
Chapter 6
Connectedness

The notion of path connectedness is more intuitive than connectedness. It appears
before connectedness, even in history. Motivated by that, we start this chapter with
path connectedness and its relationshipwith continuity; throughwhichwe deduce the
Intermediate Value Theorem. Then we discuss connectedness and its characteriza-
tions, followed by a section on components; which provides insights into connected
components and path components. Finally, we present some miscellaneous topics
such as local connectedness, quasi-components, and totally disconnected spaces.

6.1 Path Connectedness

Path connectedness is natural for subsets of Rm . Analogously, it can be extended to
arbitrary metric spaces. First, we introduce the notion of a path.

Definition 6.1 Let X be a metric space and x, y ∈ X. A path from x to y, in X, is
defined to be the range of a continuous function f : [0, 1] −→ X such that f (0) = x
and f (1) = y.

Therefore, a subset γ of X is said to be a path in X if there exists a continuous
function f : [0, 1] −→ X with range γ. Alternate terms for path are curve and arc.

Definition 6.2 Ametric space X is said to be path connected if any two points inside
X can be joined by a curve, inside X.

Further a nonempty subset S of a metric space X is said to be path connected if it is
a path connected subspace of X.

Examples 6.3 Let X be a metric space. The following are immediate:

(a) Every singleton subset of X is path connected.
(b) Every curve in X is path connected.
(c) Every open ball in R

2 is path connected.
(d) If A and B are non-disjoint path connected subsets of X, then so is A ∪ B.

Recall that a subset I of R is defined to be an interval if I contains all reals
between any two points of I (see Definition 1.1).
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156 6 Connectedness

Proposition 6.4 Every nonempty interval is path connected.

Proof Let I be a nonempty interval and a, b ∈ I. Define g : [0, 1] −→ I as

g(t) := a + t (b − a) for all t ∈ [0, 1].

Then g is path in I from a to b. Hence, I is path connected. �

Remarks 6.5 (a) Unless specified, all the sets of this chapter will be taken as
nonempty subsets of an arbitrary metric space.

(b) If A and B are disjoint sets, we shall write A⊍ B, instead of A
⋃

B, which
would intrinsically convey that the sets A and B are disjoint.

(c) It is a standard practice to take arbitrary compact intervals in Definition 6.1,
instead of [0, 1]. Due to the natural bijection between any two non-degenerate
compact intervals, our choice of the unit interval has no loss of generality.

The following lemma opens up a world of abstraction.

Lemma 6.6 Let I be an interval. Then I is not a disjoint union of two nonempty
sets, closed in I.

Proof Suppose I = A ⊍ B, for some nonempty disjoint sets A and B, closed in I.
Pick any a ∈ A and b ∈ B. Without loss of generality, suppose that a < b.

Then A1 := A ∩ [a, b] and B1 := B ∩ [a, b] are nonempty disjoint sets, closed
in [a, b] such that A1 ⊍ B1 = [a, b]. Let c := sup A1. The definition of c and the fact
that A1 ⊍ B1 is an interval implies that

(c − ε, c] ∩ A1 �= ∅ and (c, c + ε) ∩ B1 �= ∅ for all ε > 0.

Therefore, c is an adherent point of both A1 and B1,which are closed in [a, b].Also,
c ∈ [a, b]. Hence, c ∈ A1 ∩ B1 = ∅, a contradiction. �

Theorem 6.7 Let X be a path connected metric space. Then X is not a disjoint
union of two nonempty closed subsets of X.

Proof Suppose there are disjoint nonempty closed sets A and B such that A⊍
B = X . Pick any a ∈ A and b ∈ B. Let f : [0, 1] −→ X be a continuous map with
f (0) = a and f (1) = b.

Then f −1(A) and f −1(B) are closed subsets of [0, 1], containing 0 and 1,
respectively. Since A and B are disjoint, so are f −1(A) and f −1(B). Moreover,
X = A⊍ B implies that [0, 1] = f −1(X) = f −1(A)⊍ f −1(B), a contradiction to
Lemma 6.6. �

Now we prove that the only path-connected subsets of R are nonempty intervals.

Theorem 6.8 Let ∅ �= I ⊂ R. Then I is path connected if and only if I is an interval.



6.1 Path Connectedness 157

Proof The converse holds by Proposition 6.4. Assume that there exists a path con-
nected subset I of R which is not an interval. Then there are a, b ∈ I and c ∈ R \ I
such that a < c < b.

Since I is path connected, there exists a continuous function f : [0, 1] −→ I such
that f (0) = a and f (1) = b. Let

A := f −1((−∞, c] ∩ I ) and B := f −1([c,+∞) ∩ I ).

Note that a ∈ A, b ∈ B and A ∪ B = f −1(I ) = [0, 1]. Since f is continuous,
A and B are closed in [0, 1]. Since c /∈ I, we have c /∈ f ([0, 1]) and therefore,
A ∩ B = ∅. Hence, A and B are nonempty disjoint sets, closed in [0, 1] with union
[0, 1], a contradiction to Lemma 6.6. �

Next,we shall discuss the relationship between continuity andpath connectedness.
We shall present various consequences and generalizations of the Intermediate Value
Theorem, which is also known as the Intermediate Value Property of continuous real
functions. A few other generalizations will follow in the next section of this chapter.

First, we establish that continuous image of a path connected space is path con-
nected.

Theorem 6.9 Let X, Y be metric spaces such that X is path connected and f :
X −→ Y be a continuous function. Then f (X) is a path connected subspace of Y.

Proof Let y1, y2 ∈ f (X). Then y1 = f (x1) and y2 = f (x2) for some x1, x2 ∈ X.

Since X is path connected, there exists a continuous function φ : [0, 1] −→ X such
thatφ(0) = x1 andφ(1) = x2.Then f ◦ φ : [0, 1] −→ f (X) is a continuous function
with ( f ◦ φ)(0) = y1 and ( f ◦ φ)(1) = y2. Hence, f (X) is a path connected subset
of Y. �

Corollary 6.10 Let X be a path connected metric space, f : X −→ R be a con-
tinuous function and a, b ∈ X be such that f (a) < f (b). Then for every l ∈
( f (a), f (b)), there exists some c ∈ X such that f (c) = l.

Proof By Theorems 6.8 and 6.9, f (X) is a path connected subset ofR and hence an
interval. Therefore, f (X) ⊃ [ f (a), f (b)], which contains l. Hence, f (c) = l, for
some c ∈ X. �

Asan application of the above corollary,wenowshow that the continuous injective
real valued maps on intervals are strictly monotone with strictly monotone inverses
on their range.

Example 6.11 Let I be an interval and f : I −→ R be a continuous injective map.
Then f is strictly monotone with strictly monotone inverse on f (I ).

Proof Let E := {(x, y) ∈ I 2 : x < y}. Define g : E −→ R as g(x, y) = f (x) −
f (y). Note that E is path connected. Since g is continuous, g(E) is also path con-
nected.
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If f is not strictly monotone, then g takes positive and negative values on E .

Therefore, there exist (x, y) ∈ E such that g(x, y) = 0. This contradicts the fact that
f is injective.
Hence, f is strictly monotone on I. It can be shown that f −1 : f (I ) −→ I is also

strictly monotone, which we leave to the readers. �

Theorem 6.12 (Intermediate Value Theorem) Let a < b be reals and f : [a, b] −→
R be a continuous function. Then f maps intervals onto intervals. In other words, if
f (a) < l < f (b), then f (c) = l for some c ∈ (a, b).

Proof By Theorem 6.8, [a, b] is path connected. Now apply Corollary 6.10. �

The converse is not true. However, it holds under some additional hypotheses (see
Exercise 6.13) A few immediate consequences of the Intermediate Value Theorem
are presented below. The first one is a fixed point theorem.

Example 6.13 Let f : [0, 1] −→ [0, 1] be a continuous function. Then there exists
some x ∈ [0, 1] such that f (x) = x .

