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Abstract 

The global damage caused by the spreading microbial infection is evident from 
the devastating COVID-19 pandemic. The infectious diseases caused by 
emerging viral and resistant bacterial pathogens have been a worldwide medical 
threat and economic burden. To combat this threat, a technology able to rapidly 
identify pathogen infection and determine the pathogen resistance profile is 
needed. The current methods for emerging infectious disease detection are mainly 
molecular methods based on polymerase chain reaction (PCR) for the detection of 
the specific pathogenic gene or resistant gene mutations. While sensitive, it 
requires prior knowledge of the pathogenic cells, which fail to output a negative 
result when a new pathogen or new resistant strain occurs and wrongly output a 
positive result when resistance genes are simply present but are not expressed or 
are not contributing to resistant phenotypes. Considering the life-threatening 
condition of an emerging infectious disease and the increasing prevalence of 
emerging pathogens and bacteria with antibiotic resistance in hospitals, 
automated and fast diagnostic facilities are required. This chapter summarizes 
the emerging nano-bio-analytical systems for the rapid detection of pathogen 
infectious diseases and antibiotic susceptibility testing for antibiotic resistance 
determination that will empower humans to win the epic war between human wits 
and microbial genes. In viral infection detection, we discussed nano-bio-analyti-
cal systems for the detection of viral infectious diseases including point-of-care 
immunoassay systems, electrochemical detection systems, and plasmonic-based
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systems. In resistant bacterial infection detection, we reviewed the emerging 
optical imaging systems for rapid phenotypic antibiotic resistance determination.
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7.1 Introduction 

Following the severe acute respiratory syndrome (SARS) in 2003 and the Middle 
East respiratory syndrome (MERS) in 2012, the COVID-19, which is the third large-
scale pandemic caused by coronavirus in the last 20 years, has been declared as a 
public health emergency of international concern. COVID-19 has a remarkable 
efficiency in human-to-human transmission, with relatively high morbidity and 
mortality, especially among the aged and those with underlying comorbidities 
(Morens and Fauci 2020; Morens et al. 2020). Unlike other conventional diseases, 
infectious diseases are caused by infectious pathogens, which can impair the normal 
functioning of the host, and often spread from person to person or sometimes from 
animals to humans. Researchers have sorted the infectious agents into categories of 
bacteria, viruses, fungi, parasites, and prions. The incidence of emerging infectious 
diseases (EIDs) has increased over the past two decades and is likely to increase in 
the near future (Wilson 1999). Emerging diseases have been classified as newly 
emerging, re-emerging, “intentionally emerging”, and “accidentally emerging” 
infection diseases (Table 7.1). Despite the differences, these four categories share 
something in common: newly emerging diseases can persist and then re-emerge 
through intentional or accidental release (Morens and Fauci 2020; Morens and Fauci 
2012; Morens et al. 2008; Morens et al. 2004; Satcher 1995; Excler et al. 2021). 

Global health, economic boom, social stability, and security of human society 
have been threatened by all EIDs, especially caused by viruses and bacteria. There-
fore, it is incredibly important to develop precise and timely diagnostic systems to

Table 7.1 Major categories of emerging infectious diseases (Morens and Fauci 2020) 

The category of EIDs Comments 

Newly emerging infectious 
diseases 

Diseases first discovered in humans, e.g., HIV/AIDS (1981), 
Nipah virus (1999), SARS (2003), MERS (2012), COVID-19 
(2019) 

Re-emerging infectious 
diseases 

Diseases that have historically infected humans but continue to 
re-emerge in new locations (e.g., West Nile in the United States 
and Russia in 1999) or in drug-resistant forms (e.g., methicillin-
resistant Staphylococcus aureus) 

Intentionally emerging 
infectious diseases 

Diseases related to intent to harm, including mass bioterrorism 

Accidentally emerging 
infectious diseases 

Diseases unintentionally released by humans, e.g., epizootic 
vaccinia and transmissible vaccine-derived polioviruses



facilitate the recognition and intervention of EIDs for the prevention of infectious 
diseases into epidemics and to improve public health (Ozer et al. 2019).
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Currently, the major strategies for the clinical diagnosis of EIDs are to cultivate 
pathogens and to identify or detect specific antigens, antibodies, or nucleic acids. 
The most common and efficient methods for identifying and diagnosing infectious 
disease pathogens are nucleic acid-based assays (Koo et al. 2018; Sin et al. 2014). 
Generally, RT-PCR is regarded as the gold standard of viral nucleic acid detection. 
The highly sensitive PCR-based methods have disadvantages such as being time-
consuming, labor-intensive, and expensive. Biosensors facilitate the rapid detection 
of targeted biomarkers, enabling real-time disease diagnosis (Mujawar et al. 2020). 
The combination of nanotechnology and biosensors holds the potential to improve 
the accuracy, speed, and sensitivity of devices detecting bacterial and viral. At the 
same time, great advances have been made in deeper understanding and comprehen-
sion of the genome and proteome of pathogens and their interactions with hosts 
(Wrapp et al. 2020). 

