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Abstract 

An increase in urbanization and industrialization has led to the increased dis-
charge of wastewater, especially municipal wastewater, causing eutrophication as 
a large amount of wastewater is discharged into the water bodies without proper 
treatment. Current municipal wastewater treatment is carried out using the con-
ventional activated sludge process (CAS), where indigenous microbial consortia 
with external aeration reduce organic matter. But critical issues are associated 
with the CAS process, including high energy requirements, generation of sludge, 
and emission of a large amount of carbon dioxide. Therefore, there is a need for 
alternative strategies in order to deal with these issues. Microalgae-based waste-
water treatment process has emerged as a promising alternative technology for 
treating municipal wastewater. Microalgae offer certain advantages such as 
sequestration of atmospheric carbon dioxide, effective treatment of wastewater, 
and resource recovery in the form of microalgal biomass. The current chapter 
deals with the advancement made during these years for municipal wastewater 
treatment, including membrane technology, biofilm technology, and photo-
sequencing batch reactors. There are also certain disadvantages associated with 
microalgae-based wastewater, such as scale-up, contamination in raceway ponds, 
and high energy requirements during the harvesting and dewatering process. In 
order to recover these costs, a biorefinery approach has been proposed where the 
microalgal biomass generated during the treatment process is transformed into 
various products such as biofuel, biochemical, and bioelectricity. 
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Abbreviations 

ASP Activated sludge process 
CAS Conventional activated sludge 
CO2 Carbon dioxide 
COD Chemical oxygen demand 
DIC Dissolved inorganic carbon 
IEA International Energy Agency 
LI Light intensity 
MPBR Membrane photobioreactor 
MR Mixing rate 
N Nitrogen 
NH4 

+-N Ammonium 
O2 Oxygen 
P Phosphorus 
PBR Photobioreactor 
PO4 

3-P Phosphate 
RAB Revolving algal biofilm 
TAN Total ammonia nitrogen 
Temp. Temperature 
TKN Total kjeldahl nitrogen 
TN Total nitrogen 
TP Total phosphorus 

2.1 Introduction 

Rapid industrialization and urbanization have led to the increased exploitation of 
natural resources by releasing a large amount of wastewater and greenhouse gases 
(GHGs). The report of International Energy Agency (IEA) fuel combustion 2019 
highlights that 2.2, 4.8, and 9.8 Metric gigatons of CO2 were emitted by India, the 
United States, and China alone. The high emission of GHGs triggers climate change 
and global warming (Arun et al. 2020b). The next disadvantage of industrialization 
and urbanization is the release of different types of wastewater generated from textile 
and pharmaceutical industries, agricultural lands, domestic, and municipal wastewa-
ter (Zhang et al. 2017; Kadir et al. 2018; Rai et al., 2020; Lellis et al. 2019). The 
wastewater is rich in various types of nutrients, including both inorganic 
(macronutrients and micronutrients) and organic nutrients (carbon compounds).



When they are discharged into the freshwater sources without the proper treatment, 
causing the problem of eutrophication poses a threat to the natural ecosystem of the 
freshwater bodies (Bhatia et al. 2020). It was estimated that eutrophication causes a 
loss of two billion dollars per year as it severely affects fishing and real estate 
activities (Lavrinovičs and Juhna 2018). 
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A large portion of wastewater released every year is constituted by municipal 
wastewater generated from the urban colonies, institutional setup and small-scale 
industries (Daverey et al. 2019). The conventional treatment of municipal wastewa-
ter is carried out by the activated sludge process (ASP) mediated via the biological 
approach. In the ASP process, organic matter in the wastewater is degraded via 
indigenous consortia of microbes and O2 is supplied to them via an external aeration 
system. The microbial population in the reactor is maintained via a recycling system 
that recycles back a portion of sludge into the reactor (Daverey et al. 2019). The main 
disadvantage of the ASP process is the requirement of a high amount of energy 
(0.3–0.6 kWh/m3 ), constituting about 26% of the net cost of the treatment process 
(McCarty et al. 2011; Li  et al.  2017). The aeration process alone consumes 47–70% 
of the total energy required by the treatment process. There have been some 
advancements in the aeration process. Still, the consumption of a large amount of 
energy by the ASP process remains a major issue (Gikas 2017). Another critical 
issue of the ASP process is the disposal of a large amount of activated sludge 
generated during the process. Removal of per kg of chemical oxygen demand 
(COD) generates about 0.3–0.5 kg of dry biomass of activated sludge (Liu et al. 
2018). The sludge can be utilized in the energy recovery process, but its handling 
process, which includes thickening, dewatering, and digestion process, consumes 
about 30% of the total plant energy (Zhou et al. 2013). The third and last critical 
issue of the ASP process is releasing a large amount of CO2 during the oxidation 
process of organic matter by microbes (Singh et al. 2016). 