Proof Let g(x) := f (x) − x . If g(0) = 0 or g(1) = 1, we are done. Otherwise
g(0) > 0 and g(1) < 0. Since g is continuous on [0, 1], the result follows by Inter-
mediate Value Theorem. �

Example 6.14 Let S1 denote the unit circle in R2 and f : S1 −→ R be continuous.
Then there exists some z ∈ S1 such that f (z) = f (−z). (There are two antipodal
points on the equator of the earth at which the temperatures are exactly the same.)

Proof Consider the functions g : S1 −→ R and h : [0, 1] −→ S1 defined as

g(x) := f (x) − f (−x) and h(t) := (cos(2πt), sin(2πt)).

Since g and h are continuous, so is their composition g ◦ h : [0, 1] −→ R. Note that
h(0) = (1, 0) = −h(1/2). Therefore,

(g ◦ h)(0) = f (h(0)) − f (−h(0)) = f (−h(1/2)) − f (h(1/2)) = −(g ◦ h)(1/2).

If (g ◦ h)(0) = 0, then take z = h(0). Otherwise (g ◦ h)(0) and (g ◦ h)(1/2) are of
opposite signs. By Intermediate Value Theorem, there exists c ∈ (0, 1/2) such that
(g ◦ h)(c) = 0. Then z = h(c) satisfies our requirements. �

Proposition 6.15 [1, Theorem 2] Let f : R −→ R. Then f is continuous if and
only if f maps intervals onto intervals, and compact sets onto compact sets.

Proof The necessity follows by Theorems 5.31 and 6.12. For the converse, assume
that f maps intervals onto intervals and compact sets onto compact sets, but is not
continuous at some x ∈ R. Then there exists some ε > 0 and a sequence {yn} of real
numbers such that
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|yn − x | <
1

n
and | f (x) − f (yn)| ≥ ε for all n ∈ N.

Then for each n ∈ N, either f (yn) ≥ f (x) + ε or f (yn) ≤ f (x) − ε. Since f maps
intervals onto intervals, one can choose a real xn between x and yn such that

f (xn) = f (x) + ε

(
1

2
+ 1

n + 1

)

or f (x) − ε

(
1

2
+ 1

n + 1

)

. (6.1)

Write X := {xn : n ∈ N} ∪ {x}. Since xn −→ x, X is a closed and bounded subset
of R and hence compact. By hypothesis, f (X) is also compact. Also, (6.1) ensures
that either f (x) + ε/2 or f (x) − ε/2 is an adherent point of f (X), but not in f (X),

a contradiction. �

Alternative proofs of the Intermediate Value Theorem (6.12) will be suggested in
Exercise 6.14.

History Notes 6.16 The first proof of the Intermediate Value Theorem appeared in a
60 pages book byBolzano in 1817. In 1821, Cauchy provided its modern formulation
(see [2, p. 847]).

Exercise 6.1 Show that every curve is a path connected compact set, given by a
uniformly continuous map.

Exercise 6.2 Can a metric space have a path connected finite subset, with exactly
two points?

Exercise 6.3 Characterize the set of continuous functions from R into Z.

Exercise 6.4 Let f : [0, 2] −→ R be a continuous function with f (0) = f (2).
Prove that there exists some x ∈ [0, 1] such that f (x) = f (x + 1).

Exercise 6.5 Does there exist any normed linear space which is not path connected?

Exercise 6.6 Let f : R −→ R be a continuous function such that f (O) is an open
set, for every open set O. Prove that f is strictly monotone.

Exercise 6.7 Does there exist any p > 0 such that the square root of the arithmetic
mean of the pth powers of 2, 3 and 4 is π?

Exercise 6.8 Does there exist a continuous bijection from [0, 1]2 onto [0, 1], or
from (0, 1)2 onto (0, 1)?

Exercise 6.9 Let f : [0, 1) ∪ [3, 4] −→ R be a strictly increasing function such that
the range of f is connected. Prove that f is a continuous function.

Exercise 6.10 If a, b, c are distinct reals, then what is the number of distinct real
roots of the equation (x − a)3 + (x − b)3 + (x − c)3 = 0?
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Exercise 6.11 Let n ∈ N, and a1, . . . , an−1 ∈ R such that the polynomial given by
p(x) := xn + an−1xn−1 + · · · + a1x − 1 has no roots in {z ∈ C : |z| < 1} and it sat-
isfies p(−1) = 0. Prove or disprove:

(a) p(1) = 0.
(b) p(2) > 0.
(c) lim

x→∞ p(x) = ∞.

(d) p(3) = 0.

Exercise 6.12 Let {(Xi , ρi ) : i = 1, . . . n} be a finite collection of path connected
metric spaces and ρ be the metric on the Cartesian product X := ∏n

i=1 Xi defined as
in Exercise 2.24. Is (X, ρ) a path connected metric space?

Exercise 6.13 Let f : R −→ R such that f maps intervals onto intervals.

(a) Is it necessary that f is continuous?
(b) If f −1({r}) is closed for every r ∈ Q, prove that f is continuous.

Exercise 6.14 Write alternate proofs for the Intermediate Value Theorem (6.12)
using (a) the least upper bound property of R and (b) Heine-Borel Theorem (5.14)
for R.

Exercise 6.15 Write an alternate proof of Lemma 6.6, using relative open sets only.

6.2 Connected Sets

Motivated by Theorem 6.7, we now present the notion of connectedness.

Definition 6.17 A metric space X is said to be connected if it is not a union of two
nonempty disjoint sets, closed in X.

A nonempty subset Y of a metric space X is said to be connected if Y is a connected
subspace of X. Otherwise, Y is called disconnected.

It is evident from the definition that a metric space X is connected if and only if
X is not a union of two nonempty disjoint sets, open in X.

Examples 6.18 (a) In any metric space, the singleton sets are connected.
(b) In R, no finite set having more than one point is connected.
(c) By Lemma 6.6, every nonempty interval of reals is connected.
(d) By Theorem 6.7, every path connected metric space is connected.

In this chapter, we will provide several examples of connected metric spaces
that are not path connected. However, for subspaces of R, these two notions are
equivalent.

Theorem 6.19 Let ∅ �= I ⊂ R. Then the following are equivalent:
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(a) I is an interval.
(b) I is path connected.
(c) I is connected.

Proof The implications (a) ⇐⇒ (b) and (b) ⇒ (c) hold by Theorems 6.8 and
6.7, respectively. To prove that (c) ⇒ (a), assume that I is not an interval. Then
there are a < c < b such that a, b ∈ I, but c /∈ I. So I is a disjoint union of the
nonempty sets I ∩ (−∞, c) and I ∩ (c,+∞), which are open in I. Hence, I is
not connected. �

Just like path connected spaces, the continuous image of a connected space is
connected.

Theorem 6.20 Let X, Y be metric spaces such that X is connected and f : X −→ Y
be a continuous function. Then f (X) is a connected subspace of Y.

Proof Suppose that the result is not true. Then there exists continuous function f
on a connected metric space X into another metric space Y such that f (X) is not
connected. Then f (X) = O1 ∪ O2 for some nonempty disjoint sets O1 and O2, open
in f (X).

Then we obtain X := f −1(O1) ∪ f −1(O2), as a disjoint union. Since f is con-
tinuous, both f −1(O1) and f −1(O2) are open inside X. Since X is connected, either
f −1(O1) = ∅ or f −1(O2) = ∅. So either O1 = f (∅) = ∅ or O2 = f (∅) = ∅, a con-
tradiction. �

Corollary 6.21 Let X be a connected metric space, f : X −→ R be a continuous
function and a, b ∈ X be such that f (a) < f (b). Then for every l ∈ ( f (a), f (b)),

there exists some c ∈ X such that f (c) = l.

Proof Applying Theorems 6.20 and 6.19, f (X) is a connected subset of R and
hence an interval. Therefore, l ∈ [ f (a), f (b)] ⊂ f (X). Hence, f (c) = l, for some
c ∈ X. �

Now we present a property of connected spaces which is not shared by path
connected spaces, in general. Therefore, it serves as our main motivation to construct
examples of connected sets which are not path connected.

Theorem 6.22 If A is a connected subset of a metric space X, then any set B such
that A ⊂ B ⊂ A, is connected.

