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Foreword

It gives me immense pleasure to write the Foreword to this book on metric spaces. I
first met the author Surinder Pal Singh Kainth in early 2007 when both of us were
graduate students at the Indian Institute of Technology Bombay. We would often
discuss several topics over the dinner table at the common hostel there! And among
many topics, mathematical discussions were of course part of it! Since both of us
were young students, we often talked about books by different authors. It was at that
time, he expressed a feeling of writing some good textbooks. After a year, I left IIT
Bombay and the conversations were paused. Eventually after a few more years we
found ourselves again in the same neighborhood due to the choices of our respective
workplaces!

Around five years back when Surinder showed me a preliminary version of this
book, Iwas verymuch exhilarated that he is exactly on focus! The preliminary version
itself looked pretty good forme and Iwas expecting that the book should be ready in a
fewmonths. However, Surinder took immense care and invested a lot of hard work to
polish the old version repeatedly. The present form is obtained after many revisions
by him. I think this book would serve as an excellent introduction to metric spaces.
It contains plenty of materials to master the topic. The author has written this book
by keeping undergraduate and postgraduate students of Indian universities in mind.
In my opinion, he has been successful to shape it in a way that would be accessible
to the target audience. The book will also serve as a reference to the experienced
college and university teachers as well. It would also complement any basic course
on real analysis or general topology.

The book has ten chapters and four appendices to cover necessary background
material. All chapters are full of examples and exercises to inculcate the thought
process of the students. Surinder has good expertise on real analysis and he has
certainly shown his signature at different places of the book. Even though there
are many classic texts on the topic in the literature, this book has the charm in its
own right. I really like the idea of devoting a whole chapter on Cantor sets. This is
something that I hope to be a useful reference for the students.

Overall, the book would serve both as a text and as a reference book to the
mathematical community. It is informative and self-contained. I am extremely happy
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viii Foreword

to see this book published. Finally, I would like to note a quote that is attributed to
Brian Herbert: ‘the capacity to learn is a gift; the ability to learn is a skill; the
willingness to learn is a choice’. As per as one would like to learn a basic introduction
around metric spaces, this book may be offered as a gift to the interested reader. It
would develop the mathematical skill to the reader, and would provide future readers
a choice to look at the right place to learn!

With warm wishes to the author and the readers of this book.

Krishnendu Gongopadhyay
IISER Mohali
Punjab, India



Preface

The notion of a metric space was introduced by Frećhet in his Ph.D. dissertation in
1906. It generalizes the concept of distance tomore general spaces than the Euclidean
ones, leading to the corresponding extensions of convergence and continuity. There-
fore, a course on metric spaces is a gateway to mathematical abstraction. Yet, there
are only a few books completely devoted to this topic.

The textbooks on real, complex, or functional analysis often pass this subject quite
rapidly. It deservesmuchmore attention than that.A thorough course onmetric spaces
makes a better foundation in abstract analysis and eases other advanced courses such
as topology, functional analysis, and measure theory. This book intends to provide
such a comprehensive course for upper undergraduates and graduates. I present a
smooth take off from the basic real analysis onto general metric spaces.

This book is motivated by my classroom experiences, where I often postpone the
notion of countable and uncountable sets until the basic topology is discussed. There-
fore, I present convergence, continuity, completeness, compactness, and connected-
ness before the notions of cardinality and separability. The last two chapters of
this textbook are treatises on homeomorphisms and the Cantor set, which makes it
different from any other available text onmetric spaces. It also addresses set-theoretic
matters in fairer details.

The following is a brief description of the contents and style of this textbook,
which makes it quite pedagogical and different, as compared to the other literature
on the same subject.

Every chapter of this book presents a single concept which is further unfolded
and elaborated through related sections and subsections. The particular cases of
Euclidean spaces and normed linear spaces are also discussed for every fundamental
notion. Their analogies and distinctions with general metric spaces are elaborated by
subsuming a variety of examples and exercises.

The prerequisites are very few. It is assumed that the reader is familiar with the
basics of sets, relations, and functions. A basic understanding of vector spaces is
required for the topology of normed linear spaces. Differentiation of real functions
is required for a few results, such as some applications of the Banach contraction
principle and Lipschitz continuity.
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x Preface

I have explained the metric space of reals before the topology of metric spaces.
Chapter 1 is a self-contained quick review of the basics of real analysis such as
the completeness property, continuity, decimal expansions, sequences and series
of real numbers; along with the uniform convergence of sequences and series of
real functions. However, it is not aimed at providing every little detail of basic real
analysis.

Chapter 2 presents a vast collection of metric spaces, including the particular
cases of normed spaces and sequence spaces. In Chap. 3, we provide a thorough
analysis of the basic notions such as open sets, limit points, closures, subspaces, and
continuity.We also discuss strong pointwise convergencewhich provides a necessary
and suffcient condition for the continuity of the pointwise limit of a sequence of
continuous functions.

To ensure a deep understanding of the very fundamental ideas of basic topology,
I present Chaps. 2 and 3 in greater detail, as compared to most of the standard
textbooks. I believe that at the undergraduate level it takes time to develop a taste for
abstraction.

The Banach contraction principle, various characterizations of completeness,
completion of a metric, and the particular cases of some Banach spaces are presented
in Chap. 4. Chapter 5 addresses compactness, its characterizations, and relationship
with continuity. It presents uniform continuity in greater detail and a section on Lips-
chitz continuity, including some necessary and sufficient conditions for the uniform
continuity of real functions. In the exercises sections, we outline some recent results
regarding Atsuji spaces, strong uniform continuity, and Cauchy continuous maps,
which haven’t yet made their way into any textbook.

This textbook offers a pedagogical treatment to connectedness. Tomy experience,
the notion of connectedness remains unnatural and unintuitive until path connected-
ness is discussed on Euclidean spaces. Even in history, path connectedness appears
before connectedness. Therefore, I start with path connectedness and its significance.
It is followed by connectedness and its characterizations, connected components, and
some miscellaneous topics such as locally (path) connected and totally disconnected
spaces.

In Chap. 7, we present the notions of countable sets, cardinality, and some appli-
cations to topology. It includes a section on the set of discontinuity of a function,
which presents the cases ofmonotone functions and functions betweenmetric spaces.
Chapter 8 deals with separability, Polish spaces, perfect sets, Cantor–Bendixon
theorem, Baire category, and equicontinuity.

The chapter on homeomorphisms presents equivalence of metrics and several
extension theorems,which includes the results byTietze,Kuratowski, andLavrentiev.
It also presents the cases of normed spaces, particularly the finite-dimensional spaces.

Apart from the basic introduction to the Cantor set, Chap. 10 includes its infinite
product representation through a weaker version of Tychonoff’s theorem, various
embeddings and characterizations of the Cantor set, along with some miscellaneous
topics such as the Cantor function and the Cantor’s leaky tent. This chapter presents



Preface xi

the results byAlexandroff Hausdorff and Brouwer, alongwith a variety of their appli-
cations. That includes a continuous real function which interpolated every bounded
sequence.

There are four appendices in this textbook. The first one deals with the axiomatic
set theory, which presents Zermelo–Fraenkel axioms along with the axiom of choice.
In this appendix, I present a detailed discussion on the choice axiom which includes
proofs of various standard results without this axiom.

The second appendix is a further discussion on continuous functions. It includes
Weierstrass’ approximation theorem, a standard example of a continuous but nowhere
differentiable function, and the Banach–Mazurkiewicz theorem, which states that
‘most’ continuous functions are nowhere differentiable.

The third appendix is special, which offers some tricky proofs in terms of simple
two-player games. It establishes the uncountability of reals and perfect sets through
such games. It also presents the Banach Mazur game to prove the Baire category
theorem. The last appendix gives a glimpse into the general topology.

There are 966 exercises in this textbook, to further explore and elaborate on various
concepts. The ones at the beginning of the exercise section motivate the readers. A
few exercises address serious alluring questions, arising from theoretic discussions
and deliver the aesthetics of reasoning.

Almost every section contains some unconventional exercises never seen before,
which also impart the art of questioning. I cherished generating such questions and
discussing themwithmy students. I hope the readerswould also enjoy such questions.

I believe that the examples in a textbook should motivate the readers, rather
than entangling them in new types of unnecessary technicalities. Therefore, I have
refrained from including ideas of marginal value in the examples. I have presented
these in the exercises, along with their solutions at the end of the corresponding
chapters.

Most of the exercise sections are split into two parts by a light horizontal line. The
exercises after that line may be avoided in the first reading, while the ones before that
are essential to grasp the gist of the subject. At the end of every chapter, I provide brief
hints and solutions to selected exercises. I have provided some of these in greater
detail than others.

This book contains various remarks about the history of basic notions and results.
I have also presented a few open problems. Several recent contributions have been
discussed and cited in the remarks throughout the textbook. A list of 144 references,
along with an index, is given at the end. These references include various expository
articles, and I hope that it will develop the habit of looking into the journal literature
among the students.

Certain sections of this book contain more details than the requirements of stan-
dard undergraduate courses on metric spaces. I have dived into those ideas due to
their pedagogical value, and have kept them at the end of the corresponding chapters.

Special care has been taken to keep the exposition easy and interesting enough for
the beginners in analysis. The presentation of the material is student-friendly, albeit
a fairly thorough one sometimes. The notations used are almost standard, with a few
exceptions.
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I would appreciate receiving any kind of comments and suggestions for further
improvements to this book at sps@pu.ac.in or spsingh.math@gmail.com. Many
sections of this book contain ideas which were never seen before in any textbook.
These consist of fundamentally new results, new proofs of old results, and almost
every section contains such exercises. Interested readers can explore the results with
following numbers: 2.17, 3.32, 5.38, 6.15, 6.36, 7.16, 7.20, 7.23, 7.41, 9.22, 9.23,
9.28, 9.35, 9.36, 9.37, 10.4, 10.12, 10.14, 10.26, 10.28, 10.33, B.10; Sects. 7.2, 7.3.2,
10.5.2, 10.5.3, A.3, A.4; and Appendix C.

It is pertinent tomention that although this book is intended to be an undergraduate
text, a few of its contents are not usually taught at the undergraduate level. Their
purpose is to give a glimpse of a wider scope of the subject and to motivate the
readers to further explore the subject. Instructors may assign some undergraduate
projects on metric spaces, by combining some of such topics and the references cited
throughout this book.

Several courses on analysis may be designed from this textbook. I recommend
a semester-long course on metric spaces, consisting of at least the following Sects:
1.1, 1.2, 1.4, 2.1, 2.2, 3.1–3.5, 4.1–4.3, 5.1–5.3, 6.1, 6.2, 7.1, 7.2, 7.3.1, 8.1–8.3, 9.1,
9.2, and 10.1. Many sections of this book and the references therein can be helpful
in assigning undergraduate projects.

I have benefited a lot from the works cited in the references. I am highly thankful
to my alma maters Indian Institution of Technology Bombay and Panjab Univer-
sity Chandigarh where I learnt and have grown in analysis. I would like to thank
Prof. Krishnendu Gongopadhyay, Prof. Amin Sofi, and Prof. H. L. Vasudeva, each
of whom read through portions of this book and offered important and productive
suggestions for revision. It is Prof. Amin Sofi who suggested including Theorems
9.19, 9.25, 10.19, andExample 6.36. I am thankful toProf.GeraldBeer for his sugges-
tions to include results on strong uniform continuity, Cauchy continuity, and strong
pointwise convergence. He sent me an elementary proof of his 2009 result, which is
now presented in Theorem 3.21. I would also like to express my sincere thanks to
Prof. Krishnendu Gongopadhyay for motivating me throughout this journey, and for
writing a foreword to this book.

I would like to take a heartfelt moment to express my deepest gratitude to Dr.
Narinder Singh for stepping in at short notice for proofreading. He ensured that the
manuscript gleams brighter than ever. Thank you for your invaluable contribution. I
am thankful to Springer’s editors and anonymous reviewers for their cooperation in
the realization of this book. Lastly, I am indebted to my family for their unwavering
support and understanding, without which this book would have never been possible.

Chandigarh, India
September 16, 2023

Surinder Pal Singh Kainth
sps@pu.ac.in
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Chapter 1
Real Analysis

This chapter is a review of the basics of real numbers and real functions. It presents
a thorough discussion on the completeness property, continuity, decimal expan-
sions, sequences, and series of real numbers, along with the uniform convergence of
sequences and series of real functions. However, it is not aimed at providing every
little detail of the basic real analysis. We present only those notions which are to be
used or extended in the subsequent chapters on general metric space.

1.1 The Real Number System

We assume that the reader is familiar with the basic order and algebraic properties of
the set of real numbers, denoted by R. A formal construction of R is postponed to
Sect. 4.4. Let Z,N, and Q denote the sets of integers, positive integers, and rational
numbers, respectively. Positive integers are known as natural numbers. The terms
reals and rationals are also common for real and rational numbers, respectively.

The set of rational numbers is inadequate, in the sense that there exists no rational
numberwhose square is 2.The situation is somewhat like the case of natural numbers,
as there no natural number n satisfies n + 2 = 1. As a remedy, the set N is enlarged
to Z, which comprises all negative integers along with zero, to make such type of
equations solvable. Similarly, the set Q is ‘enlarged’ as R, in order to have some
‘additional properties’.

Therefore we consider R as a superset of the set of rational numbers, consistent
with the order and algebraic properties ofQ and having an additional property, known
as the least upper bound property ofR.This property, also known as the completeness
property of R, will be presented soon. First we define intervals.

Definition 1.1 A subset I of R is called an interval if it contains all real numbers
between any two numbers of I. In other words, I ⊂ R is an interval, if a, b ∈ I and
a < c < b imply c ∈ I.
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2 1 Real Analysis

Abovedefinition includes all open, closed, semi-open, bounded, unbounded intervals,
singleton sets, and even the empty set. The reader is presumed to be familiar with the
standard notations (a, b), [a, b], and (a, b], etc, to denote different types of intervals.
Definition 1.2 Let S be a nonempty subset of R. Then

(a) S is said to be bounded above if there exists some u ∈ R such that

x ≤ u for all x ∈ S.

In this case, u is called an upper bound of S.

(b) l ∈ R is said to be the least upper bound of S if l is an upper bound of S and
l ≤ u, for every upper bound u of S. Another term for the least upper bound is
supremum.

The least upper bound property of reals states that every nonempty and bounded
above subset of R has a least upper bound in R. It is immediate that no set can have
multiple least upper bounds.

Analogously, we define bounded below sets, their lower bounds and the infimum
or the greatest lower bound. The supremum (infimum) of a set S, if exists, is denoted
by sup S (inf S). The analogous greatest lower bound property is equivalent to the
least upper bound property.We provide such details in the exercises section. A subset
S of R is said to be bounded if it is bounded above as well as bounded below.

Examples 1.3 (a) {1, 2, 3} is bounded with inf{1, 2, 3} = 1 and sup{1, 2, 3} = 3.
(b) The supremum of a set may not be its element, as sup(0, 1) = 1.

The following is an important consequence of the completeness property of R.

Theorem 1.4 (Archimedean property) Let x, y ∈ R such that x > 0. Then there
exists a natural number n such that nx > y.

Proof Assume that nx ≤ y for all n ∈ N. Then S := {nx : n ∈ N} is a nonempty set
bounded above by y. By least upper bound property, S has a supremum, say l.

Since x > 0, we have l − x < l. Therefore l − x is not an upper bound of S.

Hence there exists some m ∈ N such that l − x < mx . This implies l < (m + 1)x
and the latter belongs to S. Therefore l �= sup S, a contradiction. �

Corollary 1.5 If x ∈ R, then there exists a unique integer m such that m − 1 ≤ x <

m.

Proof Applying Archimedean property on 1 and x, we obtain a natural number n
such that n > x .Similarly, there exists k ∈ N such that k > −x .Thus−k < x < n. If
I j := {r ∈ R : j − 1 ≤ r < j},we have x ∈ ∪n

j=−k+1 I j .Hence there exists a unique
integer m such that x ∈ Im . �

The above corollary allows us to define the greatest integer function, as under.
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Notation 1.6 For every real number x, let [x] denote the greatest integer less than
or equal to x .

Corollary 1.7 The set of natural numbers is unbounded.

Proof Assume thatN is bounded and let s denote its supremum. Applying Corollary
1.5, we obtain s < n for some n ∈ N. Therefore, s is not an upper bound for N, a
contradiction. �

Corollary 1.8 If x < y are reals, then there exists a rational number r such that
x < r < y.

Proof The Archimedean property on y − x(> 0) and 1, provides a positive inte-
ger n such that n(y − x) > 1. Applying Corollary 1.5, there exists some m ∈ Z

such that m − 1 ≤ nx < m. Therefore, we conclude that nx < m ≤ nx + 1 < ny.
Hence x < m

n < y. �

Remark 1.9 The above corollary is often stated as rationals are dense in reals.As a
geometric interpretation of the above proof, note that we first pick some n ∈ N such
that y − x > 1/n, that is, x + (1/n) < y. Then the function f : R −→ R defined
as f (t) := nt maps the interval (x, y) onto (nx, ny), which is at least a unit apart,
as nx < nx + 1 < ny. Therefore there exists an integer m such that nx < m < ny.

We wind up this section with the following property of natural numbers, known
as the well-ordering principle:

Every nonempty subset of N contains its infimum.

It is an immediate consequence of the completeness property of R. However, we
shall provide an alternative treatment to it in Appendix A.3.

Exercise 1.1 Prove that the supremum of a nonempty set, if it exists, is unique.

Exercise 1.2 If S ⊂ R contains one of its upper bounds u, prove that sup S = u.

Exercise 1.3 Let S ⊂ R be a bounded set with at least two points. Prove that

(a) both inf S and sup S exist in R with inf S < sup S.

(b) inf S < inf S0 < sup S0 < sup S, for every nonempty subset S0 of S.

Exercise 1.4 Let S ⊂ R be bounded above and s ∈ R. Prove that s = sup S if and
only if for every ε > 0, there exists xε ∈ S such that s < xε + ε.Does a similar result
hold for infimums?

Exercise 1.5 Let S be a nonempty set of real numbers which is bounded above.
Prove that the set −S := {−x : x ∈ S} is bounded below and inf(−S) = − sup S.

Exercise 1.6 If ∅ �= S ⊂ R and S is bounded below, prove that S has a unique
infimum in R.
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Exercise 1.7 Let S be nonempty bounded above set of R and U be the set of upper
bounds of S. Prove that U is bounded below and inf U = sup S. State and prove an
analogous result, when S is nonempty and bounded below.

Exercise 1.8 Let S be any nonempty bounded above set of real numbers, U be the
set of upper bounds of S and L be the set of lower bounds ofU. Prove the following:

(a) L ∪U = R.

(b) l ≤ u, for every l ∈ L and u ∈ U.

(c) L ∩U cannot contain two distinct real numbers.
(d) L ∩U = {s}, for some s ∈ R. Further, s = sup S = sup L = inf U.

Exercise 1.9 Let x, y ∈ R be such that x < y. Prove that

(a) there exists an irrational number s such that x < s < y.
(b) there are infinitely many rational numbers between x and y.
(c) there are infinitely many irrational numbers between x and y.

Exercise 1.10 Let S be a nonempty bounded subset of real numbers, s := sup S,

and t ∈ R \ S. Prove that sup(S ∪ {t}) = max{sup S, t}.
Exercise 1.11 If A and B are nonempty bounded subsets of R, prove that so is
A ∪ B and sup(A ∪ B) = max{sup A, sup B}.
Exercise 1.12 Prove that every finite subset of R contains its supremum.

Exercise 1.13 Prove that there exists no rational number r with r2 = 2.

Exercise 1.14 Let E := {x ∈ R : x2 < 2} and s := sup E . Prove that s2 = 2.

Exercise 1.15 Let a ∈ Z and b ∈ N. Prove that there are integers q and r such that
a = bq + r and 0 ≤ r < b.

Exercise 1.16 Prove or disprove: 0 < inf
{∣∣m

n − √
2
∣∣ : m ∈ Z

}
< 1

n for all n ∈ N.

1.2 Sequences of Real Numbers

Let us start with a question. What is the next term of the sequence 1, 3, 5, . . .?
(a) 10 (b) 7 (c) 61 (d) None of these.

The most common answer is 7. I insist that the next term is 61. If you do not
agree, verify yourself! The terms of this sequence follow the formula:

9n3 − 54n2 + 101n − 55.

Surprising! In fact for any finitely many reals a1, . . . , am, one can find a polynomial
function f (n) such that f (n) = an for all n = 1, . . . ,m. In this sense, given any
finitely many terms of a sequence, any arbitrary real number can be assigned as its
next term. Therefore
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to define a sequence, all the terms must be well-defined.

Just a pattern of the first few terms is not sufficient to refer to a sequence. This
enforces us the following definition.

Definition 1.10 A sequence of reals is defined to be a function from N into R.

In general, a sequence in any nonempty set X is a function f : N −→ X. Therefore,
a sequence is an infinite list, precisely defined. There may not be any recognizable
pattern in a sequence.

Instead of f (n),wewrite fn ormore commonly xn and say that {xn} is a sequence.
Examples 1.11 Each of {n}, {2n − 1} and {(−1)n} are sequences. If pn denotes the
nth prime, then {pn} is a sequence.
Definition 1.12 A sequence {yk}k is said to be a subsequence of a sequence {xn}n if
there exists a strictly increasing sequence {nk}k of positive integers such that

yk = xnk for all k ∈ N.

1.2.1 Convergence of a Sequence

A sequence {xn} of real numbers is said to be convergent if there exists some x0 ∈ R

such that for every ε > 0, there exists some positive integer N such that

|xn − x0| < ε for all n ≥ N .

In this case, we also say that {xn} converges to x0. Further, x0 is called the limit of
{xn} and we write xn −→ x0 as well as x0 = limn→∞ xn . Another popular notation
for this purpose is xn −→ x0, as n −→ ∞.

Examples 1.13 (a) If c ∈ R and xn = c for all n, then xn −→ c.
(b) The sequence {1/n} converges to 0. To see this, let ε > 0 be given. Applying

Theorem 1.4, there exists some N ∈ N such that Nε > 1. Hence we obtain
1/n < ε for all n ≥ N .

Proposition 1.14 Every convergent sequence of real numbers has a unique limit.

Proof Suppose {xn} is a convergent sequencewith limits x ′ and x ′′ such that x ′ �= x ′′.
Let ε := |x ′ − x ′′|/2. Since x ′ �= x ′′, we have ε > 0. Since {xn} converges to x and
x ′, there are positive integers N ′ and N ′′ such that

|xn − x ′| < ε for all n ≥ N ′.
and |xn − x ′′| < ε for all n ≥ N ′′.

Let N := max{N ′, N ′′}. Then for all n ≥ N , we obtain
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|x ′ − x ′′| ≤ |x ′ − xn| + |xn − x ′′| < 2ε = |x ′ − x ′′|,

a contradiction. Hence the result. �

Proposition 1.15 Every convergent sequence of reals is bounded.

Proof Let {xn} be a sequence, convergent to some x ∈ R. Then there exists N ∈ N

such that |xn − x | < 1 for all n ≥ N . The triangle inequality ensures that for each
n ≥ N , we have

∣∣|xn| − |x |∣∣ ≤ |xn − x | < 1 which implies |xn| ≤ |x | + 1.

Therefore, for everyn ∈ N,wehave |xn| ≤ max
{|x1|, |x2|, . . . , |xN |, |x | + 1

}
.Hence

the sequence is bounded. �

A tail of a sequence {xn} is defined to be the sequence after particular term of
{xn}, that is {xn}n≥N for some N ∈ N. Further, we say that {xn} lies eventually in a
set E, if E contains a tail of {xn}. A neighborhood of a real c ∈ R is defined as a set
containing an open interval centered at c. Hence xn −→ x0 if and only if {xn} lies
eventually in every neighborhood of x0.

Non-convergent sequences are calleddivergent. In particular, a sequence {xn} ⊂ R

is called

(a) divergent to +∞ if for every A ∈ R, there exists some positive integer N such
that xn > A for all n ≥ N .

(b) divergent to −∞ if for every A ∈ R, there exists some positive integer N such
that xn < A for all n ≥ N .

In the above two cases, we write xn −→ +∞ and xn −→ −∞, respectively.

1.2.2 Algebra of Limits

The next two results facilitate in assessing the convergence of some specific types of
sequences. These results significantly expand our collection of convergent sequences.

Theorem 1.16 Let a, b, c ∈ R and {an} and {bn} be sequences of real numbers such
that an −→ a and bn −→ b. Then

(a) {can} −→ ca.

(b) {an + bn} −→ a + b.
(c) anbn −→ ab.
(d) If a �= 0, then there exists N ∈ N such that an �= 0 for all n ≥ N . Further

{
1

an

}

n≥N

−→ 1

a
.
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Proof Let ε > 0 be given.

(a) Since an −→ a, there exists some N ∈ N such that |an − a| < ε
|c|+1 for all n ≥

N . Then for all n ≥ N , we obtain

|can − ca| = |c||an − a| ≤ |c| ε

|c| + 1
< ε.

(b) Since an −→ a and bn −→ b, there exist N1, N2 ∈ N such that

|an − a| <
ε

2
for all n ≥ N1 and |bn − b| <

ε

2
for all n ≥ N2.

Let N := max{N1, N2}. Then for all n ≥ N , we obtain

|(an + bn) − (a + b)| ≤ |an − a| + |bn − b| ≤ ε

2
+ ε

2
= ε.

(c) Since {an} is convergent, by Proposition 1.15, it is bounded. So there exists some
M > 0 such that |an| < M, for each n. Further, as an −→ a and bn −→ b, there
are positive integers N1 and N2 such that

|an − a| <
ε

2(|b| + 1)
for all n ≥ N1

and |bn − b| <
ε

2(M + 1)
for all n ≥ N2.

Let N := max{N1, N2}. Therefore, for all n ≥ N , we obtain

|anbn − ab| ≤ |anbn − anb| + |anb − ab| = |an||bn − b| + |an − a||b|
≤ M

ε

2(M + 1)
+ ε

2(|b| + 1)
|b| < ε.

(d) Since a �= 0, there exists some N ′ ∈ N such that for all n ≥ N ′, we have

∣∣|an| − |a|∣∣ ≤ |an − a| <
|a|
2

which implies |an| >
|a|
2

.

Further, as an −→ a, there exists N ′′ ∈ N such that |an − a| < a2ε/2 for all
n ≥ N ′′. Let N := max{N ′, N ′′}. Then for all n ≥ N , we obtain

∣∣∣∣
1

an
− 1

a

∣∣∣∣ ≤ |an − a|
|a.an| <

2

a2
|an − a| < ε.

Since ε > 0 is arbitrary, the results hold. �

Theorem 1.17 (Squeeze Rule) Let {an}, {bn} and {cn} be sequences of real numbers
such that {an} and {bn} are convergent to the same limit and
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an ≤ cn ≤ bn for all n ∈ N.

Then {cn} is also convergent and lim
n→∞cn = lim

n→∞an.

Proof Let ε > 0 be given and write c := limn→∞an(= limn→∞bn). Then there exist
positive integers N1 and N2 such that

|an − c| < ε for all n ≥ N1

and |bn − c| < ε for all n ≥ N2.

Let N := max{N1, N2}. Then c − ε < an ≤ cn ≤ bn < c + ε for all n ≥ N . There-
fore |cn − c| < ε for all n ≥ N and hence cn −→ c. �

1.2.3 Bounded Monotone Sequences

Definitions 1.18 A sequence {xn} of real numbers is said to be

(a) (i) monotonically increasing if xn ≤ xn+1 for all n ∈ N.

(ii) monotonically decreasing if xn ≥ xn+1 for all n ∈ N.

(iii) monotone if it is either a monotonically increasing or a monotonically
decreasing sequence.

(b) (i) bounded below if there exists some l ∈ R such that xn > l for all n ∈ N.

(ii) bounded above if there exists some u ∈ R such that xn < u for all n ∈ N.

(iii) bounded if it is bounded below as well as bounded above.

Theorem 1.19 (Monotone Subsequence Theorem) Every sequence of real numbers
contains a monotone subsequence.

Proof Let {xn} be a sequence of reals. Consider its ‘peaks’, that is, the set

S := {n ∈ N : xn > xm for all m > n}.

If S is an infinite subset of N, one can write S := {nk : k ∈ N} such that nk <

nk+1 for all k ∈ N. Since nk ∈ S and nk+1 > nk,we obtain xnk > xnk+1 for all k ∈ N.

Hence we obtain a strictly decreasing subsequence {xnk } of {xn}.
Now assume that S is a finite set. If S = ∅, let N = 1. Otherwise, let N denote

the largest element of S. Then n /∈ S for all n > N . Fix anym1 > N . Sincem1 /∈ S,

there exists m2 > m1 such that xm2 ≥ xm1 . Since m2 > m1, as earlier there exists
some m3 > m2 such that xm3 ≥ xm2 . Inducting like this, we obtain a monotonically
increasing subsequence {xmk } of {xn}. �

Theorem 1.20 Every monotonically increasing sequence of real numbers that is
bounded above is convergent and convergent to its least upper bound.
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Proof Let {xn} be a monotonically increasing and bounded above sequence of reals.
Write S := {xn : n ∈ N}. Applying least upper bound property, let s := sup S. We
claim that xn −→ s.

Let ε > 0 be given. Then s − ε is not an upper bound of S. So there exists
N ∈ N such that xN > s − ε. Now for all n ≥ N , using monotonicity, we have
s − ε < xN ≤ xn. Since s is an upper bound of S, each xn ≤ s. Therefore, s − ε <

xn ≤ s < s + ε for all n ≥ N . Hence the result. �

Corollaries 1.21 (a) Every monotonically decreasing sequence that is bounded
below is convergent and convergent to its greatest lower bound.

(b) Every bounded monotone sequence is convergent.

Proof (a) Let {xn} be a bounded belowmonotonically decreasing sequence of reals.
Then {−xn} is bounded above and monotonically increasing. Now apply Theo-
rem 1.20.

(b) This part follows by (a) and Theorem 1.20. �

Theorem 1.22 (Bolzano-Weierstrass) Every bounded sequence of reals has a con-
vergent subsequence.

Proof Apply Theorem 1.19 and Corollaries 1.21. �

A sequence of sets {An} will be called a nested decreasing sequence if
An ⊃ An+1 for all n ∈ N.

Theorem 1.23 (Nested Interval Property) Intersection of any nested decreasing
sequence of closed and bounded intervals is nonempty.

Proof Let {[an, bn]} be a nested decreasing sequence of closed and bounded inter-
vals. Then [an, bn] ⊃ [an+1, bn+1] for all n ∈ N. Therefore, S := {an : n ∈ N} is a
nonempty subset of reals, bounded above by bk for all k ∈ N. If a := sup S, then
a ≤ bk for all k ∈ N. Hence we obtain an ≤ an+1 ≤ a ≤ bn+1 ≤ bn for all n ∈ N.

Consequently, a ∈ ⋂∞
n=1[an, bn]. �

1.2.4 Cauchy Sequences

The major issue in determining the convergence of a sequence is the requirement of
having a limit to apply the definition. A first step in this direction is to verify whether
its terms are getting arbitrarily closer to each other eventually or not.

Definition 1.24 A sequence {xn} of reals is said to be Cauchy if for every ε > 0
there exists some N ∈ N such that

|xn − xm | < ε for all n,m ≥ N .

Proposition 1.25 Every convergent sequence of reals is a Cauchy sequence.
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Proof Let {xn} be a sequence of real numbers such that xn −→ x for some x ∈ R.

Let ε > 0begiven.Then there exists some N ∈ N such that |xn − x | < ε/2 for all n ≥
N . Consequently, for every n,m ≥ N , we obtain

|xn − xm | ≤ |xn − x | + |x − xm | <
ε

2
+ ε

2
= ε.

Hence {xn} is a Cauchy sequence. �

Proposition 1.26 Every Cauchy sequence of reals is bounded.

Proof Let {xn} be a Cauchy sequence of reals. Then there exists N ∈ N such that

|xn − xm | < 1 for all n,m ≥ N .

For every n ≥ N ,we have
∣∣|xn| − |xN |∣∣ ≤ |xn − xN | < 1,which implies that |xn| ≤

|xN | + 1. Let
M := max

{|xi | : i = 1, . . . , N
} + 1.

Then |xn| ≤ M for all n ∈ N. Hence {xn} is bounded. �

Proposition 1.27 A Cauchy sequence of reals is convergent if it has a convergent
subsequence.

Proof Let {xn} be a Cauchy sequence of real numbers, having a subsequence {xnk }
which is convergent to some x ∈ R. We claim that xn −→ x . Let ε > 0 be given.
Then there exist positive integers N and K such that

|xn − xm | <
ε

2
for all n,m ≥ N

and |xnk − x | <
ε

2
for all k ≥ K .

Let p ∈ N such that np ≥ max{N , nK }. Then for all n ≥ np, we obtain

|xn − x | ≤ |xn − xnp | + |xnp − x | <
ε

2
+ ε

2
= ε.

Hence {xn} converges to x . �

Theorem 1.28 (Cauchy criterion) Every Cauchy sequence of real numbers is con-
vergent to a real number.

Proof Let {xn} be a Cauchy sequence of reals. Applying Proposition 1.26 and The-
orem 1.22, {xn} is bounded and hence has a convergent subsequence, say {xnk }.
Applying Proposition 1.27, we conclude that {xn} is convergent in R. �

Remark 1.29 The sequence {sin n} is quite alluring. It is a serious exercise to show
that for every x ∈ [−1, 1], a subsequence of {sin n} converges to x (see [1]).
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History Notes 1.30 Themodern definitions of convergence and continuity are often
considered difficult by beginner in analysis. That is also quite expected. After the
emergence of Calculus through Newton and Leibniz in the late seventeenth cen-
tury, it took mathematicians around 150 years to develop these rigorous notions.
In 1734, Bishop George Berkeley argued against science by claiming that calculus
rests on an inconsistent foundation of infinitesimals (see [2]). No eighteenth century
mathematician could completely respond to his criticism.

In the third decade of the nineteenth century, Cauchy presented a purely verbal
definition of limits which is close to the modern epsilon-delta rigour (see [3, p. 185,
189]). Abel wrote, “Cauchy is crazy, and there is no way of getting along with him,
even though right now he is the only one who knows how mathematics should be
done. What he is doing is excellent, but very confusing”. For more on Cauchy and
the language of ε − δ, we refer [4, p. 144]. For a quick overview of the history of
calculus, we refer [5].

Exercise 1.17 Is the converse of Proposition 1.15 true?

Exercise 1.18 Prove that every subsequence of a convergent sequence is convergent
and is convergent to the same limit.

Exercise 1.19 Let {xn} be a sequence of reals and α be a fixed positive real. Prove
that xn −→ x if and only if for every ε > 0 there exists N ∈ N such that |xn − x | <

αε for all n > N .

Exercise 1.20 Let {xn} be a sequence of reals and x ∈ R. Prove the following:

(a) If lim
n→∞xn = x, then lim

n→∞xn+1 = x .

(b) If lim
n→∞ x2n = x = lim

n→∞ x2n+1, then lim
n→∞ xn = x .

Exercise 1.21 Prove that inserting (removing) any finite number of terms

(a) at (from) the beginning of a sequence doesn’t affect its convergence/divergence.
(b) anywhere in a sequence doesn’t affect its convergence/divergence.

Exercise 1.22 Let {xn} be a monotonically increasing and unbounded sequence of
real numbers. Prove that {xn} −→ +∞.

Exercise 1.23 Let n0 ∈ Z and {nk} be any sequence in the set {0, 1, 2, . . . , 9}.Write

xk := n0 + n1
10

+ · · · + nk
10k

for all k ∈ N.

Prove that the sequence {xk} is convergent in R.

Exercise 1.24 Let an −→ a in R. Prove the following:

(a) If a > 0, then there exists some N ∈ N such that an > 0 for all n > N .

(b) If a > l, then there exists some N ∈ N such that an > l for all n > N .

(c) If a �= 0, then there exists some N ∈ N such that an �= 0 for all n > N .
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Exercise 1.25 Let {xn} be a sequence of reals and a ∈ R be such that {xn} is not
convergent to a. Prove that for all sufficiently small ε > 0, there exists a subsequence
{xnk } of {xn} such that |xnk − a| > ε for all k ∈ N.

Exercise 1.26 Let an −→ a and bn −→ b in R. Prove the following:

(a) If an ≤ bn for all n ∈ N, then a ≤ b.
(b) If an < bn for all n ∈ N, then a < b may not hold.
(c) If a < b, then there exists some N ∈ N such that an < bn for all n > N .

Exercise 1.27 If |an| −→ 0, prove that an −→ 0. Is the converse true?

Exercise 1.28 If an −→ a, prove that |an| −→ |a|. Is the converse true?
Exercise 1.29 If an −→ 0 and {bn} is bounded, prove that anbn −→ 0.

Exercise 1.30 Let {an} be a sequence of positive reals, convergent to some a ∈ R.

Prove that a
1
k
n −→ a

1
k for all k ∈ N.

Exercise 1.31 Prove that limn→∞n1/n = 1.

Exercise 1.32 Prove that every subsequence of a Cauchy sequence is also Cauchy.

Exercise 1.33 Prove that the termwise sumaswell as the termwise product of finitely
many Cauchy sequences is also a Cauchy sequence.

Exercise 1.34 Show that {√n} is not Cauchy, while limn→∞ |√n + m − √
n| =

0 for all m ∈ N.

Exercise 1.35 Let {an} be a sequence of positive reals such that an −→ 0, b0 ∈ R

and {bn} be any sequence of real numbers. Prove that bn −→ b0 if and only if there
exists c > 0 and N ∈ N such that |bn − b0| < can for all n > N .

Exercise 1.36 Let S be a nonempty bounded subset of reals and s := sup S. Prove
that there exists a monotonically increasing sequence {sn} in S such that sn −→ s.

Exercise 1.37 Let {xn} −→ x in R. Prove that {xn} is bounded and

inf{xn : n ∈ N} ≤ lim
n→∞ xn ≤ sup{xn : n ∈ N}.

Exercise 1.38 Let {xn} be a convergent sequence of positive integers. Prove that the
sequence {xn} is eventually constant, i. e., there exists m ∈ N such that {xn}n≥k is a
constant sequence.

Exercise 1.39 Let {pn} be a sequence of reals such that lim
n→∞(pn+1 − pn) = 0.

(a) If each pn ∈ Z, prove that {pn} is eventually constant.



1.2 Sequences of Real Numbers 13

(b) Show that, in general, the sequence {pn} may not even converge.

Exercise 1.40 Let {xn} −→ x, σ : N −→ Nbe abijection and yn := xσ(n) for all n ∈
N. Prove that {yn} −→ x . That is, any permutation of a convergent sequence is con-
vergent and is convergent to the same limit.

Exercise 1.41 Consider a collection of sequences {{xan }n : a ∈ R}, where

xan := a + 1

n
for all a ∈ R and for all n ∈ N.

Prove that the set {xan : n ∈ N} ∩ {xbn : n ∈ N} is finite, for all a �= b.

Exercise 1.42 For every a ∈ R, let fa : N −→ R be a sequence, convergent to a.

Prove that the set fa(N) ∩ fb(N) is finite, for all distinct reals a and b.

Exercise 1.43 If α ∈ R, prove that limn→∞ αn

n! = 0.

Exercise 1.44 Prove that limn→∞ n
√
n! = +∞.

Exercise 1.45 (Cauchy) If an −→ l, prove that lim
n→∞

a1 + · · · + an
n

= l. Is the con-

verse true?

Exercise 1.46 Prove that limn→∞ 1
n

(
1 + · · · + 1

n

) = 0.

Exercise 1.47 Let S be any infinite subset of N. Show that S can be written as
{nk : k ∈ N} such that nk < nk+1 for all k ∈ N.

Exercise 1.48 Does there exist any monotone sequence {xn} such that

{
xn : n ∈ N

} =
{
1

n
: n ∈ N

} ⋃ {
1 + 1

n
: n ∈ N

}
?

Exercise 1.49 The upper and lower limits (or limit superior and limit inferior) of a
sequence {an} of reals are defined as

a∗ := inf
n≥1

sup
k≥n

ak and a∗ := sup
n≥1

inf
k≥n

ak,

respectively. The extended reals a∗ and a∗ are denoted by lim supn−→∞ an and
lim infn−→∞ an, respectively. Prove the following:

(a) Find a∗, a∗ if for all n ∈ N, an equals (i) (−1)n+1, (ii) (−1)n+1

n , and (iii) (−n)n.

(b) If {an} is bounded, then {an} has subsequences convergent to a∗ and a∗.
(c) If {an} is bounded, then {an} is convergent if and only if a∗ = a∗.
(d) If A is the set of its subsequential limits of {an}, then a∗ = sup A and a∗ = inf A.

Exercise 1.50 (Erdős-Szekeres) If f : {1, . . . , k2 + 1} −→ R is an injective map,
prove that there exist integers n1 < · · · < nk+1 such that either f (n1) ≤ · · · ≤
f (nk+1) or f (n1) ≥ · · · ≥ f (nk+1).



14 1 Real Analysis

1.3 Series Convergence

The addition of any finite collection of numbers is well known. Can we add up some
infinite collection of numbers? A natural idea since antiquity is the following:

Let {an} be a sequence of real numbers. To sum up a1, a2, a3, . . . , consider the
corresponding partial sums defined as

Sn := a1 + a2 + · · · + an for all n ∈ N.

The series
∑∞

n=1 an is said to be convergent if the sequence {Sn} is convergent. In
this case, we denote limn→∞Sn by

∑∞
n=1 an; and say that the series converges to this

limit. It is also known as the sum of the series.

Examples 1.31 The geometric series
∑∞

n=0
1
2n is convergent to 2.

Proof Let Sn denote the nth partial sum of the given series. That is,

Sn = 1 + 1

2
+ 1

22
+ · · · + 1

2n
for all n ∈ N.

Then

2Sn = 2 + 1 + 1

2
+ · · · + 1

2n−1
for all n ∈ N.

Subtracting these equations, we obtain Sn = 2 − 2−n for all n ∈ N. So, Sn −→ 2,
as n −→ ∞. Hence the given series converges to 2. �

First, we provide a necessary condition for the convergence of a series.

Theorem 1.32 If
∑∞

n=1 an converges, then {an} −→ 0.

Proof Let S := ∑∞
n=1 an and Sn := ∑n

k=1 ak for all n ∈ N.Thenwehavean = Sn −
Sn−1 for all n > 1. Since Sn −→ S, we have limn→∞ Sn−1 = S. Hence we obtain
limn→∞ an = limn→∞(Sn − Sn−1) = S − S = 0. �

Note that the necessary condition in the above theorem is not sufficient.

Example 1.33 The series
∑∞

n=1
1
n is not convergent.

Proof Assume that the series
∑∞

n=1
1
n is convergent in R. Let S denote its sum and

Sn := ∑n
k=1

1
k for all n ∈ N. Then

S = lim
n→∞ Sn = lim

n→∞ S2n = lim
n→∞

(
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ · · · + 1

2n

)

= lim
n→∞

(
1

2
+

(
1

2
+ 1

2

)
+

(
1

3
+ 1

4

)
+

(
1

5
+ 1

6

)
+ · · · +

(
1

2n − 1
+ 1

2n

))
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≥ lim
n→∞

(
1

2
+

(
1

2
+ 1

2

)
+

(
1

4
+ 1

4

)
+

(
1

6
+ 1

6

)
+ · · · +

(
1

2n
+ 1

2n

))

= lim
n→∞

(
1

2
+ Sn

)
= 1

2
+ S.

Hence S ≥ 1
2 + S, a contradiction. �

Theorem 1.34 (Cauchy criterion) A series
∑∞

n=1 xn of reals is convergent if and
only if for every ε > 0 there exists some N ∈ N such that

∣∣∣∣

n2∑

n=n1+1

xn

∣∣∣∣ < ε for all n2 > n1 > N . (1.1)

Proof The required result is a direct application of Proposition 1.25 and Theorem
1.28 on the sequence of partial sums of

∑∞
n=1 xn. Let Sn := ∑n

k=1 xk for all n ∈ N.
Note that

∑∞
n=1 xn is convergent if and only if {Sn} is convergent if and only if

{Sn} is Cauchy if and only if the result (1.1) holds. �

Definition 1.35 A series
∑∞

n=1 xn of reals is said to be absolutely convergent if the
series

∑∞
n=1 |xn| is convergent.

Note that the partial sums of the series
∑∞

n=1 |xn| form a monotonically increas-
ing sequence of reals. Hence this series is either convergent or divergent to +∞.

Therefore we write
∑∞

n=1 |xn| < ∞, if the series
∑∞

n=1 xn is absolutely convergent.

Theorem 1.36 Absolutely convergent series of real numbers are convergent.

Proof Let
∑∞

n=1 xn be any absolutely convergent series of real numbers. Then for
ε > 0, there exists some N ∈ N such that

n2∑

n=n1+1

|xn| < ε for all n2 > n1 > N .

The triangle inequality implies |∑n2
n=n1+1 xk | ≤ ∑n2

n=n1+1 |xk |. Therefore,
∣∣∣∣

n2∑

n=n1+1

xn

∣∣∣∣ < ε for all n2 > n1 > N .

Applying Theorem 1.34, we conclude that the series
∑∞

n=1 xn is convergent. �

Not every convergent series is absolutely convergent (see Exercise 1.67).

Theorem 1.37 (Comparison test) Let
∑∞

n=1 an and
∑∞

n=1 bn be series of non-
negative terms such that an ≤ bn for all n ∈ N. If

∑∞
n=1 bn is convergent, then so

is
∑∞

n=1 an.
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Proof Let {An} and {Bn}, respectively, denote the sequences of partial sums of
the series

∑∞
n=1 an and

∑∞
n=1 bn. By hypothesis, both are monotonically increasing

sequences of reals such that An ≤ Bn for every n ∈ N.

Since
∑∞

n=1 bn is convergent, the sequence {Bn} is bounded above. So the sequence
{An} is also bounded above and thus convergent. Hence the series

∑∞
n=1 an is also

convergent. �

Several other common tests for series convergence will be presented in the exer-
cises. It is important to note that such tests for series convergence do not provide the
limit of the series. Computing the exact limit is a much tedious task, in general, as
compared to establishing the convergence of the series.

It is also interesting to note that the prime harmonic series
∑

p
1
p is divergent (see

[6]). Another interesting series will be presented in Exercise 1.93.
There are various simple looking series and sequences for which the question of

convergence is open till date. Here we provide a few such cases.

Open Questions 1.38 (a) Does the series
∑∞

n=1(n
3 sin2 n)−1 converge?

(b) Does the sequence {(n2 sin n)−1} converge?
(c) If pk denote the kth prime, does the series

∑∞
n=1

(−1)k k
pk

converge?

Exercise 1.51 Prove that removing (inserting) finitely many terms from (in) a series
does not affect its convergence or non-convergence.However, in case of convergence,
it may affect the sum.

Exercise 1.52 Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series of real numbers
and α, β ∈ R. Prove that the series

∑∞
n=1(αan + βbn) is also convergent and∑∞

n=1(αan + βbn) = α
∑∞

n=1 an + β
∑∞

n=1 bn.

Exercise 1.53 Prove that the series
∑∞

n=1
1√
n
is divergent.

Exercise 1.54 Apply comparison test to conclude that
∑∞

n=1
1
n is divergent.

Exercise 1.55 Prove that no hypothesis in Theorem 1.37 is redundant.

Exercise 1.56 If
∑∞

n=1 an and
∑∞

n=1 bn are series of non-negative terms such that∑∞
n=1(an + bn) is convergent, prove that both

∑∞
n=1 an and

∑∞
n=1 bn are convergent.

Also prove that no hypothesis here is redundant.

Exercise 1.57 (Geometric series) If a ∈ R and r ∈ (−1, 1), prove that the series∑∞
n=0 ar

n is convergent.

Exercise 1.58 Let 0 < r < 1 and {xn} be a sequence of reals such that |xn+1 − xn| <

rn for all n ∈ N. Prove that {xn} is a convergent sequence.
Exercise 1.59 (Integral test) Let

∑∞
n=1 an be a series of non-negative reals and f :

[1,∞] −→ R be a non-increasing function such that f (n) = an, for each n ∈ N.

Prove that the series
∑∞

n=1 an converges if and only if
∫ ∞
1 f (x)dx converges.
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Exercise 1.60 (p-test) Prove that the series
∑∞

n=1
1
np converges for p > 1 and

diverges for p ≤ 1.

Exercise 1.61 (Limit test) Let
∑∞

n=1 an and
∑∞

n=1 bn be series of non-negative reals
such that limn→∞ an

bn
exists in [0,∞]. Let l denote this limit. Prove the following

assertions:

(a) If 0 < l < ∞, then
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.
(b) If l = 0, then

∑∞
n=1 an converges, if

∑∞
n=1 bn converges.

(c) If l = ∞, then
∑∞

n=1 bn converges, if
∑∞

n=1 an converges.

Exercise 1.62 Does the converse of the second assertion in Exercise 1.61 hold?

Exercise 1.63 (Root test) Let
∑∞

n=0 an be a series of non-negative reals such that
limn→∞a1/nn exists in [0,∞]. Let l denote this limit. Prove the following assertions:

(a) If l < 1, the series is convergent,
(b) If l > 1, the series is divergent, and
(c) If l = 1, the series is may or may not be convergent.

Exercise 1.64 (Ratio test) Let
∑∞

n=0 an be a series of non-negative reals such that
limn→∞ an+1

an
exists in [0,∞]. Let l denote this limit. Prove the following assertions:

(a) If l < 1, the series is convergent,
(b) If l > 1, the series is divergent and
(c) If l = 1, the series is may or may not be convergent.

Exercise 1.65 (Leibniz test) Prove that a series
∑∞

n=0(−1)n+1un is convergent if
each un ≥ 0, {un} is a monotonically decreasing sequence and limn→∞un = 0.

Exercise 1.66 Show that no hypothesis in the Leibniz test is redundant.

Exercise 1.67 Prove that the series
∑∞

n=1
(−1)n+1

n and
∑∞

n=1
(−1)n+1√

n
are convergent,

but not absolutely. (Such series are known as conditionally convergent series.)

Exercise 1.68 Let {an} and {bn} be sequences of reals such that both
∑∞

n=1 a
2
n and∑∞

n=1 b
2
n are convergent. Prove that

∑∞
n=1 anbn is also convergent.

Exercise 1.69 Discuss the convergence of the series
∑∞

n=1
n

4n+1 and
∑∞

n=1
1

n5n+n5 .

Exercise 1.70 Prove that the series
∑∞

n=2
1

n(log n)2
is convergent.

Exercise 1.71 Examine the following sequences for convergence:

1

n
, (−1)n,

3n − 1

5n + 2
,

(
2n

n + 1

)3

, log n, 2 − 1

5n
.
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Exercise 1.72 Does any of the following the series converge:

∞∑

n=1

(
3
√
n3 + 1 − n) and

∞∑

n=1

(
√
n4 + 1 −

√
n4 − 1)?

Exercise 1.73 Discuss the convergence of the following series:

∞∑

n=1

n

4n
,

∞∑

n=1

cos n

n3 + n − 1
,

∞∑

n=1

1

n5n
,

∞∑

n=1

n2

2n
,

∞∑

n=1

n!
2n

and
∞∑

n=1

n!
nn

.

Exercise 1.74 Discuss the convergence of the following series:

∞∑

n=1

2n − 1

n(n + 1)(n + 2)
,

∞∑

n=1

n2

(3n + 1)(2n2 + 3)
and

∞∑

n=1

(n − 1)n−1

nn
.

Exercise 1.75 Discuss the convergence of the following series:

∞∑

n=1

sin n2

3n5 + 1
,

∞∑

n=1

(−1)n+1

√
n + 1

and
∞∑

n=2

(−1)n+1

log n
.

Exercise 1.76 Prove that the following series are convergent

∞∑

n=1

sin
1

n2
,

∞∑

n=1

sin
1

n
and

∞∑

n=1

1√
n
sin

1

n
.

Exercise 1.77 If a ∈ R \ Z, examine the convergence of the series

1

a
+ 1

a + 1
− 1

a + 2
+ 1

a + 3
+ 1

a + 4
− 1

a + 5
+ 1

a + 6
− 1

a + 7
+ 1

a + 8
− 1

a + 9
+ . . . .

Exercise 1.78 Let {an} be a monotonically decreasing sequence of positive real
numbers. Prove that

∑∞
n=1

an
n2 is convergent.

Exercise 1.79 Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series of reals. Show that

(a)
∑∞

n=1 anbn is convergent, if both an, bn ≥ 0 for all n ∈ N.

(b)
∑∞

n=1 anbn may not be convergent, in general.

Exercise 1.80 (Dirichlet’s test) Let {an}, {bn} be sequences of reals satisfying
(a) {an} is monotone and convergent to 0.
(b) There exists M > 0 such that |∑m

n=1 bn| ≤ M for all m ∈ N.

Prove that the series
∑∞

n=1 anbn is convergent. Deduce Leibniz’s test from it.
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Exercise 1.81 (Abel’s test) Let {an}, {bn} be sequences of real numbers such
that {an} is bounded monotone and

∑∞
n=1 bn is convergent. Prove that the series∑∞

n=1 anbn is convergent.

Exercise 1.82 (Cauchy condensation test) Let {an} be a monotonically decreas-
ing sequence of non-negative reals. Prove that

∑∞
n=1 an converges if and only if∑∞

k=0 2
ka2k converges.

Exercise 1.83 Does there exist a convergent series of positive reals
∑∞

n=1 an such
that

∑∞
n=1 a

2
n does not converge?

Exercise 1.84 Let
∑∞

n=1 an be a convergent series of non-negative reals.

(a) If the sequence {an} is monotonically decreasing, prove that limn→∞ nan = 0.
(b) Is limn→∞ nan = 0 always true?

Exercise 1.85 Let {an} be a sequence of positive reals such that
∑∞

n=1 a
2
n < ∞.

Which of the following series is/are convergent?

(a)
∑∞

n=1
an
n .

(b)
∑∞

n=1 a
p
n for all p > 2.

(c)
∑∞

n=1 a
p
n for all 1 < p < 2.

Exercise 1.86 Let
∑∞

n=1 an be a convergent series of positive real numbers. Is any

of the series
∑∞

n=1

√
an
n or

∑∞
n=1

√
an
n convergent?

1.4 Decimal and General Expansions

In high school mathematics, real numbers are often introduced through decimal
expansions. We will now provide a rigorous justification for such expansions along
with some generalizations.

Theorem 1.39 If x ∈ R, then there exist an integer n0 and a sequence {nk} from the
set {0, 1, 2, . . . , 9} such that

∞∑

n=0

nk
10k

= x .

Proof Applying Corollary 1.5, let n0 ∈ Z such that n0 ≤ x < n0 + 1. Further, let
n1 be the largest integer such that n0 + n1

10 ≤ x . Note that 0 ≤ n1 ≤ 9. Assume that
n1, . . . , nk have been chosen as the maximal integers from the set {0, 1, . . . , 9} such
that n0 + n1

10 + · · · + nk
10k ≤ x . Let nk+1 be the largest integer such that

n0 + n1
10

+ · · · + nk
10k

+ nk+1

10k+1
≤ x .



