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Abstract

The extensive exploitation of fossil fuels and the increasing global demand for
energy entailed producing alternative fuels to swamp fossil fuels. Production of
biofuels from biological, agricultural, municipal, and other waste products can be
an alternative option to fossil fuels. Presently, biofuel production from waste
products has marginally reduced the dependency on fossil fuels for energy.
Eco-friendly renewable energy fuels such as biodiesel, bioethanol, biobutanol,
biohydrogen, and biogas resulting from biomass conversion from agricultural
waste, microalgae, or biological wastes have significantly contributed to the
wellness of the economy as well as the environment. Biofuels are generated by
biological processes such as fermentation via applications of suitable
microorganisms from different genera with diverse biofuel production
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mechanisms. The effect of wastes on the environment, potential waste products
which could be used as raw material for biofuels production, types of biofuels
produced from the waste products, and potential microorganisms used in biofuel
production have been discussed in the present chapter. Emphasis has been given
to putative biochemical pathways involved in bio-energy production, along with
recent research and updates on utilising different sustainable resources for
bio-energy production. Finally, the chapter has concluded with prominent
challenges encountered during biofuel production from waste materials and
potential mitigation strategies for them.

Keywords

Biofuel - Bioethanol - Energy demand - Microbes - Sustainability

7.1 Introduction

The world population is expected to reach 9.7 billion by 2050 (FAO 2009). The
increased population requires food and energy security, along with the augmentation
and up-gradation of current technologies used to dispose of agricultural, food, and
other wastes in an eco-friendly manner. The rapidly depleting fossil fuel sources,
increasing energy demand, and rising environmental pollution levels have pushed
the world to look for alternative, sustainable, and environmentally safe energy
sources. Waste, an inevitable by-product of day-to-day human activities, could be
an alternative source of energy. Due to the widening industrialisation and rapidly
growing demand for food supply, waste generation will be an unavoidable threat in
the near future. The emission of greenhouse gases and the accumulation of solid
wastes are the associated risk factors with the waste. Hence, converting waste into
energy could be an effective method to mitigate the energy crisis and pollution. The
conversion of biodegradable (agriculture and food wastes) wastes into biofuel is a
good choice, which is being explored extensively for energy production.

The initial biofuel production approaches had severe drawbacks and needed
inevitable improvement. For example, the production of first-generation biofuel
(bioethanol from the substrates with high starch content, such as corn, wheat, etc.)
uses to demand food materials for biofuel production. The negative aspect of this
approach was that it required food crops. Hence it was snatching the food reserve as
well as agricultural land. This increased the pressure on crop production from 2000
to 2015 (FAO and OECD 2019). FAO reviewed the first-generation biofuel produc-
tion and warned about its dangers in 2009 (FAO 2009). If this approach was
followed, it would have resulted in a serious risk to food security for humans and
overuse of agricultural land. Hence, agricultural diversification and alternatives to
food crops were searched for biofuel production. Currently, extensive research
works on third and fourth generation biofuels.
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Various technologies are being used for biofuel production from biodegradable
and non-biodegradable wastes, which can be classified into biochemical and ther-
mochemical processes (Jeguirim and Limousy 2018; Bharati et al. 2020). In bio-
chemical processes, microorganisms play a crucial role in transforming organic
biomass into biodiesel, bioethanol, and biogas. Whereas in thermochemical pro-
cesses, bio-hydrogen and bio-oil are produced by combustion, gasification, and
pyrolysis. The selection of the processes for biofuel production primarily depends
on the feedstock’s nature and available pre-treatment methods (Singh and Das
2019).

Recent technologies have shown the potential of microorganisms in the produc-
tion of bioethanol and biogas. The innovation in bioethanol production from first-
and second-generation biofuel using yeast and genetically engineered bacterial
strains has been well known for the past few years. Recent studies also reveal the
high yields of alcohol from syngas using acetogenic bacteria in indirect fermentation
(Liou et al. 2005; Maurya et al. 2020). Similarly, processing algal lipids is a
promising and carbon-neutral approach to converting sunlight and CO, into
biodiesel. Hence, in this chapter, the classes of biofuels and the potential of
microorganisms in converting deteriorating wastes into beneficial biofuels have
been described in detail.

7.2 Potential Biofuels Transformed from Wastes
7.2.1 Types of Biofuels

Biomass is one of the most valuable sources as it supplies food, feed materials, and
energy in a human-dominated ecosystem of the Earth. In the context of a renewed
return to a so-called biobased economy, as it was practised for many centuries before
industrialisation, a new focus will be laid on the production of food, feed, bio-based
materials, and bioenergy from biomass. Therefore, new value chains will have to be
developed that include the primary production of biobased resources, their conver-
sion to higher-value goods, and their energetic use after their lifespan or from wastes
produced alongside the value chains (Zorb et al. 2018) (Fig. 7.1).

Biomass can be converted into usable energy such as fuel, electricity, and heat via
three different conversion pathways: thermo-chemical, physio-chemical, and bio-
chemical pathways (Madakka et al. 2020). Various biomasses can be converted into
energy carriers in solid, liquid, and gaseous forms using either of these three
pathways (Fig. 7.1). Thermochemical conversion includes the processes of
carbonisation, gasification, or pyrolysis and will result in solid, gaseous, and liquid
forms of bioenergy. In Physico-chemical conversion, the biomass is given mechani-
cal and chemical treatment, resulting in the extraction of plant oils. The plant oils are
converted into biofuels after their transesterification. In biochemical conversion
processes, alcoholic fermentation and anaerobic digestion transform the biomass
into liquid, and gaseous energy carries.
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Fig. 7.2 Categorisation of biofuels based on their physical state and biomass Feedstock

Biofuels are renewable fuels derived from biomass through thermo-, physio-, or
biochemical reactions. Depending on the feedstock used, three generations of
biofuels are identified in the literature (Fig. 7.2). “First-generation” biofuels are
based on food crops, such as wheat, barley, rapeseed, sugarcane, and corn, and
thus have direct competition with food and feed. These raw materials have been the
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subject of much debate worldwide as their use may lead to food shortages. For this
reason, the use of “second-generation” or “advanced” biofuels, based on non-food
crops and lignocellulosic material that will have reduced or no food competition,
increased. To avoid any competition with food or feed a “third-generation” of
biofuels based on algae or other microorganisms has been the focus of research as
those resources will have only little land requirements (Loeffler et al. 2018; Zorb
et al. 2018; Kumar et al. 2019a). Nowadays, research on “fourth-generation” which
consists of combining genetically engineered feedstock with genomically
synthesised microorganisms, is also being carried out to increase the efficiency of
biofuel production from biomass (Mansoori et al. 2021).