Proof Let B = B1 ⊍ B2, where B1 and B2 are disjoint sets, closed in B. Then

A = A ∩ B = (A ∩ B1)⊍ (A ∩ B2)

is a union of disjoint sets, closed in A. Since A is connected, either A ∩ B1 = ∅ or
A ∩ B2 = ∅. Without loss of generality, assume that A ∩ B1 = ∅. That is A ⊂ B2.

For E ⊂ B, let Ê denote the closure of E in the subspace B. Then Â = A ∩ B =
B, which implies B = Â ⊂ B̂2 = B2, as B2 is closed in B. Therefore, B1 = ∅.

Hence, B is connected. �
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Example 6.23 The topologist’s sine curve Ts, defined as under, is connected but
not path connected.

Ts :=
{(

x, sin
1

x

)

: x ∈ (0, 1]
} ⋃ {

(0, y) : |y| ≤ 1
}
.

Note that the set

T := {(x, sin(1/x)) : x ∈ (0, 1]}

is path connected and hence a connected sub-
space of R2.

Also, note that T = Ts . Applying Theorem
6.22, the space Ts is connected.

It can also be verified that there is no path
from (0, 0) to (1, sin 1), in Ts .

Example 6.24 Let X denote the subspace of R2 given by the union of an infinite
spiral and the unit circle as under:

{((

1 + 1

t

)

cos t,

(

1 + 1

t

)

sin t

)

; t ≥ 1

}

⋃
{(x, y) : x2 + y2 = 1}.

By Theorem 6.22, X is connected.
However, X is not path connected.

It can be shown that there exists no
path joining (1, 0) and (2 cos 1, 2 sin 1),
inside this space.

A few other examples of connected but not path connected metric spaces will be
presented Example 6.38 and Exercise 6.22.

Definition 6.25 Let X be a metric space and A, B ⊂ X. Then A and B are said to
be separated if

A ∩ B = ∅ and A ∩ B = ∅.

Separated sets are always disjoint. However, the intervals (0, 1) and (1, 2) are sepa-
rated inR, while [0, 1] and (1, 2) are not. The converse holds under some additional
hypotheses.
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Proposition 6.26 Let A and B be two disjoint subsets of a metric space.

(a) If both A and B are closed, then these are separated.
(b) If both A and B are open, then these are separated.

Proof (a) This part is trivial, as then A ∩ B = A ∩ B = ∅ and A ∩ B = A ∩ B = ∅
(b) Assume that there are open disjoint sets A and B which are not separated. Then

either A ∩ B �= ∅ or A ∩ B �= ∅. Without loss of generality, suppose that A ∩
B �= ∅. Pick any x ∈ A ∩ B �= ∅. Since A is open, there exists some r > 0 such
that B(x; r) ⊂ A. Since x ∈ B, we have B(x; r) ∩ B �= ∅. This implies that
A ∩ B �= ∅, a contradiction. �

Proposition 6.27 Let X be a metric space such that X = A⊍ B for some separated
sets A and B. Then both A and B are open (and hence closed) in X.

Proof If either A = ∅ or B = ∅, the result is obvious. Assume otherwise. If x ∈ A,

then x /∈ B. So there exists some r > 0 such that B(x; r) ∩ B = ∅. Since X = A ∪
B, we obtain B(x; r) ⊂ A. Hence, A is open. Similarly, B is open in X. �

Sets which are open as well as closed, are also known as clopen sets. Further, if
X is a union of two nonempty disjoint clopen sets A and B, we say that A|B is a
separation of X or that A ⊍ B is a separation of X.

Now we present a few characterizations of disconnected spaces. Note that these
characterizations correspond to characterizations of connected sets.

Theorem 6.28 If X is a metric space, then the following are equivalent:

(a) X is a union of two nonempty disjoint sets, open in X.

(b) X is a union of two nonempty disjoint sets, closed in X.

(c) X is a union of two nonempty separated sets.
(d) X contains a proper clopen subset.
(e) There exists a continuous surjective map f : X −→ {0, 1}.
Proof The equivalence ((a) ⇐⇒ (b)) is immediate from the definition of closed
sets. The implications ((b) ⇒ (c)) and ((a) ⇒ (c)) follow from Proposition 6.26.
Finally, ((c) ⇒ (b)) and ((c) ⇒ (a)) are evident from Proposition 6.27.

To prove ((b) ⇐⇒ (d)), assume that X is union of two nonempty disjoint closed
sets A and B. Then A = X \ B is an open subset of X, which is a proper subset of
X as both A and B are nonempty. Conversely, if X contains a proper subset A which
is both open as well as closed, then for B := X \ A, the second assertion holds.

To prove ((b) ⇐⇒ (e)), assume that X is union of two nonempty disjoint closed
sets A and B. Define f to be 0 on A, and 1 on B. It can be shown that f is a
continuous surjective map from X onto {0, 1}. Conversely, assume that there exists
a continuous surjective map f : X −→ {0, 1}. Then the disjoint sets A := f −1({0})
and B := f −1({1}) serve our purpose. �

Theorem 6.29 Let X be a compact and connected metric space such that X \ {x}
is disconnected, for some x ∈ X. Then there exist two different elements x1, x2 ∈ X
such that both X \ {x1} and X \ {x2} are connected.
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The above result is immediate when X is a subspace of R. Its general proof is out
of the scope of this textbook. Interested readers are referred to [3, p. 89, Theorem
6.6].

Metric spaces which are compact as well as connected are also known as con-
tinuum (see [3]). Further, a point x of a connected metric space X is known as a
cut point, if X \ {x} is disconnected. Hence, the above theorem concisely states the
following:

If a continuum has a cut point, then it has at least two non-cut points.

Exercise 6.16 Prove that any curve in a metric space is a connected set.

Exercise 6.17 Does there exist a subset of Q which is both open and closed in Q?

Exercise 6.18 Is finite intersection of connected subsets of a metric space always
connected?

Exercise 6.19 Does there exist a connected subset whose interior is not connected?

Exercise 6.20 Prove or disprove:

(a) The interior of every path connected set is path connected.
(b) The interior of every connected set is path connected.

Exercise 6.21 Can you replace the word ‘connected’ with ‘path connected’ in The-
orem 6.22?

Exercise 6.22 Show that the infinite broom space, given by

{

(x, y) ∈ R
2 : x ∈ [0, 1], y = x

n
; n ∈ N

} ⋃
{(1, 0)}

is connected but not a path connected subspace of R2.

Exercise 6.23 If X is a metric space, prove that the following are equivalent:

(a) X is not a union of two nonempty disjoint sets, open in X.

(b) X is not a union of two nonempty disjoint sets, closed in X.

(c) X is not a union of two nonempty separated sets.
(d) X does not contain any proper clopen subset.
(e) There exists no continuous surjective map f : X −→ {0, 1}.
Exercise 6.24 Write a proof of Theorem 6.29 if X is a subspace of R.

Exercise 6.25 In discrete metric spaces, prove that disjoint sets are separated.

Exercise 6.26 Let A be a subset of a metric space X. If A is connected, prove that
so is A. Is the converse true? Justify your answer.
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Exercise 6.27 Let A, B be separated subsets of a metric space and C ⊂ A and
D ⊂ B. Prove that C and D are also separated.

Exercise 6.28 Let X be a metric space. Prove that

(a) singletons subsets of X are connected,
(b) the only finite connected subsets of X are singletons and
(c) if X is discrete, then only singletons are connected.

Exercise 6.29 Let X be a metric space and A, B ⊂ X such that dist (A, B) :=
inf{d(a, b) : a ∈ A, b ∈ B} > 0. Prove that A and B are separated sets. Is the con-
verse true?

Exercise 6.30 Let X be ametric spacewith twononempty subsets A and B satisfying
dist (A, B) > 0 and X = A ∪ B. Prove that both A and B are open as well as closed
in X and thence conclude that X is not a connected metric space.

Exercise 6.31 Let A ⊂ C such that A /∈ {∅,C}. Prove that A is not clopen in C.

Exercise 6.32 Let A and B be closed subsets of a metric space such that both A ∪ B
and A ∩ B are connected. Prove that both A and B are connected.

Exercise 6.33 Let E ⊂ Y ⊂ X. Prove or disprove: E is connected in X if and only
if E is connected in Y.