To resolve the issues explained above, microalgae-based treatment of municipal 
wastewater proved to be a promising technology for the advanced treatment of 
wastewater with simultaneous recovery of nutrients (Li et al. 2019; Singh and 
Mishra 2021, 2022). Microalgae are the rapidly growing photoautotrophs that utilize 
sunlight as energy and CO2 as a carbon source with the release of O2 and generate a 
large amount of biomass (Singh and Mishra 2019). Their CO2 fixation efficiency is 
10 to 50 times higher than terrestrial plants (Langley et al. 2012). In recent years they 
have been applied to treat municipal wastewater by growing them in open raceway 
ponds or closed photobioreactors (Daverey et al. 2019). The ample amount of 
inorganic nutrients such as nitrogen and phosphorus and low toxic elements in 
municipal wastewater makes it a highly suitable medium for microalgae cultivation 
(Craggs et al. 2013). Some of the advantages offered by microalgae-based wastewa-
ter treatment are given as (1) Overall wastewater treatment is reduced as microalgae 
can assimilate almost every pollutant with resource recovery; thus, there is no need 
for additional treatment; (2) the pollutant level in the treated water by microalgae has 
a  deficient level of pollutants satisfying the discharge limit criteria (Whitton et al. 
2015); (3) microalgae can efficiently grow in the municipal wastewater with or 
without the need of external nutrient supplementation (Clarens et al. 2010);



(4) when microalgae are grown in symbiosis with bacteria during the treatment 
process, they provide O2 required for oxidation of organic matters by bacteria, thus 
eliminating the need of external aeration device (Jia and Yuan 2018); (5) microalgal 
biomass generated the end of the process can be further transformed into biofuels, 
biogas, fertilizers and feedstock for animals (Raheem et al. 2015; Singh and Mishra 
2019). However, various challenges are also associated with microalgae-based 
wastewater treatment, which include contamination in open raceway ponds, scale-
up of closed photobioreactors, the significant cost involved in the harvesting and 
dewatering process, which incurs about 3–15% of the total cost of the treatment 
process (Razzak et al. 2017; Fasaei et al. 2018). This cost can be overcome by 
biorefinery or bio-circular economy approach in which a microalgae-based waste-
water treatment process is integrated with the production of energy and other 
valuable products, as explained in detail in Sect. 2.3 (Bhatia et al. 2020). 
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Therefore, the current chapter’s objective is to provide insights into the recent 
advancements in the treatment of municipal wastewater by microalgae. It further 
covers the prospective details of the biorefinery approach for decreasing the treat-
ment process cost. 

2.2 Recent Advancements in the Treatment of Municipal 
Wastewater by Microalgae 

Various advancements have been made to treat municipal wastewater by microalgae, 
including the microalgae-bacterial process, photo-sequencing batch reactor, mem-
brane and biofilm technology, and synchronization of microalgae with yeast and 
macrophytes explained in the upcoming sections. Table 2.1 represents various 
microalgal species utilized to treat municipal wastewater with the removal 
efficiencies of various pollutants and biomass concentrations. 

Figure 2.1 represents a schematic diagram for integrating conventional activated 
sludge process with microalgae technology for the treatment of municipal wastewa-
ter and simultaneous production of biomass and transforming it into biofuel, 
representing a biorefinery concept. 