20 1 Real Analysis

Then nk+1 ∈ {0, . . . , 9}, otherwise the maximality of nk is violated. Then for xk :=
n0 + n1

10 + · · · + nk
10k ; k ∈ N, {xk} defines a monotonically increasing sequence of

reals, bounded above by x . Therefore, it has a limit, say s. Since each xk ≤ x, we
have s ≤ x . We claim that s = x .

If possible, assume that s < x . Since 1
10k −→ 0, there exists some k ∈ N such that

s + 1
10k < x, which implies that at the kth iteration, nk was not the largest possible

integer satisfying our requirements above, a contradiction. Hence the result. �

Definition 1.40 Let x be a real number. If x ≥ 0, then a series
∑∞

n=0
nk
10k , where

nk’s are as in Theorem 1.39, is called a decimal expansion of x and is denoted as
n0.n1n2 . . . .

If x < 0, thedecimal expansionof x is defined as−n0.n1n2 . . . ,wheren0.n1n2 . . .

is a decimal expansion of |x |. Decimal expansions are also known as decimal repre-
sentations.

If x has an infinite recurring decimal expansion in which a finite block of digits
a1a2 . . . an repeat infinitely often, we write a1a2 . . . an to denote its indefinite recur-
rence. For example, it can be verified that the decimal representations of 1

3 and 17
99

are 0.3 and 0.17, respectively.

Remarks 1.41 Note that every real with a finite decimal expansion has an infinite
decimal expansion too. In that case, the above proof of Theorem 1.39 will produce
only the finite decimal representation.

Examples 1.42 Note that 0.9 = 1, as

0.9 = 9

10
+ 9

102
+ · · · + 9

10n
+ · · · = 9/10

1 − (1/10)
= 1.

Similarly, one can verify that 2.759 = 2.76. and 18.1729 = 18.173.

Theorem 1.43 If m ∈ N \ {1} and x ∈ R, then there exist n0 ∈ Z and a sequence
{nk} in {0, 1, 2, . . . ,m − 1} such that

∞∑

n=0

nk
mk

= x .

Proof The proof is analogous to Theorem 1.39. The only difference is that here we
split a unit into m equal parts, instead of 10. �

Let x ∈ R. If x ≥ 0, then x = (n0.n1n2 . . . nk . . . )m defines the m-base repre-
sentation/expansion of x, here n0, n1, n2, . . . are given by Theorem 1.43. As in
Definition 1.40, we obtain them-base expansion of a negative real x by prefixing the
negative sign before the m-base expansion of |x |.

If m = 2, 3 then these are known as the binary, ternary representation of x,
respectively. We shall deal with ternary representations, extensively in Chap. 10.
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Theorem 1.44 A real number is rational if and only if for any m > 1, its m-base
representation is either finite or repeating.

Proof The converse is trivial, by summing up the geometric series analogous to
Examples 1.42, if required. To prove the necessity part, note that it is enough to
establish that only for positive real numbers.

Let p/q be a rational number, where p ∈ N and q ∈ N. Dividing p by q, write
p = a0q + r0 for some a0 ∈ Z and r0 ∈ {0, . . . , q − 1}. Similarly, there exist inte-
gers a1 ∈ Z and r1 ∈ {0, . . . , q − 1} such thatmr0 = a1q + r1. Inductivelywe obtain
sequences {ak} and {rk} of integers such that

mrk−1 = akq + rk and 0 ≤ rk < 1 for all k ∈ N.

Therefore we obtain (a0.a1 . . . ak . . . )m, as an m-base expansion of p/q. Since the
sequence {rk} belongs to a finite set, there exist integers k1 < k2 such that rk1 = rk2 .
Hence thefinite blockof digitsak1 , ak2 , . . . , ak2−1 repeats in them-base representation
of p/q. �

Exercise 1.87 Obtain the binary, ternary, and decimal expansions of 1/2, 1/3, 1/4,
and 1/5. In case of finite representations, write down the infinite ones too.

Exercise 1.88 Let a ∈ R. Prove that there exists a sequence of rationals {rn} and a
sequence of irrationals {in} such that {rn} −→ a and {in} −→ a.

Exercise 1.89 For y ∈ R, let [y] denote the greatest integer less than or equal to
y. If {xn} is a sequence of reals, convergent to some x, prove that the sequence
{[10(xn − [xn])]}n is eventually constant.

Exercise 1.90 Does there exist a non-zero polynomial P in two variables which
satisfies the equation P([x], [2x]) = 0 for all x ∈ R?

Exercise 1.91 For x ∈ Q, let l(x) be the length of the smallest repeating block
in the decimal expansion of x . For example, l(1/3) = 1 and l(13/99) = 2 etc. If
S := {x ∈ [0, 1] ∩ Q : l(x) = 8}, evaluate the finite sum ∑

x∈S x .

Exercise 1.92 Let a, b ∈ R. Write an algorithm to find the decimal expansion of
a + b, using the decimal expansions of a and b.

Exercise 1.93 (Kempner 1914) Is the harmonic subseries of
∑∞

n=1
1
n convergent, if

the integers n containing 9 are excluded from the sum? Is the same true for any other
digit, apart from 9?
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1.5 Continuity

A function f : R −→ R is said to have a limit at a point c ∈ R if there exist some
l ∈ R such that for every ε > 0 there exists some δ > 0 such that

| f (x) − l| < ε for all x ∈ R, satisfying 0 < |x − c| < δ.

In this case, we say that l is the limit of f at c and write limx→c f (x) = l. Further,
the function f is said to be

(a) continuous at a point c ∈ R, if limx→c f (x) = f (c).
(b) a continuous function, if it is continuous at every point c ∈ R.

Remark 1.45 Any student of calculus knows that it is not necessary for f to be
defined at c in order to discuss its limit at c. But what is the minimum requirement
from the domain of f for this purpose?We shall discuss the most general situation in
Definition 3.23. Similarly, continuity can be discussed on any subset of the domain.
In this chapter, we shall avoid all such technical jargon, which often distracts the
first-time readers.

First we present the sequential approach to the limit of a real function.

Theorem 1.46 Let f : R −→ R and x0, l ∈ R. Then limx→x0 f (x) = l if and only
if for every sequence {xn} in R \ {x0} such that xn −→ x0, we have f (xn) −→ l.

Proof First, we assume that limx→x0 f (x) = l. Let ε > 0 be given. Then there exists
some δ > 0 such that

| f (x) − l| < ε whenever 0 < |x − x0| < δ.

Let {xn} be a sequence in R \ {x0}, convergent to x0. Then there exists a positive
integer N such that 0 < |xn − x0| < δ for all n ≥ N . Due to our choice of δ, we
obtain | f (xn) − l| < ε for all n ≥ N . Hence f (xn) −→ l.

Conversely, assume that limx→x0 f (x) �= l. Then there exists some ε > 0 such
that for every δ > 0 the following assertion is not satisfied:

| f (x) − l| < ε for all x satisfying 0 < |x − x0| < δ.

In particular, for each n ∈ N, taking δn := 1/n, one can choose some xn ∈ R such
that |xn − x0| < 1/n, while | f (xn) − l| ≥ ε. Therefore { f (xn)} does not converge
to l, while xn −→ x0, a contradiction to the hypothesis. �

Corollary 1.47 Let f : R −→ R and x0 ∈ R. Then f is continuous at x0 if and only
if f (xn) −→ f (x0), whenever xn −→ x0.

Definition 1.48 Let A be any set. The characteristic function of A or the indicator
function of A, denoted by χA, is defined as follows:
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χA(x) :=
{
1 if x ∈ A,

0 if x ∈ R \ A.

Next we present two important functions, due to Gustav Lejeune Dirichlet (1829)
and Carl Johannes Thomae (1875), respectively.

Example 1.49 The Dirichlet function, defined as fD := χQ is discontinuous every-
where.

Proof Let x ∈ R. Consider a sequence {rn} of rationals and {in} of irrationals such
that {rn} −→ x and {in} −→ x . Note that fD(rn) = 1 and fD(in) = 0 for all n ∈ N.

Hence { fD(rn)} −→ 1, while { fD(in)} −→ 0. Applying Corollary 1.47, we con-
clude that f is discontinuous at x . �

Example 1.50 The Thomae function f : R −→ {0} ∪ {1/n : n ∈ N}, defined as
follows, is continuous on R \ Q and discontinuous on Q :

f (x) :=
{

1
n if x ∈ Q and |x | = m

n with (m, n) = 1,
0 otherwise.

Proof Let r ∈ Q.Consider a sequence {in} of irrationals such that {in} −→ r. If f is
continuous at r, we have { f (in)} −→ f (r). That is {0} −→ f (r). Hence f (r) = 0,
which is impossible, as r ∈ Q. Hence f is discontinuous at r.

Pick any x ∈ R \ Q.Then f (x) = 0.Let ε > 0 be given. Pick any n ∈ N such that
1/n < ε.Note that there are only finitelymany rationals in the interval (x − 1, x + 1)
with denominator less than n. Therefore there exists some δ > 0 such that in (x −
δ, x + δ), every rational has denominator greater than or equal to n. Consequently,
for every y ∈ (x − δ, x + δ), we have | f (y) − f (x)| = | f (y)| ≤ 1/n < ε. Hence
f is continuous at x . �

The Thomae function has several other names such as the popcorn function, the
raindrop function, the countable cloud function, the ruler function, and the modified
Dirichlet function.

Remarks 1.51 In Corollary 8.39(b), we shall prove that there exists no R −→ R

function, which is continuous at every rational number and discontinuous at every
irrational number.

Theorem 1.52 (Algebra of Limits) Let f, g : R −→ R and c ∈ R be such that
limx→c f (x) = l and limx→cg(x) = l ′, for some l, l ′ ∈ R. Then

(a) limx→cα f (x) = αl for all α ∈ R,

(b) limx→c( f (x) + g(x)) = l + l ′,
(c) limx→c f (x)g(x) = ll ′, and
(d) limx→c

1
f (x) = 1

l , provided l �= 0.
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Proof One can use Theorem 1.46 along with Theorem 1.16, to prove all these
parts. Let {xn} be a sequence in R \ {c} such that xn −→ c. By Theorem 1.46, we
have f (xn) −→ l and g(xn) −→ l ′. Applying Theorem 1.16, we have α f (xn) −→
αl, ( f + g)(xn) −→ l + l ′ and f (xn)g(xn) −→ ll ′.

Further if l �= 0, by Theorem 1.16, there exists some k �= 0 such that f (xn) �=
0 for all n > k and {1/ f (xn)}n>k −→ 1/ l. Hence limx→c

1
f (x) = 1

l . �

Corollaries 1.53 Let c ∈ R and f, g : R −→ R be continuous at c. Then

(a) α f is continuous at c for all α ∈ R,

(b) f + g is continuous at c,
(c) f g is continuous at c, and
(d) 1/ f is continuous at c, provided f (c) �= 0.

Proposition 1.54 If f is continuous at c and g is continuous at f (c), then the
composition function g ◦ f is continuous at c.

Proof Let ε > 0 be given. Since g is continuous at f (c), there exists some ρ > 0
such that |g(y) − g( f (c))| < ε whenever |y − f (c)| < ρ. Since f is continuous at
c, there exists some δ > 0 such that | f (x) − f (c)| < ρ whenever |x − c| < δ.

Now if x satisfies |x − c| < δ, then | f (x) − f (c)| < ρ and hence |g( f (x)) −
g( f (c))| < ε. This proves that g ◦ f is continuous at c. �

History Notes 1.55 The term ‘function’ was first used by Leibniz in 1692. In [7],
twenty-one historical definitions of the concept of function are presented, in their
original languages. This includes the definitions by seventeen authors ranging from
Joh. Bernoulli (1718) to N. Bourbaki (1939), without any additional comment. For a
radical and historical approach toward real analysis, we recommend [8, 9], respec-
tively.

Exercise 1.94 Prove that the limit of a function at a point, if it exists, is unique.

Exercise 1.95 Let f : R −→ R be a function, c ∈ R and α be a fixed positive real.
Prove that limx→c f (x) = l if and only if for every ε > 0, there exists some δ > 0
such that | f (x) − l| < αε whenever 0 < |x − c| < δ.

Exercise 1.96 Let f : R −→ R and c ∈ R be such that limx→c f (x) = l. (A deleted
neighborhood of c is defined as U \ {c}, where U is a neighborhood of c.)

(a) If l > 0, prove that f (x) > 0, in a deleted neighborhood of c,
(b) If l > l ′, prove that f (x) > l ′, in a deleted neighborhood of c.

Exercise 1.97 Let f : R −→ R and c ∈ R. Prove that the following are equivalent:

(a) f is continuous at c.
(b) For every ε > 0 there exists some δ > 0 such that f ((c − δ, c + δ)) ⊂ ( f (c) −

ε, f (c) + ε).

(c) For every neighborhood J of f (c), there exists some neighborhood I of c such
that f (I ) ⊂ J.
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Exercise 1.98 Let f : R −→ R and c ∈ R. Prove that the following are equivalent:

(a) f has a limit l at c.
(b) For every ε > 0 there exists some δ > 0 such that f

(
(c − δ, c + δ) \ {c}) ⊂

(l − ε, l + ε).

(c) For every neighborhood J of l, there exists some neighborhood I of c such that
f (I \ {c}) ⊂ J.

Exercise 1.99 Prove the following function f is continuous only at 0. Also prove
that it has no limits at any other point.

f (x) :=
{
x if x ∈ Q,

0 if x ∈ R \ Q.

Exercise 1.100 Discuss the continuity of the real functions f and g defined as

f (x) :=
{
sin 1

x if x �= 0,
0 if x = 0

and g(x) :=
{
x sin 1

x if x �= 0
0 if x = 0.

Exercise 1.101 Obtain the set of discontinuities of the function f defined as

f (x) :=
{

x4 if x ∈ Q,

2x2 − 1 if x ∈ R \ Q.

Exercise 1.102 Show that the Thomae function is not differentiable anywhere and
has a strict local maximum at every rational number.

Exercise 1.103 Prove that every polynomial, in one variable, with real coefficients
is a continuous function onR.What can you conclude about the continuity of rational
functions?

Exercise 1.104 Let f : R −→ R and c ∈ R be such that limx→c f (x) exists. Prove
that f is bounded in a neighborhood of c.

Exercise 1.105 Write a proof of Proposition 1.54 using Corollary 1.47.

Exercise 1.106 Without using Theorem 1.46, prove Theorem 1.52.

Exercise 1.107 Let f : R −→ Rbe a continuous functionwith f (x + y) = f (x) +
f (y) for all x, y ∈ R. Prove that there exists some r ∈ R such that f (x) = r x, for
each x ∈ R.

Exercise 1.108 Let f, g : R −→ R and D f , Dg denote the set of discontinuities of
f and g, respectively,. Prove that D f +g ⊂ D f ∪ Dg.Can strict inclusion occur here?
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Exercise 1.109 Let I be any nonempty interval. Prove that there exists a continuous
surjective function f : R −→ I. (Several other results of this form will be discussed
in Exercises 5.35 and 7.14-7.16.)

Exercise 1.110 Let f : R −→ R be continuous at 0. Prove that there exists n ∈ N

such that the map x �−→ [10( f (x) − [ f (x)])] is constant on [−n−1, n−1].
Exercise 1.111 Let f (x) := x − tan−1 x for all x ∈ R. Let x1 be a positive real and
xn+1 := f (xn) for all n ∈ N. Prove that limn→∞ xn = 0.

Exercise 1.112 Let f : [0, 1] −→ [0,∞) be a monotonically increasing function
such that f (0) > 0 and f (x) �= x for all x ∈ [0, 1]. Prove that f (1) > 1.

1.6 Uniform Convergence

Since sequences and series of functions often arise in science and engineering, it
becomes important to ask the following question:

If each term in a convergent sequence (series) of functions satisfies a particular
property, can we expect the same property from the limiting function?

That property can be continuity, existence of limits, differentiability or integrability,
etc. There are two common notions of convergence of such sequences, defined as
follows.

Definition 1.56 Let E be any set. A sequence { fn} of E −→ R functions is called

(a) pointwise convergent to a function f on E, if for every x ∈ E, the sequence of
scalars { fn(x)} is convergent. In other words, if for every x ∈ E and for every
ε > 0, there exists a positive integer N (x) such that

| fn(x) − f (x)| < ε for all n ≥ N (x).

(b) uniformly convergent to a function f on E, if for every ε > 0 there exists a
positive integer N (independent of x ∈ E) such that

| fn(x) − f (x)| < ε for all n ≥ N and for all x ∈ E .

In these cases, we write fn −→ f pointwise/uniformly on E, respectively.

It is immediate that the uniform convergence of a sequence implies its pointwise
convergence. However, the converse is not true. Also the pointwise convergence does
not preserve continuity (see also Theorems 3.31 and 3.32).

Examples 1.57 Let { fn} be a sequence of [0, 1] −→ R functions, defined as

fn(x) := xn for all x ∈ [0, 1] and for all n ∈ N.
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Then { fn} is pointwise convergent to χ{1} on [0, 1], each fn is continuous on [0, 1],
while its pointwise limit χ{1} is discontinuous at 1. Further, { fn} is not uniformly
convergent on [0, 1].
Proof Let f denote the pointwise limit χ{1} of { fn} on [0, 1]. We only prove the last
assertion and leave the rest to the reader. Assume that the convergence is uniform.
Then for ε = 1

3 , there exists a positive integer N such that

∣∣ fn(x) − f (x)
∣∣ <

1

3
for all n ≥ N and for all x ∈ [0, 1].

That ensures that xn ∈ ( f (x) − 1
3 , f (x) + 1

3 ) for all n ≥ N and for all x ∈ [0, 1], In
particular, for n = N we obtain

xN ∈
(

− 1

3
,
1

3

)
for all x ∈ [0, 1).

Since fN is continuous at 1, there exists some δ > 0 such that xN ∈ (
2
3 ,

4
3

)
for all

x ∈ (1 − δ, 1].Therefore for all x ∈ (1 − δ, 1),weobtain xN ∈ ( − 1
3 ,

1
3

) ∩ (
2
3 ,

4
3

) =
∅, a contradiction. �

Definition 1.58 A series
∑∞

n=1 fn of real valued functions on a set E is said to be
pointwise (uniformly) convergent on E, if the sequenceof partial sums {∑n

k=1 fk(x)}n
is convergent pointwise (uniformly) on E . In this case, we write

∑∞
n=1 fn = f point-

wise (uniformly) on E .

1.6.1 Necessary and Sufficient Conditions

Theorem 1.59 Let { fn} be a sequence of real valued functions, pointwise convergent
to f on a set E . Write

Mn := sup
{| fn(x) − f (x)| : x ∈ E

}
for all n ∈ N.

Then fn −→ f uniformly on E if and only if limn→∞ Mn = 0.

Proof Let ε > 0 be given. Suppose fn −→ f uniformly on E . Then there exists
some N1 ∈ N such that | fn(x) − f (x)| < ε for all n > N1 and for all x ∈ E . Con-
sequently, we obtain Mn ≤ ε for all n > N1. Hence Mn −→ 0.

Conversely, ifMn −→ 0, then there exists some N2 ∈ N such thatMn ≤ ε for all
n > N2. Therefore for every n > N2 and for all break x ∈ E, we have | fn(x) −
f (x)| ≤ Mn < ε. Consequently, fn −→ f uniformly on E . �

Analogous to the case of sequences of real numbers, we also have a Cauchy
criterion for the uniform convergence of sequences of real valued functions.
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Theorem 1.60 (Cauchy criterion) A sequence { fn} of real valued functions is
uniformly convergent on a set E if and only if for every ε > 0 there exists some
N ∈ N such that

| fn2(x) − fn1(x)| < ε for all n2 > n1 ≥ N and for all x ∈ E .

Proof Assume that { fn} is uniformly convergent to f on E . Let ε > 0 be given.
Then there exists a positive integer N (independent of x ∈ E) such that

| fn(x) − f (x)| <
ε

2
for all n ≥ N and for all x ∈ E .

Then for all n2 > n1 ≥ N and for all x ∈ E, we have

| fn2(x) − fn1(x)| ≤ | fn2(x) − f (x)| + | f (x) − fn1(x)| <
ε

2
+ ε

2
= ε.

Conversely, let ε > 0 be given. Assume that there exists some N ∈ N such that

| fn2(x) − fn1(x)| < ε for all n2 > n1 ≥ N and for all x ∈ E . (1.2)

Then for each x ∈ E, the sequence { fn(x)} is a Cauchy sequence of reals and hence
convergent. Define f (x) := limn→∞ fn(x) for all x ∈ E . Passing limit n2 −→ ∞
in (1.2) and replacing n1 with n, we obtain

| fn(x) − f (x)| ≤ ε for all n ≥ N and for all x ∈ E .

Hence { fn} is uniformly convergent to f on E . �
Corollary 1.61 A series

∑∞
n=1 fn of real valued functions is uniformly convergent

on a set E if and only if for every ε > 0 there exists some N ∈ N such that

∣∣∣∣

n2∑

n=n1+1

fn(x)

∣∣∣∣ < ε for all n2 > n1 ≥ N and for all x ∈ E .

Proof Apply Theorem 1.60 on the sequence of partial sums of
∑∞

n=1 fn. �
We now present a sufficient condition for the uniform convergence of a series of

functions, in fact for the uniform convergence of the corresponding series of absolute
terms. Two other sufficient conditions for uniform convergence of sequences of
functions will be provided in Theorem 5.15 and Exercise 5.19.

Theorem 1.62 (Weierstrass M-test) Let
∑∞

n=1 fn be a series of real valued func-
tions on a set E . Suppose that there exists a sequence of positive reals {Mn} with∑∞

n=1 Mn < ∞ such that

| fn(x)| ≤ Mn for all x ∈ E and for all n ∈ N.
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Then the series
∑∞

n=1 fn is uniformly convergent on E .

Proof Let ε > 0begiven and Pn(x) := ∑n
k=1 fk(x) for all x ∈ E and for all n ∈ N.

Since
∑∞

n=1 Mn < ∞, there exists N ∈ N such that
∑n2

k=n1+1 Mk < ε for all n2 >

n1 > N . for all x ∈ E and for all n2 > n1 > N , we obtain

|Pn2(x) − Pn1(x)| = |
n2∑

k=n1+1

fk(x)| ≤
n2∑

k=n1+1

Mk < ε.

This concludes that the sequence {Pn} is uniformly Cauchy on E .Applying Theorem
1.60, {Pn} is uniformly convergent on E . Hence the result. �

1.6.2 Notes and Remarks

In Example 1.57, we have observed that the pointwise limit of a sequence of continu-
ous functions may not be continuous. A natural question is that howmuch discontin-
uous it can be? In particular, does there exist a sequence { fn} of continuous functions
on [0, 1], pointwise convergent to a function f such that f is discontinuous at every
point of [0, 1]? The answer is in the negative, as we have the following result from
[10, Corollary 5.17, p. 78].

Theorem 1.63 Let f be the pointwise limit of a sequence of real valued continuous
functions on an interval [a, b]. Then the set of points of continuity of f is dense
in [a, b], that is, every nonempty open interval inside [a, b] contains a point of
continuity of f.

A function f : [a, b] −→ R such that f is the pointwise limit of a sequence
of continuous functions, is known as a Baire class one function. Therefore, every
continuous function is a Baire class one function.

As a consequence of the above theorem, it follows that the derivative of an every-
where differentiable function is continuous on a dense subset of its domain and-
courtesy Darboux-has the intermediate value property.

Further, if f is the pointwise limit of a sequence of Baire class one functions, it is
known as a Baire class two function. Similarly, there are Baire class three functions
and so on. A thorough discussion of Baire class one functions is available in [10,
Chap. 5].

Exercise 1.113 Let { fn} −→ f and {gn} −→ g uniformly on a set E . Prove that
{ fn + gn} −→ f + g uniformly on E .

Exercise 1.114 For each n ∈ N, let fn : [0, 1] −→ R be the piecewise linear func-
tion, whose graph is given by the segments joining (0, 0), ( 1

2n , 2n), ( 1n , 0) and (1, 0)
in the R2 plane. Prove that { fn} is pointwise convergent on [0, 1], but not uniformly
convergent on [0, 1].
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Exercise 1.115 Let E be a finite set and { fn} be a sequence of real valued func-
tions on E . Prove that { fn} converges pointwise on E if and only if { fn} converges
uniformly on E .

Exercise 1.116 If {am,n : m, n ∈ N} is a subset of real numbers, is the following true
limm→∞ limn→∞ am,n = limn→∞ limm→∞ am,n?

Exercise 1.117 Prove that the following sequence of functions { fn} is convergent
pointwise, but not uniformly convergent on (0, 1).

fn(x) :=
{

1 ; x ∈ (0, 1/n),

0 ; x ∈ [1/n, 1).

Exercise 1.118 If fn(x) := nxn for all x ∈ [0, 1) and for all n ∈ N, prove that { fn}
is convergent pointwise, but not uniformly on [0, 1).
Exercise 1.119 Prove that the sequence of functions defined by

fn(x) := nx

1 + n2x2
for all x ∈ R and for all n ∈ N

is uniformly convergent on [a,∞] for all a > 0, but not on [0,∞].
Exercise 1.120 Discuss the convergence of the series

∑∞
n=1

1
n(1−x)n .

Exercise 1.121 What is the domain of pointwise convergence of
∑∞

n=1
cos(3n x)

2n ?

Exercise 1.122 Obtain the limit limx→0
∑∞

n=1
sin(nx)

n2 . Justify your answer.

Exercise 1.123 Let { fn} and {gn} be sequences of bounded functions, uniformly
convergent on E, to functions f and g, respectively. Prove that the sequence { fngn}
is uniformly convergent to f g on E .

Exercise 1.124 If a sequence of real functions is a contraction of a convergent
sequence of constants, prove that it is uniformly convergent. In other words, let
{ fn} be a sequence of real functions on E and {an} be a convergent sequence of real
numbers such that

| fn(x) − fm(x)| ≤ |an − am |, for each x ∈ E and for each n,m ∈ N.

Prove that the sequence { fn} is uniformly convergent on E .

Exercise 1.125 Let { fn} be as in Theorem 1.62. Prove that
∑∞

n=1 | fn|, is uniformly
convergent on E, if there exists a sequence of positive reals {Mn}with∑∞

n=1 Mn < ∞
such that

| fn(x)| ≤ Mn for all x ∈ E and for all n ∈ N.
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Exercise 1.126 Show that the Weierstrass M-test generalizes the comparison test.

Exercise 1.127 Generalize Exercises 1.80 and 1.81 for uniform convergence.

Exercise 1.128 Let
∑∞

n=1 an be an absolutely convergent series and {bn} be any
sequence of reals. Prove that the series

∑∞
n=1 an(sin bnx + cos bnx) is uniformly

convergent on R.

Exercise 1.129 Let { fn}∞n=0 be a sequence of real valued functions on E with f0 ≡ 0.
Suppose there exists a sequence of positive reals {Mn}with∑∞

n=1 Mn < ∞ such that

| fn(x) − fn−1(x)| ≤ Mn for all x ∈ E and for all n ∈ N.

Prove that { fn} is uniformly convergent on E .

Exercise 1.130 Let {an} be a sequence of reals and
∑∞

n=0 anx
n be convergent at

some non-zero real x = x0. Prove that
∑∞

n=0 anx
n converges uniformly on [−r, r ],

for all 0 < r < |x0|.

1.7 Hints and Solutions to Selected Exercises

1.9 Let r be a rational number such that x − √
2 < r < y − √

2. Then s = r + √
2

is the required irrational.
1.12 Apply induction, along with Exercise 1.10.
1.14 Since 12 = 1 < 2,we have 1 ∈ E .Note that E is bounded above by 2.Otherwise

there exists some x ∈ E such that x > 2, then x2 > 4, a contradiction. Therefore
E is a nonempty and bounded above set. Applying least upper bound property,
let s := sup E . We claim that s2 = 2. Define

r := s − s2 − 2

s + 2
= 2s + 2

s + 2
.

Then

r2 − 2 = 2
s2 − 2

(s + 2)2
.

If s2 < 2, then r2 < 2 and r > s. Therefore r ∈ E and r > s which implies that
s �= sup E, a contradiction.

If s2 > 2, then r2 > 2 and r < s. If x ∈ E, then x < r, because x ≥ r would
imply x2 ≥ r2 > 2 and that is impossible as x ∈ E . Hence r is an upper bound
for E . This implies r ≥ s, a contradiction. Hence s2 = 2.

1.28 Apply the triangle inequality
∣∣|an| − |a|∣∣ ≤ |an − a|. The converse is not true.

For example, consider the sequence an := (−1)n for all n ∈ N.

1.30 Use the inequality |a 1
k
n − a

1
k | ≤ |an − a| 1

k .
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1.31 Let an := n1/n − 1. Then n = (1 + an)n. Applying binomial theorem, for all
n ≥ 2, we obtain

n = (1 + an)
n = 1 + nan + n(n − 1)

2
a2n + · · · + ann >

n(n − 1)

2
a2n .

Hence 0 ≤ an <

√
2

n−1 for all n ≥ 2. By Squeeze Rule (1.17), an −→ 0.
1.39 The first part is immediate from the definition of convergence. For the second

part, let pn denote the nth partial sum of the series
∑∞

n=1
1
n .

1.41 Use the fact that lim
n→∞ xan = a for all a ∈ R.

1.43 Let α ∈ R. By Archimedean property, there exists some N ∈ N such that |α| <

N . Then for all n > N , we have

0 <
|α|n
n! = |α|N

N ! .
|α|

N + 1
.

|α|
N + 2

. . .
|α|
n

≤ |α|N+1

N ! .
1

n
.

Applying Squeeze Rule (1.17), limn→∞ |α|n
n! = 0. Hence limn→∞ αn

n! = 0.
1.44 It is enough to show that the sequence is monotonically increasing and not

bounded above. First assume that there exists some α > 0 such that n
√
n! <

α for all n ∈ N. Then we have n! < αn and thus αn/n! > 1 for all n ∈ N, a con-
tradiction to Exercise 1.43.

To prove that { n
√
n!} is monotonically increasing, let n ∈ N. Note that

n
√
n! <

n+1
√

(n + 1)! ⇐⇒ (n!)n+1 < [(n + 1)!]n ⇐⇒ n! < (n + 1)n,

which is always true, by the virtue of binomial expansions.
1.45 Let ε > 0 be given. Pick any N1 ∈ N such that |an − l| < ε

2 for all n ≥ N1.Then
there exists a natural number N > N1 such that

1

n

N1∑

i=1

|ai − l| <
ε

2
for all n ≥ N .

Therefore, for all n > N , we obtain

∣∣∣∣
a1 + · · · + an

n
− l

∣∣∣∣ ≤ 1

n

N1∑

i=1

|ai − l| + 1

n

n∑

i=N1+1

|ai − l|

<
ε

2
+ ε

2
× n − N1

n
< ε.

The converse is false. For example, take an := (−1)n.
1.46 Apply Exercise 1.45.
1.47 Inductively apply the well-ordering principle of N.
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1.50 For each i = 1, . . . , k2 + 1, let ai denote the largest number for which there are
n1 < · · · < nai ≤ i such that f (n1) ≤ · · · ≤ f (nai ), and bi denote the largest
number for which there are n1 < · · · < nbi ≤ i such that f (n1) ≥ · · · ≥ f (nbi ).

Let i < j. If f (i) ≤ f ( j), then ai < a j ; otherwise bi < b j . So (ai , bi ) �=
(a j , b j ) for all i �= j. In other words, the map i �−→ (ai , bi ) is injective. If
1 ≤ ai , bi ≤ k for all i, then the pairs (ai , bi ) are at most k2 in number, which
is false. Hence either ai > k or bi > k for some i.

1.53 Note that for every n ∈ N, we have

1 + 1√
2

+ 1√
3

+ · · · + 1√
n

≥ 1√
n

+ 1√
n

+ 1√
n

+ · · · + 1√
n

= √
n.

1.54 Use the following observation

1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ . . .

> 1 + 1

2
+

[
1

4
+ 1

4

]
+

[
1

8
+ 1

8
+ 1

8
+ 1

8

]
+ . . .

= 1 + 1

2
+ 1

2
+ . . . .

1.57 Write Sn := ∑n
k=0 ar

k for all n ∈ N. Then we have r Sn = ∑n
k=0 ar

k+1, which
implies that Sn(1 − r) = a(1 − rn+1). Therefore,

Sn = a(1 − rn+1)

1 − r
for all n ∈ N.

Since |r | < 1,weobtain {rn+1} −→ 0.So Sn −→ a
1−r .Hence

∑∞
n=0 ar

n = a
1−r .

1.59 By comparing the upper and the lower areas (upper and lower Riemann sums)
with the integral of f, in the interval [1, n], we obtain

a2 + a3 + · · · + an+1 ≤
∫ n+1

1
f (t)dt ≤ a1 + a2 + · · · + an.

By hypothesis, the partial sums as well as the sequence
{ ∫ n

1 f (t)dt
}
is a mono-

tonically increasing of real numbers.
1.62 No. Take an := 1/n2 and bn := 1.
1.66 Show that both of the following series are divergent:

1 + 1

2
− 1

3
+ 1

4
+ 1

5
− 1

6
+ 1

7
+ 1

8
− 1

9
+ . . .

and 1 − 1

22
+ 1

3
− 1

23
+ 1

5
− 1

24
+ 1

7
− 1

25
+ . . . .
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1.67 Apply Leibniz test. Also note that
∑∞

n=0(−1)n+1/n = log 2.
1.68 Since the geometric mean of two reals is less than or equal to their arithmetic

mean, we conclude that

|anbn| =
√
a2nb

2
n ≤ a2n + b2n

2
for all n ∈ N.

Applying hypothesis and the comparison test,
∑∞

n=1 anbn converges absolutely.
1.72 Yes, both. Rationalize suitably.
1.76 Apply limit test, on the corresponding series of absolute terms with

∑∞
n=1 1/n

2,∑∞
n=1 1/n and

∑∞
n=1

1
n3/2 , respectively.

1.79 (a) Since the series
∑∞

n=1 bn is convergent, the sequence {bn} is bounded. There-
fore, there exists some M > 0 such that bn < M for all n. Hence

∞∑

n=1

anbn ≤ M
∑

an < ∞.

(b) For a counter example, take an = bn = (−1)n+1/
√
n for all n ∈ N.

1.80 Write Bn := ∑n
k=1 ak for all n ∈ N. Then

n∑

k=1

akbk = an Bn +
n−1∑

k=1

Bk(ak − ak+1) for all n > 1.

Since an −→ 0 and {Bn} is bounded, we obtain an Bn −→ 0. The result follows,
because

∑n−1
k=1 Bk(ak − ak+1) converges absolutely, as

n−1∑

k=1

|Bk(ak − ak+1)| ≤ M
∣∣
n−1∑

k=1

(ak − ak+1)
∣∣ = M |a1 − an | −→ M |a1|, as n −→ ∞.

To deduce Leibniz’s test, use bn := (−1)n for all n ∈ N.

1.81 Analogous to Exercise 1.80.
1.82 Let m ∈ N and observe the following inequalities

2m−1∑

k=1

ak = (a1) + (a2 + a3) + (a4 + a5 + a6 + a7) . . .

≤ a1 + 2a2 + 4a4 . . . ≤
m−1∑

k=0

2ka2k

and
m−1∑

k=0

2ka2k = (a1 + a2) + (a2 + a4 + a4 + a4) + a4 . . .
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≤ (a1 + a1) + (a2 + a2 + a3 + a3) + 2a4 . . . ≤ 2
2m−1∑

k=1

ak .

The result follows by the virtue of the comparison test.
1.83 No, as the Cauchy-Schwarz inequality (2.2) ensures that

N∑

n=1

a2n ≤ ( N∑

n=1

an
)2 ≤ ( ∞∑

n=1

an
)2

for all N ∈ N.

1.84 (a) By Cauchy condensation test (1.82),
∑∞

k=0 2
ka2k converges. For 2k < n <

2k+1, we obtain 2ka2k+1 ≤ nan ≤ 2k+1a2k . Now apply Squeeze Rule (1.17).
For an alternative proof, let Tn := ∑

m>n an. Then Tn −→ 0 and for all
n ∈ N, we have

0 ≤ na2n ≤ an+1 + · · · + a2n ≤ Tn
and 0 ≤ (2n + 1)a2n+1 = 2na2n+1 + a2n+1 ≤ 2na2n + a2n+1.

Applying Squeeze Rule (1.17), these inequalities ensure that na2n −→ 0
and (2n + 1)a2n+1 −→ 0, respectively. Hence nan −→ 0.

(b) No. For example, let
∑∞

n=1 an be the rearrangement of
∑∞

n=1 2
−n, obtained

by interchanging the (2k)th and kth terms, for all positive odd integers k.
1.85 The series (a) and (b) are convergent, while (c) is not, in general.

(a) Applying Cauchy-Schwarz inequality (2.2), for every N ∈ N, we obtain

N∑

n=1

an
n

≤
( N∑

n=1

a2n

)( N∑

n=1

1

n2

)
.

(b) Since
∑∞

n=1 a
2
n is convergent, there existsm ∈ N such thatan < 1 for all n >

m. If p > 2 and n > m, then a p
n = a2na

p−2
n < a2n .Applying Comparison test

(1.37),
∑∞

n=1 a
p
n is convergent.

(c) If pn = 3
2 and an := n− 5

8 , then

∞∑

n=1

a2n =
∞∑

n=1

n− 5
4 < ∞ while

∞∑

n=1

a p
n =

∞∑

n=1

n− 15
16 = ∞.

1.86 The series
∑∞

n=1

√
an
n converges by Exercise 1.85(a). However,

∑∞
n=1

√
an
n may

not converge. For example, take an := 1
n(log n)2

.

1.90 Yes. Observing the values of [x] and [2x] for intervals of half length, one can
show that for every x ∈ R, the integer [2x] is either 2[x] or 2[x] + 1. Hence
P(x, y) := (y − 2x)(y − 2x − 1) satisfies our requirement.
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1.91 Let us first find the number of elements of S. Note that there are 108 ways of
choosing a block of length 8. In this we also count numbers with repeating blocks
of length 2 and 4. Since every number x with a repeating block of length 2 also
has a repeating block of length 4, we obtain |S| := 108 − 104 = 99990000.

Now for every 0.abcge f gh ∈ S, there exists a unique 0.a′b′c′g′e′ f ′g′h′ ∈ S
such that x ′ = 9 − x . Also 0.abcge f gh + 0.a′b′c′g′e′ f ′g′h′ = .9 = 1. Hence∑

x∈S x = |S|/2 = 49995000.
1.93 Yes. The proof is by grouping the sum by number of digits in the denominator. If

a = {1, . . . , 9}, the number of k-digit positive integers that have no digit equal
to a is 8 × 9k−1. Moreover each of these numbers is strictly more than 10k−1.

Hence the series sum in this case would be ≤ 8
∑∞

k=1(
9
10 )

k−1 = 80. If a = 0,
the same is at most 9

∑∞
k=1(

9
10 )

k−1 = 90. Ditto for any other digit.
1.106 Apply the direct definition and write proofs analogous to Theorem 1.16. For

the third part, note that if f has a limit at c, then f is bounded in a deleted
neighborhood of c. The following relation will be useful

| f (x)g(x) − ll ′| ≤ | f (x)g(x) − f (x)l ′| + | f (x)l ′ − ll ′|
= | f (x)||g(x) − l ′| + | f (x) − l||l ′|.

For the last part, note that l �= 0, implies | f (x)| > |l|/2, in a deleted neighbor-
hood of c. Now in a deleted neighborhood of c, we have

∣∣∣∣
1

f (x)
− 1

l

∣∣∣∣ ≤ | f (x) − l|
|l f (x)| <

2

l2
| f (x) − l|.

1.108 A strict inclusion is possible, e.g. take f := χQ∩[0,1] and g := − f.
1.109 Wediscuss someparticular cases.Other intervals of the same formcanbehandled

by taking compositions with suitable linear maps.

If I = R, then one can take f to be identity map. If I = [0,+∞) and (0,+∞),

the maps x �−→ x2 and x �−→ ex , respectively, serve our purpose. For I =
(−∞, 0] and (−∞, 0), the negative of these maps, that is, x �−→ −x2 and
x �−→ −ex would work.

If I = [−1, 1], then x �−→ sin x works. If I = (−1, 1), we take f1(x) :=
2
π
tan−1 x .

Now consider the case when I = (0, 1]. Let f2 be the linear bijection from
(−1, 1) onto (0, 1). Consider the continuous surjection f3 : (0, 1) −→ (0, 1]
given by f3(x) := sin πx for all x ∈ (0, 1). Then f := f3 ◦ f2 ◦ f1 is a contin-
uous surjection from R onto (0, 1]. Taking negative of this function, we obtain
a continuous surjection from R onto [−1, 0).
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1.111 Note that f ′(x) = x2

1+x2 for all x . Since f (0) = 0 and f ′(x) > 0 for all x >

0 we obtain f (x) > 0 for all x > 0. Therefore, xn > 0 for all n, and thence
xn+1 − xn = − tan−1 xn < 0.

Thus {xn} is a monotonically decreasing sequence of positive reals and hence
convergent. Let l := limn→∞ xn . Then xn+1 − f (xn) = 0 for all n ∈ N. Since f
is continuous,

0 = lim
n→∞(xn+1 − f (xn)) = l − f (l) = tan−1 l which implies l = 0.

1.112 Let E := {x ∈ [0, 1] : f (x) > x}.Since 0 ∈ E ⊂ [0, 1], E is a nonempty subset
of R bounded above by 1. Let s := sup E . We claim that s ∈ sup E and s = 1.

If s /∈ E, then f (s) ≤ s and hence f (s) < s, as f (x) �= x for all x . So f (s) is
not an upper bound of E . So there exists some x ∈ E such that f (s) < x . Since
s = sup E, we have x ≤ s which implies f (x) ≤ f (s) < x . Hence x /∈ E, a
contradiction. Thus s ∈ sup E .

Now assume that s < 1. Let sn := s + 1
n , for each n ∈ N. Then for sufficiently

largen, the sequence {sn} belongs to (s, 1].So for all sufficiently largen, f (sn) <

sn and thence
s < f (s) ≤ f (sn) < sn.

Since sn −→ s,bySqueezeRule (1.17), { f (sn)} −→ f (s) aswell as { f (sn)} −→
s. Hence f (s) = s, a contradiction.

1.116 No. For example, take am,n := m
m+n for all m, n ∈ N.

1.119 Note that limn→∞ fn(x) = 0 for all x ∈ R. Also for all n ∈ N, the function
fn is monotonically increasing in [0, 1/n] and monotonically decreasing in
[1/n,+∞) with fn(0) = 0 and fn(1/n) = 1/2 for all n ∈ N.

1.120 Applying ratio test on the corresponding absolute series, we obtain absolute con-
vergence in (−∞, 0) ∪ (2,∞), absolute divergence in [0, 2] \ {1}, conditional
convergence at 2 and divergent in (0, 1) ∪ (1, 2).
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Chapter 2
Metric Spaces

Exploring the properties of real functions or sequences is just the beginning. A few
answers lead to several questions. Can we extend our results fromR to more general
spaces, such as the planeR2 or the three-dimensional spaceR3 or toRn? Sometimes
the proofs depend only upon a few properties of the underlying space. The ones
which depend only upon the distance function can be extended to metric spaces.

A metric space is defined to be a nonempty set along with a distance function
having some particular properties. This chapter presents a vast collection of metric
spaces, including the particular cases of normed spaces and sequence spaces. To
provide a glimpse into generalizations from reals, we have included a section on
convergence of sequences in metric spaces which also contains the case of finite-
dimensional Euclidean spaces.

2.1 Introduction

To delve into the concept of ‘distance’ in general spaces, it is necessary to first define
the notion of a ‘space.’

Definition 2.1 A space is defined to be any nonempty set.

The definition of a space is often avoided in most of the textbooks. Some texts define
‘space’ as a nonempty set with some additional structure on it, such as a metric
space, linear space, normed space. The term ‘additional structure’ is a bit vague,
especially for those who do not know any kind of such ‘space’. In that sense, the
above definition appears more appropriate.

Definition 2.2 Let X be a nonempty set. A function d : X × X −→ R is said to be
a metric on X if for every x, y, z ∈ X, we have

(a) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, (positive definiteness)
(b) d(x, y) = d(y, x) and (symmetry)
(c) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)
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In this case, (X, d) is called a metric space or that X is a metric space with metric
d. If there is no ambiguity about the metric, we simply say that X is a metric space.

Examples 2.3 (a) Define d(x, y) := |x − y|, for all x, y ∈ R. Then d is a metric
on R, known as the usual metric.

(b) Let X be any nonempty set (it could even be the set of English Alphabets) and
dc : X × X :−→ R be defined as follows:

dc(x, y) :=
{

1 ; x �= y,

0 ; x = y.

It can be shown that dc is a metric on X. In this case, dc is said to be the discrete
metric on X and (X, dc) is called the discrete metric space.

Example 2.4 Let (X, d) be any metric space and Y be a nonempty subset of X.

Then d is also a metric on Y, known as the induced metric. In this case, the metric
space Y is called a subspace of X. For example, Q is a subspace R.

In the sequel, if X is a nonempty subset of R, the space X will refer to the metric
space X equipped with the usual metric.

Example 2.5 Let r ∈ (0, 1] and X be the collection of sequences with terms 0 or
1. For any sequences x = {xn}, y = {yn} ∈ X such that x �= y, define n(x, y) :=
min{k : xk �= yk} and

ρ0(x, y) :=
{

0 ; x = y,
1

n(x,y)
; otherwise and ρr (x, y) :=

{
0 ; x = y,

rn(x,y) ; otherwise.

Then for every r ∈ [0, 1], the function ρr is a metric on X with

ρr (x, y) ≤ max{ρr (x, z), ρr (y, z)} for all x, y, z ∈ X. (2.1)

This above inequality is known as the strong triangle inequality, and a metric that
satisfies it is referred to as an ultrametric.

Proof Note that for r = 1, ρ1 is the discrete metric on X, which clearly satisfies the
inequality (2.1). The symmetry and positive definiteness of each ρr is trivial. The
triangle inequality follows from (2.1), which is immediate if any two of x, y, z are
equal.

Assume that x = {xn}, y = {yn} and z = {zn} are all different. Then xi = zi

for all i < n(x, z) and zi = yi for all i < n(z, y). Therefore xi = yi for all i <

min{n(x, z), n(z, y)}, and consequently, n(x, y) ≥ min{n(x, z), n(z, y)}. Hence ρr

satisfies (2.1), for all r ∈ [0, 1). �

Definition 2.6 Let X be a nonempty set. A function d : X × X −→ R is said to be
a pseudo-metric on X if for every x, y, z ∈ X we have
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(a) d(x, y) ≥ 0 and d(x, x) = 0, (positive semi-definiteness)
(b) d(x, y) = d(y, x) and (symmetry)
(c) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)

Clearly, every metric is a pseudo-metric, while the converse is not true.

Example 2.7 Let d(x, y) := |x2 − y2| for all x, y ∈ R. Then d is a pseudo-metric
on R, but not a metric on R.

Remarks 2.8 Someof the requirements inDefinition2.2 are redundant (seeExercise
2.7). An important example of a metric, the Hausdorff metric will be provided in
Exercise 3.67.

2.1.1 The Euclidean Spaces

Note that the standard Euclidean distance in a plane satisfies all the requirements of a
metric, making that plane a metric space. The positive definiteness and the symmetry
are obvious. We shall provide a proof for the triangle inequality.

Let n ∈ N. The n-dimensional real Euclidean space R
n is defined as

R
n := {(x1, . . . , xn) : xi ∈ R, 1 ≤ i ≤ n}.

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n and r ∈ R, the sum x + y, scalar mul-

tiplication r x, modulus |x | and the dot product x · y are defined as follows:

x + y := (x1 + y1, . . . , xn + yn),

r x := (r x1, . . . , r xn),

|x | :=
√

x2
1 + · · · + x2

n

and x · y := x1y1 + · · · + xn yn.

First we present the Cauchy-Schwarz inequality. This is one of the most funda-
mental inequality in analysis and has several conceptually different proofs. Here we
present the popular one, which can be extended to even more general spaces, namely
the inner product spaces (see Theorem 2.33). An alternative proof will be provided
in Exercise 2.19.

Theorem 2.9 (Cauchy-Schwarz inequality) For every x, y ∈ R
n, we have

|x · y| ≤ |x ||y|. (2.2)

In other words, if x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, then

|x1y1 + · · · + xn yn| ≤
√

x2
1 + · · · + x2

n

√
y21 + · · · + y2n .
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Further, the equality holds if and only if x and y are linearly dependent, that is, there
exist real numbers a and b not both zero such that ax + by = 0.

Proof Consider z := |y|2x − (x · y)y and observe that

0 ≤ |z|2 = z · z = (|y|2x − (x · y)y
) · (|y|2x − (x · y)y

) = |y|2(|x |2|y|2 − |x · y|2).
(2.3)

If y = 0, then (2.2) holds trivially. If y �= 0, then |y|2 = y · y > 0 and therefore by
cancelling the positive scalar |y|2 from (2.3), we obtain (2.2).

Suppose there exist real numbers a and b not both zero such that ax + by = 0.
Without loss of generality,we assume that a �= 0.Thenwith x = −by/a, the equality
in (2.2) holds true.

Conversely, assume that the equality holds in (2.2). Using that in (2.3), we obtain
z · z = 0, which implies z = 0. Hence (y · y)x = (x · y)y. If y �= 0, then y · y �= 0.
Otherwise 0.x + 1.y = 0. Hence x and y are linearly dependent. �

Corollary 2.10 (Minkowski’s inequality) For every (x1, . . . , xn), (y1, . . . , yn) ∈ R
n,

we have

√
(x1 + y1)2 + · · · + (xn + yn)2 ≤

√
x2
1 + · · · + x2

n +
√

y21 + · · · + y2n . (2.4)

Proof By squaring and canceling, we observe that (2.4) holds if and only if (2.2) is
satisfied, which is already true. Hence the result. �

Corollary 2.11 (Euclidean metric) For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
R

n, define
d2

(
x, y

) :=
√

|x1 − y1|2 + · · · + |xn − yn|2.

Then (Rn, d2) is a metric space.

Proof Applying Corollary 2.10, d2 satisfies the triangle inequality. The positive
definiteness and symmetry of d2 are obvious from its definition. �

The above d2 is known as the usual metric or the Euclidean metric on R
n. For

convenience, we write metric space Rn for the metric space (Rn, d2). We also write
|x − y| for d2(x, y).

Wewind up this section with the space of complex numbers. Various other exam-
ples of metric spaces will be discussed in the exercises.

Definition 2.12 The set of complex numbers C is defined to be the two-dimensional
Euclidean space R2, along with an additional multiplication operation given by

(x1, x2) × (y1, y2) := (x1y1 − x2y2, x1y2 + x2y1) for all (x1, x2), (y1, y2) ∈ C.

It is conventional to denote (0, 1) by i and (a, b) by a + ib.
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Remark 2.13 Note that the usual metric onR2 provides a metric onC, also known
as the usual metric onC. Therefore, topologicallyC andR2 are same. The product in
Cmakes functions onC quite different from those onR2,which leads to the Cauchy
theory of complex analysis. However, that is not the concern of this textbook. We
limit our discussion to the basic algebraic and topological properties of C.

History Notes 2.14 The concept of metric spaces was introduced by Frećhet, under
the name ‘classes (E)’, in his 1906 Ph.D. dissertation. Later Hausdorff coined the
term metric space in 1914 and laid the foundations of topology (see [1, p. 253]).

2.1.2 Balls and Bounded Sets

Definition 2.15 Let (X, d) be a metric space, x ∈ X and r > 0. The ball of radius
r centered at x is defined as

Bd(x; r) := {y ∈ X : d(y, x) < r}.

These balls are also called open balls. If there is no ambiguity about the metric,
we simply write B(x; r), instead of Bd(x; r). Note that we did not allow balls with
radius zero.

Examples 2.16 (a) Under the usual metric on reals, the open balls are open inter-
vals. In particular, for all x ∈ R and r > 0, we have B(x; r) = (x − r, x + r).

(b) Let (X, d) be a discrete metric space, x ∈ X and r > 0. Then

B(x; r) :=
{

X ; r > 1,
{x} ; 0 < r ≤ 1.

Example 2.17 Let (X, d) be a metric space such that d is an ultrametric on X, i.e.

d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X.

If x, y, z ∈ X and r, s > 0 are arbitrary, then X satisfies the following properties:

(a) Every triangle in X is isosceles, i.e. if d(x, y) �= d(y, z), then d(z, x) is equal
to either d(x, y) or d(y, z).

(b) Every point inside a ball is its center, i.e. B(x; r) = B(y; r) for all y ∈ B(x; r).

(c) If two ballsmeet, then one is contained in the other; i.e. if B(x; r) ∩ B(y; s) �= ∅,

then either B(x; r) ⊂ B(y; s) or B(y; s) ⊂ B(x; r).

Proof (a) Without loss of generality, we assume that d(x, y) < d(y, z). Then
d(y, z) = d(z, x), as

d(z, x) ≤max{d(z, y), d(y, x)} = d(y, z)

and d(y, z) ≤max{d(y, x), d(x, z)} = d(z, x).



44 2 Metric Spaces

(b) Suppose d(y, x) < r. If z ∈ B(x; r), then d(y, z) ≤ max{d(y, x), d(x, z)} < r
and hence z ∈ B(y; r). So B(x; r) ⊂ B(y; r). Interchanging y and x,we obtain
B(x; r) = B(y; r).

(c) Without loss of generality, suppose r ≤ s and let z ∈ B(x; r) ∩ B(y; s). By (b),
we conclude that B(x; r) = B(z; r) ⊂ B(z; s) = B(y; s). �

Definition 2.18 A subset E of a metric space X is called bounded if it is contained
in some ball. That is, E ⊂ B(x; r) for some x ∈ X and r > 0.

Therefore, E is bounded if and only if the set of distance between points of E is
bounded above. Analogous to open balls, the closed balls are defined as follows:

Definition 2.19 Let (X, d) be a metric space, x ∈ X and r > 0. The closed ball of
radius r centered at x is defined as B[x; r ] := {y ∈ X : d(y, x) ≤ r}.
Exercise 2.1 For a metric space (X, d), prove that the following are equivalent:

(a) d is a constant,
(b) X is a singleton set and
(c) d(x, y) ≥ d(x, z) + d(z, y) for all x, y, z ∈ X.

Exercise 2.2 If d is a metric on a space X, prove that so is
√

d.

Exercise 2.3 If d is a metric on a space X and x, y, z ∈ X. prove the inequality
|d(x, y) − d(y, z)| ≤ d(x, z).

Exercise 2.4 Does (x, y) �−→ ∣∣ 1
x − 1

y

∣∣ define a metric on R \ {0}?
Exercise 2.5 Does any of the following expressions define a metric on R :

|x2 − y2|, |x − y| + 1 or
1

|x − y| + 1
?

Exercise 2.6 Prove that (x, y) �−→ |x − y| + |x2 − y2| defines a metric on R.

