
Accelerating Finite Element Assembly
on a GPU

Utpal Kiran, Sachin S. Gautam, and Deepak Sharma

Abstract In this paper, a parallel strategy for assembly of finite element matrices on
graphics processing unit (GPU) is presented. Considering the limited memory size of
a GPU, the proposed strategy doesn’t store the elemental matrices into memory but
performs on-the-fly computation and stores the data directly into a global stiffness
matrix, reducing memory requirement and preventing overhead due to a separate
assembly step. The global stiffness matrix is stored in compressed sparse row (CSR)
storage format, commonly used by GPU-accelerated linear solver libraries. However,
the assembly of elemental matrices directly into a sparse storage format requires
prior knowledge of locations of nonzeros. The current work presents an efficient
strategy to pre-compute indices for assembly into CSR sparse storage format. The
proposed strategy has been implemented on both CPU and GPU. The performance
characteristic of the proposed finite element solver is measured by solving large-
scale three-dimensional (3D) elasticity problem involving a maximum of 4.7 million
degrees of freedom (DOFs). A comparison is made with the standard assembly
implementation in Eigen C++ library, which first stores the nonzero values in the
form of triplets and then assembles into CSR sparse format. For the finest mesh
with 4.7 million DOFs, the proposed CPU-based assembly strategy achieves 9.3×
speedup over Eigen library. The computation of indices for assembly into CSR format
takes 15.7 s on CPU and 2.4 s on GPU for 4.7 million DOFs. The computation of
elemental matrices and their assembly, implemented on GPU as a single compute
kernel, is found to be up to 24.3× faster than optimized CPU implementation. In
terms of wall-clock time, the GPU-accelerated finite element solver is found to have
up to 4× speedup over CPU solver.

U. Kiran · S. S. Gautam · D. Sharma (B)
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati,
Assam 781039, India
e-mail: dsharma@iitg.ac.in

U. Kiran
e-mail: ukiran@iitg.ac.in

S. S. Gautam
e-mail: ssg@iitg.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Sharma et al. (eds.), Advances in Engineering Design, Lecture Notes in Mechanical
Engineering, https://doi.org/10.1007/978-981-99-3033-3_4

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3033-3_4&domain=pdf
mailto:dsharma@iitg.ac.in
mailto:ukiran@iitg.ac.in
mailto:ssg@iitg.ac.in
https://doi.org/10.1007/978-981-99-3033-3_4

32 U. Kiran et al.

Keywords Finite element method · Parallel computing · Sparse matrix assembly ·
GPU

1 Introduction

Finite element method (FEM) is a popular numerical approach for finding approx-
imate solutions to a wide range of scientific problems. Originally, developed for
structural mechanics problem, FEM has spread to almost every discipline of engi-
neering, including aerospace, bio-mechanics, fluid mechanics, electromagnetics and
weather prediction [1]. However, numerical procedure to obtain solutions with FEM
is computationally expensive. Depending on the nature of the problem, the time
spent in FEM simulation might vary from hours to months. As the computational
power of computer processors has increased in recent times, there is an increasing
interest in performing realistic simulation with high accuracy. Therefore, it becomes
extremely important to address the issue of high simulation time associated with the
FEM. Parallel computers are often employed to handle the high computation cost
associated with FEM-based simulation. A recently developed hardware to perform
parallel computing is GPU. The hardware like GPUs has become quite popular due
to high computational power, massive parallelism and high memory bandwidth. The
current work attempts to find an efficient strategy to implement FEM on a GPU.

FEM solver consists of three expensive steps: computation of the elemental
matrices, assembly of global stiffness matrix and solution of a system of linear
equations given by the global stiffness matrix. Among these, the solution of the
system of equations is often the most time-consuming step in FEM. Consequently,
GPU implementations of linear solvers have been studied the most [2–5]. The over-
head in computation of elemental matrices and their assembly can be significantly
high for large-scale problems involving complex differential operators and higher-
order finite elements. In nonlinear problems, the computation of elemental matrices
and assembly is required multiple times, and therefore, it can contribute to high
simulation timings [6].

