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Abstract 

The rapid growth of antimicrobial resistance (also known as AMR) is a major 
reason for concern when it comes to public health around the world. The rise of 
AMR is a result of the overuse and misuse of antimicrobial agents, such as 
antibiotics, antivirals, antifungals and antiparasitics. India is indeed one of the 
world’s top consumers of antibiotics and has its own unique set of constraints 
related to its large population and diverse cultural, social and economic land-
scape. Major obstacles to the application of antimicrobial resistance (AMR) 
containment strategies include self-medication, the use of antibiotics for growth 
promotion in animals and the development of residual antibiotics in the environ-
ment. The use of antibiotics in various sectors, including aquaculture, medicine, 
agriculture and the food industry, has contributed to the spread of antimicrobial 
resistance. The presence of antibiotic resistance genes (ARGs) in aquatic 
environments is of particular concern because it increases the risk of antibiotic
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resistance in human pathogens. ARGs can spread from aquatic environments to 
humans through contaminated seafood, and they can also spread from humans to 
aquatic environments through wastewater discharge. The pollution due to 
antibiotics and the prevalence of antibiotic resistance genes vary greatly between 
low-middle and high-income countries, as well as between different regions 
within a given country. The presence and spread of antibiotic resistance genes 
are also influenced by several factors, including the presence of antibiotic 
residues, microbial communities and environmental variables. The presence of 
antibiotics and antibiotic resistance genes (ARGs) in the environment can have 
significant impacts on microbial communities, biogeochemical cycles and both 
marine organisms and human health.
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12.1 Introduction 

Antibiotic resistance in bacteria has evolved naturally and long before antibiotics 
were manufactured in large quantities for human use. Bacteria have evolved a 
variety of mechanisms to resist antibiotics, including changes in the structure of 
target proteins, the production of enzymes that break down antibiotics and the efflux 
of antibiotics out of the cell (Larsson and Flach 2021). The spread of ARGs in the 
environment is also a major concern, as it can increase the risk of antibiotic 
resistance in human and animal pathogens, making it more difficult to treat 
infections (Galera-Laporta and Garcia-Ojalvo 2020; Sun et al. 2020; Reverter et al. 
2020). Antibiotic use and consumption have been increasing globally, and 
projections indicate that this trend is likely to continue. A recent study estimated 
that, under the scenario of no policy interventions, worldwide antibiotic consump-
tion in 2030 could be as much as 200% higher than the level in 2015 (Klein et al. 
2018). Anthropogenic, or human-caused, antibiotic residues in the environment can 
result in a number of serious environmental problems. Thiamphenicol is one exam-
ple of an antibiotic that has been shown to have adverse environmental impacts. 
Research has indicated that thiamphenicol can interfere with nitrate reduction 
processes in soil, which can result in increased levels of nitrous oxide (N2O) being 
released into the atmosphere (Yin et al. 2016). The widespread use of antibiotics can 
put significant selective pressure on microorganisms, leading to the enrichment of 
ARGs (Wang et al. 2019; Migliorini et al. 2019). Antibiotic resistance is a complex 
phenomenon that can occur through various mechanisms, namely, enzymatic 
destruction, efflux pumps, cellular protection and both target defence and antibiotic 
deactivation (Zhang et al. 2019; Chen et al. 2019; Wilson et al. 2020). Antibiotic 
resistance can significantly impair the efficacy of antibiotics against pathogens, 
making it difficult or impossible to treat infections effectively (Pärnänen et al.



2019). Horizontal gene transfer (HGT) is a key mechanism by which antibiotic 
resistance genes (ARGs) can spread and become more prevalent in the environment. 
Mobile genetic elements (MGEs) which include transposons, integrons and plasmids 
are self-contained pieces of DNA that can move from one bacterium to another, often 
across species boundaries. These MGEs can carry multiple ARGs, providing bacte-
ria with a “toolkit” of resistance mechanisms (Wang et al. 2018; Pallares-Vega et al. 
2019; Zhao et al. 2019a). ARGs and antibiotics have frequently been found in rivers 
(Rodriguez-Mozaz et al. 2015; Singh et al. 2019; Das et al. 2020), lakes (Tang et al. 
2015; Yang et al. 2018a), groundwater (Tong et al. 2020; Zainab et al. 2020) and 
coastal and estuarine environments (Griffin et al. 2019; Zheng et al. 2021). The 
presence of pollutants, including antibiotics and antibiotic resistance genes (ARGs), 
in these environments can have negative impacts on the health of estuarine and 
coastal ecosystems (Ward et al. 2020). The presence of ARGs and antibiotics in 
coastal and estuarine environments can have far-reaching consequences for biogeo-
chemical cycling, ecological security and human health (Leonard et al. 2015; Zhao 
et al. 2019b). 
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Antimicrobial resistance in bacteria is currently the most prevalent type of 
resistance in microbes and a significant public health issue. The overuse and misuse 
of antibiotics have led to the evolution of bacteria that are resistant to multiple 
antibiotics, making it difficult to treat bacterial infections. 