Biofuels are classified into solid, liquid, and gaseous energy forms according to
their physical properties (Fig. 7.2).

7.2.1.1 Solid Biomass
The use of solid biomass to derive energy is known as solid biofuels and has been
classified into four well-known types of solid biofuels.

1. Firewood: Wood is the ancient biofuel source being used for thousands of years
for the production of heat and light and other domestic purposes. Before its use as
firewood, the wood needed to be dried with its moisture content reduced to about
10-25%. Compared to green firewood, dried wood burns more quickly and
efficiently. But, the burning of firewood or fuelwood also produces hazardous
greenhouse gases, which cause a negative impact on the environment.

2. Woodchips: wood chips are a processed form of firewood that is easier to handle
and faster to burn. It is mostly used in areas where mechanical forestry equipment
is available.

3. Wood pellets: In the wood pellets, the wood is converted into sawdust and
processed at high temperatures. At high pressure, the temperature rises, and the
lignin melts and glues the sawdust into pellets. Afterwards, the pellets are broken
into pieces of 2-3 cm in length. Nowadays, wood pellets made from seed husk,
formed after oil extraction, have a high demand for animal feed.

4. Charcoal: Charcoal has a much higher energy content compared to the other
forms of wood biofuels. Charcoal is produced after the wood materials are heated
below 400 °C temperature in the absence of air.

7.2.1.2 Liquid Biofuels

Liquid biofuels are transport fuels obtained from biomass. They are refined products
of biomass feedstock. Bioalcohols (bioethanol and biomethanol) and biodiesel
formed from bio-oil are examples of liquid biofuels.

1. Bioethanol: Bioethanol is produced by direct and indirect fermentation pro-
cesses. In direct fermentation, ethanol is made from simple sugars obtained
from either first-generation (wheat, beetroot, corn, and sugar cane) or second-
generation biofuels (Stover, straw, stem, and stalks) sources (Elshahed 2010). In
first-generation biofuel, extraction of sugar syrup is relatively simple. Hence,
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microbial and enzymatic treatments are not required for pre-treatments. Sugar
syrup is converted into ethanol using genetically engineered yeast and bacterial
strains. Due to increasing debates on fuel Vs food during the past few years,
various countries have moved from the first-generation biofuel to second-
generation biofuels. In the second-generation biofuels, the lignocellulolytic
microbial (bacteria and fungi) strains are used for the initial hydrolysis of
complex sugars (polysaccharides) into simple sugars (oligo, di, or
monosaccharides). These simple sugars are then subjected to microbial fermen-
tation for bioethanol production (Lau and Dale 2009). Indirect fermentation is a
promising approach for ethanol production. In this process, plant material is
converted into syngas by pyrolysis. Syngas contains CO, CO,, and hydrogen
(H,), which are then transformed into ethanol by anaerobic acetogenic bacteria
(Tanner 2008).

2. Biomethanol: The preparation of biomethanol involves the gasification of
carbohydrates from biomass and their partial oxidation. Compared to producing
methanol from fossil fuels, the production of biomethoanol from biomass is
expensive. Hence only a tiny percentage of biomethanol is produced from
biomass. Methanol is used as fuel, fuel additive, and an important base chemical
for industries. Low flammability, high performance, and low emission of pollu-
tion are the advantages of using biomethanol (Pirola et al. 2018).

3. Biodiesel: Biodiesel consists of alkyl (C1-C4) esters of long-chain fatty acids.
The production of biodiesel involves the transesterification of biological lipids
(raw plant oil, animal fat, and waste oil) in the presence of methanol. A base is
also used during the transesterification of lipids to form a liquid fuel. Biodiesel is
used either as a substitute or as an additive for diesel. The lipids from photosyn-
thetic algae are processed to produce biodiesel. This promising process is also
popular as an eco-friendly and carbon-neutral process of biofuel production due
to converting greenhouse gas CO, into biodiesel using sunlight. The process also
has high carbon-fixation efficiency because the growth rate of microalgae is much
faster than oil crops, and the extraction of oil exceeds about 80% of the dry
biomass (Chisti 2007).

4. Bio-oil: Bio-oil is a pyrolysis product and comes along with other products such
as biochar and syngas. Modification and optimising the conditions during pyrol-
ysis can increase the amount of bio-oil. Bio-oil is a mixture of many compounds
such as acids, alcohols, aldehydes, esters, ketones, sugars, alkenes, aromatic and
nitrogen compounds, and many others. However, bio-oil is difficult to burn due to
excess moisture. Moreover, it is also volatile, corrosive, and adhesive.

In recent studies, algae with high lipid profiles (e.g. arachidonic,
eicosapentaenoic, and docosahexaenoic acids) have been used for the production
of bio-oils. The major challenge in this process includes the development of low-cost
extraction methods (Baskar et al. 2019).
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7.2.1.3 Gaseous Biofuels

Gas and its products are extensively used for cooking, heating, transportation and
electricity generation as they are very flexible in their use. Biogas, biohydrogen, and
syngas are some types of gaseous biofuels.