The global stiffness matrix obtained in FEM is sparse as elements are locally
connected to each other in discretized domain. The sparse matrix contains a mix of
zero and nonzero values. Since zero values are not useful for computation, only
nonzero values are stored in memory. For this purpose, different sparse storage
formats like coordinate format (COO), ELLPACK format (ELL), CSR, etc. [7] have
been used in the past implying different levels of memory utilization. However,
working with a sparse storage format is not a trivial task as each format introduces a
unique data structure, which might not be efficient for other computational steps of
FEM. The assembly into global stiffness matrix must take into account the data struc-
ture of underlying sparse storage format and accordingly adopt an efficient strategy.
The most popular way of constructing a sparse matrix in FEM is a two-step proce-
dure. The first step assembles the elemental contribution in COO format where three
arrays are used to store nonzero values, row indices and column indices of a matrix.

Accelerating Finite Element Assembly on a GPU 33

However, the value array usually contains multiple entries for the same values of
row and column indices. In second step, each of the arrays are sorted and entries
having repeated values in row and column arrays are consolidated. The global stiff-
ness matrix obtained in COO format can now be converted into any other sparse
format, if required. This approach works well for CPU and has been implemented
by libraries like [8, 9]. However, this approach does not suit well to the GPU archi-
tecture. GPUs have limited memory, and performance of GPU-based code is highly
dictated by the amount of memory access. The first step of assembly into COO format
allocates more memory than required by the actual number of nonzeros. This puts
pressure on GPU memory and limits the size of the problem. The second step of
assembly into COO format involves sorting and accumulation of repeated entries.
These operations are memory intensive and require a lot of data movement, which
is not favorable for the best performance on GPU. Additionally, the COO format is
not considered efficient for iterative linear solvers and most of the GPU accelerated
libraries recommend other sparse formats like CSR for better performance. There are
few related works in literature that attempts to implement finite element assembly
on GPU through various approaches. In [10], assembly into COO format is demon-
strated on GPU and compared with direct assembly into CSR storage format. It was
reported that direct assembly into CSR format is slower than assembly into COO
format. However, some recent literatures [11–13] demonstrate the excellent GPU
performance for direct assembly into CSR sparse formats. In [11], the assembly
process for structured mesh is decomposed into two steps where the location into
CSR storage format is computed by performing some pre-processing with mesh
connectivity. In [13], the assembly for unstructured mesh is performed over GPU in
three compute kernels which includes computation of elemental matrices. The direct
assembly into CSR format is presented in [12], where simultaneous computation of
elemental matrices and assembly is performed in a single compute kernel.

The current work presents a GPU-based parallel strategy to assemble elemental
matrices directly into CSR sparse storage format. The assembly is performed by pre-
computing the locations into value array of CSR format for each nonzero values using
mesh connectivity. The proposed strategy does not require any additional memory
in GPU and provides global stiffness matrix in CSR format to use in linear solvers.
The elemental matrices are computed on-the-fly without storing explicitly in GPU
memory. The proposed strategy is applicable to unstructured mesh.

The paper is organized as follows. Section 2 provides a brief overview of problem
formulations. Section 3 discusses the GPU strategy for finite element assembly.
Section 4 presents the results of computational experiments and discusses the parallel
performance. Finally, the conclusion is given in Sect. 5.

2 Problem Formulation

Consider an elastic body Ω subjected to body force b and surface traction t. The
governing differential equation over the body is given as

34 U. Kiran et al.

∇.σ + b = 0, ∀x ∈ Ω, (1)

where σ is the Cauchy stress. The governing equation must satisfy the given values
of displacement and traction at the boundary, which is given as

u = u0, ∀x ∈ ┌u,
t = t0, ∀x ∈ ┌ f ,

where u0 is the given displacement on boundary ┌u and t0 is the given traction on
surface ┌f . The Cauchy stress is related to strain ∈ through the constitutive relation,
which is given as

σ = D∈. (2)

The relationship between strain and displacement is given by,

∈ =
1

2

[∇u + ∇uT
]
. (3)

The geometry of the problem is subdivided into a number of smaller entities called
as elements. The displacement over an element is given by

u(x) = ui Ni (x),

where ui is the vector of nodal displacement and Ni is the interpolation function
associated with ith node. The above equation can be rewritten as

u = Nu. (4)

where N is the shape function matrix and u is the elemental displacement vector
(refer to [1] for more details). The substitution of discrete variables into weak form
gives finite element equation as

KU = F, (5)

where K = ∑
e K

e, F = ∑
e F

e, and U is the global vector of unknown nodal
displacements. The elemental quantities are given as

K e =
∮

BT DB, Fe =
∮

NT bdv +
∮

NT tds.

where B is the strain–displacement matrix and D is the elastic constitutive matrix.
The computation of elemental matrices is done by computing the integral numerically
using Gauss quadrature rule. Please refer to [1] for further details.