2.2.1 Microalgal-Bacterial Process 

The microalgal-bacterial process is becoming an alternative method of choice for the 
treatment of municipal wastewater other than the conventional activated sludge 
process (CAS), as it demands low energy, low cost, easy operation, and the potential 
of resource recovery in the form of biomass feedstock (Mata et al. 2010; Quijano 
et al. 2017; Zhang et al. 2020a). They are a self-sustainable system with mutual 
synchronization between the microalgae photosynthesis and bacterial respiration 
processes. Microalgae feed upon the inorganic nutrients such as nitrogen and 
phosphorus present in the wastewater and assimilate the carbon dioxide generated 
during bacterial respiration, releasing oxygen. Bacteria then utilize the generated
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oxygen to oxidize and degrade organic compounds generating carbon dioxide 
(Ramanan et al. 2016). Thus, microalgae act as an aeration device, cutting off the 
need for external oxygen supply and replacing the aeration system (Jia and Yuan 
2018). Eliminating the need for external oxygen supply decreases the energy 
demand by nearly 40–60% (Gikas 2017; Luo et al. 2019). In nature, several 
micro-ecosystems have been formed by microalgae and bacteria where aggregation 
of algal cells is facilitated by specific bacterial cells (Subashchandrabose et al. 2011; 
Powell and Hill 2014). It has also been widely reported that microalgae can recover 
resources in the form of biomass which can further be processed for the production 
of biofuels, fertilizers, feedstock, and pigments (Quijano et al. 2017; Singh and 
Mishra 2019). Various wastewater treatment processes utilizing the microalgae-
bacterial process have been reported in Table 2.1. Nguyen et al. (2020) investigated 
the effect of different inoculation ratios of the microalgae and bacteria for wastewa-
ter treatment in the PBR. Inoculation ratios of 1:0 and 3:1 offered the highest 
biomass concentration, which was 1.06 and 1.12 g/L, respectively, and inoculation 
ratios of 3:1 and 1:1 showed the highest COD removal, which was in the range of 
37.5–47.5% (Nguyen et al. 2020).
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Fig. 2.1 Integration of microalgae-based treatment process with the conventional activated sludge 
process for municipal wastewater treatment. (Adapted from Daverey et al. (2019)) 

But, the commercialization of the microalgal-bacterial process is still not achiev-
able due to the long requirements of time for the reaction (Arcila and Buitrón 2017), 
poor settleability of biomass (Hu et al. 2017; Quijano et al. 2017), the requirement of 
external aeration during high pollution load (Abouhend et al. 2018), and low 
removal efficiency (RE) of the nutrients (Huang et al. 2015; Zhao et al. 2019). A



O

sludge process was developed to eliminate these limitations that utilized engineered 
microalgal-bacterial granules. The process successfully achieved high REs of 
96.84%, 92.69%, and 87.16% for ammonia, organic components, and phosphorous, 
respectively, within 6 h of operation. No external aeration was supplied to the 
process (Ji et al. 2020). They also concluded that a mutually symbiotic relationship 
occurred between the microalgae and bacteria, which was essential in obtaining the 
above results and self-sustaining the system for a longer time (Ji et al. 2020). 
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Another limitation in applying the microalgal-bacterial process was the design 
process of PBR, as the kinetics and parameters used for the ASP may not be 
applicable for the PBR (Brindley et al. 2010; Qu et al. 2020b). The reason for this 
can be the difference in the PBR’s growth and decay rate of the microalgal-bacterial 
process (Decostere et al. 2016). Therefore, a method based on the respirometry 
approach was used by Petrini et al. (2020b) to determine the kinetics of the 
microalgal-bacterial consortium treating municipal wastewater (Petrini et al. 
2020b). Respirometry is a cheap and fast method in which the process’s D  
(dissolved oxygen) concentration is continuously measured via an automated sys-
tem. After that, the DO curve is plotted from which the net Oxygen Uptake Rate 
(OUR, considered negative) of the consortium and net Oxygen Production Rate 
(OPR, considered positive) of the microalgae are calculated by the slope of the 
curve. At last, the gOPR (gross oxygen production rate) is calculated by the 
difference between OPR and OUR (Tang et al. 2014; Ippoliti et al. 2016). Based 
upon the calculation of Petrnin et al. (2020), gOPRwas found to be 9.8± 0.2 mg O2 g 
TSS-1 h-1, and this O2 was applied for the degradation of COD at the maximum rate 
of 19.3 TSS-1 h-1 (Petrini et al. 2020b). 

2.2.2 PSBR (Photo-Sequencing Batch Reactor) 

The application of the microalgal-bacterial consortium for wastewater treatment has 
been further extended in photo-sequencing batch reactors (PSBR). An ASP com-
prising of sequencing batch reactor (SBR) has been applied for the treatment of 
municipal and agro-industrial wastewater at low and medium scales 
(Sirianuntapiboon et al. 2005; Wang et al. 2011). SBR offers advantages such as 
high RE, flexible operation, and an effective control system (Dionisi et al. 2001). 
Microalgae have been introduced in the SBR process to form a synergistic 
microalgal-bacterial system to improve its potential for resource recovery. Such an 
SBR system is called PSBR (Liu et al. 2017). Foladori et al. (2018) cultivated a 
microalgal-bacteria consortium in PBR to treat municipal wastewater and also 
evaluated DO, pH, and ORP profiles. No external aeration was supplied to the 
reactor, and RE of 87 ± 5% for COD and 98 ± 2% for total kjeldahl nitrogen 
(TKN) was obtained (Foladori et al. 2018). However, it should also be noted that an 
appropriate amount of microalgae inoculum should be supplied to the reactor to 
maintain the system’s excellent performance, as the introduction of microalgae 
impacts the original microbial flora (Ye et al. 2018). When the microalgae concen-
tration is above 4.60 mg Chl/L, it will inhibit the growth of certain bacteria phylum,



including Bacteriodetes and Actinobacteria, and hamper the stable operation of 
PSBR (Ye et al. 2018). 
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2.2.3 Supplementation of External Nutrient Source 