Therefore, this chapter described the nano-bio-analytical systems for emerging 
infectious diseases from two aspects: (1) viral infection detection system and 
(2) resistant bacterial infection detection system. In the field of the viral infection 
detection system, point-of-care immunoassay, electrochemical, and plasmonic-
based platforms were introduced with system design and sensing mechanism. As 
for the resistant bacterial infection detection system, real-time microscopy system, 
microfluidic imaging system, surface plasmon resonance imaging system, and light 
scattering imaging system were introduced with system design and their application 
in rapid bacterial resistance determination. 

7.2 Nano-Bio-Analytical Systems for Emerging Viral Infection 
Detection 

The SARS-CoV-2 event is widely and rapidly spreading around the world, and 
because of the terrifying contagiousness of this virus, the development of point-of-
care testing (POCT) diagnosis assays to detect and manage the disease is urgently 
needed in the afflicted area, even though RT-PCR test has become the gold standard 
to recognize SARS-CoV-2 disease (Orooji et al. 2020). 

7.2.1 Point-of-Care Immunoassay Systems 

Immunoassay is a type of bio-analytical method in which the interaction of an 
analyte (i.e., antigen) and an antibody is the basis to measure a specific analyte 
(Huang et al. 2020; Byrnes et al. 2020). Immunological assays, particularly 
the enzyme-linked immunosorbent assay (ELISA) and lateral flow assay, assess 
viral infection rates or vaccine efficiency by detecting viral antigens or antibodies 
against viral antigens (Orooji et al. 2020). Immunosensing assays are commonly 
used to detect various sorts of viruses with high sensitivity, for instance, SARS



CoV-2 (Padoan et al. 2020; Chen et al. 2020), HIV (Sevenler et al. 2020; Stalter et al. 
2020), HCV (Eshetu et al. 2020; Patel and Sharma 2020), and so on. 
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Fig. 7.1 Schematic explanation of rapid SARS-CoV-2 IgM-IgG combined antibody test. (a) 
Schematic diagram of the identification device. (b) Interpretation of several experimental results. 
(c) Relates to the control line, G means IgG line, M means IgM line. Reproduced from reference 
(Orooji et al. 2020) 

ELISA is the most used immunoassay for viral detection in clinical laboratories, 
for example, ELISA is the gold standard for HIV diagnosis. In the ELISA test, the 
chromogenic substrate is converted into a colored molecule by using capture 
antibodies and detection antibodies modified with enzymatic tags. ELISA can test 
multiple samples and can be automated to increase throughput, but the sensitivity 
may vary (Carter et al. 2020). 

Aiming to detect EIDs, the lateral flow immunoassay (LFIA)-based POCT assay 
has been developed. Lateral flow tests, also known as lateral flow 
immunochromatographic assessments, are simple and direct paper-based devices 
designed to identify the presence of target analytes in a fluid sample without the need 
for any specific and exorbitant hardware. Figure 7.1 shows a diagram of a quick 
SARS-CoV-2 IgM-IgG combined antibody test (Orooji et al. 2020). 

Yu et al. (Yu et al. 2017) have designed a nanostructured microfluidic immuno-
assay pathogen detection platform with high sensitivity and selectivity. By utilizing 
the three-dimensional morphology as well as the unique optical property of the ZnO 
nanorods, the detection limit of H5N2 AIV can be improved to as low as 3.6 × 103 

EID50/mL (EID50, 50% embryo infectious dose), which is approximately 22 times 
more sensitive compared to conventional ELISA. In Chan’s paper, a microfluidic 
integrated rGO transistor chip was established to detect the gene of H5N1 influenza 
in a flowing environment (Chan et al. 2017). Lu et al. (Lu et al. 2020) present a novel



digital microfluidic H1N1 virus detection platform using a one-aptamer/two-anti-
body assay on magnetic beads, and the limit of detection (LOD) is 0.032 hemagglu-
tination units/reaction. This is the first demonstration of a digital microfluidic 
platform capable of performing the whole diagnostic process for influenza A 
H1N1 viruses by using electromagnetic force. Iswardy et al. (Iswardy et al. 2017) 
used a microfluidic dielectrophoresis (DEP) chip with mouse anti-flavivirus mono-
clonal antibody-coated beads for rapid detection of dengue virus (DENV) in vitro. 
The platform is capable of accelerating immune response time, with an on-chip assay 
time of 5 minutes and DENV detection capability down to 10 (Morens and Fauci 
2012) PFU/mL. 
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7.2.2 Electrochemical Detection Systems 

Among various approaches used to distinguish viral pathogens, including Zika 
(Cecchetto et al. 2017), influenza (Hushegyi et al. 2016), HIV (Shafiee et al. 
2013), and so on, electrochemical biosensor technology is leading the way in the 
development of POCT devices owing to the advantages of high selectivity, sensitiv-
ity, quick response, and ease of miniaturization (Wang et al. 2021; Huang et al. 
2016). 