Accelerating Finite Element Assembly on a GPU 35

3 GPU Implementation of Finite Element Assembly

3.1 Parallel Computing on a GPU

GPUs are specialized processor architecture that provides massive parallelism, high
memory bandwidth and massive threading capability. Compared to CPUs, which are
designed to reduce latency of an operation, GPUs are built to handle data parallel
task and provide high computational throughput.

Compute Unified Device Architecture (CUDA) is a parallel programming model
for general-purpose computation on NVIDIA GPUs. A typical CUDA program
consists of CPU code with desired number of function calls to CUDA kernels. A
kernel in CUDA is a function that uses GPU resources to perform computation in
parallel. CUDA provides an elegant way to access different types of memory avail-
able in a GPU. The global memory is an off-chip memory in a GPU and has the
highest latency and the largest size. The on-chip memories named as shared memory
and registers are smaller in size and have the lowest latency. Readers are referred to
[14] for more details on the CUDA programming model.

3.2 Pre-Computing Indices into CSR Matrix

The CSR sparse storage format uses three arrays to store a sparse matrix. These
arrays are: value array to store nonzero values, column indices array to store column
indices of nonzero values and row offsets array to store the locations of beginning
of each row. The row offset array has size equal to size of the matrix incremented by
one, the last entry contains the total number of nonzero values. Figure 1a shows an
example mesh consisting of quadrilateral elements with a single degree of freedom
per node. The full global stiffness matrix corresponding to Fig. 1a is displayed in
Fig. 1b, where ∗ denotes nonzero values, numbered row-wise (as stored in CSR
format) as shown in Fig. 1c. The global matrix has a total of 28 nonzero values,
and therefore, the value and the column arrays are allotted space for 28 values. The
row offsets array is assigned the size of seven values. Figure 1d shows the global
stiffness matrix in CSR format where the values of column array are displayed for
first, second and last rows.

The local to global mapping of elemental DOFs only provides rows and column
indices for a particular nonzero value. While this information is sufficient to find
the exact position in full global matrix, the locations into compressed global matrix
cannot be found. The direct assembly of elemental matrices into CSR format requires
prior knowledge of locations of nonzero values in value array. For example, let’s
assume that values corresponding to third node in element two are accumulated in
the global matrix. The corresponding global DOF number is six, which means that
the values should be modified in sixth row of the global matrix. Figure 1d shows the
row offset value for 6th row as 25, indicating that the values corresponding to 6th row

36 U. Kiran et al.

Fig. 1 CSR storage format
and pre-computing locations
into the value array

0 021 3 4

5 6 7 8 9

0 0

0 0

282702625

24232202 12
0
19

10

11 12 13 14

15 16 17 18

0 0** * *
* * * * * *
0 * * 0 * *
* * 0 * * 0

* * * * * *
0 * * 0 * *

1 2 4 5 1 2 3 4 5 6 2 3 5 6. . .

51 91 82521151

1 2 5 4
30 21

0
1

1
2

3
5

2
4

(b) (c)

. . .

