
Robot-Based Auto-labeling System
for 6D Pose Estimation

Hsien-I. Lin and Jun-Shiang Chang

Abstract 6D object pose estimation is an ongoing research area in the field of
computer vision. Many existing methods rely on supervised deep learning models
which require multiple accurate 6D pose annotations to predict object poses.
However, labeling the 6D pose is complex and time-consuming in traditional
methods. In this study, we propose a robotic-arm-based 6D object pose auto-labeling
approach which has limited human interaction involved. Translations and rotations
of the object in the camera coordinate system can be calculated using a sequence of
known robot poses and the transformation between the camera and the robot. We
also implemented our custom dataset generated by the auto-labeling system in the
existing 6D object pose estimation approach. Evaluation results show that the model
can recognize our own test dataset and attempted 90% accuracy using ADD metric
with 0.05 threshold.

Keywords 6D object pose estimation · Pose annotation · Robotic-arm-based ·
Annotations · Auto-labeling

1 Introduction

Estimating object pose is an important technique that provides 3D information for
the system to make further decisions. It can be implemented in various applications
in industries such as robot manipulation tasks, autonomous driving, and augmented
reality. In recent years, many deep learning approaches have provided end-to-end
object pose estimation solutions that can handle objects with less texture, symmetric,

H.-I. Lin (B)
Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University,
Hsinchu, Taiwan
e-mail: sofin@nycu.edu.tw

J.-S. Chang
Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei,
Taiwan

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
X.-S. Yang et al. (eds.), Proceedings of Eighth International Congress on Information
and Communication Technology, Lecture Notes in Networks and Systems 695,
https://doi.org/10.1007/978-981-99-3043-2_10

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3043-2_10&domain=pdf
mailto:sofin@nycu.edu.tw
https://doi.org/10.1007/978-981-99-3043-2_10

124 H.-I. Lin and J.-S. Chang

and irregular shapes. Many researchers established various 6D object pose training
datasets such as Linemod, T-less, and YCB-V [1], which were all collected in the Bop
challenge benchmark [2]. These datasets allow users to evaluate their pose estimation
model and compare it with others methods with the same standard.

Despite having those open source datasets, users in industries need to create their
custom datasets to implement object pose estimation models on the new object.
However, in traditional methods [3, 4], complex mechanism designs and addi-
tional markers are required to generate different camera viewpoints and mark the
object’s pose in camera frames. To address these problems, [5, 6] proposed simu-
lation methods to create a synthetic dataset for training. In spite of the help of 3D
simulators, high-quality mesh models are demanded to create realistic simulation
photos. Moreover, the colors of the object and shadows would differ from the actual
scenes captured using the camera due to the different light positions.

To generate object pose annotations more conveniently, in a relevant study that
a depth camera was mounted on an industrial robot end-effector to autonomously
capture RGB-D images from numerous perspectives. The robot was operated to push
objects in the real world to change the object’s orientation and collect training data
continuously. While in this method, the pre-trained model was demanded to detect
the object in the beginning. In recent, self-supervised 6D pose estimation methods
[7, 8] were proposed to overcome the difficulty of acquiring real pose annotations.
With the collections of object 6D pose datasets, several object pose estimations can
be implemented. In [9, 10], the estimation is done only from a single RGB image.
6D pose problems can be addressed by adding depth information in the source, as
presented in [11], which may increase the computation cost and equipment level.

The objective of this research is to develop a novel robot-arm-based 6D object
pose auto-labeling approach. The system has limited human interaction involved
and can be easily operated by users without prior knowledge. Object poses in the
camera coordinate system are automatically calculated according to a sequence of
known robot poses and the predefined transformation from the camera to the robot. In
addition, the system imports object CAD models to create segmentation masks simul-
taneously. We also implemented the dataset generated by the auto-labeling system
in the existing 6D object pose estimation deep learning model. The proposed system
can be applied in factories equipped with robotic arms. Automatically collecting
training data for AI models drastically reduces the data labeling time which was
conducted by human in tradition.