Exercise 2.7 If X is nonempty and d : X × X −→ R such that for all x, y ∈ X,

d(x, y) ≤ d(x, z) + d(y, z)

and d(x, y) = 0 if and only if x = y.

Prove that d(x, y) ≥ 0 and d(x, y) = d(y, x) for all x, y ∈ X.

Exercise 2.8 Deduce the triangle inequality in (Rn, d2) from Corollary 2.10.

Exercise 2.9 For any (x1, x2), (y1, y2) ∈ R
2, define

(a) d1
(
(x1, x2), (y1, y2)

) := |x1 − y1| + |x2 − y2| (the taxi cab metric).
(b) d∞

(
(x1, x2), (y1, y2)

) := max{|x1 − y1|, |x2 − y2|}. (the sup metric).

Prove that d1 and d∞ are metrics on R
2.
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Exercise 2.10 Generalize the metrics d1 and d∞ of Exercise 2.9 to Rn, and charac-
terize the collection of balls in R

n with respect to these metrics.

Exercise 2.11 Let (X, d) be a metric space and E ⊂ X. Prove that the following
are equivalent:

(a) E is bounded,
(b) there exists some M > 0 such that d(x, y) < M, for every x, y ∈ E,

(c) for any x ∈ X, there exists Mx > 0 such that d(y, x) < Mx for all y ∈ E .

Exercise 2.12 Characterize bounded subsets of discrete metric spaces.

Exercise 2.13 If A and B are bounded subsets of a metric space X, prove that so is
A ∪ B.

Exercise 2.14 Let X be a metric space and A ⊂ X. Prove that A is bounded if and
only if the diameter of A is finite, i.e. sup{d(x, y) : x, y ∈ A} < ∞.

Exercise 2.15 Let (X, d) be a metric space and ρ be a pseudo-metric on X. Prove
that d + ρ is a metric on X.

Exercise 2.16 Let X be a nonempty set and ρ1, . . . , ρn be (pseudo-)metrics on X.

Prove that ρ1 + · · · + ρn is also a (pseudo-)metric on X.

Exercise 2.17 Let d be a pseudo-metric on a space X. Define a relation ∼ on X as

x ∼ y if and only if d(x, y) = 0.

Prove that ∼ is an equivalence relation on X. For each x ∈ X, let [x] denote the
equivalence class of x under this relation and X∗ := {[x] : x ∈ X}. Prove that d∗ is
a metric on X∗, where d∗([x], [y]) := d(x, y) for all [x], [y] ∈ X∗.

Exercise 2.18 Let (X, d) be a metric space. For every x, y ∈ X, define

ρ1(x, y) := min{1, d(x, y)} and ρ2(x, y) := d(x, y)

1 + d(x, y)
.

Prove that both ρ1 and ρ2 are metrics on X. Further show that every subset of X is
bounded in (X, ρ1) as well as in (X, ρ2).

Exercise 2.19 Prove the Cauchy-Schwarz inequality in R
2, as follows:

(a) Let a ≥ 0 and p(t) := at2 + bt + c. If p(t) ≥ 0 for all t ∈ R, prove that b2 ≤
4ac.

(b) Let (x1, x2), (y1, y2) ∈ R
2.Applying (a)with p(t) := (t x1 + y1)2 + (t x2 + y2)2,

prove that

|x1y1 + x2y2| ≤
√

x2
1 + x2

2

√
y21 + y22 .
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Exercise 2.20 Let X denote the family of real valued functions on the interval [0, 1]
and d( f, g) := sup

{| f (x) − g(x)| : x ∈ [0, 1]} for all f, g ∈ X. Prove that d is a
metric on X.

Exercise 2.21 Let (X, d) be as in Exercise 2.20. If f ∈ X and r > 0, prove that
B( f ; r) is the family of all those functions in X whose graphs lie in a band of width
r about the graph of f.

Exercise 2.22 In (Rn, d∞), prove that the open balls look like hypercubes. In other
words, B(x; r) = (x1 − r, x1 + r) × · · · × (xn − r, xn + r) for all x := (x1, . . . , xn)

∈ R
n and r ≥ 0.

Exercise 2.23 (Post office metric) Let p ∈ R
2 be a fixed point and d2 be the

Euclidean metric on R
2. Prove that d defines a metric on R2, where

d(a, b) := d2(a, p) + d2(p, b) for all a, b ∈ R
2.

Exercise 2.24 Let (X1, ρ1), . . . , (Xn, ρn) denote a finite family of metric spaces.
For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ∏n

i=1 Xi , define

ρ(x, y) :=
√

ρ2
1 (x1, y1) + · · · + ρ2

n (xn, yn).

Prove that ρ is a metric on the Cartesian product
∏n

i=1 Xi .

Exercise 2.25 Let d be a metric on R
n and (X1, ρ1), . . . , (Xn, ρn) be any finitely

many metric spaces. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ ∏n
i=1 Xi , define

ρd(x, y) := d
(
ρ1(x1, y1), . . . , ρn(xn, yn), (0, . . . , 0)

)
.

Prove that ρd is a metric on the Cartesian product
∏n

i=1 Xi .

Exercise 2.26 Let {(Xn, dn) : n ∈ N} be a collection ofmetric spaces such that dn ≤
1 for all n ∈ N. Let X denote the Cartesian product

∏∞
n=1 Xn, that is, the family of

sequences {xn} such that xn ∈ Xn for all n ∈ N. For every x = {xn}, y = {yn} ∈ X,

define

ρ(x, y) := sup

{
dn(xn, yn)

n
: n ∈ N

}
and η(x, y) :=

∞∑
n=1

dn(xn, yn)

2n
.

Prove that both ρ and η are metrics on X.

Exercise 2.27 Let {(Xn, dn) : n ∈ N} be a collection of metric spaces and X :=∏∞
n=1 Xn. For any x = {xn}, y = {yn} ∈ X, define

d(x, y) :=
∞∑

n=1

1

2n
.

dn(xn, yn)

1 + dn(xn, yn)
.
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Prove that d is a metric on X. Also provide three other metrics on X.

Exercise 2.28 Let n ∈ N ∪ {0}, X be the set of polynomials with degree less than
or equal to n and p(i) be the i th derivative of p for every p ∈ X. For each k ∈ N,

define

dk(p, q) := max{|p(i)(0) − q(i)(0)| : 1 ≤ i < k} for all p, q ∈ X.

Obtain a necessary and sufficient condition in terms of k and n such that dk is a metric
on X.

Exercise 2.29 Let (X, d) be a metric space. For every x ∈ X, define a map δx :
X −→ R as δx (y) := d(x, y) for all y ∈ X. Let δ(X) := {δx : x ∈ X}. Prove that
the map x −→ δx is a bijection between X and δ(X).

Exercise 2.30 (p-adic metric) Fix a prime number p. Let x, y ∈ Q be arbitrary. If
x = y, define d(x, y) := 0. Otherwise, write x − y = pka/b, where a, k ∈ Z and
b ∈ N such that p does not divide ab; and define d(x, y) := p−k . Prove that d is an
ultrametric on Q.

Exercise 2.31 Let I denote the collection of closed bounded intervals. Define

d
([a, b], [c, d]) := max

{|a − c|, |b − d|} for all [a, b], [c, d] ∈ I.

Prove that d is a metric on I.

Exercise 2.32 Does there exist a metric on the space of extended reals
R ∪ {−∞,+∞}, which extends the usual metric on R?

Exercise 2.33 Let ∞ denote the (unique) infinity for the set of complex numbers
and C∞ := C ∪ {∞}. Is there a metric on C∞, that extends the usual metric on C?

Exercise 2.34 Let (X, d) be a metric space and y /∈ X. Does there always exist a
metric on X ∪ {y}, which extends the metric d?

Exercise 2.35 Does there exist a metric space with two closed balls B1 and B2 of
radii r1 and r2, respectively, such that B1 ⊂ B2 and r1 > r2?

2.2 Convergence in Metric Spaces

Analogous to the case of R, the notions of convergent sequences and Cauchy
sequences, in general metric spaces, are defined as follows:

Definition 2.20 A sequence {xn} in a metric space (X, d) is said to be convergent
in X if there exists some x0 ∈ X satisfying the following condition:
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for every ε > 0, there exists some N ∈ N such that d(xn, x0) < ε for all n ≥ N .

In this case, we say that {xn} converges to x0 and write xn −→ x0. We also call x0
as the limit of {xn} and write x0 = limn→∞ xn .

Definition 2.21 If x ∈ X, a subset U of X is said to be a neighborhood of x if

U ⊃ B(x; δ) for some δ > 0.

It is immediate that xn −→ x if and only if every neighborhood of x contains all
but finitely many terms of {xn}.
Definition 2.22 A sequence {xn} in a metric space (X, d) is said to be Cauchy if
for every ε > 0, there exists some N ∈ N such that

d(xn, xm) < ε for all n, m ≥ N .

Subsequences of a sequence in any space are defined naturally, as in Definition
1.12. Various results on metric spaces can be proven analogously to the case of R.

Here we present some sample cases. Several other analogous results will be provided
in Exercise 2.36.

Theorem 2.23 In metric spaces, convergent sequences have unique limits.

Proof If possible, let {xn} be a convergent sequence in a metric space (X, d) with
limits x ′ and x ′′ such that x ′ �= x ′′. Let ε = d(x ′, x ′′)/2. Then ε > 0, as x ′ �= x ′′.
Since {xn} converges to x ′ and x ′′, there are positive integers N ′ and N ′′ such that

d(xn, x ′) <
ε

2
for all n ≥ N ′

and d(xn, x ′′) <
ε

2
for all n ≥ N ′′.

Let N := max{N ′, N ′′}. Then for all n ≥ N , we obtain

d(x ′, x ′′) ≤ d(x ′, xn) + d(xn, x ′′) <
ε

2
+ ε

2
= ε = d(x ′, x ′′),

which is absurd. This completes the proof. �

Analogous to the case of reals, in any metric space, a Cauchy sequence is convergent
if it has a convergent subsequence.

Theorem 2.24 Let {xn} be a Cauchy sequence in a metric space (X, d), x ∈ X and
{xnk } be a subsequence of {xn} such that limk→∞ xnk = x . Then xn −→ x .

Proof Imitating the proof of Proposition 1.27, for every ε > 0, there exist some
N , K ∈ N such that
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d(xn, xm) <
ε

2
for all n, m ≥ N

and d(xnk , x) <
ε

2
for all k ≥ K .

Let p ∈ N such that n p ≥ max{N , nK }. Then for all n ≥ n p, we have

d(xn, x) ≤ d(xn, xn p ) + d(xn p , x) <
ε

2
+ ε

2
= ε.

Hence {xn} converges to x . �

Now we discuss convergence in Euclidean spaces. Note that the m-dimensional
Euclidean space R

m has a natural bijection with the collection of functions from
{1, . . . , m} into R. Motivated by this and for the sake of convenience, we write
x := (

x(1), . . . , x(m)
)
for every x ∈ R

m .

Theorem 2.25 Let {xn} be a sequence in R
m and x0 ∈ R

m such that

xn := (
xn(1), . . . , xn(m)

)
for all n ∈ N ∪ {0}.

Then

(a) xn −→ x0 if and only if xn( j) −→ x0( j) for every j = 1, . . . , m.

(b) {xn} is Cauchy if and only if {xn( j)} is Cauchy, for every j = 1, . . . , m.

Proof We shall prove the first part. The second one is similar. Note that for every
(a(1), . . . , a(m)) ∈ R

m and j = 1, . . . , m, we have

|a( j)| ≤
√√√√ m∑

k=1

|a(k)|2 ≤
m∑

k=1

|a(k)|.

Hence for every j = 1, . . . , m and for every n ∈ N, we have

∣∣xn( j) − x0( j)
∣∣ ≤ d2(xn, x0) ≤

m∑
k=1

∣∣xn(k) − x0(k)
∣∣.

Let ε > 0 be given. If xn −→ x0, there exists some N ∈ N such that d2(xn, x0) <

ε for all n ≥ N . Hence for every j = 1, . . . , m and for every n ≥ N , we obtain

∣∣xn( j) − x0( j)
∣∣ ≤ d2(xn, x0) < ε.

This proves that every xn( j) −→ x0( j) for every j = 1, . . . , m.

Conversely, if xn( j) −→ x0( j), for all j = 1, . . . , m, there exist N j ∈ N such
that

|xn( j) − x0( j)| <
ε

m
for all n ≥ N j .
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Let N0 := max{N1, . . . , Nm}. Then for every n ≥ N0, we obtain

d2(xn, x0) ≤
m∑

j=1

∣∣xn( j) − x0( j)
∣∣ <

m∑
j=1

ε

m
= ε.

Hence {xn} is convergent to x0. �

Theorem 2.26 Every Cauchy sequence in R
m is convergent in R

m .

Proof Let {xn} be a Cauchy sequence in R
m . Applying Theorem 2.25, {xn( j)} is

also Cauchy, for every j = 1, . . . , m. Now Theorems 1.28 and 2.25 ensure that {xn}
is convergent in Rm . �

Nowwegeneralize theBolzano-Weierstrass property, alreadyproved for sequences
of real numbers in Theorem 1.22.

Theorem 2.27 (Bolzano-Weierstrass) Every bounded sequence in R
m contains a

subsequence that converges in R
m .

Proof Let {xn} be a bounded sequence in R
m . Write xn := (

xn(1), . . . , xn(m)
)
for

all n ∈ N.As {xn} is bounded and |xn( j)| ≤ d2(xn, 0), for all j, the sequence {xn( j)}
is bounded.

Since {xn(1)} is a bounded sequence of reals, by Theorem 1.22, it has a con-
vergent subsequence. Let {xnk1

(1)} be that subsequence and x(1) be its limit. This
gives us a subsequence {xnk1

}, of the original sequence. As earlier obtain a subse-
quence {xnk2

(2)} of {xnk1
(2)}, which is convergent to some real x(2). Continuing

like this m-times, we obtain a subsequence {xnkm
} of {xn} such that xnkm

( j) −→
x( j) for every j = 1, . . . , m.

Let x := (
x(1), . . . , x(m)

)
. Then x ∈ R

m and by Theorem 2.25, we conclude that
xnkm

−→ x . Hence the result. �

Exercise 2.36 In any metric space, prove that the following assertions hold:

(a) Every convergent sequence is bounded.
(b) Every convergent sequence is Cauchy.
(c) Every Cauchy sequence is bounded.
(d) Every subsequence of a Cauchy sequence is also a Cauchy sequence.
(e) All subsequences of a convergent sequence are convergent to the same limit.
(f) Removing (inserting) any finite number of terms anywhere from (in) a sequence

does not affect its convergence.

Exercise 2.37 In Exercise 2.36, show that the converse statements of (a), (b), and
(c) are not true, in general.

Exercise 2.38 Let {xn} be a sequence in a metric space (X, d) and x ∈ X. Prove
that the following are equivalent:

(a) xn −→ x,
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(b) d(xn, x) −→ 0, and
(c) For every neighborhood U of x, there exists some a positive integer NU such

that xn ∈ U for all n > NU .

Exercise 2.39 Characterize convergent sequences in discrete metric spaces.

Exercise 2.40 Let an −→ a and bn −→ b, in a Euclidean space Rm . Prove that

(a) {kan} −→ a, for all scalars k ∈ R.

(b) {an + bn} −→ a + b, and
(c) {an · bn} −→ a · b, here x · y represents the dot product of x, y ∈ R

m .

Exercise 2.41 Let an −→ a in Rm and bn −→ b in R. Prove that anbn −→ ab.

Exercise 2.42 Let an −→ 0 inRm and {bn} be a bounded sequence of real numbers.
Prove that anbn −→ 0.

Exercise 2.43 Let an −→ a in Rm . Prove that |an| −→ |a|. Is the converse true?
Exercise 2.44 Let {an} and {bn} be two Cauchy sequences in Rm . Prove that

(a) {kan} is a Cauchy sequence, for all scalars k ∈ R.

(b) {an + bn} is a Cauchy sequence.

Exercise 2.45 In discrete metric spaces, prove that

(a) convergent sequences are eventually constant,
(b) Cauchy sequences are eventually constant, and
(c) Cauchy sequences are convergent.

Exercise 2.46 Write a proof for the second part of Theorem 2.25.

Exercise 2.47 Write an alternate proof of Theorem 2.26, using Exercise 2.36(c),
Theorems 2.27 and 2.24.

Exercise 2.48 Let X be a metric space, x ∈ X and {xn} be a sequence in X. If every
subsequence of {xn} has a subsequence convergent to x, prove that xn −→ x .

Exercise 2.49 Let X be a metric space containing two points x and y. If xn −→ x
and yn −→ y in X, then prove that the set {xn : n ∈ N} ∩ {yn : n ∈ N} is finite.
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2.3 Normed Linear Spaces

The notion of metric spaces generalizes the space of real numbers, by extending
the distance function. Now we discuss normed linear spaces, which also extend
the addition and scalar multiplication operations from finite-dimensional Euclidean
spaces, along with the distance.

We assume that the reader is familiar with the notion of vector spaces. A few
subsequent results will require the notions of algebraic basis and subspace of a
vector space. All vector spaces in this book will be considered over the scalar fields
R or C.

Let X be a linear (vector) space over a fieldR orC.A function ‖.‖ : X −→ [0,∞)

is said to be a norm on X if for every x, y ∈ X and for every scalar k, it satisfies the
following conditions:

(a) ‖x‖ ≥ 0 (‖.‖ is positive)
(b) ‖x‖ = 0 if and only if x = 0 (‖.‖ is definite)
(c) ‖kx‖ = |k|‖x‖ (‖.‖ is homogeneous)
(d) ‖x + y‖ ≤ ‖x‖ + ‖y‖. (‖.‖ satisfies the triangle inequality)

In this case, we say that (X, ‖.‖) is a normed linear space or simply a normed space.
If there is no ambiguity on the norm, we simply write X for (X, ‖.‖).

Note that every norm ‖.‖ on a linear space X induces a metric given by

d(x, y) := ‖x − y‖ for all x, y ∈ X.

Therefore every normed linear space is a metric space.

Examples 2.28 (a) If X = R, then x �−→ |x | defines a norm on X.

(b) Let n ∈ N and X = R
n. For each x = (x1, . . . , xn) ∈ X, define

‖x‖2 :=
√

x2
1 + · · · + x2

n .

By Corollary 2.10, one can conclude that (X, ‖.‖2) is a normed linear space.
(c) Let C[a, b] denote the space of continuous real valued functions on a closed

bounded interval [a, b]. Then

‖ f ‖ := sup
{| f (x)| : x ∈ X

}
for all f ∈ C[a, b].

defines a norm on C[a, b], known as the uniform norm or the supremum norm.
(d) If Y is a linear subspace of a normed linear space (X, ‖.‖), then (Y, ‖.‖) is also

a normed linear space.

Remark 2.29 In general, a subspace of a metric space (X, d) is a nonempty subset
Y of X, equipped with the same metric d. However, in case of normed linear spaces
X, the term subspace is reserved only for linear subspaces of X.
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Proposition 2.30 Let �2 denote the collection of sequences {xn} of real numbers
such that

∑∞
n=1 |xn|2 < ∞. Define

‖x‖2 :=
√√√√ ∞∑

n=1

|xn|2 for all x = {xn} ∈ �2.

Then (�2, ‖.‖2) is a normed linear space.

Proof It is easy to see that the function ‖.‖2 satisfies the first two requirements of
a norm. To prove the triangle inequality, let x := {xn} and y := {yn} be any two
elements of �2. Applying Corollary 2.10, for every n ∈ N, we obtain

( n∑
k=1

|xk + yk |2
) 1

2 ≤ ( n∑
k=1

|xk |2
) 1

2 + ( n∑
k=1

|yk |2
) 1

2

≤ ( ∞∑
k=1

|xk |2
) 1

2 + ( ∞∑
k=1

|yk |2
) 1

2 = ‖x‖2 + ‖y‖2

Passing limit n −→ ∞, we obtain ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2. Hence the result. �

Above we have generalized Minkowski’s inequality, given by Corollary 2.10, to the
space �2. Similarly, one can generalize the Cauchy-Schwarz inequality (2.9). Next
we discuss a particular class of normed spaces, known as the inner product spaces.

Definition 2.31 Let X be a linear space over a field K (either R or C). An inner
product on X is a mapping 〈., .〉 : X × X −→ K such that for all x, y, z ∈ X and
α, β ∈ K we have

(a) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0. (positive definiteness)
(b) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 (linearity in the first variable)
(c) 〈x, y〉 = 〈y, x〉 (conjugate linearity in the second variable)

In this case, (X, 〈.〉) is known as an inner product space.

Examples 2.32 (a) The standard dot product on Rn is an inner product.
(b) If X := c00, then

〈{xn}, {yn}
〉 := ∑∞

n=1 xn yn defines an inner product on X.

Theorem 2.33 Let (X, 〈, 〉) be an inner product space over K, and x, y ∈ X. Then
the following hold:

(a) Cauchy-Schwarz inequality: |〈x, y〉| ≤ 〈x, x〉〈y, y〉, and the equality holds here
if and only if x and y are linearly dependent.

(b) ‖x‖ := √〈x, x〉 defines a norm on X.

(c) Parallelogram law: ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).
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(d) Polarization identity:

〈x, y〉 =
{ 1

4

(‖x + y‖2 − ‖x − y‖2) if K = R
1
4

(‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2) if K = C.

(2.5)

Proof With z := 〈y, y〉x − 〈x, y〉y, (a) can be established analogous to Theorem
2.9. Further, (c) and (d) are routine manipulations. Here we we prove (b) only.

The positive definiteness and homogeneity are immediate. For the triangle
inequality, note that the inequality in (a) translates to |〈x, y〉| ≤ ‖x‖‖y‖. Hence

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2Re(〈x, y〉) + ‖y‖2 ≤ ‖x‖2 + 2|〈x, y〉| + ‖y‖2
≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2.

This proves that ‖x + y‖ ≤ ‖x‖ + ‖y‖. �

Remarks 2.34 In 1935, Jordan-Von Neumann established that if a normed space
satisfies the parallelogram law, then its norm is induced by an inner product. In that
case, the inner product is given by the polarization identity (2.5). There are 350
characterizations of inner product spaces in the book of Dan Amir, see [2]. For more
on inner product spaces, the reader is referred to [3, Chap. VI].

Exercise 2.50 Let X be a normed space, x, y ∈ X, and α be a scalar. Prove that

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x − y‖ and ‖αx − αy‖ = |α|‖x − y‖.

Exercise 2.51 Which vector subspaces of a normed space are bounded subsets?

Exercise 2.52 Let c00 be the set of sequences of reals which are eventually zero,
that is, real sequences {xn} such that xn = 0 for all sufficiently large n. Define

‖{xn}‖2 :=
√√√√ ∞∑

n=1

|xn|2 for all {xn} ∈ c00.

Prove that (c00, ‖.‖2) is a normed linear space.

Exercise 2.53 Let n ∈ N and p ∈ [1,∞]. For every x = (x1, . . . , xn) ∈ R
n, define

‖x‖p :=
{

(
∑n

i=1 |xi |p)
1
p ; 1 ≤ p < ∞,

sup{|x1|, . . . , |xn|} ; p = ∞.

Prove that ‖.‖p defines a norm on the linear space Rn over R.

Exercise 2.54 If x = {xk}, y = {yk} ∈ �2, prove that
∑∞

k=1 |xk yk | ≤ ‖x‖2‖y‖2.
Exercise 2.55 Write a proof for the parallelogram law and the polarization identity
as given in Theorem 2.33.
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Exercise 2.56 Let X be a normed space, y ∈ Y ⊂ X, x ∈ X and α be a scalar. If
dist (x; Y ) := inf{d(x, y) : y ∈ Y }, prove that ‖kx + y‖ ≥ |α| × dist (x; Y ).

Exercise 2.57 Is there any linear space on which the discrete metric can be induced
by a norm?

Exercise 2.58 Show that the metric induced by any norm, on a linear space, is
translation invariant.

Exercise 2.59 Is it possible to assign a norm to every linear space over C?

Exercise 2.60 Let d be a translation invariant and homogeneous metric on a vector
space X, and ‖x‖ := d(x, 0) for all x ∈ X. Prove that (X, ‖.‖) is a normed space
and induces metric d.

Exercise 2.61 Let X be a linear space as well as a metric space. Under what con-
ditions it becomes a normed linear space having topology same as the one given by
the metric?

2.4 Sequence Spaces

Let K be any of R or C. We start with the following vector spaces over K.

c00 := the space of all sequences overKwith only finitely many non-zero terms.

c0 := the space of all sequences overK, convergent to 0.

c := the space of all convergent sequences overK.

Let 1 ≤ p ≤ ∞. For a sequence x = {x j } over K, define extended real numbers
‖x‖p as follows:

‖x‖p :=
{ ( ∑∞

j=1 |x j |p
) 1

p ; 1 ≤ p < ∞,

sup{|x j | : j ∈ N} ; p = ∞.

For every 1 ≤ p ≤ ∞, let �p denote the collection of all sequences x overKwith
‖x‖p < ∞. It is easy to see that c00, c0 and c are vector spaces over K. The same is
true for �p(1 ≤ p ≤ ∞).

Theorem 2.35 �p is a linear space, for all 1 ≤ p ≤ ∞.

Proof It is evident that each �p is closed under scalar multiplication. Let p ∈
[1,+∞] and x, y ∈ �p. We shall now establish that x + y ∈ �p. Write x = {xn}
and y = {yn}.
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First consider the case when p = ∞. By triangle inequality |xn + yn| ≤ |xn| +
|yn| ≤ ‖x‖∞ + ‖y‖∞ for all n ∈ N. Therefore, ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞ < ∞
and hence x + y ∈ �∞.

Now suppose that 1 ≤ p < ∞. Let zn := max{|xn|, |yn|} for all n ∈ N. Note
that |zn|p ≤ |xn|p + |yn|p which implies ‖z‖p

p ≤ ‖x‖p
p + ‖y‖p

p. Hence z = {zn} ∈
�p. Further note that

|xn + yn|p ≤ ∣∣|xn| + |yn|
∣∣p ≤ (2|zn|)p = 2p|zn|p.

Summing
∑∞

n=1, we obtain ‖x + y‖p
p ≤ 2p‖z‖p

p < ∞. Thus x + y ∈ �p. �

Now we claim that ‖.‖p is a norm on the linear space �p for every 1 ≤ p ≤ ∞.

It is easy to see that ‖.‖ is positive definite and homogeneous. If p = 1 or ∞, then
the triangle inequality follows immediately from the definition of ‖.‖p. We shall
establish this inequality for the case 1 < p < ∞ soon, which needs some further
results. Before that, let us discuss the inclusion relations among sequence spaces.

Theorem 2.36 (Jensen’s inequality) Let 1 ≤ a < b ≤ ∞. If x ∈ �a, then ‖x‖b ≤
‖x‖a . Consequently �a ⊂ �b.

Proof The consequence is immediate from the inequality. Also for b = ∞, the result
follows from the definition of ‖.‖∞. Suppose b < ∞ and write x := {xn}.

First assume that ‖x‖a ≤ 1. Then for every n ∈ N, we have |xn| ≤ 1, which
implies that |xn|b ≤ |xn|a . Hence ‖x‖b

b ≤ ∑∞
n=1 |xn|a = ‖x‖a

a .

Now for any x ∈ �a, applying the above calculations by replacing x with x/‖x‖a,

we conclude that ∥∥∥∥ x

‖x‖a

∥∥∥∥
b

b

≤
∥∥∥∥ x

‖x‖a

∥∥∥∥
a

a

,

and hence ‖x‖b ≤ ‖x‖a . �

We leave it to the reader to prove that the following chain of inclusion relations
holds among sequence spaces, which is proper at every stage:

c00 ⊂ �a ⊂ �b ⊂ c0 ⊂ c ⊂ �∞ for all 1 ≤ a < b < ∞. (2.6)

To establish the triangle inequality for sequence spaces,wepresent a set of inequal-
ities.

If p, q ∈ [1,+∞] satisfy 1
p + 1

q = 1, then these are known as conjugate expo-
nents of each other.

Theorem 2.37 (Young’s inequality) Let p, q be conjugate exponents such that p ∈
(1,∞). Then

ab ≤ a p

p
+ bq

q
for all a, b ∈ [0,∞).

Moreover, the equality occurs if and only if a p = bq .
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Proof The result is trivial if either a = 0 or b = 0. Suppose that both a and b are
positive real numbers. Also note that

p − 1 = p

(
1 − 1

p

)
= p

q
and q − 1 = q

p
= 1

p − 1
.

Consider the functions f and g on (0,∞), defined as follows:

f (t) := t p−1 and g(t) := tq−1 for all t > 0.

Since p − 1 and q − 1 are positive, both f and g are strictly increasing functions
from (0,∞) onto (0,∞). It can be shown that these are inverses of each other.

Let a, b ∈ (0,∞). Then the area of the rectangle [0, a] × [0, b] is at least the sum
of areas of the regions {(x, x p−1) : 0 ≤ x ≤ a} and {(yq−1, y) : 0 ≤ y ≤ b}. That is

ab ≤
∫ a

0
x p−1dx +

∫ b

0
yq−1dy = a p

p
+ bq

q
.

Further, the equality occurs here if and only if the area of above rectangle is exactly
equal to the sum of areas of those two regions, which is true if and only if b = a p−1.

Now b = a p−1 holds if and only if bq = aq(p−1) = a p. Hence the result. �

Theorem 2.38 (Hölder’s inequality) Let p, q be conjugate exponents such that 1 ≤
p ≤ ∞, x = {xn} ∈ �p and y = {yn} ∈ �q . Then

∑∞
n=1 |xn yn| ≤ ‖x‖p‖y‖q .

Proof The result is trivial, if either p ∈ {1,∞} or either of ‖x‖p or ‖y‖q is zero
or infinity. Therefore, without loss of generality, we assume that 1 < p < ∞,

0 < ‖x‖p < ∞ and 0 < ‖y‖q < ∞. Applying Theorem 2.37, for each n ∈ N, we
conclude that |xn yn|

‖x‖p‖y‖q
≤ 1

p

( |xn|
‖x‖p

)p

+ 1

q

( |yn|
‖y‖q

)q

.

Passing summation
∑∞

n=1, we obtain
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1

‖x‖p‖y‖q

∞∑
n=1

|xn yn| ≤ 1

p

∞∑
n=1

( |xn|
‖x‖p

)p

+ 1

q

∞∑
n=1

( |yn|
‖y‖q

)q

= 1

p
+ 1

q
= 1.

Hence we conclude the required inequality. �

For p = q = 2, theHölder’s inequality is essentially theCauchy-Schwarz inequality.

Theorem 2.39 (Minkowsky’s inequality) Let p ∈ [1,+∞] and x, y ∈ �p. Then

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Proof The result is trivial for the cases p = 1 and p = ∞. Also incase ‖x + y‖p =
0, there is nothing to prove. Suppose ‖x + y‖p > 0 and that 1 < p < +∞.Applying
Theorem 2.35, we obtain x + y ∈ �p.The triangle inequality implies

∞∑
n=1

|xn + yn|p ≤
∞∑

n=1

|xn + yn|p−1|xn| +
∞∑

n=1

|xn + yn|p−1|yn|. (2.7)

Let q be the conjugate exponent of p. Then q(p − 1) = p and consequently

∞∑
n=1

(|xn + yn|p−1)q =
∞∑

n=1

|xn + yn|p < ∞.

For r > 0 and a sequence a := {an} of complex numbers, we shall denote the
sequence {|an|r } with simply |a|r . Therefore |x + y|p−1 ∈ �q . Also, we have

∥∥|x + y|p−1
∥∥

q =
( ∞∑

n=1

(|xn + yn|p−1
)q

) 1
q

=
( ∞∑

n=1

|xn + yn|p

) 1
q

= (‖x + y‖p)
p
q .

Applying Hölder’s inequality, we obtain

∞∑
n=1

|xn + yn|p−1|xn| ≤ ‖x‖p

∥∥|x + y|p−1
∥∥

q
= ‖x‖p(‖x + y‖p)

p
q

∞∑
n=1

|xn + yn|p−1|yn| ≤ ‖y‖p

∥∥|x + y|p−1
∥∥

q = ‖y‖p(‖x + y‖p)
p
q .

Using this in (2.7), we obtain

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p

)(‖x + y‖p
) p

q .

Divide it with
(‖x + y‖p

) p
q to conclude the result. �
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Remarks 2.40 (a) Let x1, . . . , xn and y1, . . . , yn be non-negative reals. If the �p-
norms of (x1, . . . , xn) and (y1, . . . , yn) coincide for n different positive reals p,

then xi are just a permutation of yi (see [4]).
(b) The textbook [5] starts with a chapter on basic inequalities. There is also a

complete book on inequalities by Hardy, Littlewood, and Polya (see [6]). An
essay on a history of inequalities can be found in [7].

(c) We are avoiding an important class of normed spaces called the Lebesgue spaces
or the L p spaces, as these are beyond the scope of this book (see [1, p. 253] or
[9, Chaps. 7-8]).

Exercise 2.62 Prove the Hölder’s and Minkowsky’s inequalities for p ∈ {1,+∞}.
Exercise 2.63 If 1 ≤ a < b ≤ ∞ and xn −→ x in �a, prove that xn −→ x in �b.

Exercise 2.64 Suppose 1 ≤ a < ∞ and x ∈ �a . Prove that ‖x‖∞ ≤ ‖x‖a .

Exercise 2.65 Let X be the space of polynomials overC.Establish a linear bijection
between X and c00. Use it to define a norm on X.

Exercise 2.66 Prove the chain of inclusions (2.6) on page 56 and show that all these
inclusion are strict.

Exercise 2.67 Let p, q be conjugate exponents such that p ∈ (1,∞). Prove that

ab ≤ 1

p
.

(
a

c

)p

+ (bc)q

q
for all a, b, c ∈ (0,∞).

Also show that the equality occurs if and only if a p = bq .

Exercise 2.68 Applying the Jordan-VonNeumann’s characterization, as in Remarks
2.34, prove that �p is an inner product space if and only if p = 2.

Exercise 2.69 If {a1, . . . , an} ⊂ N satisfy
∑n

k=1 ak ≤ 1, prove that
∑n

k=1
1
ak

≥ n2.

Exercise 2.70 Deduce AM-GM inequality from Young’s inequality.

Exercise 2.71 Let 1 ≤ p < ∞ and x, y ∈ �p. Assuming the convexity of the func-
tion t �−→ t p on (0,∞), provide an alternative proof to the inequality ‖x + y‖p ≤
‖x‖p + ‖y‖p.

Exercise 2.72 If x ∈ �p for all p ∈ (1,∞), prove that ‖x‖∞ = lim p→∞ ‖x‖p.

Exercise 2.73 In Exercise 2.72, is the hypothesis that x ∈ �p for all p ∈ (1,∞)

redundant?

Exercise 2.74 Prove that c is the linear space spanned by c0
⋃{(1, 1, 1, . . . )}.
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2.5 Hints and Solutions to Selected Exercises

2.7 For any x, y ∈ X, the hypothesis impliesd(x, y) ≤ d(x, x) + d(y, x) = d(y, x).

Similarly, d(y, x) ≤ d(x, y). Hence d(y, x) = d(x, y). If d(x, y) < 0, then

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y) < 0,

a contradiction. Hence the result.
2.28 Note that p(i)(0) = 0 if and only if the (i + 1)th coefficient in p, starting from

the constant term, is zero. Therefore dk is a metric on X if and only if k ≥ n − 1.
2.35 Yes. For example, in [−1, 1] under usual metric, we have B[−1; 2] ⊂ B[0; 1].
2.36 All these proofs are analogous to the case of R (see Theorem 2.23).
2.41 Use the fact that if a sequence converges, then it is bounded. If |x − y| represents

the d2(x, y), apply the following inequality

|anbn − ab| ≤ |anbn − abn| + |abn − ab| = |an − a||bn| + |a||bn − b|.

2.48 Suppose that {xn} is not convergent to x . Then there exists some ε > 0 and a
subsequence {xnk } of {xn} such that d(xnk , x) ≥ ε for all k ∈ N. Therefore, the
subsequence {xnk } of {xn} has no subsequence convergent to x, a contradiction.

2.54 Use Theorem 2.9 and imitate the proof of Proposition 2.30.
2.57 Discrete metric on any linear space doesn’t satisfy the second assertion of Exer-

cise 2.50.
2.59 Yes. Let X be any linear space and B be a basis of X. Then every x ∈ X can be

written uniquely as a finite linear combination x = ∑
i αivi , where αi ∈ C and

vi ∈ B. Then ‖x‖ := ∑
i |αi | defines a norm on X.

2.61 See Exercise 2.60.
2.63 Apply Theorem 2.36.
2.66 Suppose 1 ≤ a < b < ∞ and define xn := n− 1

2 ( 1
a + 1

b ) for all n ∈ N. Then

|xn|a = n− 1
2 (1+ a

b ) > n−c, where c ∈
(
1

2
+ a

2b
, 1

)
.

and |xn|b = n− 1
2 (1+ b

a ) < n−d , where d ∈
(
1,

1

2
+ b

2a

)
.

Hence {xn} ∈ �b \ �a . The strictness of other inclusions is left to the reader.
2.69 Since arithmetic mean is always greatest than the harmonic mean, we obtain

a1 + · · · + an

n
≥ n

1
a1

+ · · · + 1
an

which implies
n∑

k=1

1

ak
≥ n2∑n

k=1 ak
≥ n2.

2.70 Use p = 2 = q.

2.71 Write a := ‖x‖p and b := ‖y‖p. The result is trivial, if a = 0 or b = 0. Suppose
not. Write x = {xn‖, y = {yn} and c := a/(a + b). Then for all n ∈ N, we have
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|xn + yn|p ≤ (|xn| + |yn|)p = (a + b)p

(
a

a + b
.

|xn|
‖x‖p

+ b

a + b
.

|yn|
‖y‖p

)p

= (a + b)p

(
c

|xn|
‖x‖p

+ (1 − c).
|yn|
‖y‖p

)p

≤ (a + b)p

(
c
|xn|p

‖x‖p
p

+ (1 − c).
|yn|p

‖y‖p
p

)
,

using the convexity of the map t �−→ t p on (0,∞). Passing summation
∑∞

n=1
above, we conclude that ‖x + y‖p

p ≤ (a + b)p = (‖x‖p + ‖y‖p)
p.

2.72 The result is trivial if x = 0. Suppose x �= 0. By Theorem 2.36, we already have
‖x‖∞ ≤ ‖x‖p for all p > 1.Therefore, ‖x‖∞ ≤ lim inf p−→∞ ‖x‖p.Let p, q be
conjugate exponents such that q < p. Writing x := {xn}, we obtain

‖x‖p =
( ∞∑

n=1

|xn|p−q |xn|q
) 1

p

≤ ‖x‖
p−q

p∞
( ∞∑

n=1

|xn|q
) 1

p

= ‖x‖1−
q
p∞ ‖x‖

q
p

q . (2.8)

Therefore, we have

lim sup
p−→∞

‖x‖p ≤ lim sup
p−→∞

(‖x‖1−
q
p∞ ‖x‖

q
p

q ) = ‖x‖∞. (2.9)

Finally from (2.8) and (2.9), we conclude that

lim sup
p−→∞

‖x‖p ≤ ‖x‖∞ ≤ lim inf
p−→∞ ‖x‖p.

2.73 No. For example, let xn = 1 for all n ∈ N. Then {xn} ∈ �∞ \
⋃

1≤p<∞
�p.
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Chapter 3
Topology

Consider the graphs of the capital letters of theEnglish alphabet in a plane. By stretch-
ing and twisting, one can deformU onto S and vice versa. But can you obtain P and
S from each other by twisting and stretching only? Topology deals with such ques-
tions about continuous deformations. In Sect. 9.2, the notion of homeomorphisms
will further reflect upon this idea.

In this chapter, we delve into a thorough discussion on the basic topological
notions such as open sets, closed sets, limits points, closures, and boundaries. It
contains a section on continuity inmetric spaces,which includes the case ofEuclidean
spaces and the relationship of continuity and uniform convergence. Little sections
on subspace topology and topology of normed linear spaces are also included.

3.1 Open Sets and Closed Sets

Let E be a subset of a metric space X and x ∈ X. Then

(a) x is called an interior point of E if there exists δ > 0 such that B(x; δ) ⊂ E .

(b) E is called an open set if either E = ∅ or every x ∈ E is an interior point of E .

(c) E is said to be a closed set, if its complement Ec(= X \ E) is open.

The set of interior points of E will be denoted by Eo, known as the interior of
E and often read as E-interior. If E is a subset of a given space X, Ec will denote
the set X \ E . To provide visual clues, we shall usually denote closed sets by F and
open sets by O.

Examples 3.1 With respect to the usual metric on R,

(a) 0 is an interior point of (−1, 1), but not of [0, 1].
(b) all open intervals and (1, 2) ∪ (4, 5) are open sets.
(c) the singleton sets, R and all closed intervals are all closed sets.

The family of open subsets of a metric space X is known as the topology of X.
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Theorem 3.2 Let X be a metric space. Then

(a) the empty set ∅ and the space X are open sets,
(b) arbitrary union of open subsets of X is open, and
(c) any finite intersection of open subsets of X is also an open set.

Proof The first two parts follow immediately from the definition of open sets.
For last part, let O1, . . . , On be any finitely many open sets and O := ⋂n

i=1 Oi .

To prove that O is open, let x ∈ O. Then x ∈ Oi for all i. Since each Oi is open,
there are δi > 0 such that B(x; δi ) ⊂ Oi for i = 1, . . . , n. Let δ := min{δ1, . . . , δn}.
Then δ > 0 and B(x; δ) ⊂ B(x; δi ) ⊂ Oi for all i. Therefore B(x; δ) ⊂ O . Hence
O is an open set. �

Example 3.3 An infinite intersection of open subsets of a metric space may not be
open. For example,

⋂∞
n=1(−1/n, 1/n) = {0} is not open in R.

Theorem 3.4 Open balls in metric spaces are open sets.

Proof Let X be a metric space, x ∈ X and r > 0. Pick any y ∈ B(x; r). Let δ :=
r − d(x, y). It is enough to prove that B(y; δ) ⊂ B(x; r).

Pick any z ∈ B(y; δ). Then d(z, y) < δ = r − d(x, y), which implies that
d(z, x) ≤ d(z, y) + d(y, x) < r. Therefore z ∈ B(x; r). Hence the result. �

Theorem 3.5 Let E be a subset of a metric space X. Then Eo is the largest open
subset of X, contained in E . In other words,

(a) Eo ⊂ E,

(b) Eo is open, and
(c) Eo ⊃ O, for all open sets O contained in E .

Proof The first part follows from the definition of Eo. For the second assertion, let
x be an interior point of Eo. Then Eo ⊃ B(x; r) for some r > 0. By Theorem 3.4,
B(x; r) is an open set. Therefore B(x; r) = (B(x; r))o ⊂ (Eo)o. Hence Eo is open.

Finally, let O be an open set such that O ⊂ E . If x ∈ O, then O ⊃ B(x; δ), for
some δ > 0. Since O ⊂ E, we have B(x; δ) ⊂ O ⊂ E . Therefore, x ∈ Eo and this
proves that O ⊂ Eo. �

Note 3.6 Throughout this textbook, unless specified, X will denote an arbitrary
metric space, x ∈ X and all sets will be subsets of X.

Exercise 3.1 Is any of (0, 1), [0, 1], (0,∞),N, or Q open or closed in R?

Exercise 3.2 Prove that a set E is open if and only if Eo = E .

Exercise 3.3 Prove that a point x ∈ E is an interior point of E if and only if there
exists an open set O such that x ∈ O ⊂ E .

Exercise 3.4 Prove that open subsets of metric spaces are unions of open balls.
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Exercise 3.5 Prove that Eo is the union of all open sets contained in E . Also show
that Eo is a union of open balls.

Exercise 3.6 Let x ∈ X and N ⊂ X. Prove that N is a neighborhood of x if and
only if there exists an open set O such that x ∈ O ⊂ N .

Exercise 3.7 Prove that

(a) every open set containing x is a neighborhood of x and
(b) any set containing an open set O is a neighborhood of every point of O.

Exercise 3.8 In a metric space X, prove that

(a) the empty set ∅ and the space X are closed,
(b) arbitrary intersection of closed sets is closed, and
(c) any finite union of closed sets is closed.

Exercise 3.9 Is every infinite union of closed sets closed?

Exercise 3.10 Does there exist any non-open subset of a discrete metric space?

Exercise 3.11 In (R2, d2), show that an

(a) infinite intersection of open sets may not be open.
(b) infinite union of closed sets may not be closed.

Exercise 3.12 Let x = (x1, x2) ∈ R
2, r > 0 and d1, d2 and d∞ be the metrics

defined as in Corollary 2.11 and Exercise 2.9. Prove that

(a) In the metric space (R2, d2), prove that the squares of the form

(i) (x1 − r, x1 + r) × (x2 − r, x2 + r) = Bd∞(x; r) are open sets.
(ii) [x1 − r, x1 + r ] × [x2 − r, x2 + r ] = Bd∞[x; r ] are closed sets.

(b) In the metric space (R2, d∞), prove that the circular disks of the form

(i) Bd2(x; r) are open sets.
(ii) Bd2 [x; r ] are closed sets.

(c) Prove that O is open in (R2, d2) if and only if O is open in (R2, d∞).

(d) State and prove similar results for the metric d1 on R
2.

(e) Generalize the above results to Rn, for any n ∈ N.

Exercise 3.13 If X is a metric space and x ∈ X, prove that the intersection of all
neighborhoods of x is the singleton set {x}.
Exercise 3.14 In R, prove that closed intervals are closed sets.

Exercise 3.15 In metric spaces, prove that the closed balls are closed sets.

Exercise 3.16 In metric space, prove that all finite sets are closed.
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Exercise 3.17 Let X be a metric space. Prove that every subset of X can be written
as an intersection of open sets.

Exercise 3.18 Let E and F be subsets of a metric space X. Prove the following

(a) If E ⊆ F, then Eo ⊆ Fo.

(b) (E ∩ F)o = Eo ∩ Fo.

(c) (E ∪ F)o ⊇ Eo ∪ Fo.

(d) In general, (E ∪ F)o = Eo ∪ Fo may not hold.

Exercise 3.19 (a) Prove that a sequence {xn} in a metric space X is convergent
to some x ∈ X if and only if for every open set O containing x, contains {xn}
eventually.

(b) Prove that a subset O of a metric space X is open if and only if every sequence
{xn} ⊂ X convergent to some x ∈ O, is eventually contained in O.

Exercise 3.20 Does there exist a metric space with exactly three subsets, which are
open as well as closed?

3.2 Limit Points and Isolated Points

Definition 3.7 Let E be a subset of a metric space X and x ∈ X. Then x is called

(a) a limit point of E, if for every ε > 0 the ball B(x; ε) contains a point of E \ {x},
(b) an isolated point of E, if x ∈ E and x is not a limit point of E .

In other words, x is said to be

(a) a limit point of E if B(x; ε) ∩ E \ {x} �= ∅ for all ε > 0.
(b) an isolated point of E if B(x; ε) ∩ E = {x} for some ε > 0.

The set of limit points of a set E is denoted by E ′, read as E-prime.

Example 3.8 Under usual topology on R, consider the subset E := (0, 1) ∪ {2}.
Then 2 is an isolated point of E, while the closed interval [0, 1] is the set of limit
points of E .

Remarks 3.9 (a) Limit points are also termed as cluster points or accumulation
points.

(b) It is pertinent to note that a limit point of a set may not belong to that set, while
an isolated point of a set is always an element of the set.

(c) In Definition 3.23, we shall see that if X and Y are metric spaces, E ⊂ X, f :
E −→ Y and x ∈ X, then limy→x f (y) cannot be considered if x is not a limit
point of E .
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Theorem 3.10 Let X be a metric space and E ⊂ X. Then E is closed if and only if
E ′ ⊂ E .

Proof First assume that E is closed. Then Ec is open. To prove that E ′ ⊂ E,

let x ∈ E ′ be arbitrary. If possible, assume that x /∈ E . Then x ∈ Ec, which is
open. Therefore there exists some ε > 0 such that B(x; ε) ⊂ Ec and therefore
B(x; ε) ∩ E = ∅. Thus there exist no y ∈ B(x; ε) ∩ E such that y �= x . Hence
x /∈ E ′, a contradiction.

Conversely, assume that E ′ ⊂ E . To prove that Ec is open, pick any x ∈ Ec. Then
x /∈ E ′. Consequently, there exists some ε > 0 such that B(x; ε) ∩ E = ∅. Thence
B(x; ε) ⊂ Ec, proving that x is an interior point of Ec. Hence Ec is open and the
result follows. �

Theorem 3.11 Let (X, d) be a metric space, E ⊂ X and x ∈ X. Then x ∈ E ′ if and
only if there exists a sequence of distinct terms in E, convergent to x .

Proof Assume that x ∈ E ′. Let x1 ∈ E ∩ B(x; 1) \ {x}. Then we choose an element
x2 ∈ E ∩ B(x;min{1/2, d(x, x1)}) \ {x}. Once x1, . . . , xn are chosen, we choose
xn+1 such that

xn+1 ∈ E ∩ B

(

x;min

{
1

n + 1
, d(x, xn)

})

\ {x}.

Inducting this way we obtain a sequence {xn} of distinct terms from E such that
d(x, xn) < 1/n for all n ∈ N. Therefore xn −→ x .

Conversely, assume that there exists a sequence {xn} of distinct terms from E
such that xn −→ x . Let ε > 0 be arbitrary. Therefore there exists an m ∈ N such
that xn ∈ B(x; ε) for all n > m. Since the terms of the sequence {xn} are all distinct,
E ∩ B(x; ε) contains points other than x . Hence x ∈ E ′ and the result follows. �

Corollary 3.12 Let (X, d) be a metric space, E ⊂ X and x ∈ X. Then x ∈ E ′ if
and only if every neighborhood of x contains infinitely many points of E .

Theorem 3.13 (Bolzano-Weierstrass) Every bounded infinite subset of Rm has a
limit point in Rm .

Proof Let E be any bounded infinite subset ofRm .Choose a sequence {xn} of distinct
terms from E .Applying Theorem2.27, let {xnk } be a convergent subsequence of {xn}.
Let x := limk→∞xnk . Applying Theorem 3.11, we conclude that x ∈ E ′. �

In general, a bounded infinite set may not have a limit point.

Examples 3.14 In the following spaces X and E ⊂ X, we have E ′ = ∅.

(a) Let X be any infinite discrete metric space and E = X.

(b) Let X := R \ Q and E := {
√
2
n : n ∈ N}.

Proposition 3.15 The set of limit points of any set is closed.
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Proof Let E be any subset of a metric space (X, d).By the virtue of Theorem 3.10, it
is enough to prove that (E ′)′ ⊂ E ′. If (E ′)′ = ∅, there is nothing to prove. Otherwise,
let x ∈ (E ′)′ and ε > 0 be arbitrary.

Since x is a limit point of E ′, there exists y ∈ E ′ such that y ∈ B(x; ε) ∩ E ′ and
y �= x . Let ρ := ε − d(x, y). Then ρ > 0. As in Theorem 3.4, we obtain B(y; ρ) ⊂
B(x; ε).

Since y ∈ E ′, the ball B(y; ρ) contains infinitelymany points of E .Hence B(x; ε)

contains infinitely many points of E . Therefore x ∈ E ′. �

Exercise 3.21 In metric spaces, prove that finite sets have no limit points.

Exercise 3.22 Prove that every subset of a finite metric space is open as well as
closed.

Exercise 3.23 If E := {
1
n + 1

m : m, n ∈ N
}
, prove that E ′ ⊂ {0} ∪ {

1
n : n ∈ N

}
.

Exercise 3.24 Obtain the set of limit points of the set
{
1
n sin

1
n : n ∈ N

}
.

Exercise 3.25 Let {xn} be a sequence of R such that xn −→ ∞. Prove that the set
{xn : n ∈ N} has no real limit point.

Exercise 3.26 Let E be a subset of a metric space X. Prove that a point x ∈ E is an
isolated point of E if and only if O ∩ E = {x} for some open subset O of X.

Exercise 3.27 Prove that x ∈ E ′ if and only if there is a sequence in E \ {x}, con-
vergent to x .

Exercise 3.28 Let E and F be subsets of a metric space X such that F is finite.
Prove or disprove: E ′ = (E \ F)′.

Exercise 3.29 Let (X, d) be a metric space. For every x ∈ X and E ⊂ X, define
d(x, E) := inf{d(x, y) : y ∈ E}. If F is a closed subset of X, prove that F =⋂∞
n=1

{
x ∈ X : d(x, F) < 1

n

}
.

Exercise 3.30 Prove that a subset E of a metric space X is closed if and only if for
all x ∈ E, we have d(x, E) = 0.

Exercise 3.31 Let E and F be subsets of a metric space X. Prove the following

(a) If E ⊆ F, then E ′ ⊆ F ′.
(b) (E ∪ F)′ = E ′ ∪ F ′.
(c) (E ∩ F)′ ⊆ E ′ ∩ F ′.
(d) Also show that, in general, (E ∩ F)′ = E ′ ∩ F ′ does not hold.

Exercise 3.32 Let {xn} be a sequence in a metric space X and E := {xn : n ∈ N}.
(a) If there exists x ∈ E such that xn −→ x, prove that E is a closed set.
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(b) If X = R
n under the usual metric, prove that E is not an open set. Is the same

true in any metric space?

Exercise 3.33 Let X be a metric space and {xn} be a sequence in X having no
convergent subsequence. Prove or disprove:

For each x ∈ X, there exists εx > 0 such that d(xn, x) ≥ εx ,

for all but finitely many n ∈ N.

Exercise 3.34 Prove that the set of limit points of {sin n : n ∈ N} in R is [−1, 1].

3.3 Closures and Boundaries

Definition 3.16 Let X be a metric space and E ⊂ X. An element x ∈ X is called

(a) an adherent point of E if every ball centered at x contains a point of E
(b) a boundary point of E, if x is an adherent point of E as well as of X \ E .

The set of adherent and boundary points of a set E are denoted by E and ∂E,

read as E-closure and boundary of E, respectively. In other words,

(a) x ∈ E if and only if B(x; ε) ∩ E �= ∅ for all ε > 0.
(b) x ∈ ∂E if and only if B(x; ε) ∩ E �= ∅ and B(x; ε) \ E �= ∅ for all ε > 0.

That is ∂E = E ∩ X \ E and E = E ∪ E ′.

Examples 3.17 (a) In R, we have [1, 2) = [1, 2] and ∂[1, 2) = {1, 2}.
(b) Let X := R

2 and B := B(0; 1). Then B = B[0; 1] and ∂B = S(0; 1).
Theorem 3.18 Let (X, d) be a metric space, E ⊂ X and x ∈ X. Then x ∈ E if and
only if there exists a sequence in E, convergent to x .

Proof Let x ∈ E . If x ∈ E, then take xn := x for all n ∈ N.Otherwise x ∈ E ′.Then
apply Theorem 3.11 to choose a sequence in E, convergent to x .