Column
array

Value
array * * * * * * * * * * * * * *

Row
offsets

(d)
2 3 6 5

2

3

6

5 (e)

Global DOF

(a)

2 3
4

6

1

5

1

2

3

4

1
2

34

lie at locations starting from 25th position in column and value arrays. However, if
one wants to modify the value in 5th column of 6th row, the location for 5th column
needs to be searched in column array. As shown in column array of Fig. 1d, the 5th
column comes at 3rd position in column indices for 6th row. Therefore, to modify a
value at 6th row and 5th column in global stiffness matrix, one has to make changes at
27th (25 + 2) positon in value array. The exact location is obtained by adding relative
position of desired column with respect to the first column in the corresponding row.
Whenever the assembly is performed, the relative position of the column index of
a nonzero value needs to be searched in the column array, which can be expensive
for unstructured meshes in three dimensions (3D). It is to be noted that the relative
position of column indices remains fixed as long as a mesh is fixed. This implies
that expensive search operations into column array can be done prior to the assembly
step, and relative positons of column indices can be pre-computed and stored for
later use. Figure 1e shows a 4 × 4 matrix that contains relative positions of column
indices for each nodes in element 2 (see Fig. 1a). The relative position of a column
index depends on the immediate neighborhood of the node and elements with which
it is connected. If a node is associate with multiple elements, the relative position
is found for each element. If a node has multiple DOF associated with it, the same
relative position can be used for all DOFs. For example, the same 4 × 4 matrix as
shown in Fig. 1e is sufficient if quadrilateral elements in Fig. 1a had two DOFs per

Accelerating Finite Element Assembly on a GPU 37

node. The relative positions of column indices are referred as CSR indices in the
following discussions.

The flowchart for the computation of CSR indices is shown in Fig. 2. In the
first step, for each node in the finite element mesh, a list of immediate neigh-
boring elements is obtained. This list is transformed into a neighboring nodes list by
including the connectivity of each element. The neighboring nodes list is then sorted
in ascending order, and duplicate entries are removed. This procedure is repeated
for all nodes, and the final sorted node list is stored in an array. For each node, its
neighboring nodes list denotes the position of nonzero values in corresponding rows
of global stiffness matrix. The neighboring nodes list can be easily used to generate
column indices of nonzero values for each row of global matrix in CSR format.
Now, the position of any nonzero value can be obtained by performing a search into
the neighboring nodes list instead of column indices. As shown in Fig. 2, the CSR
indices are computed for each element in a loop by retrieving neighboring node list
for each of its node. The position of all other nodes in the connectivity list is searched,
and relative position is stored in an array. In GPU implementation, loop over nodes
and loop over elements are parallelized by allocating one thread to each node and
element, respectively.

3.3 Computation of Elemental Matrices and Assembly

The computation of elemental matrices is an embarrassingly parallel operation as
each element is independent of others in terms of input data and computation. Each
GPU thread is assigned the task to compute the elemental matrix of one element.
The respective thread reads the input data for each element such that collective
memory access for a warp is coalesced. The Gauss quadrature rule is implemented
for numerical integration of fully integrated 8-noded hexahedral element. Since, on-
chip memories are limited for a GPU thread, each thread makes extensive use of
local memory to store intermediate variables and final output.

The assembly in FEM is not amenable for parallelization due to data read–write
conflict among threads. Each DOF in the finite element mesh has a corresponding
row in the global stiffness matrix. Since a DOF is shared by multiple elements, each
row in global stiffness matrix receives contribution from multiple elemental matrices.
When assembly is done in parallel, threads assigned to different elements may try to
read or write values simultaneously to the same memory locations. Such operations
are conflicting and create an issue of data race condition.

In this paper, mesh coloring method [12] is employed to manage data race among
conflicting threads. The mesh coloring is a popular and robust method in which finite
element mesh is divided into multiple sets, identified with a color. The elements
belonging to a colored set do not have any common node/DOF. The computation for
elements belonging to a color can be performed in parallel without any conflict. The
computation for all colors is done in sequence.

38 U. Kiran et al.

START

Loop over elements

STORE SEARCH RESULTS

Loop over nodes

GET LIST OF NEIGHBOURING NODES

GET LIST OF NEIGHBOURING ELEMENTS

SORT NEIGHBOURING NODES AND REMOVE DUPLICATES

GET LIST OF NEIGHBOURING NODES

EXIT

SEARCH FOR EACH NODE IN CONNECTIVITY

L
oo
p

ov
er

 c
on

ne
ct

iv
it
y

Fig. 2 Flowchart indicating steps in computation of CSR indices

The same CUDA kernel that computes elemental matrix also performs assembly
into global stiffness matrix in CSR format. Each thread reads global connectivity,
corresponding row offsets and CSR indices to locate the position of nonzero values
into the global matrix stored in CSR format. The assembled global matrix in CSR
format can be directly used in any linear solver after the application of boundary
condition. This assembly strategy is similar to the one presented in [12].