Exercise 6.34 What difference does it make if we define empty sets to be connected
or path connected?

Exercise 6.35 Let A ⊂ B ⊂ C ⊂ X. Prove or disprove: If A and C are connected,
then so is B.

Exercise 6.36 Deduce Intermediate Value Theorem (6.12) from Theorem 6.20.

Exercise 6.37 Prove that a metric space X is disconnected if and only if there exists
a continuous surjective function f : X −→ {0, 1}.
Exercise 6.38 Prove that a metric space X is disconnected if and only if there exists
a continuous function f : X −→ R such that f −1({0}) = ∅, while both of the sets
f −1(0,+∞) and f −1(−∞, 0) are nonempty.

Exercise 6.39 Let X denote the space of functions from [0, 1] into itself, under
uniform norm ‖.‖∞ and let A be any connected subset of X. Prove that for every
x ∈ [0, 1], the set {a(x) : a ∈ A} is either an interval or a singleton set.

Exercise 6.40 Show that the subspace
{

f ∈ C[0, 1] : ∫ 1
0 f �= 0

}
of C[0, 1], under

uniform norm ‖.‖∞, is disconnected.

Exercise 6.41 Under uniform norm, is C[0, 1] connected?
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Exercise 6.42 Does there exist any p ∈ [1,∞] for which the sequence space �p is
connected?

Exercise 6.43 Obtain the set of non-cut points of the Topologist’s Sine Curve of
Example 6.23.

Exercise 6.44 Does there exist a continuum having no non-cut point?

Exercise 6.45 Does there exist a continuum having

(a) no cut point?
(b) exactly one cut point?
(c) exactly n cut points, for every n ∈ N \ {1}?
(d) infinitely many cut points?

Exercise 6.46 Does there exist a continuum having

(a) exactly one non-cut point?
(b) exactly n non-cut points, for every n ∈ N \ {1}?
(c) infinitely many non-cut points?

6.3 Components

Definition 6.30 Let X be a metric space and ∅ �= Y ⊂ X. Then Y is said to be a
connected component of X if Y is a maximal connected subset of X, that is

(a) Y is a connected subset of X and
(b) if Ŷ is a connected subset X with Ŷ ⊃ Y, then Ŷ = Y.

Analogously, we define path components or path connected components of a met-
ric space, by replacing the term ‘connected’ with ‘path connected’, in the above
definition.

Most of the significant fundamental results about (path) connected components
emerge from the following theorem.

Theorem 6.31 Let � be any nonempty collection of (path) connected subsets of a
metric space X, containing a common point. Then

⋃
E∈� E is also (path) connected.

Proof Let a ∈ X such that a ∈ E for all E ∈ � and write A := ⋃
E∈� E .

(a) Proof for path connectedness: Pick any x, y ∈ A. Then there exist Ex , Ey ∈
� such that x ∈ Ex and y ∈ Ey . Since Ex and Ey are path connected, there
are continuous functions fx : [0, 1] −→ Ex and fy : [0, 1] −→ Ey such that
fx (0) = x, fx (1) = a = fy(0) and fy(1) = y. Define f : [0, 1] −→ Ex ∪ Ey

such that

f (x) :=
{

fx (2t) ; t ∈ [0, 1/2],
fy(2t − 1) ; t ∈ (1/2, 1].
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Then f : [0, 1] −→ A is a continuous function such that f (0) = x and f (1) =
y. Hence, A is path connected.

(b) Proof for connectedness: Assume that A is a disjoint union of sets A1 and A2,

closed in A. Since a ∈ A, without loss of generality we assume that a ∈ A1.

Pick any E ∈ �. Then

E = E ∩ A = (E ∩ A1)⊍ (E ∩ A2).

Note that E ∩ A1 and E ∩ A2 are closed in E . Since E is connected and a ∈
E ∩ A1, we obtain E ∩ A2 = ∅. Therefore, E = E ∩ A1, which implies that
E ⊂ A1. Since E ∈ �was arbitrary, we obtain A ⊂ A1 and thus A2 = ∅.Hence,
A is connected. �

Theorem 6.32 Let X be any metric space.

(a) Any two connected components of X are either identical or disjoint.
(b) Every element of X belongs to a connected component of X.

(c) Every connected subset of X, is a subset of a connected component of X.

(d) X is a disjoint union of its connected components.

Each of the above assertions is true for path connected components.

Proof We establish the result only for connected components. The proofs for path
connected components are analogous.

(a) Let A and B be two connected components of X. If A ∩ B �= ∅, by Theorem
6.31, A ∪ B is connected. Since A ⊂ A ∪ B, we have A ∪ B = A. Similarly,
A ∪ B = B. Hence, A = B.

(b) Let a ∈ X and � := {A : a ∈ A ⊂ X, A is connected}. By Theorem 6.31, T =⋃
A∈� A is connected. It can be shown that T is the required component.

(c) Let S be a connected subset of X. Pick any s ∈ S. As in (b), for � := {A : s ∈
A ⊂ X, A is connected}, the set T = ⋃

A∈� A is the connected component of X
containing s. Since S ∈ �, we obtain S ⊂ T .

(d) Follows from (a) and (b). �

Proposition 6.33 Let n ∈ N, U be an open subset of Rn and A be a connected
component of the subspace U of Rn . Then A is a clopen subset of U.

Proof If a ∈ A(⊂ U ), there exists some ε > 0 such that B := B(a; ε) ⊂ U. Since
a ∈ A ∩ B, we obtain A ∩ B �= ∅. By Theorem 6.31, A ∪ B is connected. So it is
contained in a connected component of U. Since A is a connected component of U,

we have A = A ∪ B. Therefore, B ⊂ A. Hence, A is open.
Further by Theorem 6.22, A ∩ U is a connected subset of the subspace U and it

contains A. Consequently, A ∩ U = A. Hence, A is closed in U. �

Another important result on connected components will be discussed in Theorem
7.18. Below we provide one last consequence of Theorem 6.31.
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Lemma 6.34 If X and Y are (path) connected metric spaces, then so is X × Y.

Proof We prove the result for connectedness, as the case of path connectedness is
analogous.

If X andY are connected, then so are the ‘horizontal’ and ‘vertical’ slices in X × Y,

respectively, given by X × y := X × {y} and x × Y := {x} × Y for all x ∈ X and
y ∈ Y. Fix any a ∈ X and b ∈ Y. Define

Tx := (X × b) ∪ (x × Y ) for all x ∈ X.

Since both X × b and x × Y contain a common point (x, b), by Theorem 6.31, each
Tx is connected. Further note that

⋃
x∈X Tx = X × Y and each Tx contains a common

point (a, b). Again by Theorem 6.31, the space X × Y is connected. �

Theorem 6.35 If X1, . . . , Xn are (path) connected metric spaces, then so is the
product space is

∏n
i=1 Xi .

Proof Apply induction on n. The result is trivial for n = 1 and true for n = 2 by
Lemma 6.34. Assume the result for some n ≥ 2. We establish it for n + 1.

Let X1, . . . , Xn+1 be (path) connected metric spaces. By induction hypothesis, so
are the spaces

∏n
i=1 Xi and (

∏n
i=1 Xi ) × Xn+1. Define f : (

∏n
i=1 Xi ) × Xn+1 −→

∏n+1
i=1 Xi as

f
(
(x1, . . . , xn), xn+1

) := (x1, . . . , xn, xn+1).

It can be shown that f is a surjective map, continuous with respect to the
usual product topologies. Hence,

∏n+1
i=1 Xi = f

(
(
∏n

i=1 Xi ) × Xn+1
)
is (path) con-

nected. �

Let GLn(K) denote the collection of n × n invertible matrices over a field K.

Consider GLn(K) as a subspace of Kn2
, equipped with the Euclidean metric in n2

dimensions.

Example 6.36 GLn(C) is path connected, while its subspace GLn(R) is not even
connected.

Proof For M ∈ GLn(C), let det (M) denote the determinant of M. The space
GLn(R) is not connected, as the image of GLn(R) under the continuous map
M �−→ det (M) is not connected.

Let A be an arbitrary element of GLn(C) and I denote the n × n identity matrix.
It is enough to prove that there exists a path from A to I inside GLn(C).