Enzyme-catalyzed reactions between immobilized biomolecules and target 
analytes generate electrons that affect the electrical properties of the solution, 
which is what electrochemical biosensors typically rely on to detect. An electro-
chemical system containing an electrode and a pathogen solution can convert the 
chemical energy derived from the target pathogen and biorecognition elements to the 
electrical signals captured by electrodes. 

Li et al. (2021) showed that for the detection of HIV p24 antigen, the ZnO-NW-
enhanced EIS biosensors proved their high sensitivity with LOD down to 0.4 pg/mL. 
Li et al. (2013) presented an EV71-specific nanogold-modified working electrode for 
electrochemical impedance spectroscopy and reached a LOD of 1 copy number/ 
50 μL reaction volume in the detection of EV71, and the interval from sample 
preparation to detection was 11 min. Navakul et al. (Navakul et al. 2017) present a 
technique of DENV based on EIS aiming to detect, classify, and screen antibodies 
(Fig. 7.2). In this research, DENV was used as a component to functionalize a 
graphene oxide (GO)-polymer surface and make the polymer surface more selective 
and sensitive to the virus by inducing a self-assembly process. The EIS sensor can 
detect DENV ranges from 1 to 2 × 103 pfu/mL (LOD down to 0.12 pfu/mL) and 
classify the virus serotypes accurately. 

7.2.3 Plasmonic-Based Systems 

Plasmonic-based platforms, which consist of surface plasmon resonance (SPR) and 
localized surface plasmon resonance (LSPR), have become indispensable tools for



POCT diagnostic applications (Table 7.2) for their advantages of stable, real-time, 
highly sensitive, and label-free. Plasmonic-based platforms are regarded as a critical 
candidate for next-generation diagnostics (Li et al. 2019a). 
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Fig. 7.2 Schematic illustration of the preparation of GO-polymer for DENV detection on a gold 
electrode. Reproduced from reference (Navakul et al. 2017) 

So far, SPR-based sensor has rapidly emerged as the most powerful detection 
type of optical biosensors. The SPR-based sensor could detect the binding events 
between the capture probes and analyte molecules by monitoring the refractive index 
change at the metal-dielectric interface. Inherently as a refractometric device applied 
in biology, SPR biosensors realize the detection and quantification of analytes by 
measuring parameters of incident light such as angle, intensity, phase, or 
wavelength. 

As a promising one-step and label-free virus detection method, several 
SPR-based biosensors have already been adapted into POC devices of EIDs 
(Li et al. 2019a; Farzin et al. 2020), such as HIV (Kosaka et al. 2017), H1N1 
(Su et al. 2012), H7N9 (Chang et al. 2018), etc. Detecting, identifying, and under-
standing viruses are of great importance for EIDs prevention, diagnosis, and control. 
When it comes to the detection as well as quantification of the antigens by plasmonic 
platforms, the work of Kosaka et al. (Kosaka et al. 2017) can detect HIV-1 p24 
antigens in human serum less than a week after infection with the LOD of 10-17 g/



Detection method Analyte LOD Reference

mL, which equals to one virion in 10 mL of plasma. Recent reports demonstrate that 
the SARS-CoV spike and SARS-CoV-2 spike share the same functional host cell 
receptor, angiotensin-converting enzyme 2 (ACE2) (Zhou et al. 2020; Wan et al. 
2020). Furthermore, Wrapp et al. (Wrapp et al. 2020) provide evidence through SPR 
both biophysically and structurally to point out the fact that SARS-CoV-2 spike 
protein has a better affinity than SARS-CoV when bound to ACE2. By integrating 
IM-SPR biosensor with a newly generated monoclonal antibody, Chang et al. 
(Chang et al. 2018) developed a simple but reliable platform, being capable of 
sensitive and quick detection of H7N9 virus with a detection limit at 402 copies/ 
mL in mimic solution, which dwarfs commercial RIDT, homemade target-captured 
ELISA, and even qRT-PCR. Almost excluding any sample preparation, Huang et al. 
(Huang et al. 2021) use a spike protein-specific plasmon nanoarray SPR chip to 
detect SARS-CoV-2 virus particles in one step using a spike protein-specific 
plasmon nanoarray SPR chip. 
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Table 7.2 Various optical techniques to diagnose different infectious diseases 