1. Biogas: The anaerobic digestion of organic waste, sewage sludge, animal wastes,

or energy crops using microorganisms leads to a mixture of gases known as
biogas. This process works in four stages: hydrolysis, acidogenesis, acetogenesis,
and methanogenesis. In the hydrolysis step, the microorganism ferment complex
biomass into long-chain and short-chain volatile fatty acids. The product formed
in acidogenesis is utilised by acetogenic bacteria to produce H,, CO, and acetate,
which is finally used up by methanogens to produce methane (Borja and Rincén
2017).
Biogas is composed of approximately 60-65% methane (CH,) and 30-35%
carbon dioxide (CO,). However, the exact composition depends upon the feed
material. Other gases H,, hydrogen sulphide, and water vapours are also in lower
amounts. Following the purification and concentration of biogas, it can be
combined with heat and power units to generate heat and electricity. In addition,
biogas can be injected into the gas grid or liquefied using pressure for fuel
purposes.

2. Biohydrogen: H, is an ecologically pure biofuel because it does not release any

harmful gases upon combustion. Pyrolysis of biomass, such as waste, crop straw,
municipal solid waste, crop grain residue, pulp waste, or manure slurry, results in
the synthesis of biohydrogen. H, is also formed as a final product in the fermen-
tation process by the Hrase enzymes in microorganisms (Vignais and Billoud
2007).
In photobiological H, production, photosynthetic microbes such as
Cyanobacteria and green algae are also well known to produce low-cost H,.
These photosynthetic microbes split the water molecules into electrons and
oxygen. The hydrogenase enzyme can convert the produced electron into H,
(Prince and Kheshgi 2005).

3. Syngas: Synthesis gas (syngas) is produced by pyrolysis or gasification of plant
biomass or biobased gases. Carbon monoxide (CO) and H, are the main
components of syngas, accompanied by CO,, CH,, hydrogen sulphide, water
vapours, etc., depending on the biomass composition. Power to Gas technologies
such as catalytic and biological methanation is becoming increasingly important
(Martin 2016).

The syngas can be injected into the grid, liquified for fuel, and used to produce
other fuels such as diesel. Moreover, syngas is the leading source for producing
various chemicals such as ethanol, methanol and ethane. The H, separated from
syngas is used in fuel cells for electricity generation (Wu and Tu 2016).
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7.3 Substrates for Biofuel Production

Due to the shortage of fossil fuels and environmental issues, renewable,
environment-friendly fuels are becoming more important nowadays. Fuel crisis
and treatment and proper usage of organic wastes are among the significant global
challenges. Both challenges can be addressed by using organic wastes for biofuel
production. Based on their origin, organic wastes can be classified into agricultural/
forestry and non-agricultural/forestry wastes (Table 7.1). Agricultural wastes
(by-products, co-products) are usually defined as non-food or feed plant or animal
residues generated from either harvesting crops/trees or rearing animals. Compared
to agricultural waste, the non-agricultural organic wastes (biowastes) include all
organic wastes from the domestic, food, municipal, and industrial sectors.

All these wastes can generally be used for the production of biofuels. Depending
on their composition (content of carbohydrates, proteins, lipids, cellulose, hemicel-
lulose, lignin) and their dry matter they can be used to produce specific kinds of
biofuels.

7.3.1 Biofuels from Different Types of Biomass

Wastes with high content of dry matter like forestry residues and by-products from
forest, straw, bagasse, solid animal waste, and other vegetal materials can be used to
produce solid biofuels. These solid biofuels can substitute common wood-based
biofuels. A homogenous fraction is a good choice for producing liquid biofuels from
biowastes. Lipid-rich wastes from restaurants, catering, retail premises and food
processing plants are suitable materials for producing liquid biodiesel. Waste bio-
mass rich in starch, sugar, and lignocellulosic material is a good choice for the
production of bioethanol and biomethanol (Yadav et al. 2020). However, this
method is still in the infancy stage of development (Hirschnitz-Garbers and Gosens
2015). The production of bio-oils by pyrolysis of wastes is currently under
optimisation at an industrial scale. Once optimised, this method can also use
different biowastes to produce bio-oils (Karmee 2016). Gaseous biofuels
(biohydrogen and syngas) are also released by pyrolysis or gasification of wastes.

Table 7.1 Classification of organic wastes (modified—according to Pimi et al. 2014)

Types Organic wastes

Agricultural/forestry wastes Forestry and agricultural residues, Manure

Non-agricultural/forestry food and kitchen waste

wastes

* Food waste Household waste, Restaurant waste, Catering waste
Retail premises waste, waste from food processing plants

« Industrial waste Nature textiles, paper, processed wood

* Municipal waste Garbage, Biodegradable garden and park waste, sewage

sludge
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Unlike bio-oil production from waste, the production of biogas from waste is already
an optimised method being practised worldwide. Biogas is another gaseous biofuel,
produced utilising a variety of putrescible organic wastes, such as agricultural
residues, manure, food wastes, industrial wastes, sewage, and the organic fraction
of municipal solid waste (MSW). The high lignin and lignocellulosic contents lower
the specific biogas yield (De Simio et al. 2008).

7.3.2 Pre-treatment of Waste Prior to Microbial Treatment

Biofuel usually starts with a preliminary feedstock preparation step involving
cleaning and size reduction by milling, grinding, or chopping. All these steps
consume a large amount of energy. Subsequently, the process follows four major
steps: (1) pre-treatment, which involves degradation of the complex lignocellulosic
network into smaller units, (2) Hydrolysis/saccharification to obtain fermentable
sugars, (3) fermentation to convert sugars into ethanol, and (4) Purification (recovery
and dehydration) to obtained good quality ethanol (Fig. 7.3).

