisture content in the soil. More plastic waste in the soil environ-
ment triggers the process of soil infertility (Andreeßen and Steinbüchel 2019). Now 
a day’s, the world is facing plastic waste pollution in the marine ecosystem also. 
Rivers are the indirect key carrier of plastic waste. Plastic waste harms many aquatic 
animals, and plastic pollution also decreases the aesthetic value of any water body. 

The waste of glass industries is another unremarkable waste posing many 
challenges due to the high greenhouse gas emissions, rigorous energy use, and the 
intensive use of the Earth’s natural resources. Discarding the glass waste in landfills 
is not offering environment-friendly management due to the non-biodegradable 
nature of glass waste and is triggering severe environmental soil pollution (Jani 
and Hogland 2014). Apart from municipal or industrial waste, E-waste comprises 
harmful materials that need proper management and recycling approaches to avoid 
environmental pollution (Gabra et al. 2019). E-waste is chemically and physically 
different from other forms of waste. The chemical composition of E-waste differs



depending on the age and quality of the discarded items. Most E-wastes contain a 
mixture of metals, particularly Cu, Al, and Fe, which are used in several kinds of 
plastics and ceramics. Discarded personal computers, laptops, washing machines, 
refrigerators and electrical wires are comprised of metal, plastics, electronic 
components and glass. Disposing of all this E-waste in the environment is polluting 
the water, soil, and air (Robinson 2009). 
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7.6 Challenges in Biofuels Production from Waste 

World socio-economic developments are mainly progressed by energy. Presently, 
the world’s fuel demand of around 75% is compensated by non-renewable sources 
like petroleum and its derived fuel. As per the International Energy Report 2014, the 
global energy demand is expected to elevate by 37% by 2040 (Joshi et al. 2017). 
Therefore, research is being carried out in different parts of the world with a special 
focus on renewable sources to meet anticipatory growing energy demand. Hence, 
biofuels from waste biomasses could be a probable source to meet the global 
anticipatory energy demand. 

There are several procedures and technologies by which renewable resources can 
generate biofuels (Joshi et al. 2017). The biofuels could be produced from enriched 
biochemicals produced by either microbiological agents such as bacteria, fungi, and 
microalgae or animals (Rodionova et al. 2017; Kumar and Banerjee 2019). For the 
last few decades, agriculture production has increased several folds. Simultaneously, 
food and agricultural waste also increased proportionally; hence, this waste produc-
tion has been known to be the potential source of biofuels. However, algal biomass 
has recently been known to be a potential bioresource for producing different types 
of biofuels (Dragone et al. 2010; Rodionova et al. 2017). 

There are several prospects for the production of biofuels from wastes product 
that have been well recognised and exploited. Among them, biofuels by 
cyanobacteria or microalgae have been highly acknowledged (Demirbas et al. 
2016; Heimann 2016; Rodionova et al. 2017; Chintagunta et al. 2020). Scott et al. 
(2008) have reported several benefits of using microalgae for biofuel production 
owing to high productivity compared to other bioresources. Besides the benefits of 
microalgae-based biofuels production, several challenges are still to be considered 
for commercial production of biofuels, such as ease and continuous accessibility of 
waste products, pre-treatment and processing of waste products that could be 
subjected to biofuel production. Appropriate selection of bioreactors for large-
scale production of microalgal biomass, maintenance of contamination-free medium 
during the reaction, selection of superior microalgae strains and most important 
continuous supply of sterile medium as well as CO2 for microalgae growth are the 
other aspects that need optimisations (Scott et al. 2008). 

