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Abstract In this paper, a parallel strategy for assembly of finite element matrices on 
graphics processing unit (GPU) is presented. Considering the limited memory size of 
a GPU, the proposed strategy doesn’t store the elemental matrices into memory but 
performs on-the-fly computation and stores the data directly into a global stiffness 
matrix, reducing memory requirement and preventing overhead due to a separate 
assembly step. The global stiffness matrix is stored in compressed sparse row (CSR) 
storage format, commonly used by GPU-accelerated linear solver libraries. However, 
the assembly of elemental matrices directly into a sparse storage format requires 
prior knowledge of locations of nonzeros. The current work presents an efficient 
strategy to pre-compute indices for assembly into CSR sparse storage format. The 
proposed strategy has been implemented on both CPU and GPU. The performance 
characteristic of the proposed finite element solver is measured by solving large-
scale three-dimensional (3D) elasticity problem involving a maximum of 4.7 million 
degrees of freedom (DOFs). A comparison is made with the standard assembly 
implementation in Eigen C++ library, which first stores the nonzero values in the 
form of triplets and then assembles into CSR sparse format. For the finest mesh 
with 4.7 million DOFs, the proposed CPU-based assembly strategy achieves 9.3× 
speedup over Eigen library. The computation of indices for assembly into CSR format 
takes 15.7 s on CPU and 2.4 s on GPU for 4.7 million DOFs. The computation of 
elemental matrices and their assembly, implemented on GPU as a single compute 
kernel, is found to be up to 24.3× faster than optimized CPU implementation. In 
terms of wall-clock time, the GPU-accelerated finite element solver is found to have 
up to 4× speedup over CPU solver.
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1 Introduction 

Finite element method (FEM) is a popular numerical approach for finding approx-
imate solutions to a wide range of scientific problems. Originally, developed for 
structural mechanics problem, FEM has spread to almost every discipline of engi-
neering, including aerospace, bio-mechanics, fluid mechanics, electromagnetics and 
weather prediction [1]. However, numerical procedure to obtain solutions with FEM 
is computationally expensive. Depending on the nature of the problem, the time 
spent in FEM simulation might vary from hours to months. As the computational 
power of computer processors has increased in recent times, there is an increasing 
interest in performing realistic simulation with high accuracy. Therefore, it becomes 
extremely important to address the issue of high simulation time associated with the 
FEM. Parallel computers are often employed to handle the high computation cost 
associated with FEM-based simulation. A recently developed hardware to perform 
parallel computing is GPU. The hardware like GPUs has become quite popular due 
to high computational power, massive parallelism and high memory bandwidth. The 
current work attempts to find an efficient strategy to implement FEM on a GPU. 

FEM solver consists of three expensive steps: computation of the elemental 
matrices, assembly of global stiffness matrix and solution of a system of linear 
equations given by the global stiffness matrix. Among these, the solution of the 
system of equations is often the most time-consuming step in FEM. Consequently, 
GPU implementations of linear solvers have been studied the most [2–5]. The over-
head in computation of elemental matrices and their assembly can be significantly 
high for large-scale problems involving complex differential operators and higher-
order finite elements. In nonlinear problems, the computation of elemental matrices 
and assembly is required multiple times, and therefore, it can contribute to high 
simulation timings [6]. 