Robot-Based Auto-labeling System for 6D Pose Estimation 125

Fig. 1 System architecture

2 Methodology

2.1 System Overview

The proposed auto-labeling system employs a 6-DoF industrial robotic arm and a
camera in this study. The robotic arm was required to move the object mounting
on the end-effector, while the camera helped to collect the image of the object.
Figure 1 shows the architecture of the auto-labeling system. The robot of the auto-
labeling system is assisted by the Yaskawa GP7, which is used to rotate the object
and provide known robot poses for inferring ground truth object poses. We used a
laptop to communicate with the camera and control the robot through Ethernet. The
database saved all the training images and corresponding annotations.

2.2 Hand-Eye Calibration

We conducted the eye-to-hand calibration to know the transformation from the robot
to the camera. We prepared the checkerboard and attached it to the robot end-effector.
We collected calibration data by moving the robot in several different poses and

126 H.-I. Lin and J.-S. Chang

recorded images with corresponding robot coordinates at the same time. The cali-
bration process comprises the computation of extrinsic and intrinsic parameters. The
extrinsic parameters represent a transformation from the checkerboard to the camera.
The intrinsic parameters represent a projective transformation from the 3D camera
coordinate into the 2D image coordinates.

It is explained that the transformation matrix from camera to robot base (B CT) can
be solved through the mathematical function, as in Eqs. (1) and (2). The calibration
toolbox loads images and extracts grid corners of each image, and the transformation
from the checkerboard to the camera (C CbT) is calculated with the known grid size. We
can acquire the robot end-effector pose relative to the robot base from the controller
and convert it to the transformation matrix

(
E
BT

)
by following z–y–x Euler angle

rotation. The calibration procedure is repeated until the minimum error value is
obtained.

E
B1
T B1

C1
T C1

CbT = E B2
T B2

C2
T C2

CbT (1)

E
B2
T −1E

B1
T B1

C1
T = B2

C2
T C2

CbT
C1
CbT

−1 (2)

2.3 Object 6D Pose Computation

We annotate the object pose in the first image with the 6D object pose annotation
toolbox, which is an online open source [12]. In this step, we manually align the 3D
mesh model to the object in the 2D picture by rotating and moving the object mesh
model along the x–y–z-axis. The object 3D mesh model is projected onto the image
with intrinsic parameters to visualize the alignment result, as shown in Fig. 2. After
the annotation process, the transformation matrix from the object to the camera (C OT)
will be recorded, including the translation and the rotation part.

With the hand-eye transformation matrix computed in the preparation step and the
transformation matrix from object to camera frame in the first image annotated using
the toolbox, the transformation from object to robot end-effector can be computed
using Eq. (3) and used to calculate object poses. The object is fixed on the robot
end-effector, which will not be moved during the data collection. The transformation
between the object and end-effector, denoted as E OT , remains the same and only needs
to be calculated once. With the known camera-robot transformation, combined with
a sequence of recorded robot poses, the object 6D pose in each image can be solved
by following Eq. (4). One concern is that the accuracy of the annotations relies on
the quality of the first manual annotation to some degree.

E
OT =

(
C
BT

B
ET

)−1C
OT (3)

Robot-Based Auto-labeling System for 6D Pose Estimation 127

Fig. 2 6D pose annotation tool

C
OT = C B T

B
ET

E
O T (4)

2.4 Projection of 3D Mesh Model on 2D Image

The purpose of this process is to create binary masks of the object. The object mesh
model is required in this approach which contains 3D points of the object surface.
After the object pose in the camera coordinate system is calculated, the mesh model
will be rotated and translated within the 3D space according to the pose calculated in
the previous step. The projection of each 3D point of the object in a 2D image plane
can be computed using the triangulation method (Fig. 3).

