
Chapter 2
Metric Spaces

Exploring the properties of real functions or sequences is just the beginning. A few
answers lead to several questions. Can we extend our results fromR to more general
spaces, such as the planeR2 or the three-dimensional spaceR3 or toRn? Sometimes
the proofs depend only upon a few properties of the underlying space. The ones
which depend only upon the distance function can be extended to metric spaces.

A metric space is defined to be a nonempty set along with a distance function
having some particular properties. This chapter presents a vast collection of metric
spaces, including the particular cases of normed spaces and sequence spaces. To
provide a glimpse into generalizations from reals, we have included a section on
convergence of sequences in metric spaces which also contains the case of finite-
dimensional Euclidean spaces.

2.1 Introduction

To delve into the concept of ‘distance’ in general spaces, it is necessary to first define
the notion of a ‘space.’

Definition 2.1 A space is defined to be any nonempty set.

The definition of a space is often avoided in most of the textbooks. Some texts define
‘space’ as a nonempty set with some additional structure on it, such as a metric
space, linear space, normed space. The term ‘additional structure’ is a bit vague,
especially for those who do not know any kind of such ‘space’. In that sense, the
above definition appears more appropriate.

Definition 2.2 Let X be a nonempty set. A function d : X × X −→ R is said to be
a metric on X if for every x, y, z ∈ X, we have

(a) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, (positive definiteness)
(b) d(x, y) = d(y, x) and (symmetry)
(c) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. P. S. Kainth, A Comprehensive Textbook on Metric Spaces,
https://doi.org/10.1007/978-981-99-2738-8_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2738-8_2&domain=pdf
https://doi.org/10.1007/978-981-99-2738-8_2


40 2 Metric Spaces

In this case, (X, d) is called a metric space or that X is a metric space with metric
d. If there is no ambiguity about the metric, we simply say that X is a metric space.

Examples 2.3 (a) Define d(x, y) := |x − y|, for all x, y ∈ R. Then d is a metric
on R, known as the usual metric.

(b) Let X be any nonempty set (it could even be the set of English Alphabets) and
dc : X × X :−→ R be defined as follows:

dc(x, y) :=
{

1 ; x �= y,

0 ; x = y.

It can be shown that dc is a metric on X. In this case, dc is said to be the discrete
metric on X and (X, dc) is called the discrete metric space.

Example 2.4 Let (X, d) be any metric space and Y be a nonempty subset of X.

Then d is also a metric on Y, known as the induced metric. In this case, the metric
space Y is called a subspace of X. For example, Q is a subspace R.

In the sequel, if X is a nonempty subset of R, the space X will refer to the metric
space X equipped with the usual metric.

Example 2.5 Let r ∈ (0, 1] and X be the collection of sequences with terms 0 or
1. For any sequences x = {xn}, y = {yn} ∈ X such that x �= y, define n(x, y) :=
min{k : xk �= yk} and

ρ0(x, y) :=
{

0 ; x = y,
1

n(x,y)
; otherwise and ρr (x, y) :=

{
0 ; x = y,

rn(x,y) ; otherwise.

Then for every r ∈ [0, 1], the function ρr is a metric on X with

ρr (x, y) ≤ max{ρr (x, z), ρr (y, z)} for all x, y, z ∈ X. (2.1)

This above inequality is known as the strong triangle inequality, and a metric that
satisfies it is referred to as an ultrametric.

Proof Note that for r = 1, ρ1 is the discrete metric on X, which clearly satisfies the
inequality (2.1). The symmetry and positive definiteness of each ρr is trivial. The
triangle inequality follows from (2.1), which is immediate if any two of x, y, z are
equal.

Assume that x = {xn}, y = {yn} and z = {zn} are all different. Then xi = zi

for all i < n(x, z) and zi = yi for all i < n(z, y). Therefore xi = yi for all i <

min{n(x, z), n(z, y)}, and consequently, n(x, y) ≥ min{n(x, z), n(z, y)}. Hence ρr

satisfies (2.1), for all r ∈ [0, 1). �

Definition 2.6 Let X be a nonempty set. A function d : X × X −→ R is said to be
a pseudo-metric on X if for every x, y, z ∈ X we have
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(a) d(x, y) ≥ 0 and d(x, x) = 0, (positive semi-definiteness)
(b) d(x, y) = d(y, x) and (symmetry)
(c) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)

Clearly, every metric is a pseudo-metric, while the converse is not true.

Example 2.7 Let d(x, y) := |x2 − y2| for all x, y ∈ R. Then d is a pseudo-metric
on R, but not a metric on R.

Remarks 2.8 Someof the requirements inDefinition2.2 are redundant (seeExercise
2.7). An important example of a metric, the Hausdorff metric will be provided in
Exercise 3.67.

2.1.1 The Euclidean Spaces

Note that the standard Euclidean distance in a plane satisfies all the requirements of a
metric, making that plane a metric space. The positive definiteness and the symmetry
are obvious. We shall provide a proof for the triangle inequality.

Let n ∈ N. The n-dimensional real Euclidean space R
n is defined as

R
n := {(x1, . . . , xn) : xi ∈ R, 1 ≤ i ≤ n}.

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n and r ∈ R, the sum x + y, scalar mul-

tiplication r x, modulus |x | and the dot product x · y are defined as follows:

x + y := (x1 + y1, . . . , xn + yn),

r x := (r x1, . . . , r xn),

|x | :=
√

x2
1 + · · · + x2

n

and x · y := x1y1 + · · · + xn yn.

First we present the Cauchy-Schwarz inequality. This is one of the most funda-
mental inequality in analysis and has several conceptually different proofs. Here we
present the popular one, which can be extended to even more general spaces, namely
the inner product spaces (see Theorem 2.33). An alternative proof will be provided
in Exercise 2.19.

Theorem 2.9 (Cauchy-Schwarz inequality) For every x, y ∈ R
n, we have

|x · y| ≤ |x ||y|. (2.2)

In other words, if x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, then

|x1y1 + · · · + xn yn| ≤
√

x2
1 + · · · + x2

n

√
y21 + · · · + y2n .
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Further, the equality holds if and only if x and y are linearly dependent, that is, there
exist real numbers a and b not both zero such that ax + by = 0.

Proof Consider z := |y|2x − (x · y)y and observe that

0 ≤ |z|2 = z · z = (|y|2x − (x · y)y
) · (|y|2x − (x · y)y

) = |y|2(|x |2|y|2 − |x · y|2).
(2.3)

If y = 0, then (2.2) holds trivially. If y �= 0, then |y|2 = y · y > 0 and therefore by
cancelling the positive scalar |y|2 from (2.3), we obtain (2.2).