7.3.2.1 Pre-treatment

Naturally occurring forms (crystalline structure) of cellulose have high resistance to
hydrolysis. The presence of lignin also limits enzymatic hydrolysis by adsorption of
enzymes. Pre-treatment performs de-lignification, degradation of hemicelluloses and
reduction in cellulose content. Pre-treatments can be physical (e.g. milling, grinding,
and microwave), chemical (acid, alkali, ozonolysis, organosolv, and ionic liquids),
physicochemical (steam explosion, ammonia fibre explosion, CO, explosion, liquid

Lignocellulosic Biomass

Feedstock Preparation by
Phyzical/Chemical/ Biological

Pretreatment

Detoxification by
Physical/Chemical/ Biological
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Fig. 7.3 Biochemical pathway of biofuel production from waste
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hot water, and wet oxidation), or biological. During pre-treatment, lignocellulosic
biomass several compounds such as (1) furfural and HMF (5-hydroxymethyl-2-
furaldehyde), originating from the degradation of hexoses and pentoses, (2) acetic
acid, originating from hemicelluloses, and (3) phenolic compounds originating from
lignin are generated. These compounds are toxic to microorganisms, inhibit their
growth, and extend the lag phase. So, several detoxification technologies are used to
remove these toxic compounds.

7.3.2.2 Hydrolysis/Saccharification

It is a crucial step in which sulphuric acid or hydrochloric acid or enzymes are used
to convert cellulose and hemicelluloses into their monomers, i.e. fermentable sugars
using the process of acid or enzymatic hydrolysis at low temperature, followed by
microbial fermentation for the production of biofuel (Branco-Vieira et al. 2018).

7.3.2.3 Fermentation

Different enzymes like xylanases, laccases, chitinases, cellulases, and proteases play
a dedicated role in bioconversion. For example, xylan and cellulose as substrates are
used for biofuel production. Bioconversion of the sugars to bioethanol occurs
through fermentation, involving microorganisms (Adegboye et al. 2021; Soni et al.
2020).

7.3.2.4 Purification

Lastly, the product obtained needs to undergo the process of purification and
distillation, which involves separating the bioethanol, in pure form, from the fer-
mentation broth. The quantity of bioethanol obtained from the fermentation process
mainly depends on the amount of sugar produced during pre-treatment and hydroly-
sis/saccharification. The total yield of bioethanol can be measured in terms of the
volume of ethanol produced per dry weight of raw material (Adegboye et al. 2021).

7.4  Biological Agent in Biofuel Production from Waste

7.4.1 Bacteria

Microorganisms are considered alternative sources for the production of biofuels.
Bacteria have significant advantages over higher plants and microalgae for
synthesising intracellular as well as extracellular fatty acids to produce
environment-friendly fuel oil (Kumar et al. 2020). Fast-growing bacteria can poten-
tially use a wide range of feedstocks for biodiesel production. Bacteria effectively
use agricultural by-products for their growth and utilise sugar and proteins pre-set in
waste materials (Mihajlovski et al. 2020). Some of the well-known potential biofuel-
producing strains of bacteria have been summarised in Table 7.2. Activated sludge
contains a microbial population of heterotrophic bacteria responsible for wastewater
treatment. These bacteria use the organic compounds in wastewater for their growth
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Table 7.2 Microorganisms in biofuel production

Organisms

Acinetobacter calcoaceticus
Alkalibaculum bacchi

Bacillus sp. (B. mycoides,
B. amyloliquefaciens,

B. pumilus)

Clostridium acetobutylicum

Clostridium beijerinckii

Clostridium carboxidivorans

Clostridium phytofermentans
Clostridium ragsdalei

Clostridium thermocellum
Costridium
saccharoperbutylacetonicum

Cryptococcus curvatus

E. coli

Lactobacillus brevis

Lipomycesstarkeyi
Pseudomonas putida
Rhodococcus opacus
Rhodosporidium Toruloides
S. cerevisiae

S. stipitis
Zymomonas mobilis

Biofuel type
Lipid

Ethanol

Butanol

Acetone, butanol, and
ethanol

Isopropanol, butanol, and
ethanol

Ethanol, butanol

Ethanol
Ethanol

Ethanol
Butanol
Lipids

Ethanol, 1-Propanol,
1-pentanol isobutanol,
1-butanol

Butanol

Lipids

Butanol

Lipid

Lipids (Glucose and xylose)

Ethanol
Ethanol
Ethanol

References
Choi et al. (2014), Moshtagh
et al. (2021)

Allen et al. (2010), He et al.
(2022)

Kanno et al. (2013), Shabbir
et al. (2022)

Ennis et al. (1986), He et al.
(2022)

Hettinga et al. (2009),
Comwien et al. (2015), He
et al. (2022)

Fernandez-Naveira et al.
(2016), He et al. (2022)

He et al. (2022)

Devarapalli et al. (2017), He
et al. (2022)

Ng et al. (1981), He et al.
(2022)

Shukor et al. (2014), He et al.
(2022)

Yu et al. (2011), Kamal et al.
(2022)

Asghari et al. (1996), Zhang
et al. (2008), Ku et al. (2022)

Russmayer et al. (2019),
Esquivel-Hernandez et al.
(2022)

Yu et al. (2011), Zhang et al.
(2022)

Sahoo et al. (2019), Sarwar
et al. (2022)

Le et al. (2017), Nair and
Sivakumar (2022)

Xie et al. (2012), Gao et al.
(2022)

Sharma et al. (2022)
da Silva et al. (2022)
Li et al. (2022)

and store the organic material in the form of lipid droplets. Oleaginous bacterial
species belonging to the order Actinomycetales (Mycobacterium, Streptomyces,
Nocardia, and Rhodococcus) can accumulate lipid up to 20% or more of their
biomass (Cea et al. 2015). Acidothermus, Bacillus, Clostridium, Pseudomonas,
and Rhodothermus degrade cellulose. A wide assortment of Gram-positive and
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Gram-negative cellulose-degrading bacterial species includes Clostridium
thermocellum, Streptomyces sp., Ruminococcus sp., Pseudomonas sp.,
Cellulomonas sp., Bacillus sp., Serratia sp., Proteus sp., Staphylococcus sp., and
Bacillus subtilis (Kashyap et al. 2019; Khedr et al. 2019). Geobacillus is an obligate
thermophilic bacteria which can generate and enhance the productivity of important
bioenergy sources such as ethanol, isobutanol, 2,3-butanediol, biodiesel, and biogas
at the temperature range of 35-75 °C (Novik et al. 2018).