Detection 
time 

SPR aptasensor H5N1 AIV 0.128 
HAU 

1.5 h Bai et al. 
(2012) 

Intensity-modulated surface 
plasmon resonance 
(IM-SPR) biosensor 

H7N9 144 
copies/ 
mL 

<10 min Chang et al. 
(2018) 

4-MBA/Au SPR chip Recombinant 
nucleoprotein of 
Ebola (EBOV-
rNP) 

0.5 pg/ 
mL 

~ 1 h Sharma et al. 
2020) 

Au/DSU/NH2rGO-
PAMAM/IgM thin film-
integrated SPR sensor 

DENV-
2 E-proteins 

0.08 
pM 

8 min Omar (et al. 
2020) 

GBP-E-SCVme-coated SPR 
biosensor 

SARS coronavirus 
surface antigen 
(SCVme) 

200 ng/ 
mL 

10 min Park et al. 
(2009) 

LSPR-induced Qdot-MB 
biosensors 

ZIKV RNA 1.7 
copies/ 
mL 

3 min Adegoke et al. 
(2017) 

Affinity peptide-guided 
plasmonic biosensor 

Human norovirus 9.9 
copies/ 
mL 

10 min Heo et al. 
(2019) 

LSPR-amplified 
immunofluorescence 
biosensor 

Nonstructural 
protein 1 (NS1) of 
the ZIKV 

1.28 fg/ 
mL 

– Takemura et al. 
(2019) 

LSPR biosensors based on 
thermally annealed silver 
nanostructures 

Dengue NS1 
antigen 

9 nm/ 
(μg/ 
mL) 

~30 min Austin 
Suthanthiraraj 
and Sen (2019) 

Wang et al. (Wang et al. 2010) use high-resolution surface plasmon resonance 
microscopy (SPRM) and successfully demonstrate label-free imaging, detection, and



mass/size measurement of individual virus particles in solution. Based on the 
Kretschmann configuration, a high numerical aperture objective and an inverted 
microscope were used in the SPRM (Fig. 7.3a). For the SPRM setting, the sensing 
area is the whole image area with a size of 0.08 × 0.06 mm2 . Figure 7.3b is an image 
showing the discrepancy between silica nanoparticles of three different sizes and the 
H1N1 virus in PBS buffer, which is obtained by SPRM. For the two viruses studied 
in this work, the mass and diameter are found to be 6.5 ± 0.8 fg and 218 ± 10 nm for 
HCMV and 0.80 ± 0.35 fg and 109 ± 13 nm for H1N1 influenza A/PR/8/34, 
respectively (Wang et al. 2010). The sensing area can detect as small mass as 1 ag 
of the binding of a single particle, with a corresponding mass detection limit of about 
0.2 fg/mm2 per unit area, while the typical detection limit of the conventional SPR is 
nearly four orders of magnitude worse than this work (Homola 2008). 
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Fig. 7.3 Label-free imaging, detection, and mass measurement of single viral particles by surface 
plasmon resonance. (a) Schematic of the SPRM experiment setup (drawing not to scale). (b) SPRM 
images of the H1N1 influenza A virus and silica nanoparticles of three different sizes in PBS buffer. 
(c) The SPR intensity distributions along X and Y directions for selected particles (respectively, 
indicated by the dashed lines in b). (Insets) Corresponding profiles from simulated images. 
Reproduced from reference (Wang et al. 2010) 

When measuring short-range changes in the refractive index owing to a molecular 
adsorption layer, the response of SPR spectroscopy and LSPR spectroscopy become 
similar, even though the former is much more sensitive to changes in bulk refractive 
index (Qiu et al. 2018; Qiu et al. 2019). The enhanced plasmonic field near the 
nanostructures increases the sensitivity of LSPR sensing systems to local refractive



index changes during molecular binding. Among various biosensing technologies, 
LSPR biosensing systems are capable of detecting various categories of analytes of 
clinical interest (Haes et al. 2005). 
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The LSPR technique may have the potential to substitute to detect SARS-CoV-
2 and diagnose COVID-19. The overall performance could be improved by combin-
ing the plasma detection and amplification process. Meanwhile, the energy loss of 
the plasma and the related nanoscale heat generation, also known as the plasmonic 
photothermal (PPT) effector thermoplasmonics, could bring benefits to a wide range 
of research and innovation topics. For example, Qiu et al. (Qiu et al. 2020) developed 
a dual-functional LSPR biosensor using LSPR sensing transduction and PPT effect 
(Fig. 7.4a), combining both functions on a cost-effective two-dimensional gold 
nanoislands (AuNI) chip for the detection of SARS-CoV-2 viral nucleic acid. 
Aiming to improve the stability, sensitivity, and reliability of sensing, plasmonic 
resonances in LSPR and PPT are excited with two different light sources, i.e., 
532 nm laser (normal incident angle) and 580 nm laser (attenuated total reflection 
mode). The biosensor can sensitively detect the RdRp gene with a LOD value as low 
as 0.22 pM. Based on previous work, Qiu et al. (Qiu et al. 2021) further expand the 
use of the photothermal-assisted plasmonic sensing (PTAPS) system and introduce 
the concept of thermoplasmonic-assisted dual-mode transducing (TP-DMT) 
(Fig. 7.4b), which allows direct detection of LOD up to 0.1 ± 0.04 pM. Cyclic