In this process, camera intrinsic parameters are involved, which contain the camera
focal length, and the optical center. In Eq. (5) below, Xc, Yc, and Zc are 3D points of
the object represented in the camera coordinate system. fx , fy are focal lengths in
pixels representing the distance from the camera frame’s origin to the image sensor
plane. cx , cy are optical centers in the image sensor plane represented in pixels.
The computation in Eq. (6) yields the 2D pixel coordinate (u, v) projected from 3D
points. In this procedure, segmentation masks (Fig. 4) and the object 2D bounding
box location are recorded, which can be used to train an object detector or instance
segmentation model.

x ′ =
Xc

Zc
, y′ =

Yc
Zc

(5)

128 H.-I. Lin and J.-S. Chang

Fig. 3 3D mesh projection illustration

⎡

⎣
u
v

1

⎤

⎦ =

⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦

⎡

⎣
x ′

y′

1

⎤

⎦ (6)

3 Experiment

3.1 Robot Movement

A sequence of robot poses was created before collecting the object pose dataset. We
represented the target robot pose in motor pulse value instead of Cartesian represen-
tation. Pulse value directly describes the joint movement, which is more intuitive.
We created different robot poses by adjusting the pulse value of the 4th, 5th, and
6th axes computed within certain ranges and followed specific intervals, as shown in
Table 1. We used three layers of loop function with 4th-axis on the top, 5th-axis in
the middle, and 6th-axis in the inner to create a list of pulse sets. Figure 5 illustrates
the moving direction of each joint, highlighted in red.

Robot-Based Auto-labeling System for 6D Pose Estimation 129

Fig. 4 Segmentation mask created by 3D mesh projection

Table 1 Rotation range and
interval of axes Axis Min value Max value Interval

4th axis (R) −40,000 40,000 4,000

5th axis (B) −40,000 60,000 4,000

6th axis (T) 0 100,000 10,000

3.2 Training Data Collecting

Figure 6 shows the environment setup of the system. The camera was fixed in front of
the robotic arm to capture the images of the object. The target object was attached to
the robot end-effector. The robotic arm was operated to move the object to generate
diverse poses of the object in 3D space as comprehensively as possible. The test object
in this study is a jig used in the factory. The 3D model of the object is pre-designed,
as shown in Fig. 7.

Figure 8 shows the data collection process. The PC sends a move instruction
command to move the robot and capture an image with a corresponding robot pose
when the robot arrives at the target position. The acquired robot pose is the input
in (4) to compute the object’s pose. With the object pose, the segmentation mask
is created by 3D mesh model projection. We save the transformation matrix from
object to camera, object binary masks, and images into the training dataset.

130 H.-I. Lin and J.-S. Chang

Fig. 5 Illustration of robot movement

Fig. 6 Environment setup

Robot-Based Auto-labeling System for 6D Pose Estimation 131

(a) (b)

Fig. 7 a 3D mesh model of the object; b The actual 3D print object

Fig. 8 Data collection process

Figure 9 shows the visualization of the front 800 object poses in the training dataset
we collected. We transferred the object pose to camera views relative to the coordinate
system of the object. The coordinate frame on the top of the object represents the
camera coordinate system which contains the x-axis in green, y-axis in red, and the
z-axis in blue. Since the robot movement was regular, relative camera views were
uniformly distributed over the top of the object. We collected 3000 training data
within 1 h with no humans involved.

132 H.-I. Lin and J.-S. Chang

Fig. 9 Visualization of relative camera view

3.3 Object Pose Estimation Model

We implemented our custom dataset in a state-of-the-art two-stage object pose esti-
mation method, Pixel-wise Voting Network [10], which predicts 2D object key points
in images and computes the object pose through 2D-3D correspondences with a PnP
algorithm. We split our dataset into two parts, 2,400 images for training and 600
images for testing, which were randomly selected from the dataset. We trained the
key points detection network through 240 epochs.

We apply ADD metric in the evaluation which calculates the average distance
between two converted 3D model points using the predicted rotation R̃ and translation
T̃ and ground truth rotation R and translation T :

ADD =
1

m

∑

x∈M

∥∥∥(Rx + T) −
(
R̃x + T̃

)∥∥∥, (7)

where M denotes the set of 3D model points and m is the number of points. It is
claimed that the predicted pose is correct when the distance is less than 10% of the
model’s diameter. For symmetric objects, ADD-S metric [40] was applied, where
the average distance is calculated based on the closest point distance in a 3D point
set:

Robot-Based Auto-labeling System for 6D Pose Estimation 133

Table 2 ADD result in
different threshold values add threshold add metric

0.1 0.9983

0.05 0.9

0.04 0.7983

0.03 0.6533

Fig. 10 A 6D pose estimation result

ADD - S =
1

m

∑

x1∈M
min
x2∈M

∥
∥∥(Rx1 + T) −

(
R̃x2 + T̃

)∥
∥∥. (8)

The result in Table 2 shows that even we decrease the threshold value to stricter
conditions, over 90% of predictions meet the grasping condition. In this case, the
threshold to the real distance is around 8 mm. Figure 10 shows the visualization
results of two test images, where the green line represents the ground truth and the
blue one is the prediction.