12.2 Taxonomic Profiling 

Understanding the taxonomic classifications of resistome components is crucial for 
locating the bacteria that produce a resistome. Taxonomic assignment analysis of 
resistome elements can provide information about the composition and relative 
abundance of the microbial community in a sample (Ruppé et al. 2018; Rice et al. 
2020). There are two main approaches for identifying bacterial community compo-
sition from metagenomic data. The first approach is based on direct analysis of raw 
sequencing reads and does not require contig assembly. The second approach 
involves the assembly of contigs from the raw sequencing reads, followed by 
taxonomic assignment of the contigs (de Abreu et al. 2021). Taxonomic classifica-
tion of metagenomic data without contig assembly can be a faster and more 
computationally efficient approach compared to contig assembly (Rodríguez-
Brazzarola et al. 2018). The length and quality of sequences are crucial 
considerations during taxonomy classification analysis. Short reads or low-quality 
reads may have a higher error rate and may not provide enough information to 
accurately identify the bacterial taxa present in a sample (Breitwieser et al. 2019;  Ye  
et al. 2019). The length of contigs generated by contig assembly is an advantage for 
taxonomic classification, as longer contigs provide more information to accurately 
identify the bacterial taxa present in a sample. Taxonomic classification and contig-
based taxonomic classification rely heavily on the use of reference databases 
(Rodríguez-Brazzarola et al. 2018). Contig assembly can sometimes enable the 
reconstruction of partial genomes of previously unknown or uncultured bacterial



organisms. In contig assembly, short reads from different bacterial taxa can be 
erroneously assembled together into a single contig, resulting in a chimeric contig. 
The quality of the assembled contigs and the accuracy of the taxonomic assignments 
made based on the assembled contigs can strongly influence the interpretation of the 
microbial community composition and function (Behera et al. 2020a, b, 2021a, b, 
2022; Rout et al. 2022). 
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Furthermore, genome assembly can enable the identification of possible HGT 
regions, which are genomic regions that have been acquired by a bacterium from 
another organism through HGT mechanisms such as transduction, transformation or 
conjugation. In the context of antibiotic resistance genes, the size of gene sequences 
can have a substantial effect on gene annotation transfer and the investigation of 
biological mechanisms linked with resistance (ARGs). Taxonomic assignment by 
contig assembly can be a useful tool for identifying and understanding resistance 
mechanisms, particularly in the context of studying the structural relationships 
between microbiota and the resistome. The type of sample being worked with can 
influence the quality and quantity of DNA/RNA obtained, which can in turn impact 
the success of the assembly process. The sequences in the datasets are of good 
quality and long enough to be aligned directly to a reference database. The taxo-
nomic classification can be performed using alignment-based methods, which are 
computationally less intensive than de novo assembly approaches (Rodríguez-
Brazzarola et al. 2018). High-throughput sequencing can be used to study the 
taxonomic assignments of resistome elements in various environments, including 
water reservoirs to identifying antibiotic resistance genes (ARGs) in host-pathogen 
relationships such as hospitals (Chng et al. 2020), water reservoirs (Yu et al. 2020; 
Ekwanzala et al. 2020), soil (Chen et al. 2017), human faeces (Karkman et al. 2019), 
livestock wastewater and faeces (Jia et al. 2017), air (Yang et al. 2018b; Li et al. 
2021) and biogeochemical and biogeographical processes (Kuang et al. 2016; Liu 
et al. 2018). 