Fig. 7.4 (a) Dual-functional plasmonic photothermal biosensors for highly accurate detection of 
SARS-CoV-2. Reprinted with permission obtained from (Qiu et al. 2020). (b) Thermoplasmonic-
assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. 
Reproduced from Ref. (Qiu et al. 2021)



fluorescence probe cleavage (CFPC) improves the sensitivity of quantitative detec-
tion by stimulating transient and cumulative LSPR responses, and the LOD of the 
second LSPR biosensing can be improved to 0.275 ± 0.051 fM.

156 D. Yang et al.

7.3 Nano-Bio-Analytical Systems for Emerging Resistant 
Bacterial Infection Detection 

Antibiotic-resistant bacterial pathogens are an emerging health threat, spreading 
rapidly and widely around the world (CDC 2019; Solomon and Oliver 2014). A 
critical reason for this worldwide concern is the overuse and misuse of 
antimicrobials (Laxminarayan et al. 2013; Tacconelli et al. 2018). A technique that 
could rapidly identify pathogen infection and determine antibiotic resistance profiles 
is needed to combat this threat. Antibiotic susceptibility testing (AST) is extensively 
used in the clinic to detect antibiotic susceptibility of isolated bacteria, guide more 
potent antibiotic treatment regimens, and evaluate therapeutic results. However, 
aiming to realize AST, the golden standard method often require microorganism 
culture, separation, and further subculture steps, which depend on overnight cell 
culture (Jorgensen and Ferraro 2009; Bauer et al. 1966). Therefore, rapid POCT 
bacterial resistance infection detection methods are necessary to avoid empirical 
prescription of antimicrobials and improve antibiotic stewardship. 

Numerous emerging AST methods generally can be divided into two classes: 
genotypic and phenotypic approaches (Bauer et al. 2014; Khan et al. 2019), which 
recognize antibiotic resistance genes and directly analyze the phenotypic features, 
respectively. The genotypic approaches, which detect antibiotic resistance genes 
(Khan et al. 2019; Fluit et al. 2001; Frye et al. 2010; Park et al. 2011; Athamanolap 
et al. 2017), are highly desirable for the AST owing to the outstanding sensitivity 
(Machowski and Kana 2017). But the methods are still challenged for requiring 
enough prior knowledge of the bacteria; furthermore, the methods may obtain false-
negative results when new resistant strains come into sight, and false-positive results 
when the existing resistance genes are not expressed or do not promote a resistant 
phenotype. Aiming to directly monitor bacterial cell growth or reproduction, pheno-
typic AST technologies generally focus on phenotypic characteristics (e.g., number, 
morphology, size, and length) (Syal et al. 2016; van den Broek et al. 2008; Cermak 
et al. 2016; Pancholi et al. 2018; Lissandrello et al. 2014; Pantel et al. 2018; Choi 
et al. 2014a; Longo et al. 2013; Besant et al. 2015; Schoepp et al. 2017). Optical 
inspection detection techniques, including real-time microscopy, microfluidic imag-
ing, surface plasmon resonance imaging, and light scattering imaging, have been 
leading the way in rapid phenotypic AST. 

7.3.1 Real-Time Microscopy System 

Optical microscopy systems are the leading method used in rapid phenotypic AST 
detection, which can image the phenotypic characteristics (e.g., number,