Suppose there exist real numbers a and b not both zero such that ax + by = 0.
Without loss of generality,we assume that a �= 0.Thenwith x = −by/a, the equality
in (2.2) holds true.

Conversely, assume that the equality holds in (2.2). Using that in (2.3), we obtain
z · z = 0, which implies z = 0. Hence (y · y)x = (x · y)y. If y �= 0, then y · y �= 0.
Otherwise 0.x + 1.y = 0. Hence x and y are linearly dependent. �

Corollary 2.10 (Minkowski’s inequality) For every (x1, . . . , xn), (y1, . . . , yn) ∈ R
n,

we have

√
(x1 + y1)2 + · · · + (xn + yn)2 ≤

√
x2
1 + · · · + x2

n +
√

y21 + · · · + y2n . (2.4)

Proof By squaring and canceling, we observe that (2.4) holds if and only if (2.2) is
satisfied, which is already true. Hence the result. �

Corollary 2.11 (Euclidean metric) For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
R

n, define
d2

(
x, y

) :=
√

|x1 − y1|2 + · · · + |xn − yn|2.

Then (Rn, d2) is a metric space.

Proof Applying Corollary 2.10, d2 satisfies the triangle inequality. The positive
definiteness and symmetry of d2 are obvious from its definition. �

The above d2 is known as the usual metric or the Euclidean metric on R
n. For

convenience, we write metric space Rn for the metric space (Rn, d2). We also write
|x − y| for d2(x, y).

Wewind up this section with the space of complex numbers. Various other exam-
ples of metric spaces will be discussed in the exercises.

Definition 2.12 The set of complex numbers C is defined to be the two-dimensional
Euclidean space R2, along with an additional multiplication operation given by

(x1, x2) × (y1, y2) := (x1y1 − x2y2, x1y2 + x2y1) for all (x1, x2), (y1, y2) ∈ C.

It is conventional to denote (0, 1) by i and (a, b) by a + ib.
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Remark 2.13 Note that the usual metric onR2 provides a metric onC, also known
as the usual metric onC. Therefore, topologicallyC andR2 are same. The product in
Cmakes functions onC quite different from those onR2,which leads to the Cauchy
theory of complex analysis. However, that is not the concern of this textbook. We
limit our discussion to the basic algebraic and topological properties of C.

History Notes 2.14 The concept of metric spaces was introduced by Frećhet, under
the name ‘classes (E)’, in his 1906 Ph.D. dissertation. Later Hausdorff coined the
term metric space in 1914 and laid the foundations of topology (see [1, p. 253]).

2.1.2 Balls and Bounded Sets

Definition 2.15 Let (X, d) be a metric space, x ∈ X and r > 0. The ball of radius
r centered at x is defined as

Bd(x; r) := {y ∈ X : d(y, x) < r}.

These balls are also called open balls. If there is no ambiguity about the metric,
we simply write B(x; r), instead of Bd(x; r). Note that we did not allow balls with
radius zero.

Examples 2.16 (a) Under the usual metric on reals, the open balls are open inter-
vals. In particular, for all x ∈ R and r > 0, we have B(x; r) = (x − r, x + r).

(b) Let (X, d) be a discrete metric space, x ∈ X and r > 0. Then

B(x; r) :=
{

X ; r > 1,
{x} ; 0 < r ≤ 1.

Example 2.17 Let (X, d) be a metric space such that d is an ultrametric on X, i.e.

d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X.

If x, y, z ∈ X and r, s > 0 are arbitrary, then X satisfies the following properties:

(a) Every triangle in X is isosceles, i.e. if d(x, y) �= d(y, z), then d(z, x) is equal
to either d(x, y) or d(y, z).

(b) Every point inside a ball is its center, i.e. B(x; r) = B(y; r) for all y ∈ B(x; r).

(c) If two ballsmeet, then one is contained in the other; i.e. if B(x; r) ∩ B(y; s) �= ∅,

then either B(x; r) ⊂ B(y; s) or B(y; s) ⊂ B(x; r).

Proof (a) Without loss of generality, we assume that d(x, y) < d(y, z). Then
d(y, z) = d(z, x), as

d(z, x) ≤max{d(z, y), d(y, x)} = d(y, z)

and d(y, z) ≤max{d(y, x), d(x, z)} = d(z, x).
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(b) Suppose d(y, x) < r. If z ∈ B(x; r), then d(y, z) ≤ max{d(y, x), d(x, z)} < r
and hence z ∈ B(y; r). So B(x; r) ⊂ B(y; r). Interchanging y and x,we obtain
B(x; r) = B(y; r).

(c) Without loss of generality, suppose r ≤ s and let z ∈ B(x; r) ∩ B(y; s). By (b),
we conclude that B(x; r) = B(z; r) ⊂ B(z; s) = B(y; s). �

Definition 2.18 A subset E of a metric space X is called bounded if it is contained
in some ball. That is, E ⊂ B(x; r) for some x ∈ X and r > 0.

Therefore, E is bounded if and only if the set of distance between points of E is
bounded above. Analogous to open balls, the closed balls are defined as follows:

Definition 2.19 Let (X, d) be a metric space, x ∈ X and r > 0. The closed ball of
radius r centered at x is defined as B[x; r ] := {y ∈ X : d(y, x) ≤ r}.
Exercise 2.1 For a metric space (X, d), prove that the following are equivalent:

(a) d is a constant,
(b) X is a singleton set and
(c) d(x, y) ≥ d(x, z) + d(z, y) for all x, y, z ∈ X.

Exercise 2.2 If d is a metric on a space X, prove that so is
√

d.

Exercise 2.3 If d is a metric on a space X and x, y, z ∈ X. prove the inequality
|d(x, y) − d(y, z)| ≤ d(x, z).

Exercise 2.4 Does (x, y) �−→ ∣∣ 1
x − 1

y

∣∣ define a metric on R \ {0}?
Exercise 2.5 Does any of the following expressions define a metric on R :

|x2 − y2|, |x − y| + 1 or
1

|x − y| + 1
?

Exercise 2.6 Prove that (x, y) �−→ |x − y| + |x2 − y2| defines a metric on R.

Exercise 2.7 If X is nonempty and d : X × X −→ R such that for all x, y ∈ X,

d(x, y) ≤ d(x, z) + d(y, z)

and d(x, y) = 0 if and only if x = y.

Prove that d(x, y) ≥ 0 and d(x, y) = d(y, x) for all x, y ∈ X.

Exercise 2.8 Deduce the triangle inequality in (Rn, d2) from Corollary 2.10.

Exercise 2.9 For any (x1, x2), (y1, y2) ∈ R
2, define

(a) d1
(
(x1, x2), (y1, y2)

) := |x1 − y1| + |x2 − y2| (the taxi cab metric).
(b) d∞

(
(x1, x2), (y1, y2)

) := max{|x1 − y1|, |x2 − y2|}. (the sup metric).