Let P(z) := det (A + z(I − A)) for all z ∈ C. Then P(z) is a polynomial overC
and hence has finitelymany zeros. Thus, there exists a path from 0 to 1 inCwhich lies
inside {z ∈ C : P(z) �= 0}, except possibly for the initial and terminating points 0
and 1. That is, there exists a continuous map h on [0, 1] such that h(0) = 0, h(1) = 1
and P(h(t)) �= 0 for all t ∈ [0, 1].

If H(t) := A + h(t)(I − A) for all t ∈ [0, 1], then H is a continuous map from
[0, 1] into GLn(C) with H(0) = A and H(1) = I. Hence the result. �
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In Sect. 7.2, we shall come across some other interesting facts about connected
components.

Exercise 6.47 Prove that every path component of a space is its connected compo-
nent. Is the converse true?

Exercise 6.48 Let X be metric space with exactly two connected components. How
many subsets of X are both open as well as closed?

Exercise 6.49 Let X be metric space with exactly n connected components. How
many subsets of X are both open as well as closed?

Exercise 6.50 Let X be a metric space such that every two points of X are contained
in some (path) connected subset of X. Prove that X is (path) connected.

Exercise 6.51 Let � be a collection of connected subsets of a metric space X such
that A ∩ B �= ∅ for all A, B ∈ �. Prove that

⋃
A∈� A is a connected subset of X.

Exercise 6.52 Let k ∈ N and {A1, . . . , Ak}be connected sets such that An ∩ An+1 �=
∅ for all n = 1, . . . k − 1. Prove that

⋃k
n=1 An is a connected set.

Exercise 6.53 Let {An} be a sequence of connected sets such that An ∩ An+1 �=
∅ for all n ∈ N. Prove that

⋃∞
n=1 An is also a connected set.

Exercise 6.54 If X has only finitely many connected components, prove that every
connected component of X is clopen.

Exercise 6.55 If A and B are (path) connected subsets of R2, is A + B also (path)
connected?

Exercise 6.56 Let X be a metric space. Define x ∼ y ⇐⇒ x and y lie in some
connected subset of X. Prove that ∼ is an equivalence relation on X and the equiva-
lence classes of this relation are precisely the connected components of X. State and
prove analogous results for path components.

Exercise 6.57 Let X be the metric space of 2 × 2 invertible matrices over R,

equipped with the Euclidean metric in four dimensions. Which of the following
spaces can be obtained as images of continuous maps on X?

(a) The usual space of real numbers R?
(b) The subspace {(x, 1/x) : x �= 0} of R2?
(c) The subspace R2 \ {(x, 1/x) : x �= 0} of R2?
(d) The circle {(x, y) ∈ R

2 : x2 + y2 = 1}?
(e) The closed disk {(x, y) ∈ R

2 : x2 + y2 ≤ 1}?
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6.4 Miscellaneous

Wewind up this chapter by discussing locally (path) connected sets, convex sets, and
totally disconnected sets. We shall also explore their relationship with the notions
presented earlier in this chapter.

6.4.1 Locally Connected and Locally Path Connected Spaces

A metric space X is said to be locally (path) connected if for all x ∈ X, every
neighborhood of x contains a (path) connected neighborhood of x .

Since every path connected set is connected, it is immediate that every locally
path connected space is also locally connected.

A natural question that arises here is whether local properties imply global prop-
erties or conversely. The answers are all negative.

There are locally path connected spaces, which are not path connected or even
connected.

Examples 6.37 (a) (0, 1) ∪ (2, 3) is locally connected, but not connected.
(b) Let X be a discrete metric space with at least two elements. Then every singleton

subset of X is path connected. Hence, X is locally path connected, but not
connected.

The converse is also false. That is, there are connected spaces, which are not locally
connected.

Example 6.38 The comb space, as under, is path connected but not locally con-
nected.

Comb := ({0} × [0, 1])
⋃({

1

n
: n ∈ N

}

× [0, 1]
) ⋃ ([0, 1] × {0}).

Further, the deleted comb space
defined as

Comb0 := Comb \ ({0} × (0, 1)
)
.

is not path connected, as there is no
path from (0, 0) to (0, 1) inside Comb0.
Further,C := Comb0 \ {(0, 0), (0, 1)} is
path connected and hence connected.
Since C ⊂ Comb0 ⊂ C, by Theorem
6.22, Comb0 is connected.

Example 6.39 The Topologist’s Sine Curve, Ts of Example 6.23, is connected but
not locally connected. Note that (0, 1) has no connected neighborhood in Ts .
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There are path connected spaces, which are not even locally connected.

Example 6.40 Let X denote the union of Topologist’s Sine Curve Ts and a curve
γ from (0, 0) to (1, sin 1) such that γ does not meet Ts at any other point, except
(0, 0) and (1, sin 1). Then X is path connected but not locally path connected or even
locally connected.

6.4.2 Path Connectedness in Locally Path Connected Spaces

Recall that every path connected space is connected and the converse holds for
subspaces of R. In Examples 6.23, 6.24 and 6.38, we have seen that the converses
are false, in general.

However, for open subsets of locally connected spaces, the converse holds. In
normed spaces, this holds with stronger consequences. Instead of general paths, we
get polygonal paths, in that case. In case of finite-dimensional Euclidean spaces, the
results become further stronger. First we present the notion of polygonal lines or
polygonal paths in normed linear spaces.

Definitions 6.41 Let X be a normed linear space.

(a) If x1, x2 ∈ X, the line segment from x1 to x2 is defined as

[x1, x2] := {(1 − t)x1 + t x2 : 0 ≤ t ≤ 1}.

(b) Let x1, . . . , xn be any finite number of elements in X, then the union of line
segments [x1, x2], . . . , [xn−1, xn] is denoted by [x1, . . . , xn], and is called a
polygonal path.

(c) A subset S of X is said to be convex if [a, b] ⊂ S for all a, b ∈ S.

Examples 6.42 (a) Every interval is convex.
(b) The set C \ {0} is not convex.
(c) No finite subset of Rn is convex.
(d) Every rectangular (triangular) region in R

2 is a convex set.

Proposition 6.43 In normed linear spaces, every ball is a convex set.

Proof Let (X, ‖.‖) be a normed linear space, x ∈ X and r > 0.Write B := B(x; r).

Pick any x1, x2 ∈ B. To see that [x1, x2] ⊂ B, pick any y ∈ [x1, x2]. Then y = t x1 +
(1 − t)x2 for some t ∈ [0, 1]. Applying triangle inequality, we obtain

‖y − x‖ ≤ t‖y − x1‖ + (1 − t)‖x2 − y‖ < r.

Therefore, y ∈ B. Hence, B is convex. �

Theorem 6.44 Let O be an open connected subset of a locally path connected space
X. Then O is path connected.
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Proof Let x ∈ O be arbitrary. Let O1 denote the collection of those y ∈ O for which
there exists a path from x to y, inside O. Write O2 := O \ O1. We claim that O1

and O2 are open in X, and hence in O.

Let y1 ∈ O1. Then y1 ∈ O. Since O is open and X is locally path connected, there
exists a path connected neighborhood U1 of y1 such that U1 ⊂ O.

Since y1 ∈ O, there exists a path P1 inside O, from x to y1. As P1 and U contain
a common point x, applying Theorem 6.31, P1 ∪ U1 is path connected. Hence, for
every z1 ∈ U1, there exists a path from x to z1, inside O. Therefore,U1 ⊂ O1,which
proves that O1 is an open set.

Now, let y2 ∈ O2. Then y2 ∈ O.As above there exists a path connected neighbor-
hood U2 of y2 such that U2 ⊂ O. We shall prove that U2 ⊂ O2, which will conclude
that O2 is open.

If possible, let z2 ∈ U2 \ O2. Then z2 ∈ O1. Let P2 be a path from x to z2,
inside O. As above P2 ∪ U2 path connected. Thus, there exists a path from x to y2,
inside O. Hence, y2 ∈ O1, a contradiction.

Therefore, both O1 and O2 are open in X and hence also open in the open set O.