Conversely, let {xn} be a sequence in E, convergent to x . Let ε > 0 be given.
Then there exists N ∈ N such that d(xn, x) < ε for all n ≥ N . Thus B(x, ε) ∩ E is
a nonempty set, as it contains xN . Consequently, x ∈ E . Hence the result. �

Theorem 3.19 Let X be a metric space and E ⊂ X. Then E is the smallest closed
subset of X, containing E . That is

(a) E ⊃ E,

(b) E is closed and
(c) E ⊂ F, whenever F is closed and E ⊂ F.
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Proof The first part follows from the definition of E . For part (b), let x be a limit
point of E = E ∪ E ′. Then either x is a limit point of E or x is a limit point of
E ′. That is x ∈ E ′ ∪ (E ′)′ ⊂ E ′ ⊂ E, by Proposition 3.15. Hence E is closed, by
Theorem 3.10.

Finally, let F be a closed set containing E and x ∈ E = E ∪ E ′. If x ∈ E, then
x ∈ F. If x ∈ E ′, then x ∈ F ′. Since F is closed, we have F ′ ⊂ F. Hence x ∈ F. �

Proposition 3.20 Let E be a nonempty and bounded above subset of R and s :=
sup E . Then s ∈ E . Consequently s ∈ E, provided E is closed.

Proof Let ε > 0 be given. Since s = sup E, the number s − ε is not an upper bound
of E . Thus there exists some x ∈ E such that s − ε < x .

Since s is an upper bound of E, we obtain x ≤ s. Hence x ∈ (s − ε, s + ε) ∩
E .Therefore, (s − ε, s + ε) ∩ E �= ∅ for all ε > 0.Consequently, s ∈ E .Hence the
result. �

Exercise 3.35 With respect to the usual metric on R, find out the interior points,
limit points, adherent points, boundary points, interiors, and closures of the following
sets. Also state whether these are open, closed, or bounded.

(0, 1), [0, 1), (−1, 0) ∪ (0, 1),Q,R \ Q, [0,∞),Q ∩ (−∞, 1)
{
1

n
: n ∈ N

}

,

{
1

m
+ 1

n
: m, n ∈ N

}

,

{
1

m
+ 1

n
: m, n ∈ N

}

∪ {0}.

Exercise 3.36 Obtain the closure of the set
{
(x, sin(1/x)) : x ∈ (0, 1]} ∪ {(0, 0)}.

Exercise 3.37 In R under usual metric, give an example of

(a) a bounded subset, which is not closed,
(b) a closed subset, which is not bounded,
(c) a bounded sequence, which is not convergent,
(d) an infinite set, with empty interior,
(e) a set, which is neither closed nor open,
(f) a set, which contains no interval but whose closure is an interval,
(g) a set, whose closure is an infinite set containing no interval,
(h) a set, the closure of whose interior is empty,
(i) a set, with exactly two limit points,
(j) a set, with all naturals as limit points.

Exercise 3.38 Let X be a metric space, x ∈ X and r > 0. Prove that B(x; r) ⊂
B[x; r ]. Also show that a strict inclusion may occur here.

Exercise 3.39 Let A be an arbitrary open subset of a metric space X. Does it imply
(A)o = A?

Exercise 3.40 Let E be a subset of ametric space X. Prove that x ∈ X is an adherent
point of E if and only if O ∩ E �= ∅, for every open set O containing x .
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Exercise 3.41 Prove that E is the intersection of all closed sets containing E .

Exercise 3.42 Prove that E is closed if and only if E = E .

Exercise 3.43 Let X be a metric space, E ⊂ X and x ∈ X. Prove that x ∈ E ′ if and
only if x ∈ E \ {x}.
Exercise 3.44 Let A ⊂ X, x ∈ X and d(x, A) := inf{d(x, y) : y ∈ A}. Prove that
x ∈ A if and only if d(x, A) = 0.

Exercise 3.45 If E is a subset of a discrete metric space X, obtain Eo, E and ∂E .

Exercise 3.46 If xn −→ 0, what is the closure of {kxn : k, n ∈ N} in R?
Exercise 3.47 Prove that the closure of a set never adds up any open set. That is, if
A is any subset of a metric space X, then there exist no nonempty open subset O of
X, disjoint from A and contained in A.

Exercise 3.48 If A is any subset of a metric space X, prove that (A \ A)o = ∅.

Exercise 3.49 Let X be any metric space, I ⊂ X and J := X \ I . Prove that (I )o ∩
(J )o = ∅.

Exercise 3.50 Let O be an open subset of X and E ⊂ X. Prove that O ∩ E ⊂
O ∩ E .

Exercise 3.51 Let E be a subset of a metric space X. Prove that

(a) ∂E = E ∩ X \ E,

(b) ∂E ∩ Eo = ∅ and
(c) E = ∂E ∪ Eo.

Exercise 3.52 Let E be a subset of a metric space X. Prove that

(a) E is open if and only if ∂E ∩ E = ∅.

(b) E is closed if and only if ∂E ⊂ E .

(c) E is both open as well as closed if and only if ∂E = ∅.

Exercise 3.53 Let A and B be subsets of a metric space X. Prove that A \ B ⊂
A \ B. Also show that a strict inclusion may occur.

Exercise 3.54 Discuss the closure and the set of limit points of the following subsets
of reals

{
1

n1
+ · · · + 1

nk
: k, n1, . . . , nk ∈ N

}

,

and

{
1

n1
+ 2

n2
+ · · · + k

nk
: k, n1, . . . , nk ∈ N such that n1 < n2 < · · · < nk

}

.
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Exercise 3.55 Check whether the set {sin n : n ∈ N} is open or closed? Find out its
interior and closure.

Exercise 3.56 Let F be a closed subset of a metric space X and E := Fo. Prove
that E ⊂ F and Eo = Fo.

Exercise 3.57 If E is an arbitrary subset of a metric space.

(a) Do E and Eo always have same closures?
(b) Do E and E always have same interiors?
(c) Does Eo ⊂ E ′ always true?

Exercise 3.58 Let E and F be subsets of a metric space. Prove the following:

(a) If E ⊆ F, then E ⊆ F .

(b) E ∪ F = E ∪ F .

(c) E ∩ F ⊆ E ∩ F .

(d) Also show that, in general, E ∩ F = E ∩ F does not hold.

Exercise 3.59 Let X be a metric space, x ∈ X, and E ⊂ X. Prove that the following
are equivalent:

(a) x ∈ E ∩ X \ E,

(b) x is a boundary point of E and
(c) x is neither an interior point of E nor an interior point of X \ E .

Exercise 3.60 Let X be a metric space and A, B ⊂ X. Define exterior of A as
Ext (A) := X \ A. Prove the following:

(a) Ext (∅) = X,

(b) Ext (A) ∩ A = ∅,

(c) Ext (A ∪ B) = Ext (A) ∩ Ext (B) for all A, B ⊂ X,

(d) Ext (A) ⊂ Ext (Ext (X \ A)) and a strict inclusion may hold here.

Exercise 3.61 Let A and B be subsets of R. Then A × B ⊂ R
2. Which of the fol-

lowing are true? Justify your answer.

(a) A × B = A × B
(b) (A × B)′ = A′ × B ′.
(c) (A × B)o = Ao × Bo.

(d) ∂(A × B) = ∂A × ∂B.

Exercise 3.62 For A, B ⊂ R
n, define A + B := {a + b : a ∈ A, b ∈ B}. Compute

Q + (0, 1/10) and Q + A, if A(⊂ R) has a non-empty interior.

Exercise 3.63 Let A and B be subsets of R2. Prove that A + B ⊂ A + B. Can this
inclusion ever be proper?

Exercise 3.64 If F is a subfield of C such that F �⊂ R, obtain the closure of F in
C?
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Exercise 3.65 Let d be an ultrametric on X, x, y ∈ X, and r > 0. Prove the follow-
ing:

(a) Open balls in X are closed sets.
(b) The set � := {B(x; r) : x ∈ B[y; r ]} is a disjoint collection of open subsets of

B[y; r ] with ⋃
x∈B[y;r ] B(x; r) = B[y; r ].

(c) If B1, B2 ∈ � such that B1 �= B2, then dist (B1, B2) := inf{d(b1, b2) : b1
∈ B1, b2 ∈ b2} ≥ r.

(d) Closed balls in X are open sets.
(e) ∂B(x; r) = ∅ = ∂B[x; r ].
(f) sup{d(y, z) : y, z ∈ B(x; r)} = sup{d(x, y) : y ∈ B(x; r)} ≤ r.

(Readers interested in more on ultrametric spaces are referred to [1].)

Exercise 3.66 Let r ∈ [0, 1) and (X, ρr ) be the ultrametric space of Example 2.5.
For any finite tuple a = (a1, . . . , an); ai ∈ {0, 1}, let [a] denote the collection of
sequences with first n terms as a1, . . . , an . Prove the following:

(a) [a] is open. In fact if rn+1 < s ≤ rn and x denote a sequence with first n terms
as a1, . . . , an, then [a] = B(x; s).

(b) Every open ball in X is some [a]. That is, for every x ∈ X and s > 0, there
exists some a = (a1, . . . , an); ai ∈ {0, 1} such that B(x; s) = [a].

Exercise 3.67 (Hausdorff metric) Let (X, d) be a metric space and B(X) denote
the family of nonempty closed bounded subsets of X. For A, B ∈ B(X), define

h(A, B) := max
{
sup{dist (b, A) : b ∈ B}, sup{dist (a, B) : a ∈ A}}.

Prove that h is a metric on B(X) such that h({x}, {y}) = d(x, y) for all x, y ∈ X.

3.4 Subspace Topology

Let S be the unit open ball in R
3 and P be a plane intersecting it. Then the cross

section will be a circular disk. Can one define a metric on the plane P so that the
cross section becomes the corresponding open ball?

If (X, d) is a metric space and ∅ �= Y ⊂ X, it is easy to see that (Y, d) is also
a metric space. In this case, we say that Y is a subspace of X. We now discuss the
relationship between open subsets of X and Y. First consider the case of open balls.

Since the same metric d is defined on X as well as Y, in order to avoid confusion,
for x ∈ Y and r > 0, we write

BY (x; r) := {y ∈ Y : d(y, x) < r} and BX (x; r) := {y ∈ X : d(y, x) < r}.

Definition 3.21 Let ∅ �= Y ⊂ X and E ⊂ Y. Then E is said to be open relative to
Y if it is open in the subspace (Y, d). That is, either E = ∅ or for every x ∈ E, there
exists some rx > 0 such that BY (x; rx ) ⊂ E .
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Similarly, we say that E is closed relative to Y if Y \ E is open in the subspace
(Y, d). The notions like limit points, interior points, adherent points, and boundary
points relative to a space are defined on the similar lines.

Clearly, BY (x; r) = BX (x; r) ∩ Y. Interestingly, a similar result holds for open
sets.

Theorem 3.22 Let (X, d) be a metric space and G ⊂ Y ⊂ X. Then G is open in
(Y, d) if and only if there exists an open subset O of (X, d) such that O ∩ Y = G.

Proof Assume that G is open in (Y, d). Then for each x ∈ G, there exists δx > 0
such that BY (x; δx ) ⊂ G. Then

⋃
x∈G BY (x; δx ) = G. Let O := ⋃

x∈G BX (x; δx ).

Then O is open in X and

O ∩ Y =
⋃

x∈G

(
BX (x; δx ) ∩ Y

) =
⋃

x∈G
BY (x; δx ) = G.

Conversely, suppose thatG = O ∩ Y for some open subset O of X.Let x ∈ G. Since
x ∈ G ⊂ O, there exists some δx > 0 such that BX (x; δx ) ⊂ O. Therefore,

BY (x; δx ) = BX (x; δx ) ∩ Y ⊂ O ∩ Y = G.

Hence G is open in Y. �

Exercise 3.68 Prove that the set Q ∩ (0, 1) is open relative to Q but not relative to
R, under the usual metric.

Exercise 3.69 Let X := R
3 be a metric space under the Euclidean metric d2. Let

Y := {(x, y, z) ∈ R
3 : x + y + z = 1} and Z := {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

Characterize open subsets and open balls of (Y, d2) and (Z , d2).

In the following exercises, let (X, d) be a metric space and A ⊂ Y ⊂ X such that
Y �= ∅.

Exercise 3.70 Prove that A is closed in (Y, d) if and only if there exists a closed
subset F of (X, d) such that A = F ∩ Y.

Exercise 3.71 If A is closed in Y and A denotes the closure A in X, prove that
A ∩ Y = A.

Exercise 3.72 Prove that a point x ∈ Y is a limit point of A in (Y, d) if and only if
x is a limit point of A in (X, d).

Exercise 3.73 If A is the closure of A in X, prove that the closure of A in Y is
Y ∩ A.

Exercise 3.74 Prove that the interior of A with respect to X is contained in the
interior of A with respect to Y. Show that this inclusion is proper.



3.5 Limits and Continuity 75

Exercise 3.75 Prove that the boundary of A with respect to Y is contained in the
intersection of Y with the boundary of A with respect to X. Further show that this
inclusion is proper.

3.5 Limits and Continuity

Unless specified, let (X, dX ) and (Y, dY ) be metric spaces, E ⊂ X and f : E −→ Y.

Definition 3.23 Let c be a limit point of E in X. Then f is said to have a limit at c
if there exists an l ∈ Y such that for every ε > 0 there exists a δ > 0 such that

dY ( f (x), l) < ε for all x ∈ E satisfying 0 < dX (x, c) < δ.

In this case, we call l to be the limit of f at c and write limx→c f (x) = l.

Definition 3.24 The function f, as above, is said to be continuous at c ∈ E if for
every ε > 0 there exists some δ > 0 such that

dY ( f (x), f (c)) < ε for all x ∈ E satisfying dX (x, c) < δ.

That is, if for every ε > 0 there exists some δ > 0 such that f (E ∩ B(c; δ)) ⊂
B( f (c); ε).

In addition, if c is a limit point of X, then f is continuous at c if and only if
limx→c f (x) = f (c).

Further, f is said to be continuous, if it is continuous at every point of its domain.

Remark 3.25 It is emphasized that limx→c f (x) is not defined, if c is not a limit
point of E . Further to define continuity at c, the point c must belong to the domain
E of f, while the same is not required for limits.

Several results about limits and continuity for real functions can be extended to
general metric spaces. First we present an analogue of Theorem 1.46.

Theorem 3.26 Let f : X −→ Y, c ∈ X ′ and l ∈ Y. Then limx→c f (x) = l if and
only if f (xn) −→ l, for every sequence {xn} in X \ {c} such that xn −→ c.

Proof Let dX and dY , respectively, denote the metrics on X and Y. First assume that
limx→c f (x) = l. Let ε > 0 be given. Then there exists some δ > 0 such that

dY ( f (x), l) < ε whenever 0 < dX (x, c) < δ.

Let {xn} be a sequence in X \ {c}, convergent to c. Then there exists some m ∈ N

such that 0 < dX (xn, c) < δ for all n > m. Because of the choice of δ, we obtain
dY ( f (xn), l) < ε for all n > m. Hence f (xn) −→ l.
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Conversely, assume that limx→c f (x) �= l. Then there exists some ε > 0 such that
for every δ > 0 the following assertion is not satisfied:

dY ( f (x), l) < ε for all x satisfying 0 < dX (x, c) < δ.

In particular, for each n ∈ N, taking δn := 1/n, one can choose some xn ∈ X such
that dX (xn, c) < 1/n, while dY ( f (xn), l) ≥ ε. Therefore { f (xn)} does not converge
to l, while xn −→ c, a contradiction to the hypothesis. Hence the result. �

Corollary 3.27 A function f : X −→ Y is continuous at c if and only if f (xn) −→
f (c) in Y, whenever xn −→ c in X.

Proof If c is a limit point of X, then the result follows by Theorem 3.26. Suppose
otherwise. Then c is an isolated point of X and thus there exists η > 0 such that
B(c; η) = {c}. In this case, any function f on X satisfies both of the above conditions.

Note that for every ε > 0 the constant δ := η satisfies the requirement of conti-
nuity of f at c. Also if xn −→ c, then there exists m ∈ N such that xn ∈ B(c; η) =
{c} for all n ≥ m. Therefore, f (xn) = f (c) for all n ≥ m which implies that
f (xn) −→ f (c). Hence the result. �

Theorem 3.28 Let f : X −→ Y. Then f is continuous if and only if f −1(O) is
open, for every open set O ⊂ Y.

Proof Let f be continuous and O be an open subset of Y. If f −1(O) = ∅, the
set is trivially open. Otherwise pick any x ∈ f −1(O). Then f (x) ∈ O. Since O is
open there exists some r > 0 such that B( f (x); r) ⊂ O. Since f is continuous at x,
there exists some δ > 0 such that f (B(x; δ)) ⊂ B( f (x); r). Hence f (B(x; δ)) ⊂
B( f (x); r) ⊂ O. Therefore B(x; δ) ⊂ f −1(O) and hence f −1(O) is open.

Conversely, suppose that f −1(O) is open, for every open set O ⊂ Y. Pick any
x ∈ X. Let ε > 0 be given. Then for O := B( f (x); ε), the set f −1(O) is open.
Since x ∈ f −1(O), there exists a δ > 0 such that B(x; δ) ⊂ f −1(O). Therefore
f (B(x; δ)) ⊂ O = B( f (x); ε). So f is continuous at x and the result follows. �

3.5.1 The Case of Euclidean Spaces

Now we present the case of limit of functions between finite dimensional spaces.

Theorem 3.29 Let X be any metric space, c ∈ X ′, n ∈ N and f : X −→ R
n be

given by f = ( f1, . . . , fn), where each f j is a real valued function on X. Then
limx→c f (x) exists if and only if limx→c f j (x) exists for every 1 ≤ j ≤ n. Further,
in this case

lim
x→c

f (x) = (
lim
x→c

f1(x), . . . , lim
x→c

fn(x)
)
.
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Proof The result is immediate from Theorems 3.26 and 2.25.
First assume that limx→c f (x) = l for some l = (l1, . . . , ln) ∈ R

n. Let {xn} be
any sequence in X \ {c} convergent to c. Then f (xn) −→ l. Applying Theorem
2.25, we conclude that f j (xn) −→ l j for all j = 1, . . . , n. Applying Theorem 3.26,
we obtain limx→c f j (x) = l j for every j = 1, . . . , n. The converse is similar. �

Corollary 3.30 (Algebra of Limits) Let X be any metric space, c ∈ X ′, n ∈ N and
f, g : X −→ R

n.Assume that limx→c f (x) = l and limx→cg(x) = l ′, for some l, l ′ ∈
R

n. Then

(a) limx→cα f (x) = αl for all α ∈ R.

(b) limx→c( f (x) + g(x)) = l + l ′.
(c) limx→c f (x)g(x) = ll ′, provided n = 1.
(d) If n = 1 and l �= 0, then limx→c

1
f (x) = 1

l .

Proof Apply Theorem 3.29 along with Theorem 1.52. �

3.5.2 Continuity and Uniform Convergence

Now we discuss the relationship of uniform convergence with continuity and limits.

Theorem 3.31 Let { fn} be a sequence of real valued continuous functions on a
metric space (X, d), uniformly convergent to a function f on X.Then f is continuous
on X.

Proof Let c ∈ X and ε > 0 be given. Then there exists some m ∈ N such that

| fn(x) − f (x)| <
ε

3
for all n ≥ m and for all x ∈ X.

Since the function fm is continuous at c, there exists some δ > 0 such that | fm(x) −
fm(c)| < ε/3 for all x ∈ B(c; δ). Then for every x ∈ B(c; δ), we obtain

| f (x) − f (c)| ≤ | f (x) − fm(x)| + | fm(x) − fm(c)| + | fm(c) − f (c)|
<

ε

3
+ ε

3
+ ε

3
= ε.

Hence f is continuous at c. Since c ∈ X was arbitrary, f is continuous on X. �

Next, we answer a very natural question: What precisely needs to be added to
pointwise convergence to preserve continuity?

Theorem 3.32 (Beer, 2009 [2]) Let (X, dX ), (Y, dY ) be metric spaces, x0 ∈ X, and
f, fn : X −→ Y ; n ∈ N. Suppose that each fn is continuous at x0, and { fn} −→ f
pointwise on X. Then the following are equivalent:
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(a) f is continuous at x0.
(b) For every ε > 0 there exists N ∈ N such that for each n ≥ N , there exists some

δn > 0 such that dX (x, x0) < δn implies dY ( fn(x), f (x)) < ε.

(In this case, we say that { fn} is strongly pointwise convergent to f at x0.)

Proof Assume f is continuous at x0. Let ε > 0 be arbitrary. Then there exists some
N ∈ N and δ > 0 such that

dY ( fn(x0), f (x0)) <
ε

3
for all n ≥ N

and dY ( f (x), f (x0)) <
ε

3
for all x ∈ X such that dX (x, x0) < δ.

Let n ≥ N be arbitrary. The continuity of fn at x0 ensures a δn ∈ (0, δ) such that if
dX (x, x0) < δn, then dY ( fn(x), fn(x0)) < ε

3 . Consequently, for dX (x, x0) < δn,

dY ( fn(x), f (x)) ≤ dY ( fn(x), fn(x0)) + dY ( fn(x0), f (x0)) + dY ( f (x0), f (x)) < ε.

Conversely, assume that { fn} is strongly pointwise convergent to f at x0. Let ε > 0
be arbitrary. Choose N ∈ N and a sequence {δn}n≥N of positive reals as in (b). By
continuity of fN at x0, there exists a positive scalar δ ∈ (0, δN ) such that dX (x, x0) <
δ implies dY ( fN (x), fN (x0)) < ε

3 . Then for dX (x, x0) < δ,

dY ( f (x0), f (x)) ≤ dY ( f (x0), fN (x0)) + dY ( fN (x0), fN (x)) + dY ( fN (x), f (x)) < ε.

This ensures that f is continuous at x0. �
Theorem 3.33 Let (X, d) be a metric space and c be a limit point of X. Let { fn} be a
sequence of real valued functions, uniformly convergent to a function f on X. If each
fn has a limit at c, then so does f. Moreover limx→c f (x) = limn→∞ limx→c fn(x).

Proof Write ln := limx→c fn(x), for each n ∈ N.Applying the Cauchy criterion for
uniform convergence, there exists some m0 ∈ N such that

| fn2(x) − fn1(x)| <
ε

3
for all x ∈ E and for all n1, n2 ≥ m0.

Passing limit x −→ c, we obtain |ln2 − ln1 | ≤ ε
3 for all n1, n2 ≥ m0. Therefore, {ln}

is a Cauchy sequence of real numbers and hence convergent. Let l := limn→∞ ln.
Then there exists some m = m(ε) ∈ N such that

|ln − l| <
ε

3
and | fn(x) − f (x)| <

ε

3
for all x ∈ E and for all n ≥ m.

Since fm has limit lm at c, there exists some δ > 0 such that | fm(x) − lm | <
ε
3 for some x ∈ X such that 0 < d(x, c) < δ. Therefore, if 0 < d(x, c) < δ, then

| f (x) − l| ≤ | f (x) − fm(x)| + | fm(x) − lm | + |lm − l| <
ε

3
+ ε

3
+ ε

3
= ε.



3.5 Limits and Continuity 79

Since ε > 0 is arbitrary, the result follows. �

Remarks 3.34 (a) We have the following analogous relation between uniform con-
vergence and Riemann integration (see [3, p. 151, Theorem 7.16]).
If { fn} is a sequence of Riemann integrable functions, uniformly convergent to
f on a closed bounded interval [a, b], then f is also Riemann integrable on
[a, b] and ∫ b

a
f = lim

n→∞

∫ b

a
fn.

(b) In Exercises 3.101-3.102, we discuss upper and lower semi-continuous func-
tions. If f is upper semi-continuous and g is lower semi-continuous such that
f ≤ g, then there exists a continuous h such that f ≤ h ≤ g. Further every
upper semi-continuous function is the pointwise limit of a decreasing sequence
of continuous functions (see [4, p. 61-63]).

Exercise 3.76 Prove that the constant map between any two metric spaces is con-
tinuous.

Exercise 3.77 Suppose (X, d) is a metric space such that d(x, y) ≥ 1 for all x, y ∈
X. Does there exist any discontinuous function X?

Exercise 3.78 If f : X −→ R is continuous at some c ∈ X, prove that f is bounded
in a neighborhood of c.

Exercise 3.79 Let X,Y be metric spaces, c ∈ X ′ and f : X −→ Y. Suppose that
limx→c f (x) = l for some l ∈ Y. Prove the following:

(a) If Y = R and l �= 0, then f (x) �= 0, in a deleted neighborhood of c.
(b) If l �= l0, for some l0 ∈ Y, then f (x) �= l0, in a deleted neighborhood of c.

Exercise 3.80 Let X,Y and Z bemetric spaces, f : X −→ Y, g : Y −→ Z be func-
tions and c ∈ X be such that f is continuous at c and g is continuous at f (c). Prove
that the composition function g ◦ f is continuous at c.

Exercise 3.81 Does there exist a metric d on R
n, such that the identity map f :

(Rn, d2) −→ (Rn, d) is discontinuous?

Exercise 3.82 Let X be any nonempty set and (Y, d) be anymetric space. Does there
exist a metric ρ on X such that every f : (X, ρ) −→ (Y, d) becomes a continuous
function?

Exercise 3.83 If p : Rm −→ R is a polynomial, prove that p is continuous on R.

Exercise 3.84 Let f and g be Rm −→ R
n functions, continuous at some c ∈ R

m .

Prove that α f + βg is continuous at c for all α, β ∈ R,

Exercise 3.85 Let f and g be R
m −→ R functions, continuous at c ∈ R

m . Prove
the following assertions:
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(a) f g is continuous at c.
(b) If f (c) �= 0, then 1/ f is defined in a neighborhood of c.
(c) If f (c) �= 0, then 1/ f is continuous at c.

Exercise 3.86 Let X be a metric space, c ∈ X and f, g : X −→ R
n be continuous

at c. Let x · y denote the usual dot product of the vectors x, y ∈ R
n. Prove that

the function f · g : X −→ R defined as ( f · g)(x) := f (x) · g(x) for all x ∈ X, is
continuous at c.

Exercise 3.87 Define a sequence of R −→ R functions { fn} as

fn(x) := x2

(1 + x2)n
for all x ∈ R, n ∈ N.

Show that
∑∞

n=1 fn is a series of continuous functions and converges pointwise to
the discontinuous function f, where f (0) = 0 and f (x) = 1 for all x ∈ R \ {0}.

Exercise 3.88 What is the relationship between strong pointwise convergence and
pointwise convergence? Are these two equivalent? Justify your answer.

Exercise 3.89 Let f : X −→ Y be any function, A, B ⊂ X and � be a collection
of subsets of X. Prove the following assertions:

(a) f (
⋃

A∈� A) = ⋃
A∈� f (A).

(b) f (A) ⊂ f (B), provided A ⊂ B.

(c) f (A ∩ B) ⊂ f (A) ∩ f (B).

(d) Show that f (A ∩ B) = f (A) ∩ f (B) is not true, in general.
(e) Show that f (Ac) = ( f (A))c is not true, in general.

Exercise 3.90 Let f : X −→ Y be any function, A ⊂ Y and � be a collection of
subsets of Y. Prove the following

(a) f −1(Ac) = ( f −1(A))c,

(b) f −1(
⋃

A∈� A) = ⋃
A∈� f −1(A),

(c) f −1(
⋂

A∈� A) = ⋂
A∈� f −1(A),

Exercise 3.91 Prove that the following are equivalent:

(a) f : X −→ Y is continuous.
(b) f −1(F) is closed, for every closed subset F of Y.

(c) f (E) ⊂ f (E) for all E ⊂ X.

(d) f −1(E) ⊂ f −1(E) for all E ⊂ Y.

Exercise 3.92 Let A ⊂ X and f : A −→ Y. Prove that the following are equivalent:

(a) f is continuous on A.

(b) f −1(O) is open relative to A, for every open set O in Y.
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(c) f −1(F) is closed relative to A, for every closed set F in Y.

Exercise 3.93 Let f : X −→ Y and c ∈ X. Prove that the following are equivalent:

(a) f is continuous at c,
(b) for every ε > 0, there exists a δ > 0 such that f (B(c; δ)) ⊂ B( f (c); ε),

(c) for every open set OY containing f (c), there exists an open set OX containing
c such that f (OX ) ⊂ OY ,

(d) for every open set OY containing f (c), c is an interior point of the set f −1(OY ),

(e) for every neighborhood NY of f (c), f −1(NY ) is a neighborhood of c,
(f) for every neighborhood NY of f (c), there exists a neighborhood NX of c such

that f (NX ) ⊂ NY .

Exercise 3.94 Let f : X −→ Y and c ∈ X. Prove that the following are equivalent:

(a) f has limit l at c,
(b) for every ε > 0, there exists a δ > 0 such that f (B(c; δ) \ {c}) ⊂ B(l; ε),

(c) for every open set OY containing l, there exists some open set OX containing c
such that f (OX \ {c}) ⊂ OY ,

(d) for every neighborhood NY of l, there exists some neighborhood NX of c with
f (NX \ {c}) ⊂ NY .

Exercise 3.95 Does there exist a sequence { fn} of nowhere continuous functions on
[0, 1], pointwise convergent to a function f such that f is continuous on [0, 1]?
Exercise 3.96 Does there exist a sequence of continuous functions on [0, 1], point-
wise convergent to a function discontinuous at infinitely many points?

Exercise 3.97 Let X,Y bemetric spaces, { fn} be a sequence of X −→ Y continuous
functions, uniformly convergent on X to a function f : X −→ Y. Does this imply
that f is continuous on X?

Exercise 3.98 Conclude Theorem 3.31 from Theorem 3.33.

Exercise 3.99 State and prove series analogues of Theorems 3.31 and 3.33.

Exercise 3.100 With { fn} of Exercise 1.117, show that limx→0 limn→∞ fn(x) �=
limn→∞ limx→0 fn(x), although both of the above double limits are convergent.

Exercise 3.101 Let X be a metric space and f : X −→ R. Then f is called upper
(lower) semi-continuous if {x : f (x) < α} ({x : f (x) > α}) is open, for all α ∈ R.

Prove the following:

(a) f is continuous if and only if it is both upper as well as lower semi-continuous.
(b) If S ⊂ X, then the characteristic function χS upper (lower) semi-continuous if

and only if S is closed (open).
(c) Let � be a collection of X −→ R functions.

(i) If each f ∈ � is a lower semi-continuous function, then so is the mapping
x �−→ sup{ f (x) : f ∈ �}.
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(ii) If each f ∈ � is an upper semi-continuous function, then so is themapping
x �−→ inf{ f (x) : f ∈ �}.

Exercise 3.102 Let X be a metric space and f : X −→ R. Prove that the following
are equivalent:

(a) f is upper semi-continuous.
(b) If xn −→ x, then lim supn−→∞ f (xn) ≤ f (x).
(c) The set {(x, r) ∈ X × R : r ≤ f (x)} is closed in X × R.

Exercise 3.103 Let {an} be a sequence of complex numbers and z0 ∈ C \ {0} such
that the series

∑∞
n=0 anz

n
0 is convergent. Prove the following:

(a)
∑∞

n=0 anz
n converges absolutely on {z : |z| < |z0|}.

(b) There exists some R ∈ (0,+∞] such that∑∞
n=0 anz

n is convergent on {z : |z| <

R} and non-convergent on {z : |z| > R}. (This R is called the radius of conver-
gence of

∑∞
n=0 anz

n.)
(c)

∑∞
n=0 |anzn| converges uniformly on {z : |z| ≤ r}, for every r < |z0|.

Exercise 3.104 (Sophomore’s dream) Prove the following identities:

∫ 1

0

1

xx
dx =

∞∑

n=1

1

nn
and

∫ 1

0
xxdx =

∞∑

n=1

(−1)n+1

nn
.

3.6 Topology of Normed Linear Spaces

For this section, let X denote a normed linear space over the scalar field R or C.

Theorem 3.35 Let Y be a linear subspace of a normed space X. Then Y = X if and
only if Y o �= ∅.

Proof The necessity is trivial. For the converse, suppose Y o �= ∅. Then Y contains
a ball B(y; r) for some y ∈ Y and r > 0. Let x ∈ X and write

z := y + r

1 + ‖x‖ x .

Then z ∈ B(y; r) ⊂ Y. Since Y is a linear subspace of X, we conclude that x =
(1+‖x‖)

r (z − y) ∈ Y. Consequently, X ⊂ Y and hence Y = X. �

In general metric spaces, the open and closed balls are related by the inclusion
B(x; r) ⊂ B[x; r ] and a strict inclusion may occur. Consider the following example
for this purpose.

Example 3.36 If X is a discrete metric space having at least two points x and y,
then B(x; 1) = {x} �= X = B[x; 1].
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However the equality holds here, in case of balls in normed spaces. To establish that
we need a few notions, as follows: If X is a normed space, x ∈ X, E ⊂ X and α be
a scalar, we define

E + x := {t + x : t ∈ E} and αE := {αt : t ∈ E}.

Lemma 3.37 Let X be a normed space, x ∈ X and E ⊂ X. Then E + x = E + x .

Proof Let y ∈ E + x .Choose a sequence {zn} from E + x such that zn −→ y.Then
{zn − x} is a sequence from E, convergent to y − x .Therefore, y − x ∈ E and hence
y ∈ E + x . Therefore, E + x ⊂ E + x . The opposite inclusion is analogous. �

Theorem 3.38 Let X be a normed space, x ∈ X and r > 0. Then B(x; r) =
B[x; r ].
Proof Note that B[x; r ] is a closed set, as y �−→ ‖y − x‖ defines a continuous map
on X. Since B(x; r) ⊂ B[x; r ], we have B(x; r) ⊂ B[x; r ].

To prove the opposite inclusion, let y ∈ B[0; r ]. Let yn := y(1 − 1
n ) for all n ∈

N.Then ‖yn‖ = (1 − 1
n )‖y‖ < ‖y‖ ≤ r which implies that yn ∈ B(0; r) for all n ∈

N. Since yn −→ y, we obtain y ∈ B(0; r). Hence B[0; r ] ⊂ B(0; r).
Clearly, B(x; r) = x + B(0; r) and B[x; r ] = x + B[0; r ]. Applying Lemma

3.37, we obtain B[x; r ] = B[0; r ] + x ⊂ B(0; r) + x = B(0; r) + x = B(x; r). �

Exercise 3.105 If xn −→ x in a normed space (X, ‖.‖), prove that ‖xn‖ −→ ‖x‖.
Exercise 3.106 Let (X, ‖.‖) be a normed space over R. Prove that addition is a
continuous function of X × X into X and scalar multiplication is continuous from
R × X into X.

Exercise 3.107 Let X be a normed linear space x ∈ X and r > 0. Prove that
B(x; r) = (

B(0; 1) + x
r

)
r = x + r B(0; 1).

Exercise 3.108 Prove that (x, y) �−→ min{1, |x − y|} defines a metric onR. In this
space, show that B(0; 1) �= B[0; 1] by establishing B(0; 1) = (−1, 1), B(0; 1) =
[−1, 1], and B[0; 1] = R.

Exercise 3.109 Let X be a normed space, x ∈ X and r > 0. Prove that (B[x; r ])o =
B(x; r).
Exercise 3.110 Let Y be a linear subspace of a normed space X. Prove that Y is a
normed space under the induced norm.

Exercise 3.111 Let X be a normed space over C, x ∈ X, E ⊂ X and α ∈ C \ {0}.
(a) If E is closed, then prove that so are E + x and αE .

(b) If E is open, then prove that E + x and αE are also open.
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Exercise 3.112 Let X be an inner product space, xn −→ x and yn −→ y in X.Prove
that 〈xn, yn〉 −→ 〈x, y〉.
Exercise 3.113 Let X be a normed space, x, y ∈ X and r, s ∈ (0,∞). Do we have

B(y; s) ∩ B(x; r) = ∅ if and only if ‖x − y‖ ≥ r + s?

For the next two exercises, let Y be a linear subspace of a normed space X. For
a, b ∈ X, set a ∼ b if and only if a − b ∈ Y. It is easy to see that ∼ defines an
equivalence relation on X. Let X/Y be the collection of equivalence classes of X,

under this relation.

Exercise 3.114 Let Y be closed in X. For every [x] := x + Y ∈ X/Y, define

‖[x]‖ = |||x + Y ||| := inf{x + y : y ∈ Y }. (3.1)

Prove that X/Y is a linear space and |||.||| defines a norm on X/Y. (The norm on X/Y
as in (3.1) is known as the quotient norm and X/Y is known as the quotient space
of X with respect to the subspace Y.)

Exercise 3.115 Let Y be a closed subspace of X. Prove that {xn + Y } −→ x + Y
in X/Y if and only if {xn + yn} −→ x in X, for some sequence {yn} in Y.

3.7 Hints and Solutions to Selected Exercises

3.8 Apply Theorem 3.2 along with DeMorgan’s law.
3.9 No. For example

⋃∞
n=1[0, 1 − 1/n] = [0, 1) is not a closed subset of reals.

3.15 Let x ∈ X and r > 0. Pick any y ∈ X \ B[x; r ]. Then d(y, x) > r. Let δ :=
d(y, x) − r > 0. It is enough to show that B(y; δ) ⊂ X \ B[x; r ].
To show this, let z ∈ B(y; δ). Then d(z, y) < δ = d(y, x) − r. The triangle
inequality implies d(x, y) ≤ d(x, z) + d(z, y). Therefore d(x, z)) ≥ d(x, y) −
d(z, y) > d(x, y) − δ = r. Hence z ∈ X \ B[x; r ].

3.17 Write E := ⋂
x∈Ec{x}c.

3.27 Apply Theorem 3.11.
3.33 The statement is true. Assume its negation, that is, there exists x ∈ X such that

for all ε > 0 infinitely many n ∈ N satisfy d(xn, x) < ε.

Let E := {xn : n ∈ N}. Then the above statement implies that x ∈ E . Hence
there exists a sequence in E, convergent to x .

By Exercise 1.40, rearrangements of convergent sequences are convergent to the
same limit. Hence we obtain a subsequence of {xn} convergent to x, a contra-
diction.

3.38 Consider a ball in the discrete space with radius 1.
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3.39 No. For example, take X := [0, 1] and A := (0, 1). Then (A)o = [0, 1] �= A.

3.47 If O is such an open set, let x ∈ O ⊂ A. Then O ∩ A �= ∅, a contradiction.
3.48 Apply Exercise 3.47.
3.49 If possible, let x ∈ (I )o ∩ (J )o. Then there exists an open set O such that

x ∈ O ⊂ I ∩ J . Since O ⊂ I = X \ J, we obtain O ∩ J = ∅. This is a con-
tradiction as O is an open neighborhood of an adherent point of J.

3.50 Let x ∈ O ∩ E . We need to show that x ∈ O ∩ E . This is trivial if x ∈ E . Let
x ∈ E \ E = E ′ andU be an open set containing x . ThenU ∩ O is also an open
set containing x . Since x ∈ E ′, there exists y ∈ (U ∩ O) ∩ E = U ∩ (O ∩ E)

such that y �= x . Hence x ∈ (O ∩ E)′ ⊂ O ∩ E .

3.52 Use the fact that ∂E = E ∩ X \ E .

3.53 The strict inclusion occurs for X := R, A := [0, 2] and B := {1}.Let x ∈ A \ B
and U be an open set containing x . Then U \ B is an open set containing x .
Therefore, there exists some y ∈ A ∩ (U \ B) ⊂ (A \ B) ∩U. Consequently,
x ∈ A \ B.

3.54 Let En denote the nth set of this exercise. Since p/q = 1/q + · · · + 1/q, so
clearly E1 = Q ∩ (0,+∞). Therefore, E1 = [0,+∞) = E ′

1. Similarly, E2 =
[0,+∞) = E ′

2.

3.56 Since Fo ⊂ F, we obtain E ⊂ F = F. Hence Eo ⊂ Fo. Let x ∈ Fo. Then
there exists an open set O containing x such that O ⊂ F. Note that O ⊂ Fo ⊂
E which implies x ∈ Eo. Thus Fo ⊂ Eo and hence Fo = Eo.

3.57 Consider E := Q under usual metric on R.

3.60 The first two assertions are evident from the definitions. The third one fol-
lows from A ∪ B = A ∪ B. The last one holds if and only if X \ A ⊂ X \
(X \ (X \ A)). That is A ⊃ (X \ (X \ A)).With A1 := X \ A,we need to show

that (X \ A1) ⊂ X \ A1. This holds, as X \ A1 is a closed set and by Exer-
cise 3.53, we have X \ A1 ⊂ X \ A1. The strict inclusion holds for X := R and
A := Q.

3.65 (a) Let y ∈ B(x; r) and s ∈ (0, r). Then there exists z ∈ B(y; s) ∩ B(x; r).
By 2.17(c), we obtain B(y; s) ⊂ B(x; r). Thus y ∈ B(x; r) and hence
B(x; r) = B(x; r).

(b) Let x, x ′ ∈ B[y; r ]. If there exists some z ∈ B(x; r) ∩ B(x ′; r), applying
2.17(b) we obtain B(x; r) = B(z; r) = B(x ′; r). Therefore, � is a disjoint
collection. Note that the inclusion B[y; r ] ⊂ ⋃

x∈B[y;r ] B(x; r) is obvious.
Let x ∈ B[y; r ] and z ∈ B(x; r). Then B(z; r) = B(x; r) ⊂ B[y; r ]. The
proves the opposite inclusion.

(c) Let x1, x2 denote the centers of balls B1, B2, respectively. Suppose that
dist (B1, B2) < r. Then there are some b1 ∈ B1 and b2 ∈ B2 such that
d(b1, b2) < r.Therefore, d(b1, x2) ≤ max{d(b1, b2), d(b2, x2)} < r.Hence
B1 = B(x1; r) = B(b1; r) = B(x2; r) = B2.

(d) By (b), B[y; r ] is a union of open sets and hence open.
(e) Follows from parts (a) and (d).
(f) Write B := B(x; r) and D := sup{d(y, z) : y, z ∈ B}. If y, z ∈ B, then

d(y, z) ≤ max{d(y, x), d(x, z)} ≤ d(y, x). So D ≤ sup{d(x, y) : y ∈ B}.
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The opposite inequality follows from the definition of D. Hence
D = sup{d(x, y) : y ∈ B}.

3.66 We prove the results for r > 0. The case of r = 0 is similar.

(a) Let s ∈ (rn+1, rn] and x be as given. Then y ∈ [a] if and only if y and x have
first n terms common if and only if ρr (y, x) ≤ rn+1 < s. i.e. y ∈ B(x; s).

(b) Let n ∈ N such that rn+1 < s ≤ rn, and a = (x1, . . . , xn). As above [a] =
B(x; s).

3.67 Clearly h is positive and symmetric. Let A, B ∈ B(X) such that h(A, B) = 0.
Then

sup{dist (b, A) : b ∈ B} = 0 = sup{dist (a, B) : a ∈ A}.

This implies that dist (b, A) = 0 = dist (a, B) for all a ∈ A and b ∈ B. Hence
B ⊂ A = A and A ⊂ B = B. Consequently, A = B.

To prove the triangle inequality, let A, B,C ∈ B(X), x ∈ A and ε > 0 be arbi-
trary. Then there exists some y ∈ B such that d(x, y) < dist (x, B) + ε

2 . Simi-
larly, there exists some z ∈ C such that d(y, z) < dist (y,C) + ε

2 . Therefore

dist (x,C) ≤ d(x, z) ≤ d(x, y) + d(y, z)
≤ dist (x, B) + dist (y,C) + ε ≤ h(A, B) + h(B,C) + ε.

Hence sup{dist (a,C) : a ∈ A} ≤ h(A, B) + h(B,C) + ε for all ε > 0,which
implies sup{dist (a,C) : a ∈ A} ≤ h(A, B) + h(B,C). Similarly, sup{dist
(c, A) : c ∈ C} ≤ h(A, B) + h(B,C). Hence h(A,C) ≤ h(A, B) + h(B,C),

as required.
3.71 Since A is closed in Y, there exists an open set F ⊂ X such that A = F ∩ Y.

Pick any x ∈ A ∩ Y. Then there exists a sequence {xn} in A such that xn −→ x .
Therefore x ∈ F and thus x ∈ Y ∩ F = A.

3.74 Take X := R
2, Y := R × {0} and A := [0, 1] × {0}. The corresponding inclu-

sion ∅ ⊂ (0, 1) × {0} is proper.
3.75 Take X := R

2, Y := R × {0} and A := [0, 1] × {0}. The corresponding inclu-
sion {0, 1} × {0} ⊂ (0, 1) × {0} is proper.

3.95 Yes. Consider fn : [0, 1] −→ R defined as follows:

fn(x) :=
{

1
n ; x ∈ [0, 1] ∩ Q,

0 ; x ∈ [0, 1] \ Q.

3.96 Shift and scale copies of x −→ xn in [0, 1].
3.103 (a) Byhypothesis, limn−→∞anzn0 = 0.Choosem ∈ N such that |anzn0 | < 1 for all n >

m. Then for any z ∈ C such that |z| < |z0|, we obtain

|anzn| = |anzn0 |
∣
∣
∣
∣
z

z0

∣
∣
∣
∣

n

<

∣
∣
∣
∣
z

z0

∣
∣
∣
∣

n

for all n > m.

Applying comparison test, with the geometric series
∑ |z/z0|n, we obtain

the required result.
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(b) Take R := sup{|z| : ∑∞
n=1 anz

n is convergent}.
(c) Fix any r ∈ (0, |z0|).As in (a), for sufficiently large n and |z| ≤ r,we obtain

|anzn| = |anzn0 |
∣
∣
∣
∣
z

z0

∣
∣
∣
∣

n

<

∣
∣
∣
∣
z

z0

∣
∣
∣
∣

n

≤
∣
∣
∣
∣
r

z0

∣
∣
∣
∣

n

.

ApplyM-test, alongwith the convergence of the geometric series
∑ |r/z0|n.

3.104 Note that xx = ex log x = ∑∞
n=0

(x log x)n

n! and that the series on the right con-
verges uniformly on closed bounded intervals, which allows termwise integra-
tion. Therefore, with x = e−u/(n+1), we obtain

∫ 1

0
(x log x)ndx = (−1)n(n + 1)−(n+1)

∫ +∞

0
une−udu = (−1)n(n + 1)−(n+1)n!.

Hence we obtain
∫ 1
0 xxdx = ∑∞

n=0
1
n!

∫ 1
0 (x log x)ndx = ∑∞

n=1
(−1)n+1

nn . The first
integral is analogous.

3.107 Let y ∈ x + r B(0; 1). Then y = x + tr for some t ∈ B(0; 1). Thus ‖y − x‖ =
r‖t‖ < r which implies y ∈ B(x; r). All other inclusions are similar.

3.110 It is enough to show that Y is a linear subspace of X. Let x, y ∈ Y , and a, b be
scalars. Then there exist sequences {xn} and {yn} in Y, convergent to x and y,
respectively. Therefore, {axn + byn} is a sequence in Y, convergent to ax + by.
Hence ax + by ∈ Y .

3.111 Let y ∈ (E + x)′. Choose a sequence {zn} of distinct points from E + x such
that zn −→ y. Then {zn − x} is a sequence of distinct points from E, convergent
to y − x . If E is closed, we have y − x ∈ E .Hence y ∈ E + x . This proves that
E + x is closed.

Let E be open and y ∈ E + x . Then y − x ∈ E . Since E is open there exists
some r > 0 such that B(y − x; r) ⊂ E . Hence B(y; r) ⊂ E + x . This proves
that E + x is an open set. Similarly, one can prove the remaining parts.

3.113 True. By Theorem 3.38, we have B(y; s) ∩ B(x; r) = B(y; s) ∩ B[x; r ]. Sup-
pose that ‖x − y‖ < r + s. Let t := 1 − r

‖x−y‖ and z := t x + (1 − t)y. Then
‖z − x‖ = |1 − t |‖x − y‖ = r and‖z − t‖ = |t |‖x − y‖ = ‖x − y‖ − r < r +
s − r = s. Hence z ∈ B(y; s) ∩ B[x; r ].
Conversely, suppose B(y; s) ∩ B[x; r ] �= ∅. Let z ∈ B(y; s) ∩ B[x; r ]. Thus
‖z − x‖ ≤ r and ‖z − y‖ < s. By triangle inequality, ‖x − y‖ < r + s.

3.115 Suppose {xn + Y } −→ x + Y in X/Y. Then |||(xn − x) + Y ||| −→ 0, that is,
‖(xn − x) + yn‖ −→ 0, for a sequence {yn} ⊂ Y. Hence xn + yn −→ x, in X,

for a sequence {yn} ⊂ Y.

Conversely, if {xn + yn} −→ x in X, for some sequence {yn} in Y, then

|||(xn + Y ) − (x + Y )||| = |||(xn − x) + Y ||| ≤ ‖xn − x + yn‖ −→ 0.

Hence {xn + Y } −→ x + Y in X/Y.
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Chapter 4
Completeness

Roughly speaking, a metric space X is complete if every sequence in X, that attempts
to converge, finds a buddy in X for that purpose. In other words, X is incomplete if
it lacks some ‘good’ points. However, it is always possible to extend an incomplete
space to a complete one, by appending all such missing ‘good’ points.

This chapter starts with a brief introduction to complete metric spaces, followed
by itsmost important application; theBanachContraction Principle. Thenwe provide
various characterizations of completeness, in terms of Cantor intersection property
and totally bounded sets. The completion of a metric space is discussed in a sep-
arate section where we establish that the Cauchy completion of Q is isometric to
its Dedekind completion. Finally, we present various Banach spaces, including the
space of continuous functions, and some results regarding absolute and unconditional
convergence.

4.1 Introduction

Ametric space X is said to be complete if every Cauchy sequence in X is convergent
in X.

As a convention, we shall call the empty set to be complete. Therefore, a subset
S of a metric space (X, d) will be called complete if either S = ∅ or (S, d) forms a
complete subspace.

Examples 4.1 (a) Every finite-dimensional Euclidean space is complete.
(b) (0, 1) is not a complete subspace of R.

(c) Every discrete metric space is complete.

Proof (a) By Theorem 2.26, every Cauchy sequence in Rm is convergent in Rm .

(b) Note that {1/n} is a Cauchy sequence, but not convergent in (0, 1).
(c) If {xn} is a Cauchy sequence in a discrete metric space (X, d), then there exists

some N ∈ N such that for all n,m ≥ N , we have d(xn, xm) < 1 which implies
xn = xm . Therefore, {xn} is eventually constant and hence convergent in X . �

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Theorem 4.2 If Y is a complete subspace of a metric space X, then Y is a closed
subset of X.

Proof Pick any x ∈ Y . Then there exists a sequence {yn} from Y such that yn −→ x .
Since {yn} is convergent in X, it must be a Cauchy sequence. Since Y is complete,
there exists some y ∈ Y such that yn −→ y. Since yn −→ x, by Theorem 2.23,
x = y ∈ Y. Hence, Y ⊂ Y, that is, Y is a closed subset of X. �

Therefore, complete subspaces are closed subsets. The converse is false, as (0, 1)
is a closed subset of itself, but not complete. However, closed subspaces of complete
spaces are complete.

Theorem 4.3 If Y is a closed subset of a complete metric space X, then Y is com-
plete.

Proof If Y = ∅, then it is complete by definition. Suppose Y �= ∅. Let {yn} be a
Cauchy sequence inY.Then {yn} is also aCauchy sequence in X.Since X is complete,
there exists x ∈ X such that yn −→ x . Since a sequence from Y converges to x, we
have x ∈ Y . Since Y is closed, Y = Y and thence x ∈ Y. So {yn} converges to a point
of Y. Hence, Y is complete. �

We will provide various characterizations of completeness in exercises and in
Sect. 4.3.

Remark 4.4 The fundamental fact that any two non-parallel planar lines intersect
and the Euclidean construction of an equilateral triangle with a given line segment
as its base depends on the completeness property of the Euclidean plane.

Exercise 4.1 Prove that N is a complete subspace of R, while Q is not complete.

Exercise 4.2 Prove that completeness is independent of the embedded space, that
is, if E ⊂ Y ⊂ X, then E is complete in X if and only if E is complete in Y.

Exercise 4.3 Let d(x, y) := | tan−1 x − tan−1 y| for all x, y ∈ R. Prove that d is a
metric on R. Is (R, d) a complete metric space?

Exercise 4.4 Let X := [1,+∞). Prove that d(x, y) := ∣
∣ 1
x − 1

y

∣
∣ for all x, y ≥ 1

defines a metric on X. Is (X, d) a complete metric space?

Exercise 4.5 Let {xn} be a sequence from a metric space (X, d). Assume that there
exists some x0 ∈ X such that xn −→ x0. Prove that {xn : n ≥ 0} is a complete sub-
space of (X, d).

Exercise 4.6 Prove that a metric space X is complete if and only if every countable
closed subset of X is complete.

Exercise 4.7 Prove that a metric space X is complete if and only if every closed ball
in X is a complete subspace of X.
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Exercise 4.8 Let X be a metric space and x ∈ X. Prove that X is complete if and
only if for every closed ball of X, centered at x is a complete subspace.

Exercise 4.9 Let (X, d) be a metric space. Prove that
√
d is also a metric on X. Is

it true that (X, d) is complete if and only if (X,
√
d) is complete?

Exercise 4.10 Let {xn} and {yn} be Cauchy sequences in a complete metric space.
Prove that these have same limit if and only if d(xn, yn) −→ 0.

Exercise 4.11 Let X be a metric space. Prove that

(a) finite union of complete subspaces of X is a complete subspace.
(b) arbitrary intersection of complete subspaces of X is a complete subspace.

Exercise 4.12 Let (X, d) be a metric space and

ρ(x, y) := d(x, y)

1 + d(x, y)
for all x, y ∈ X.

Let {xn} be a sequence in X and x ∈ X. Prove the following:

(a) ρ is also a metric on X.

(b) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X, ρ).

(c) xn −→ x in (X, d) if and only if xn −→ x in (X, ρ).

(d) (X, d) is complete if and only if (X, ρ) is complete.

Exercise 4.13 Let (X, d) be a metric space and

η(x, y) := min{1, d(x, y)} for all x, y ∈ X.

Let {xn} be a sequence in X and x ∈ X. Prove the following:

(a) η is also a metric on X.

(b) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X, η).

(c) xn −→ x in (X, d) if and only if xn −→ x in (X, η).

(d) (X, d) is complete if and only if (X, η) is complete.

Exercise 4.14 Prove that a metric space X is complete if and only if every sequence
{xn} in X satisfying

∑∞
n=1 d(xn+1, xn) < ∞, is convergent in X.

Exercise 4.15 Let X,Y be metric spaces such that Y is complete. Let c be a limit
point of X and { fn} be a sequence of X −→ Y functions, uniformly convergent to a
function f on X. If each fn has a limit at c, then prove that so does f. Further show
that

lim
x→c

f (x) = lim
n→∞ lim

x→c
fn(x).
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Exercise 4.16 For x, y ∈ R \ Q, let d(x, y) = 0 if x = y. Otherwise, define
d(x, y) := 1

n+1 , where n is the first index where the continued fraction expansions
of x and y differ. Prove that d is a complete metric on R \ Q.