It has been reported that low-nutrient concentration in municipal wastewater limits 
its application for microalgae cultivation (Chu et al. 1996). Leite et al. (2019) also 
reported that municipal wastewater they received from the centralized Brazilian 
system was highly diluted and not fit for microalgae cultivation both technically 
and economically (Leite et al. 2019). One of the methods applied to increase the 
nutrient concentration was the supplementation of artificial nutrient media, which 
will increase the overall production cost (Lv et al. 2010; Phukan et al. 2011; Itoiz 
et al. 2012; Lam and Lee 2013; Miriam et al. 2017). Biogas slurry can prove to be an 
alternative nutrient supplementation source instead of artificial nutrient media. It 
contains a high amount of nutrients, thus reducing nutrient limitation in municipal 
wastewater (Wang and Lan 2011). Zhou et al. (2018) cultivated Chlorella 
zofingiensis in the municipal wastewater where pig biogas slurry was supplied as 
the sole supplementation source of nutrients (Zhou et al. 2018). Their study reported 
that keeping the concentration of pig biogas slurry up to 8% in municipal wastewater 
produced significant results. REs of up to 93% for total nitrogen (TN) and 90% for 
TP were obtained with a 2.5 g/L concentration of biomass and increased lipid 
productivity by 8% compared to the BG11 medium (Zhou et al. 2018). The problem 
of nutrient limitation can also be solved by mixing municipal wastewater with 
another source of wastewater that may have a high-nutrient concentration, such as 
livestock effluent (Leite et al. 2019). Leite et al. (2019) carried out the pilot-scale 
cultivation of Chlorella sorokiniana in the flat panel PBR by mixing municipal 
wastewater with piggery wastewater. Biomass concentration reached up to 1 g/L 
with 46–56% REs for DIC, 40–60% for orthophosphate, and 100% for ammonia 
(Leite et al. 2019). 

Utilization of the tail gas of the power plant to meet the demand for inorganic 
carbon sources during the cultivation of microalgae in wastewater has gained much 
importance during these years (Packer 2009; Ho et al. 2010; Sydney et al. 2010; Yoo 
et al. 2010; Lam et al. 2012). The use of tail gas increases biomass and lipid 
productivity and is also helpful in successfully sequestering CO2 from the environ-
ment (Tu et al. 2019). During the cultivation of C. pyrenoidosa in the wastewater, 
tail gas was supplied from the power plant, which increased dry biomass weight and 
lipid productivity by 84.92% and 74.44%, respectively. Their study also suggests 
that pretreatment of tail gas by desulfurization and denitrification is also needed in 
order toxic material (Tu et al. 2019).
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2.2.4 Membrane Photobioreactor 

In the membrane photobioreactor (MPBR), a membrane made up of microfilters is 
equipped in the PBRs (Gao et al. 2014). Membrane act as a solid-liquid barrier 
during the cultivation of microalgae in semi-continuous or continuous mode. The 
filtration module eliminates the problem of a washout as microalgal cells can be 
retained for a longer duration of time with the continuous and ample supply of 
wastewater (Honda et al. 2012; Singh and Thomas 2012; Gao et al. 2014; Sun et al. 
2018). As hydraulic retention time (HRT) is increased in the MPBR, wastewater 
containing low-nutrient concentration can also be used to cultivate microalgae (Gao 
et al. 2016, 2018; Sheng et al. 2017). They also offer other advantages, such as high 
sludge concentration, high RE, and small footprint (Sun et al. 2018). Several studies 
have reported that the biomass productivity of microalgae in MPBR is higher than in 
conventional PBR (Honda et al. 2012; Gao et al. 2014, 2018). Gao et al. (2019) 
cultivated two green microalgae strains, Chlorella vulgaris and Scenedesmus 
obliquus, in MPBR using municipal wastewater having a low-nutrient concentration 
in the continuous mode (Gao et al. 2019). The result indicated that even though the 
low-nutrient medium was used for cultivation, the lipid content was increased by 
29.8% and 36.9% in C. vulgaris and S. obliquus, respectively, thus proving MPBR a 
valuable tool for cultivating microalgae in a low-nutrient medium (Gao et al. 2019). 
The application of MPBR was further extended to treat wastewater by microalgae-
bacteria consortia (Amini et al. 2020). Chlorella vulgaris and bacterial inoculum 
from activated sludge were cultivated in MPBR in semi-continuous mode. RE of 
93%, 88 ± 1%, and 84 ± 1% for COD, N-NH4 

+ , and P-PO4 
3-, respectively, were 

obtained. Also, the biomass concentration reached up to 1.96 g/L. Thus, the above 
results indicated that MPBR is useful in both semi-continuous and continuous modes 
(Amini et al. 2020). 