The connectedness of O ensures that either O1 = ∅ or O2 = ∅. Since x ∈ O1, we
obtain O2 = ∅. Hence, O = O1 and the result follows. �

Note that Proposition 6.43 ensures that every normed linear space is locally path
connected. Therefore, every open connected subset of a normed linear space is path
connected. The following are stronger results, for particular cases.

Corollaries 6.45 Let O be an open connected subset of a normed linear space X.

(a) Then any two elements of O can be joined by a polygonal path, inside O.

(b) If X = R
m for some m ∈ N, then any two elements of O can be joined by a

polygonal path consisting of line segments parallel to the axes, inside O.

Proof (a) Let x ∈ O be arbitrary and O1 be the set of y ∈ O which are connected
to x through a polygonal path inside O.

The proof is analogous to Theorem 6.44. The only difference is that here we
takeU1 andU2 to be some open balls in X and use the fact that if P1 is a polygonal
path from x to y1 inside O, then P1 ∪ [y1, z1] is a polygonal path from x to z1.

(b) Let x ∈ O be arbitrary and O1 be the set of y ∈ O which are connected to x
through a polygonal path, with line segments parallel to the axes, inside O.

The proof is analogous to part (a). Use the fact that any two points in a ball
B ⊂ R

m can be joined by a polygonal path inside B, having line segments
parallel to the axes. �
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6.4.3 Quasi-components

Let X be a metric space and x ∈ X. The quasi-component of x in X is defined to be
the intersection of all clopen subsets X, containing x . For this section, let Cx and Qx

denote the connected component and the quasi-component of x in X, respectively.

Theorem 6.46 Let X be a metric space and x ∈ X. Then Cx ⊂ Qx .

Proof Suppose there exists some y ∈ Cx \ Qx . Then there exists a clopen set A
containing x such that y /∈ A. Then (Cx ∩ A)⊍ (Cx \ A) is a separation of Cx , a
contradiction. �

The opposite inclusion holds for compact metric spaces. That requires the follow-
ing lemmas.

Lemma 6.47 Let A and B be disjoint compact subsets of a metric space X. Then
there exist disjoint open subsets U and V of X such that U ⊃ A and V ⊃ B.

Proof Let δ := inf{d(a, b) : a ∈ A, b ∈ B}. Since A and B are compact and dis-
joint, one can conclude that δ > 0. Let

U :=
⋃

a∈A

B(a; δ/3) and V :=
⋃

b∈B

B(b; δ/3).

It can be shown that U and V satisfy our requirements. �
Lemma 6.48 Let X be a compact metric space, O be an open subset of X and F be
a collection of closed subsets of X such that

⋂
F∈F F ⊂ O. Then there exist finitely

many F1, . . . , Fn ∈ F such that
⋂n

i=1 Fi ⊂ O.

Proof Since X \ O is a closed subset of the compact space X, it is a compact subset
of X. The given hypothesis implies that X \ O ⊂ ⋃

F∈F (X \ F). The compactness
of X \ O implies that there are finitely many F1, . . . , Fn ∈ F such that X \ O ⊂⋃n

i=1(X \ Fi ). �
Theorem 6.49 Let X be a compact metric space and x ∈ X. Then Cx = Qx .

Proof By Theorem 6.46, we have Cx ⊂ Qx . Since Cx is the largest connected set
containing x and Cx ⊂ Qx , to prove that Cx ⊃ Qx , it is enough to prove that Qx is
a connected set.

If possible, let Qx = A⊍ B be a separation of Qx . Without loss of generality,
assume that x ∈ A. Since by definition Qx is closed in X, the sets A and B are also
closed in X. Since X is compact, A and B are also compact subsets of X.

Applying Lemma 6.47, there are disjoint open subsets U and V of X such that
U ⊃ A and V ⊃ B. Applying Lemma 6.48, there are finitely many clopen subsets
D1, . . . , Dn of X such that x ∈ ⋂n

i=1 Di ⊂ U ⊍ V . Write D := ⋂n
i=1 Di . Then D

is a clopen subset of X such that x ∈ D ⊂ U ⊍ V .
Let E := D ∩ U.Then E is open and x ∈ E, as x ∈ A ⊂ U.Also, E := D ∩ (X \

V ) is closed. By definition Qx ⊂ E . Consequently, B = Qx ∩ V ⊂ E ∩ V = ∅.

Hence the result. �
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6.4.4 Totally Disconnected Sets

Definition 6.50 A subset A of a metric space is said to be totally disconnected if no
two points of A lie in a connected subset of A.

In other words, A is totally disconnected if and only if singletons are its only con-
nected subsets if and only if all singletons subsets are its connected components.

Examples 6.51 Finite metric spaces, all discrete metric spaces, the set of natural
numbers, and the set of rational numbers are all totally disconnected spaces.

Definition 6.52 Acomplex number is said to be algebraic if it is a root of some poly-
nomial over integers. Non-algebraic complex numbers are known as transcendental
numbers.

The numbers e and π are two standard examples of transcendental numbers. In
Example 7.15, we establish an abundance of transcendental numbers besides the
algebraic ones.

Example 6.53 The set of real algebraic numbers is totally disconnected.

Proof Let A be the set of real algebraic numbers. To the contrary, assume that A
is not totally disconnected. Then A has a connected component E containing two
distinct reals, say x < y. Pick any r ∈ Q such that π ∈ (x + r, y + r). Then we have
π − r ∈ (x, y).

By suitably modifying the polynomials satisfied by the algebraic numbers x and
y, one can prove that π − r is not an algebraic number.

Note that the sets {x ∈ E : x < π − r} and {x ∈ E : x > π − r} are nonempty
and form a separation of E . This is impossible, as E is a connected set. Hence the
result. �

Theorem 6.54 Let X be a compact metric space. Then X is totally disconnected
if and only if for every x ∈ X and r > 0 there exists some clopen set A such that
x ∈ A ⊂ B(x; r).

Proof The converse follows from the definition of totally disconnected sets. For the
necessity part, let X be totally disconnected, x ∈ X, r > 0 and B := B(x; r).

By Theorem 6.49, Qx = Cx = {x} ⊂ B.Applying Lemma 6.48, there are finitely
many clopen subsets A1, . . . , An of X such that x ∈ ⋂n

i=1 Ai ⊂ B. Write A :=⋂n
i=1 Ai . Then A is a clopen subset of X and x ∈ A ⊂ B. Hence the result. �

Corollary 6.55 Let X be a totally disconnectedcompact metric space, K ⊂ O ⊂ X
such that K is compact and O is open in X. Then X has a clopen subset A such that
K ⊂ A ⊂ O.

Proof For every x ∈ K , there exists some rx > 0 such that B(x; rx ) ⊂ O.Applying
Theorem6.54, one can choose clopen sets Ax such that x ∈ Ax ⊂ B(x; rx ) for all x ∈
K . Since K is compact and K ⊂ ⋃

x∈K Ax , there are finitely many x1, . . . , xn ∈ K
such that K ⊂ ⋃n

i=1 Ax1 . Then A := ⋃n
i=1 Axi meets our requirements. �
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Notes andRemarks 6.56 (a) It is possible to have three disjoint connected open
sets in the plane which have the same boundary. For example, see Lakes ofWada
[4, p. 138].

(b) In Sect. 10.5.3, we shall discuss a connected space, which is not path connected,
known as the Cantor’s leaky tent. It is such a connected metric space, which
becomes totally disconnected after the removal of a particular point.

(c) Let X, Y be compact metric spaces and let f : X −→ Y. We state two charac-
terizations of continuity. Readers interested in details are referred to [5].

(i) f is continuous if and only if f maps compact sets onto compact sets, and
f −1(y) is a closed set, for every y ∈ Y.

(ii) If X is locally connected, then f is continuous if and only if f maps
compact sets onto compact sets, and connected sets onto connected sets.

Exercise 6.58 Let D := {z ∈ C : |z| < 1} and f : D −→ R
3 be a continuous func-

tion. How many subsets of f (D) are both open as well as closed?

Exercise 6.59 Complete the details in the proof of Corollaries 6.45.