12.3 Functional Study and ARGs Database 

The investigation of taxonomic signatures can assist us in gaining a deeper compre-
hension of the connections that exist among the various members of a microbial 
diversity. Functional metagenomics is an approach that purposes to identify 
functions in a microbial community by discovering new enzymes, biosynthetic 
gene clusters and antibiotic resistance genes (ARGs). Functional annotation typi-
cally involves several steps, including gene prediction, annotation transfer and 
functional assignment (Dong and Strous 2019). Metagenomics is a powerful tool 
for studying microbial communities and has the potential to provide important 
insights into microbial ecology, evolution and biotechnology (Zhang et al. 2011). 
There are numerous databases and methods available for identifying a microbial 
community’s taxonomic diversity and undertaking functional assessments. These 
include databases of reference genomes, protein sequences and metabolic pathways, 
as well as bioinformatic tools for taxonomic classification, functional annotation and



pathway analysis. Functional analysis of metagenomic data provides a wealth of 
information that can be used for various sub-analyses, depending on the sequencing 
depth and research question. These sub-analyses can include protein-protein inter-
action, pathway, functional category, gene ontology, protein family and subsystem 
analysis, among others. Each of these analyses provides different levels of detail and 
can be used to gain insights into the functional potential and metabolic activities of 
the microbial community. There are open-source software/applications, like Mothur 
(Schloss et al. 2009), MEGAN (Huson et al. 2007) and QIIME (Caporaso et al. 
2010) for taxonomy and functional analysis. BLAST+ is an important tool in 
genomic research and is widely used to annotate new genome sequences and to 
investigate the evolutionary relationships between different species (Altschul et al. 
1997). DIAMOND is a powerful tool for annotating genomic data, particularly for 
the analysis of large datasets such as metagenomic samples. Its speed and accuracy 
make it an attractive option for researchers working with large amounts of sequence 
data (Buchfink et al. 2014). USEARCH is a useful tool for bioinformatic analysis, 
particularly for sequence searches and clustering (Edgar and Bateman 2010). 
RAPSearch2 is a powerful tool for sequence searching and is well suited for large-
scale analyses (Zhao et al. 2012). 
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The development of new methods and tools for comprehensive metagenomic 
analyses is an ongoing process, and it is important for researchers to stay up-to-date 
with the latest advancements in the field in order to conduct the most effective and 
informative analyses. Resistome databases are crucial resources for understanding 
antimicrobial resistance and are constantly evolving as new information becomes 
available (Danko et al. 2021). The use of database for sequence analysis can 
introduce database bias that can affect the accuracy and relevance of the results, 
particularly for metagenomic analyses. The genomic surveillance of AMR is crucial 
for understanding the distribution and spread of resistance genes, as well as for 
identifying new resistance mechanisms (de Abreu et al. 2021). To support this effort, 
numerous annotation softwares and databases have been established to facilitate the 
analysis of antibiotic resistance gene (ARG) content in bacterial genomes or next-
generation sequencing (NGS) metagenomic samples. These tools and databases 
provide valuable resources for researchers and practitioners to identify, annotate 
and compare ARGs in different bacterial genomes and metagenomes. Some of the 
most widely used annotation tools and well-known AMR databases are tabulated in 
Table 12.1. 

The Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al. 2020) 
is unique in that it combines sequence data with bioinformatic tools to aid in the 
detection and analysis of AMR genes. For example, the database includes curated 
detection models that can be used to identify AMR genes in sequenced bacterial 
genomes, as well as tools for visualising and analysing the genomic context of these 
genes. In addition to resistance genes, CARD also includes information on resistance 
mutations, which are genetic changes that can confer resistance to antibiotics. Like 
the resistance genes, the resistance mutations are organised by bacterial species. 
CARD focuses on delivering high-quality reference material and molecular



sequences that are arranged using the Antibiotic Resistance Ontology (ARO), a 
regulated vocabulary. 
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Table 12.1 Several bioinformatic databases available for studying antibiotic resistance genes 
(ARGs) 

Database Web link References 

CARD https://card.mcmaster.ca/ Alcock et al. (2020) 

ARDB https://ardb.cbcb.umd.edu/ Liu and Pop (2009) 

ResFinder https://cge.cbs.dtu.dk/services/ResFinder/ Florensa et al. 
(2022) 

SARG https://smile.hku.hk/SARGs# Yin et al. (2018) 

ARGminer https://bench.cs.vt.edu/argminer/#/home Arango-Argoty 
et al. (2020) 

NDARO https://www.ncbi.nlm.nih.gov/pathogens/refgene/ Feldgarden et al. 
(2021) 