Prove that d1 and d∞ are metrics on R
2.
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Exercise 2.10 Generalize the metrics d1 and d∞ of Exercise 2.9 to Rn, and charac-
terize the collection of balls in R

n with respect to these metrics.

Exercise 2.11 Let (X, d) be a metric space and E ⊂ X. Prove that the following
are equivalent:

(a) E is bounded,
(b) there exists some M > 0 such that d(x, y) < M, for every x, y ∈ E,

(c) for any x ∈ X, there exists Mx > 0 such that d(y, x) < Mx for all y ∈ E .

Exercise 2.12 Characterize bounded subsets of discrete metric spaces.

Exercise 2.13 If A and B are bounded subsets of a metric space X, prove that so is
A ∪ B.

Exercise 2.14 Let X be a metric space and A ⊂ X. Prove that A is bounded if and
only if the diameter of A is finite, i.e. sup{d(x, y) : x, y ∈ A} < ∞.

Exercise 2.15 Let (X, d) be a metric space and ρ be a pseudo-metric on X. Prove
that d + ρ is a metric on X.

Exercise 2.16 Let X be a nonempty set and ρ1, . . . , ρn be (pseudo-)metrics on X.

Prove that ρ1 + · · · + ρn is also a (pseudo-)metric on X.

Exercise 2.17 Let d be a pseudo-metric on a space X. Define a relation ∼ on X as

x ∼ y if and only if d(x, y) = 0.

Prove that ∼ is an equivalence relation on X. For each x ∈ X, let [x] denote the
equivalence class of x under this relation and X∗ := {[x] : x ∈ X}. Prove that d∗ is
a metric on X∗, where d∗([x], [y]) := d(x, y) for all [x], [y] ∈ X∗.

Exercise 2.18 Let (X, d) be a metric space. For every x, y ∈ X, define

ρ1(x, y) := min{1, d(x, y)} and ρ2(x, y) := d(x, y)

1 + d(x, y)
.

Prove that both ρ1 and ρ2 are metrics on X. Further show that every subset of X is
bounded in (X, ρ1) as well as in (X, ρ2).

Exercise 2.19 Prove the Cauchy-Schwarz inequality in R
2, as follows:

(a) Let a ≥ 0 and p(t) := at2 + bt + c. If p(t) ≥ 0 for all t ∈ R, prove that b2 ≤
4ac.

(b) Let (x1, x2), (y1, y2) ∈ R
2.Applying (a)with p(t) := (t x1 + y1)2 + (t x2 + y2)2,

prove that

|x1y1 + x2y2| ≤
√

x2
1 + x2

2

√
y21 + y22 .
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Exercise 2.20 Let X denote the family of real valued functions on the interval [0, 1]
and d( f, g) := sup

{| f (x) − g(x)| : x ∈ [0, 1]} for all f, g ∈ X. Prove that d is a
metric on X.

Exercise 2.21 Let (X, d) be as in Exercise 2.20. If f ∈ X and r > 0, prove that
B( f ; r) is the family of all those functions in X whose graphs lie in a band of width
r about the graph of f.

Exercise 2.22 In (Rn, d∞), prove that the open balls look like hypercubes. In other
words, B(x; r) = (x1 − r, x1 + r) × · · · × (xn − r, xn + r) for all x := (x1, . . . , xn)

∈ R
n and r ≥ 0.

Exercise 2.23 (Post office metric) Let p ∈ R
2 be a fixed point and d2 be the

Euclidean metric on R
2. Prove that d defines a metric on R2, where

d(a, b) := d2(a, p) + d2(p, b) for all a, b ∈ R
2.

Exercise 2.24 Let (X1, ρ1), . . . , (Xn, ρn) denote a finite family of metric spaces.
For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ∏n

i=1 Xi , define

ρ(x, y) :=
√

ρ2
1 (x1, y1) + · · · + ρ2

n (xn, yn).

Prove that ρ is a metric on the Cartesian product
∏n

i=1 Xi .

Exercise 2.25 Let d be a metric on R
n and (X1, ρ1), . . . , (Xn, ρn) be any finitely

many metric spaces. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ∏n
i=1 Xi , define

ρd(x, y) := d
(
ρ1(x1, y1), . . . , ρn(xn, yn), (0, . . . , 0)

)
.

Prove that ρd is a metric on the Cartesian product
∏n

i=1 Xi .

Exercise 2.26 Let {(Xn, dn) : n ∈ N} be a collection ofmetric spaces such that dn ≤
1 for all n ∈ N. Let X denote the Cartesian product

∏∞
n=1 Xn, that is, the family of

sequences {xn} such that xn ∈ Xn for all n ∈ N. For every x = {xn}, y = {yn} ∈ X,

define

ρ(x, y) := sup

{
dn(xn, yn)

n
: n ∈ N

}
and η(x, y) :=

∞∑
n=1

dn(xn, yn)

2n
.

Prove that both ρ and η are metrics on X.

Exercise 2.27 Let {(Xn, dn) : n ∈ N} be a collection of metric spaces and X :=∏∞
n=1 Xn. For any x = {xn}, y = {yn} ∈ X, define

d(x, y) :=
∞∑

n=1

1

2n
.

dn(xn, yn)

1 + dn(xn, yn)
.
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Prove that d is a metric on X. Also provide three other metrics on X.

Exercise 2.28 Let n ∈ N ∪ {0}, X be the set of polynomials with degree less than
or equal to n and p(i) be the i th derivative of p for every p ∈ X. For each k ∈ N,

define

dk(p, q) := max{|p(i)(0) − q(i)(0)| : 1 ≤ i < k} for all p, q ∈ X.

Obtain a necessary and sufficient condition in terms of k and n such that dk is a metric
on X.

Exercise 2.29 Let (X, d) be a metric space. For every x ∈ X, define a map δx :
X −→ R as δx (y) := d(x, y) for all y ∈ X. Let δ(X) := {δx : x ∈ X}. Prove that
the map x −→ δx is a bijection between X and δ(X).

Exercise 2.30 (p-adic metric) Fix a prime number p. Let x, y ∈ Q be arbitrary. If
x = y, define d(x, y) := 0. Otherwise, write x − y = pka/b, where a, k ∈ Z and
b ∈ N such that p does not divide ab; and define d(x, y) := p−k . Prove that d is an
ultrametric on Q.

Exercise 2.31 Let I denote the collection of closed bounded intervals. Define

d
([a, b], [c, d]) := max

{|a − c|, |b − d|} for all [a, b], [c, d] ∈ I.

Prove that d is a metric on I.