Biogas is an effective source of renewable energy. Anaerobic microorganisms
produce biogas by organic decomposition of domestic and agricultural waste as a
substrate. CH, is the main combustible element of biogas, forming 50-75% volume
of biogas. Remaining 25-50% volumes consists of non-combustible gaseous
elements, such as CO,, N, (<1%), O, (0—1%), and nitrogen siloxanes (0-0.02%),
halogenated hydrocarbons (<0.6%), CO <0.6%, hydrogen sulfide (0.005-2%), and
water vapours (5—-10%) (Wellinger and Lindberg 1999). Thermovirga, Soehngenia
and Actinomyces are H group-containing bacteria that have more capacity to gener-
ate CH, than the black group. These microbial communities (black and H group)
have been categorised with the help of Illumina sequencing. Archaeal species like
Methanosaeta, Methanolinea, Ethanospirillum, and Methanoculleus are reported in
both groups (Wang et al. 2017). Bioaugmentation strategies for enhancing biogas
production plays a crucial role during the anaerobic degradation of cow manure.
These bacterial strains include Rikenellaceae, Clostridiaceae,
Porphyromonadaceae, Bacteroidaceae, and Ruminococcaceae. Flavefaciens and
Ruminococcus albus showed CH, production at 41 °C (Ozbayram et al. 2018).

Biodiesel, consisting of mono-alkyl esters, is produced by the transesterification
of edible and non-edible oil/fat from plant and animal origin. The use of biodiesel
over conventional fossil fuel-based diesel offers several advantages, such as less
emission of greenhouse gases, other gaseous pollutants and particulate matter
(Behera et al. 2019). Oleaginous bacteria Rhodococcus opacus produce 80%
biodiesel of its cellular dry weight using wastewater from corn stover (Le et al.
2017). Moreover, Serratia sp., a chemolithotroph, uses municipal secondary sludge
as growth media for biodiesel production. These bacteria apply several strategies for
their adaptation to produce lipids, bioplastics, exopolysaccharides and fatty acids
(Kumar et al. 2020).

Bioethanol is an important alternative to fossil fuels and contributes to the
economy by using domestic and environmental wastes. It is a safe, efficient and
non-toxic biofuel produced without any by-products (Younesi et al. 2005; Eriksson
and Kjellstrom 2010). The organic fraction of MSW comprises 50% lignocellulose-
rich material. Zymomonas mobilis and Rhodococcus opacus have the potential of
producing ethanol from MSW (Dornau et al. 2020). Brigham (2019) reported that
Knallgas bacteria produce different types of high-energy-density transportation fuels
by utilising CO,, H,, and O,. Ralstonia eutropha is a Knallgas bacterium, which has
been genetically engineered to produce n-butanol, isobutanol, and terpene under
chemolithoautotrophic conditions. Many extremophilic bacterial species, mainly
thermophilic microorganisms, produce cellulase enzyme which increases the rates
of cellulose hydrolysis. Clostridium thermocellum, Thermoanaerobacter
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thermohydrosulfuricum, and Clostridium stercorarium subsp. thermolacticum not
only efficiently degrades cellulose and hemicelluloses through hydrolysis but also
readily ferments the pentose and hexose sugars (Di Donato et al. 2019). Ethyl
alcohol is produced using syngas fermentation, in which anaerobic microorganisms
(Clostridium ljungdahli, C. tetanomorpum, and Clostridium strain P11) utilise
accessible carbon and energy source to produce ethanol biofuels (Williams et al.
2015; Kundiyana et al. 2010).

7.4.2 Yeast/Fungi

Fungi degrade the biomass of agricultural waste through biochemical and thermo-
chemical processes to produce biofuels. Biochemical conversion leads to bioethanol
and biodiesel production (Maurya et al. 2020). Endophytic fungi produce
compounds such as alkanes, cyclohexanes, cyclopentane, alkyl alcohols/ketones,
benzenes, and polyaromatic hydrocarbons found in biodiesel (Raven et al. 2019;
Kumar et al. 2023). Rhizopus Oryzae fungi have been demonstrated to efficiently
catalyse the methanolysis of vegetable oils for biodiesel production in solvent-free
systems (Nagaraj et al. 2010). Some of the fungi used for biofuel production have
been presented in Table 7.3.

Filamentous fungus Aspergillus sp. produces biodiesel with good fuel quality
(acid number, 0.40 mg KOH/g of acid; iodine value, 11 g I,/100 g oil; density,
0.8342 g/cm3) using corncob waste liquor (CWL) as substrates (Subhash and Mohan
2011). Moreover, Aspergillus niger and Trichoderma harzianum have been reported
to perform the alkali and enzymatic hydrolysis of rice husks (Solanki et al. 2019;
Abbas et al. 2022). This hydrolysed husk can be used for bioethanol production via
fermentation using Saccharomyces cerevisiae (Ahmad et al. 2017). Similarly, the
co-culture of Aspergillus niger and Saccharomyces cerevisiae produce ethanol from
the rice wastewater (Hatami et al. 2015; Gujjala et al. 2019). Furthermore, Subhash
and Mohan (2015) reported that Aspergillus awamori uses CWL, paper mill effluent
(lignocellulosic wastewaters) and cellulosic waste (de-oiled algae extract, DAE) as
feedstock for single cell oil (SCO) production. DAE improvises biomass production
by reducing production time; however, the high feedstock cost is a major limiting
factor. Oleaginous fungi are cultured with lignocellulosic materials for lipid produc-
tion, which produces biofuel at a comparatively lower cost due to the abundance of
low-cost feedstock, such as glycerol, sewage water, whey and molasses. Oleaginous
microorganisms have multiple advantages (Zheng et al. 2012), such as (1) capacity
to accumulate 80% of lipid and increase the quality of fatty acids, (2) having good
lipid profiles, suitable for making high-quality biodiesel, (3) capacity to utilise
monosaccharides, glycerol, acetic acid, cereal, corncob, sweet sorghum, wheat
straw, orange peel, apple pomace and oil for lipid production, (4) low capital cost
and low energy expenditure is required for oil production, through solid-state
fermentation, and (5) ease of oil harvesting from cell broth by using simple filtration
after pellet formation, and reduction in the viscosity of the fermentation broth to
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Table 7.3 Role of important microbes in fuel production from different feed stocks