The global stiffness matrix obtained in FEM is sparse as elements are locally 
connected to each other in discretized domain. The sparse matrix contains a mix of 
zero and nonzero values. Since zero values are not useful for computation, only 
nonzero values are stored in memory. For this purpose, different sparse storage 
formats like coordinate format (COO), ELLPACK format (ELL), CSR, etc. [7] have  
been used in the past implying different levels of memory utilization. However, 
working with a sparse storage format is not a trivial task as each format introduces a 
unique data structure, which might not be efficient for other computational steps of 
FEM. The assembly into global stiffness matrix must take into account the data struc-
ture of underlying sparse storage format and accordingly adopt an efficient strategy. 
The most popular way of constructing a sparse matrix in FEM is a two-step proce-
dure. The first step assembles the elemental contribution in COO format where three 
arrays are used to store nonzero values, row indices and column indices of a matrix.
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However, the value array usually contains multiple entries for the same values of 
row and column indices. In second step, each of the arrays are sorted and entries 
having repeated values in row and column arrays are consolidated. The global stiff-
ness matrix obtained in COO format can now be converted into any other sparse 
format, if required. This approach works well for CPU and has been implemented 
by libraries like [8, 9]. However, this approach does not suit well to the GPU archi-
tecture. GPUs have limited memory, and performance of GPU-based code is highly 
dictated by the amount of memory access. The first step of assembly into COO format 
allocates more memory than required by the actual number of nonzeros. This puts 
pressure on GPU memory and limits the size of the problem. The second step of 
assembly into COO format involves sorting and accumulation of repeated entries. 
These operations are memory intensive and require a lot of data movement, which 
is not favorable for the best performance on GPU. Additionally, the COO format is 
not considered efficient for iterative linear solvers and most of the GPU accelerated 
libraries recommend other sparse formats like CSR for better performance. There are 
few related works in literature that attempts to implement finite element assembly 
on GPU through various approaches. In [10], assembly into COO format is demon-
strated on GPU and compared with direct assembly into CSR storage format. It was 
reported that direct assembly into CSR format is slower than assembly into COO 
format. However, some recent literatures [11–13] demonstrate the excellent GPU 
performance for direct assembly into CSR sparse formats. In [11], the assembly 
process for structured mesh is decomposed into two steps where the location into 
CSR storage format is computed by performing some pre-processing with mesh 
connectivity. In [13], the assembly for unstructured mesh is performed over GPU in 
three compute kernels which includes computation of elemental matrices. The direct 
assembly into CSR format is presented in [12], where simultaneous computation of 
elemental matrices and assembly is performed in a single compute kernel. 

The current work presents a GPU-based parallel strategy to assemble elemental 
matrices directly into CSR sparse storage format. The assembly is performed by pre-
computing the locations into value array of CSR format for each nonzero values using 
mesh connectivity. The proposed strategy does not require any additional memory 
in GPU and provides global stiffness matrix in CSR format to use in linear solvers. 
The elemental matrices are computed on-the-fly without storing explicitly in GPU 
memory. The proposed strategy is applicable to unstructured mesh. 

The paper is organized as follows. Section 2 provides a brief overview of problem 
formulations. Section 3 discusses the GPU strategy for finite element assembly. 
Section 4 presents the results of computational experiments and discusses the parallel 
performance. Finally, the conclusion is given in Sect. 5. 

2 Problem Formulation 

Consider an elastic body Ω subjected to body force b and surface traction t. The  
governing differential equation over the body is given as
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∇.σ + b = 0, ∀x ∈ Ω, (1) 

where σ is the Cauchy stress. The governing equation must satisfy the given values 
of displacement and traction at the boundary, which is given as 

u = u0, ∀x ∈ ┌u, 
t = t0, ∀x ∈ ┌ f , 

where u0 is the given displacement on boundary ┌u and t0 is the given traction on 
surface ┌f . The Cauchy stress is related to strain ∈ through the constitutive relation, 
which is given as 

σ = D∈. (2) 

The relationship between strain and displacement is given by,

∈ = 
1 

2

[∇u + ∇uT
]
. (3) 

The geometry of the problem is subdivided into a number of smaller entities called 
as elements. The displacement over an element is given by 

u(x) = ui Ni (x), 

where ui is the vector of nodal displacement and Ni is the interpolation function 
associated with ith node. The above equation can be rewritten as 

u = Nu. (4) 

where N is the shape function matrix and u is the elemental displacement vector 
(refer to [1] for more details). The substitution of discrete variables into weak form 
gives finite element equation as 

KU = F, (5) 

where K = ∑
e K

e, F = ∑
e F

e, and U is the global vector of unknown nodal 
displacements. The elemental quantities are given as 

K e =
∮

BT DB, Fe =
∮

NT bdv +
∮

NT tds. 

where B is the strain–displacement matrix and D is the elastic constitutive matrix. 
The computation of elemental matrices is done by computing the integral numerically 
using Gauss quadrature rule. Please refer to [1] for further details.
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3 GPU Implementation of Finite Element Assembly 

3.1 Parallel Computing on a GPU 

GPUs are specialized processor architecture that provides massive parallelism, high 
memory bandwidth and massive threading capability. Compared to CPUs, which are 
designed to reduce latency of an operation, GPUs are built to handle data parallel 
task and provide high computational throughput. 