2.2.5 Biofilm Technology 

One of the significant problems that hinder the scale-up of the microalgae cultivation 
system is a less efficient harvesting system, as microalgal cells have low separability 
in the suspended cultures (Zhu et al. 2017a, b). To tackle this, biofilm technology has 
been developed in which the microalgal cells are grown on the carrier surface and 
can be easily separated from the effluent (Wang et al. 2017, 2018a, b). After that, 
cells are mechanically separated from the carrier surface (Wang et al. 2018a, b). 
Biofilm technology performs the wastewater treatment process more efficiently and 
economically as they possess a high mass transfer rate and high penetration effi-
ciency of light (Mantzorou and Ververidis 2019). Carriers supporting microalgal cell 
growth play an essential role in biofilm technology. Various biofilm technology that 
has been applied both at lab and pilot scale includes rotating biofilm reactors 
(Christenson and Sims 2012), algal turf scrubber (Wang et al. 2018a, b), and vertical 
biofilm reactors (Podola et al. 2017). Zhang et al. (2018) modified the traditional 
raceway pond by introducing vertical algal biofilm and accessed its efficiency for



wastewater treatment and biomass production (Zhang et al. 2018). Their results 
showed that this modified raceway pond could efficiently remove COD, TN, and TP 
at 7.52, 6.76, and 0.11 g/m2 /day removal rates. Moreover, lipid productivity reached 
7.47–10.10 tonnes/hectare/year (Zhang et al. 2018). In another study, revolving algal 
biofilm (RAB) reactors were used to treat wastewater generated after sludge sedi-
mentation at pilot scale mode. RE of 80% and 87% were obtained for TP and TKN, 
respectively, while 100% RE was obtained for NH4 

+-N and PO4 
3--P (Zhao et al. 

2018). 
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But the reported carriers used for the biofilm technology are expensive in nature. 
Therefore, the study has shifted towards cheap carriers such as natural materials that 
include loofah sponge (Zhang et al. 2019), filter papers (Aljerf 2018), jute (Cao et al. 
2013), linen (Kesaano and Sims 2014), etc. One of the added advantages of these 
materials is that they have micropores and various functional groups on their surface 
that function as adsorbent surfaces and are involved in the nutrient removal process 
with the microalgal cells (Riahi et al. 2017). Zhang et al. (2020b) designed a PBR in 
which pine sawdust was used as a biofilm carrier and accessed its efficiency for 
treating both synthetic and real wastewater (Zhang et al. 2020b). Their results 
showed that RE of 95.54% for TN and 96.10% for NH4-N

+ was obtained in real 
wastewater and biomass productivity reached up to 8.10 g/m2 /day. Pine dust acted as 
a carrier for algal cells and performed the role of adsorbent as it removed 23.60% of 
COD, 37.30% of TN, 41.08% of NH4 

+-N, and 17.07% of total phosphorus 
(TP) (Zhang et al. 2020b). 

2.2.6 Synchronization of Microalgae with Other Species 

Earlier in Sect. 2.1, the application of the microalgal-bacterial process has been 
discussed in detail as several researchers have focused on its application for waste-
water treatment. Microalgae have also been used in synchronization with other 
species for wastewater treatment. Some of them have been explained in the upcom-
ing sections. 