Exercise 2.32 Does there exist a metric on the space of extended reals
R ∪ {−∞,+∞}, which extends the usual metric on R?

Exercise 2.33 Let ∞ denote the (unique) infinity for the set of complex numbers
and C∞ := C ∪ {∞}. Is there a metric on C∞, that extends the usual metric on C?

Exercise 2.34 Let (X, d) be a metric space and y /∈ X. Does there always exist a
metric on X ∪ {y}, which extends the metric d?

Exercise 2.35 Does there exist a metric space with two closed balls B1 and B2 of
radii r1 and r2, respectively, such that B1 ⊂ B2 and r1 > r2?

2.2 Convergence in Metric Spaces

Analogous to the case of R, the notions of convergent sequences and Cauchy
sequences, in general metric spaces, are defined as follows:

Definition 2.20 A sequence {xn} in a metric space (X, d) is said to be convergent
in X if there exists some x0 ∈ X satisfying the following condition:
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for every ε > 0, there exists some N ∈ N such that d(xn, x0) < ε for all n ≥ N .

In this case, we say that {xn} converges to x0 and write xn −→ x0. We also call x0
as the limit of {xn} and write x0 = limn→∞ xn .

Definition 2.21 If x ∈ X, a subset U of X is said to be a neighborhood of x if

U ⊃ B(x; δ) for some δ > 0.

It is immediate that xn −→ x if and only if every neighborhood of x contains all
but finitely many terms of {xn}.
Definition 2.22 A sequence {xn} in a metric space (X, d) is said to be Cauchy if
for every ε > 0, there exists some N ∈ N such that

d(xn, xm) < ε for all n, m ≥ N .

Subsequences of a sequence in any space are defined naturally, as in Definition
1.12. Various results on metric spaces can be proven analogously to the case of R.

Here we present some sample cases. Several other analogous results will be provided
in Exercise 2.36.

Theorem 2.23 In metric spaces, convergent sequences have unique limits.

Proof If possible, let {xn} be a convergent sequence in a metric space (X, d) with
limits x ′ and x ′′ such that x ′ �= x ′′. Let ε = d(x ′, x ′′)/2. Then ε > 0, as x ′ �= x ′′.
Since {xn} converges to x ′ and x ′′, there are positive integers N ′ and N ′′ such that

d(xn, x ′) <
ε

2
for all n ≥ N ′

and d(xn, x ′′) <
ε

2
for all n ≥ N ′′.

Let N := max{N ′, N ′′}. Then for all n ≥ N , we obtain

d(x ′, x ′′) ≤ d(x ′, xn) + d(xn, x ′′) <
ε

2
+ ε

2
= ε = d(x ′, x ′′),

which is absurd. This completes the proof. �

Analogous to the case of reals, in any metric space, a Cauchy sequence is convergent
if it has a convergent subsequence.

Theorem 2.24 Let {xn} be a Cauchy sequence in a metric space (X, d), x ∈ X and
{xnk } be a subsequence of {xn} such that limk→∞ xnk = x . Then xn −→ x .

Proof Imitating the proof of Proposition 1.27, for every ε > 0, there exist some
N , K ∈ N such that
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d(xn, xm) <
ε

2
for all n, m ≥ N

and d(xnk , x) <
ε

2
for all k ≥ K .

Let p ∈ N such that n p ≥ max{N , nK }. Then for all n ≥ n p, we have

d(xn, x) ≤ d(xn, xn p ) + d(xn p , x) <
ε

2
+ ε

2
= ε.

Hence {xn} converges to x . �

Now we discuss convergence in Euclidean spaces. Note that the m-dimensional
Euclidean space R

m has a natural bijection with the collection of functions from
{1, . . . , m} into R. Motivated by this and for the sake of convenience, we write
x := (

x(1), . . . , x(m)
)
for every x ∈ R

m .

Theorem 2.25 Let {xn} be a sequence in R
m and x0 ∈ R

m such that

xn := (
xn(1), . . . , xn(m)

)
for all n ∈ N ∪ {0}.

Then

(a) xn −→ x0 if and only if xn( j) −→ x0( j) for every j = 1, . . . , m.

(b) {xn} is Cauchy if and only if {xn( j)} is Cauchy, for every j = 1, . . . , m.

Proof We shall prove the first part. The second one is similar. Note that for every
(a(1), . . . , a(m)) ∈ R

m and j = 1, . . . , m, we have

|a( j)| ≤
√√√√ m∑

k=1

|a(k)|2 ≤
m∑

k=1

|a(k)|.

Hence for every j = 1, . . . , m and for every n ∈ N, we have

∣∣xn( j) − x0( j)
∣∣ ≤ d2(xn, x0) ≤

m∑
k=1

∣∣xn(k) − x0(k)
∣∣.

Let ε > 0 be given. If xn −→ x0, there exists some N ∈ N such that d2(xn, x0) <

ε for all n ≥ N . Hence for every j = 1, . . . , m and for every n ≥ N , we obtain

∣∣xn( j) − x0( j)
∣∣ ≤ d2(xn, x0) < ε.

This proves that every xn( j) −→ x0( j) for every j = 1, . . . , m.

Conversely, if xn( j) −→ x0( j), for all j = 1, . . . , m, there exist N j ∈ N such
that

|xn( j) − x0( j)| <
ε

m
for all n ≥ N j .
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Let N0 := max{N1, . . . , Nm}. Then for every n ≥ N0, we obtain

d2(xn, x0) ≤
m∑

j=1

∣∣xn( j) − x0( j)
∣∣ <

m∑
j=1

ε

m
= ε.

Hence {xn} is convergent to x0. �

Theorem 2.26 Every Cauchy sequence in R
m is convergent in R

m .

Proof Let {xn} be a Cauchy sequence in R
m . Applying Theorem 2.25, {xn( j)} is

also Cauchy, for every j = 1, . . . , m. Now Theorems 1.28 and 2.25 ensure that {xn}
is convergent in Rm . �

Nowwegeneralize theBolzano-Weierstrass property, alreadyproved for sequences
of real numbers in Theorem 1.22.

Theorem 2.27 (Bolzano-Weierstrass) Every bounded sequence in R
m contains a

subsequence that converges in R
m .

Proof Let {xn} be a bounded sequence in R
m . Write xn := (

xn(1), . . . , xn(m)
)
for

all n ∈ N.As {xn} is bounded and |xn( j)| ≤ d2(xn, 0), for all j, the sequence {xn( j)}
is bounded.