Exercise 4.17 Prove that the ultrametric space (X, ρr ) of Example 2.5 is complete.

Exercise 4.18 Let X,Y be metric spaces and f : X −→ Y. If f maps Cauchy
sequences onto Cauchy sequences, prove that f is a continuous function on X.

When does the converse hold?

Exercise 4.19 (Snipes, 1977 [1]) Let (X, d), (Y, ρ) be metric spaces such that Y is
complete. Let A ⊂ X such that A = X, and let f : A −→ Y mapsCauchy sequences
onto Cauchy sequences. Prove that there exists a continuous function F : X −→ Y
such that F |A = f.

4.2 Banach Contraction Principle

Solving an equation of the form f (x) = 0, is an important task in mathematics. It is
equivalent to solving an equation of the form g(x) = x . If f is a ‘nice’ function on
a complete metric space, by Banach contraction principle, such solutions exist.

Definition 4.5 Let A be any set and f : A −→ A be a function. A point a ∈ A is
said to be a fixed point of f, if f (a) = a.

Definition 4.6 Let (X, d) be a metric space. A function f : (X, d) −→ (X, d) is
said to be a strict contraction, if it satisfies theLipschitz conditionwith someLipschitz
constant less than 1, that is, if there exists some α ∈ [0, 1) such that

d
(

f (x), f (y)
) ≤ αd(x, y) for all x, y ∈ X.

We now present the Banach contraction principle, also known as the Banach
fixed point theorem, the contraction mapping theorem, shrinking lemma, Banach-
Cacciopoli principle, and the contraction principle.

Theorem 4.7 (Banach, 1922) Every strict contraction on a complete metric space
has a unique fixed point.

Proof Let (X, d) be a complete metric space and f : (X, d) −→ (X, d) be a strict
contraction. Then there exists α ∈ [0, 1) such that

d( f (x), f (y)) ≤ αd(x, y) for all x, y ∈ X. (4.1)

The uniqueness part is clear, as if x and y are two distinct fixed points, then

d(x, y) = d( f (x), f (y)) ≤ αd(x, y) < d(x, y),
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a contradiction. For the existence part, let x0 ∈ X. We claim that the sequence
{ f n(x0)} is Cauchy. Applying induction on (4.1), for any n ∈ N, we obtain

d( f n+1(x0), f n(x0)) ≤ αd( f n(x0), f n−1(x0)) ≤ · · · ≤ αnd( f (x0), x0) = αnD0,

where D0 := d( f (x0), x0). Let ε > 0 be given. Since α ∈ [0, 1), the series∑∞
n=1 αn

converges. By the Cauchy criterion, there exists some m ∈ N such that

n2−1
∑

n=n1

αn <
ε

1 + D0
for all n2 > n1 > m.

Hence, for all n2 > n1 > m, the triangle inequality ensures that

d
(

f n2(x0), f n1(x0)
) ≤

n2−1
∑

n=n1

d
(

f n+1(x0), f n(x0)
) ≤ D0

n2−1
∑

n=n1

αn < ε. (4.2)

Therefore, the sequence { f n(x0)} is Cauchy and hence convergent. Let x ∈ X be such
that { f n(x0)} −→ x .By (4.1), the function f is continuous at x . Since { f n(x0)} −→
x, we have { f ( f n(x0))} −→ f (x). By Theorem 2.23, we have

f (x) = lim
n→∞ f n+1(x0) = lim

n→∞ f n(x0) = x .

Hence, x is a fixed point of f. �

Corollary 4.8 Let f : R −→ R be a differentiable function such that there exists
some α ∈ [0, 1) such that | f ′| < α, on R. Then f has a unique fixed point.

Proof Applying Mean Value Theorem, we obtain

| f (y) − f (x)| < α|y − x | for all x, y ∈ R.

Hence, f is a strict contraction and the result follows by Theorem 4.7. �

Example 4.9 The polynomial x6 + 7x − 1 has a unique solution in [0, 1].
Proof Let f (x) := 1−x6

7 for all x ∈ [0, 1]. Note that the fixed points of f are essen-
tially roots of the given polynomial. Further, we have

| f ′(x)| ≤ 6

7
< 1 for all x ∈ [0, 1].

By Corollary 4.8, f has a unique fixed point in [0, 1]. Hence the result. �

Remark 4.10 The proof of Theorem 4.7 provides an iterative method to approxi-
mate fixed points. The fixed point of f is essentially the limit of the sequence { f n(a)}
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for every a ∈ X.Also, from (4.2), we obtain a bound on the error at the nth-iteration,
given by

d( f n(x0), x) ≤ D0

∞
∑

k=n

αk = D0
αn

1 − α
for all n ∈ N.

Remarks 4.11 The Banach Contraction Principle (4.7) has various applications.
It is used in the proofs of the inverse function theorem for multivariate functions;
and the Picard-Lindelöf theorem about the existence and uniqueness of solutions to
certain ordinary differential equations (see [2, p. 221, Theorem 9.24] and [3, p. 12,
Theorem 3.1]).

There is amajor branch of analysis focused on fixed point theorems. In [4], chapter
15 is devoted to several types of such theorems.

Exercise 4.20 Is f : (X, d) −→ (X, d) a strict contraction, if

d( f (x), f (y)) < d(x, y) for all x, y ∈ X?

Exercise 4.21 A function f : X −→ X is said to be a shrinking map, if

d( f (x), f (y)) ≤ d(x, y) for all x, y ∈ X.

Prove that x �−→ x − x2/2 is a shrinking map, but not a contraction on [0, 1].
Exercise 4.22 Show that the function f : [1,+∞) −→ [1,+∞)definedas f (x) :=
x + 1

x is not a strict contraction.

Exercise 4.23 Let f : R −→ R be defined as f (x) := x − log(1 + ex ) for all x ∈
R. Prove that | f (x) − f (y)| < |x − y| for all x, y ∈ R and that f has no fixed point.

Exercise 4.24 Check whether the following functions are strict contractions on R

or not? If yes, also find the corresponding fixed points

f1(x) :=
√

x2 + 1, f2(x) := √|x | + 1 and f3(x) := π

2
+ x − tan−1 x .

Exercise 4.25 In Theorem 4.7, show that the conclusion won’t hold if instead of a
strict contraction, we assume d( f (x), f (y)) < d(x, y) for all x, y ∈ X.

Exercise 4.26 In Theorem 4.7, show that the completeness of X is not redundant.

Exercise 4.27 Does there exist any incomplete metric space X with a strict contrac-
tion f : X −→ X such that f has two different fixed points?

Exercise 4.28 Let X be a complete metric space and f : X −→ X be a continuous
function such that f k is a strict contraction, for some k ∈ N. Prove that f has a
unique fixed point.
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Exercise 4.29 Let X be a complete metric space,
∑∞

n=1 cn < ∞ and f : X −→ X
be a continuous function such that

d( f n(x), f n(y)) ≤ cnd(x, y) for all x, y ∈ X and for all n ∈ N.

Prove that f has a unique fixed point.

4.3 Characterizations of Completeness

In this section, we provide several characterizations of completeness. These arise
from two fundamental concepts: the Cantor Intersection Property and the notion of
total boundedness.

4.3.1 Cantor Intersection Property

Motivated by the Nested Interval Property (1.23), we define the Cantor Intersection
Property and will prove it to be equivalent to the notion of completeness.

A sequence of sets {En} is called a nested decreasing sequence, if

En ⊃ En+1 for all n ∈ N.

Let (X, d) be a metric space and E ⊂ X. The diameter of E is defined as

diam(E) := sup{d(x, y) : x, y ∈ E}.

Definition 4.12 Ametric space X is said to satisfy theCantor Intersection Property
if for every nested decreasing sequence {Fn} of nonempty closed subsets of X such
that diam(Fn) −→ 0, the intersection

⋂∞
n=1 Fn is a singleton set.

We shall prove that the completeness of a metric space is equivalent to the Cantor
Intersection Property. For that purpose, the following simple lemma is required.

Lemma 4.13 Let (X, d) be a metric space and A, B be subsets of X. Then

(a) A ⊂ B implies diam(A) ≤ diam(B) and
(b) diam(A) = diam(A).

Proof Part (a) is immediate from the definition of the diameter of a set. Hence, for
part (b), it is enough to prove that diam(A) ≤ diam(A). Let ε > 0 be given.

Pick any x, y ∈ A. Then there are some x ′, y′ ∈ A such that d(x, x ′) < ε and
d(y, y′) < ε. Hence,

d(x, y) ≤ d(x, x ′) + d(x ′, y′) + d(y′, y) < 2ε + diam(A).
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Since ε > 0 was arbitrary, we obtain d(x, y) ≤ diam(A) for all x, y ∈ A. Hence,
diam(A) ≤ diam(A) and the result follows. �

Theorem 4.14 Ametric space X is complete if and only if for every nested decreas-
ing sequence {Fn} of nonempty closed subsets of X with diam(Fn) −→ 0, we have
⋂∞

n=1 Fn �= ∅.

Proof Assume that X is a complete metric space. Let {Fn} be a nested decreasing
sequence of nonempty closed subsets of X such that diam(Fn) −→ 0. For each
n ∈ N, choose xn ∈ Fn.

We claim that the sequence {xn} is Cauchy. Let ε > 0 be given. Since
diam(Fn) −→ 0, there exists some m ∈ N such that diam(Fn) < ε for all n ≥ m.

For any n2 > n1 ≥ m, we have Fn ⊃ Fn+1 which implies xn1 , xn2 ∈ Fm and there-
fore, d(xn2 , xn1) ≤ diam(Fm) < ε. Hence, {xn} is a Cauchy sequence in X.

Since X is complete, there exists some x ∈ X such that xn −→ x . We claim
that x ∈ ⋂∞

n=1 Fn. Pick any n ∈ N. Since Fn is closed, Fn = Fn. Then, as above,
xk ∈ Fn for all k ≥ n. Thus, Fn contains the sequence {xk : k ≥ n}, convergent to x .
Therefore, x ∈ Fn = Fn. Hence, x ∈ ⋂∞

n=1 Fn.

Conversely, let {xn} be a Cauchy sequence in X and ε > 0 be given. Then there
exists some m ∈ N such that d(xn2 , xn1) < ε for all n2 > n1 ≥ m. For each n ∈ N,

consider the set En := {xk : k ≥ n}. Applying Lemma 4.13, we obtain diam(En) =
diam(En) ≤ ε for all n ≥ m.

Hence, {En} is a nested decreasing sequence of nonempty closed subsets of X
such that diam(En) −→ 0. By hypothesis

⋂∞
n=1 En �= ∅. Let x ∈ ⋂∞

n=1 En.

Also, for any n ≥ m, we have x, xn ∈ Em which implies d(x, xn) ≤ diam(Em)

= diam(Em) ≤ ε. Hence, xn −→ x and the result follows. �

Corollary 4.15 A metric space X is complete if and only if X satisfies the Cantor
Intersection Property.

Proof The converse is immediate by Theorem 4.14. For the only if part, let
{Fn} be a nested decreasing sequence of nonempty closed subsets of X such that
diam(Fn) −→ 0. Again by Theorem 4.14, we have

⋂∞
n=1 Fn �= ∅.

Let x, y ∈ ⋂∞
n=1 Fn.Then for alln ∈ N,wehave x, y ∈ Fn which implies that 0 <

d(x, y) ≤ diam(Fn). Since diam(Fn) −→ 0,we obtain d(x, y) = 0.Hence, x = y
and the result follows. �

TheCantor Intersection Property is also known as the nested set property.Another
related characterization of completeness will be provided in Theorem 5.20. Also, see
Exercise 7.31.

4.3.2 Totally Bounded Sets

Definition 4.16 A subset E of a metric space X is said to be totally bounded if for
every ε > 0, there exist finitely many x1, . . . , xn ∈ X such that E ⊂ ⋃n

i=1 B(xi ; ε).
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Examples 4.17 (a) Any finite space is totally bounded.
(b) The set of natural numbers N is not totally bounded.
(c) Every subset of a totally bounded set is totally bounded.
(d) The set of real numbers R is not totally bounded.

Proof (a) If X is a finite metric space, then for every ε > 0, we have X =
⋃

x∈X B(x; ε) and hence X is totally bounded.
(b) If N is totally bounded, there exist finitely natural numbers n1 < · · · < nk such

that

N ⊂
k

⋃

i=1

{x ∈ N : |x − n j | < 1} =
k

⋃

i=1

{n j } = {n1, . . . , nk}.

This implies that N is bounded above by nk, a contradiction.
(c) Immediate from Definition 4.16.
(d) If R is totally bounded, by (c), then so is its subspace N. This contradicts (b). �

Theorem 4.18 Totally bounded subsets of metric spaces are bounded.

Proof Let E be a totally bounded subset of a metric space (X, d). Then there are
finitely many x1, . . . , xn ∈ X such that E ⊂ ⋃n

i=1 B(xi ; 1). Let

M := max{d(x1, xi ) : i = 1, . . . , n} + 1.

If x ∈ E, then there exists some i such that x ∈ B(xi ; 1) and therefore, we have
d(x, x1) ≤ d(x, xi ) + d(xi , x1) < M. That is x ∈ B(x1; M). Consequently, E ⊂
B(x1; M) and hence E is a bounded subset of X. �

The converse of Theorem 4.18 is not true.

Example 4.19 Let X = N, equipped with the discrete metric. Then X is bounded,
but not totally bounded.

However, the converse holds for subspaces of finite-dimensional Euclidean spaces.

Theorem 4.20 Bounded subsets of Rn are totally bounded.

Proof Let E be a bounded subset of Rn and let ε > 0 be given. Since E is
bounded, there exists some R > 0 such that E ⊂ B(0; R). Then E ⊂ B(0; R) ⊂
∏n

i=1[−R, R].
Let m ∈ N be such that

√
nR/m < ε. Partition the interval [−R, R] into 2m

intervals of equal length R/m. Therefore, our hypercube is divided into (2m)n

smaller hypercubes, each having diameter
√
nR/m < ε. Let x1, x2, . . . , x(2m)n be

any arbitrary points, chosen one from each of these hypercubes. Then we have
E ⊂ ⋃(2m)n

k=1 B(xi ; ε). Hence the result. �

Lemma 4.21 Let {xn} be any sequence in a metric space (X, d), {yn} be any per-
mutation of {xn}, and x ∈ X.
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(a) If {xn} is Cauchy, then so is {yn}.
(b) If xx −→ x, then yn −→ x .

Proof Weprove part (a) only, as (b) is analogous. Let ε > 0 be given, and assume that
{xn} is Cauchy. Then there exists some m ∈ N such that d(xn2 , xn1) < ε for all n2 >

n1 > m. Since {yn} is a permutation of {xn}, there exists a bijection τ : N −→ N

such that
yn = xτ(n) for all n ∈ N.

Let M := max{τ−1(1), . . . , τ−1(m)}. Then for n2 > n1 > M, both τ(n2) and τ(n1)
are greater than m. Consequently,

d(yn2 , yn1) = d(xτ(n2), xτ(n1)) < ε.

Hence, {yn} is a Cauchy sequence. �

Theorem 4.22 A metric space X is totally bounded if and only if every sequence in
X has a Cauchy subsequence.

Proof The converse is easy. Assume that X is not totally bounded. Then there exists
some ε > 0 such that X cannot be contained in any finite union of balls with radius
ε. Let x1 ∈ X. If x1, x2 . . . , xn are chosen from X, then X �⊂ ⋃n

j=1 B(x j ; ε).Choose
xn+1 ∈ X \ ⋃n

j=1 B(x j ; ε). Therefore, for all n2 > n1,we have xn2 /∈ B(xn1; ε), that
is, d(xn2 , xn1) ≥ ε. Hence, {xn} has no Cauchy subsequence.

Toward the necessity part, suppose that (X, d) is totally bounded. Let {an} be a
sequence in X and E := {an : n ∈ N}. If E is a finite set, at least one term of {an}
repeats infinitely often. Consequently, it has a convergent subsequence, essentially a
corresponding constant subsequence.

Now consider the case when E is an infinite set. Being a subset of a totally
bounded space, E is totally bounded. So there exists a finite set F1 ⊂ E such that
E ⊂ ⋃

x∈F1B
(

x; 1). Since E is an infinite set, there exists some x1 ∈ F1 such that
E ∩ B(x1; 1) is infinite.

Note that the subset E ∩ B(x1; 1) \ {x1} of E is infinite and totally bounded.
Hence, it contains a finite subset F2 and is contained in the union

⋃

x∈F2B
(

x; 1/2).
Thus, there exists x2 ∈ F2 such that E ∩ B(x1; 1) ∩ B

(

x2; 1/2
)

is an infinite set.
Continuing like this, we obtain a sequence {xn} of distinct terms from E such that

xn ∈ E ∩ ( ⋂

i<n

B
(

xi ; 1/ i
))

for all n ∈ N.

Therefore, for every i ≥ n ≥ 1,we have xi ∈ B
(

xn; 1/n
)

.Hence, if i > j ≥ n ≥ 1,
we obtain

d(xi , x j ) ≤ d(xi , xn) + d(xn, x j ) ≤ 2

n
.
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Hence, {xn} is Cauchy in X. Since {xn} is a sequence of distinct terms from E, it
is a permutation of some subsequence of {an}, say {ank }. Since {xn} is Cauchy, by
Lemma 4.21, {ank } is also a Cauchy subsequence of {an}. Hence the result. �

Theorem 4.23 A metric space X is complete if and only if every infinite totally
bounded subset of X has a limit point in X.

Proof Let X be complete and E be an infinite totally bounded subset of X. Choose
a sequence {xn} of distinct terms from E . By Theorem 4.22, {xn} has a Cauchy
subsequence, say {xnk }. Since X is complete, there exists some x ∈ X such that
xnk −→ x . Hence, x is a limit point of E, in X.

Conversely, let {xn} be a Cauchy sequence in X and E := {xn : n ∈ N}. If E is a
finite set, as in Theorem 4.22, {xn} has a convergence subsequence.

Consider the casewhen E is an infinite set. By Lemma 4.21 and Theorem 4.22, the
set E is totally bounded. By hypothesis, E has a limit point in X, say x . Therefore,
there exists a sequence in E, say {yn}, convergent to x . Note that this sequence is a
permutation of some subsequence of {xn}, say {xnk }. Applying Lemma 4.21 again,
we have {xnk } −→ x .

Hence, in both cases, the Cauchy sequence {xn} has a subsequence, convergent
in X. Applying Theorem 2.24, {xn} is convergent in X. Hence the result. �

Note that the Bolzano-Weierstrass Property (2.27) becomes an immediate conse-
quence of Theorems 4.20 and 4.23.

Corollary 4.24 Every infinite bounded subset of Rn has a limit point in Rn.

Note that the direct analogue of Theorem 1.23 is not true in general metric space.

Example 4.25 Consider X = N, equipped with the discrete metric and let Fn :=
{m ∈ X : m ≥ n} for all n ∈ N. Then {Fn} is a nested decreasing sequence of
nonempty closed bounded subsets of X while

⋂∞
n=1 Fn = ∅. (Note that here X is

even complete).

However, we have the following generalization of Theorem 1.23.

Theorem 4.26 A metric space X is complete if and only if the intersection of every
nested decreasing sequence of nonempty closed totally bounded subsets of X is
nonempty.

Proof Assume that X is complete and {Fn} be a nested decreasing sequence of
nonempty closed totally bounded subsets of X. For each n ∈ N, choose xn ∈ Fn.

Write E := {xn : n ∈ N}. If E is finite, as in Theorem 4.22, {xn} has a convergent
subsequence. Otherwise, by Theorem 4.23, E has a limit point, say x . Hence, {xn}
has a some subsequence {xnk }, convergent to x . Note that {xnk } is eventually in each
Fn. Since each Fn is closed, we obtain x ∈ ⋂∞

n=1 Fn.

Conversely, let {xn} be a Cauchy sequence in X.Define Fn := {xk : k ≥ n} for all
n ∈ N. Then each Fn is totally bounded. By hypothesis, let x ∈ ⋂∞

n=1 Fn. Since {xn}
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is Cauchy, diam(Fn) −→ 0. Therefore, for each k ∈ N, one can choose nk ∈ N such
that d(xnk , x) < 1/k. Without loss of generality, suppose nk < nk+1 for all k ∈ N.

Therefore, {xn} has a subsequence {xnk }, convergent to x .Consequently, {xn} −→ x .
Hence the result. �

Remark 4.27 Totally bounded sets are also known as pre-compact sets, as in The-
orem 5.26, we shall show that every compact set is totally bounded.

Exercise 4.30 Let E be a nonempty subset of R. Prove that diam(E) = sup E −
inf E .

Exercise 4.31 In Theorem 4.14, is the hypothesis ‘diam(Fn) −→ 0’ redundant?

Exercise 4.32 In Theorem 4.14, prove that the hypothesis, that ‘every Fn is closed’
can be replaced with ‘there exists some m ∈ N such that Fn is closed, for every
n > m.’ Also, show that no other hypothesis in Theorem 4.14 is redundant.

Exercise 4.33 Is any hypothesis in Theorem 4.26 redundant?

Exercise 4.34 Use Cantor Intersection Property to conclude that Q and (0, 1) are
not complete subspaces of R.

Exercise 4.35 Let d be a metric on R such that (R, d) is a complete metric space.
Let {Fn} be a nested decreasing sequence of nonempty closed subsets of (R, d) such
that {diam(Fn)} is a bounded sequence. Prove or disprove:

⋂∞
n=1 Fn �= ∅.

Exercise 4.36 Does there exist any generalization of Exercise 4.56 to Rn?

Exercise 4.37 Let d(x, y) := min{1, |x − y|} for all x, y ∈ R. Prove that (R, d) is
a bounded metric space, which is not totally bounded.

Exercise 4.38 Prove that the subsets of totally bounded sets are also totally bounded.

Exercise 4.39 If E �= ∅, prove that x1, . . . , xn in Definition 4.16 can be taken in E .

Exercise 4.40 Let {xn} be a Cauchy sequence and E := {xn : n ∈ N}. Prove that
every sequence with terms from E is Cauchy.

Exercise 4.41 Write a proof for the second part of Lemma 4.21.

Exercise 4.42 Show that Theorem 4.20, is not true for general metric spaces.

Exercise 4.43 Does there exist a metric space, other than a subspace of some Rn,

in which every bounded set is totally bounded?

Exercise 4.44 Does there exist a bounded non-discrete space which is not totally
bounded?

Exercise 4.45 Use Theorem 4.23 to show that Q is not a complete subspace of R.
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Exercise 4.46 Prove that a subset E of a metric space is totally bounded if and only
if for every ε > 0, there exist finitely many sets E1, . . . , En such that E = ⋃n

i=1 Ei

and diam(Ei ) < ε for all i.

Exercise 4.47 Prove that a subset E of a metric space is totally bounded if and
only if for every ε > 0, there exist finitely many closed sets E1, . . . , En such that
E ⊂ ⋃n

i=1 Ei and diam(Ei ) < ε for all i.

Exercise 4.48 Prove that a subset E of a metric space is totally bounded if and only
if E is totally bounded.

Exercise 4.49 If E is totally bounded, prove that so is E ′, that is, the set of limit
points of E . Is the converse true?

Exercise 4.50 Prove that the notion of totally bounded sets is independent of the
embedded space. That is, if X is a metric space and E ⊂ Y ⊂ X, then E is totally
bounded in X if and only if E is totally bounded in Y.

Exercise 4.51 Prove that a set E is not totally bounded if and only if E has an infinite
subspace, in which every set is open as well as closed.

Exercise 4.52 Prove that a subset E of a metric space (X, d) is totally bounded if
and only if every infinite subset of E contains a sequence {xn} such that d(xn+1, xn) <
1
2n for all n ∈ N.

Exercise 4.53 Prove that a metric space (X, d) is totally bounded if and only if
every sequence {xn} in X contains a subsequence {xnk } satisfying d(xnk , xnk+1) <
1
2k for all k ∈ N.

Exercise 4.54 Let X := (0,+∞) and d(x, y) := ∣
∣ 1
x − 1

y

∣
∣ for all x, y ∈ X. Prove

that every bounded subset of (X, d) is totally bounded.

Exercise 4.55 Does there exist a closed bounded subset of �∞, which is not totally
bounded?

Exercise 4.56 Let {In} be a sequence of closed intervals such that In ∩ Im �= ∅
for all m �= n. Prove that

⋂∞
n=1 In �= ∅.

Exercise 4.57 (Kuratowski, 1930 [5]) Let (X, d) be a metric space. For every
subset A of X, define

α(A) := inf{r ≥ 0 : A can be covered by finitely many

subsets of X, each with diameter < r}.

(a) Prove that A is totally bounded if and only if α(A) = 0. (So α(A)may be termed
as the measure of non-total boundedness of A.)

(b) Prove that X is complete if and only if for every nested decreasing sequence {An}
of nonempty closed subsets of X such thatα(An) −→ 0,we have

⋂∞
n=1 An �= ∅.
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4.4 Completion of a Metric Space

If a metric space X is not complete, then it lacks limits of some of its Cauchy
sequences. Can we somehow get those limits and find a super-space of X, which is
complete?

In this section, we show that such ‘complete super-spaces’ always exist. We can
embed every metric space X as a dense subspace of a complete metric space. For
this purpose, we first present the notions of isometry and denseness.

Definition 4.28 A subset E of a metric space X is said to be dense in X if E = X.

Therefore, E is dense in X if and only if X ⊂ E . If A ⊂ B ⊂ X, we shall say that
A is dense in B if B ⊂ A which holds if and only if A ∩ B = B.

Examples 4.29 (a) The sets Q,R \ Q and R \ Z are all dense subsets of R.

(b) [0, 1] is not dense in R.

(c) No proper subspace of a discrete metric space X is dense in X.

Definition 4.30 Let (X, d) and (Y, ρ) be metric spaces. A function f : X −→ Y is
said to be an isometry if

ρ( f (x), f (y)) = d(x, y) for all x, y ∈ X.

Clearly, every isometry is an injective continuous function. In fact, if f is an isometry
of X into Y, then Y contains a copy of X. That is, X is embedded into Y.

Definition 4.31 Suppose X is a metric space. A metric space Y is said to be a
completion of X if Y is complete and X is isometric to a dense subset Y, that is, there
exists an isometry f : X −→ Y such that f (X) = Y.

Examples 4.32 (a) Every complete metric space is the completion of itself.
(b) R and [0, 1] are completions of Q and (0, 1), respectively.

We will show that every metric space has a completion, which is unique upto
isometry. The next lemma is required in that direction.

Lemma 4.33 Let X be a metric space having a dense subset A such that every
Cauchy sequence in A is convergent in X. Then X is complete.

Proof Let {xn} be any Cauchy sequence in X and ε > 0 be given. Then there exists
some N1 ∈ N such that

d(xn, xm) <
ε

2
for all n > m ≥ N1.

Since A = X, for every n ∈ N, one can choose an ∈ A such that d(xn, an) < ε
2n .

Then {an} is a Cauchy sequence in A, as for every n > m > N1, we have
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d(an, am) ≤ d(an, xn) + d(xn, xm) + d(xm, am) <
ε

2n
+ ε

2
+ ε

2m
< ε.

By hypothesis, an −→ x for some x ∈ X. Thus, there exists N2 ∈ N such that
d(an, x) < ε

2 for all n > N2. Therefore, for all n > N2, we obtain

d(xn, x) ≤ d(xn, an) + d(an, x) <
ε

2n
+ ε

2
< ε.

This proves that {xn} −→ x, in X. Hence the result. �
Theorem 4.34 (Cantor) Every metric space has a completion.

Proof Let (X, d) be an arbitrary metric space. The main idea of this proof is that two
convergent sequences {xn} and {yn}have the same limit if andonly ifd(xn, yn) −→ 0.
Therefore, we first classify Cauchy sequences in X which could converge to the same
limit, even in the desirable super-space.

We prove the result in six steps. In the first step, we construct (X∗, d∗), which
will be established as the completion of (X, d), in the latter steps.

Step I. Defining (X∗, d∗). Let 	 denote the family of Cauchy sequences in X. For
sequences {xn}, {yn} ∈ X∗, define

{xn} ∼ {yn} if and only if lim
n→∞ d(xn, yn) = 0.

Then ∼ is an equivalence relation on 	. Let X∗ denote the set of equivalence
classes of X with respect to ∼ . If [{xn}] denote the equivalence class of the
sequence {xn} ∈ 	, then X∗ = X/∼ = {[{xn}] : {xn} ∈ 	}. Define d∗ : X∗ ×
X∗ −→ [0,∞) as follows:

d∗([{xn}], [{yn}]
) := lim

n→∞ d(xn, yn) for all [{xn}], [{yn}] ∈ X∗.

Step II. d∗ is well-defined on X∗. Note that the above definition of d∗ uses specific
Cauchy sequences {xn} and {yn} representing the classes, on which d∗ is defined.
Therefore, it is important to ensure that this definition is independent of the
representatives sequences from these classes.
Let {x ′

n}, {y′
n} be Cauchy sequences in X such that {x ′

n} ∼ {xn} and {y′
n} ∼ {yn}.

Then
lim
n→∞ d(xn, x

′
n) = 0 = lim

n→∞ d(yn, y
′
n).

Applying triangle inequality, we obtain

d(xn, yn) ≤ d(xn, x
′
n) + d(x ′

n, y
′
n) + d(y′

n, yn)

and d(x ′
n, y

′
n) ≤ d(x ′

n, xn) + d(xn, yn) + d(yn, y
′
n).

Therefore, |d(xn, yn) − d(x ′
n, y

′
n)| ≤ d(x ′

n, xn) + d(yn, y′
n).Passing limit n −→

∞, we have
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lim
n→∞ d(xn, yn) = lim

n→∞ d(x ′
n, y

′
n).

Step III. d∗ is a metric on X∗. We leave it for the readers to show that each of the three
properties of the metric d∗ follows from the corresponding property of d on X.

Step IV. Embedding X into X∗. Define f : X −→ X∗ as f (x) := [{xn}], where xn =
x for all n ∈ N. Then for any x, y ∈ X, we have

d∗( f (x), f (y)) = lim
n→∞ d(x, y) = d(x, y).

Therefore, f is an isometry from X into X∗.
Step V. f (X) is a dense subset of X∗ : Let x∗ = [{xn}] ∈ X∗, and let ε > 0 be given.

Since {xn} is Cauchy, there exists N ∈ N such that d(xn, xm) < ε
2 for all n >

m ≥ N . For y∗ := f (xN ),

d∗(x∗, y∗) = lim
n→∞ d(xn, xN ) ≤ ε

2
< ε.

Therefore, we obtain y∗ ∈ Bd∗(x∗; ε) ∩ f (X) which implies that x∗ ∈ f (X).

Hence, f (X) is a dense subset of (X∗, d∗).
Step VI. (X∗, d∗) is a complete metric space. By Lemma 4.33, it is enough to show that

every Cauchy sequence in f (X) is convergent.
Let {yn} be any Cauchy sequence in f (X). Then for each n ∈ N there exists
some xn ∈ X such that f (xn) = yn. Since f is an isometry, we have

d(xn, xm) = d∗( f (xn), f (xm)) for all m, n ∈ N.

Hence, {xn} is a Cauchy sequence in X. Write x∗ := [{xn}] ∈ X∗. We claim that
limn→∞ f (xn) = x∗. Let ε > 0 be given. Pick any N ∈ N such that d(xn, xm) <

ε/2 for all n > m ≥ N . Then for each m ≥ N , we obtain

d∗( f (xm), x∗) = lim
n→∞ d(xm, xn) ≤ ε

2
< ε.

This proves that limn→∞ f (xn) = x∗. By Lemma 4.33, X∗ is complete.

Therefore, (X∗, d∗) is a completion of (X, d). Hence the result. �

Now we establish that the completion of a metric space is unique up to isometry.

Theorem 4.35 Let X1 and X2 be completions of a metric space X, with isometries
f1 : X −→ X1 and f2 : X −→ X2. Then there exists a unique isometry φ : X1 −→
X2 such that φ ◦ f1 ≡ f2.

Proof Since f1 is an isometry, f −1
1 : f1(X) −→ X is a surjective isometry. Also,

f2 is an isometry from X onto f2(X). Therefore, f2 ◦ f −1
1 : f1(X) −→ f2(X) is a

surjective isometry. Write g := f2 ◦ f −1
1 . Then
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g ◦ f1 = ( f2 ◦ f −1
1 ) ◦ f1 = f2 ◦ ( f −1

1 ◦ f1) = f2 ◦ IX = f2,

where IX represents the identity map from X onto itself. Similarly, there exists a
surjective isometry h : f2(X) −→ f1(X) such that h ◦ f2 = f1. Hence

h ◦ (g ◦ f1) = h ◦ f2 = f1 and g ◦ (h ◦ f2) = g ◦ f1 = f2.

Consequently, h ◦ g = I f1(X) and g ◦ h = I f2(X). Since f1(X) is dense in X1, one can
extend the identity map h ◦ g to X1 as h ◦ g = IX1 . Similarly, g ◦ h can be extended
to X2 such that g ◦ h = IX2 . Therefore, h = g−1. With φ := h ◦ g = IX1 , the result
holds. Hence the result. �

In the exercises section, we shall outline some other procedures to obtain the
completion of a metric space. However, due to pedagogical reasons, we advocate the
above method.

The Set of Real Numbers

The natural numbers or positive integers are often perceived as ‘God’ given numbers.
Peano, along with a few other mathematicians, proposed an axiomatic approach to
define these. We will also obtain the set of natural numbers from a standard set of
axioms in Appendix A.3.

The natural binary operations of addition and multiplication on the set of natural
numbers N, lead to negative numbers and fractions. One can show that the set Q of
rational numbers (fractions) is a field under these binary operations.

Let an := ∑n
k=0

1
k! for all n ∈ N. It is well known that {an} is a Cauchy sequence

of rational numbers, which is not convergent to any rational number. Therefore, the
metric space Q, under the usual metric, is not complete. Applying Theorems 4.34
and 4.35,Q has a unique completeness, sayQ∗. This defines the set of real numbers.

Dedekind proposed another axiomatic construction of the real number system R,

as a field extension of Q satisfying the least upper bound property (see [2, p. 17,
Appendix]).

In Theorem 1.28, starting with the least upper bound property, we established that
every Cauchy sequence of reals is convergent in R. Now we establish that the two
extensions are isometrically the same. Define f : Q∗ −→ R as

f ({rn}) := lim
n→∞ rn for all [{rn}] ∈ Q∗.

By Theorem 1.28 and the definition of Q∗, it can be shown that f is a well-defined
isometry. Hence, R and Q∗ are isometric.

Remarkably, Dedekind’s completionmakes an extensive use of the order structure
of Q, while Cauchy completion depends only upon the usual metric on Q.
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Finally, we invite the attention on the terminology that we inherited for the dif-
ferent number systems so far. Let us ponder upon the dictionary meanings of the
following two categories of words: (i) Natural, rational, real; and (ii) Negative, irra-
tional, imaginary, complex.

These words reflect exciting stories. Certain numbers were labeled as positive,
but only when people started accepting the negative numbers. When Pythagoreans
realized that

√
2 is not a fraction, it was termed as an irrational. Since then all

fractional numbers are called rational. Similarly, a class of numbers was labeled as
real numbers, when the imaginary number

√−1 established its existence. Now we
deal with even complex numbers very naturally, without finding any ‘complexity’
about them!

Remarks 4.36 Several proofs of elementary real analysis rely on the completeness
property of real numbers. In [6], alternative proofs to someof such results are provided
using tagged partitions of elementary real analysis. This inspired the authors of [7]
to use dyadic partitions for constructive proofs of the same results. Several results of
analysis are equivalent to the completeness property of reals. Such results along with
various other characterizations of the completeness property can be found in [8–10].
A thorough discussion on the real number system is given in [11]. Advanced math
students, who want to go beyond the standard textbook results about real numbers,
are referred to [12]. For the classification of complete metric spaces up to isometry,
see [13].

Exercise 4.58 Prove that d∗, as in the proof of Theorem 4.34, is a metric on X∗.

Exercise 4.59 Let X,Y be metric spaces, E be a dense subset of X and f, g be
continuous functions from X into Y. Prove that

(a) f (E) is dense in f (X).

(b) If f (x) = g(x) for all x ∈ E, then f (x) = g(x) for all x ∈ X.

Exercise 4.60 Let X,Y be metric spaces such that X is complete. If f : X −→ Y
is an isometry, prove that f (X) is a complete subspace of Y.

Exercise 4.61 Prove that f, defined as on page 105, is a well-defined isometry.

Exercise 4.62 If {xn} and {yn} are Cauchy sequences in a metric space (X, d), does
the sequence {d(xn, yn)} always converge?
Exercise 4.63 Deduce the Least Upper Bound Property from the Nested Interval
Property (1.23).

Exercise 4.64 Let (X, d) be any metric space and a ∈ X. For every x ∈ X, define
fx : X −→ R such that fx (t) := d(x, t) − d(a, t) for all t ∈ X. Prove that fx is a
bounded real valued function on X for all x ∈ X. Further show that sup{| fx (t) −
fy(t)| : t ∈ X} = d(x, y) for all x, y ∈ X.
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Exercise 4.65 Let (X, d) be a metric space and L∞(X) denote the collection of all
bounded real valued functions on X. Define

d∗( f, g) := sup
x∈X

| f (x) − g(x)| for all f, g ∈ L∞(X).

Prove that (L∞(X), d∗) is a complete metric space and there exists an isometry T :
X −→ L∞(X). Further show that the closure of T (X) inside L∞(X) is a completion
of X.

Exercise 4.66 Let X,Y be completemetric spaces, X0 is dense in X, and f : X0 −→
Y is an isometry such that f (X0) is dense in Y. Prove that f can be extended to X
such that f : X −→ Y is a surjective isometry.

Exercise 4.67 Suppose 1 ≤ p < ∞. Prove that the completion of (c00, ‖.‖p) is
given by the sequence space �p.

Exercise 4.68 Prove that the completion of c00, under ‖.‖∞ norm, is c0. (Recall that
c0 is the space of sequences which converge to 0).

Exercise 4.69 Let (X, d) be a metric space, {xn} be a Cauchy sequence in X, which
is not convergent in X, x∗ be any point outside X and X∗ := X ∪ {x∗}. Let F denote
the collection of closures of tails of {xn}. Define

d∗(x, y) :=

⎧

⎪⎪⎨

⎪⎪⎩

0 ; if x = y ∈ X∗,
d(x, y) ; if x, y ∈ X,

sup{d(z, F) : F ∈ F } ; if x = z ∈ X and y = x∗.
sup{d(z, F) : F ∈ F } ; if y = z ∈ X and x = x∗.

Prove that d∗ is a metric on X∗ and xn −→ x∗ in (X∗, d∗).

Exercise 4.70 Let (X, d), x∗ and X∗ be as in Exercise 4.69. Let F denote a collec-
tion of nonempty closed subsets of X such that

(a) for every A, B ∈ F , either A ⊂ B or B ⊂ A,

(b) inf{diam(F) : F ∈ F } = 0 and
(c)

⋂

F∈F F = ∅.

Let d∗ be defined on X∗ × X∗, as in Exercise 4.69. Prove that d∗ is a metric on X∗
and the closure of F in (X∗, d∗) is F ∪ {x∗} for all F ∈ F .

4.5 Banach Spaces

Recall that every normed linear space (X, ‖.‖) is a metric space with respect to the
induced metric defined as d(x, y) := ‖x − y‖ for all x, y ∈ X.
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Definition 4.37 A normed space is called Banach, if it is complete under the metric
induced by its norm. Complete inner product spaces are called Hilbert spaces.

Examples 4.38 (a) Rn and C are Hilbert spaces, and hence Banach spaces.
(b) The space (c00, ‖.‖1) as defined in Sect. 2.4, is not a Banach space. To see this,

let xn := (1, 2−1, . . . , 2−n, 0, 0, . . . ) for all n ∈ N. We leave it for the reader to
show that the sequence {xn} is Cauchy, but not convergent in (c00, ‖.‖1).

Remark 4.39 Every normed space is a metric space and hence has a completion.
In fact, there also exists a compatible norm on its completion (see Exercise 4.89).

Now we provide some important classes of Banach spaces. The first one is given
by some collections of continuous functions. Let X be a metric space and

C(X) := {

f : f is a continuous, complex valued, bounded function on X
}

.

For a function f ∈ C(X), the uniform (supremum) norm of f is defined as

‖ f ‖∞ := sup
{| f (x)| : x ∈ X

}

.

The terminology ‘uniform norm’ is consistent with ‘uniform convergence’ (see Exer-
cise 4.74). It can be shown that ‖.‖∞ is a norm on C(X). Moreover, (C(X), ‖.‖∞)

is a Banach space. In case X is a compact interval [a, b], we shall simply write
C[a, b] instead of C([a, b]). Unless specified, the default norm on C(X) or C[a, b]
will always be the uniform norm.

Theorem 4.40 (C(X), ‖.‖∞) is a Banach space.

Proof Let { fn} be a Cauchy sequence in C(X) and ε > 0 be given. Then there
exists some m ∈ N such that ‖ fn2 − fn1‖∞ < ε for all n2 > n1 ≥ m. Therefore, for
all x ∈ X we have

| fn2(x) − fn1(x)| ≤ ‖ fn2 − fn1‖∞ < ε for all n2 > n1 ≥ m. (4.3)

Then for each x ∈ X, { fn(x)} is a Cauchy sequence of complex numbers and
hence convergent. Define f (x) := limn→∞ fn(x) for all x ∈ X. In (4.3), passing
limit n1 −→ ∞ and replacing n2 with n, we obtain

| fn(x) − f (x)| ≤ ε for all n ≥ m and for all x ∈ X.

Hence, { fn} is uniformly convergent to f. By Theorem 3.31, f is continuous on X.

Since fm is bounded, | fm | < M on X for some M > 0.Therefore, | f (x)| ≤ | f (x) −
fm(x)| + | fm(x)| < ε + M for all x ∈ X. So, f ∈ C(X) and hence the result. �

Theorem 4.41 For every 1 ≤ p ≤ ∞, the sequence space �p is a Banach space.
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Proof Let K be the scalar field of �p and ε > 0 be given. Let {xk} be a Cauchy
sequence in �p. Then there exists some N ∈ N such that ‖xk − xm‖p < ε for all k >

m ≥ N . Let xk(n) denote the nth term of the sequence xk .
First suppose 1 ≤ p < ∞. Then for every k > m ≥ N and for all n ∈ N,we have

|xk(n) − xm(n)| ≤
( n

∑

j=1

|xk( j) − xm( j)|p
) 1

p

≤ ‖xk − xm‖p < ε. (4.4)

Therefore, for all n ∈ N, {xk(n)}k is Cauchy in K and hence there exists x(n) ∈ K

such that xk(n) −→ x(n), as k −→ ∞. Passing limit m −→ ∞ in (4.4),

( n
∑

j=1

|xk( j) − x( j)|p
) 1

p

≤ ε for all k ≥ N and for all n ∈ N. (4.5)

Write x := (x(1), . . . , x(n), . . . ).ApplyingMinkowski’s inequality inRn and (4.5),
for every n ∈ N, we conclude that

( n
∑

j=1

|x( j)|p
) 1

p

≤
( n

∑

j=1

|x( j) − xN ( j)|p
) 1

p

+
( n

∑

j=1

|xN ( j)|p
) 1

p

≤ ε +
( ∞

∑

j=1

|xN ( j)|p
) 1

p

.

Passing limit n −→ ∞, we have ‖x‖p ≤ ε + ‖xN‖p < ∞. Hence, x ∈ �p. Finally
passing limit n −→ ∞ in (4.5), we obtain ‖xk − x‖p ≤ ε for all k ≥ N . Therefore,
xk −→ x in �p.

Now suppose p = ∞. As earlier, for every m > k ≥ N , we have

|xk(n) − xm(n)| ≤ sup
j∈N

|xk( j) − xm( j)| = ‖xk − xm‖∞ < ε. (4.6)

Therefore, for every n ∈ N, the sequence {xk(n)}k is Cauchy in K and hence
there exists some x(n) ∈ K such that xk(n) −→ x(n), as k −→ ∞. Write x :=
(x(1), x(2), . . . , x(n), . . . ). Passing limit m −→ ∞ in (4.6), we obtain ‖xk −
x‖∞ ≤ ε for all k ≥ N . As earlier, one can conclude that x ∈ �∞. Hence, xk −→ x
in �∞. �

Next, we will provide a necessary and sufficient condition for a normed space to
be complete. Motivated by Theorem 1.36, we define the absolute convergence of a
series in normed spaces.

Definition 4.42 A series
∑∞

n=1 xn in a normed linear space (X, ‖.‖) is said to be
(a) convergent if there exists some x ∈ X such that the sequence of partial sums

{∑n
k=1 xk}n converges to x, in (X, ‖.‖). In this case, we write ∑∞

n=1 xn = x .
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(b) absolutely convergent if
∑∞

n=1 ‖xn‖ is convergent in R.

In general, an absolutely convergent series in a normed linear space may not be
convergent.

Example 4.43 Let X := c00, denote the collection of sequences of real numbers
which are eventually zero. For x = {xn} ∈ c00, define ‖x‖ := ∑∞

n=1
|xn |
2n .Let en ∈ c00

be a sequencewith all zeros, but having 1 at the nth place. It can be shown that (X, ‖.‖)
is a normed space over R,

∑∞
n=1 ‖en‖ = 2 < ∞, and the series

∑∞
n=1 en does not

converge in (X, ‖.‖).
Theorem 4.44 A normed linear space X is complete if and only if every absolutely
convergent series in X is convergent in X.

Proof The direct implication is analogous to Theorem 1.36. Assume that X is com-
plete. Let

∑∞
n=1 xn be an absolutely convergent series in X and

Pn := ∑n
k=1 xk for all n ∈ N.For ε > 0, let N ∈ N such that

∑n2
n=n1+1 ‖xn‖ < ε for all

n2 > n1 > N . Then for n2 > n1 > N ,

‖Pn2 − Pn1‖ = ∥
∥

n2∑

n=n1+1

xn
∥
∥ ≤

n2∑

n=n1+1

‖xn‖ < ε.

Therefore, {Pn} is a Cauchy sequence in X. Since X is complete, {Pn} is convergent
in X. Hence,

∑∞
n=1 xn is convergent in X.

Conversely, assume that every absolutely convergent series in X is convergent. Let
{xn} be a Cauchy sequence in X. By Theorem 2.24, it is enough to prove that it has
a convergent subsequence. For each k ∈ N, choose nk ∈ N such that ‖xn − xm‖ <
1
2k for all n,m ≥ nk .Without loss of generality, assume that nk < nk+1 for all k ∈ N.

Let y1 := xn1 and yk := xnk − xnk−1 for all k > 1. Then
∑∞

k=1 yk is a series in X
with kth partial sum xnk . Also, ‖yk‖ < 1

2k−1 for all k > 1. Consequently

∞
∑

k=1

‖yk‖ < ‖y1‖ +
∞

∑

k=2

1

2k−1
= ‖y1‖ + 1.

Since
∑∞

k=1 yk is absolutely convergent, by hypothesis,
∑∞

k=1 yk = y for some y ∈
X. Thus, the sequence of partial sums of

∑∞
k=1 yk, that is {xnk } is convergent in X.

Hence the result. �

Remark 4.45 By the virtue of Theorem 4.44, all the convergence tests for a series
of positive terms can be applied to Banach spaces, over the corresponding series of
absolute terms.

Let us now consider the following ‘proof’ for the divergence of the harmonic
series.

Suppose that
∑∞

n=1
1
n converges and let S denote this sum. Then
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S = 1 + 1

2
+ 1

3
+ . . . which implies

S

2
= 1

2
+ 1

4
+ 1

6
+ . . . .

Also, note that

1 + 1

3
+ 1

5
+ 1

7
+ · · · >

1

2
+ 1

4
+ 1

6
+ 1

8
+ · · · = S

2
.

Thus, S > S
2 + S

2 = S, a contradiction. Hence,
∑∞

n=1
1
n doesn’t converge. �

This ‘proof’ intrinsically assumes that all rearrangements of a convergent series
are convergent to a unique limit. This is true for absolutely convergent series of reals,
but not in general.

Definition 4.46 A series
∑∞

n=1 bn is called a rearrangement of another series
∑∞

n=1 an if there exists a bijection (also called a permutation) σ : N −→ N, such
that aσ(n) = bn for all n ∈ N.

Definition 4.47 A series
∑∞

n=1 xn in a normed linear space X is said to be

(a) unconditionally convergent if its every rearrangement is convergent in X.

(b) conditionally convergent if it is not unconditionally convergent.

Through our next few results, it will be established that the above notion of
conditional convergence is consistent with the same in standard calculus courses,
where a series of real numbers is called conditionally convergent if it is convergent
in R, but not absolutely.

Let us recall the Riemann Rearrangement Theorem.We omit its proof which can
be found in various standard textbooks on real analysis (e.g. see [2, Theorem 3.54,
p. 76]).

Theorem 4.48 Let
∑∞

n=1 an be a convergent series of reals, which is not absolutely
convergent and α ∈ [−∞,+∞]. Then there exists a bijection σ : N −→ N such that
∑∞

n=1 aσ(n) = α.

Hence, any convergent series of reals, which is not absolutely convergent is con-
ditionally convergent. For example, the alternating series

∑∞
n=1 (−1)n+1/n is one

such series.
By Riemann Rearrangement Theorem, every unconditionally convergent series

of real numbers is absolutely convergent. The converse is true in all Banach spaces.

Theorem 4.49 If
∑∞

n=1 xn is an absolutely convergent series in a Banach space X,

then
∑∞

n=1 xn is unconditionally convergent in X.

Proof Let
∑∞

n=1 xn be an absolutely convergent series in a Banach space X and
σ : N −→ N be any bijection. Let Sn and Tn denote the nth partial sums of

∑∞
n=1 xn

and
∑∞

n=1 xσ(n), respectively. We shall prove that limn→∞ Tn = limn→∞ Sn.
By Theorem 4.44, limn→∞ Sn = ∑∞

n=1 xn exists in X. Let ε > 0 be given. By
hypothesis, there exists N1 ∈ N such that

∑∞
n=N1

‖xn‖ < ε. Let
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N2 := max{σ−1(1), . . . , σ−1(N1)}.

Then for alln ≥ N2,both sums Tn and Sn will contain the terms x1, . . . , xN1 and hence
‖Sn − Tn‖ ≤ ∑n

i=N1+1 ‖xn‖ < ε.Since ε > 0was arbitrary, we obtain limn→∞ Tn =
limn→∞ Sn. �

The converse of Theorem 4.49 is not true.

Example 4.50 Consider the sequence space �2 over C and {en : n ∈ N} be as usual.
Then the series

∑∞
n=1

1
n en converges unconditionally in �2, but not absolutely con-

vergent.

Proof The series is not absolutely convergent, as

∞
∑

n=1

∥
∥
∥
∥

1

n
en

∥
∥
∥
∥

=
∞

∑

n=1

1

n
‖en‖ =

∞
∑

n=1

1

n
= ∞.

To see that it is unconditionally convergent, let σ : N −→ N be any bijection and
ε > 0 be given. Let x be the sequence with 1/n as its nth term. We claim that the
series

∑∞
n=1

eσ(n)

σ (n)
converges to x in �2.

First note that ‖x‖22 ≤ ∑∞
n=1

1
n2 < ∞ which implies that x ∈ �2. Since

∑∞
n=1

1
n2

is convergent in R, there exists some N ∈ N such that
∑

n>N
1
n2 < ε. Let m :=

max{σ−1(1), . . . , σ−1(N )}. Then σ(n) ≥ N for all n ≥ m. Therefore

∥
∥
∥
∥

k
∑

n=1

eσ(n)

σ (n)
− x

∥
∥
∥
∥

2

2

≤
∑

n>N

1

n2
< ε for all k ≥ m.

This establishes our claim. �

The converse of Theorem 4.49 is valid on finite-dimensional spaces. It can be
established by considering the series of scalars represented by the components of
terms of a given series.

A natural question is whether there exist any infinite-dimensional normed space,
in which unconditional convergence implies absolute convergence? The answer is
in the negative and was given by Dvoretzky and Rogers in [14].

Theorem 4.51 (Dvoretzky and Rogers, 1950) In every infinite-dimensional Banach
space, there exists an unconditionally convergent series which is not absolutely con-
vergent.

Hence, we obtain the following characterization of finite-dimensional Banach
spaces.

Theorem 4.52 Let X be a Banach space. Then X is finite-dimensional if and only
if every unconditionally convergent series in X is absolutely convergent.
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Example 4.53 The Riemann rearrangement theorem (4.48) is not true for series of
complex numbers. For example, no rearrangement of

∑∞
n=1

(−1)n+1

n converges to i .

Notes and Remarks 4.54 Note that in Definition 4.47(a), we did not assume that
all rearrangements of

∑∞
n=1 xn converge to the same limit. It is, in fact, true that if

all rearrangements of a series converge, then these converge to the same limit (see
[15, p. 99, Corollary 3.11]).

Various characterizations of unconditional convergence can be found in [15, p.
94, Theorem 3.10]. For a treatise on Rearrangements of series in Banach spaces, see
[16]. To explore the relationship between convergence and absolute convergence of
series in ordered fields, we refer [17]. In [18], there is an individual chapters devoted
to C(X). For a treatise devoted to algebraic properties of C[0, 1], see [19].
Exercise 4.71 Does there exist p ∈ [1,∞] such that {x ∈ �p : ‖x‖p ≤ 1} is not
complete?

Exercise 4.72 If
∑∞

n=1 xn is convergent in a Banach space X, prove that
∥
∥

∑∞
n=1 xn

∥
∥

≤ ∑∞
n=1 ‖xn‖.

Exercise 4.73 If Y is a complete subspace of a normed space X, prove that Y is
a closed subset of X. Is the converse true? Prove that the converse holds if X is a
Banach space.

Exercise 4.74 Prove that a sequence of functions { fn} in C(X) is

(a) uniformly convergent to a function f on X if and only if fn −→ f in
(C(X), ‖.‖∞).

(b) uniformly Cauchy if and only if { fn} is Cauchy in (C(X), ‖.‖∞).

Exercise 4.75 (Cauchy criterion) Prove that a series
∑∞

n=1 xn in a normed space is
convergent if andonly if for every ε > 0 there exists N ∈ N such that

∥
∥

∑n2
n=n1+1 xn

∥
∥ <

ε for all n2 > n1 > N .

Exercise 4.76 Let (X, ‖.‖) and {en : n ∈ N} be as in Example 4.43. Show that
(X, ‖.‖) is a normed linear space over R,

∑∞
n=1 ‖en‖ = 2 < ∞, and

∑∞
n=1 en does

not converge in c00.

Exercise 4.77 In (Rn, ‖.‖1), prove that unconditional convergence implies absolute
convergence.

Exercise 4.78 Does there exist a series of reals, whose all rearrangements are con-
vergent, but not to the same sum?

Exercise 4.79 Let {xn} be a sequence of reals, convergent to 0. Prove that there
exists a sequence {an} from {−1, 1} such that

∑∞
n=1 anxn is convergent.