2.2.6.1 Microalgae-Yeast Process 
Yeast species are widely used in the baking, brewing, and pharmaceutical industries. 
But its application for wastewater treatment has not been thoroughly evaluated due 
to the assumption that it will not grow to its full potential in the non-sterile environ-
ment of wastewater (Walls et al. 2019). But the P and N content in the yeast cells are 
3–5% and 10%, respectively, higher than the content in microalgal cells (0.87%: P; 
6%: N) (Walker 1998; Dalrymple et al. 2013). Thus, yeast can remove the nutrients 
from the wastewater at a higher RE. Yeast also has good settling properties that can 
decrease the cost of the harvesting system (Walls et al. 2019). Therefore, the 
application of microalgae-yeast cells for wastewater emerged as a hot research 
topic during these years. The synergetic relationship between microalgae and yeast 
occurs in the same way as the microalgae-bacterial process (i.e., O2 generated during 
the photosynthetic process of microalgae used by yeast for respiration in turn



generates CO2). Yeast cells can also trap the microalgal cells during harvesting, thus 
decreasing the cost of harvesting and dewatering. Walls et al. (2019) cultivated the 
Scenedesmus sp. and wild yeast in co-culture mode in a heterotrophic bioreactor, and 
they showed that this co-culture was efficient in 100% total ammonia nitrogen 
(TAN), 96% nitrate, and 93% orthophosphate. The biomass concentration of 
Scenedesmus sp. and yeast reached up to 0.98 ± 0.10 g/L and 4.2 ± 0.1 g/L, 
respectively (Walls et al. 2019). Yeast also offers the added advantage that it can 
be applied for aerobic fermentation for bioethanol production. 
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2.2.6.2 Microalgae-Macrophytes Process 
Lemna minor belongs to the family of Lemnaceace, characterized as floating 
microphyte and smallest angiosperms having a rapid multiplication rate (Ekperusi 
et al. 2019). It is usually applied at the tertiary stage of the wastewater treatment 
process to treat effluent generated from the secondary treatment plant, mainly to 
remove toxic micropollutants and biomass production (Gatidou et al. 2017). It has 
also been applied for nitrogen removal, showing a high nitrogen uptake rate 
(Toyama et al. 2018). Recently, the co-culture of microalgae and macrophytes 
gained much importance for treating municipal wastewater by combining their 
synergistic effects. Kotoula et al. (2020) cultivated Chlorella sorokiniana UTEX 
1230, Lemna minor in a SBR, and RE was 99% for COD and 88% for TKN, 
respectively 90% for NH4 

+-N, and 91% for PO4 
3--P. C. sorokiniana was able to 

completely remove the COD while partially removing N and P. On the other hand, 
Lemna minor mainly contributed to the removal of nitrogen (Kotoula et al. 2020). 

2.3 Microalgal Biorefinery Perception 

As discussed earlier, high energy and cost are required during the microalgae-based 
wastewater treatment process, especially during the harvesting and dewatering 
process. The microalgae biorefinery approach (Fig. 2.2) has been proposed to 
compensate for the cost, where the microalgal biomass is transformed into various 
liquid and gaseous fuels, as explained below. 

2.3.1 Liquid Biofuels 

The demand for sustainable energy sources is increasing daily due to the increment 
of fuel load for the community, global warming effects, and decreasing petroleum 
reserves. In this context, liquid biofuels play a crucial role because they can put back 
fossil fuels and diminish carbon dioxide emissions (Williams and Laurens 2010). 
Some examples of liquid biofuels are bioethanol and biobutanol, which are fermen-
tative biofuel that is derived from carbohydrates present in microalgal biomass.
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Fig. 2.2 Integration of microalgae-based wastewater treatment process with biorefinery concept 
(Arun et al. 2020b) 

2.3.1.1 Bio-Oil 
Bio-oil is obtained by pyrolysis and hydrothermal liquefaction (HTL) of biomass 
which refers to thermochemical conversion that leads to the polymerization of 
organic matter in an anaerobic environment (Sun et al. 2020). Initial steps of biomass 
degradation include degrading it into smaller compounds either individually or in 
combination with dehydrogenation, dehydration, decarboxylation, and deoxygen-
ation. The obtained molecules are unstable and highly reactive, leading to cycliza-
tion, condensation, and polymerization, resulting in oily compounds and a great 
variety of molecular weight distribution (Arun et al. 2020b). Yang et al. (2007) noted 
that the quality of Bio-oil depends on the constituents of plant biomass like cellulose, 
hemicellulose, and lignin. It was found that cellulose, hemicellulose, and lignin 
degradation occurred at a temperature range of 220–315 °C, 314–400 °C, and 
160–900 °C, respectively, and generated high solid residue (40%) (Yadav et al. 
2020; Yang et al. 2007). 

2.3.1.2 Biodiesel 
In 1900, Rudolf Diesel initiated the production of methyl esters (commonly known 
as diesel) involving crops (Ramadhas et al. 2005). He considered it biodegradable, 
sustainable, and non-lethal (Demirbas and Fatih Demirbas 2011). Biodiesel consists 
of an extended chain of methyl ester and is renewable, non-hazardous, and 
eco-friendly fuel produced by oxidation and disintegration of biomass. Microalgae 
have been accepted as a good source of biodiesel production because of their high 
lipid content (50–70%) and multiplication rate (Satputaley et al. 2017). Biodiesel is 
highly viscous, due to which it accumulates on the fuel injector of the engines.