MEGAres https://megares.meglab.org/ Doster et al. (2020) 

AMR++ https://github.com/Microbial-Ecology-Group/ 
AMRplusplus 

Bonin et al. (2023) 

ARG-
ANNOT 

http://www.mediterranee-infection.com/article.php? 
laref=282&titre=arg-annot 

Gupta et al. (2014) 

ARG-
database 

https://smile.hku.hk/SARGs Yang et al. (2016) 

ARDB (Liu and Pop 2009) also known as the Antibiotic Resistance Genes 
Database tracks ARGs. It was first released in 2005 and is maintained by the 
Antibiotic Resistance Genes Reference Center at the University of Alberta, 
Canada. It includes information on a wide range of antibiotic resistance genes, 
including those found in both Gram-positive and Gram- negative bacteria. The 
database provides detailed annotations for each gene, including information on its 
function, location and associated resistance mechanisms. 

Resfinder (Florensa et al. 2022) is a useful tool for the characterisation and 
identification of ARGs, and its use can help researchers better understand the 
distribution and prevalence of resistance genes in bacterial populations and 
metagenomic datasets. Resfinder also provides information about the sequence 
similarity and identity of the identified resistance genes, allowing researchers to 
compare the resistance genes to known reference sequences and assess the potential 
impact of any genetic variations or mutations. This can be important for understand-
ing the mechanisms of resistance and for predicting the potential effectiveness of 
different antimicrobial therapies. 

ARG-ANNOT (Gupta et al. 2014) is a web-based tool for both complete genomes 
and draft genomes and can be applied to both Gram-negative and Gram-positive 
bacteria. The tool provides detailed annotations for each detected AR gene, includ-
ing information on its function, resistance mechanism and associated resistance 
phenotype. It also provides information on the genomic context of each gene, 
including its location on the chromosome and any associated mobile genetic 
elements.

https://card.mcmaster.ca/
https://ardb.cbcb.umd.edu/
https://cge.cbs.dtu.dk/services/ResFinder/
https://smile.hku.hk/SARGs
https://bench.cs.vt.edu/argminer/#/home
https://www.ncbi.nlm.nih.gov/pathogens/refgene/
https://megares.meglab.org/
https://github.com/Microbial-Ecology-Group/AMRplusplus
https://github.com/Microbial-Ecology-Group/AMRplusplus
http://www.mediterranee-infection.com/article.php?laref=282&titre=arg-annot
http://www.mediterranee-infection.com/article.php?laref=282&titre=arg-annot
https://smile.hku.hk/SARGs
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ARG-database (Yang et al. 2016) ARGs-OAP (Antibiotic Resistance Genes 
Online Analysis Pipeline) is a bioinformatic tool designed to facilitate the analysis 
and finding of antibiotic resistance genes (ARGs) in metagenomic data. It includes a 
large and diverse database of reference sequences for comparison and can be applied 
to both short-read and long-read sequencing data. By providing a comprehensive 
and up-to-date database of reference sequences and detailed annotations for each 
gene, it helps to facilitate research on the molecular mechanisms of antibiotic 
resistance and on the development of new strategies for combating it. 

SARG (Yin et al. 2018) database was designed to help researchers identify ARGs 
in metagenomic samples, which are complex mixtures of DNA from different 
microorganisms. SARG v2.0 builds on this concept by incorporating a much larger 
number of reference sequences for ARGs, which allows for more comprehensive 
coverage of the resistance gene landscape in different environments. ARGs-OAP 
v2.0 is designed to help researchers analyse and annotate high-throughput sequenc-
ing data for the presence of antibiotic resistance genes (ARGs). The database 
includes a large number of reference sequences for ARGs, which can be used to 
identify similar sequences in raw sequencing data using a similarity search strategy. 

ARGminer (Arango-Argoty et al. 2020) able to capture a broader range of ARGs 
and provide more comprehensive information about each gene, including its 
sequence, function and resistance profile. It looks like the sequences from the 
different databases that were used to build ARGminer were processed to get rid of 
duplicates and mark them also with highest similarity from each of the databases. 
Overall, the use of an ensemble database like ARGminer can be a powerful tool for 
understanding the genetics and mechanisms of antibiotic resistance, which is a 
critical public health concern. 