Compute Unified Device Architecture (CUDA) is a parallel programming model 
for general-purpose computation on NVIDIA GPUs. A typical CUDA program 
consists of CPU code with desired number of function calls to CUDA kernels. A 
kernel in CUDA is a function that uses GPU resources to perform computation in 
parallel. CUDA provides an elegant way to access different types of memory avail-
able in a GPU. The global memory is an off-chip memory in a GPU and has the 
highest latency and the largest size. The on-chip memories named as shared memory 
and registers are smaller in size and have the lowest latency. Readers are referred to 
[14] for more details on the CUDA programming model. 

3.2 Pre-Computing Indices into CSR Matrix 

The CSR sparse storage format uses three arrays to store a sparse matrix. These 
arrays are: value array to store nonzero values, column indices array to store column 
indices of nonzero values and row offsets array to store the locations of beginning 
of each row. The row offset array has size equal to size of the matrix incremented by 
one, the last entry contains the total number of nonzero values. Figure 1a shows an 
example mesh consisting of quadrilateral elements with a single degree of freedom 
per node. The full global stiffness matrix corresponding to Fig. 1a is displayed in 
Fig. 1b, where ∗ denotes nonzero values, numbered row-wise (as stored in CSR 
format) as shown in Fig. 1c. The global matrix has a total of 28 nonzero values, 
and therefore, the value and the column arrays are allotted space for 28 values. The 
row offsets array is assigned the size of seven values. Figure 1d shows the global 
stiffness matrix in CSR format where the values of column array are displayed for 
first, second and last rows.

The local to global mapping of elemental DOFs only provides rows and column 
indices for a particular nonzero value. While this information is sufficient to find 
the exact position in full global matrix, the locations into compressed global matrix 
cannot be found. The direct assembly of elemental matrices into CSR format requires 
prior knowledge of locations of nonzero values in value array. For example, let’s 
assume that values corresponding to third node in element two are accumulated in 
the global matrix. The corresponding global DOF number is six, which means that 
the values should be modified in sixth row of the global matrix. Figure 1d shows  the  
row offset value for 6th row as 25, indicating that the values corresponding to 6th row
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Fig. 1 CSR storage format 
and pre-computing locations 
into the value array
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lie at locations starting from 25th position in column and value arrays. However, if 
one wants to modify the value in 5th column of 6th row, the location for 5th column 
needs to be searched in column array. As shown in column array of Fig. 1d, the 5th 
column comes at 3rd position in column indices for 6th row. Therefore, to modify a 
value at 6th row and 5th column in global stiffness matrix, one has to make changes at 
27th (25 + 2) positon in value array. The exact location is obtained by adding relative 
position of desired column with respect to the first column in the corresponding row. 
Whenever the assembly is performed, the relative position of the column index of 
a nonzero value needs to be searched in the column array, which can be expensive 
for unstructured meshes in three dimensions (3D). It is to be noted that the relative 
position of column indices remains fixed as long as a mesh is fixed. This implies 
that expensive search operations into column array can be done prior to the assembly 
step, and relative positons of column indices can be pre-computed and stored for 
later use. Figure 1e shows  a 4  × 4 matrix that contains relative positions of column 
indices for each nodes in element 2 (see Fig. 1a). The relative position of a column 
index depends on the immediate neighborhood of the node and elements with which 
it is connected. If a node is associate with multiple elements, the relative position 
is found for each element. If a node has multiple DOF associated with it, the same 
relative position can be used for all DOFs. For example, the same 4 × 4 matrix as  
shown in Fig. 1e is sufficient if quadrilateral elements in Fig. 1a had two DOFs per
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node. The relative positions of column indices are referred as CSR indices in the 
following discussions. 