Processes like pyrolysis, dilution, and emulsification decrease viscosity (Marchetti 
et al. 2007). 
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Transesterification is a process through which triglycerides are converted into 
biodegradable, low atomic weight fatty acid methyl esters (FAMS) compounds 
suitable for engines. In the presence of methanol or ethanol, the rate of reaction is 
increased. Biodiesel production depends on the temperature, reaction time, catalyst 
load, and alcohol concentration (DuPont 2013). It was reported that 
transesterification, in combination with ultrasonication, reduces the reaction time 
that results in decreased working costs (DuPont 2013). 

2.3.1.3 Bioethanol 
It is the preferable liquid biofuel processed from the saccharification of 
carbohydrates and then alcohol fermentation (Ho et al. 2012). In alcohol fermenta-
tion, the components like starch, sugar, and cellulose present in biomass are 
converted into the fermentative fuel through the metabolic process of fungi, bacteria, 
or yeast in anaerobic conditions (Costa and de Morais 2011; Yadav et al., 2020). The 
United States Environmental Protection Agency reported that biofuels are receiving 
more attention all over the globe, in which bio-ethanol was the preferable biofuel in 
the last 10 years (Madakka et al. 2020). For the industrial fermentation process, 
Saccharomyces cerevisiae is the preferable strain (Suali and Sarbatly 2012). 
Through the glycolytic pathway, sugar converts into pyruvate followed by acetalde-
hyde synthesis, and carbon dioxide is liberated as a by-product. The produced 
acetaldehyde is then reduced to synthesize ethanol (Costa et al. 2015). In a study, 
it was mentioned that glucose resulted in ethanol (0.51 kg) and CO2 (0.49 kg) per kg 
of substrate used (Hamed 2015). Another study reported that microalgae like 
Chlorella vulgaris yield around 65% ethanol converted from 37% starch content 
per dry cell weight (Brennan and Owende 2010). The anaerobic fermentation 
process for bioethanol production for algal biomass is a simple and easy process 
compared to other fermentative techniques. 

2.3.1.4 Biobutanol 
In Liquid biofuels, biobutanol provides a high energy profile and may also bring 
back bioethanol in the future (Vivek et al. 2019). Yeast like Clostridium 
acetobutylicum can digest biomass feedstock (cellulose and starch) and produce 
biobutanol. Along with biobutanol, they also produce some valuable by-products 
like ethanol, acetone, and organic acids. Under favourable fermentation conditions, 
the maximum yield of biobutanol was 0.41 g/g of glucose; unexpectedly, it is less 
than bioethanol yield (0.5 g/g of glucose) (Chen et al. 2013). Biobutanol production 
is increased by adding butyrate into acetone-butanol-ethanol (ABE) fermentation 
because it enhances the metabolic route from acidogenesis to the solvent genesis 
acetoacetyl-CoA is transformed to butyl Co-A instead of acetoacetate (Kao et al. 
2013).
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2.3.2 Gaseous Biofuels 

2.3.2.1 Biohydrogen 
Biohydrogen production is achieved by conventional and anaerobic operations like 
reverse water gas shift reaction, gasification, water electrolysis, and steam methane 
reforming (Xue et al. 2013). In the ABE fermentation process, biohydrogen synthe-
sis occurs synchronously with bioethanol and biobutanol. Photosynthetic 
microorganisms like Rhodobacter sphaeroides and Rhodopseudomonas palustris 
utilize organic matter present in microalgal biomass resulting in hydrogen and CO2 

generation (Lam and Lee 2011). In recent times hydrothermal gasification is the 
preferable technique for hydrogen production. Ma et al. (2017) reported that in the 
presence of a catalyst like alkaline biochar, gasification of biomass results in 
hydrogen yield of 89.13% (Ma et al. 2017). The gasification route was difficult to 
clear, but it was reported that it goes through several reactions like water gas shift, 
methanation, pyrolysis, steam reforming, and hydrolysis (Vo et al. 2020). 

Water‐gas shift reaction : COþ H2O 
$ CO2 þ H2 ΔH = - 41KJ=molð 2:1Þ 

Methanation reaction : CO 3H2 CH4 H2O 2:2 

Steam reforming reaction : CHXOy þ 1- yð ÞH2O→CO 

1- y 
x 
2 

H2 2:3 

2.3.2.2 Biomethane 
Biomethane is produced by the digestion of biomass anaerobically. In anaerobic 
digestion, organic matter is converted into biogas, CO2, methane (CH4), and trace 
gases. The three steps involved in anaerobic digestion activity are hydrolysis, 
fermentation, and methanogenesis (Pragya et al. 2013). 