Since {xn(1)} is a bounded sequence of reals, by Theorem 1.22, it has a con-
vergent subsequence. Let {xnk1

(1)} be that subsequence and x(1) be its limit. This
gives us a subsequence {xnk1

}, of the original sequence. As earlier obtain a subse-
quence {xnk2

(2)} of {xnk1
(2)}, which is convergent to some real x(2). Continuing

like this m-times, we obtain a subsequence {xnkm
} of {xn} such that xnkm

( j) −→
x( j) for every j = 1, . . . , m.

Let x := (
x(1), . . . , x(m)

)
. Then x ∈ R

m and by Theorem 2.25, we conclude that
xnkm

−→ x . Hence the result. �

Exercise 2.36 In any metric space, prove that the following assertions hold:

(a) Every convergent sequence is bounded.
(b) Every convergent sequence is Cauchy.
(c) Every Cauchy sequence is bounded.
(d) Every subsequence of a Cauchy sequence is also a Cauchy sequence.
(e) All subsequences of a convergent sequence are convergent to the same limit.
(f) Removing (inserting) any finite number of terms anywhere from (in) a sequence

does not affect its convergence.

Exercise 2.37 In Exercise 2.36, show that the converse statements of (a), (b), and
(c) are not true, in general.

Exercise 2.38 Let {xn} be a sequence in a metric space (X, d) and x ∈ X. Prove
that the following are equivalent:

(a) xn −→ x,
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(b) d(xn, x) −→ 0, and
(c) For every neighborhood U of x, there exists some a positive integer NU such

that xn ∈ U for all n > NU .

Exercise 2.39 Characterize convergent sequences in discrete metric spaces.

Exercise 2.40 Let an −→ a and bn −→ b, in a Euclidean space Rm . Prove that

(a) {kan} −→ a, for all scalars k ∈ R.

(b) {an + bn} −→ a + b, and
(c) {an · bn} −→ a · b, here x · y represents the dot product of x, y ∈ R

m .

Exercise 2.41 Let an −→ a in Rm and bn −→ b in R. Prove that anbn −→ ab.

Exercise 2.42 Let an −→ 0 inRm and {bn} be a bounded sequence of real numbers.
Prove that anbn −→ 0.

Exercise 2.43 Let an −→ a in Rm . Prove that |an| −→ |a|. Is the converse true?
Exercise 2.44 Let {an} and {bn} be two Cauchy sequences in Rm . Prove that

(a) {kan} is a Cauchy sequence, for all scalars k ∈ R.

(b) {an + bn} is a Cauchy sequence.

Exercise 2.45 In discrete metric spaces, prove that

(a) convergent sequences are eventually constant,
(b) Cauchy sequences are eventually constant, and
(c) Cauchy sequences are convergent.

Exercise 2.46 Write a proof for the second part of Theorem 2.25.

Exercise 2.47 Write an alternate proof of Theorem 2.26, using Exercise 2.36(c),
Theorems 2.27 and 2.24.

Exercise 2.48 Let X be a metric space, x ∈ X and {xn} be a sequence in X. If every
subsequence of {xn} has a subsequence convergent to x, prove that xn −→ x .

Exercise 2.49 Let X be a metric space containing two points x and y. If xn −→ x
and yn −→ y in X, then prove that the set {xn : n ∈ N} ∩ {yn : n ∈ N} is finite.



52 2 Metric Spaces

2.3 Normed Linear Spaces

The notion of metric spaces generalizes the space of real numbers, by extending
the distance function. Now we discuss normed linear spaces, which also extend
the addition and scalar multiplication operations from finite-dimensional Euclidean
spaces, along with the distance.

We assume that the reader is familiar with the notion of vector spaces. A few
subsequent results will require the notions of algebraic basis and subspace of a
vector space. All vector spaces in this book will be considered over the scalar fields
R or C.

Let X be a linear (vector) space over a fieldR orC.A function ‖.‖ : X −→ [0,∞)

is said to be a norm on X if for every x, y ∈ X and for every scalar k, it satisfies the
following conditions:

(a) ‖x‖ ≥ 0 (‖.‖ is positive)
(b) ‖x‖ = 0 if and only if x = 0 (‖.‖ is definite)
(c) ‖kx‖ = |k|‖x‖ (‖.‖ is homogeneous)
(d) ‖x + y‖ ≤ ‖x‖ + ‖y‖. (‖.‖ satisfies the triangle inequality)

In this case, we say that (X, ‖.‖) is a normed linear space or simply a normed space.
If there is no ambiguity on the norm, we simply write X for (X, ‖.‖).

Note that every norm ‖.‖ on a linear space X induces a metric given by

d(x, y) := ‖x − y‖ for all x, y ∈ X.

Therefore every normed linear space is a metric space.

Examples 2.28 (a) If X = R, then x �−→ |x | defines a norm on X.

(b) Let n ∈ N and X = R
n. For each x = (x1, . . . , xn) ∈ X, define

‖x‖2 :=
√

x2
1 + · · · + x2

n .

By Corollary 2.10, one can conclude that (X, ‖.‖2) is a normed linear space.
(c) Let C[a, b] denote the space of continuous real valued functions on a closed

bounded interval [a, b]. Then

‖ f ‖ := sup
{| f (x)| : x ∈ X

}
for all f ∈ C[a, b].

defines a norm on C[a, b], known as the uniform norm or the supremum norm.
(d) If Y is a linear subspace of a normed linear space (X, ‖.‖), then (Y, ‖.‖) is also

a normed linear space.

Remark 2.29 In general, a subspace of a metric space (X, d) is a nonempty subset
Y of X, equipped with the same metric d. However, in case of normed linear spaces
X, the term subspace is reserved only for linear subspaces of X.
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Proposition 2.30 Let �2 denote the collection of sequences {xn} of real numbers
such that

∑∞
n=1 |xn|2 < ∞. Define

‖x‖2 :=
√√√√ ∞∑

n=1

|xn|2 for all x = {xn} ∈ �2.

Then (�2, ‖.‖2) is a normed linear space.

Proof It is easy to see that the function ‖.‖2 satisfies the first two requirements of
a norm. To prove the triangle inequality, let x := {xn} and y := {yn} be any two
elements of �2. Applying Corollary 2.10, for every n ∈ N, we obtain

( n∑
k=1

|xk + yk |2
) 1

2 ≤ ( n∑
k=1

|xk |2
) 1

2 + ( n∑
k=1

|yk |2
) 1

2

≤ ( ∞∑
k=1

|xk |2
) 1

2 + ( ∞∑
k=1

|yk |2
) 1

2 = ‖x‖2 + ‖y‖2

Passing limit n −→ ∞, we obtain ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2. Hence the result. �

Above we have generalized Minkowski’s inequality, given by Corollary 2.10, to the
space �2. Similarly, one can generalize the Cauchy-Schwarz inequality (2.9). Next
we discuss a particular class of normed spaces, known as the inner product spaces.