Biofuel
Biohydrogen

Organism

Trichoderma asperellum

Consortium of 7. viride and A. niger | Biohydrogen
A. tubingensis, Trichosporono Biodiesel
idesspathulata, Candida tropicalis,

Rhodotorula mucilaginosa

Mucor circinelloides Biodiesel
Penicillium citrinum Biodiesel
Aspergillus awamori, Aspergillus Biohydrogen,
oryzae Bioethanol
Gymnopus contrarius Biohydrogen

Clostridium thermocellum Biohydrogen

Pleurotus ostreatus, Trametes Biogas
versicolor

Orpinomyces sp., Piromyces sp., Biogas
Anaeromyces sp., Neocallimastix

frontalis

Cladosporium sp., Verticillium sp. Biogas

Feedstock
Sweet sorghum

Oat straw

Palm empty fruit
bunch

Sugarcane
bagasse, corn
milling

Musa balbisiana
cola peels

Food waste

Rice straw
Waste date palm

Chicken manure
with sawdust and
wheat straw

Animal manure

Feathers,
biological
sludgeslime

References
Shanmugam
et al. (2018)
Zhao et al.
(2019)

Intasit et al.
(2020)

Carvalho et al.
(2018)

Bardhan et al.
(2019)

Han et al. (2016)

Sheng et al.
(2018)
Swathy et al.
(2020)

Basinas et al.
(2022)

Yildirim et al.
(2017), Bhujbal
et al. (2022)
Wroriska and
cybulska (2018)

improve the mixing and mass transfer performance, compared to traditional high-

cost centrifugation methods.

Oleaginous yeast such as Rhodotorula glutinis accumulates 25% lipid of its

biomass for biodiesel production from monosodium glutamate wastewater (Zheng
et al. 2012). Saccharomyces cerevisiae can use hexose monosaccharides (glucose,
mannose, and galactose) and disaccharides (sucrose and maltose) to produce
bioethanol via fermentation of lignocellulosic hydrolysates (Branco et al. 2019).
Yeast strains such as Kluyveromyces fragilis, Candida sp., Rhodosporidium sp.,
Rhodotorula sp., and Lipomyces sp. accumulate 70% triacylglycerols of their bio-
mass (Subhash and Mohan 2011). Hemicellulose and lignins of plant cell walls are
acetylated, which yield acetic acid after hydrolysis as an unavoidable component.
Acetic acid is toxic to the fermenting microorganisms, negatively influencing sugar
fermentation and, subsequently, biofuel yield. Additionally, Trichosporon
fermentans could be used for microbial lipid production from detoxified rice straw
acid hydrolysate. But the obtained lipid content was lower than glucose as the sole
carbon source (Huang et al. 2012). Yeast, Saccharomyces cerevisiae, is widely used
for the production of ethanol from corn and sugarcane, but it cannot metabolise
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xylose. But Scheffersomyces stipitis can convert xylose to xylulose by expression of
nicotinamide adenine dinucleotide phosphate (NAD(P)H)-linked xylose reductase
(XR) and nicotinamide adenine dinucleotide (NAD)-linked xylitol dehydrogenase
(XDH) genes. This xylulose can be metabolised after its phosphorylation via the
pentose-phosphate pathway (Wei et al. 2013). Moreover, endophytic fungal isolates
Colletotrichum sp., Alternaria sp., and Aspergillus sp. have the ability of lipid
accumulation, as whole-cell biocatalysts, under the nutrient optimum and nutrient-
stressed conditions (Subhash and Mohan 2011).

Biogas production efficiency is influenced by the type and quality of the raw
materials used. Waste products from the poultry industry, agricultural crop wastes,
and animal residues fulfil the requirements of good raw materials due to having a
significant proportion of fats and proteins (Wroriska and Cybulska 2018). Anaerobic
fungi are known to produce plant carbohydrate hydrolysing enzymes for cell wall
polysaccharide decomposition. Anaerobic fungi are promising candidates for
mechanical and enzymatic degradation of plant polysaccharides to improve biogas
production (Dollhofer et al. 2015). Anaerobic fungus Piromyces rhizinflata degrades
volatile fatty acid and augments the lignocellulose biomass (corn silage and cattail)
as feedstock for CH4 and H, production (Nkemka et al. 2015). Similarly, the fungus
Auricularia auricula-judae is used to decay sweet chestnut (Castanea sativa) leaves,
hay and wood to decompose cellulose, hemicelluloses and lignin for the production
of biogas (Mackulak et al. 2012).

7.4.3 Photosynthetic Microorganisms

Photosynthetic microorganisms, as a platform for biofuel production, have gained
substantial recognition as an option that could significantly reduce environmental
pollution by using CO, emitted from various sources (Machado and Atsumi 2012).
These photosynthetic microorganisms directly fix CO, as their primary carbon
source for biofuel production and replace the requirement of fermentable sugars.
Algae and cyanobacteria are the pioneer and desired organisms for this strategy of
biofuel production. Both these groups of organisms can grow much faster than
plants, do not need arable land for their production and can be grown in submerged
water (Dismukes et al. 2008). Research on algae has centred on enhancing their
potential to produce large amounts of lipids pertinent to biodiesel production (Pate
et al. 2011; Kumar et al. 2017). Cyanobacteria coupled with prokaryotic organisms
such as E. coli is beneficial to both as a photosynthetic microorganism and naturally
transformable host. Studies reveal that cyanobacteria have already been manipulated
to produce a number of different biofuels (Dismukes et al. 2008; Machado and
Atsumi 2012; Gao et al. 2016). For instance, Synechococcus elongatus sp. strain
PCC 7942 was successfully manipulated for ethanol production via the external
addition of enzymes such as pyruvate decarboxylase and alcohol dehydrogenase,
redirecting the carbon from pyruvate (Deng and Coleman 1999). Continuous
research works have significantly improved the production of ethanol using
cyanobacteria (Gao et al. 2012, 2016). Further researches are being conducted
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worldwide on other photosynthetic microorganisms to improve and strengthen the
ability of biofuel production from waste.