morphology, size, and length) for direct bacterial cell growth or reproduction 
measurements (Syal et al. 2016; van den Broek et al. 2008; Cermak et al. 2016; 
Pancholi et al. 2018; Lissandrello et al. 2014; Pantel et al. 2018; Choi et al. 2014a; 
Longo et al. 2013; Besant et al. 2015). Multiplexed automated digital microscopy 
(Metzger et al. 2014; Chantell 2015) was established to achieve rapid identification 
and drug-resistance analysis of clinical specimens, which isolates bacterial cells 
from coexisting or interfering species within the clinical specimens (e.g., urine or 
blood) utilizing gel channels, attaches purified bacterial cells to the sensing surface 
based on electrokinetic loading, and identifies bacterial cells with fluorescence 
imaging within 1 h (Chantell 2015). In order to enable quick AST in individual 
cells morphological analysis (Choi et al. 2014b), an emerging imaging tool uses 
bright-field microscopy and an automated image-processing and analysis algorithm 
to facilitate accelerated AST to ascertain antibiotic-induced morphological changes 
in single bacterial cells. oCelloScope (Fredborg et al. 2015; Fredborg et al. 2013), 
another optical imaging technique, images the growth of bacterial cell populations in 
liquid samples and quantifies the changes in the area occupied by the growing cells 
for rapid AST. The Accelerate Pheno™ system uses microscopic morphogenetic 
cellular technology to analyze individual cells and colonies and measure growth, 
providing AST results of bloodstream infections within 7 h (Pancholi et al. 2018; 
Pantel et al. 2018; Marschal et al. 2017; Burnham et al. 2014; Schneider et al. 2019; 
Ehren et al. 2019). 
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Electrical impedance, which detects the current response of a sample under 
applied potential, is highly desirable for the label-free biosensing platform. The 
technology can be employed in various applications, including tissue, protein, and 
cell studies (Ng et al. 2010; Shamsipur et al. 2018; Nwankire et al. 2015; Lei 2014). 
As an intrinsic characteristic, the sensitive current response of the target bacterial 
cells to an applied electric field is connected with subtle differences and variations of 
parameters such as the shape and size of the target bacterial cell, the internal structure 
of the bacteria, and the dielectric constant and conductivity of the diversified 
bacterial components. This enables the impedance analysis for studying bacterial 
external stimulus-response determining the bacterial viability, studying the 
principles of antibiotic action, and bacterial identification and bacterial isolation 
(Mannoor et al. 2010; Yang and Bashir 2008; Xu et al. 2017; David et al. 2012). 
Based on the intrinsic electrical properties of single bacterial cells, Zhang et al. 
(2021a) reported label-free electro-optical impedance microscopy (EIM) by imaging 
the cell responses to low-frequency potential modulations to quantify single bacteria 
impedance. E. coli O157:H7 is immobilized on the surface of an indium tin oxide 
(ITO) electrode, and the impedance response of potentially modulated bacteria is 
imaged to complete the detection. EIM can map bacterial viability at subcellular 
resolution by impedance response, which was used to monitor the impedance 
changes under two distinctive types of drug for comprehensive bacterial viability 
detection and antibiotic mechanisms study. Figure 7.5a shows the schematic illumi-
nation of the EIM system with an inverted microscope. The ITO electrode surface is 
modified with antibodies for both E. coli potential modulation and immobilization. 
Figure 7.5b is the representative impedance responses of the single bacterial cells



with subcellular resolution under antibiotic treatment, which revealed the heteroge-
neity response of single bacterial cells. The simple imaging approach can be used to 
identify resistant bacteria associated with the infectious disease, delivering accurate 
results more rapidly at a lower cost. 
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Fig. 7.5 (a) Structure diagram of the impedance imaging setup with a standard three-electrode. (b) 
The representative impedance results of the bacterial cells under 90-min antibiotic treatment. 
Reprinted with permission from reference (Zhang et al. 2021a). Copyright 2021 American Chemi-
cal Society 

7.3.2 Microfluidic Imaging System 

Microfluidics has revolutionized single-cell manipulation and analysis methods with 
reduced sample/reagent volumes and the associated costs for sensitivity and POCT. 
It has been found that the combination of imaging-based tools and microfluidics 
allows for rapid AST (Park et al. 2011; Choi et al. 2013; Baltekin et al. 2017; Li et al. 
2019b). Bacterial cells were sequentially captured in microfluidic chambers (Kim 
et al. 2015), microchannels (Lu et al. 2013), or droplets (Chen et al. 2010; Boedicker 
et al. 2008) and imaged to detect changes in the cell number (Metzger et al. 2014; 
Mohan et al. 2015), size (Choi et al. 2014b), morphology (Quach et al. 2016), and 
viability (Boedicker et al. 2008) in the presence of antibiotics to perform AST. The 
Astrego Captiver system is composed of 2000 single bacteria-sized channels, and the 
longitudinal growth of a single bacterial cell was monitored with a time-lapse phase 
contrast microscopy for bacterial susceptibility determination within an hour 
(Baltekin et al. 2017). The droplet-based platform dropFAST (Kaushik et al. 2017) 
allows single-cell encapsulation, incubation, and drug resistance in less than 60 min. 
Co-encapsulation of bacterial cells with an active probe (e.g., Alamar blue) has been



used to distinguish AST bacterial subpopulations in not more than 4 hours (Lyu et al. 
2018). In another droplet-based method, bacterial cells are captured with antibody-
conjugated beads, Hoechst staining is followed by microscopic analysis of cell 
division and morphology, and drug resistance is determined within 120 min 
(Sabhachandani et al. 2017). 
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Fig. 7.6 (a) Microfluidic device adapted for AST that can be used to classify pathogens at the level 
of individual bacterial cells. (b) Cross-sectional profile of the channel at different air pressures. (c) 
Antimicrobial susceptibility was identified by tracking variances of the bacteria phenotypic growth 
in the presence of antibiotics. (d) Microfluidic separation of three bacterial species (S. epidermidis, 
M. bacteremicum, and E. coli) by the tunable microfluidic device. (Scale bar, 10 μm). (e) 
Distributions of the bacteria in regions with 0, 150, and 200 kPa applied pressure in the 
microchannels. Data represent mean ± SEM (n = 3). Reproduced from reference (Lu et al. 2013) 