114 4 Completeness

Exercise 4.80 Let
∑∞

n=1 xn be a series of reals and x ∈ R.Assume that there exists a
nonempty collection of permutationsP ofN such that

∑∞
n=1 xπ(n) = x for all π ∈ P

and
∑∞

n=1 xπ(n) diverges, for all permutations π ofN, outsideP. Prove that
∑∞

n=1 xn
converges absolutely.

Exercise 4.81 Let
∑∞

n=1 xn be a convergent series in a normed linear space X and
m ∈ N. If

∑∞
n=1 xπ(n) be a rearrangement of this series by shifting every term at most

m places forward, prove that
∑∞

n=1 xπ(n) = ∑∞
n=1 xn.

Exercise 4.82 Define φ( f ) := ∫ 1
0 f for all f ∈ C[0, 1]. Prove that φ is a continu-

ous map on (C[0, 1], ‖.‖∞).

Exercise 4.83 For every f ∈ C[a, b], define ‖ f ‖1 := ∫ 1
0 | f (x)|dx . Prove that ‖.‖1

is a norm on C[a, b]. Is it complete?

Exercise 4.84 Prove that all finite-dimensional normed spaces are Banach.

Exercise 4.85 Is c00 complete under ‖.‖p norm, for any p ∈ [1,∞]?
Exercise 4.86 Prove that the linear space of real polynomials on [a, b] is not a
Banach space, under the supremum norm.

Exercise 4.87 Prove that both c0 and c are Banach spaces, under ‖.‖∞ norm.

Exercise 4.88 Let
∑∞

n=1 xn be a series in a normed linear space X. Prove that
∑∞

n=1 xn converges unconditionally to some x ∈ X if and only if for every ε > 0
there exists a finite set F0 ⊂ N such that

∥
∥x −

∑

n∈F
xn

∥
∥ < ε for every finite set F satisfying F0 ⊂ F ⊂ N.

Exercise 4.89 Let (X, ‖.‖) be a normed linear space over a field K (R or C) and 	

be collection of all Cauchy sequences in X. For every {xn}, {yn} ∈ 	, define

{xn} ∼ {yn} if and only if lim
n→∞ ‖xn − yn‖ = 0.

Show that ∼ is an equivalence relation on 	. Let B = 	/∼ denote the set of
equivalence classes of 	 with respect to the relation ∼ . For [{xn}], [{yn}] ∈ B and
k ∈ K, define

k ∗ [{xn}] = [{kxn}], [{xn}] ⊕ [{yn}] = [{xn + yn}] and ‖[{xk}]‖∗ = lim
n→∞ ‖xn‖.

Prove the following:

(a) ⊕ and ∗ are well-defined on B.

(b) B is a linear space, under the addition ⊕ and scalar multiplication ∗.

(c) ‖.‖∗ is a norm on B.

(d) X is isometric to a dense linear subspace of B.

(e) (B, ‖.‖∗) is a Banach space.
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4.6 Hints and Solutions to Selected Exercises

4.3 It is trivial that d is a metric on R. But (R, d) is not complete. For each n ∈ N,

let xn := tan
(

π
2 − 1

n

)

. Then the sequence {xn} is Cauchy in (R, d). If there
exists some a ∈ R such that {xn} −→ a in (R, d), then tan−1 xn −→ tan−1 a,

under usual metric on R. The uniqueness of limits implies that tan−1 a =
π
2 which implies a /∈ R, a contradiction.

4.4 Under this map, the sequence {n} is Cauchy but not convergent.
4.7 Note that B[x; ε] is the inverse image of the closed set [0, ε] under the continuous

map y �−→ d(y, x). For the converse, use the fact that every Cauchy sequence
is bounded and hence belongs to a closed ball.

4.12 (a) We leave it for the readers to show that ρ is a metric on X.

(b) Since ρ ≤ d, every Cauchy sequence in (X, d) is Cauchy in (X, ρ). To
prove the converse, let {xn} be a Cauchy sequence in (X, ρ) and ε > 0
be given. Consider δ := min

{
1
2 ,

ε
2

}

. Let N ∈ N such that ρ(xn, xm) <

δ for all m, n ≥ N . Then

d(xn, xm) <
δ

1 − δ
≤ ε for all m, n ≥ N .

Hence, {xn} be a Cauchy sequence in (X, d).

(c) As above, the direct implication follows from the fact thatρ ≤ d.Conversely,
let xn −→ x in (X, ρ). Then

ρ(xn, x) = d(xn, x)

1 + d(xn, x)
−→ 0 which implies d(xn, x) −→ 0,

by Theorem 1.16. Hence, xn −→ x in (X, ρ).

(d) Follows from the above two parts.
4.13 Analogous to Exercise 4.12.
4.14 Let X be complete and {xn} be a sequence in X such that

∑∞
n=1 d(xn+1, xn) < ∞.

Let ε > 0 be given. By Cauchy criterion for series convergence, there exists
m ∈ N such that

n2∑

n=n1+1

d(xn+1, xn) < ε for all n2 > n1 > m.

Therefore, by triangle inequality, d(xn2 , xn1) < ε for all n2 > n1 > m. Hence,
the sequence {xn} is a Cauchy sequence in X and thence convergent.

Conversely, let {xn} be a Cauchy sequence in X. For each k ∈ N, choose nk ∈
N such that d(xn, xm) < 1

2k for all n,m ≥ nk . Without loss of generality, we
assume that nk < nk+1 for all k ∈ N. Hence, we obtain a subsequence {xnk } of
the sequence {xn} such that d(xnk , xnk+1) < 1

2k for all k ∈ N.
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The triangle inequality implies that d(xnk , xnl ) < 1
2k−1 , for any l ≥ k. Therefore,

we have
∑∞

k=1 d(xnk+1 , xnk ) <
∑∞

k=1
1

2k−1 = 2 < ∞, By hypothesis, there exists
x ∈ X be such that xnk −→ x . Finally, by Theorem 2.24, we obtain xn −→ x .

4.15 Try arguments analogous to Theorem 3.33.
4.17 We prove the result for r > 0. The case of r = 0 is similar. Let {xn} be a Cauchy

sequence in (X, ρr ). Then there exists a subsequence {xnk } of {xn} such that

ρr (xnk , xnk+1) < rk for all k ∈ N.

Hence, first k terms of xnk and xnk+1 are same. Let ak denote the kth term of the
sequence xnk and a = {ak}k . Then {xnk } −→ a in X. Applying Theorem 2.24,
xn −→ a.

4.18 The converse holds if X is complete. For necessity, let x ∈ X be arbitrary and
xn −→ x in X. Then the sequence x1, x, x2, x, . . . , xn, x, . . . } is Cauchy, and
hence so is image sequence f (x1), f (x), f (x2), f (x), . . . , f (xn), f (x), . . . },
which has a constant subsequence. Applying Theorem 2.24, the later sequence
converges to f (x), and hence so is its subsequence { f (xn)}. Thus, f is contin-
uous at x .

4.19 For any x ∈ X = A, let {xn} be a Cauchy sequence in A, convergent to x .
By hypothesis, { f (xn)} is Cauchy in Y, and hence convergent. Write F(x) :=
limn→∞ f (xn). This defines a map F : X −→ Y, which extends f. Now show
that F is the required extension.

To see that F is well-defined, let x ∈ X and {an} and {bn} be sequences
from A, convergent to x . Since d(an, bm) ≤ d(an, x) + d(x, bm), we obtain
the sequence a1, b1, . . . , an, bn, . . . is Cauchy. By hypothesis, its image under
f is also a Cauchy sequence. So {ρ( f (an), f (bn))}n converges to 0 and hence
limn→∞ f (an) = limn→∞ f (bn).

By Exercise 4.18, it is enough to prove that F maps Cauchy sequences onto
Cauchy sequences. Let {xn} ⊂ X be an arbitrary Cauchy sequence.

Then for each k ∈ N, there exists a sequence {ak,n} ⊂ A such that limn→∞ ak,n =
xk, and hence limn→∞ f (ak,n) = F(xk). Choose a strictly increasing sequence
{nk} ⊂ N such that for all n ≥ nk and for all k ∈ N, we have

d(ak,nk , xk) <
1

k
and ρ( f (ak,nk ), F(xk)) <

1

k
. (4.7)

Note that for all k, l ∈ N, we have the inequalities

d(ak,nk , al,nl ) ≤ d(ak,nk , xk) + d(xk, xl) + d(xl , al,nl ) (4.8)

ρ(F(xk), F(xl)) ≤ ρ(F(xk), f (ak,nk )) + ρ( f (ak,nk ), f (al,nl )) (4.9)

+ ρ( f (al,nl ), F(xl)). (4.10)
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Applying (4.7) and (4.8), we conclude that {ak,nk }k is a Cauchy sequence, and
hence so is the sequence { f (ak,nk )}k . By (4.9)-(4.10), {F(xk)}k is a Cauchy
sequence in Y. Hence the result.

4.20 No. For example, f : (0, 1) −→ (0, 1) defined as f (x) := x2/2 is not a strict
contraction, although it satisfies the given condition.

4.22 f has no fixed point.
4.25 Take f : [1,+∞) −→ [1,+∞) defined as f (x) := x + 1

x . Use Mean Value
Theorem, to conclude that f satisfies the given condition.

4.26 Take X := (0, 1] and f (x) := x/2 for all x ∈ X.

4.35 False. Let X := R with the metric defined by

d(x, y) := |x − y|
1 + |x − y| for all x, y ∈ X.

It can be shown that (X, d) is a complete metric space and has the same topol-
ogy as the usual topology on R. Let Fn := [n,+∞) for all n ∈ N. Note that
diam(Fn) ≤ 1 for all n ∈ N. Hence, {Fn} is a nested decreasing sequence of
nonempty closed subsets of X such that {diam(Fn)} is a bounded sequence,
while

⋂∞
n=1 Fn = ∅.

4.39 Let E be any nonempty totally bounded subset of a metric space X and
ε > 0 be given. Choose x1, . . . , xn ∈ X such that E ⊂ ⋃n

i=1 B(xi ; ε/2). If
E ∩ B(xi ; ε/2) �= ∅, pick any yi ∈ E ∩ B(xi ; ε/2). Then it can be shown
E ⊂ ⋃

i B(yi ; ε).

4.40 Use Lemma 4.21.
4.42 For example, consider any infinite discrete space X. Then X is bounded, but not

totally bounded. As for ε = 1, the ε balls will be singletons.
4.43 Take any finite metric space or consider the example in Exercise 4.54.
4.44 Yes. Let X := [0, 1] ∪ N and d(x, y) := |x−y|

1+|x−y| for all x, y ∈ X. Then X is
bounded, as X ⊂ B(0; 2). Also, X is not totally bounded, as d(n, n + 1) =
1/2 for all n ∈ N.

4.46 Take Ei := B
(

xi ; ε
2

) ∩ E .

4.49 Since E is totally bounded, so is E .Hence, every subset of E is totally bounded.
In particular, E ′ ⊂ E . Therefore, E ′ is totally bounded. The converse is false.
For example, take E := N in the usual space R.

4.50 Apply Exercise 4.46.
4.52 Apply Theorem 4.22.

4.54 Let E be anonemptybounded subset of X.Then E ⊂ B(x; r) for some x, r > 0.
Then

B(x; r) =
(

1
1
x + r

,
1

1
x − r

)

=
(

x − x2r

1 + xr
, x + x2r

1 − xr

)

= (a, b), (say).

Note that a > 0 and min
{

x2r
1+xr ,

x2r
1−xr

} = x2r
1+xr . Also, observe that
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t2ε

1 + tε
>

a2ε

1 + bε
for all t ∈ (a, b).

Let ε > 0 be given. Pick any n ∈ N such that 1
n < a2ε

1+bε . Let N be the next
integer to b−a

n . Partition [a, b] into N equal parts each having length at most 1
n ,

say a = x0 < x1 < · · · < xn = b. Consequently, we obtain

E ⊂ (a, b) ⊂
N

⋃

i=1

[xi−1, xi ] ⊂
N

⋃

i=1

B(xi ; ε).

4.56 If
⋂∞

n=1 In = ∅, then
⋂m

n=1 In = ∅, for somem ∈ N. Without loss of generality,
suppose that

⋂m−1
n=1 In �= ∅. Then

⋂m−1
n=1 In is a closed interval, say [a, b]. Let

In = [c, d]. Ifb < c.Note that there exists some k < m such thatb is the right end
point of Ik .Then Ik ∩ In = ∅, a contradiction. Similarly, we have a contradiction
for the case when d < a.

4.57 Note that (a) follows from the definition of α(A). In (b), the sufficiency holds
by the Cantor Intersection Property. Below we prove the necessity part of (b).

By induction, for every integer n > 1, choose finitely many nonempty closed
subsets An,1, . . . , An,mn of An with diameters< α(An) such that

⋃mn
i=1 An,i = An

and An+1,i is contained in some An, j . Write A1,1 := A1. If An+1,i is contained
in An, j , let us call it as a descendant of An, j . Descendant of a descendant will
be called a 2-descendant, and so on.

We claim that for every n ∈ N, the set A1,1 has an n-descendant. Otherwise,
there exists N ∈ N such that A1,1 does not have any N -descendant and thus
AN+1 = ∅, a contradiction. Hence, there exists a (infinite) nested decreasing
sequence of descendants in our construction, say {An,in }. By Cantor intersection
property,

∞
⋂

n=1

An ⊃
∞
⋂

n=1

An,in �= ∅.

4.62 Yes, because there are always points x and y in the completion of (X∗, d∗)
such that xn −→ x and yn −→ y. The continuity of the metric d∗ implies that
d(xn, yn) = d∗(xn, yn) −→ d∗(x, y). Therefore, {d(xn, yn)} is Cauchy inR and
hence convergent.

4.63 Let E be any nonempty subset of reals which is bounded above. Let a ∈ E and
b be any upper bound of E . Let U denote the set of upper bounds of E and L
denote the set of lower bounds of U. Then a ∈ L and b ∈ U. Let

[a1, b1] :=
{ [a, a+b

2 ] ; a+b
2 ∈ U,

[ a+b
2 , b] ; a+b

2 ∈ L .

Imitating above, we obtain a nested decreasing sequence of closed inter-
vals {[an, bn]} such that an ∈ L , bn ∈ U and bn − an = b−a

2n for all n ∈ N. Since
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R is complete, it satisfies the Cantor Intersection Property (4.15). Hence,
⋂∞

n=1[an, bn] = {x} for some x ∈ R.

Therefore, limn→∞ an = x = limn→∞ bn. Since both U and L are closed sets,
we obtain x ∈ L ∩U. We claim that x is the least upper bound of E . Since
x ∈ U, it is an upper bound of E . If some u < x is an upper bound of E, then
x is not a lower bound of U. Consequently, x /∈ L , a contradiction.

4.64 Note that for with | fx (y)| ≤ d(x, a) for all y ∈ X. Pick x, y ∈ X. If we write
d∗( fx , fy) = supz∈X | fx (z) − fy(z)|, then

d∗( fx , fy) = sup
z∈X

|d(x, z) − d(y, z)| ≤ d(x, y).

Also, for z = x or y, we note that | fx (z) − fy(z)| = |d(x, z) − d(y, z)| =
d(x, y). Hence, d∗( fx , fy) = d(x, y).

4.65 Apply the procedure same as l∞ to conclude that L∞(X) is a complete metric
space.As in Exercise 4.64, themap x �−→ fx is an isometry from X into L∞(X).

4.66 Let dX and dY , respectively, be the metrics on X and Y. For x ∈ X = X0, choose
a sequence {xn} ⊂ X0 such that xn −→ x . Since f is an isometry on X0, the
sequence { f (xn)} is Cauchy in the complete metric space Y. Define f (x) :=
limn→∞ f (xn). It can be shown that f is well-defined and continuous on X.

Also, for any y ∈ Y = f (X0), one can choose a sequence {xn} ⊂ X0 such that
f (xn) −→ y. Since f is an isometry on X0, {xn} is Cauchy in X0. Since X is
complete, there exists some x ∈ X such that xn −→ x .Hence, f (xn) −→ f (x).
Consequently, y = f (x) and hence f is surjective.

Now pick any y1, y2 ∈ Y. Then y1 = f (x1) and y2 = f (x2), for some x1, x2 ∈
X. Further, there are sequences {x1,n}, {x2,n} ⊂ X0 such that x1,n −→ x1 and
x2,n −→ x2. Then f (x1,n) −→ y1 and f (x2,n) −→ y2. The continuity of dY
and dX implies that

dY (y1, y2) = lim
n→∞ dY ( f (x1,n), f (x2,n)) = lim

n→∞ dX (x1,n, x2,n) = dX (x1, x2).

Hence, f : X −→ Y is a surjective isometry.
4.68 It is immediate that c00 ⊂ c0. We need to prove that (c0, ‖.‖) is a complete

normed space and that c00 is dense in it. Let ε > 0 be given.

Let {x (k)} be a Cauchy sequence in c0. Write x (k) = {x (k)
n }n for all k ∈ N. Since

{x (k)} is Cauchy in c0, for every n ∈ N, {x (k)
n }k is a Cauchy sequence in the scalar

field. Therefore, for each n, there exists some scalar xn such that x (k)
n −→ xn,

as k −→ ∞. Hence, x (k) −→ {xn} in c0.
If x = {xn}n ∈ c0, there existsm ∈ N such that |xn| < ε for all n > m. Let yn =
xn for all n ≤ m and 0 otherwise. Then y = {yn} ∈ c00 and ‖x − y‖ < ε.Hence,
c00 is dense in (c0, ‖.‖).
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4.73 Apply Theorems 4.2 and 4.3.
4.75 Let Sn := ∑n

k=1 xk for all n ∈ N. Note that
∑∞

n=1 xn is convergent if and only if{Sn} is convergent if and only if {Sn} is Cauchy if and only if the given condition
is satisfied.

4.79 Choose a strictly increasing sequence {mn} ⊂ N such that |xk | < 2−n for all
k ≥ mn. Without loss of generality, suppose that m1 = 1. Since all the terms
x1, . . . , xm2−1 have magnitude less than 1/2, one can choose {a1, . . . , am2−1} ⊂
{−1, 1} such that 0 ≤ ∑p

k=1 akxk ≤ 1 for all p < m2. Then we choose
{am1 , . . . , am2−1} ⊂ {−1, 1} such that

0 ≤
p

∑

k=m2

akxk ≤ 1

2
for all m2 ≤ p < m3.

Continuing like this, and comparing with
∑∞

n=1 2
−n, we conclude the result.

4.80 Suppose
∑∞

n=1 xn doesn’t converge absolutely. Letπ ∈ P and y ∈ R \ {x}.Then
∑∞

n=1 xπ(n) is convergent, but not absolutely. Hence, there exists a rearrangement
of

∑∞
n=1 xπ(n), which is also a rearrangement of

∑∞
n=1 xπ(n), convergent to y.

This contradicts our hypothesis.
4.81 For n ∈ N, let Sn and Pn denote the nth partial sum of given series and its

rearrangement, respectively. Let ε > 0 be given and choose N ∈ N such that
‖xk‖ < ε

2m for all k > N . The result follows, as for every n > N + m, we have

‖Sn − Pn‖ =
∥
∥
∥
∥

n
∑

k=n−m+1

(

xk − xπ(k)
)
∥
∥
∥
∥

≤
n

∑

k=n−m+1

(‖xk‖ + ‖xπ(k)‖
)

< ε.

4.82 Follows from the inequality |φ( f ) − φ(g)| ≤ ∫ 1
0

∣
∣ f − g

∣
∣ ≤ ‖ f − g‖∞.

4.86 If fn(x) := xnχ[0,1], then { fn} is Cauchy, but not convergent in the given space.
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Chapter 5
Compactness

In this chapter, we discuss the notion of compactness, its characterizations, and its
relationship with continuity. We start with a basic introduction to compact sets, their
relationship with closed subsets, and the case of Euclidean spaces. Then we present
various characterizations of compactness; in terms of finite intersection property,
sequential compactness, and totally bounded sets. We provide a thorough discussion
on continuity and compactness; particularly on the uniform and Lipschitz conti-
nuities. We also present some necessary and sufficient conditions for the uniform
continuity of real functions. Some recent results regarding UC spaces, strong uni-
form continuity and Cauchy continuous maps, which haven’t yet made their way into
any textbook, are also outlined in the exercises.

5.1 Introduction

In elementary calculus courses, the Extreme Value Theorem for continuous real
functions f on a closed and bounded interval [a, b] is often stated without proof.
To prove it, note that every x ∈ [a, b] has an open neighborhood Ox on which f is
bounded. In this chapter, we shall show that [a, b] is contained in finitely many such
neighborhoods Ox1 , . . . , Oxn ; and hence f is bounded on [a, b]. Motivated by this
fact, we have the following definitions.

Definitions 5.1 Let X be a metric space, K ⊂ X and � be any collection of subsets
of X. We say that

(a) � is an open cover of K , if each member of� is an open set and K ⊂ ⋃
O∈� O.

(b) �0 is a subcover of K , with respect to an open cover � of K , if K ⊂ ⋃
O∈�0

O
and �0 ⊂ �.

(c) K is compact, if every open cover of K has a finite subcover.

To provide visual clues, compact sets are often denoted by K , the first letter of
the German word ‘Kompakt’.
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Examples 5.2 (a) In any metric space, finite sets are compact.
(b) R is not compact, as {(−n, n) : n ∈ N} is an open cover of R, having no finite

subcover.
(c) Let X := N, under discrete metric. Then X is not compact. as {{n} : n ∈ N} is

an open cover of X, having no finite subcover.

Therefore, the notion of compactness is a generalization of finite sets. In fact, it is a
much stronger notion, than boundedness and even total boundedness.

Proposition 5.3 Compact metric spaces are totally bounded.

Proof Let X be a compact metric space and ε > 0 be given. Since {B(x; ε) : x ∈
X} is an open cover of X, there are finitely many x1, . . . , xn ∈ X such that X ⊂⋃n

i=1 B(xi ; ε). Hence, X is totally bounded. �
Corollary 5.4 In metric spaces, compact sets are bounded.

Proof Apply Proposition 5.3 along with Theorem 4.18. �
The converse of Proposition 5.3 is not true.

Example 5.5 Let X := (0, 1), under the usual metric. Then X is bounded as well
as totally bounded. But X is not compact, as {(1/n, 1) : n ∈ N} is an open cover of
(0, 1), having no finite subcover.

Soon in Theorem 5.26, we shall establish that a metric space X is compact if and
only if X is complete and totally bounded.

The notion of compact sets is independent of the embedded space.

Proposition 5.6 Let X be a metric space and K ⊂ Y ⊂ X. Then K is compact
relative to X if and only if K is compact relative to Y.

Proof (⇒) Let �Y be an open cover of K , in Y. Consider the collection

�X := {G : G open in X such that G ∩ Y ∈ �Y }.

Pick any U ∈ �Y . Since U is open in Y, by Theorem 3.22, there exists a set G ∈ �X

such that U = G ∩ Y. Therefore, K ⊂ ⋃
U∈�Y

U ⊂ ⋃
G∈�X

G. Hence, �X is an
open cover of K , in X.

Since K is compact in X,we have K ⊂ ⋃n
i=1 Gi , for finitely many G1, . . . , Gn ∈

�X . For each i = 1, . . . , m, if Ui := Gi ∩ Y, then Ui ∈ �Y and we have

K = K ∩ Y ⊂
n⋃

i=1

Gi ∩ Y =
n⋃

i=1

(Gi ∩ Y ) =
n⋃

i=1

Ui .

(⇐) Let �X be an open cover of K , in X. Write �Y := {G ∩ Y : G ∈ �X }. By
Theorem 3.22, each U ∈ �Y is open in Y. Also, since K ⊂ Y and K ⊂ ⋃

G∈�X
G

we obtain K ⊂ (
⋃

G∈�X
G) ∩ Y = ⋃

G∈�X
(G ∩ Y ).

Therefore, �Y is an open cover of K , in Y. By hypothesis, K ⊂ ⋃n
i=1(Gi ∩ Y ),

for finitely many G1, . . . , Gn ∈ �X . Hence, K ⊂ ⋃n
i=1 Gi and the result follows. �
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Remarks 5.7 (a) By the virtue of Proposition 5.6, without loss of generality, we
may restrict our discussion to compactmetric spaces, rather than compact subsets
of a metric space.

(b) It is pertinent to mention that most of the authors explicitly write open covers
in terms of an indexing set, to denote its arbitrary elements. For example, if �

is an open cover of some set, then one can write � = {Oα : α ∈ ∧} for some
arbitrary indexing set ∧. We shall be intentionally avoiding this terminology,
which often confuses the first-time readers.

(c) Further, it must be noted that not every open cover can be written as a sequence
of sets. In Chap. 7, we shall discuss a variety of sets that can be written as a
sequence.

5.1.1 Compact Sets and Closed Sets

Theorem 5.8 Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We claim that K c(= X \ K )

is an open set. If K = X, this is trivial. Otherwise, let a ∈ K c. For each b ∈ K , let
rb := d(a, b)/2. Since each b �= a, we have rb > 0.

Since K is compact and {B(b; rb) : b ∈ K } is an open cover of K , there are finitely
many b1, . . . , bn ∈ K such that K ⊂ ⋃n

i=1 B(bi ; rbi ) = U (say).
ThenV := ⋂n

i=1 B(a; rbi ) is anopen set containinga.Since B(a; rb) ∩ B(b; rb) =
∅, for each b ∈ K , we have V ∩ U = ∅. Therefore, V ⊂ U c ⊂ K c. Hence, K c

contains a neighborhood V of a. This implies that K c is open. Hence, K is
closed. �

The converse of Theorem 5.8 is not true.

Examples 5.9 The following metric spaces X are closed, but not compact.

(a) R is a closed subset of itself, but not bounded. Hence, R is not compact.
(b) As in Example 5.2(c), one can conclude that every infinite discrete metric space

is closed and bounded, but not compact.

Theorem 5.10 Closed subsets of compact sets are compact.

Proof Let K be a compact and F be a closed subset of a metric space X such that
F ⊂ K ⊂ X. Let � be an open cover of F. Then {Fc} ∪ � is an open cover of K .

Since K is compact, there are finitely many O1, . . . , On ∈ � such that K ⊂
(
⋃n

i=1 Oi ) ∪ Fc.Since F ⊂ K ,wehave F ⊂ K ⊂ (
⋃n

i=1 Oi ) ∪ Fc.Therefore, F ⊂⋃n
i=1 Oi . Hence the result. �

Remark 5.11 Alternate proofs of Theorems 5.8 and 5.10 will be suggested in Exer-
cises5.13 and 5.14, respectively. However, the previous proofs are important for
theoretical reasons, as general topological spaces may not be metrizable (see Defi-
nition D.4). So the notions of completeness or Cauchy sequences do not exist over
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there. The above proofs of Theorems 5.8 and 5.10 are open to generalizations, even
in ‘suitable’ topological spaces, by replacing balls with suitable open sets.

5.1.2 Compact Subsets of Euclidean Spaces

Definition 5.12 A subset E of Rk is said to be a k-cell if E is a Cartesian product
of k closed and bounded intervals.

Note that 1-cells are closed bounded intervals, 2-cells are closed rectangles in R
2

and 3-cells are cuboids in R
3.

Theorem 5.13 Every k-cell is compact.

Proof Assume that the result is not true. Then there exists a non-compact k-cell, say
I. Let � be an open cover of I that has no finite subcover.

Write I := ∏k
i=1[ai , bi ]. By bisecting each interval [ai , bi ], we obtain a partition

of I into 2k k-cells, say J1, . . . , J2k . If for each j, the k-cell Jj has a finite subcover

F j , then
⋃2k

j=1 F j will form a finite subcover of I, which is not possible. Hence,
there exists j0 such that Jj0 has no finite subcover from �. Let I1 := Jj0 . Note that
diam(I1) = diam(I )/2.

Inducting like this, we obtain a nested decreasing sequence of closed bounded k-
cells {In} such that no In has a finite subcover from � and
diam(In) = diam(I )/2n −→ 0. Applying Cantor Intersection Property (4.15), we
obtain

⋂∞
n=1 In = {x} for some x ∈ R

k .

Since x ∈ I ⊂ ⋃
O∈� O, there exists some O1 ∈ � such that x ∈ O1. Since O1

is an open set, there exists some δ > 0 such that B(x; δ) ⊂ O1.

Also, as limn→∞ diam(In) = 0, there exists N ∈ N such that diam(IN ) < δ.
Hence, we obtain IN ⊂ B(x; δ) ⊂ O1, a contradiction to the choice of IN . �

Theorem 5.14 (Heine-Borel) Let k ∈ N and E be a subset of Rk . Then E is compact
if and only if E is closed and bounded.

Proof The direct implication is immediate by Theorem 5.8 and Corollary 5.4. For
the converse, suppose that E is closed and bounded. Since E is bounded, E ⊂ I for
some k-cell I. By Theorem 5.13, I is compact. Since E is closed, applying Theorem
5.10, we conclude that E is compact. �

Note that Theorem 5.14 is not true for general metric spaces.

Examples 5.15 (a) (
√
2,

√
3) ∩ Q is closed and bounded in Q, but not compact.

(b) Every infinite discrete metric space is closed and bounded, but not compact.

In Theorems 5.26 and 9.52, we shall prove generalizations of the Heine-Borel The-
orem (5.14) for arbitrary metric spaces and finite-dimensional normed linear spaces,
respectively. Also, see Theorem 8.52.
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Exercise 5.1 Prove that the set {1/n : n ∈ N} is not a compact subset of reals, by
obtaining an open cover of this set, having no finite subcover.

Exercise 5.2 Find an open cover of (−1, 1) in R having no finite subcover. Also,
find open covers of B(0; 1) in (R2, d2) and in (R2, d∞) having no finite subcovers.

Exercise 5.3 If a ∈ A ⊂ R such that A \ {a} is compact. Prove that A is compact.

Exercise 5.4 Prove that finite intersection of compact sets is compact. Can we
replace ‘finite’ with ‘infinite’ here?

Exercise 5.5 Prove that finite union of compact sets is compact. Can you replace
‘finite’ with ‘infinite’ here?

Exercise 5.6 Let K := {1/n : n ∈ N} ∪ {0} ⊂ R and � be any collection of open
intervals covering K . Obtain a finite subcover of K from � to conclude that K is
compact.

Exercise 5.7 If F is a closed and K is a compact subset of a metric space X, then
prove that F ∩ K is compact.

Exercise 5.8 Is there a non-discrete space that is bounded but not compact?

Exercise 5.9 Using least upper bound property, prove that every closed and bounded
real interval is compact.

Exercise 5.10 Let X and Y be metric spaces, x ∈ X, A and B be compact subsets
of X and Y, respectively. Prove that

(a) {x} × Y is a compact subset of X × Y.

(b) If � is an open cover of {x} × B in X × Y, then there exists a neighborhood U
of X such that U × B can be covered by only finitely many elements from �.

(c) A × B is compact in X × Y.

5.2 Characterizations of Compact Sets

In this section, we present some equivalent approaches to compactness. These are
given by the notions of completeness, total boundedness, finite intersection property,
and sequential compactness. The former two have already been discussed in detail,
in the previous chapter. Nowwe discuss the latter two, which will be used to establish
several characterizations of compactness at the end of this section.
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5.2.1 Finite Intersection Property

Definition 5.16 A collection of closed sets F is said to have the finite intersection
property if the intersection of every finite subcollection of F is nonempty.

Examples 5.17 (a) If {Fn} is a nested decreasing sequence of nonempty closed
subsets of a metric space, then {Fn : n ∈ N} has finite intersection property.

(b) Each of the following families of subsets ofR has the finite intersection property:
{[0, x] : x ∈ R}, {[−r, r ] : r ∈ Q} and {[1/n, n] : n ∈ N}.

The next result establishes that compactness is equivalent to a generalization of the
Cantor Intersection Property.

Theorem 5.18 A metric space X is compact if and only if every collection of closed
subsets of X with the finite intersection property has a nonempty intersection.

Proof Let X be compact and F be a collection of closed sets with finite intersec-
tion property. Assume that

⋂
F∈F F = ∅. Then X = ⋃

F∈F Fc. Since each F ∈ F
is closed, its complement Fc is open. Since X is compact, there exist finitely many
F1, . . . , Fn ∈ F , such that X ⊂ ⋃n

i=1 Fc
i . Therefore,

⋂n
i=1 Fi = Xc = ∅, a contra-

diction.
Conversely, assume that every collection of closed subsets of X with finite inter-

section property has a nonempty intersection. To prove that X is compact, let �

be an open cover of X. That is X = ⋃
O∈� O. Therefore,

⋂
O∈� Oc = Xc = ∅. By

hypothesis, there exists a finite collection of sets O1, . . . , Om from � such that⋂m
i=1 Oc

i = Xc = ∅. Hence, X = ⋃m
i=1 Oi . This proves that X is compact. �

Corollary 5.19 If X is a compact metric space, then X is complete.

Proof Let {Fn} be a nested decreasing sequence of nonempty closed subsets of
X such that diam(Fn) −→ 0. If n1, . . . , nk ∈ N and N := max{n1, . . . , nk}, then⋂k

i=1 Fni = FN �= ∅. Hence, the collection of closed sets {Fn : n ∈ N} has finite
intersection property. Since X is compact, by Theorem5.18,

⋂∞
n=1 Fn �= ∅.Applying

Theorem 4.14, X is complete. �

It is interesting to note that the notion of completeness can also be completely char-
acterized in terms of the finite intersection property.

Theorem 5.20 A metric space (X, d) is complete if and only if every family of closed
subsets of X having finite intersection property that contains sets with arbitrary small
diameters, has nonempty intersection.

Proof The converse follows from Corollary 4.15. Assume that (X, d) is a complete
metric space. Let F be a family of closed subsets of X having finite intersection
property such that F contains sets with arbitrary small diameter.

For every n ∈ N, choose An ∈ F such that diam(An) < 1/n and define Fn :=⋂
m≤n Am . By hypothesis, {Fn} is a sequence of nonempty closed subsets of X with

diam(Fn) ≤ diam(An) −→ 0. By Corollary 4.15,
⋂∞

n=1 Fn is a singleton, say {x}.
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Pick any A ∈ F . Then repeating the above procedure with A ∩ An instead of An,

we conclude that

∅ �=
∞⋂

n=1

(A ∩ An) = A ∩ ( ∞⋂

n=1

An
) = A ∩ {x}.

Hence, x ∈ A. Since A ∈ F was arbitrary, we conclude that
⋂

A∈F
A �= ∅. �

As an application of Theorem 5.18, we now present a sufficient condition for the
uniform convergence of some particular types of monotone sequences of continuous
functions (see also Exercise 5.59).

Theorem 5.21 (UlisseDini)Let X be a compact metric space and { fn}be a sequence
of X −→ R functions, pointwise convergent to f on X such that

(a) each fn is a continuous function,
(b) { fn} is a monotone sequence of functions on X, and
(c) f is a continuous function on X.

Then fn −→ f uniformly on X.

Proof If { fn} is amonotonically decreasing sequence, let gn := fn − f, otherwise let
gn := f − fn. Then each gn is continuous, gn ≥ gn+1 on X and gn −→ 0 pointwise
on X. It is enough to prove that gn −→ 0 uniformly. Let ε > 0 be given. Define

Kn := {x ∈ X : gn(x) ≥ ε}.

Let x ∈ X be arbitrary. Since gn(x) −→ 0, there exists some nx ∈ N such that
gnx (x) < ε. Therefore, x /∈ Knx and thus x /∈ ⋂∞

n=1 Kn. Hence,
⋂∞

n=1 Kn = ∅.

Since each gn is continuous, each Kn is closed. Since X is compact, by Theo-
rem 5.18,

⋂N
n=1 Kn = ∅ for some N ∈ N. Further, gn ≥ gn+1 implies Kn ⊃ Kn+1.

Hence, we conclude that KN = ⋂N
n=1 Kn = ∅.

Therefore, for all n ≥ N , Kn = ∅ which implies that gn(x) < ε for all x ∈ X.

Hence, fn −→ f uniformly on X. �

It must be noted that no hypothesis of the above theorem is redundant.

Examples 5.22 We here provide a few counter examples. It can be shown that these
sequences of functions { fn} are monotone and pointwise convergent on X, but are
not uniformly convergent on X.Also, recall that completeness and total boundedness
both are weaker than the notion of compactness. In Theorem 5.21,

(a) completeness of X is not redundant. For example, let X := (0, 1) and

fn(x) := 1

1 + nx
for all x ∈ X and for all n ∈ N.
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(b) total boundedness of X is not redundant. For example, let X := [0,+∞) and

fn(x) := x

n
for all x ∈ X and for all n ∈ N.

(c) the continuity of the functions fn, in a tail of the sequence { fn} is not redundant.
For example, let X := [0,+∞) and for every n ∈ N, define

fn(x) :=
{

1 ; x ∈ (0, 1/n),

0 ; x ∈ {0} ∪ [1/n, 1].

(d) the continuity of f is not redundant. For example, let X be the usual space [0, 1]
and fn(x) := xn for all x ∈ X and for all n ∈ N.

5.2.2 Sequentially Compact Sets

Definition 5.23 A subset K of a metric space is said to be sequentially compact if
every sequence in K has a subsequence, convergent in K .

Due to our next result, sequential compactness is also known as Bolzano-Weierstrass
Property. We shall also prove that this is equivalent to the notion of compactness, in
metric spaces.

Theorem 5.24 Let K be a subset of a metric space X. Then K is sequential compact
if and only if every infinite subset of K has a limit point in K .

Proof Let E be an infinite subset of K . Choose a sequence {xn} of distinct terms
from E . If K is sequential compact, then {xn} has a subsequence, convergent to some
x ∈ K . Hence, x is a limit point of E in K , as required.

Conversely, let {xn} be a sequence in K and E := {xn : n ∈ N}. If E is finite, at
least one term of {xn} will repeat infinitely often. Consequently, {xn} will have a
constant subsequence. In case E is an infinite subset of K , by hypothesis, it has a
limit point in K , say x . Thus, there exists a sequence {yn}, of distinct elements from
E, convergent to x .

Note that {yn} may not be a subsequence of {xn}. In that case, let n1 ∈ N such
that xn1 = y1. Suppose n1, . . . , nk have been selected. Choose nk+1 to be the least
integer larger than nk such that

xnk+1 ∈ {yn : n ∈ N} \ {xn1 , . . . , xnk }.

Note that this is possible since {yn} is a sequence of distinct terms from E . Thus,
by induction, we obtain a subsequence {xnk } of {xn}, which is also a subsequence of
{yn}. Since yn −→ x, we obtain xnk −→ x . Hence the result. �
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As earlier, one can show that the notion of sequential compactness is independent
of the embedded space. Therefore, we may restrict to only sequentially compact
metric spaces, instead of sequentially compact subsets of metric spaces.

Theorem 5.25 A metric space X is sequentially compact if and only if X is complete
and totally bounded.

Proof Let X be a sequentially compact metric space. To prove that it is complete,
let {xn} be a Cauchy sequence in X. By hypothesis, there exists a subsequence of
{xn} convergent to some x ∈ X. Since {xn} is Cauchy, by Theorem 2.24, {xn} −→ x .

Therefore, X is complete.
Assume that X is not totally bounded. By Theorem 4.22, there exists a sequence

{xn} in X which has no Cauchy subsequence. Therefore, no subsequence of {xn} is
convergent in X. Hence, X is not sequentially compact, a contradiction. Hence, X is
totally bounded.

Conversely, let X be a complete and totally bounded metric space and {xn} be a
sequence in X. By Theorem 4.22, it has a Cauchy subsequence, say {xnk }. Since X
is complete, this subsequence converges to some point of X. Hence the result. �

Now we present a generalization of Theorem 5.14.

Theorem 5.26 (Heine-Borel) A metric space is compact if and only if it is complete
and totally bounded.

Proof The direct implication holds by Corollary 5.19 and Proposition 5.3. We prove
the converse, which is analogous to Theorem 5.13.

Assume that there exists a complete and totally bounded metric space X, which
is not compact. Then there exists an open cover, say �, of X which has no finite
subcover.

Since X is totally bounded, there are finitely many x1, . . . , xn ∈ X such that
X ⊂ ⋃n

i=1 B(xi ; 1/2). If for each i, the set B(xi ; 1/2) has a finite subcover Fi , then⋃n
i=1 Fi will formafinite subcover of X,which is not possible.Hence, one can choose

i0 such that B(xi0; 1/2) has no finite subcover from �. Let B1 := B(xi0; 1/2). Note
that diam(B1) ≤ 1.

Since X is totally bounded, so is its subset B1. As earlier, choose a closed set
B2 ⊂ B1 such that diam(B2) ≤ 1/2 and B2 has no finite subcover from �.

Inducting like this, we obtain a nested decreasing sequence of closed sets {Bn}
such that no Bn has a finite subcover from � and diam(Bn) ≤ 1/2n−1 for all n ∈ N.

By Cantor Intersection Property (4.15), we obtain
⋂∞

n=1 Bn = {x}, for some x ∈ X.

Since x ∈ X ⊂ ⋃
O∈� O, there exists some Ox ∈ � such that x ∈ Ox . Since Ox

is an open set, there exists some δ > 0 such that B(x; δ) ⊂ Ox .

Also, as limn→∞ diam(Bn) = 0, there exists N ∈ N such that diam(BN ) < δ.
Therefore, we obtain BN ⊂ B(x; δ) ⊂ Ox , a contradiction to the choice of BN . �

Winding up some previous results, we present a few characterizations of compact-
ness.
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Theorem 5.27 (Borel-Lebesgue) Let X be any metric space. The following are
equivalent:

(a) X is compact.
(b) X is complete and totally bounded.
(c) Every infinite subset of X has a limit point in X.

(d) Every sequence in X has a subsequence convergent in X.

(e) Every family of closed subsets of X with finite intersection property has a
nonempty intersection.

Proof Apply Theorems 5.26, 5.25, 5.24, and 5.18. �

An alternate proof for compactness implies sequential compactness is provided
below. It is important for theoretical reasons, as it can be extended to even general
topological spaces.

Theorem 5.28 Let X be a compact metric space. Then every infinite subset of X
has a limit point in X.

Proof Suppose not. Let E be an infinite subset of X such that E ′ = ∅. Then for
every x ∈ X, one can choose an open set Ox containing x such that Ox contains at
most one element of E, namely x . That is Ox ∩ E ⊂ {x} for every x ∈ X.

Note that {Ox : x ∈ X} is an open cover of X. Since X is compact, there
are x1, . . . , xn ∈ X such that X ⊂ ⋃n

i=1 Oxi . Therefore, E = E ∩ X ⊂ ⋃n
i=1(E ∩

Oxi ) ⊂ {x1, . . . , xn}. This is a contradiction, as E is an infinite set. �

Another characterization of compactness will be provided in Theorem 7.27.

Remarks 5.29 There is a notion of Henstock-Kurzweil integration, more general
than Riemann, Lebesgue, and improper integrals (see [1]). The well-definedness
of this integral is ensured by Cousin’s property, which completely characterizes
compactness on metric spaces (see [2, Theorems 3-4]). A related characterization of
completeness is also given in [2, Theorem 5].

History Notes 5.30 The notion of sequential compactness appeared much earlier
than open covers. The sequential compactness of R was first proved by Bolzano
(1817) as a lemma to his proof of Intermediate Value Theorem. Open covers were
introduced by Dirichlet in his 1862 lectures, which were published in 1904. Vari-
ous other mathematicians contributed to this idea, e.g. Heine (1872), Borel (1895),
Cousin (1895), Lebesgue (1898), Alexandroff, and Urysohn (1929). For a pedagog-
ical history of compactness, we refer [3].

Exercise 5.11 Let X be a compact metric space, O be an open subset of X and F
be a collection of closed subsets of X such that

⋂
F∈F F ⊂ O. Prove that there exist

finitely many F1, . . . , Fn ∈ F such that
⋂n

i=1 Fi ⊂ O.

Exercise 5.12 Let X be an infinite discrete space. Prove that X is not compact, by
constructing a collection of closed sets with empty intersection and finite intersection
property.
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Exercise 5.13 Prove Theorem 5.8, using Corollary 5.19 and Theorem 4.2.

Exercise 5.14 Write an alternative proof of Theorem 5.10, using Corollary 5.19,
Theorem 4.3, Proposition 5.3, Exercise 4.38 and Theorem 5.26.

Exercise 5.15 Prove that each of the four sequences of functions { fn}, given by
Examples 5.22 are monotone and pointwise convergent on X, but are not uniformly
convergent on X.

Exercise 5.16 Prove that the notion of sequential compactness is independent of the
embedded space.

Exercise 5.17 Using sequential compactness, prove that every real valued continu-
ous function on a compact set is bounded.

Exercise 5.18 Let X be a metric space and E ⊂ X. Prove the following:

(a) If X is complete and E is totally bounded, then E is compact.
(b) X is totally bounded if and only if its completion is compact.

Exercise 5.19 Let X be a compact metric space. Prove that for every nested decreas-
ing sequence {Fn} of nonempty closed subsets of X, we have

⋂∞
n=1 Fn �= ∅. Is the

converse true?

Exercise 5.20 Let A, B ⊂ R
2 and A + B := {a + b : a ∈ A, b ∈ B}. Prove or dis-

prove:

(a) If A is an open subset of R2, then so is A + B.

(b) If A and B are closed subsets of R2, then so is A + B.

(c) If A is compact and B is closed in R2, then A + B is closed in R2.

(d) If A and B are compact subsets of R2, then so is A + B.

What happens when A and B are subsets of a normed linear space?

Exercise 5.21 If p : C −→ C is a polynomial, prove that p−1(K ) is compact for
every compact set K ⊂ C.

Exercise 5.22 An infinite subset S of a metric space X said to be convergent to
x ∈ X if every neighborhood of x contains all but finitely many elements of S.

(a) If S converges to x, prove that x ∈ S′. Is the converse true?
(b) Prove that X is compact if and only if every infinite subset of X contains a subset

which converges to an element of X.

Exercise 5.23 Without using Theorem 4.22, prove directly from the definitions that
sequentially compact sets are totally bounded.

Exercise 5.24 Is d(x, y) := | tan−1 x − tan−1 y| a totally bounded metric on R?
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Exercise 5.25 Is the metric space (R, d) of Exercise 5.24 compact?

Exercise 5.26 Establish the equivalences ofTheorem5.27 for pseudo-metric spaces.

Exercise 5.27 Let X be a metric space. Prove that X is totally bounded if and only
if the completion of X is compact.

Exercise 5.28 Let (X, d) and α(A) be as in Exercise 4.57. Prove that X is complete
if and only if for every nested decreasing sequence {An} of nonempty closed subsets
of X such that α(An) −→ 0, the intersection

⋂∞
n=1 An is nonempty and compact.

Exercise 5.29 Does there exist a metric d on R
∗ := [−∞,+∞] such that (R∗, d)

is a compact metric space and R under usual metric is a subspace of (R∗, d)?

Exercise 5.30 Is there any metric d on R making (R, d) a compact metric space?

5.3 Continuity and Compactness

Theorem 5.31 Continuous images of compact sets are compact.

Proof Let X and Y be metric spaces, K be a compact subset of X and f : K −→ Y
be a continuous function. Let� be any open cover of f (K ).Since f (K ) ⊂ ⋃

O∈� O,

K ⊂ f −1(
⋃

O∈�

O) =
⋃

O∈�

f −1(O).

Since f is continuous and each O ∈ � is open, { f −1(O) : O ∈ �} is an open cover
of K . The compactness of K implies that there are finitely many O1, . . . , On ∈
� such that K ⊂ ⋃n

i=1 f −1(Oi ) = f −1
( ⋃n

i=1 Oi
)
. Therefore, f (K ) ⊂ ⋃n

i=1 Oi .

Hence, f (K ) is compact. �

Corollaries 5.32 (a) Continuous functions on compact sets are bounded.
(b) Let f : [a, b] −→ R be a continuous function. Then f is bounded.

Theorem 5.33 (Extreme Value Theorem) Let X be a compact metric space and
f : X −→ R be a continuous function. Then f is a bounded function and it attains
its bounds on X.

Proof Applying Theorem 5.31, Theorem 5.8 and Corollary 5.4, we conclude that
f (X) is a compact subset of reals and hence it is closed and bounded. Therefore

M := sup f (X) and m := inf f (X).

are real numbers. By Proposition 3.20, we have M ∈ f (X). Write g := − f. Since
f is continuous on X, so is g. As above, we obtain sup g(X) ∈ g(X). Therefore,
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−m = − inf f (X) = sup g(X) ∈ g(X) = − f (X).

Hence, m ∈ f (X) and the result follows. �

Theorem 5.34 Let f be a continuous bijection from a compact metric space X onto
another metric space Y. Then f −1 is also continuous.

Proof Since f is a bijection, its inverse f −1 is well-defined. Since ( f −1)−1(E) =
f (E), it is enough to show that f maps closed sets onto closed sets.
Let F be a closed subset of X. By Theorem 5.10, F is compact and by Theorem

5.31, f (F) is a compact set. Finally, applying Theorem 5.8, we conclude that f (F)

is a closed subset of Y. �

5.3.1 Uniform Continuity

Definition 5.35 A function f : (X, dX ) −→ (Y, dY ) is said to be uniformly contin-
uous, if for every ε > 0 there exists some δ > 0 such that

dY ( f (x), f (y)) < ε for all x, y ∈ X such that dX (x, y) < δ.

Every uniformly continuous function is continuous, but the converse is false.

Example 5.36 Let f (x) := 1
x for all x ∈ (0, 1). Then f is continuous on (0, 1), but

not uniformly continuous on (0, 1).

Proof The continuity of f on (0, 1) follows from Corollaries 1.53. Assume that f is
uniformly continuous on (0, 1). Then for ε = 1, there exists some δ > 0 such that

| f (x) − f (y)| < 1 for all x, y ∈ (0, 1) satisfy |x − y| < δ.

Let N be a positive integer such that 1
N < δ. Note that 1

N+2 ,
1
N ∈ (0, 1) and 1

N −
1

N+2 < 1
N < δ, while | f ( 1

N ) − f ( 1
N+2 )| = 2, a contradiction. �

Next, we will provide some sufficient conditions for the uniform continuity of a
function. First, we show that continuous functions on compact spaces are uniformly
continuous.

Theorem 5.37 Let (X, dX ) and (Y, dY ) be metric spaces such that X is compact,
and let f : X −→ Y be a continuous function. Then f is uniformly continuous.

Proof Assume that f is not uniformly continuous. Then there exists some ε > 0
such that for every n ∈ N one can choose xn, yn ∈ X satisfying

dX (xn, yn) <
1

n
and dY ( f (xn), f (yn)) ≥ ε.
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Since X is compact, by Theorem 5.26, {xn} has a subsequence {xnk }, convergent to
some c ∈ X. Note that

dX (ynk , c) ≤ dX (ynk , xnk ) + dX (xnk , c) ≤ 1

nk
+ dX (xnk , c) −→ 0, as k −→ ∞.

Therefore, {ynk } also converges to c. Since f is continuous at c, there exists some
η > 0 such that for all x ∈ X satisfying dX (x, c) < η, we have dY ( f (x), f (c)) <

ε/2. Then for sufficiently large k, we obtain dX (xnk , c) < η and dX (ynk , c) < η.

Therefore,

dY ( f (xnk ), f (ynk )) ≤ dY ( f (xnk ), f (c)) + dY ( f (c), f (ynk )) <
ε

2
+ ε

2
= ε,

a contradiction to the choice of xnk , ynk . Hence the result. �
An Alternate Proof of Theorem 5.37 Let ε > 0 be given. Since f is continuous on
X, for every x ∈ X, one can choose some δx > 0 such that

dY ( f (y), f (x)) <
ε

2
for all x, y ∈ X satisfying dX (y, x) < δx .

Write Bx := B(x; δx/2) for each x ∈ X. Then {Bx : x ∈ X} is an open cover of X.

Since X is compact, there are finitely many x1, . . . , xn ∈ X such that X ⊂ ⋃n
i=1 Bxi .

Let

δ := 1

2
min{δx1 , . . . , δxn }.

Then δ > 0. Now pick any y, z ∈ X such that dX (y, z) < δ. Since X ⊂ ⋃n
i=1 Bxi ,

there exists m ∈ {1, . . . , n} such that y ∈ Bxm . Therefore, dX (y, xm) < δxm /2. Also

dX (z, xm) ≤ dX (z, y) + dX (y, xm) < δ + δxm

2
≤ δxm .

Hence, we conclude that

dY
(

f (y), f (z)
) ≤ dY

(
f (y), f (xm)

) + dY
(

f (xm), f (z)
)

<
ε

2
+ ε

2
= ε.

Hence, f is uniformly continuous on X. �

Another proof of Theorem5.37will be outlined in Exercise 5.57.Next, we provide
some necessary and sufficient conditions for uniform continuity.

Theorem 5.38 Let (a, b) be an interval and f : (a, b) −→ R be continuous. Then
f is uniformly continuous on (a, b) if and only if the limits limx→a+ f (x) and
limx→b− f (x) both exist in R. (If a = −∞ or b = +∞, then take the limits
x −→ −∞ and x −→ +∞, respectively.)
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Proof Assume that f is uniformly continuous on (a, b). For each m ∈ N, one can
choose some δm > 0 such that

| f (x) − f (y)| <
1

m
for all x, y ∈ (a, b) satisfying |x − y| < δm . (5.1)

Suppose that limx→b− f (x) does not exist in R. If limx→b− f (x) = +∞, we
can choose a sequence {xn} ⊂ (a, b) such that xn −→ b and limn→∞ f (xn) =
+∞. Pick any N ∈ N such that xn ∈ (b − δ1, b) for all n > N . Then by (5.1), we
have diam({ f (xn) : n > N }) ≤ 1. This contradicts limn→∞ f (xn) = +∞. Hence
limx→b− f (x) �= +∞. Similarly, limx→b− f (x) �= −∞.

If limx→b− f (x) does not exist even in extended reals, there are sequences {xn} and
{yn} inside (a, b)with limit b such that l1 := limn→∞ f (xn) and l2 := limn→∞ f (yn)

both exist in R, but are different. Let m ∈ N be such that 1
m < |l1 − l2|.

Pick any N ∈ N such that xn, yn ∈ (b − δm, b) for all n ≥ N .Applying (5.1), we
obtain | f (xn) − f (yn)| < 1

m for all n ≥ N . Passing limit n −→ ∞, we have |l1 −
l2| ≤ 1

m , a contradiction. Hence, limx→b− f (x) exists. Similarly, limx→a+ f (x) also
exists in R.

Conversely, if (a, b) is a boundedopen interval, bydefining f (a) := limx→a+ f (x)

and f (b) := limx→b− f (x), we extend f as a continuous function to [a, b]. Since
[a, b] is a compact set, f is uniformly continuous on [a, b] and hence on (a, b).

Now consider the case when a ∈ R and b = +∞. We define f (a) := limx→a+
f (x). This extends f as a continuous function to [a,+∞). Let l := limx→+∞ f (x)

and ε > 0 be given. Pick any R ∈ R such that

| f (x) − l| <
ε

2
for all x ≥ R.