4 Results and Discussion

To assess the performance of the proposed strategy, numerical experiment is
conducted over a large-scale 3D linear elasticity problem. The numerical experi-
ment is conducted on a machine with the configuration given as: CPU—Intel Xeon®
E5-2650 clocked at 2.6 GHz and 128 GB RAM, GPU—NVIDIA Tesla K40c clocked
at 745 MHz with 12 GB of DRAM. The solution of the linear system of equations is
done by conjugate gradient iterative solver from GPU-based CUSP library [15]. Since

Accelerating Finite Element Assembly on a GPU 39

the focus of the current work is not on acceleration of linear solver step of FEM,
the same solver is used in both CPU and GPU implementations. The meshes for
computational examples are generated in ABAQUS software package with 8-noded
hexahedral elements.

A unit cube is taken with boundary conditions as shown in Fig. 3. All DOFs at
the bottom are constrained while a distributed load is applied at the top surface. The
problem is solved with the following parameters: Young’s modulus (E) = 200 GPa,
Poisson’s ratio (ν) = 0.3 and Load (P) = 400 MPa. The cube is discretized with
different number of elements to get different sizes of mesh, as shown in Table 1.

The computational time for CSR indices on CPU and GPU is presented in Fig. 4.
For the coarsest mesh M1, the CPU takes 1.14 s to compute CSR indices which
increases almost linearly up to 15.67 s for the finest mesh. The GPU-based imple-
mentation achieves speedup in the range 4.98× to 6.48× for all the meshes. On
GPU, the computation of CSR indices for the finest mesh is completed in just 2.42 s.
In order to assess the proposed strategy for direct assembly into CSR format, a
comparison is made with sparse assembly feature of the Eigen library. The func-
tions tripletList.push_back() and setFromTriplets() from Eigen are used for assembly
which collect elemental contributions in COO format and transform into CSR format,
respectively. As shown in Fig. 5, the assembly with Eigen consumes large amount
of time compared to the proposed strategy on CPU. The proposed strategy achieves
approximately 9.3× speedup over Eigen, performing assembly for the finest mesh in
35.08 s, including the time spent in computation for CSR indices. Figure 6 shows the
combined computational time of elemental matrices and assembly by the proposed
strategy on CPU and GPU. It can be observed that expensive numerical integration
adds a significant amount of time to the assembly. The GPU solver achieves speedup

x

y

z P

Ux=Uy=Uz=0

Fig. 3 A unit cube with boundary conditions

Table 1 Mesh for cube problem

Mesh Elements Nodes Degrees of freedom

M1 110,592 117,649 352,947

M2 216,000 226,981 680,943

M3 438,976 456,533 1,369,599

M4 884,736 912,673 2,738,019

M5 1,520,875 1,560,896 4,682,688

40 U. Kiran et al.

in the range from 21.18× to 24.25× for all the mesh sizes. For 4.7 million DOFs,
the GPU solver takes only 6.59 s to perform computation of elemental matrices and
their assembly (including time for CSR indices). The wall-clock time for the CPU
solver, GPU solver and CPU solver with Eigen library is presented in Fig. 7. Due to
huge overhead in assembly, the CPU solver using Eigen library performs poorly and
consumes the highest amount of time. The proposed CPU solver consumes moderate
amount of time and performs linear elastic analysis of cube for the finest mesh in
213.95 s. The proposed GPU solver achieves speedup in the range from 8.13× to
10.14× over CPU solver using Eigen and 3.34× to 4.01× speedup over the proposed
CPU solver for all mesh sizes. It should be noted that CPU solvers use GPU-based
linear solver.