Definition 2.31 Let X be a linear space over a field K (either R or C). An inner
product on X is a mapping 〈., .〉 : X × X −→ K such that for all x, y, z ∈ X and
α, β ∈ K we have

(a) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0. (positive definiteness)
(b) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 (linearity in the first variable)
(c) 〈x, y〉 = 〈y, x〉 (conjugate linearity in the second variable)

In this case, (X, 〈.〉) is known as an inner product space.

Examples 2.32 (a) The standard dot product on Rn is an inner product.
(b) If X := c00, then

〈{xn}, {yn}
〉 := ∑∞

n=1 xn yn defines an inner product on X.

Theorem 2.33 Let (X, 〈, 〉) be an inner product space over K, and x, y ∈ X. Then
the following hold:

(a) Cauchy-Schwarz inequality: |〈x, y〉| ≤ 〈x, x〉〈y, y〉, and the equality holds here
if and only if x and y are linearly dependent.

(b) ‖x‖ := √〈x, x〉 defines a norm on X.

(c) Parallelogram law: ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).
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(d) Polarization identity:

〈x, y〉 =
{ 1

4

(‖x + y‖2 − ‖x − y‖2) if K = R
1
4

(‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2) if K = C.

(2.5)

Proof With z := 〈y, y〉x − 〈x, y〉y, (a) can be established analogous to Theorem
2.9. Further, (c) and (d) are routine manipulations. Here we we prove (b) only.

The positive definiteness and homogeneity are immediate. For the triangle
inequality, note that the inequality in (a) translates to |〈x, y〉| ≤ ‖x‖‖y‖. Hence

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2Re(〈x, y〉) + ‖y‖2 ≤ ‖x‖2 + 2|〈x, y〉| + ‖y‖2
≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2.

This proves that ‖x + y‖ ≤ ‖x‖ + ‖y‖. �

Remarks 2.34 In 1935, Jordan-Von Neumann established that if a normed space
satisfies the parallelogram law, then its norm is induced by an inner product. In that
case, the inner product is given by the polarization identity (2.5). There are 350
characterizations of inner product spaces in the book of Dan Amir, see [2]. For more
on inner product spaces, the reader is referred to [3, Chap. VI].

Exercise 2.50 Let X be a normed space, x, y ∈ X, and α be a scalar. Prove that

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x − y‖ and ‖αx − αy‖ = |α|‖x − y‖.

Exercise 2.51 Which vector subspaces of a normed space are bounded subsets?

Exercise 2.52 Let c00 be the set of sequences of reals which are eventually zero,
that is, real sequences {xn} such that xn = 0 for all sufficiently large n. Define

‖{xn}‖2 :=
√√√√ ∞∑

n=1

|xn|2 for all {xn} ∈ c00.

Prove that (c00, ‖.‖2) is a normed linear space.

Exercise 2.53 Let n ∈ N and p ∈ [1,∞]. For every x = (x1, . . . , xn) ∈ R
n, define

‖x‖p :=
{

(
∑n

i=1 |xi |p)
1
p ; 1 ≤ p < ∞,

sup{|x1|, . . . , |xn|} ; p = ∞.

Prove that ‖.‖p defines a norm on the linear space Rn over R.

Exercise 2.54 If x = {xk}, y = {yk} ∈ �2, prove that
∑∞

k=1 |xk yk | ≤ ‖x‖2‖y‖2.
Exercise 2.55 Write a proof for the parallelogram law and the polarization identity
as given in Theorem 2.33.
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Exercise 2.56 Let X be a normed space, y ∈ Y ⊂ X, x ∈ X and α be a scalar. If
dist (x; Y ) := inf{d(x, y) : y ∈ Y }, prove that ‖kx + y‖ ≥ |α| × dist (x; Y ).

Exercise 2.57 Is there any linear space on which the discrete metric can be induced
by a norm?

Exercise 2.58 Show that the metric induced by any norm, on a linear space, is
translation invariant.

Exercise 2.59 Is it possible to assign a norm to every linear space over C?

Exercise 2.60 Let d be a translation invariant and homogeneous metric on a vector
space X, and ‖x‖ := d(x, 0) for all x ∈ X. Prove that (X, ‖.‖) is a normed space
and induces metric d.

Exercise 2.61 Let X be a linear space as well as a metric space. Under what con-
ditions it becomes a normed linear space having topology same as the one given by
the metric?

2.4 Sequence Spaces

Let K be any of R or C. We start with the following vector spaces over K.

c00 := the space of all sequences overKwith only finitely many non-zero terms.

c0 := the space of all sequences overK, convergent to 0.

c := the space of all convergent sequences overK.

Let 1 ≤ p ≤ ∞. For a sequence x = {x j } over K, define extended real numbers
‖x‖p as follows:

‖x‖p :=
{ ( ∑∞

j=1 |x j |p
) 1

p ; 1 ≤ p < ∞,

sup{|x j | : j ∈ N} ; p = ∞.

For every 1 ≤ p ≤ ∞, let �p denote the collection of all sequences x overKwith
‖x‖p < ∞. It is easy to see that c00, c0 and c are vector spaces over K. The same is
true for �p(1 ≤ p ≤ ∞).

Theorem 2.35 �p is a linear space, for all 1 ≤ p ≤ ∞.

Proof It is evident that each �p is closed under scalar multiplication. Let p ∈
[1,+∞] and x, y ∈ �p. We shall now establish that x + y ∈ �p. Write x = {xn}
and y = {yn}.
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First consider the case when p = ∞. By triangle inequality |xn + yn| ≤ |xn| +
|yn| ≤ ‖x‖∞ + ‖y‖∞ for all n ∈ N. Therefore, ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞ < ∞
and hence x + y ∈ �∞.

Now suppose that 1 ≤ p < ∞. Let zn := max{|xn|, |yn|} for all n ∈ N. Note
that |zn|p ≤ |xn|p + |yn|p which implies ‖z‖p

p ≤ ‖x‖p
p + ‖y‖p

p. Hence z = {zn} ∈
�p. Further note that

|xn + yn|p ≤ ∣∣|xn| + |yn|
∣∣p ≤ (2|zn|)p = 2p|zn|p.

Summing
∑∞

n=1, we obtain ‖x + y‖p
p ≤ 2p‖z‖p

p < ∞. Thus x + y ∈ �p. �

Now we claim that ‖.‖p is a norm on the linear space �p for every 1 ≤ p ≤ ∞.

It is easy to see that ‖.‖ is positive definite and homogeneous. If p = 1 or ∞, then
the triangle inequality follows immediately from the definition of ‖.‖p. We shall
establish this inequality for the case 1 < p < ∞ soon, which needs some further
results. Before that, let us discuss the inclusion relations among sequence spaces.