Complex organic matter 

Fatty acids, Proteinð Þ  → 
Soluble organicmatter Hydrolysisð Þ  

Alcohol, volatile acidsð  
ð2:4Þ 

Alcohols, volatile acids→Hydrogen gas, Acetic acid Acetogenesis 2:5 

Acetic acid→CH4, CO2 Methanogenesis 2:6 

2.3.3 Bioelectricity 

In recent years, microbial fuel cells (MFCs) from algal biomass have been a novel 
technology and attracting attention for bioelectricity generation (Chandrasekhar and



Venkata Mohan 2014). In MFCs, microorganisms are actively involved in bioelec-
tricity generation; hence, they are referred to as a bioelectrochemical system (Deval 
et al. 2017). In microalgal MFCs, CO2 is consumed by the photosynthesis process 
that results in organic biomass synthesis with simultaneous O2 liberation. This 
liberated O2 acts as an electron acceptor throughout the metabolism and ends up in 
the current synthesis. In MFCs, photosynthesis was also reported to be directly 
related to the light source intensity and cell density (Lee et al. 2015; Jadhav et al. 
2019). 
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2.4 Environmental Effect of Bio-Refinery Products 

2.4.1 Carbon Footprinting 

In the past century, the electrical energy and transportation zone restructured society 
by providing motorized movement to non-professional. It was reported that trans-
portation (14%) and the electricity sector (25%) is responsible for GHG emission 
globally. Biofuels are eco-friendly as they have reduced the release of GHGs and 
CO2 emissions. The car’s lifespan determines the ecological impact of an automo-
bile from manufacture to the level of its use. Well-to-Wheel (WTW) practice was 
developed to check the efficiency of vehicles. Basically, this WTW technique was 
separated into two steps, one is Well to Tank (WTT), and another is Tank to Wheel 
(TTW) (Strecker et al. 2014). The equal WTW technique calculates the carbon 
footprint estimation for electric vehicles. It was also reported that the lifetime of 
vehicles and carbon footprinting is affected by riding behaviour, use of gadgets (like 
air-conditioning, heating gadgets, defroster, etc.), and climate condition (Badin et al. 
2013). 

2.4.2 Negative Emission 

The title “carbon negative” refers to the removal of carbon dioxide out of the 
common (natural) carbon cycle that includes carbon capture and segregation 
(CCS) through deposited biochar in soil and direct release of carbon dioxide in the 
wastewater for biomass farming. Here the released carbon dioxide will either be 
combined with the environment or treated as unfavourable depending on carbona-
ceous raw materials and the final target of carbon dioxide. Using 1 kg of microalgae 
biomass, approximately 2 kg (1.83 kg) of CO2 gas can be isolated from the 
ecosystem (Rosenberg et al. 2011). This isolated carbon dioxide was transformed 
into gaseous and liquid fuels through thermochemical and biological processes. 
Recently, it was reported that through the gasification process, 33.5% of carbon 
dioxide is obtained from 15 g of S. obliquus biomass used (Arun et al. 2020a). 
Another study also reported that from 15 g of A. fragilissima, 34.1% of carbon 
dioxide and 29.5% of carbon dioxide were obtained by the HTL process and 
pyrolysis process, respectively. For microalgal biomass, the flow of carbon dioxide



was referred to as “carbon negative” because of its removal from the environment 
(Arun et al. 2020c). 
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2.5 Conclusion 

The current chapter concludes that microalgae present a promising approach for 
treating municipal wastewater, achieving high REs of up to 90%. Various 
advancements have been made in the microalgae-based wastewater treatment pro-
cess, such as synchronizing microalgae with bacteria, yeast, and other species, 
PSBR, biofilm, and membrane technology. Out of all, the microalgae-bacterial 
process in the PSBR offers a cost-effective solution with high RE. Biofilm and 
membrane technology are also effective solutions, but the cost involved in these 
technologies is high, and, in the future, they may be a feasible solution after the 
decrease in cost. Integrating the biorefinery concept with the wastewater treatment 
process can decrease the cost of the process up to a suitable extent as the microalgal 
biomass can be transformed into various liquid and gaseous fuels and other 
by-products. This integration also decreases the net carbon emission in the atmo-
sphere, decreasing the effect of global warming. 
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