NDARO (Feldgarden et al. 2021) is the central hub for scholars to access data 
related to antimicrobial resistance (AMR) in infective organisms. The purpose of 
real-time AMR surveillance is that it keeps an up-to-date database of AMR genes 
and a combination of genetic and antibiotic susceptibility data. The Reference Gene 
Catalog, which is maintained by the NDARO, is a curated collection of antimicrobial 
resistance (AMR) genes from various bacterial pathogens. NDARO has expanded its 
focus beyond just antimicrobial resistance (AMR) genes to include other genetic 
elements that are important for understanding the biology of clinically important 
pathogens. 

MEGAres (Doster et al. 2020) is an updated version of the MEGARes database, 
which is a comprehensive resource for studying antimicrobial resistance genes. It 
contains sequence data for thousands of hand-curated antimicrobial resistance genes, 
but it also includes additional features that are designed to aid in the analysis of 
metagenomic sequencing data. A crucial part of preventing AMR is identifying its 
genetic causes in the fight against this global public health threat. By using 
MEGARes to analyse metagenomic data, researchers can identify the presence and 
abundance of AMR genes in various environments and track their distribution and 
evolution over time. 

AMR++ (Bonin et al. 2023) is a powerful and flexible bioinformatic pipeline that 
is designed to aid in the analysis of antimicrobial resistance genes. In the context of



metagenomics, the DNA of a given sample or set of samples is sequenced using 
high-throughput sequencing technologies. The resulting data can be quite complex, 
with millions or even billions of short DNA sequences that need to be sorted and 
analysed. By providing a comprehensive view of the resistome in a given bacterial 
population, the pipeline can help researchers to better understand the mechanisms 
and evolution of antibiotic resistance and develop more effective strategies for 
combatting this important public health. The sources and drivers of AMR in the 
aquatic environment is crucial for developing effective strategies to mitigate its 
impact. These strategies may involve improved wastewater treatment processes, 
responsible antimicrobial use in agriculture and aquaculture, and enhanced surveil-
lance and monitoring programs. Additionally, promoting public awareness and 
education regarding the proper disposal of pharmaceuticals and reducing unneces-
sary antimicrobial use are important steps towards combating AMR in the aquatic 
environment (Fig.12.1). 
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Fig. 12.1 Antimicrobial resistance genes showing the sources, and drivers of antimicrobial 
resistance in the aquatic environment 

12.4 Antimicrobial Resistance in Bacteria 

Resistome is a term used to describe the total genetic potential of an ecosystem to 
resist antimicrobial agents (Martínez et al. 2014; Crofts et al. 2017). The resistome of 
an ecosystem is shaped by a variety of factors, including the presence of anthropo-
genic stressors, such as the release of antibiotics and other toxic compounds into the 
environment, and the presence of natural stressors, such as heavy metal ions and 
other toxic substances (Kraemer et al. 2019). Microorganisms have evolved the 
ability to detect, interact with and digest tiny compounds that control the antibiotics 
(Berendonk et al. 2015). The development of novel antibiotics that can avoid 
resistance can be influenced by knowledge about the evolution of resistance 
(McGarvey et al. 2012). The genomic era has led to new insights into the biology



of bacteria, which could potentially lead to the discovery of new antibiotics, but the 
process of drug development is complex and time-consuming (Li et al. 2015). Soil 
microorganisms produce natural antimicrobial compounds, and these have been a 
rich source of antibiotics used in clinical medicine (Wrighton 2018; Crits-Christoph 
et al. 2018). Metagenomic mining has revealed that resistance genes have existed in 
microbial populations long before the modern “antibiotic era” (Yadav and Kapley 
2021). The diversity and distribution of ARGs in the environment can help to inform 
the development of new antibiotic resistance methods, such as using natural 
chemicals from microbial communities to inhibit the propagation of resistance 
genes (Berendonk et al. 2015). In this study, antibiotic resistance in environmental 
bacteria can provide important insights into the natural history of resistance and the 
mechanisms that underlie the development and spread of resistance in clinical 
settings (Aminov 2009). The fast growth of antibiotic-resistant infections has 
revealed our limited understanding of the environmental mechanisms occurring in 
microbial communities (Waseem et al. 2017). Multi-drug-resistant bacteria (MDR) 
have evolved the ability to metabolise antimicrobials and can transfer these 
properties to other bacterial species through horizontal gene transfer (Holt et al. 
2015). 
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12.5 Hotspots for the Spread of Antibiotic Resistance 