Theorem 2.36 (Jensen’s inequality) Let 1 ≤ a < b ≤ ∞. If x ∈ �a, then ‖x‖b ≤
‖x‖a . Consequently �a ⊂ �b.

Proof The consequence is immediate from the inequality. Also for b = ∞, the result
follows from the definition of ‖.‖∞. Suppose b < ∞ and write x := {xn}.

First assume that ‖x‖a ≤ 1. Then for every n ∈ N, we have |xn| ≤ 1, which
implies that |xn|b ≤ |xn|a . Hence ‖x‖b

b ≤ ∑∞
n=1 |xn|a = ‖x‖a

a .

Now for any x ∈ �a, applying the above calculations by replacing x with x/‖x‖a,

we conclude that ∥∥∥∥ x

‖x‖a

∥∥∥∥
b

b

≤
∥∥∥∥ x

‖x‖a

∥∥∥∥
a

a

,

and hence ‖x‖b ≤ ‖x‖a . �

We leave it to the reader to prove that the following chain of inclusion relations
holds among sequence spaces, which is proper at every stage:

c00 ⊂ �a ⊂ �b ⊂ c0 ⊂ c ⊂ �∞ for all 1 ≤ a < b < ∞. (2.6)

To establish the triangle inequality for sequence spaces,wepresent a set of inequal-
ities.

If p, q ∈ [1,+∞] satisfy 1
p + 1

q = 1, then these are known as conjugate expo-
nents of each other.

Theorem 2.37 (Young’s inequality) Let p, q be conjugate exponents such that p ∈
(1,∞). Then

ab ≤ a p

p
+ bq

q
for all a, b ∈ [0,∞).

Moreover, the equality occurs if and only if a p = bq .
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Proof The result is trivial if either a = 0 or b = 0. Suppose that both a and b are
positive real numbers. Also note that

p − 1 = p

(
1 − 1

p

)
= p

q
and q − 1 = q

p
= 1

p − 1
.

Consider the functions f and g on (0,∞), defined as follows:

f (t) := t p−1 and g(t) := tq−1 for all t > 0.

Since p − 1 and q − 1 are positive, both f and g are strictly increasing functions
from (0,∞) onto (0,∞). It can be shown that these are inverses of each other.

Let a, b ∈ (0,∞). Then the area of the rectangle [0, a] × [0, b] is at least the sum
of areas of the regions {(x, x p−1) : 0 ≤ x ≤ a} and {(yq−1, y) : 0 ≤ y ≤ b}. That is

ab ≤
∫ a

0
x p−1dx +

∫ b

0
yq−1dy = a p

p
+ bq

q
.

Further, the equality occurs here if and only if the area of above rectangle is exactly
equal to the sum of areas of those two regions, which is true if and only if b = a p−1.

Now b = a p−1 holds if and only if bq = aq(p−1) = a p. Hence the result. �

Theorem 2.38 (Hölder’s inequality) Let p, q be conjugate exponents such that 1 ≤
p ≤ ∞, x = {xn} ∈ �p and y = {yn} ∈ �q . Then

∑∞
n=1 |xn yn| ≤ ‖x‖p‖y‖q .

Proof The result is trivial, if either p ∈ {1,∞} or either of ‖x‖p or ‖y‖q is zero
or infinity. Therefore, without loss of generality, we assume that 1 < p < ∞,

0 < ‖x‖p < ∞ and 0 < ‖y‖q < ∞. Applying Theorem 2.37, for each n ∈ N, we
conclude that |xn yn|

‖x‖p‖y‖q
≤ 1

p

( |xn|
‖x‖p

)p

+ 1

q

( |yn|
‖y‖q

)q

.

Passing summation
∑∞

n=1, we obtain
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1

‖x‖p‖y‖q

∞∑
n=1

|xn yn| ≤ 1

p

∞∑
n=1

( |xn|
‖x‖p

)p

+ 1

q

∞∑
n=1

( |yn|
‖y‖q

)q

= 1

p
+ 1

q
= 1.

Hence we conclude the required inequality. �

For p = q = 2, theHölder’s inequality is essentially theCauchy-Schwarz inequality.

Theorem 2.39 (Minkowsky’s inequality) Let p ∈ [1,+∞] and x, y ∈ �p. Then

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Proof The result is trivial for the cases p = 1 and p = ∞. Also incase ‖x + y‖p =
0, there is nothing to prove. Suppose ‖x + y‖p > 0 and that 1 < p < +∞.Applying
Theorem 2.35, we obtain x + y ∈ �p.The triangle inequality implies

∞∑
n=1

|xn + yn|p ≤
∞∑

n=1

|xn + yn|p−1|xn| +
∞∑

n=1

|xn + yn|p−1|yn|. (2.7)

Let q be the conjugate exponent of p. Then q(p − 1) = p and consequently

∞∑
n=1

(|xn + yn|p−1)q =
∞∑

n=1

|xn + yn|p < ∞.

For r > 0 and a sequence a := {an} of complex numbers, we shall denote the
sequence {|an|r } with simply |a|r . Therefore |x + y|p−1 ∈ �q . Also, we have

∥∥|x + y|p−1
∥∥

q =
( ∞∑

n=1

(|xn + yn|p−1
)q

) 1
q

=
( ∞∑

n=1

|xn + yn|p

) 1
q

= (‖x + y‖p)
p
q .

Applying Hölder’s inequality, we obtain

∞∑
n=1

|xn + yn|p−1|xn| ≤ ‖x‖p

∥∥|x + y|p−1
∥∥

q
= ‖x‖p(‖x + y‖p)

p
q

∞∑
n=1

|xn + yn|p−1|yn| ≤ ‖y‖p

∥∥|x + y|p−1
∥∥

q = ‖y‖p(‖x + y‖p)
p
q .

Using this in (2.7), we obtain

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p

)(‖x + y‖p
) p

q .

Divide it with
(‖x + y‖p

) p
q to conclude the result. �
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Remarks 2.40 (a) Let x1, . . . , xn and y1, . . . , yn be non-negative reals. If the �p-
norms of (x1, . . . , xn) and (y1, . . . , yn) coincide for n different positive reals p,

then xi are just a permutation of yi (see [4]).
(b) The textbook [5] starts with a chapter on basic inequalities. There is also a

complete book on inequalities by Hardy, Littlewood, and Polya (see [6]). An
essay on a history of inequalities can be found in [7].

(c) We are avoiding an important class of normed spaces called the Lebesgue spaces
or the L p spaces, as these are beyond the scope of this book (see [1, p. 253] or
[9, Chaps. 7-8]).