Exercise 6.60 Let X be a normed linear space. Prove the following:

(a) Every convex subset of a normed linear space is path connected.
(b) X is convex, and hence path connected.
(c) The converse of (a) does not hold.

Exercise 6.61 Prove that every discrete metric space is totally disconnected.

Exercise 6.62 Prove that both Q and R \ Q are totally disconnected sets.

Exercise 6.63 After replacing sin 1
x with x sin 1

x in Example 6.23, does the resulting
space become locally connected or path connected?

Exercise 6.64 Let A be a connected component of a locally connected metric space
X. Prove that A is clopen in X.

Exercise 6.65 If E is a convex subset of a normed linear space, prove that so are
the sets Eo and E .

Exercise 6.66 If E is a convex subset of a normed linear space such that Eo �= ∅,

prove that E = Eo.

Exercise 6.67 Let X be a metric space in which every open ball is a closed subset
of X. Prove that X is totally disconnected.

Exercise 6.68 Let X be a metric space. Prove that the following are equivalent:

(a) Quasi-components of X are singletons.
(b) For any x, y ∈ X, there exist disjoint clopen neighborhoods Ux and Uy of x and

y, respectively, such thatUx ⊍Uy = X . (Such an X is called a totally separated
space.)
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Exercise 6.69 Prove that every totally separated space is totally disconnected. Is the
converse true?

Exercise 6.70 If d is an ultrametric on X, prove that (X, d) is totally separated.

Exercise 6.71 Let X be a totally disconnected compact metric space. Prove that for
every n ∈ N, there exists a finite open coverUn of X with disjoint sets, each having
diameter < 2−n.

Exercise 6.72 Prove that a metric space X is locally connected if and only if for
every open set O of X, each connected component of O is open in X.

Exercise 6.73 Prove that a metric space X is locally path connected if and only if
for every open set O of X, each path component of O is open in X.

Exercise 6.74 Let X be a metric space. Prove that each path component of X lies
in a connected component of X.

Exercise 6.75 If X is locally path connected, then prove that has same collection of
path components and connected components.

Exercise 6.76 Let X be a metric space and x ∈ X. Let Px , Cx and Qx denote,
respectively, the path component, connected component and the quasi-component
of x . Prove that Px ⊂ Cx ⊂ Qx . If X is locally path connected, then prove that
Px = Cx = Qx .

Exercise 6.77 A metric space X is said to be weakly locally connected at x ∈ X if
every neighborhood U of x contains a connected subspace S of X that contains a
neighborhood of x . Prove that if X is weakly connected at each of its points, then X
is locally connected. Is the converse true?

Exercise 6.78 State and prove the result analogous to Exercise 6.56 for quasi-
components.

6.5 Hints and Solutions to Selected Exercises

6.2 No. Suppose thata �= b and {a, b} be a path connected subset of a space X.

Then there exists a continuous map f : [0, 1] −→ {a, b} such that f (0) = a and
f (1) = b. Thus, A := f −1(a) and B := f −1(b) are nonempty disjoint closed
subsets of [0, 1] with union [0, 1], a contradiction to Lemma 6.6.

6.4 Apply Intermediate Value Theorem (6.12) on x �−→ f (x) − f (x + 1) on [0, 1].
6.7 Yes.Apply IntermediateValueTheorem (6.12) on f (p) := √

(2p + 3p + 4p)/3.
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6.8 No. Let f : [0, 1]2 −→ [0, 1] be a continuous bijection and x, y, z be any three
elements from [0, 1]2. Since [0, 1]2 \ {x, y, z} is path connected, so is its image
under f. That is, [0, 1] \ { f (x), f (y), f (z)} is a path connected subset of [0, 1],
a contradiction to Theorem 6.9. Similarly, the second part.

6.10 One. Let f (x) denote the given cubic. Since f is a real polynomial of odd degree,
it must have at least one real root. If it has two distinct roots, then f ′ must have
a root between those. This is impossible as f (x) is a sum of squares of reals and
a, b, c are all distinct.

6.11 First three options are correct and the last one is false. Note that (c) is trivial.
Let −1,α1, . . . ,αn−1 be all the roots of p, counting multiplicities. Equating
coefficients from p(x) = (x + 1)

∏n−1
i=1 (x − αi ), we obtain

n−1∏

i=1

αi = (−1)n, which implies
n−1∏

i=1

|αi | = 1. (6.2)

If α is a non-real root of p, then by hypothesis, α is also a root of p and |α| ≥ 1.
Thus,αα ≥ 1.Now (6.2) implies that |α| = 1, that isαα = 1, for every non-real
root of p.

Similarly, since p has no real root in (−1, 1), again (6.2) implies p has no real
root in R \ [−1, 1]. This concludes that (d) is false. Also, (b) is true, because if
(b) is false then p will have a root in [2,∞), a contradiction.

By now we have established that all the roots of p lie on {z ∈ C : |z| = 1}. If
1 is not a root of p, then the representation (x + 1)

∏n−1
i=1 (x − αi ) of p will

either have linear factors (x + 1) or pairs of complex conjugates α,α such that
αα = 1. Therefore, the constant term in this product must be 1, a contradiction.
Hence, (a) is also true.

6.13 (a) No. For example, consider the function f as in Exercise 1.100.
(b) Assume that f is not continuous. Then there exists xn −→ x0 such that

f (xn) �−→ f (x0). Without loss of generality, we can suppose that there is
a rational number r and a subsequence {xnk } of {xn} such that f (x0) > r >

f (xnk ) for all k ∈ N.

By hypothesis, one can choose tk between x0 and xnk such that f (tk) =
r for all k ∈ N. Then tk −→ x0. Since {tk} is a sequence in the closed set
f −1({r}), we conclude that its limit x0 also belongs to this set. Hence,
f (x0) = r, a contradiction.

6.14 Let f, a, b and l be as in Theorem 6.12.

(a) Write S := {t ∈ [a, b] : f (t) < l}. Then S is a nonempty subset of [a, b],
containing a, and bounded above by b. Let c := sup S. Since the function f
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is continuous at a and b,with f (a) < l and f (b) > l,we obtain a < c < b.

We claim that f (c) = l.

If f (c) < l, then the continuity of f at c implies that there exists some δ > 0
such that (c − δ, c + δ) ⊂ [a, b] and f (x) < l for all x ∈ (c − δ, c + δ).
Therefore, c + δ/2 ∈ S, a contradiction as c = sup S. Similarly, if f (c) >

l, there also exists δ > 0 such that (c − δ, c + δ) ⊂ [a, b] and f (x) >

l for all x ∈ (c − δ, c + δ). Then (c − δ, c + δ) ∩ S = ∅which implies that
c �= sup S, a contradiction.

(b) Assume that f (t) �= l for all t ∈ [a, b]. For t ∈ [a, b], if f (t) > l, choose
δt > 0 such that f (x) > l for all x ∈ (t − δt , t + δt ) ∩ [a, b]. Otherwise,
choose δt > 0 such that f (x) < l for all x ∈ (t − δt , t + δt ) ∩ [a, b].
By compactness of [a, b], there are finitely many t1, . . . , tn ∈ [a, b] such
that [a, b] ⊂ ⋃n

i=1(ti − δti , ti + δti ). Since f (a) < l, it leads to f (b) < l, a
contradiction.

6.15 Assume that I = A ⊍ B, for some disjoint nonempty sets A and B, open in I.
Pick any a ∈ A and b ∈ B. Without loss of generality, suppose a < b.

Write S1 := [a, b] ∩ A. Since S1 contains a and is bounded above by b, it has a
supremum. Let s1 := sup S1. Then s1 ≤ b. We claim that s1 < b.

If s1 = b, then I ∩ (s1 − δ, s1 + δ) ⊂ B, for some δ > 0, as B is open in I.
This implies that (s1 − δ, s1 + δ) ∩ A = ∅. Therefore, s1 = sup S1 ≤ s1 − δ, a
contradiction. Hence, s1 < b.

Write S2 := [s1, b] ∩ B and s2 := inf S2. Then s1 ≤ s2. As above, one can show
that s1 < s2.Let s3 ∈ (s1, s2). Since s2 = inf S2,we have s3 /∈ B. Similarly, s1 =
sup S1 implies that s3 /∈ A. Therefore, I is not an interval, as s3 ∈ I \ A ∪ B.