7.5 Waste Product Impact on Climate

Wastes are all the by-products released from industries, households, or other sources
humans cannot use further. Waste management is a more significant challenge for
both the small and big cities of developing countries. Urbanisation and increasing
population are the major issues responsible for increasing the burden of waste.
According to the Global Waste Management Outlook 2015 (GWMO), 2.0 bil-
lion tonnes/year of waste is produced by MSW and 7-10 billion tonnes from
households, commerce, industries and construction site (Everett 2012; Al-Dhrub
et al. 2017). These wastes may be in solid, liquid or gaseous forms whose disposal
improperly leads to negative consequences on the health of humans, animals and the
environment (Misra and Pandey 2005). Improper and uncontrolled disposal
generates heavy metal pollution in the water, air, and soil. Open burning causes
the release of CO,, SO and other air pollutants in the atmosphere. The release of
waste in the water bodies also affects the aquatic ecosystems enhancing eutrophica-
tion (Ferronato and Torretta 2019). In the present climate change scenario, the
melting of glaciers, increasing temperatures, seasonal variations, the emergence of
various pathogens, and adverse consequences on agricultural production are the
major threats to human society. Further, these wastes and their mismanagement will
boost the future climate change rate. Nowadays, the conversion of different waste
materials to generate energy and its use for societal welfare along with a significant
positive impact on the environment is one of the top priorities (Tabasova et al. 2012;
Kumar et al. 2019b). These strategies are required to control the rate of climate
change and mitigate its adverse consequences.

Due to recent anthropogenic activities, the degree and amount of waste are
increasing. The considerable increase in a waste generation began due to population
explosion and industrialisation (Wilson 2007; Pikori and Czop 2014). It has been
reported that approximately 1.3 billion tonnes of MSW is generated per year, and it
could rise to approximately 2.2 billion tonnes/year by the end of 2025 (Hoornweg
and Bhada-Tata 2012). There are various waste management techniques through
which the wastes can be transformed for the production of manures for agriculture
purposes, eco-friendly energy sources, and pollution reduction (Widmer et al. 2005;
Aljaradin and Persson 2012).

7.5.1 Impacts of Waste Disposal on the Environment

The waste material could be in solid, liquid or gaseous form and biodegradable or
Non-biodegradable in nature. Food production through agriculture and its consump-
tion is one of the main factors related to environmental impacts in the world. Food
production involves using resources such as fuels, land, water and raw materials
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linked to economic and environmental impacts. Most food packaging materials are
made up of non-biodegradable plastics which are obstinate towards microbial
disintegration and hence do not meet the requirements of compost forming (Pikoni
and Czop 2014). Disposal of food wastes into water bodies affects the aquatic
ecosystem, causing eutrophication and algal blooms due to increased nutrient
concentration in water bodies (Scherhaufer et al. 2018).

In developing nations, there is a major problem with management of solid waste
(sewage and industrial sludge) due to several constraints; hence, landfilling with
waste products in low-level areas is preferable. Sewage contains a large number of
toxic substances which are harmful to human and animal health, as well as to the
environment. MSWs majorly hold solid matter and are subject to landfilling for its
management. The degradation of MSWs in landfills leads to the formation of
different hazardous gases. The level of CO,, which usually remains high, regularly
drops as the CH, concentration builds up if the degradation procedure is shifted from
aerobic to anaerobic conditions. Other gases, including H,, nitrogen, etc., are
produced in minor amounts during the degradation process. Burning solid waste at
the landfilling site produces toxic gases that pollute the air, causing respiratory
problems. These gases contribute to global warming and climate change. Solid
waste undergoes a sequence of complex biochemical and physical processes, leading
to the production of leachate and gaseous emissions. When leachates reach the water
resources, they pollute surface water and groundwater (Aljaradin and Persson 2012).

7.5.2 Non-biodegradable Wastes

Hazardous and non-biodegradable solid wastes, which enter from the municipal
waste directly disposed-off in the environment, play a significant role in environ-
mental degradation. The majority of plastics are composed of polyaromatic hydro-
carbon compounds and produce greenhouse gases, which cause a negative impact on
the environment. Plastic restricts the water absorption in the soil due to seized soil
capillaries and simultaneously affects the microbial diversity, water holding capac-
ity, and loss of moisture content in the soil. More plastic waste in the soil environ-
ment triggers the process of soil infertility (Andreefen and Steinbiichel 2019). Now
a day’s, the world is facing plastic waste pollution in the marine ecosystem also.
Rivers are the indirect key carrier of plastic waste. Plastic waste harms many aquatic
animals, and plastic pollution also decreases the aesthetic value of any water body.

The waste of glass industries is another unremarkable waste posing many
challenges due to the high greenhouse gas emissions, rigorous energy use, and the
intensive use of the Earth’s natural resources. Discarding the glass waste in landfills
is not offering environment-friendly management due to the non-biodegradable
nature of glass waste and is triggering severe environmental soil pollution (Jani
and Hogland 2014). Apart from municipal or industrial waste, E-waste comprises
harmful materials that need proper management and recycling approaches to avoid
environmental pollution (Gabra et al. 2019). E-waste is chemically and physically
different from other forms of waste. The chemical composition of E-waste differs



180 U. Chaurasiya et al.

depending on the age and quality of the discarded items. Most E-wastes contain a
mixture of metals, particularly Cu, Al, and Fe, which are used in several kinds of
plastics and ceramics. Discarded personal computers, laptops, washing machines,
refrigerators and electrical wires are comprised of metal, plastics, electronic
components and glass. Disposing of all this E-waste in the environment is polluting
the water, soil, and air (Robinson 2009).