Being continuous, f is uniformly continuous on [a, R]. Let δ ∈ (0, 1) be such that

| f (x) − f (y)| <
ε

2
for all x, y ∈ [a, R] such that |x − y| < δ.

Let x, y ∈ (a,+∞) such that |x − y| < δ. If x, y ∈ [a, R], we have | f (x) −
f (y)| < ε

2 < ε. Otherwise | f (x) − f (y)| ≤ | f (x) − f (R)| + | f (R) − f (y)| < ε
2+ ε

2 = ε. The case a = −∞ and b ∈ R is similar.
Finally, let a = −∞ and b = +∞. By above cases, f is uniformly continuous

on [0,+∞) and (−∞, 0]. Hence, f is uniformly continuous on (−∞,+∞). �
Corollary 5.39 Let f be a real valued uniformly continuous function on a bounded
open interval (a, b). Then f has a continuous extension to [a, b].

In Example 5.36, we have seen that there are continuous functions, which are not
uniformly continuous. Moreover, not every bounded continuous real function on a
bounded interval is uniformly continuous.

Example 5.40 The mapping x �−→ sin
(
1
x

)
is bounded and continuous on (0, 1),

but not uniformly continuous on (0, 1).
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There also exist bounded continuousR −→ R functions, which are not uniformly
continuous.

Example 5.41 For each n ∈ N, define fn(x) := n|x | for all x ∈ [−1/n,+1/n].
Extend fn as a periodic function toR,with period 2/n.Define a function f : R −→
R as follows:

f (x) :=
{

f1(x) ; x ∈ [−1, 1],
fn(x) ; x ∈ [−n, n] \ (−n + 1, n − 1) for some n ∈ N \ {1}.

It can be shown that f is bounded and continuous, but not uniformly continuous.

Theorem 5.42 If f : (X, dX ) −→ (Y, dY ) is uniformly continuous, then

(a) f maps Cauchy sequences in X onto Cauchy sequences in Y and
(b) f maps totally bounded subsets of X onto totally bounded subsets of Y.

Proof (a) Let {xn} be a Cauchy sequence in X and ε > 0 be given. Then there exists
some δ > 0 such that

dY ( f (x), f (y)) < ε for all x, y ∈ X such that dX (x, y) < δ. (5.2)

Let N ∈ N be such that dX (xn, xm) < δ for all n > m ≥ N . Using (5.2), we
conclude that dY ( f (xn), f (xm)) < ε for all n > m ≥ N . Hence, { f (xn)} is a
Cauchy sequence.

(b) Let E be a totally bounded subset of X and {yn} be a sequence from f (E). Then
there exists a sequence {xn} from E such that f (xn) = yn for all n ∈ N. Since
E is totally bounded in X, by Theorem 4.22, {xn} has a Cauchy subsequence,
say {xnk }. Applying (a), { f (xnk )} is Cauchy. Again by Theorem 4.22, f (E) is
totally bounded. �

Both (a) and (b) of Theorem 5.42 are invalid for all continuous maps. See also
Corollary 9.35.

Examples 5.43 Let X := (0, 1), Y := R and f (x) := 1/x for all x ∈ (0, 1). Then

(a) {1/n} is Cauchy in X, while { f (1/n)} is not Cauchy in Y.

(b) X is totally bounded, while f (Y ) = (1,∞) is not.

5.3.2 Notes and Remarks

If (X, d) is a metric space, then the following are equivalent: (i) all continuity is uni-
form, (ii) each open cover has a Lebesgue number (see Exercise 5.61), (iii) disjoint
nonempty closed sets have a positive distance between them, (iv) the nonvanishing
real valued uniformly continuous functions on themhave uniformly continuous recip-
rocals, and (v) whenever {xn} is a sequence in X with {dist (xn, X \ {xn})} −→ 0,
then the sequence has a cluster point in X.
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Metric spaces satisfying these equivalent properties are calledUC spaces or Atsuji
spaces. These lie between compact and complete spaces. A metrizable space X has a
compatible UC metric if and only if X ′ is compact - see [4] for a simple construction
of a good metric. Several characterizations of UC metric spaces can be found in
[4–8].

The compactness of the domain is not a redundant hypothesis in Theorems 5.31,
5.33, and 5.37 (see Exercise 5.52). In 1948, Hewitt established that a metric space X
is compact if and only if every continuous function from X to R is bounded (see [9,
p. 69]). A stronger notion of uniform continuity will be discussed in Exercises5.63-
5.64. Also, see [10–12].

Exercise 5.31 Let (X, dX ) and Y, dY ) be metric space, A ⊂ X, B ⊂ Y, and

d
(
(x, y), (x ′, y′)

) := dX (x, x ′) + dY (y, y′) for all (x, y), (x ′, y′) ∈ X × Y.

Prove that d is a metric on X × Y. Further, show that A × B is compact in X × Y if
and only if A and B are compact in X and Y, respectively.

Exercise 5.32 Generalize Exercise 5.31 for any finite Cartesian product of metric
spaces.

Exercise 5.33 If f : R −→ R maps compact sets onto compact sets, is it continu-
ous?

Exercise 5.34 Is the continuity hypothesis redundant in Theorem 5.31?

Exercise 5.35 Does there exist any of the following:

(a) A continuous surjective function f : [0, 1] −→ (0, 1)?
(b) A continuous surjective function f : (0, 1) −→ (0, 1]?
(c) A continuous surjective function f : (0, 1) −→ [0, 1]?
(d) A continuous bijection f : (0, 1) −→ [0, 1]?
(e) A continuous function f : [0, 1] −→ (0, 1) such that f

(
(0, 1]) = (0, 1)?

Exercise 5.36 Let E be a nonempty subset of a metric space (X, d). Prove that the
function x �−→ dist (x; E) is uniformly continuous on X.

Exercise 5.37 Prove that uniformly continuous functions map totally bounded sets
onto totally bounded sets, by directly using Definition 4.16.

Exercise 5.38 Let f : R −→ R be a continuous function such that f (x + 1) =
f (x) for all x ∈ R. Show that f is uniformly continuous.

Exercise 5.39 Which of the following functions are uniformly continuous on (0, 1) :
(a) f (x) := cos x cos π

x for all x ∈ (0, 1),
(b) g(x) := sin x sin π

x for all x ∈ (0, 1)?
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Exercise 5.40 For x > 0,define f (x) := x2 andg(x) := √
x for all x > 0.Without

using Theorem 5.38, prove the following:

(a) On [1,+∞), f is not uniformly continuous, while g is uniformly continuous.
(b) On (0, 1], f is uniformly continuous, while g is not uniformly continuous.

Exercise 5.41 Is the mapping x �−→ 1/x2 uniformly continuous on (0, 1)?

Exercise 5.42 Is the mapping x �−→ ex uniformly continuous on R?

Exercise 5.43 Consider the functions f, g : [1,+∞) −→ R defined as f (x) :=
1/x and g(x) := 1/x2. Is any of these uniformly continuous on [1,+∞)?

Exercise 5.44 Write a proof for Corollary 5.39.

Exercise 5.45 Prove that the composition of two uniformly continuous functions,
whenever possible, is also a uniformly continuous function.

Exercise 5.46 Is the product of two uniformly continuous functions also uniformly
continuous? Is it true in case of functions on closed bounded intervals?

Exercise 5.47 Let f and g be uniformly continuous real valued functions on a
set E ⊂ R such that g(x) �= 0 for all x ∈ E . Does it imply that f/g is uniformly
continuous on E?

Exercise 5.48 Prove that the functions given by Examples 5.40 and 5.41 are not
uniformly continuous.

Exercise 5.49 Prove that a function f : R −→ R is uniformly continuous if and
only if for any sequences {xn} and {yn} of reals such that |xn − yn| −→ 0, we have
| f (xn) − f (yn)| −→ 0.

Exercise 5.50 Let { fn} be a sequence of uniformly continuous functions on a metric
space X, uniformly convergent to a function f on X. Prove that f is uniformly
continuous on X.

Exercise 5.51 Prove or disprove:

(a) Every uniformly continuous function on a totally bounded set is bounded.
(b) Every uniformly continuous function on a bounded set is a bounded function.

Exercise 5.52 Let E be a non-compact subset of R. Prove the following:

(a) There exists a continuous unbounded function on E .

(b) There is a continuous bounded function on E, which has no maximum on E .

(c) If E is bounded, then there exists a continuous function f : E −→ R, which is
not uniformly continuous. Is the boundedness of E redundant?

Exercise 5.53 Let f and g be uniformly continuous E(⊂ R) −→ R functions.
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(a) If f is bounded on E, prove that f 2 is uniformly continuous on E .

(b) If f and g are bounded on E, prove that f g is uniformly continuous on E .

(c) If there exists some M > 0 such that |g(x)| > M for all x ∈ E, prove that 1/g
is uniformly continuous on E .

Exercise 5.54 If f maps Cauchy sequences onto Cauchy sequences, does it imply
that f is uniformly continuous?

Exercise 5.55 Let f : R −→ R be continuous. Is it necessary that f maps Cauchy
sequences onto Cauchy sequences?

Exercise 5.56 Let f : R −→ R be strictly monotone. Is it necessary that f maps
Cauchy sequences onto Cauchy sequences?

Exercise 5.57 (Daners, 2015 [13]) Write a proof of Theorem 5.37 by establishing
the following assertions:

(a) F : X × X −→ R defined as F(x, y) := dY ( f (x), f (y)) is continuous.
(b) For a fixed ε > 0, the set Aε := F−1

([ε,∞)
)
is compact.

(c) If δ := inf{dX (x, y) : (x, y) ∈ Aε}, then δ > 0.Further, there exists some (a, b) ∈
Aε such that F(a, b) = δ.

(d) If dx (x, y) < δ, then dY ( f (x), f (y) < ε.

Exercise 5.58 Prove that for every f ∈ C[0, 1] and ε > 0, there exists a piecewise
linear function p on [0, 1] such that ‖p − f ‖∞ < ε.

Exercise 5.59 Let f, fn : [a, b] −→ R be such that

(a) fn −→ f pointwise on [a, b],
(b) f is continuous on [a, b] and
(c) each fn is monotonically increasing on [a, b].
Prove that fn −→ f uniformly on [a, b]. Conclusion that f is a monotonically
increasing on [a, b].Establish similar results formonotonically decreasing functions.

Exercise 5.60 If f is an upper semi-continuous function on a compact metric space
X, prove that f has absolute maximum on X.

Exercise 5.61 Let � be an open covering of a compact metric space X. Then there
exists a δ > 0 such that for every subset of X having diameter less than δ, there exists
an element of � containing it. (The number δ is called a Lebesgue number for the
covering �.)

Exercise 5.62 Let X be a metric space in which every open cover of X has a
Lebesgue number. Prove that every continuous function on X is uniformly con-
tinuous.
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Exercise 5.63 (Beer, 2009 [11]) Let (X, dX ), (Y, dY ) be metric spaces, A ⊂ X, and
f : X −→ Y. Then f is called strongly uniformly continuous on A ⊂ X if for all
ε > 0 there exists some δ > 0 such that

dY ( f (x), f (y)) < ε if dX (x, y) < δ and {x, y} ∩ A �= ∅.

(a) Prove that f is continuous at some x ∈ X if and only if f is strongly uniformly
continuous on {x}.

(b) If f is strongly uniformly continuous on A, then prove that f is uniformly
continuous on A.

(c) If f is continuous on X and A is compact, then prove that f is strongly uniformly
continuous on A.

(d) If X := R
2, Y := R, A := {(1, y) : y ∈ R} and f (x, y) := x(x + y) for all x, y

∈ R, then prove that f is uniformly continuous on A, but not strongly uniformly
continuous on A.

Exercise 5.64 (Beer, 2009 [11]) Let (X, dX ) and (Y, dY ) be metric spaces, and let
f : X −→ Y. Prove that the following are equivalent:

(a) f maps Cauchy sequences onto Cauchy sequences.
(b) f is strongly uniformly continuous on all totally bounded subsets of X.

(c) f is uniformly continuous on all totally bounded subsets of X.

Exercise 5.65 (Beer, 1986 [10])Let X be ametric spacewith completion X∗.Apply-
ing Exercise 4.19, prove that the following are equivalent:

(a) If Y is a metric space and f : X −→ Y maps Cauchy sequences onto Cauchy
sequences, then f is uniformly continuous on X.

(b) If f : X −→ R is maps Cauchy sequences onto Cauchy sequences, then f is
uniformly continuous on X.

(c) If Y is a metric space and f : X∗ −→ Y is continuous function, then f is uni-
formly continuous on X.

Exercise 5.66 (Beer, 2009 [11]) Let (X, dX ) and (Y, dY ) be metric spaces, {xn} be
a Cauchy sequence in X, and let f : X −→ Y. Prove that f is uniformly continuous
on {xn : n ∈ N} if and only if { f (xn)} is a Cauchy sequence in Y.

5.4 Lipschitz Continuity

Definition 5.44 Let (X, dX ) and (Y, dY ) be metric spaces. A function f : X −→ Y
is said to be Lipschitz continuous on set E ⊂ X, if there exists some M > 0 such
that

dY ( f (x), f (y)) ≤ MdX (x, y) for all x, y ∈ E .

In this case, M is known as a Lipschitz constant for f.



5.4 Lipschitz Continuity 143

Examples 5.45 (a) All linear R −→ R functions are Lipschitz continuous.
(b) Every R −→ R contraction mapping is Lipschitz continuous.
(c) Every isometry is Lipschitz continuous.
(d) Every contraction mapping is Lipschitz continuous.

Example 5.46 The function f (x) := √
x is not Lipschitz continuous on [0, 1].

Proof Suppose that there exists some M > 0 such that

| f (x) − f (y)| ≤ M |x − y| for all x, y ∈ [0, 1].

In particular, with y = 0, we obtain |√x | ≤ M |x | for all x ∈ [0, 1], that is, x >

1/M2 for all x ∈ [0, 1], a contradiction. �

Theorem 5.47 Every Lipschitz continuous function is uniformly continuous.

Proof Let (X, dX ) and (Y, dY ) be metric spaces, E ⊂ X and f : X −→ Y be a
Lipschitz continuous function on E . Then there exists some M > 0 such that for all
x, y ∈ E, the inequality dY ( f (x), f (y)) ≤ MdX (x, y) is satisfied.

Let ε > 0 be given. Fix δ := ε
M . Then for any x, y ∈ E such that dX (x, y) < δ,

we obtain dY ( f (x), f (y)) ≤ M ε
M = ε. Hence the result. �

Therefore, to examine the uniform continuity of a function f, the first step is
to examine its Lipschitz continuity. The next two theorems facilitate this for some
particular types of differentiable functions.

Theorem 5.48 Let I be any interval and f : I −→ R be a differentiable function.
Then f is Lipschitz continuous on I if and only if f ′ is bounded on I.

Proof First assume that f is Lipschitz continuous on I. Let M > 0 be such that

| f (x) − f (y)| ≤ M |x − y| for all x, y ∈ I.

Then for all x ∈ I, using the continuity of the mapping t �−→ |t |, we obtain

| f ′(x)| =
∣
∣
∣
∣ limy→x

f (y) − f (x)

y − x

∣
∣
∣
∣ = lim

y→x

∣
∣
∣
∣

f (y) − f (x)

y − x

∣
∣
∣
∣ ≤ M.

Conversely, assume that there exists some M > 0 be such that | f ′| ≤ M, on I.
Pick any x, y ∈ I. By Mean Value Theorem on [x, y], we have f (x) − f (y) =
f ′(c)(x − y) for some c ∈ (x, y). Hence, | f (x) − f (y)| ≤ M |x − y|. Since x, y
were arbitrary, the result follows. �

Theorem 5.49 Let I be an open interval and f : I −→ R be continuous on I and
differentiable on I. Then f is Lipschitz continuous on I if and only if f ′ is bounded
on I.
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Proof If f is Lipschitz continuous on I , it must be Lipschitz continuous on I.
Applying Theorem 5.48, f ′ is bounded on I.

Conversely, if f ′ is bounded on I, by Theorem 5.48, f is Lipschitz continuous
on I. Therefore, there exists some M > 0 such that for all x, y ∈ I, we have

| f (x) − f (y)| ≤ M |x − y|. (5.3)

Since I is anopen interval, I canbe anyof the intervals (−∞,+∞), (a,+∞), (−∞, a)

or (a, b) for some a, b ∈ R. We prove the result for I = (a,+∞).The other cases
are similar.

If x = y = a, (5.3) is trivially satisfied. Therefore, it is enough to prove (5.3)
for x > a and y = a. Let y = a and choose a sequence {yn} ⊂ (a,+∞) such that
yn −→ a. Since f is continuous at a, f (yn) −→ f (a). Also, we have

| f (x) − f (yn)| ≤ M |x − yn|, for all n ∈ N.

Passing limit n −→ +∞ we obtain (5.3) for x > a and y = a, as required. �

We wind up this section with a characterization of continuous linear maps on
normed spaces.

Theorem 5.50 Let X and Y be normed spaces and T : X −→ Y be a linear map.
That is,

T (αx + βy) = αT (x) + βT (y) for all α,β ∈ K and for all x, y ∈ X.

Then the following are equivalent:

(a) T is continuous at 0.
(b) T is continuous on X.

(c) T is uniformly continuous.
(d) T is Lipschitz continuous on X.

(e) There exists M > 0 such that ‖T (x)‖ ≤ M‖x‖ for all x ∈ X.

Proof The implications (d) ⇒ (c) ⇒ (b) ⇒ (a) are trivial. Due to linearity of T,

it is immediate that (d) ⇐⇒ (e). We now prove that (a) ⇒ (e).
Suppose that T is continuous at 0. Being a linear map, we have T (0) = T (0 ×

0) = 0 × T (0) = 0.Then for every ε > 0, there exists some δ > 0 such that ‖T (x) −
T (0)‖ ≤ ε whenever ‖x − 0‖ ≤ δ. That is ‖T (x)‖ ≤ ε whenever ‖x‖ ≤ δ.

Let x ∈ X \ {0}. Then for y := δ x
‖x‖ , we have ‖y‖ = δ and thus ‖T (y)‖ ≤ ε.

Consequently, ‖T (x)‖ ≤ ε
δ
‖x‖ for all x ∈ X. Hence the result. �

Notes and Remarks 5.51 Let [a, b] be a compact interval. It can be shown that
every Lipschitz continuous function f : [a, b] −→ R is of bounded variation. In
other words,
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sup

{ n∑

i=1

| f (xi ) − f (xi−1)| : a = x0 < x1 < · · · < xn = b, n ∈ N

}

< ∞.

It is well known that every continuous function of bounded variation on [a, b] is a
difference of two monotonically increasing continuous functions (see [14, p. 113,
Theorem 6.15]). Hence, every Lipschitz continuous function is a difference of two
monotonically increasing continuous functions. For a thorough treatise on Lipschitz
functions, the readers are referred to [15].

There is another notion of continuity for real functions, known as absolute conti-
nuity (see [16, p. 119]). It lies strictly between the Lipschitz and uniform continuities
and has an important role in the theory of Lebesgue integration. The Fundamental
Theorem of Calculus for the Lebesgue integral ensures that absolutely continuous
functions completely characterize the primitives of Lebesgue integrable functions
(see [16, p. 125, Theorem 11]). Along with Theorem 5.49, we conclude the follow-
ing result:

If f : [a, b] −→ R has a bounded derivative on [a, b], then f ′ is Lebesgue
integrable and

∫ b
a f ′(t)dt = f (b) − f (a).

A better result is available in terms of restricted generalized absolute continuity and
the integrals of Arnaud Denjoy, Jaroslav Kurzweil and Ralph Henstock. For details,
we refer [17, Theorems 11.3-11.4]. Also, see [17, Theorem 9.17] and [18, p. 209,
Theorem 7.3.10].

Exercise 5.67 Let (X, ‖.‖) be a normed linear space. Prove that x �−→ ‖x‖ defines
a Lipschitz continuous function on X.

Exercise 5.68 If f is continuously differentiable on a closed bounded interval I,
prove that f is Lipschitz continuous on I.

Exercise 5.69 Prove or disprove: Every Lipschitz continuous function on a bounded
set is a bounded function.

Exercise 5.70 Does x �−→ x2 sin 1
x define a Lipschitz continuous map on (0, 1)?

Exercise 5.71 Define f : [−1, 1] −→ R as

f (x) :=
{

x2 sin 1
x2 ; x �= 0,

0 ; x = 0.

Prove that on [−1, 1], the function f is differentiable and uniformly continuous but
f ′ is not bounded. Conclude that f is not Lipschitz continuous on [−1, 1].

Exercise 5.72 Prove that g : R −→ R is Lipschitz continuous if and only if

sup

{∣
∣
∣
∣
g(x) − g(y)

x − y

∣
∣
∣
∣ : x, y ∈ R and x �= y

}

< ∞.
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Exercise 5.73 Let { fn} be a sequence of R −→ R functions, pointwise convergent
to f. Assume that for every n ∈ N, there exists Mn > 0 such that Mn is a Lipschitz
constant for fn.

(a) If Mn −→ M0, for some M0 ∈ R, prove that f is Lipschitz continuous with
constant M0.

(b) If M := infk≥1 supn≥k Mn < +∞, prove that f is Lipschitz continuous with
constant M.

(c) Can these results be extended to functions between metric spaces?

Exercise 5.74 Is the uniform limit of a sequence of Lipschitz continuous functions
always Lipschitz continuous?

Exercise 5.75 A function f is called locally Lipschitz if f is Lipschitz continuous
in some ball about each point of its domain. Prove the following:

(a) x �→ x2 is locally Lipschitz on R but is not Lipschitz continuous on R.

(b) The restriction of a locallyLipschitz function to each compact subset isLipschitz.

Exercise 5.76 Let F : X −→ Y be a linear map between normed linear spaces X
and Y. Prove that F is continuous if and only if F maps Cauchy sequences onto
Cauchy sequences.

5.5 Hints and Solutions to Selected Exercises

5.7 By Theorem 5.8, K is closed. Therefore, F ∩ K is a closed subset of K . By
Theorem 5.10, F ∩ K is compact.

5.8 Yes. Let X := [0, 1] ∪ N and define

d(x, y) := |x − y|
1 + |x − y| for all x, y ∈ X.

Then X is bounded, as X ⊂ B(0; 2).Alsonote thatd(n, n + 1) = 1/2 for all n ∈
N. Hence {B(x; 1/2) : x ∈ X} is an open cover of X with no finite subcover.

5.9 Let [a, b] be a compact interval and � be an open cover of [a, b]. Applying
the least upper bound property on the set E := {x ∈ [a, b] : [a, x]
has a finite subcover from �} there exists some s ∈ R such that s = sup E .

Then show that s = b.

5.10 Part (a) is trivial. For (b), apply (a) to obtain a finite subcover from�, say�0. For
every b ∈ B, we have some Ob ∈ �0 containing (x, b). Then there exists some
neighborhoods Ub and Vb, of x and b, respectively, such that Ub × Vb ⊂ Ob.
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Using compactness of B, there are finitely many b1, . . . , bn ∈ B such that B ⊂⋃n
i=1 Vbi . Then U := ⋂n

i=1 Ubi satisfies our requirements.

To prove (c), let � be an open cover of A × B in X × Y. For every x ∈ A, by
(b), choose a neighborhood Ux of x such that Ux × B has a finite subcover �x

from �.

Since {Ux : x ∈ A} is an open cover of A, there are finitely many x1, . . . , xn ∈ A
such that A ⊂ ⋃n

i=1 Uxi . Then
⋃n

i=1 �xi is a finite subcover of A × B.

5.12 Let Fx := X \ {x} for all x ∈ X. Then F = {Fx : x ∈ X} a collection of closed
sets with empty intersection and finite intersection property. Hence X is not
compact.

5.13 Let K be a compact subset of a metric space X. Then K is closed in X. By
Corollary 5.19, K is complete. By Theorem 4.2, K is a closed subset of X.

5.14 Let X be a compact metric space and K be a closed subset of X. Since X is
compact, by Corollary 5.19, X is complete. By Theorem 4.3, K is complete.

Since X is compact, by Proposition 5.3, it is totally bounded. Since subsets of
totally bounded sets are totally bounded, see Exercise 4.38, K is totally bounded.
Applying Theorem 5.26, we conclude that K is compact.

5.17 Let X be a compact metric space and f : X −→ R be a continuous function.
Assume that f is not bounded. Then for each n ∈ N there exists some xn ∈ X
such that each | f (xn)| > n for all n ∈ N.

Since X is compact, it is sequentially compact. Therefore, {xn} must have a
convergent subsequence, say {xnk } −→ x . Since f is continuous at x, we have
{ f (xnk )} −→ f (x). So, the sequence { f (xnk )} is bounded, a contradiction.

5.22 The converse of (a) is not true, as 0 is a limit point of S := {n, 1/n : n ∈ N}, but
S does not converge to 0. Part (b) follows by Theorem 5.27.

5.23 Toprove the contrapositive, assume that X is ametric space,which is sequentially
complete but not totally bounded. Then there exists some ε > 0 such that X is
not covered by finitely many sets from {B(x; ε) : x ∈ X}.
Pick any x1 ∈ X.Since X �⊂ B(x1; ε),wecanchoose x2 ∈ X such thatd(x2, x1) ≥
ε. Since X �⊂ B(x1; ε) ∪ B(x2; ε), choose x3 ∈ X such that d(x3, x1) ≥ ε and
d(x3, x2) ≥ ε.Continuing like this, one can choose xn ∈ X such that d(xn, x1) ≥
ε, . . . , d(xn, xn−1) ≥ ε. Then d(xn, xm) ≥ ε, for each n �= m.

Since {xn} is a sequence in X, which is sequentially compact, it must have a
convergent subsequence, say {xnk }. Being convergent {xnk } must be Cauchy,
which is impossible as by our construction d(xnk , xnl ) ≥ ε, for all k �= l.

5.24 Yes. Clearly, d is a metric on R. For its total boundedness, let x ∈ R and r > 0.
Then

B(x; r) := {y ∈ R : | tan−1 y − tan−1 x | < r} = tan(tan−1 x − r, tan−1 x + r).
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Let r ∈ (0,π).Note that the function f : R −→ (−π/2,π/2) given by f (x) :=
tan−1 x is a strictly increasing bijection. Therefore, there are x1, x2 ∈ R be such
that tan−1 x1 = r − π

2 and tan−1 x2 = −r + π
2 . Then

B(x1; r) = (−∞, tan(tan−1 x1 + r)) and B(x2; r) = (tan(tan−1 x2 − r),+∞).

Set a := tan(tan−1 x2 − r) and b := tan(tan−1 x1 + r). Since [a, b] ⊂ ⋃
x∈[a,b]

B(x; r), using the compactness of [a, b], there are some finitely t1, . . . , tn ∈
[a, b] such that [a, b] ⊂ ⋃n

i=1 B(ti ; r). Therefore we obtain R = B(x1; r) ∪(⋃n
i=1 B(ti ; r)

) ∪ B(x2; r).

5.25 No. This space is not even complete. For each n ∈ N, let xn := tan
(

π
2 − 1

n

)
.

Then the sequence {xn} is Cauchy in (R, d). Suppose there exists some a ∈ R

such that {xn} −→ a in (R, d), then tan−1 xn −→ tan−1 a, under usual metric
on R. The uniqueness of limits, implies tan−1 a = π

2 which implies a /∈ R, a
contradiction.

5.28 Applying Exercise 4.57, it is enough to show that if {An} is as in the statement
then A := ⋂∞

n=1 An is compact. Let ε > 0 be given. Then there exists some N
such that α(AN ) < ε. Since A ⊂ AN , we conclude that A can be covered by
finitely many subsets of X with diameter < ε. Therefore, A is totally bounded.
Being a closed subset of the complete space X, A is complete and hence compact.

5.29 No. If yes, then (R∗, d) must be totally bounded. Hence every subset of it, in
particular R, must be totally bounded, a contradiction.

5.31 First part is easy. The converse of the second part holds by Exercise 5.10. For the
necessity part, let f : X × Y −→ X be the projection map f (x, y) := x . It can
be verified that f is continuous. By Theorem 5.31, A = f (A × B) is compact
in X. Similarly B is compact.

5.33 No. For example, consider the Dirichlet function.
5.34 No. For example, consider f (x) := xχQ on R.

5.35 (a) No. See Theorem 5.31.
(b) Yes. For example, f (x) := sin πx .

(c) Yes. For example, f (x) := 1
2 [1 + | sin 2πx |].

(d) No. If there exists such a bijection f, then there exists some c ∈ (0, 1)
such that f (c) = 0. Let η := min{c, 1 − c}. Pick any c1 ∈ (c − δ, c) and
c2 ∈ (c, c + δ). Since f is not injective, f (c1) > 0 and f (c2) > 0.Letm :=
min{ f (c1), f (c2)}. Then m > 0.

By Intermediate Value Theorem, f assumes every value between [0, m]
in both of the domains [c − δ, c] and [c, c + δ]. Consequently, f is not
injective, a contradiction.

(e) No. To prove this, assume that there exists such a function. Let f denote
one such function and m := inf{ f (x) : x ∈ (0, 1]} and M := sup{ f (x) :
x ∈ (0, 1]}.
Since f

(
(0, 1]) = (0, 1), we obtain m = 0 and M = 1. Let {xn} and {yn}

be sequences in (0, 1] such that f (xn) −→ 0 and f (yn) −→ 1.

By Bolzano–Weierstrass Property of reals, both {xn} and {yn} will have
subsequences convergent in [0, 1].Without loss of generality, we can assume
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that both {xn} and {yn} are convergent and let x0 := limn→∞ xn and y0 :=
limn→∞ yn. Then x0, y0 ∈ [0, 1].
If x0 �= 0, then as f is continuous at x0,we have f (x0) = limn→∞ f (xn) =
0, a contradiction. Therefore, x0 = 0. Similarly, y0 = 0. This leads to 0 =
limn→∞ f (xn) = f (x0) = f (y0) = limn→∞ f (yn) = 1, a contradiction.

Hence, there exists no continuous map f : [0, 1] −→ (0, 1) such that
f
(
(0, 1]) = (0, 1).

5.37 Let f be uniformly continuous on a totally bounded subset E of a metric space
X and ε > 0 be given. Choose δ > 0 as per the uniform continuity of f on E .

Since E is totally bounded, there are finitely many x1, . . . , xn ∈ E such that
E ⊂ ⋃n

i=1 B(xi ; δ). Hence

f (E) ⊂ f
( n⋃

i=1

B(xi ; δ)
) ⊂

n⋃

i=1

f
(
B(xi ; δ)

) ⊂
n⋃

i=1

B( f (xi ); ε).

5.39 Answer: g is uniformly continuous on (0, 1), but not f. Apply Theorem 5.38.
5.40 We prove the first part. The second one is similar. Note that g′(x) is bounded by

1/2, therefore, g is Lipschitz continuous and hence uniformly continuous.

Suppose that f is uniformly continuous. Then there exists some δ > 0 such that
|x2 − y2| < 1/2, whenever |x − y| < δ. Pick any n ∈ N such that 1/n < δ.
Then |x2 − y2| < 1/2, whenever |x − y| ≤ 1/n.

Let x = n + 1/n and y = n.Since |x − y| = 1/n,wehave |(n + 1/n)2 − n2| <

1/2. This is a contradiction, as

∣
∣
∣
∣

(

n + 1

n

)2

− n2

∣
∣
∣
∣ =

(

n + 1

n

)2

− n2 = 2 + 1

n2
> 2.

5.43 Yes, both f and g are uniformly continuous on [1,+∞). To see this, let ε > 0
be given. Note that if x, y ∈ [1,+∞) satisfy |x − y| < ε, we have

∣
∣
∣
∣
1

x
− 1

y

∣
∣
∣
∣ =

∣
∣
∣
∣
x − y

xy

∣
∣
∣
∣ ≤ |x − y| < ε.

Similarly, if x, y ∈ [1,+∞) satisfy |x − y| < ε/2, we have

∣
∣
∣
∣
1

x2
− 1

y2

∣
∣
∣
∣ =

∣
∣
∣
∣
x2 − y2

x2y2

∣
∣
∣
∣ = ∣

∣x − y
∣
∣
∣
∣
∣
∣
1

xy2
+ 1

x2y

∣
∣
∣
∣ ≤ 2

∣
∣x − y| < ε.
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5.45 Let f : (X, dX ) −→ (Y, dY ) and g : (Y, dY ) −→ (Z , dZ ) be uniformly contin-
uous functions. Let ε > 0. Then there exists η > 0 such that dZ (g(s), g(t)) <

ε whenever dY (s, t) < η.

Similarly, we find δ > 0 such that dY ( f (x), f (y)) < η whenever dX (x, y) < δ.
If dX (x, y) < δ, we have dY ( f (x), f (y)) < η and hence dZ (g ◦ f (x),

g ◦ f (y)) < ε.
5.46 No. For example, consider f (x) := x on [1,+∞). Then f is uniformly contin-

uous, while f 2 is not.

In case of closed bounded intervals, it is true as uniformly continuous functions
are continuous and hence so is their product. Being continuous function closed
bounded intervals, this product will be uniformly continuous over there.

5.47 No. For example, take E := R, f ≡ 1, g(x) := x .

5.50 Argue as in Theorem 3.31.
5.51 (a) True. Apply Theorem 5.42 and the fact that every totally bounded set is

bounded.
(b) False. For example, take X = R with discrete metric and Y = R with usual

metric. Define f (x) := x for all x ∈ X. Then f : X −→ Y is uniformly
continuous. For any ε > 0 take δ = 1.

5.52 Case I: E is bounded. Since E is non-compact, it is not closed. If a ∈ E ′ \ E,

then

f (x) := 1

x − a
for all x ∈ E

serves as an example for (a) and (c) above. For (b), consider the function

g(x) := 1

1 + (x − a)2
for all x ∈ E .

Case II: E is unbounded. Then h(x) := x for all x ∈ E serves as an example for
(a) and

u(x) := x2

1 + x2
for all x ∈ E

serves as an example for (b). The boundedness of E is not redundant in (c), e.g.
if E := Z then any function on E is uniformly continuous (with δ < 1.)

5.53 (a) Pick any M > 0 such that | f | < M on E .For ε > 0,pick any δ > 0 as per the
definition of uniform continuity. Then for x, y ∈ E such that |x − y| < δ,
we have

| f 2(x) − f 2(y)| ≤ ∣
∣| f (x)| + | f (y)|∣∣ × | f (x) − f (y)| ≤ 2Mε.

Since M is fixed and ε > 0 is arbitrary, the result follows.
(b) By (a), f g = 1

4 (( f + g)2 − ( f − g)2) is uniformly continuous on E .

(c) The result follows from the inequality
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∣
∣
∣
∣

1

g(x)
− 1

g(y)

∣
∣
∣
∣ ≤ 1

M2
|g(x) − g(y)|.

for all x, y ∈ E
5.54 No. For example, let f : R −→ R be defined as f (x) := x2. Then f maps

Cauchy sequences onto Cauchy sequences, as Cauchy sequences of reals are
precisely convergent sequences. However, f is not uniformly continuous.

5.55 Yes, as Cauchy sequences in R are convergent.
5.56 No, e.g. consider the function f : R −→ R and a sequence {xn} defined as

f (x) :=
{

x ; x < 0,
x + 1 ; x ≥ 0

and xn :=
{ 1

m ; n = 2m,

− 1
m ; n = 2m − 1.

Then f is strictly increasing and {xn} is Cauchy, while { f (xn)} is not Cauchy.
5.58 Since [0, 1] is compact, f is uniformly continuous on [0, 1].So there exists δ > 0

such that | f (x) − f (y)| < ε
3 whenever x, y ∈ [0, 1] such that |x − y| < δ.

Consider a partition 0 = x0 < x1 < · · · < xn = 1 of [0, 1] such that xi − xi−1 <

δ for every i. Let p be a piecewise linear function on [0, 1] such that p(xi ) =
f (xi ) for every i and p is linear on each subinterval [xi−1, xi ].
Let x ∈ [0, 1] be arbitrary. Then there exists some i such that x ∈ [xi−1, xi ].
Therefore, |p(x) − f (xi )| = |p(x) − p(xi )| ≤ |p(xi−1) − p(xi )| < ε/3.Hence

|p(x) − f (x)| ≤ |p(x) − f (xi )| + | f (xi ) − f (x)| <
ε

3
+ ε

3
= 2ε

3
.

Therefore, ‖p − f ‖∞ ≤ 2ε
3 < ε. Hence p ∈ B( f ; ε) and the result follows.

5.59 We prove the result for monotonically increasing functions. The case of mono-
tonically decreasing functions is similar. Also, note that it is enough to prove
that fn −→ f uniformly on [a, b]. Let ε > 0 be given.

Since f is continuous on the compact interval [a, b], it is uniformly continu-
ous on [a, b]. Therefore, there exists some δ > 0 such that | f (x) − f (y)| <
ε
2 for all |x − y| < δ.

Leta = t0 < t1 · · · < tk = b be apartitionof [a, b] such that ti − ti−1 < δ for all
1 ≤ i ≤ k.Since fn(ti ) −→ f (ti ), for all i = 0, . . . , k, there exists some N ∈ N

such that

| fn(ti ) − f (ti )| <
ε

2
for all 0 ≤ i ≤ k and for all n ≥ N . (5.4)

Let n ≥ N and t ∈ [a, b]. Then such that t ∈ [ti−1, ti ] for some i. Since fn is
monotone

fn(ti−1) ≤ fn(t) ≤ fn(ti ).
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By (5.4), we have f (ti−1) − ε
2 ≤ fn(t) ≤ f (ti ) + ε

2 . Further our choice of δ
ensures that

f (t) − ε < f (ti−1) − ε

2
< fn(t) < f (ti ) + ε

2
< f (t) + ε.

Consequently, | fn(t) − f (t)| < ε for all n ≥ N and for all t ∈ [a, b].
5.60 Suppose not. Then there exists a sequence {xn} ⊂ X such that f (xn) −→ ∞.

Since X is a compact metric space, {xn} has a convergent subsequence. Without
loss of generality, suppose that xn −→ x for some x ∈ X. By Exercises3.101
and 3.102, we obtain limn→∞ f (xn) = lim supn−→∞ f (xn) ≤ f (x) < ∞, a
contradiction.

5.61 If X ∈ �, then any positive number is a Lebesgue number for �. So we
assume that X is not an element of �. The compactness of X ensures the exis-
tence of a finite subcollection {A1, . . . , An} ⊂ � that covers X. For each i, set
Ci := X \ Ai , and define f : X −→ R as f (x) := 1

n

∑n
i=1 dist (x, Ci ). Then f

is continuous on the compact space X and hence attains its minimum, say δ.
Since every x is contained in some Ai , we note that f (x) > 0 and hence δ > 0.
We claim that δ is the desired number.

If Y is a subset of X with diam(Y ) < δ, then there exists some x0 ∈ X such that
Y ⊂ B(x0, δ). Since f (x0) ≥ δ, there exists i such that d(x0, Ci ) ≥ δ. But this
means that B(x0, δ) ⊂ Ai , and therefore, in particular, Y ⊂ Ai .

5.62 Let Y be ametric space and f : (X, dX ) −→ (Y, dY ) be continuous. Let ε > 0 be
given. For each x ∈ X, choose δx > 0 such that f (BX (x; δx )) ⊂ BY ( f (x); ε/2).
Applying hypothesis, let δ denote the Lebesgue number of the open cover
{B(x; δx/2) : x ∈ X} of X. Let a, b ∈ X such that dX (a, b) < δ. Then there
exists c ∈ X such that a, b ∈ BX (c; δc). Hence

dY ( f (a), f (b)) ≤ dY ( f (a), f (c)) + dY ( f (c), f (b)) <
ε

2
+ ε

2
= ε.

5.63 Parts (a) and (b) are immediate from the definition. For (c), proceed by contra-
diction, as in the proof of Theorem 5.37. For (d), note that f is Lipschitz con-
tinuous on A. Let δ > 0 be arbitrary. If y = 1

δ
, then | f (1, y) − f (1 + δ, y)| =

|1 + y − (1 + δ)(1 + δ + y)| = (1 + δ)2 − 1 + yδ > 1.
5.64 The assertion (b) ⇒ (c) is obvious. Below we prove the other two.

(a) ⇒ (b) : Assume that f is not strongly uniformly continuous on a totally bounded set
A ⊂ X. Then there exists some ε > 0 and sequences {xn}, {yn} in X such that

xn ∈ A, dX (xn, yn) <
1

n
and dY ( f (xn), f (yn)) ≥ ε.

Since A is totally bounded, {xn} has a Cauchy subsequence, say {xnk }. Then
the sequence xk1 , yk1 , . . . , xkn , ykn , . . . is Cauchy, but not its image.

(c) ⇒ (a) : Let {xn} be a Cauchy sequence in X. Then {xn : n ∈ N} is totally bounded. By
(c), f is uniformly continuous on {xn : n ∈ N}. Hence, { f (xn)} is a Cauchy.
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5.65 Note that (a) ⇒ (b) is obvious. To prove (b) ⇒ (c), let Y be a metric space
and f : X∗ −→ Y be a continuous function. Since X∗ is complete, f maps
Cauchy sequences onto Cauchy sequences. By (b), f is uniformly continuous.

To prove (c) ⇒ (a), let Y be a metric space and suppose f : X −→ Y maps
Cauchy sequences onto Cauchy sequences. Let Y ∗ denote the completion of
Y. By Exercise 4.19, let g be a continuous extension of f to X∗. Applying (c),
g is uniformly continuous, and hence so is its restriction f = g|X .

5.66 Necessity follows fromTheorem5.42. For converse, write X0 := {xn : n ∈ N}.
Then its completion X∗

0 is a compact set and hence every continuous map from
X∗
0 into another metric space Y is uniformly continuous. By (c) ⇒ (a) part of

Exercise 5.65, f is uniformly continuous on X0.

5.73 Fix any x, y ∈ R. Then we have| fn(x) − fn(y)| ≤ Mn|x − y| for all n ∈ N.

(a) The result follows by passing limit n −→ ∞ in (5.5).
(b) Since M < ∞, for all ε > 0 there exists some Nε ∈ N such that Mn < M +

ε for all n ≥ Nε.Hence, | fn(x) − fn(y)| < (M + ε)|x − y| for all n ≥ Nε

and for all x, y ∈ R. Passing limit n −→ ∞, we obtain

| f (x) − f (y)| ≤ (M + ε)|x − y| for all x, y ∈ R. (5.5)

Since ε > 0 is arbitrary, we obtain the result.
(c) This part is analogous to the above ones.

5.74 No. Make the sequence converge uniformly to x �→ √
x .

5.76 If F is continuous, then it is Lipschitz continuous and hence maps Cauchy
sequences onto Cauchy sequences. Conversely, assume that F is not continu-
ous. Then we have sup{‖F(x)‖ : x ∈ X} = ∞. Thus, there exists a sequence
{xn} ⊂ X such that ‖xn‖ = 1 and ‖F(xn)‖ > n2 for all n ∈ N. Hence, for
yn := xn

n , we have yn −→ 0, while ‖F(yn)‖ −→ ∞. Therefore, {F(yn)} is
not Cauchy.
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Chapter 6
Connectedness

The notion of path connectedness is more intuitive than connectedness. It appears
before connectedness, even in history. Motivated by that, we start this chapter with
path connectedness and its relationshipwith continuity; throughwhichwe deduce the
Intermediate Value Theorem. Then we discuss connectedness and its characteriza-
tions, followed by a section on components; which provides insights into connected
components and path components. Finally, we present some miscellaneous topics
such as local connectedness, quasi-components, and totally disconnected spaces.

6.1 Path Connectedness

Path connectedness is natural for subsets of Rm . Analogously, it can be extended to
arbitrary metric spaces. First, we introduce the notion of a path.

Definition 6.1 Let X be a metric space and x, y ∈ X. A path from x to y, in X, is
defined to be the range of a continuous function f : [0, 1] −→ X such that f (0) = x
and f (1) = y.

Therefore, a subset γ of X is said to be a path in X if there exists a continuous
function f : [0, 1] −→ X with range γ. Alternate terms for path are curve and arc.

Definition 6.2 Ametric space X is said to be path connected if any two points inside
X can be joined by a curve, inside X.

Further a nonempty subset S of a metric space X is said to be path connected if it is
a path connected subspace of X.

Examples 6.3 Let X be a metric space. The following are immediate:

(a) Every singleton subset of X is path connected.
(b) Every curve in X is path connected.
(c) Every open ball in R

2 is path connected.
(d) If A and B are non-disjoint path connected subsets of X, then so is A ∪ B.

Recall that a subset I of R is defined to be an interval if I contains all reals
between any two points of I (see Definition 1.1).
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Proposition 6.4 Every nonempty interval is path connected.

Proof Let I be a nonempty interval and a, b ∈ I. Define g : [0, 1] −→ I as

g(t) := a + t (b − a) for all t ∈ [0, 1].

Then g is path in I from a to b. Hence, I is path connected. �

Remarks 6.5 (a) Unless specified, all the sets of this chapter will be taken as
nonempty subsets of an arbitrary metric space.

(b) If A and B are disjoint sets, we shall write A⊍ B, instead of A
⋃

B, which
would intrinsically convey that the sets A and B are disjoint.

(c) It is a standard practice to take arbitrary compact intervals in Definition 6.1,
instead of [0, 1]. Due to the natural bijection between any two non-degenerate
compact intervals, our choice of the unit interval has no loss of generality.

The following lemma opens up a world of abstraction.

Lemma 6.6 Let I be an interval. Then I is not a disjoint union of two nonempty
sets, closed in I.

Proof Suppose I = A ⊍ B, for some nonempty disjoint sets A and B, closed in I.
Pick any a ∈ A and b ∈ B. Without loss of generality, suppose that a < b.

Then A1 := A ∩ [a, b] and B1 := B ∩ [a, b] are nonempty disjoint sets, closed
in [a, b] such that A1 ⊍ B1 = [a, b]. Let c := sup A1. The definition of c and the fact
that A1 ⊍ B1 is an interval implies that

(c − ε, c] ∩ A1 �= ∅ and (c, c + ε) ∩ B1 �= ∅ for all ε > 0.

Therefore, c is an adherent point of both A1 and B1,which are closed in [a, b].Also,
c ∈ [a, b]. Hence, c ∈ A1 ∩ B1 = ∅, a contradiction. �

Theorem 6.7 Let X be a path connected metric space. Then X is not a disjoint
union of two nonempty closed subsets of X.

Proof Suppose there are disjoint nonempty closed sets A and B such that A⊍
B = X . Pick any a ∈ A and b ∈ B. Let f : [0, 1] −→ X be a continuous map with
f (0) = a and f (1) = b.

Then f −1(A) and f −1(B) are closed subsets of [0, 1], containing 0 and 1,
respectively. Since A and B are disjoint, so are f −1(A) and f −1(B). Moreover,
X = A⊍ B implies that [0, 1] = f −1(X) = f −1(A)⊍ f −1(B), a contradiction to
Lemma 6.6. �

Now we prove that the only path-connected subsets of R are nonempty intervals.

Theorem 6.8 Let ∅ �= I ⊂ R. Then I is path connected if and only if I is an interval.
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Proof The converse holds by Proposition 6.4. Assume that there exists a path con-
nected subset I of R which is not an interval. Then there are a, b ∈ I and c ∈ R \ I
such that a < c < b.

Since I is path connected, there exists a continuous function f : [0, 1] −→ I such
that f (0) = a and f (1) = b. Let

A := f −1((−∞, c] ∩ I ) and B := f −1([c,+∞) ∩ I ).

Note that a ∈ A, b ∈ B and A ∪ B = f −1(I ) = [0, 1]. Since f is continuous,
A and B are closed in [0, 1]. Since c /∈ I, we have c /∈ f ([0, 1]) and therefore,
A ∩ B = ∅. Hence, A and B are nonempty disjoint sets, closed in [0, 1] with union
[0, 1], a contradiction to Lemma 6.6. �

Next,we shall discuss the relationship between continuity andpath connectedness.
We shall present various consequences and generalizations of the Intermediate Value
Theorem, which is also known as the Intermediate Value Property of continuous real
functions. A few other generalizations will follow in the next section of this chapter.

First, we establish that continuous image of a path connected space is path con-
nected.

Theorem 6.9 Let X, Y be metric spaces such that X is path connected and f :
X −→ Y be a continuous function. Then f (X) is a path connected subspace of Y.

Proof Let y1, y2 ∈ f (X). Then y1 = f (x1) and y2 = f (x2) for some x1, x2 ∈ X.

Since X is path connected, there exists a continuous function φ : [0, 1] −→ X such
thatφ(0) = x1 andφ(1) = x2.Then f ◦ φ : [0, 1] −→ f (X) is a continuous function
with ( f ◦ φ)(0) = y1 and ( f ◦ φ)(1) = y2. Hence, f (X) is a path connected subset
of Y. �

Corollary 6.10 Let X be a path connected metric space, f : X −→ R be a con-
tinuous function and a, b ∈ X be such that f (a) < f (b). Then for every l ∈
( f (a), f (b)), there exists some c ∈ X such that f (c) = l.

Proof By Theorems 6.8 and 6.9, f (X) is a path connected subset ofR and hence an
interval. Therefore, f (X) ⊃ [ f (a), f (b)], which contains l. Hence, f (c) = l, for
some c ∈ X. �

Asan application of the above corollary,wenowshow that the continuous injective
real valued maps on intervals are strictly monotone with strictly monotone inverses
on their range.

Example 6.11 Let I be an interval and f : I −→ R be a continuous injective map.
Then f is strictly monotone with strictly monotone inverse on f (I ).

Proof Let E := {(x, y) ∈ I 2 : x < y}. Define g : E −→ R as g(x, y) = f (x) −
f (y). Note that E is path connected. Since g is continuous, g(E) is also path con-
nected.
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If f is not strictly monotone, then g takes positive and negative values on E .

Therefore, there exist (x, y) ∈ E such that g(x, y) = 0. This contradicts the fact that
f is injective.
Hence, f is strictly monotone on I. It can be shown that f −1 : f (I ) −→ I is also

strictly monotone, which we leave to the readers. �

Theorem 6.12 (Intermediate Value Theorem) Let a < b be reals and f : [a, b] −→
R be a continuous function. Then f maps intervals onto intervals. In other words, if
f (a) < l < f (b), then f (c) = l for some c ∈ (a, b).

Proof By Theorem 6.8, [a, b] is path connected. Now apply Corollary 6.10. �

The converse is not true. However, it holds under some additional hypotheses (see
Exercise 6.13) A few immediate consequences of the Intermediate Value Theorem
are presented below. The first one is a fixed point theorem.

Example 6.13 Let f : [0, 1] −→ [0, 1] be a continuous function. Then there exists
some x ∈ [0, 1] such that f (x) = x .

Proof Let g(x) := f (x) − x . If g(0) = 0 or g(1) = 1, we are done. Otherwise
g(0) > 0 and g(1) < 0. Since g is continuous on [0, 1], the result follows by Inter-
mediate Value Theorem. �

Example 6.14 Let S1 denote the unit circle in R2 and f : S1 −→ R be continuous.
Then there exists some z ∈ S1 such that f (z) = f (−z). (There are two antipodal
points on the equator of the earth at which the temperatures are exactly the same.)

Proof Consider the functions g : S1 −→ R and h : [0, 1] −→ S1 defined as

g(x) := f (x) − f (−x) and h(t) := (cos(2πt), sin(2πt)).

Since g and h are continuous, so is their composition g ◦ h : [0, 1] −→ R. Note that
h(0) = (1, 0) = −h(1/2). Therefore,

(g ◦ h)(0) = f (h(0)) − f (−h(0)) = f (−h(1/2)) − f (h(1/2)) = −(g ◦ h)(1/2).

If (g ◦ h)(0) = 0, then take z = h(0). Otherwise (g ◦ h)(0) and (g ◦ h)(1/2) are of
opposite signs. By Intermediate Value Theorem, there exists c ∈ (0, 1/2) such that
(g ◦ h)(c) = 0. Then z = h(c) satisfies our requirements. �

Proposition 6.15 [1, Theorem 2] Let f : R −→ R. Then f is continuous if and
only if f maps intervals onto intervals, and compact sets onto compact sets.

Proof The necessity follows by Theorems 5.31 and 6.12. For the converse, assume
that f maps intervals onto intervals and compact sets onto compact sets, but is not
continuous at some x ∈ R. Then there exists some ε > 0 and a sequence {yn} of real
numbers such that
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|yn − x | <
1

n
and | f (x) − f (yn)| ≥ ε for all n ∈ N.

Then for each n ∈ N, either f (yn) ≥ f (x) + ε or f (yn) ≤ f (x) − ε. Since f maps
intervals onto intervals, one can choose a real xn between x and yn such that

f (xn) = f (x) + ε

(
1

2
+ 1

n + 1

)

or f (x) − ε

(
1

2
+ 1

n + 1

)

. (6.1)

Write X := {xn : n ∈ N} ∪ {x}. Since xn −→ x, X is a closed and bounded subset
of R and hence compact. By hypothesis, f (X) is also compact. Also, (6.1) ensures
that either f (x) + ε/2 or f (x) − ε/2 is an adherent point of f (X), but not in f (X),

a contradiction. �

Alternative proofs of the Intermediate Value Theorem (6.12) will be suggested in
Exercise 6.14.

History Notes 6.16 The first proof of the Intermediate Value Theorem appeared in a
60 pages book byBolzano in 1817. In 1821, Cauchy provided its modern formulation
(see [2, p. 847]).

Exercise 6.1 Show that every curve is a path connected compact set, given by a
uniformly continuous map.

Exercise 6.2 Can a metric space have a path connected finite subset, with exactly
two points?

Exercise 6.3 Characterize the set of continuous functions from R into Z.

Exercise 6.4 Let f : [0, 2] −→ R be a continuous function with f (0) = f (2).
Prove that there exists some x ∈ [0, 1] such that f (x) = f (x + 1).

Exercise 6.5 Does there exist any normed linear space which is not path connected?

Exercise 6.6 Let f : R −→ R be a continuous function such that f (O) is an open
set, for every open set O. Prove that f is strictly monotone.

Exercise 6.7 Does there exist any p > 0 such that the square root of the arithmetic
mean of the pth powers of 2, 3 and 4 is π?

Exercise 6.8 Does there exist a continuous bijection from [0, 1]2 onto [0, 1], or
from (0, 1)2 onto (0, 1)?

Exercise 6.9 Let f : [0, 1) ∪ [3, 4] −→ R be a strictly increasing function such that
the range of f is connected. Prove that f is a continuous function.

Exercise 6.10 If a, b, c are distinct reals, then what is the number of distinct real
roots of the equation (x − a)3 + (x − b)3 + (x − c)3 = 0?
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Exercise 6.11 Let n ∈ N, and a1, . . . , an−1 ∈ R such that the polynomial given by
p(x) := xn + an−1xn−1 + · · · + a1x − 1 has no roots in {z ∈ C : |z| < 1} and it sat-
isfies p(−1) = 0. Prove or disprove:

(a) p(1) = 0.
(b) p(2) > 0.
(c) lim

x→∞ p(x) = ∞.

(d) p(3) = 0.