Food waste is the anon consumable source of lipids, carbohydrates, amino acids 
and phosphates. On average, food waste materials contain around 30% lipid and 
50% carbohydrate (Pleissner et al. 2014, 2016). The waste food can be hydrolysed 
enzymatically, and the food wastes abundant in carbohydrates and lipids can be



subjected to bio-ethanol and biodiesel production, respectively. In the past few 
decades, focused research on the application of food wastes for producing biofuels 
has been going on globally. Sulaiman (2014) proposed a halal biorefinery to produce 
biofuels in Malaysia. Chinese Academy of Sciences reported using food waste to 
produce hydrolysates for bioethanol production (Yan et al. 2011; Karmee and Lin 
2014). In Europe, potato peel has been utilised to produce bioethanol using environ-
mentally benign biocatalytic methods with the involvement of liquefaction, sacchar-
ification and fermentation of peel (Arapoglou et al. 2010; Yan et al. 2011; Wang 
et al. 2017). The prime drawback of pre-treatment methods of waste products 
included the production of specific inhibitors for microbes that may interfere with 
the processing and production of biofuels. These inhibitors are formic acid, acetic 
acid, phenolic compounds, furan aldehydes, ionic lipids, and levulinic acid (Wang 
et al. 2018; Zhang et al. 2016). 
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Recent economics estimates that the costs of biofuel production from waste are 
2–3 folds more expensive than petroleum fuels on an energy-equivalence basis 
(Lynch et al. 2016; Bušić et al. 2018). To lower the production cost of biofuel, 
several challenges are to be taken into consideration while converting waste biomass 
to biofuels, such as feedstock production, feedstock logistics, development of 
energy-efficient technologies (pre-treatment, enzyme hydrolysis, and microbial fer-
mentation), separation of by-products (lignin and hemicelluloses), product develop-
ment, the establishment of biofuel and biochemical standards, biofuel distribution 
and environmental impact minimisation. Some of the major drawbacks of 
pre-treatment procedures include the generation of by-products that works as 
inhibitors for microbial growth and fermentation. These compounds are formic 
acid, acetic acid, and levulinic acid (Wang et al. 2018; Zhang et al. 2016). The 
acetic acid in growing media potentially reduces the specific growth rate and 
biomass yield of Saccharomyces cerevisiae during ethanol production waste bio-
mass (Pampulha and Loureiro-Dias 2000; Wang et al. 2018). 

Similarly, phenolic compounds, furan aldehydes and ionic lipids also act as 
inhibitors to S. cerevisiae by decreasing specific cell growth rate and ethanol yield 
(Lin et al. 2015; Banerjee et al. 2019). All these constraints for biofuel production 
from wastes require high skill in agronomy, biomass logistics, biomass conversion, 
process engineering, chemistry, conversion technology, genetic engineering, micro-
bial fermentation, economics, and environmental science (Rai et al. 2020; 
Kumaraswamy and Kashyap 2021). It is challenging to produce biofuel from 
waste and economically expensive over fossil fuel. However, developing recombi-
nant strains through genetic engineering with high commercial potential, redefining 
effective pre-treatment processes, and increased access to waste bioresources could 
be a promising strategy for sustainable biofuel production.
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7.7 Conclusion and Future Prospects 

Presently, developed and developing nations are encountering several challenges 
pertinent to climate change, depletion of natural resources, environmental 
sustainability and energy security, and all of these directly or indirectly affect the 
environment. Hence, biofuels are supposed to be the most important to alleviate such 
energy crises sustainably. Furthermore, several biofuels of various classes could be 
produced from available indigenous resources and waste products generated from 
agriculture and food processing. Biomass generated as waste after processing agri-
culture and food is a potential feedstock for biofuel production. These biomasses are 
potentially converted into several biofuel products through the application of differ-
ent microbes of the different genera (bacteria, fungi, and photosynthetic microbes). 
However, biofuel productions from waste products also have several constraints that 
must be overcome with an integrated application of technological advancement 
pertinent to strain improvement, adoption of improved protocol for pre and post-
processing of biomasses, and control of microbial inhibitors to improve the yield and 
quality of biofuels. A combination of all these approaches and further researches in 
the area are expected to provide remedies for the existing energy crisis due to the 
depletion of non-renewable sources. 
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