7.6  Challenges in Biofuels Production from Waste

World socio-economic developments are mainly progressed by energy. Presently,
the world’s fuel demand of around 75% is compensated by non-renewable sources
like petroleum and its derived fuel. As per the International Energy Report 2014, the
global energy demand is expected to elevate by 37% by 2040 (Joshi et al. 2017).
Therefore, research is being carried out in different parts of the world with a special
focus on renewable sources to meet anticipatory growing energy demand. Hence,
biofuels from waste biomasses could be a probable source to meet the global
anticipatory energy demand.

There are several procedures and technologies by which renewable resources can
generate biofuels (Joshi et al. 2017). The biofuels could be produced from enriched
biochemicals produced by either microbiological agents such as bacteria, fungi, and
microalgae or animals (Rodionova et al. 2017; Kumar and Banerjee 2019). For the
last few decades, agriculture production has increased several folds. Simultaneously,
food and agricultural waste also increased proportionally; hence, this waste produc-
tion has been known to be the potential source of biofuels. However, algal biomass
has recently been known to be a potential bioresource for producing different types
of biofuels (Dragone et al. 2010; Rodionova et al. 2017).

There are several prospects for the production of biofuels from wastes product
that have been well recognised and exploited. Among them, biofuels by
cyanobacteria or microalgae have been highly acknowledged (Demirbas et al.
2016; Heimann 2016; Rodionova et al. 2017; Chintagunta et al. 2020). Scott et al.
(2008) have reported several benefits of using microalgae for biofuel production
owing to high productivity compared to other bioresources. Besides the benefits of
microalgae-based biofuels production, several challenges are still to be considered
for commercial production of biofuels, such as ease and continuous accessibility of
waste products, pre-treatment and processing of waste products that could be
subjected to biofuel production. Appropriate selection of bioreactors for large-
scale production of microalgal biomass, maintenance of contamination-free medium
during the reaction, selection of superior microalgae strains and most important
continuous supply of sterile medium as well as CO, for microalgae growth are the
other aspects that need optimisations (Scott et al. 2008).

Food waste is the anon consumable source of lipids, carbohydrates, amino acids
and phosphates. On average, food waste materials contain around 30% lipid and
50% carbohydrate (Pleissner et al. 2014, 2016). The waste food can be hydrolysed
enzymatically, and the food wastes abundant in carbohydrates and lipids can be
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subjected to bio-ethanol and biodiesel production, respectively. In the past few
decades, focused research on the application of food wastes for producing biofuels
has been going on globally. Sulaiman (2014) proposed a halal biorefinery to produce
biofuels in Malaysia. Chinese Academy of Sciences reported using food waste to
produce hydrolysates for bioethanol production (Yan et al. 2011; Karmee and Lin
2014). In Europe, potato peel has been utilised to produce bioethanol using environ-
mentally benign biocatalytic methods with the involvement of liquefaction, sacchar-
ification and fermentation of peel (Arapoglou et al. 2010; Yan et al. 2011; Wang
et al. 2017). The prime drawback of pre-treatment methods of waste products
included the production of specific inhibitors for microbes that may interfere with
the processing and production of biofuels. These inhibitors are formic acid, acetic
acid, phenolic compounds, furan aldehydes, ionic lipids, and levulinic acid (Wang
et al. 2018; Zhang et al. 2016).

Recent economics estimates that the costs of biofuel production from waste are
2-3 folds more expensive than petroleum fuels on an energy-equivalence basis
(Lynch et al. 2016; Busi¢ et al. 2018). To lower the production cost of biofuel,
several challenges are to be taken into consideration while converting waste biomass
to biofuels, such as feedstock production, feedstock logistics, development of
energy-efficient technologies (pre-treatment, enzyme hydrolysis, and microbial fer-
mentation), separation of by-products (lignin and hemicelluloses), product develop-
ment, the establishment of biofuel and biochemical standards, biofuel distribution
and environmental impact minimisation. Some of the major drawbacks of
pre-treatment procedures include the generation of by-products that works as
inhibitors for microbial growth and fermentation. These compounds are formic
acid, acetic acid, and levulinic acid (Wang et al. 2018; Zhang et al. 2016). The
acetic acid in growing media potentially reduces the specific growth rate and
biomass yield of Saccharomyces cerevisiae during ethanol production waste bio-
mass (Pampulha and Loureiro-Dias 2000; Wang et al. 2018).

Similarly, phenolic compounds, furan aldehydes and ionic lipids also act as
inhibitors to S. cerevisiae by decreasing specific cell growth rate and ethanol yield
(Lin et al. 2015; Banerjee et al. 2019). All these constraints for biofuel production
from wastes require high skill in agronomy, biomass logistics, biomass conversion,
process engineering, chemistry, conversion technology, genetic engineering, micro-
bial fermentation, economics, and environmental science (Rai et al. 2020;
Kumaraswamy and Kashyap 2021). It is challenging to produce biofuel from
waste and economically expensive over fossil fuel. However, developing recombi-
nant strains through genetic engineering with high commercial potential, redefining
effective pre-treatment processes, and increased access to waste bioresources could
be a promising strategy for sustainable biofuel production.
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7.7 Conclusion and Future Prospects

Presently, developed and developing nations are encountering several challenges
pertinent to climate change, depletion of natural resources, environmental
sustainability and energy security, and all of these directly or indirectly affect the
environment. Hence, biofuels are supposed to be the most important to alleviate such
energy crises sustainably. Furthermore, several biofuels of various classes could be
produced from available indigenous resources and waste products generated from
agriculture and food processing. Biomass generated as waste after processing agri-
culture and food is a potential feedstock for biofuel production. These biomasses are
potentially converted into several biofuel products through the application of differ-
ent microbes of the different genera (bacteria, fungi, and photosynthetic microbes).
However, biofuel productions from waste products also have several constraints that
must be overcome with an integrated application of technological advancement
pertinent to strain improvement, adoption of improved protocol for pre and post-
processing of biomasses, and control of microbial inhibitors to improve the yield and
quality of biofuels. A combination of all these approaches and further researches in
the area are expected to provide remedies for the existing energy crisis due to the
depletion of non-renewable sources.
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