4 Conclusion and Future Works

The experiment in this study shows that the proposed object pose annotation system
can automatically generate sufficient amounts of training data, including segmenta-
tion labels and object poses with respect to the camera frame. Although the anno-
tation process still requires one manual labeling data, the rest of the collected data
are automatically annotated using the known robot pose. It drastically reduces the
data labeling time, which was performed by humans in tradition. The custom dataset
generated by the auto-labeling system has been tested in existing pose estimation
deep learning models. In the future, we will verify the pose estimation results in the
real grasping scenario to demonstrate the feasibility of our training procedure. We
also will discuss more methods to increase the generalization ability of the 6D pose
estimation model in the aspect of data collection. In addition, data augmentation

134 H.-I. Lin and J.-S. Chang

can be implemented in training datasets, and we can compare the performance of
different models.

References

1. Xiang Y, Schmidt T, Narayanan N, Fox D (2018) Posecnn: a convolutional neural network for
6D object pose estimation in cluttered scenes. In: Robotics: science and systems (RSS)

2. Hodan T et al (2018) BOP: benchmark for 6D object pose estimation. In: European conference
on computer vision (ECCV), pp 19–34

3. Singh A, Sha J, Narayan KS, Achim T, Abbeel P (2014) BigBIRD: a large-scale 3D database of
object instances. In: International conference on robotics and automation (ICRA), pp 509–516

4. Calli B, Singh A, Walsman A, Srinivasa S, Abbeel P, Dollar AM (2015) The YCB object
and model set: towards common benchmarks for manipulation research. In: International
conference on advanced robotics (ICAR), pp 510–517

5. Schwarz M, Behnke S (2020) Stillleben: realistic scene synthesis for deep learning in robotics.
In: IEEE international conference on robotics and automation (ICRA), pp 10502–10508

6. Periyasamy AS, Schwarz M, Behnke S (2021) SynPick: a dataset for dynamic bin picking
scene understanding. In 17th international conference on automation science and engineering
(CASE), pp 488–493

7. Wang G, Manhardt F, Shao J, Ji X, Navab N, Tombari F (2020) Self6d: self-supervised monoc-
ular 6D object pose estimation. In: European conference on computer vision, pp 108–125.
Springer, Cham

8. Wang G, Manhardt F, Liu X, Ji X, Tombari F (2021) Occlusion-aware self-supervised
monocular 6D object pose estimation. IEEE Trans Pattern Anal Mach Intell

9. Kehl W, Manhardt F, Tombari F, Ilic S, Navab N (2017) SSD-6D: Making RGB-based 3D
detection and 6D pose estimation great again. In: International conference on computer vision
(ICCV), pp 1530–1538

10. Peng S, Zhou X, Liu Y, Lin H, Huang Q, Bao H (2022) PVNet: pixel-wise voting network for
6DoF object pose estimation. IEEE Trans Pattern Anal Mach Intell 44(6):3212–3223

11. Wang C et al (2019) DenseFusion: 6D object pose estimation by iterative dense fusion. In:
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 3338–3347

12. Blume F, 6D pose annotation tool (6D-PAT), https://github.com/florianblume/6d-pat. Last
accessed 11 Oct 2022

https://github.com/florianblume/6d-pat

	 Robot-Based Auto-labeling System for 6D Pose Estimation
	1 Introduction
	2 Methodology
	2.1 System Overview
	2.2 Hand-Eye Calibration
	2.3 Object 6D Pose Computation
	2.4 Projection of 3D Mesh Model on 2D Image

	3 Experiment
	3.1 Robot Movement
	3.2 Training Data Collecting
	3.3 Object Pose Estimation Model

	4 Conclusion and Future Works
	References