Exercise 2.62 Prove the Hölder’s and Minkowsky’s inequalities for p ∈ {1,+∞}.
Exercise 2.63 If 1 ≤ a < b ≤ ∞ and xn −→ x in �a, prove that xn −→ x in �b.

Exercise 2.64 Suppose 1 ≤ a < ∞ and x ∈ �a . Prove that ‖x‖∞ ≤ ‖x‖a .

Exercise 2.65 Let X be the space of polynomials overC.Establish a linear bijection
between X and c00. Use it to define a norm on X.

Exercise 2.66 Prove the chain of inclusions (2.6) on page 56 and show that all these
inclusion are strict.

Exercise 2.67 Let p, q be conjugate exponents such that p ∈ (1,∞). Prove that

ab ≤ 1

p
.

(
a

c

)p

+ (bc)q

q
for all a, b, c ∈ (0,∞).

Also show that the equality occurs if and only if a p = bq .

Exercise 2.68 Applying the Jordan-VonNeumann’s characterization, as in Remarks
2.34, prove that �p is an inner product space if and only if p = 2.

Exercise 2.69 If {a1, . . . , an} ⊂ N satisfy
∑n

k=1 ak ≤ 1, prove that
∑n

k=1
1
ak

≥ n2.

Exercise 2.70 Deduce AM-GM inequality from Young’s inequality.

Exercise 2.71 Let 1 ≤ p < ∞ and x, y ∈ �p. Assuming the convexity of the func-
tion t �−→ t p on (0,∞), provide an alternative proof to the inequality ‖x + y‖p ≤
‖x‖p + ‖y‖p.

Exercise 2.72 If x ∈ �p for all p ∈ (1,∞), prove that ‖x‖∞ = lim p→∞ ‖x‖p.

Exercise 2.73 In Exercise 2.72, is the hypothesis that x ∈ �p for all p ∈ (1,∞)

redundant?

Exercise 2.74 Prove that c is the linear space spanned by c0
⋃{(1, 1, 1, . . . )}.
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2.5 Hints and Solutions to Selected Exercises

2.7 For any x, y ∈ X, the hypothesis impliesd(x, y) ≤ d(x, x) + d(y, x) = d(y, x).

Similarly, d(y, x) ≤ d(x, y). Hence d(y, x) = d(x, y). If d(x, y) < 0, then

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y) < 0,

a contradiction. Hence the result.
2.28 Note that p(i)(0) = 0 if and only if the (i + 1)th coefficient in p, starting from

the constant term, is zero. Therefore dk is a metric on X if and only if k ≥ n − 1.
2.35 Yes. For example, in [−1, 1] under usual metric, we have B[−1; 2] ⊂ B[0; 1].
2.36 All these proofs are analogous to the case of R (see Theorem 2.23).
2.41 Use the fact that if a sequence converges, then it is bounded. If |x − y| represents

the d2(x, y), apply the following inequality

|anbn − ab| ≤ |anbn − abn| + |abn − ab| = |an − a||bn| + |a||bn − b|.

2.48 Suppose that {xn} is not convergent to x . Then there exists some ε > 0 and a
subsequence {xnk } of {xn} such that d(xnk , x) ≥ ε for all k ∈ N. Therefore, the
subsequence {xnk } of {xn} has no subsequence convergent to x, a contradiction.

2.54 Use Theorem 2.9 and imitate the proof of Proposition 2.30.
2.57 Discrete metric on any linear space doesn’t satisfy the second assertion of Exer-

cise 2.50.
2.59 Yes. Let X be any linear space and B be a basis of X. Then every x ∈ X can be

written uniquely as a finite linear combination x = ∑
i αivi , where αi ∈ C and

vi ∈ B. Then ‖x‖ := ∑
i |αi | defines a norm on X.

2.61 See Exercise 2.60.
2.63 Apply Theorem 2.36.
2.66 Suppose 1 ≤ a < b < ∞ and define xn := n− 1

2 ( 1
a + 1

b ) for all n ∈ N. Then

|xn|a = n− 1
2 (1+ a

b ) > n−c, where c ∈
(
1

2
+ a

2b
, 1

)
.

and |xn|b = n− 1
2 (1+ b

a ) < n−d , where d ∈
(
1,

1

2
+ b

2a

)
.

Hence {xn} ∈ �b \ �a . The strictness of other inclusions is left to the reader.
2.69 Since arithmetic mean is always greatest than the harmonic mean, we obtain

a1 + · · · + an

n
≥ n

1
a1

+ · · · + 1
an

which implies
n∑

k=1

1

ak
≥ n2∑n

k=1 ak
≥ n2.

2.70 Use p = 2 = q.

2.71 Write a := ‖x‖p and b := ‖y‖p. The result is trivial, if a = 0 or b = 0. Suppose
not. Write x = {xn‖, y = {yn} and c := a/(a + b). Then for all n ∈ N, we have



2.5 Hints and Solutions to Selected Exercises 61

|xn + yn|p ≤ (|xn| + |yn|)p = (a + b)p

(
a

a + b
.

|xn|
‖x‖p

+ b

a + b
.

|yn|
‖y‖p

)p

= (a + b)p

(
c

|xn|
‖x‖p

+ (1 − c).
|yn|
‖y‖p

)p

≤ (a + b)p

(
c
|xn|p

‖x‖p
p

+ (1 − c).
|yn|p

‖y‖p
p

)
,

using the convexity of the map t �−→ t p on (0,∞). Passing summation
∑∞

n=1
above, we conclude that ‖x + y‖p

p ≤ (a + b)p = (‖x‖p + ‖y‖p)
p.

2.72 The result is trivial if x = 0. Suppose x �= 0. By Theorem 2.36, we already have
‖x‖∞ ≤ ‖x‖p for all p > 1.Therefore, ‖x‖∞ ≤ lim inf p−→∞ ‖x‖p.Let p, q be
conjugate exponents such that q < p. Writing x := {xn}, we obtain

‖x‖p =
( ∞∑

n=1

|xn|p−q |xn|q
) 1

p

≤ ‖x‖
p−q

p∞
( ∞∑

n=1

|xn|q
) 1

p

= ‖x‖1−
q
p∞ ‖x‖

q
p

q . (2.8)

Therefore, we have

lim sup
p−→∞

‖x‖p ≤ lim sup
p−→∞

(‖x‖1−
q
p∞ ‖x‖

q
p

q ) = ‖x‖∞. (2.9)

Finally from (2.8) and (2.9), we conclude that

lim sup
p−→∞

‖x‖p ≤ ‖x‖∞ ≤ lim inf
p−→∞ ‖x‖p.

2.73 No. For example, let xn = 1 for all n ∈ N. Then {xn} ∈ �∞ \
⋃

1≤p<∞
�p.
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