For direct AST on clinical samples, an adaptable microfluidic system was 
reported to process clinical specimens (including urine and blood) without any 
preliminary treatment (Li et al. 2019b). By applying different pressures, the main



pathogens can be captured and classified depending on the shape and size of the 
polymicrobial sample. A clinical sample was flowed along the microfluidic channel. 
Once a bacterial cell is noticed with a high-resolution optical microscope, it applies 
pressure to the channels to trap the cell and then monitors cellular length in the 
presence of an antibiotic over time. Figure 7.6a shows the adaptive microfluidic 
device that can be used to classify pathogens at the single bacterial cell level, while 
Fig. 7.6b shows cross-sectional profiles of the channels at different air pressures. 
Bacteria remain under different areas of the channel and are sorted according to the 
applied pressure, which dynamically changes the height of the channel. Antimicro-
bial susceptibility was identified by tracking variances of the bacterial phenotypic 
growth in the presence of antibiotics (Fig. 7.6c). Figure 7.6d shows the isolation of 
three bacteria utilizing a microfluidic device. S. epidermidis, M. bacteremicum, and 
E. coli were fluorescently stained, mixed, and loaded into the microfluidic system to 
detect the effectiveness of pathogen isolation (n= 3). Figure 7.6e was used to test the 
effectiveness of bacterial identification by plotting the distribution of bacteria in 
areas of the microchannel where 0, 150, and 200 kPa pressure was applied. 
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7.3.3 Surface Plasmon Resonance Imaging (SPRi) System 

Surface plasmon resonance (SPR) is an outstanding sensing technique that has many 
advantages for molecule detection, including in situ, real-time, and fast response. 
SPR can detect weak refractive index changes on the surface of the sensing chip with 
high sensitivity. SPR imaging (SPRi) technique can realize real-time imaging and 
visualization of the local refractive index change near or on the sensing surface, 
providing spatial information for local mass density sensing. Chiang et al. (Chiang 
et al. 2009) tested the antimicrobial susceptibility of susceptible and resistant 
bacteria within a single channel adhered to a gold chip. This is the first report of 
an antimicrobial test using the SPR system to detect resistant or susceptible strains. 
To improve the throughput, Ozkaya et al. (Ozkaya et al. 2019) constructed a SPR 
system with multichannel microfluidic for the multiple detections of methicillin-
susceptible S. aureus, methicillin-resistant S. aureus, vancomycin-resistant Entero-
coccus, and vancomycin-susceptible Enterococcus. 

For more sensitive AST detection, Syal et al. (Syal et al. 2016; Syal et al. 2015) 
introduced the plasmonic imaging and tracking (PIT) technique to monitor and 
analyze the multidimensional movement of individual bacterial cells, which are 
closely related to metabolic viability. The PIT equipment is based on an inverted 
optical microscope, where light from a luminescence diode is directed onto the 
sensor chip made of gold-coated glass film with immobilized bacterial cells 
(Fig. 7.7a). Figure 7.7b shows a few snapshots of the plasmonic image, which reveal 
large fluctuations in the image contrast of a live bacterial cell (Escherichia coli 
O157:H7). The image contrast changes are due to the bacterial cell movement 
normal to the sensor surface (Z-direction), due to the bacterial metabolism of live 
cells (Fig. 7.7c), while the dead cell showed very minimal motion (Fig. 7.7d) (Yang 
et al. 2015; Shan et al. 2014). PIT has been reported to detect the multidimensional

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ucak%20Ozkaya%20G%5BAuthor%5D&cauthor=true&cauthor_uid=31731591


motility of individual bacterial cells and subcellular organelles at spatial resolution 
<5 nm and temporal resolution <1 millisecond (ms). This detection technique 
allows rapid monitoring of the multidimensional motility of multiple bacterial cells 
simultaneously, enabling high-throughput quantitative analysis of single-cell ASTs. 
The work also demonstrates the feasibility of this technique for the detection of
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Fig. 7.7 (a) Schematic of the plasmonic imaging and tracking of bacterial cell metabolic activity-
related 3D movement (referred to here as 3D movement) with nanometer resolution. (b) Snapshots 
of bacteria z-micro-motion. (c) z-distance between bacterium and plasmon surface vs. time of an 
alive (~6 nm). (d) Z-displacement plot of a dead bacterial cell showing average motion ~0.50 nm. 
Reprinted with permission from reference (Syal et al. 2016). Copyright 2019 American Chemical 
Society



clinical samples. In addition, PIT has the potential to be used to discriminate and 
identify bacterial cells in the complex matrix of urine, serum, and other body fluid 
samples. This will facilitate the real application of PIT and its development into a 
practical solution for testing real patient samples.
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7.3.4 Light Scattering Imaging System 