Antibiotic use in agriculture, veterinary medicine and human medicine can lead to 
the growth and spread of resistant microorganisms in the environment. Antibiotic-
resistant bacteria have been found in various environmental sources, including soil, 
water and wildlife; there is no direct evidence that these bacteria have existed four 
million years ago, in caves (Bhullar et al. 2012). ARG bacteria have also been 
discovered in the gastrointestinal tracts of persons living in distant places who have 
never been exposed to antibiotics as well as in samples of permafrost that are 
thousands of years old (Kunhikannan et al. 2021). The use of antibiotics in agricul-
ture and animal husbandry can lead to the selection and spread of ARGs in the gut 
microbiota of animals (Wichmann et al. 2014; Berendsen et al. 2015). Antibiotic-
resistant bacteria can live in close proximity to each other in the soil, which can 
facilitate the transfer of antibiotic resistance genes through horizontal gene transfer 
(Christensen et al. 1998). Horizontal gene transfer is a major factor promoting the 
growth of ARGs in the environment, and it highlights the importance of responsible 
use of antibiotics to minimise the emergence and spread of antibiotic-resistant 
bacteria. The use of antibiotics in animals can contribute to the development of 
antibiotic resistance in humans. When antibiotics are used in animal agriculture, 
bacteria can become resistant to these drugs and may spread to humans through food 
or other environmental pathways. This can lead to the rise and spread of ARG 
infections in humans, which can be difficult to treat with traditional antibiotics. 
Therefore, reducing the use of antibiotics in animal agriculture and promoting 
responsible use of antibiotics in human medicine are important strategies for 
minimising the emergence and spread of antibiotic-resistant infections in humans



(Mann et al. 2021). Workers who handle and process meat or work in agriculture 
may be exposed to bacteria that are resistant to antibiotics, and this can increase the 
risk of developing antibiotic-resistant infections (Manyi-Loh et al. 2018). It is critical 
to investigate the various environmental hotspots that contribute to the spread of 
antibiotic resistance in both pathogenic and non-pathogenic bacteria. Hotspots for 
antibiotic-resistant bacteria can be found in various environmental sources, with 
pharmaceutical manufacturing sites, wastewater systems and aquaculture, food and 
animal production and hospitals (Berendonk et al. 2015). 
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It is important to find the major drivers that contribute to the development and 
spread of antimicrobial resistance. Some of the major drivers include the following:

• Overuse and misuse of antibiotics: Antibiotic-resistant bacteria can arise and 
spread due to the overuse and improper use of antibiotics in both animals and 
human beings.

• Poor infection prevention and control practices: Poor infection control and 
prevention procedures in healthcare settings can facilitate the spread of 
antibiotic-resistant bacteria among patients.

• Inadequate sanitation and hygiene: Inadequate sanitation and hygiene can lead to 
the spread of antibiotic-resistant bacteria in the environment, particularly in water 
and soil.

• Agricultural and animal husbandry practices: The use of antibiotics in agriculture 
and animal husbandry can lead to the development and spread of ARGs in 
animals and the environment.

• Global travel and trade: The global movement of people, animals and goods can 
facilitate the spread of antibiotic-resistant bacteria across borders.

• Insufficient funding for research and development: The lack of investment in 
research and development of new antibiotics and alternative treatments for 
infectious diseases can limit our ability to effectively treat antibiotic-resistant 
infections. 

Identifying and addressing these drivers is critical to addressing the problem of 
antimicrobial resistance and preserving the effectiveness of antibiotics for future 
generations. 

12.6 Conclusion 

Metagenomics is an effective method for finding and investigating antibiotic resis-
tance pathways utilising both sequence-based and function-based methods. It allows 
for the comprehensive analysis of complex microbial communities, providing 
insights into the diversity and distribution of ARGs. Antimicrobial resistance studies 
are commonly related to other components of the study being conducted, such as 
investigations of mutations, metabolic pathways, gene expression and infections. 
These other factors can affect the development and spread of antibiotic resistance, 
and understanding their interplay with resistance mechanisms is important for



developing effective strategies to combat antimicrobial resistance. These studies 
involve large, complex datasets and require advanced computational and bioinfor-
matic tools for their analysis. Proper data pre-processing, quality control and statis-
tical analysis are essential to ensure the accuracy and reproducibility of results. 
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