The flowchart for the computation of CSR indices is shown in Fig. 2. In the  
first step, for each node in the finite element mesh, a list of immediate neigh-
boring elements is obtained. This list is transformed into a neighboring nodes list by 
including the connectivity of each element. The neighboring nodes list is then sorted 
in ascending order, and duplicate entries are removed. This procedure is repeated 
for all nodes, and the final sorted node list is stored in an array. For each node, its 
neighboring nodes list denotes the position of nonzero values in corresponding rows 
of global stiffness matrix. The neighboring nodes list can be easily used to generate 
column indices of nonzero values for each row of global matrix in CSR format. 
Now, the position of any nonzero value can be obtained by performing a search into 
the neighboring nodes list instead of column indices. As shown in Fig. 2, the  CSR  
indices are computed for each element in a loop by retrieving neighboring node list 
for each of its node. The position of all other nodes in the connectivity list is searched, 
and relative position is stored in an array. In GPU implementation, loop over nodes 
and loop over elements are parallelized by allocating one thread to each node and 
element, respectively.

3.3 Computation of Elemental Matrices and Assembly 

The computation of elemental matrices is an embarrassingly parallel operation as 
each element is independent of others in terms of input data and computation. Each 
GPU thread is assigned the task to compute the elemental matrix of one element. 
The respective thread reads the input data for each element such that collective 
memory access for a warp is coalesced. The Gauss quadrature rule is implemented 
for numerical integration of fully integrated 8-noded hexahedral element. Since, on-
chip memories are limited for a GPU thread, each thread makes extensive use of 
local memory to store intermediate variables and final output. 

The assembly in FEM is not amenable for parallelization due to data read–write 
conflict among threads. Each DOF in the finite element mesh has a corresponding 
row in the global stiffness matrix. Since a DOF is shared by multiple elements, each 
row in global stiffness matrix receives contribution from multiple elemental matrices. 
When assembly is done in parallel, threads assigned to different elements may try to 
read or write values simultaneously to the same memory locations. Such operations 
are conflicting and create an issue of data race condition. 

In this paper, mesh coloring method [12] is employed to manage data race among 
conflicting threads. The mesh coloring is a popular and robust method in which finite 
element mesh is divided into multiple sets, identified with a color. The elements 
belonging to a colored set do not have any common node/DOF. The computation for 
elements belonging to a color can be performed in parallel without any conflict. The 
computation for all colors is done in sequence.



38 U. Kiran et al.

START 

Loop over elements 

STORE SEARCH RESULTS 

Loop over nodes 

GET LIST OF NEIGHBOURING NODES 

GET LIST OF NEIGHBOURING ELEMENTS 

SORT NEIGHBOURING NODES AND REMOVE DUPLICATES 

GET LIST OF NEIGHBOURING NODES 

EXIT 

SEARCH FOR EACH NODE IN CONNECTIVITY 

L
oo
p 

ov
er

 c
on

ne
ct

iv
it
y 

Fig. 2 Flowchart indicating steps in computation of CSR indices

The same CUDA kernel that computes elemental matrix also performs assembly 
into global stiffness matrix in CSR format. Each thread reads global connectivity, 
corresponding row offsets and CSR indices to locate the position of nonzero values 
into the global matrix stored in CSR format. The assembled global matrix in CSR 
format can be directly used in any linear solver after the application of boundary 
condition. This assembly strategy is similar to the one presented in [12]. 

4 Results and Discussion 

To assess the performance of the proposed strategy, numerical experiment is 
conducted over a large-scale 3D linear elasticity problem. The numerical experi-
ment is conducted on a machine with the configuration given as: CPU—Intel Xeon® 
E5-2650 clocked at 2.6 GHz and 128 GB RAM, GPU—NVIDIA Tesla K40c clocked 
at 745 MHz with 12 GB of DRAM. The solution of the linear system of equations is 
done by conjugate gradient iterative solver from GPU-based CUSP library [15]. Since
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the focus of the current work is not on acceleration of linear solver step of FEM, 
the same solver is used in both CPU and GPU implementations. The meshes for 
computational examples are generated in ABAQUS software package with 8-noded 
hexahedral elements. 