As a label-free and noninvasive analytical tool, light scattering can be widely used to 
detect and classify small particle analytes such as bacteria and cells in real time 
(Broeren et al. 2011; Fouchet et al. 1993; Steen 1990). A laser beam is normally used 
to irradiate a liquid sample for both turbidity and scattered intensity measurement. 
Generally speaking, measuring light scattered by bacterial cells is the principle of 
most light scattering-based bacterial growth detection protocols (e.g., BacterioScan 
(Roberts et al. 2017)). The relative growth of bacteria in culture solutions is 
commonly characterized by the results of optical density at 600 nm. The principle 
of this technique is because different concentrations of bacteria scatter different 
amounts of light randomly in solution. However, this indirect assessment of bacterial 
growth and cell concentration is often a complex pre-process (requiring inoculation 
of pure samples and suspension of cells to the appropriate density level) (Sutton 
2011). With recent advances in optical detection technology, other light scattering 
methods have been newly developed to improve detection sensitivity (Roberts et al. 
2017; Hayden et al. 2016; Boland et al. 2019). As an important optical detection 
system in recent years, flow cytometry systems (such as the FDA-approved UF 
1000i) integrate light scattering and fluorescence technologies for rapid screening of 
bacterial cells in urine (Broeren et al. 2011). 

The light scattering method can further measure the angular variation in the 
intensity of the light, with this variation being proportional to the number, size, 
and even shape of the particles, allowing detection limits up to 2 orders of magnitude 
lower compared to standard methods. Based on the above approach, Zhang et al. 
developed a rapid AST in the single-cell scattering intensity tracking for direct AST 
on clinical urine specimens within 60–90 min with a large-volume solution scatter-
ing imaging (LVSi) (Mo et al. 2019) by monitoring and tracking individual cell 
division (Zhang et al. 2020) and by object scattering intensity detection (Zhang et al. 
2021b). Traditional optical microscopy can image bacterial cells but requires immo-
bilization of the bacteria on a surface. These limitations, combined with the small 
field of view of high-resolution optical microscopy, necessitate bacterial enrichment 
in low-concentration samples. LVSi overcomes this difficulty by illuminating and 
imaging a large volume, such that the presence of a few bacterial cells in a clinical 
sample can be tracked continuously, which can image and count low bacterial 
concentration urine samples, e.g., 104 cells/mL for rapid AST (Mo et al. 2019). To 
accurately track and quantify single division events of bacterial cells in complex 
clinical samples, a forward scattering optical imaging configuration (Fig. 7.8a) was 
introduced with a single-cell division tracking imaging processing algorithm. 
Figure 7.8b shows the representative example of two division events for two cells
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tracked using the imaging processing algorithm and two representative growth 
curves of susceptible and resistant samples detected by the LVSi-AST method. 
The LVSi-AST method has excellent performance, achieving rapid detection of 
bacterial infections in 60 clinical samples within 1 h. The digital ASTs of these 
30 positive samples were in 100% complete agreement with clinical culture results 
and field agar coating validation results. This technology will pave the way for more 
accurate antibiotic prescriptions and prompts proper treatment of the patient within a 
single clinic visit.
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7.4 Conclusion and Future Direction 

Current manual and automated techniques for emerging disease detection have 
become vital tools in today’s clinical microbiology labs. In the near future, 
burgeoning and future innovative technologies, for instance, plasmonic-based 
biosensing systems, microfluidic-based systems, and light scattering imaging 
systems, will lead the way in the development of clinical tools for rapid infectious 
disease diagnosis. These tools have dramatically reduced the time to detect infec-
tious diseases and allow for POCT diagnoses to be made on an outpatient basis. Such 
rapid and real-time detection tools will not only help save patients’ lives but also 
enable physicians to implement accurate treatments at disease onset, potentially 
preventing the spreading of EIDs, slowing the evolution of antibiotic resistance, 
and improving antibiotic stewardship. In summary, given the ever-increasing spread 
of EIDs, there is an urgent need to develop innovative technologies for the rapid 
detection of infections, both for real samples collected directly from the patient and 
for slow-growing or non-cultivable microorganisms. 
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