Fig. 4 Computation of CSR indices

Fig. 5 Assembly with CSR indices on CPU compared with Eigen library

Accelerating Finite Element Assembly on a GPU 41

Fig. 6 Numerical
integration and assembly on
CPU and GPU

Fig. 7 Wall-clock time for
CPU, GPU and CPU solver
using Eigen for assembly

5 Conclusion

FEM is widely used numerical method to find solution of engineering problems.
However, computation in FEM can be expensive and often leads to high execution
time for real-world problems. In this paper, we have addressed the issue of high
computational time associated with assembly step of FEM and proposed parallel
strategy to perform assembly on the GPU. The proposed assembly strategy uses pre-
computed indices into the value array of CSR sparse format to assemble elemental
matrices into global matrix. The performance characteristic of the proposed assembly
strategy is assessed by solving a linear elasticity problem. For the finest mesh with
4.7 million degrees of freedom, the pre-computing of indices into CSR format takes
15.67 s on CPU and 2.42 s on GPU. On CPU, the proposed assembly strategy is found
9.3× faster than the sparse assembly function from Eigen library. The proposed GPU
assembly strategy achieves speedup in the range from 21.18 × to 24.25 × over the
proposed CPU strategy for all mesh sizes in computation of elemental matrices and
assembly. As a result of GPU acceleration, an overall speedup of 3.34× to 4.01× is
obtained with respect to the CPU implementation.

42 U. Kiran et al.

Acknowledgements This work was supported by the Science and Engineering Research Board
[IMP/2019/000276, SB/FTP/ETA- 0008/2014].

References

1. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and
fundamentals, 6th edn. Butterworth-Heinemann, Oxford

2. Georgescu S, Chow P, Okuda H (2013) GPU acceleration for FEM-based structural analysis.
Archiv Comput Methods Eng 20(2):111–121

3. Filippone S, Cardellini V, Barbieri D, Fanfarillo A (2017) Sparse matrix-vector multiplication
on GPGPUs. ACM Trans Math Softw (TOMS) 43(4):1–49

4. Kiran U, Sanfui S, Ratnakar SK, Gautam SS, Sharma D (2019) Comparative analysis of GPU-
based solver libraries for a sparse linear system of equations. In: Advances in computational
methods in manufacturing. Springer, Singapore, pp 889–897

5. Kiran U, Gautam SS, Sharma D (2020) GPU-based matrix-free finite element solver exploiting
symmetry of elemental matrices. Computing 102(9):1941–1965

6. Kiran U, Agrawal V, Sharma D, Gautam SS (2019) A GPU based acceleration of finite element
and isogeometric analysis. In: Liu GR, Xiangguo GX (eds) Proceedings at the 10th international
conference on computational methods (ICCM2019). ScienTech Publisher, Singapore, pp 641–
651

7. Bell N, Garland M (2008) Efficient sparse matrix-vector multiplication on CUDA. Nvidia
Technical Report NVR-2008-004, Nvidia Corporation

8. Guennebaud G, Jacob B (2021) Eigen V3, http://www.eigen.tuxfamily.org
9. The MathWorks. Inc. (2021) MATLAB version R2021a. Natick, Massachusetts
10. Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2012) Finite element matrix generation on

a GPU. Progress Electromagn Res 128:249–265
11. Sanfui S, Sharma D (2017) A two-kernel based strategy for performing assembly in FEA on the

graphics processing unit. In: International conference on advances in mechanical, industrial,
automation and management systems (AMIAMS), pp 1–9. IEEE

12. Kiran U, Sharma D, Gautam SS (2019) GPU-warp based finite element matrices generation
and assembly using coloring method. J Comput Des Eng 6(4):705–718

13. Sanfui S, Sharma D (2020) A three-stage graphics processing unit-based finite element analyses
matrix generation strategy for unstructured meshes. Int J Numer Meth Eng 121(17):3824–3848

14. NVIDIA Corporation. NVIDIA CUDA C++ programming guide, version 11.6 (2022)
15. Dalton S, Bell N, Olson L, Garland M (2014) Cusp: generic parallel algorithms for sparse

matrix and graph computations. version 0.5.0, http://cusplibrary.github.io

http://www.eigen.tuxfamily.org
http://cusplibrary.github.io

	 Accelerating Finite Element Assembly on a GPU
	1 Introduction
	2 Problem Formulation
	3 GPU Implementation of Finite Element Assembly
	3.1 Parallel Computing on a GPU
	3.2 Pre-Computing Indices into CSR Matrix
	3.3 Computation of Elemental Matrices and Assembly

	4 Results and Discussion
	5 Conclusion
	References