A unit cube is taken with boundary conditions as shown in Fig. 3. All DOFs at 
the bottom are constrained while a distributed load is applied at the top surface. The 
problem is solved with the following parameters: Young’s modulus (E) = 200 GPa, 
Poisson’s ratio (ν) = 0.3 and Load (P) = 400 MPa. The cube is discretized with 
different number of elements to get different sizes of mesh, as shown in Table 1. 

The computational time for CSR indices on CPU and GPU is presented in Fig. 4. 
For the coarsest mesh M1, the CPU takes 1.14 s to compute CSR indices which 
increases almost linearly up to 15.67 s for the finest mesh. The GPU-based imple-
mentation achieves speedup in the range 4.98× to 6.48× for all the meshes. On 
GPU, the computation of CSR indices for the finest mesh is completed in just 2.42 s. 
In order to assess the proposed strategy for direct assembly into CSR format, a 
comparison is made with sparse assembly feature of the Eigen library. The func-
tions tripletList.push_back() and setFromTriplets() from Eigen are used for assembly 
which collect elemental contributions in COO format and transform into CSR format, 
respectively. As shown in Fig. 5, the assembly with Eigen consumes large amount 
of time compared to the proposed strategy on CPU. The proposed strategy achieves 
approximately 9.3× speedup over Eigen, performing assembly for the finest mesh in 
35.08 s, including the time spent in computation for CSR indices. Figure 6 shows the 
combined computational time of elemental matrices and assembly by the proposed 
strategy on CPU and GPU. It can be observed that expensive numerical integration 
adds a significant amount of time to the assembly. The GPU solver achieves speedup

x 

y 

z P 

Ux=Uy=Uz=0 

Fig. 3 A unit cube with boundary conditions 

Table 1 Mesh for cube problem 

Mesh Elements Nodes Degrees of freedom 

M1 110,592 117,649 352,947 

M2 216,000 226,981 680,943 

M3 438,976 456,533 1,369,599 

M4 884,736 912,673 2,738,019 

M5 1,520,875 1,560,896 4,682,688 
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in the range from 21.18× to 24.25× for all the mesh sizes. For 4.7 million DOFs, 
the GPU solver takes only 6.59 s to perform computation of elemental matrices and 
their assembly (including time for CSR indices). The wall-clock time for the CPU 
solver, GPU solver and CPU solver with Eigen library is presented in Fig. 7. Due  to  
huge overhead in assembly, the CPU solver using Eigen library performs poorly and 
consumes the highest amount of time. The proposed CPU solver consumes moderate 
amount of time and performs linear elastic analysis of cube for the finest mesh in 
213.95 s. The proposed GPU solver achieves speedup in the range from 8.13× to 
10.14× over CPU solver using Eigen and 3.34× to 4.01× speedup over the proposed 
CPU solver for all mesh sizes. It should be noted that CPU solvers use GPU-based 
linear solver. 

Fig. 4 Computation of CSR indices 

Fig. 5 Assembly with CSR indices on CPU compared with Eigen library
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Fig. 6 Numerical 
integration and assembly on 
CPU and GPU 

Fig. 7 Wall-clock time for 
CPU, GPU and CPU solver 
using Eigen for assembly 

5 Conclusion 

FEM is widely used numerical method to find solution of engineering problems. 
However, computation in FEM can be expensive and often leads to high execution 
time for real-world problems. In this paper, we have addressed the issue of high 
computational time associated with assembly step of FEM and proposed parallel 
strategy to perform assembly on the GPU. The proposed assembly strategy uses pre-
computed indices into the value array of CSR sparse format to assemble elemental 
matrices into global matrix. The performance characteristic of the proposed assembly 
strategy is assessed by solving a linear elasticity problem. For the finest mesh with 
4.7 million degrees of freedom, the pre-computing of indices into CSR format takes 
15.67 s on CPU and 2.42 s on GPU. On CPU, the proposed assembly strategy is found 
9.3× faster than the sparse assembly function from Eigen library. The proposed GPU 
assembly strategy achieves speedup in the range from 21.18 × to 24.25 × over the 
proposed CPU strategy for all mesh sizes in computation of elemental matrices and 
assembly. As a result of GPU acceleration, an overall speedup of 3.34× to 4.01× is 
obtained with respect to the CPU implementation.
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