6.18 No. Take the intersection of the x-axis and the unit circle, in R
2. Then both A

and B are connected, while A ∩ B = {(0, 0), (0, 1)} is not.
6.19 Yes. E.g. consider R2 \ {(x, 0) : x ∈ Q} in R2.

6.20 Both assertions are false. E.g., consider the subspace {(x, y) ∈ R
2 : xy ≥ 0} of

R
2,which is a path connected set while the interior is neither connected nor path

connected.
6.26 Apply Theorem 6.22. For the converse, take A := [−1, 0) ∪ (0, 1].
6.29 Let δ := dist (A, B). If A ∩ B �= ∅, then there exists some x ∈ A ∩ B. By

hypothesis B(x; δ/2) ∩ B = ∅. Therefore, x /∈ B, a contradiction. For the con-
verse, take A = (0, 1) and B = (1,∞) in reals with usual topology.

6.32 Let A = A1⊍ A2 be a separation of A. Then A ∩ B = (A1 ∩ B)⊍ (A2 ∩ B)

is a separation of A ∩ B. Since A ∩ B is connected, one of these must be
empty. Suppose A1 ∩ B = ∅. Then A ∪ B = A1 ⊍ (A2 ∪ B). Since A ∪ B is
connected, either A1 = ∅ or A2 ∪ B = ∅, that is, either A1 = ∅ or A2 = ∅.

Hence, A is connected. Similarly, B is connected.
6.39 Fix x ∈ [0, 1]. Define φx : A −→ [0, 1] as φx (a) := a(x) for all a ∈ A. Then

φx is a continuousmap, as |φx (a) − φx (b)| = |a(x) − b(x)| ≤ ‖a − b‖∞.Since
A is connected, φx(A) = {a(x) : a ∈ A} is a connected subset of [0, 1].
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6.40 Define φ : C[0, 1] −→ R as φ( f ) := ∫ 1
0 f for all f ∈ C[0, 1]. Then φ is con-

tinuous, as |φ( f ) − φ(g)| ≤ ∫ 1
0

∣
∣ f − g

∣
∣ ≤ ‖ f − g‖∞. Hence,

{ f ∈ C[0, 1] : φ( f ) > 0}⊍ { f ∈ C[0, 1] : φ( f ) < 0}

is a separation of (C[0, 1], ‖.‖∞).

6.44 No. Apply Theorem 6.29.
6.50 Apply Theorem 6.31.
6.51 LetA := ⋃

A∈� A and fix any A0 ∈ �.Let T be the connected component ofA,

containing A0. For any A ∈ �, we have A0 ∩ A �= ∅ which implies A0 ∪ A ⊂
T for all α ∈ ∧. Therefore,

⋃
A∈� A ⊂ T which implies T = ⋃

A∈� A.

6.52 The result holds by induction on Theorem 6.31.
6.53 Write A := ⋃∞

n=1 An.Suppose that A is not connected.Then there exist nonempty
disjoint sets E1 and E2, open in A such that E1⊍ E2 = A. We claim that for
every n ∈ N, either A ⊂ E1 or A ⊂ E2. To show this, suppose that there exists
some n ∈ N such that A ∩ E1 �= ∅ and A ∩ E2 �= ∅. Then An is not connected,
as An = (An ∩ E1)⊍ (An ∩ E2) and both An ∩ E1 and An ∩ E2 are open in
An. This establishes our claim.

Hence, either A1 ⊂ E1 or A1 ⊂ E2. Without loss of generality, suppose that
A1 ⊂E1. Since A1 ∩ A2 �=, we have A2 ⊂E1. Inducting like this, we obtain
An ⊂ E1 for all n ∈ N. Hence, A ⊂E1 and thus E2 = ∅, a contradiction. This
proves the result.

6.54 Let A1, . . . , An be the only connected components of X. By Theorem 6.22,
each Ai is closed. By Theorem 6.32, X is a disjoint union of A1, . . . , An . Then
Ai = X \ ⋃

j �=i A j , for all i. Hence, each Ai is open.
6.55 Yes. Because A × B is a (path) connected subset of R

2 × R
2 and the map

(a, b) −→ a + b from A × B onto A + B is continuous.
6.64 Applying Theorem 6.22, A is closed. Let a ∈ A and Na be a connected neigh-

borhood of a. By Theorem 6.31, A ∪ Na is a connected subset of X. Since A
is a maximal connected set, we obtain A ∪ Na = A and hence Na ⊂ A. Conse-
quently, A is open.

6.65 Assume that E is convex. Let t ∈ (0, 1). Since E is convex, t Eo + (1 − y)Eo ⊂
E . By previous part, t Eo + (1 − y)Eo is an open subset of E . Hence, t Eo +
(1 − y)Eo ⊂ Eo, that is, Eo is convex. To show that E is convex, let x, y ∈ E .

Then there are sequences {xn} and {yn} in E, convergent to x and y, respectively.
Hence, t x + (1 − t)y = limn→∞(t xn + (1 − t)yn) ∈ E, as E is convex. Hence,
E is convex.

6.66 Let X be the given normed linear space. Clearly, Eo ⊂ E .To prove that Eo ⊃ E,

it is enough to show that Eo ⊃ E . Since Eo �= ∅, let a ∈ Eo. Then B(a; r) ⊂
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E for all r > 0. That is, a + r y ∈ E for all y ∈ X such that ‖y‖ ≤ 1. Let x ∈ E
and xt := ta + (1 − t)x . We claim that B(xt ; tr) ⊂ E .

Let y ∈ X such that ‖y‖ ≤ 1. Then xt + tr y = t (a + r y) + (1 − t)x ∈ E, as E
is convex. This proves our claim. Hence, xt ∈ Eo. Hence, x = limt→0 xt ∈ Eo.

6.67 Let x ∈ X and A be the connected component of X containing x . We claim that
A = {x}. If not, then pick any y ∈ A \ {x}. Let

δ := d(x, y), Bx := B

(

x; δ

2

)

and By := B

(

x; δ

2

)

.

By hypothesis, both Bx and By are clopen in X. Therefore, A ∩ Bx and A ∩ By

are clopen and nonempty in the connected subspace A, a contradiction.
6.69 Apply Theorem 6.46. A counter example will be provided in Exercise 10.81.
6.70 Let x, y ∈ X such that x �= y and r := d(x, y).ByExercise 3.65(a), both B(x; r)

and X \ B(x; r) are disjoint clopen subsets of X containing x and y, respectively.
6.71 Fix n ∈ N. Since X is totally disconnected and compact, by Theorem 6.54, it

has a finite cover {O1, . . . , On} consisting of clopen sets with diameter < 2−n.

Define Ui := Oi \ ⋃
j<i O j for all i. Then each Ui is open and has diameter

< 2−n . The result follows, as we have
⋃

i Ui = ⋃
i Oi .

6.72 (⇒) Let O be an open subset of X and U be a connected component of O. Let
x ∈ U. Since X is locally connected, there exists a connected neighborhood Bx

of x such that Bx ⊂ O. Since U is a connected component of O, containing x,

we obtain Bx ⊂ U. Hence, U is open in X.

(⇐) Let x ∈ X and U be any neighborhood of x . Then there exists an open set
O such that x ∈ O ⊂ U. Let Cx be the connected component of x relative to O.

By hypothesis, Cx is open in X. The result follows as x ∈ Cx ⊂ O ⊂ U.

6.73 Analogous to Exercise 6.72.
6.75 Let C be a connected component of X. Let x ∈ C and P be the path component

of x, inside X. Since P is connected, we obtain P ⊂ C. We claim that P = C.

Suppose that Q := C \ P �= ∅.

For each q ∈ Q, let Pq be the path component of q. Then each such Pq is con-
nected and hence a subset of C. Consequently, Q is a union of path components
of X. Applying Exercise 6.73, the union of all these path components, that is Q,

is open in X. Similarly, the path component P is open in X. Since C = P ⊍ Q
is connected, either P = ∅ or Q = ∅. But x ∈ P. Therefore, Q = ∅. Hence,
P = C.
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