Exercise 6.12 Let {(Xi , ρi ) : i = 1, . . . n} be a finite collection of path connected
metric spaces and ρ be the metric on the Cartesian product X := ∏n

i=1 Xi defined as
in Exercise 2.24. Is (X, ρ) a path connected metric space?

Exercise 6.13 Let f : R −→ R such that f maps intervals onto intervals.

(a) Is it necessary that f is continuous?
(b) If f −1({r}) is closed for every r ∈ Q, prove that f is continuous.

Exercise 6.14 Write alternate proofs for the Intermediate Value Theorem (6.12)
using (a) the least upper bound property of R and (b) Heine-Borel Theorem (5.14)
for R.

Exercise 6.15 Write an alternate proof of Lemma 6.6, using relative open sets only.

6.2 Connected Sets

Motivated by Theorem 6.7, we now present the notion of connectedness.

Definition 6.17 A metric space X is said to be connected if it is not a union of two
nonempty disjoint sets, closed in X.

A nonempty subset Y of a metric space X is said to be connected if Y is a connected
subspace of X. Otherwise, Y is called disconnected.

It is evident from the definition that a metric space X is connected if and only if
X is not a union of two nonempty disjoint sets, open in X.

Examples 6.18 (a) In any metric space, the singleton sets are connected.
(b) In R, no finite set having more than one point is connected.
(c) By Lemma 6.6, every nonempty interval of reals is connected.
(d) By Theorem 6.7, every path connected metric space is connected.

In this chapter, we will provide several examples of connected metric spaces
that are not path connected. However, for subspaces of R, these two notions are
equivalent.

Theorem 6.19 Let ∅ �= I ⊂ R. Then the following are equivalent:
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(a) I is an interval.
(b) I is path connected.
(c) I is connected.

Proof The implications (a) ⇐⇒ (b) and (b) ⇒ (c) hold by Theorems 6.8 and
6.7, respectively. To prove that (c) ⇒ (a), assume that I is not an interval. Then
there are a < c < b such that a, b ∈ I, but c /∈ I. So I is a disjoint union of the
nonempty sets I ∩ (−∞, c) and I ∩ (c,+∞), which are open in I. Hence, I is
not connected. �

Just like path connected spaces, the continuous image of a connected space is
connected.

Theorem 6.20 Let X, Y be metric spaces such that X is connected and f : X −→ Y
be a continuous function. Then f (X) is a connected subspace of Y.

Proof Suppose that the result is not true. Then there exists continuous function f
on a connected metric space X into another metric space Y such that f (X) is not
connected. Then f (X) = O1 ∪ O2 for some nonempty disjoint sets O1 and O2, open
in f (X).

Then we obtain X := f −1(O1) ∪ f −1(O2), as a disjoint union. Since f is con-
tinuous, both f −1(O1) and f −1(O2) are open inside X. Since X is connected, either
f −1(O1) = ∅ or f −1(O2) = ∅. So either O1 = f (∅) = ∅ or O2 = f (∅) = ∅, a con-
tradiction. �

Corollary 6.21 Let X be a connected metric space, f : X −→ R be a continuous
function and a, b ∈ X be such that f (a) < f (b). Then for every l ∈ ( f (a), f (b)),

there exists some c ∈ X such that f (c) = l.

Proof Applying Theorems 6.20 and 6.19, f (X) is a connected subset of R and
hence an interval. Therefore, l ∈ [ f (a), f (b)] ⊂ f (X). Hence, f (c) = l, for some
c ∈ X. �

Now we present a property of connected spaces which is not shared by path
connected spaces, in general. Therefore, it serves as our main motivation to construct
examples of connected sets which are not path connected.

Theorem 6.22 If A is a connected subset of a metric space X, then any set B such
that A ⊂ B ⊂ A, is connected.

Proof Let B = B1 ⊍ B2, where B1 and B2 are disjoint sets, closed in B. Then

A = A ∩ B = (A ∩ B1)⊍ (A ∩ B2)

is a union of disjoint sets, closed in A. Since A is connected, either A ∩ B1 = ∅ or
A ∩ B2 = ∅. Without loss of generality, assume that A ∩ B1 = ∅. That is A ⊂ B2.

For E ⊂ B, let Ê denote the closure of E in the subspace B. Then Â = A ∩ B =
B, which implies B = Â ⊂ B̂2 = B2, as B2 is closed in B. Therefore, B1 = ∅.

Hence, B is connected. �
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Example 6.23 The topologist’s sine curve Ts, defined as under, is connected but
not path connected.

Ts :=
{(

x, sin
1

x

)

: x ∈ (0, 1]
} ⋃ {

(0, y) : |y| ≤ 1
}
.

Note that the set

T := {(x, sin(1/x)) : x ∈ (0, 1]}

is path connected and hence a connected sub-
space of R2.

Also, note that T = Ts . Applying Theorem
6.22, the space Ts is connected.

It can also be verified that there is no path
from (0, 0) to (1, sin 1), in Ts .

Example 6.24 Let X denote the subspace of R2 given by the union of an infinite
spiral and the unit circle as under:

{((

1 + 1

t

)

cos t,

(

1 + 1

t

)

sin t

)

; t ≥ 1

}

⋃
{(x, y) : x2 + y2 = 1}.

By Theorem 6.22, X is connected.
However, X is not path connected.

It can be shown that there exists no
path joining (1, 0) and (2 cos 1, 2 sin 1),
inside this space.

A few other examples of connected but not path connected metric spaces will be
presented Example 6.38 and Exercise 6.22.

Definition 6.25 Let X be a metric space and A, B ⊂ X. Then A and B are said to
be separated if

A ∩ B = ∅ and A ∩ B = ∅.

Separated sets are always disjoint. However, the intervals (0, 1) and (1, 2) are sepa-
rated inR, while [0, 1] and (1, 2) are not. The converse holds under some additional
hypotheses.
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Proposition 6.26 Let A and B be two disjoint subsets of a metric space.

(a) If both A and B are closed, then these are separated.
(b) If both A and B are open, then these are separated.

Proof (a) This part is trivial, as then A ∩ B = A ∩ B = ∅ and A ∩ B = A ∩ B = ∅
(b) Assume that there are open disjoint sets A and B which are not separated. Then

either A ∩ B �= ∅ or A ∩ B �= ∅. Without loss of generality, suppose that A ∩
B �= ∅. Pick any x ∈ A ∩ B �= ∅. Since A is open, there exists some r > 0 such
that B(x; r) ⊂ A. Since x ∈ B, we have B(x; r) ∩ B �= ∅. This implies that
A ∩ B �= ∅, a contradiction. �

Proposition 6.27 Let X be a metric space such that X = A⊍ B for some separated
sets A and B. Then both A and B are open (and hence closed) in X.

Proof If either A = ∅ or B = ∅, the result is obvious. Assume otherwise. If x ∈ A,

then x /∈ B. So there exists some r > 0 such that B(x; r) ∩ B = ∅. Since X = A ∪
B, we obtain B(x; r) ⊂ A. Hence, A is open. Similarly, B is open in X. �

Sets which are open as well as closed, are also known as clopen sets. Further, if
X is a union of two nonempty disjoint clopen sets A and B, we say that A|B is a
separation of X or that A ⊍ B is a separation of X.

Now we present a few characterizations of disconnected spaces. Note that these
characterizations correspond to characterizations of connected sets.

Theorem 6.28 If X is a metric space, then the following are equivalent:

(a) X is a union of two nonempty disjoint sets, open in X.

(b) X is a union of two nonempty disjoint sets, closed in X.

(c) X is a union of two nonempty separated sets.
(d) X contains a proper clopen subset.
(e) There exists a continuous surjective map f : X −→ {0, 1}.
Proof The equivalence ((a) ⇐⇒ (b)) is immediate from the definition of closed
sets. The implications ((b) ⇒ (c)) and ((a) ⇒ (c)) follow from Proposition 6.26.
Finally, ((c) ⇒ (b)) and ((c) ⇒ (a)) are evident from Proposition 6.27.

To prove ((b) ⇐⇒ (d)), assume that X is union of two nonempty disjoint closed
sets A and B. Then A = X \ B is an open subset of X, which is a proper subset of
X as both A and B are nonempty. Conversely, if X contains a proper subset A which
is both open as well as closed, then for B := X \ A, the second assertion holds.

To prove ((b) ⇐⇒ (e)), assume that X is union of two nonempty disjoint closed
sets A and B. Define f to be 0 on A, and 1 on B. It can be shown that f is a
continuous surjective map from X onto {0, 1}. Conversely, assume that there exists
a continuous surjective map f : X −→ {0, 1}. Then the disjoint sets A := f −1({0})
and B := f −1({1}) serve our purpose. �

Theorem 6.29 Let X be a compact and connected metric space such that X \ {x}
is disconnected, for some x ∈ X. Then there exist two different elements x1, x2 ∈ X
such that both X \ {x1} and X \ {x2} are connected.
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The above result is immediate when X is a subspace of R. Its general proof is out
of the scope of this textbook. Interested readers are referred to [3, p. 89, Theorem
6.6].

Metric spaces which are compact as well as connected are also known as con-
tinuum (see [3]). Further, a point x of a connected metric space X is known as a
cut point, if X \ {x} is disconnected. Hence, the above theorem concisely states the
following:

If a continuum has a cut point, then it has at least two non-cut points.

Exercise 6.16 Prove that any curve in a metric space is a connected set.

Exercise 6.17 Does there exist a subset of Q which is both open and closed in Q?

Exercise 6.18 Is finite intersection of connected subsets of a metric space always
connected?

Exercise 6.19 Does there exist a connected subset whose interior is not connected?

Exercise 6.20 Prove or disprove:

(a) The interior of every path connected set is path connected.
(b) The interior of every connected set is path connected.

Exercise 6.21 Can you replace the word ‘connected’ with ‘path connected’ in The-
orem 6.22?

Exercise 6.22 Show that the infinite broom space, given by

{

(x, y) ∈ R
2 : x ∈ [0, 1], y = x

n
; n ∈ N

} ⋃
{(1, 0)}

is connected but not a path connected subspace of R2.

Exercise 6.23 If X is a metric space, prove that the following are equivalent:

(a) X is not a union of two nonempty disjoint sets, open in X.

(b) X is not a union of two nonempty disjoint sets, closed in X.

(c) X is not a union of two nonempty separated sets.
(d) X does not contain any proper clopen subset.
(e) There exists no continuous surjective map f : X −→ {0, 1}.
Exercise 6.24 Write a proof of Theorem 6.29 if X is a subspace of R.

Exercise 6.25 In discrete metric spaces, prove that disjoint sets are separated.

Exercise 6.26 Let A be a subset of a metric space X. If A is connected, prove that
so is A. Is the converse true? Justify your answer.
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Exercise 6.27 Let A, B be separated subsets of a metric space and C ⊂ A and
D ⊂ B. Prove that C and D are also separated.

Exercise 6.28 Let X be a metric space. Prove that

(a) singletons subsets of X are connected,
(b) the only finite connected subsets of X are singletons and
(c) if X is discrete, then only singletons are connected.

Exercise 6.29 Let X be a metric space and A, B ⊂ X such that dist (A, B) :=
inf{d(a, b) : a ∈ A, b ∈ B} > 0. Prove that A and B are separated sets. Is the con-
verse true?

Exercise 6.30 Let X be ametric spacewith twononempty subsets A and B satisfying
dist (A, B) > 0 and X = A ∪ B. Prove that both A and B are open as well as closed
in X and thence conclude that X is not a connected metric space.

Exercise 6.31 Let A ⊂ C such that A /∈ {∅,C}. Prove that A is not clopen in C.

Exercise 6.32 Let A and B be closed subsets of a metric space such that both A ∪ B
and A ∩ B are connected. Prove that both A and B are connected.

Exercise 6.33 Let E ⊂ Y ⊂ X. Prove or disprove: E is connected in X if and only
if E is connected in Y.

Exercise 6.34 What difference does it make if we define empty sets to be connected
or path connected?

Exercise 6.35 Let A ⊂ B ⊂ C ⊂ X. Prove or disprove: If A and C are connected,
then so is B.

Exercise 6.36 Deduce Intermediate Value Theorem (6.12) from Theorem 6.20.

Exercise 6.37 Prove that a metric space X is disconnected if and only if there exists
a continuous surjective function f : X −→ {0, 1}.
Exercise 6.38 Prove that a metric space X is disconnected if and only if there exists
a continuous function f : X −→ R such that f −1({0}) = ∅, while both of the sets
f −1(0,+∞) and f −1(−∞, 0) are nonempty.

Exercise 6.39 Let X denote the space of functions from [0, 1] into itself, under
uniform norm ‖.‖∞ and let A be any connected subset of X. Prove that for every
x ∈ [0, 1], the set {a(x) : a ∈ A} is either an interval or a singleton set.

Exercise 6.40 Show that the subspace
{

f ∈ C[0, 1] : ∫ 1
0 f �= 0

}
of C[0, 1], under

uniform norm ‖.‖∞, is disconnected.

Exercise 6.41 Under uniform norm, is C[0, 1] connected?
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Exercise 6.42 Does there exist any p ∈ [1,∞] for which the sequence space �p is
connected?

Exercise 6.43 Obtain the set of non-cut points of the Topologist’s Sine Curve of
Example 6.23.

Exercise 6.44 Does there exist a continuum having no non-cut point?

Exercise 6.45 Does there exist a continuum having

(a) no cut point?
(b) exactly one cut point?
(c) exactly n cut points, for every n ∈ N \ {1}?
(d) infinitely many cut points?

Exercise 6.46 Does there exist a continuum having

(a) exactly one non-cut point?
(b) exactly n non-cut points, for every n ∈ N \ {1}?
(c) infinitely many non-cut points?

6.3 Components

Definition 6.30 Let X be a metric space and ∅ �= Y ⊂ X. Then Y is said to be a
connected component of X if Y is a maximal connected subset of X, that is

(a) Y is a connected subset of X and
(b) if Ŷ is a connected subset X with Ŷ ⊃ Y, then Ŷ = Y.

Analogously, we define path components or path connected components of a met-
ric space, by replacing the term ‘connected’ with ‘path connected’, in the above
definition.

Most of the significant fundamental results about (path) connected components
emerge from the following theorem.

Theorem 6.31 Let � be any nonempty collection of (path) connected subsets of a
metric space X, containing a common point. Then

⋃
E∈� E is also (path) connected.

Proof Let a ∈ X such that a ∈ E for all E ∈ � and write A := ⋃
E∈� E .

(a) Proof for path connectedness: Pick any x, y ∈ A. Then there exist Ex , Ey ∈
� such that x ∈ Ex and y ∈ Ey . Since Ex and Ey are path connected, there
are continuous functions fx : [0, 1] −→ Ex and fy : [0, 1] −→ Ey such that
fx (0) = x, fx (1) = a = fy(0) and fy(1) = y. Define f : [0, 1] −→ Ex ∪ Ey

such that

f (x) :=
{

fx (2t) ; t ∈ [0, 1/2],
fy(2t − 1) ; t ∈ (1/2, 1].
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Then f : [0, 1] −→ A is a continuous function such that f (0) = x and f (1) =
y. Hence, A is path connected.

(b) Proof for connectedness: Assume that A is a disjoint union of sets A1 and A2,

closed in A. Since a ∈ A, without loss of generality we assume that a ∈ A1.

Pick any E ∈ �. Then

E = E ∩ A = (E ∩ A1)⊍ (E ∩ A2).

Note that E ∩ A1 and E ∩ A2 are closed in E . Since E is connected and a ∈
E ∩ A1, we obtain E ∩ A2 = ∅. Therefore, E = E ∩ A1, which implies that
E ⊂ A1. Since E ∈ �was arbitrary, we obtain A ⊂ A1 and thus A2 = ∅.Hence,
A is connected. �

Theorem 6.32 Let X be any metric space.

(a) Any two connected components of X are either identical or disjoint.
(b) Every element of X belongs to a connected component of X.

(c) Every connected subset of X, is a subset of a connected component of X.

(d) X is a disjoint union of its connected components.

Each of the above assertions is true for path connected components.

Proof We establish the result only for connected components. The proofs for path
connected components are analogous.

(a) Let A and B be two connected components of X. If A ∩ B �= ∅, by Theorem
6.31, A ∪ B is connected. Since A ⊂ A ∪ B, we have A ∪ B = A. Similarly,
A ∪ B = B. Hence, A = B.

(b) Let a ∈ X and � := {A : a ∈ A ⊂ X, A is connected}. By Theorem 6.31, T =⋃
A∈� A is connected. It can be shown that T is the required component.

(c) Let S be a connected subset of X. Pick any s ∈ S. As in (b), for � := {A : s ∈
A ⊂ X, A is connected}, the set T = ⋃

A∈� A is the connected component of X
containing s. Since S ∈ �, we obtain S ⊂ T .

(d) Follows from (a) and (b). �

Proposition 6.33 Let n ∈ N, U be an open subset of Rn and A be a connected
component of the subspace U of Rn . Then A is a clopen subset of U.

Proof If a ∈ A(⊂ U ), there exists some ε > 0 such that B := B(a; ε) ⊂ U. Since
a ∈ A ∩ B, we obtain A ∩ B �= ∅. By Theorem 6.31, A ∪ B is connected. So it is
contained in a connected component of U. Since A is a connected component of U,

we have A = A ∪ B. Therefore, B ⊂ A. Hence, A is open.
Further by Theorem 6.22, A ∩ U is a connected subset of the subspace U and it

contains A. Consequently, A ∩ U = A. Hence, A is closed in U. �

Another important result on connected components will be discussed in Theorem
7.18. Below we provide one last consequence of Theorem 6.31.
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Lemma 6.34 If X and Y are (path) connected metric spaces, then so is X × Y.

Proof We prove the result for connectedness, as the case of path connectedness is
analogous.

If X andY are connected, then so are the ‘horizontal’ and ‘vertical’ slices in X × Y,

respectively, given by X × y := X × {y} and x × Y := {x} × Y for all x ∈ X and
y ∈ Y. Fix any a ∈ X and b ∈ Y. Define

Tx := (X × b) ∪ (x × Y ) for all x ∈ X.

Since both X × b and x × Y contain a common point (x, b), by Theorem 6.31, each
Tx is connected. Further note that

⋃
x∈X Tx = X × Y and each Tx contains a common

point (a, b). Again by Theorem 6.31, the space X × Y is connected. �

Theorem 6.35 If X1, . . . , Xn are (path) connected metric spaces, then so is the
product space is

∏n
i=1 Xi .

Proof Apply induction on n. The result is trivial for n = 1 and true for n = 2 by
Lemma 6.34. Assume the result for some n ≥ 2. We establish it for n + 1.

Let X1, . . . , Xn+1 be (path) connected metric spaces. By induction hypothesis, so
are the spaces

∏n
i=1 Xi and (

∏n
i=1 Xi ) × Xn+1. Define f : (

∏n
i=1 Xi ) × Xn+1 −→

∏n+1
i=1 Xi as

f
(
(x1, . . . , xn), xn+1

) := (x1, . . . , xn, xn+1).

It can be shown that f is a surjective map, continuous with respect to the
usual product topologies. Hence,

∏n+1
i=1 Xi = f

(
(
∏n

i=1 Xi ) × Xn+1
)
is (path) con-

nected. �

Let GLn(K) denote the collection of n × n invertible matrices over a field K.

Consider GLn(K) as a subspace of Kn2
, equipped with the Euclidean metric in n2

dimensions.

Example 6.36 GLn(C) is path connected, while its subspace GLn(R) is not even
connected.

Proof For M ∈ GLn(C), let det (M) denote the determinant of M. The space
GLn(R) is not connected, as the image of GLn(R) under the continuous map
M �−→ det (M) is not connected.

Let A be an arbitrary element of GLn(C) and I denote the n × n identity matrix.
It is enough to prove that there exists a path from A to I inside GLn(C).

Let P(z) := det (A + z(I − A)) for all z ∈ C. Then P(z) is a polynomial overC
and hence has finitelymany zeros. Thus, there exists a path from 0 to 1 inCwhich lies
inside {z ∈ C : P(z) �= 0}, except possibly for the initial and terminating points 0
and 1. That is, there exists a continuous map h on [0, 1] such that h(0) = 0, h(1) = 1
and P(h(t)) �= 0 for all t ∈ [0, 1].

If H(t) := A + h(t)(I − A) for all t ∈ [0, 1], then H is a continuous map from
[0, 1] into GLn(C) with H(0) = A and H(1) = I. Hence the result. �
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In Sect. 7.2, we shall come across some other interesting facts about connected
components.

Exercise 6.47 Prove that every path component of a space is its connected compo-
nent. Is the converse true?

Exercise 6.48 Let X be metric space with exactly two connected components. How
many subsets of X are both open as well as closed?

Exercise 6.49 Let X be metric space with exactly n connected components. How
many subsets of X are both open as well as closed?

Exercise 6.50 Let X be a metric space such that every two points of X are contained
in some (path) connected subset of X. Prove that X is (path) connected.

Exercise 6.51 Let � be a collection of connected subsets of a metric space X such
that A ∩ B �= ∅ for all A, B ∈ �. Prove that

⋃
A∈� A is a connected subset of X.

Exercise 6.52 Let k ∈ N and {A1, . . . , Ak}be connected sets such that An ∩ An+1 �=
∅ for all n = 1, . . . k − 1. Prove that

⋃k
n=1 An is a connected set.

Exercise 6.53 Let {An} be a sequence of connected sets such that An ∩ An+1 �=
∅ for all n ∈ N. Prove that

⋃∞
n=1 An is also a connected set.

Exercise 6.54 If X has only finitely many connected components, prove that every
connected component of X is clopen.

Exercise 6.55 If A and B are (path) connected subsets of R2, is A + B also (path)
connected?

Exercise 6.56 Let X be a metric space. Define x ∼ y ⇐⇒ x and y lie in some
connected subset of X. Prove that ∼ is an equivalence relation on X and the equiva-
lence classes of this relation are precisely the connected components of X. State and
prove analogous results for path components.

Exercise 6.57 Let X be the metric space of 2 × 2 invertible matrices over R,

equipped with the Euclidean metric in four dimensions. Which of the following
spaces can be obtained as images of continuous maps on X?

(a) The usual space of real numbers R?
(b) The subspace {(x, 1/x) : x �= 0} of R2?
(c) The subspace R2 \ {(x, 1/x) : x �= 0} of R2?
(d) The circle {(x, y) ∈ R

2 : x2 + y2 = 1}?
(e) The closed disk {(x, y) ∈ R

2 : x2 + y2 ≤ 1}?
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6.4 Miscellaneous

Wewind up this chapter by discussing locally (path) connected sets, convex sets, and
totally disconnected sets. We shall also explore their relationship with the notions
presented earlier in this chapter.

6.4.1 Locally Connected and Locally Path Connected Spaces

A metric space X is said to be locally (path) connected if for all x ∈ X, every
neighborhood of x contains a (path) connected neighborhood of x .

Since every path connected set is connected, it is immediate that every locally
path connected space is also locally connected.

A natural question that arises here is whether local properties imply global prop-
erties or conversely. The answers are all negative.

There are locally path connected spaces, which are not path connected or even
connected.

Examples 6.37 (a) (0, 1) ∪ (2, 3) is locally connected, but not connected.
(b) Let X be a discrete metric space with at least two elements. Then every singleton

subset of X is path connected. Hence, X is locally path connected, but not
connected.

The converse is also false. That is, there are connected spaces, which are not locally
connected.

Example 6.38 The comb space, as under, is path connected but not locally con-
nected.

Comb := ({0} × [0, 1])
⋃({

1

n
: n ∈ N

}

× [0, 1]
) ⋃ ([0, 1] × {0}).

Further, the deleted comb space
defined as

Comb0 := Comb \ ({0} × (0, 1)
)
.

is not path connected, as there is no
path from (0, 0) to (0, 1) inside Comb0.
Further,C := Comb0 \ {(0, 0), (0, 1)} is
path connected and hence connected.
Since C ⊂ Comb0 ⊂ C, by Theorem
6.22, Comb0 is connected.

Example 6.39 The Topologist’s Sine Curve, Ts of Example 6.23, is connected but
not locally connected. Note that (0, 1) has no connected neighborhood in Ts .
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There are path connected spaces, which are not even locally connected.

Example 6.40 Let X denote the union of Topologist’s Sine Curve Ts and a curve
γ from (0, 0) to (1, sin 1) such that γ does not meet Ts at any other point, except
(0, 0) and (1, sin 1). Then X is path connected but not locally path connected or even
locally connected.

6.4.2 Path Connectedness in Locally Path Connected Spaces

Recall that every path connected space is connected and the converse holds for
subspaces of R. In Examples 6.23, 6.24 and 6.38, we have seen that the converses
are false, in general.

However, for open subsets of locally connected spaces, the converse holds. In
normed spaces, this holds with stronger consequences. Instead of general paths, we
get polygonal paths, in that case. In case of finite-dimensional Euclidean spaces, the
results become further stronger. First we present the notion of polygonal lines or
polygonal paths in normed linear spaces.

Definitions 6.41 Let X be a normed linear space.

(a) If x1, x2 ∈ X, the line segment from x1 to x2 is defined as

[x1, x2] := {(1 − t)x1 + t x2 : 0 ≤ t ≤ 1}.

(b) Let x1, . . . , xn be any finite number of elements in X, then the union of line
segments [x1, x2], . . . , [xn−1, xn] is denoted by [x1, . . . , xn], and is called a
polygonal path.

(c) A subset S of X is said to be convex if [a, b] ⊂ S for all a, b ∈ S.

Examples 6.42 (a) Every interval is convex.
(b) The set C \ {0} is not convex.
(c) No finite subset of Rn is convex.
(d) Every rectangular (triangular) region in R

2 is a convex set.

Proposition 6.43 In normed linear spaces, every ball is a convex set.

Proof Let (X, ‖.‖) be a normed linear space, x ∈ X and r > 0.Write B := B(x; r).

Pick any x1, x2 ∈ B. To see that [x1, x2] ⊂ B, pick any y ∈ [x1, x2]. Then y = t x1 +
(1 − t)x2 for some t ∈ [0, 1]. Applying triangle inequality, we obtain

‖y − x‖ ≤ t‖y − x1‖ + (1 − t)‖x2 − y‖ < r.

Therefore, y ∈ B. Hence, B is convex. �

Theorem 6.44 Let O be an open connected subset of a locally path connected space
X. Then O is path connected.
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Proof Let x ∈ O be arbitrary. Let O1 denote the collection of those y ∈ O for which
there exists a path from x to y, inside O. Write O2 := O \ O1. We claim that O1

and O2 are open in X, and hence in O.

Let y1 ∈ O1. Then y1 ∈ O. Since O is open and X is locally path connected, there
exists a path connected neighborhood U1 of y1 such that U1 ⊂ O.

Since y1 ∈ O, there exists a path P1 inside O, from x to y1. As P1 and U contain
a common point x, applying Theorem 6.31, P1 ∪ U1 is path connected. Hence, for
every z1 ∈ U1, there exists a path from x to z1, inside O. Therefore,U1 ⊂ O1,which
proves that O1 is an open set.

Now, let y2 ∈ O2. Then y2 ∈ O.As above there exists a path connected neighbor-
hood U2 of y2 such that U2 ⊂ O. We shall prove that U2 ⊂ O2, which will conclude
that O2 is open.

If possible, let z2 ∈ U2 \ O2. Then z2 ∈ O1. Let P2 be a path from x to z2,
inside O. As above P2 ∪ U2 path connected. Thus, there exists a path from x to y2,
inside O. Hence, y2 ∈ O1, a contradiction.

Therefore, both O1 and O2 are open in X and hence also open in the open set O.

The connectedness of O ensures that either O1 = ∅ or O2 = ∅. Since x ∈ O1, we
obtain O2 = ∅. Hence, O = O1 and the result follows. �

Note that Proposition 6.43 ensures that every normed linear space is locally path
connected. Therefore, every open connected subset of a normed linear space is path
connected. The following are stronger results, for particular cases.

Corollaries 6.45 Let O be an open connected subset of a normed linear space X.

(a) Then any two elements of O can be joined by a polygonal path, inside O.

(b) If X = R
m for some m ∈ N, then any two elements of O can be joined by a

polygonal path consisting of line segments parallel to the axes, inside O.

Proof (a) Let x ∈ O be arbitrary and O1 be the set of y ∈ O which are connected
to x through a polygonal path inside O.

The proof is analogous to Theorem 6.44. The only difference is that here we
takeU1 andU2 to be some open balls in X and use the fact that if P1 is a polygonal
path from x to y1 inside O, then P1 ∪ [y1, z1] is a polygonal path from x to z1.

(b) Let x ∈ O be arbitrary and O1 be the set of y ∈ O which are connected to x
through a polygonal path, with line segments parallel to the axes, inside O.

The proof is analogous to part (a). Use the fact that any two points in a ball
B ⊂ R

m can be joined by a polygonal path inside B, having line segments
parallel to the axes. �



6.4 Miscellaneous 173

6.4.3 Quasi-components

Let X be a metric space and x ∈ X. The quasi-component of x in X is defined to be
the intersection of all clopen subsets X, containing x . For this section, let Cx and Qx

denote the connected component and the quasi-component of x in X, respectively.

Theorem 6.46 Let X be a metric space and x ∈ X. Then Cx ⊂ Qx .

Proof Suppose there exists some y ∈ Cx \ Qx . Then there exists a clopen set A
containing x such that y /∈ A. Then (Cx ∩ A)⊍ (Cx \ A) is a separation of Cx , a
contradiction. �

The opposite inclusion holds for compact metric spaces. That requires the follow-
ing lemmas.

Lemma 6.47 Let A and B be disjoint compact subsets of a metric space X. Then
there exist disjoint open subsets U and V of X such that U ⊃ A and V ⊃ B.

Proof Let δ := inf{d(a, b) : a ∈ A, b ∈ B}. Since A and B are compact and dis-
joint, one can conclude that δ > 0. Let

U :=
⋃

a∈A

B(a; δ/3) and V :=
⋃

b∈B

B(b; δ/3).

It can be shown that U and V satisfy our requirements. �
Lemma 6.48 Let X be a compact metric space, O be an open subset of X and F be
a collection of closed subsets of X such that

⋂
F∈F F ⊂ O. Then there exist finitely

many F1, . . . , Fn ∈ F such that
⋂n

i=1 Fi ⊂ O.

Proof Since X \ O is a closed subset of the compact space X, it is a compact subset
of X. The given hypothesis implies that X \ O ⊂ ⋃

F∈F (X \ F). The compactness
of X \ O implies that there are finitely many F1, . . . , Fn ∈ F such that X \ O ⊂⋃n

i=1(X \ Fi ). �
Theorem 6.49 Let X be a compact metric space and x ∈ X. Then Cx = Qx .

Proof By Theorem 6.46, we have Cx ⊂ Qx . Since Cx is the largest connected set
containing x and Cx ⊂ Qx , to prove that Cx ⊃ Qx , it is enough to prove that Qx is
a connected set.

If possible, let Qx = A⊍ B be a separation of Qx . Without loss of generality,
assume that x ∈ A. Since by definition Qx is closed in X, the sets A and B are also
closed in X. Since X is compact, A and B are also compact subsets of X.

Applying Lemma 6.47, there are disjoint open subsets U and V of X such that
U ⊃ A and V ⊃ B. Applying Lemma 6.48, there are finitely many clopen subsets
D1, . . . , Dn of X such that x ∈ ⋂n

i=1 Di ⊂ U ⊍ V . Write D := ⋂n
i=1 Di . Then D

is a clopen subset of X such that x ∈ D ⊂ U ⊍ V .
Let E := D ∩ U.Then E is open and x ∈ E, as x ∈ A ⊂ U.Also, E := D ∩ (X \

V ) is closed. By definition Qx ⊂ E . Consequently, B = Qx ∩ V ⊂ E ∩ V = ∅.

Hence the result. �
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6.4.4 Totally Disconnected Sets

Definition 6.50 A subset A of a metric space is said to be totally disconnected if no
two points of A lie in a connected subset of A.

In other words, A is totally disconnected if and only if singletons are its only con-
nected subsets if and only if all singletons subsets are its connected components.

Examples 6.51 Finite metric spaces, all discrete metric spaces, the set of natural
numbers, and the set of rational numbers are all totally disconnected spaces.

Definition 6.52 Acomplex number is said to be algebraic if it is a root of some poly-
nomial over integers. Non-algebraic complex numbers are known as transcendental
numbers.

The numbers e and π are two standard examples of transcendental numbers. In
Example 7.15, we establish an abundance of transcendental numbers besides the
algebraic ones.

Example 6.53 The set of real algebraic numbers is totally disconnected.

Proof Let A be the set of real algebraic numbers. To the contrary, assume that A
is not totally disconnected. Then A has a connected component E containing two
distinct reals, say x < y. Pick any r ∈ Q such that π ∈ (x + r, y + r). Then we have
π − r ∈ (x, y).

By suitably modifying the polynomials satisfied by the algebraic numbers x and
y, one can prove that π − r is not an algebraic number.

Note that the sets {x ∈ E : x < π − r} and {x ∈ E : x > π − r} are nonempty
and form a separation of E . This is impossible, as E is a connected set. Hence the
result. �

Theorem 6.54 Let X be a compact metric space. Then X is totally disconnected
if and only if for every x ∈ X and r > 0 there exists some clopen set A such that
x ∈ A ⊂ B(x; r).

Proof The converse follows from the definition of totally disconnected sets. For the
necessity part, let X be totally disconnected, x ∈ X, r > 0 and B := B(x; r).

By Theorem 6.49, Qx = Cx = {x} ⊂ B.Applying Lemma 6.48, there are finitely
many clopen subsets A1, . . . , An of X such that x ∈ ⋂n

i=1 Ai ⊂ B. Write A :=⋂n
i=1 Ai . Then A is a clopen subset of X and x ∈ A ⊂ B. Hence the result. �

Corollary 6.55 Let X be a totally disconnectedcompact metric space, K ⊂ O ⊂ X
such that K is compact and O is open in X. Then X has a clopen subset A such that
K ⊂ A ⊂ O.

Proof For every x ∈ K , there exists some rx > 0 such that B(x; rx ) ⊂ O.Applying
Theorem6.54, one can choose clopen sets Ax such that x ∈ Ax ⊂ B(x; rx ) for all x ∈
K . Since K is compact and K ⊂ ⋃

x∈K Ax , there are finitely many x1, . . . , xn ∈ K
such that K ⊂ ⋃n

i=1 Ax1 . Then A := ⋃n
i=1 Axi meets our requirements. �
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Notes andRemarks 6.56 (a) It is possible to have three disjoint connected open
sets in the plane which have the same boundary. For example, see Lakes ofWada
[4, p. 138].

(b) In Sect. 10.5.3, we shall discuss a connected space, which is not path connected,
known as the Cantor’s leaky tent. It is such a connected metric space, which
becomes totally disconnected after the removal of a particular point.

(c) Let X, Y be compact metric spaces and let f : X −→ Y. We state two charac-
terizations of continuity. Readers interested in details are referred to [5].

(i) f is continuous if and only if f maps compact sets onto compact sets, and
f −1(y) is a closed set, for every y ∈ Y.

(ii) If X is locally connected, then f is continuous if and only if f maps
compact sets onto compact sets, and connected sets onto connected sets.

Exercise 6.58 Let D := {z ∈ C : |z| < 1} and f : D −→ R
3 be a continuous func-

tion. How many subsets of f (D) are both open as well as closed?

Exercise 6.59 Complete the details in the proof of Corollaries 6.45.

Exercise 6.60 Let X be a normed linear space. Prove the following:

(a) Every convex subset of a normed linear space is path connected.
(b) X is convex, and hence path connected.
(c) The converse of (a) does not hold.

Exercise 6.61 Prove that every discrete metric space is totally disconnected.

Exercise 6.62 Prove that both Q and R \ Q are totally disconnected sets.

Exercise 6.63 After replacing sin 1
x with x sin 1

x in Example 6.23, does the resulting
space become locally connected or path connected?

Exercise 6.64 Let A be a connected component of a locally connected metric space
X. Prove that A is clopen in X.

Exercise 6.65 If E is a convex subset of a normed linear space, prove that so are
the sets Eo and E .

Exercise 6.66 If E is a convex subset of a normed linear space such that Eo �= ∅,

prove that E = Eo.

Exercise 6.67 Let X be a metric space in which every open ball is a closed subset
of X. Prove that X is totally disconnected.

Exercise 6.68 Let X be a metric space. Prove that the following are equivalent:

(a) Quasi-components of X are singletons.
(b) For any x, y ∈ X, there exist disjoint clopen neighborhoods Ux and Uy of x and

y, respectively, such thatUx ⊍Uy = X . (Such an X is called a totally separated
space.)
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Exercise 6.69 Prove that every totally separated space is totally disconnected. Is the
converse true?

Exercise 6.70 If d is an ultrametric on X, prove that (X, d) is totally separated.

Exercise 6.71 Let X be a totally disconnected compact metric space. Prove that for
every n ∈ N, there exists a finite open coverUn of X with disjoint sets, each having
diameter < 2−n.

Exercise 6.72 Prove that a metric space X is locally connected if and only if for
every open set O of X, each connected component of O is open in X.

Exercise 6.73 Prove that a metric space X is locally path connected if and only if
for every open set O of X, each path component of O is open in X.

Exercise 6.74 Let X be a metric space. Prove that each path component of X lies
in a connected component of X.

Exercise 6.75 If X is locally path connected, then prove that has same collection of
path components and connected components.

Exercise 6.76 Let X be a metric space and x ∈ X. Let Px , Cx and Qx denote,
respectively, the path component, connected component and the quasi-component
of x . Prove that Px ⊂ Cx ⊂ Qx . If X is locally path connected, then prove that
Px = Cx = Qx .

Exercise 6.77 A metric space X is said to be weakly locally connected at x ∈ X if
every neighborhood U of x contains a connected subspace S of X that contains a
neighborhood of x . Prove that if X is weakly connected at each of its points, then X
is locally connected. Is the converse true?

Exercise 6.78 State and prove the result analogous to Exercise 6.56 for quasi-
components.

6.5 Hints and Solutions to Selected Exercises

6.2 No. Suppose thata �= b and {a, b} be a path connected subset of a space X.

Then there exists a continuous map f : [0, 1] −→ {a, b} such that f (0) = a and
f (1) = b. Thus, A := f −1(a) and B := f −1(b) are nonempty disjoint closed
subsets of [0, 1] with union [0, 1], a contradiction to Lemma 6.6.

6.4 Apply Intermediate Value Theorem (6.12) on x �−→ f (x) − f (x + 1) on [0, 1].
6.7 Yes.Apply IntermediateValueTheorem (6.12) on f (p) := √

(2p + 3p + 4p)/3.
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6.8 No. Let f : [0, 1]2 −→ [0, 1] be a continuous bijection and x, y, z be any three
elements from [0, 1]2. Since [0, 1]2 \ {x, y, z} is path connected, so is its image
under f. That is, [0, 1] \ { f (x), f (y), f (z)} is a path connected subset of [0, 1],
a contradiction to Theorem 6.9. Similarly, the second part.

6.10 One. Let f (x) denote the given cubic. Since f is a real polynomial of odd degree,
it must have at least one real root. If it has two distinct roots, then f ′ must have
a root between those. This is impossible as f (x) is a sum of squares of reals and
a, b, c are all distinct.

6.11 First three options are correct and the last one is false. Note that (c) is trivial.
Let −1,α1, . . . ,αn−1 be all the roots of p, counting multiplicities. Equating
coefficients from p(x) = (x + 1)

∏n−1
i=1 (x − αi ), we obtain

n−1∏

i=1

αi = (−1)n, which implies
n−1∏

i=1

|αi | = 1. (6.2)

If α is a non-real root of p, then by hypothesis, α is also a root of p and |α| ≥ 1.
Thus,αα ≥ 1.Now (6.2) implies that |α| = 1, that isαα = 1, for every non-real
root of p.

Similarly, since p has no real root in (−1, 1), again (6.2) implies p has no real
root in R \ [−1, 1]. This concludes that (d) is false. Also, (b) is true, because if
(b) is false then p will have a root in [2,∞), a contradiction.

By now we have established that all the roots of p lie on {z ∈ C : |z| = 1}. If
1 is not a root of p, then the representation (x + 1)

∏n−1
i=1 (x − αi ) of p will

either have linear factors (x + 1) or pairs of complex conjugates α,α such that
αα = 1. Therefore, the constant term in this product must be 1, a contradiction.
Hence, (a) is also true.

6.13 (a) No. For example, consider the function f as in Exercise 1.100.
(b) Assume that f is not continuous. Then there exists xn −→ x0 such that

f (xn) �−→ f (x0). Without loss of generality, we can suppose that there is
a rational number r and a subsequence {xnk } of {xn} such that f (x0) > r >

f (xnk ) for all k ∈ N.

By hypothesis, one can choose tk between x0 and xnk such that f (tk) =
r for all k ∈ N. Then tk −→ x0. Since {tk} is a sequence in the closed set
f −1({r}), we conclude that its limit x0 also belongs to this set. Hence,
f (x0) = r, a contradiction.

6.14 Let f, a, b and l be as in Theorem 6.12.

(a) Write S := {t ∈ [a, b] : f (t) < l}. Then S is a nonempty subset of [a, b],
containing a, and bounded above by b. Let c := sup S. Since the function f
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is continuous at a and b,with f (a) < l and f (b) > l,we obtain a < c < b.

We claim that f (c) = l.

If f (c) < l, then the continuity of f at c implies that there exists some δ > 0
such that (c − δ, c + δ) ⊂ [a, b] and f (x) < l for all x ∈ (c − δ, c + δ).
Therefore, c + δ/2 ∈ S, a contradiction as c = sup S. Similarly, if f (c) >

l, there also exists δ > 0 such that (c − δ, c + δ) ⊂ [a, b] and f (x) >

l for all x ∈ (c − δ, c + δ). Then (c − δ, c + δ) ∩ S = ∅which implies that
c �= sup S, a contradiction.

(b) Assume that f (t) �= l for all t ∈ [a, b]. For t ∈ [a, b], if f (t) > l, choose
δt > 0 such that f (x) > l for all x ∈ (t − δt , t + δt ) ∩ [a, b]. Otherwise,
choose δt > 0 such that f (x) < l for all x ∈ (t − δt , t + δt ) ∩ [a, b].
By compactness of [a, b], there are finitely many t1, . . . , tn ∈ [a, b] such
that [a, b] ⊂ ⋃n

i=1(ti − δti , ti + δti ). Since f (a) < l, it leads to f (b) < l, a
contradiction.

6.15 Assume that I = A ⊍ B, for some disjoint nonempty sets A and B, open in I.
Pick any a ∈ A and b ∈ B. Without loss of generality, suppose a < b.

Write S1 := [a, b] ∩ A. Since S1 contains a and is bounded above by b, it has a
supremum. Let s1 := sup S1. Then s1 ≤ b. We claim that s1 < b.

If s1 = b, then I ∩ (s1 − δ, s1 + δ) ⊂ B, for some δ > 0, as B is open in I.
This implies that (s1 − δ, s1 + δ) ∩ A = ∅. Therefore, s1 = sup S1 ≤ s1 − δ, a
contradiction. Hence, s1 < b.

Write S2 := [s1, b] ∩ B and s2 := inf S2. Then s1 ≤ s2. As above, one can show
that s1 < s2.Let s3 ∈ (s1, s2). Since s2 = inf S2,we have s3 /∈ B. Similarly, s1 =
sup S1 implies that s3 /∈ A. Therefore, I is not an interval, as s3 ∈ I \ A ∪ B.

6.18 No. Take the intersection of the x-axis and the unit circle, in R
2. Then both A

and B are connected, while A ∩ B = {(0, 0), (0, 1)} is not.
6.19 Yes. E.g. consider R2 \ {(x, 0) : x ∈ Q} in R2.

6.20 Both assertions are false. E.g., consider the subspace {(x, y) ∈ R
2 : xy ≥ 0} of

R
2,which is a path connected set while the interior is neither connected nor path

connected.
6.26 Apply Theorem 6.22. For the converse, take A := [−1, 0) ∪ (0, 1].
6.29 Let δ := dist (A, B). If A ∩ B �= ∅, then there exists some x ∈ A ∩ B. By

hypothesis B(x; δ/2) ∩ B = ∅. Therefore, x /∈ B, a contradiction. For the con-
verse, take A = (0, 1) and B = (1,∞) in reals with usual topology.

6.32 Let A = A1⊍ A2 be a separation of A. Then A ∩ B = (A1 ∩ B)⊍ (A2 ∩ B)

is a separation of A ∩ B. Since A ∩ B is connected, one of these must be
empty. Suppose A1 ∩ B = ∅. Then A ∪ B = A1 ⊍ (A2 ∪ B). Since A ∪ B is
connected, either A1 = ∅ or A2 ∪ B = ∅, that is, either A1 = ∅ or A2 = ∅.

Hence, A is connected. Similarly, B is connected.
6.39 Fix x ∈ [0, 1]. Define φx : A −→ [0, 1] as φx (a) := a(x) for all a ∈ A. Then

φx is a continuousmap, as |φx (a) − φx (b)| = |a(x) − b(x)| ≤ ‖a − b‖∞.Since
A is connected, φx(A) = {a(x) : a ∈ A} is a connected subset of [0, 1].
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6.40 Define φ : C[0, 1] −→ R as φ( f ) := ∫ 1
0 f for all f ∈ C[0, 1]. Then φ is con-

tinuous, as |φ( f ) − φ(g)| ≤ ∫ 1
0

∣
∣ f − g

∣
∣ ≤ ‖ f − g‖∞. Hence,

{ f ∈ C[0, 1] : φ( f ) > 0}⊍ { f ∈ C[0, 1] : φ( f ) < 0}

is a separation of (C[0, 1], ‖.‖∞).

6.44 No. Apply Theorem 6.29.
6.50 Apply Theorem 6.31.
6.51 LetA := ⋃

A∈� A and fix any A0 ∈ �.Let T be the connected component ofA,

containing A0. For any A ∈ �, we have A0 ∩ A �= ∅ which implies A0 ∪ A ⊂
T for all α ∈ ∧. Therefore,

⋃
A∈� A ⊂ T which implies T = ⋃

A∈� A.

6.52 The result holds by induction on Theorem 6.31.
6.53 Write A := ⋃∞

n=1 An.Suppose that A is not connected.Then there exist nonempty
disjoint sets E1 and E2, open in A such that E1⊍ E2 = A. We claim that for
every n ∈ N, either A ⊂ E1 or A ⊂ E2. To show this, suppose that there exists
some n ∈ N such that A ∩ E1 �= ∅ and A ∩ E2 �= ∅. Then An is not connected,
as An = (An ∩ E1)⊍ (An ∩ E2) and both An ∩ E1 and An ∩ E2 are open in
An. This establishes our claim.

Hence, either A1 ⊂ E1 or A1 ⊂ E2. Without loss of generality, suppose that
A1 ⊂E1. Since A1 ∩ A2 �=, we have A2 ⊂E1. Inducting like this, we obtain
An ⊂ E1 for all n ∈ N. Hence, A ⊂E1 and thus E2 = ∅, a contradiction. This
proves the result.

6.54 Let A1, . . . , An be the only connected components of X. By Theorem 6.22,
each Ai is closed. By Theorem 6.32, X is a disjoint union of A1, . . . , An . Then
Ai = X \ ⋃

j �=i A j , for all i. Hence, each Ai is open.
6.55 Yes. Because A × B is a (path) connected subset of R

2 × R
2 and the map

(a, b) −→ a + b from A × B onto A + B is continuous.
6.64 Applying Theorem 6.22, A is closed. Let a ∈ A and Na be a connected neigh-

borhood of a. By Theorem 6.31, A ∪ Na is a connected subset of X. Since A
is a maximal connected set, we obtain A ∪ Na = A and hence Na ⊂ A. Conse-
quently, A is open.

6.65 Assume that E is convex. Let t ∈ (0, 1). Since E is convex, t Eo + (1 − y)Eo ⊂
E . By previous part, t Eo + (1 − y)Eo is an open subset of E . Hence, t Eo +
(1 − y)Eo ⊂ Eo, that is, Eo is convex. To show that E is convex, let x, y ∈ E .

Then there are sequences {xn} and {yn} in E, convergent to x and y, respectively.
Hence, t x + (1 − t)y = limn→∞(t xn + (1 − t)yn) ∈ E, as E is convex. Hence,
E is convex.

6.66 Let X be the given normed linear space. Clearly, Eo ⊂ E .To prove that Eo ⊃ E,

it is enough to show that Eo ⊃ E . Since Eo �= ∅, let a ∈ Eo. Then B(a; r) ⊂
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E for all r > 0. That is, a + r y ∈ E for all y ∈ X such that ‖y‖ ≤ 1. Let x ∈ E
and xt := ta + (1 − t)x . We claim that B(xt ; tr) ⊂ E .

Let y ∈ X such that ‖y‖ ≤ 1. Then xt + tr y = t (a + r y) + (1 − t)x ∈ E, as E
is convex. This proves our claim. Hence, xt ∈ Eo. Hence, x = limt→0 xt ∈ Eo.

6.67 Let x ∈ X and A be the connected component of X containing x . We claim that
A = {x}. If not, then pick any y ∈ A \ {x}. Let

δ := d(x, y), Bx := B

(

x; δ

2

)

and By := B

(

x; δ

2

)

.

By hypothesis, both Bx and By are clopen in X. Therefore, A ∩ Bx and A ∩ By

are clopen and nonempty in the connected subspace A, a contradiction.
6.69 Apply Theorem 6.46. A counter example will be provided in Exercise 10.81.
6.70 Let x, y ∈ X such that x �= y and r := d(x, y).ByExercise 3.65(a), both B(x; r)

and X \ B(x; r) are disjoint clopen subsets of X containing x and y, respectively.
6.71 Fix n ∈ N. Since X is totally disconnected and compact, by Theorem 6.54, it

has a finite cover {O1, . . . , On} consisting of clopen sets with diameter < 2−n.

Define Ui := Oi \ ⋃
j<i O j for all i. Then each Ui is open and has diameter

< 2−n . The result follows, as we have
⋃

i Ui = ⋃
i Oi .

6.72 (⇒) Let O be an open subset of X and U be a connected component of O. Let
x ∈ U. Since X is locally connected, there exists a connected neighborhood Bx

of x such that Bx ⊂ O. Since U is a connected component of O, containing x,

we obtain Bx ⊂ U. Hence, U is open in X.

(⇐) Let x ∈ X and U be any neighborhood of x . Then there exists an open set
O such that x ∈ O ⊂ U. Let Cx be the connected component of x relative to O.

By hypothesis, Cx is open in X. The result follows as x ∈ Cx ⊂ O ⊂ U.

6.73 Analogous to Exercise 6.72.
6.75 Let C be a connected component of X. Let x ∈ C and P be the path component

of x, inside X. Since P is connected, we obtain P ⊂ C. We claim that P = C.

Suppose that Q := C \ P �= ∅.

For each q ∈ Q, let Pq be the path component of q. Then each such Pq is con-
nected and hence a subset of C. Consequently, Q is a union of path components
of X. Applying Exercise 6.73, the union of all these path components, that is Q,

is open in X. Similarly, the path component P is open in X. Since C = P ⊍ Q
is connected, either P = ∅ or Q = ∅. But x ∈ P. Therefore, Q = ∅. Hence,
P = C.

References

1. D. J. Velleman, Characterizing Continuity. Amer. Math. Monthly 104(4), 318–322 (1997)
2. W. Felscher, Bolzano, Cauchy, Epsilon, Delta. Amer. Math. Monthly 107(9), 844–862 (2000)



References 181

3. S. B. Nadler Jr., Continuum Theory: An Introduction. Marcel Dekker Inc, New York, (1992)
4. B. R. Gelbaum, J. M. H. Olmsted, Counterexamples in Analysis. Dover Publications, (2003)
5. E. R. McMillan, On continuity conditions for functions. Pacific J. Math. 32, 479–494 (1970)



Chapter 7
Cardinality

Can you write a given set as a sequence? In particular, can you write all real numbers
together as a sequence? Such questions lead to the notions of countable and uncount-
able sets, and cardinality in general. This chapter discusses these ideas, along with
their applications. It starts with countable and uncountable sets, followed by two
special sections entitled ‘Some Applications to Topology’ and ‘The Set of Discon-
tinuities’. The latter includes the case of monotone functions along with the general
case, which asserts that the set of discontinuities of a function between metric spaces
is a countable union of closed sets. Finally, there is a section on cardinality which
provides a glimpse into cardinal arithmetic.

7.1 Countable and Uncountable Sets

Definitions 7.1 Two sets A and B are said to be equivalent if there exists a bijection
between A and B. In this case, we write A � B.

Equivalent sets are also known as equipotent sets or sets having the same cardinality.

Examples 7.2 (a) The sets {a, b, c} and {1, 2, 3} are equivalent.
(b) The sets N and {3n : n ∈ N} are also equivalent.
(c) The sets {a, b, c, d, e} and {1, 2, 3} are not equivalent.
Definitions 7.3 A set E is said to be

(a) finite if either E = ∅ or E � {1, 2, . . . , n} for some n ∈ N,

(b) infinite if E is not finite,
(c) countably infinite if E � N,

(d) countable if E is either finite or countably infinite and
(e) uncountable if E is not countable.

Note that every element of a countable set can be assigned a counting number. That
is why the terms enumerable and denumerable are also used for countable sets.

Examples 7.4 (a) The set of English alphabet is finite and hence countable.
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(b) The set of odd natural numbers larger than 100 is countably infinite, as n �−→
100 + (2n − 1) is a bijection from N onto this set.

(c) The set of even natural numbers is countably infinite, as f : N −→ {2, 4, . . . }
defined as f (n) := 2n, is a bijection.

Theorem 7.5 A set is countably infinite if and only if it can be written as a sequence
of distinct terms.

Proof Let E be a countably infinite set. Then there exists a bijection f : N −→ E .

We claim that { f (n)} is a sequence of distinct elements with { f (n) : n ∈ N} = E .

This sequence has distinct terms, as f is injective. Further the surjectivity of f
implies that for every x ∈ E, there exists some n ∈ N such that x = f (n). Hence,
E ⊂ { f (n) : n ∈ N}. The other inclusion is immediate from the definition of f.

Conversely, let E be a set which can be written as a sequence of distinct terms,
say {xn}.Define f : N −→ E as f (n) := xn for all n ∈ N. Since {xn : n ∈ N} = E,

the function f is surjective. Further as the terms of the sequence are distinct, f is
injective. Therefore, E � N. �

The following corollaries are immediate from Theorem 7.5.

Corollaries 7.6 (a) Infinite subsets of countably infinite sets are countably infinite.
(b) A nonempty set E is countable if and only if it can be written as a sequence.
(c) Subsets of countable sets are countable.
(d) Sets containing uncountable sets are uncountable.
(e) Countable sets having infinite subsets are countably infinite.

Example 7.7 The set of integers {0,−1, 1, . . . ,−n, n, . . . } is countably infinite.

Theorem 7.8 Countable union of countable sets is countable.

Proof Let� be a countable collection of
countable sets. Then � can be written as
a sequence, say {An}.

Since each An is countable, one can
write

An := {an,1, . . . an,k, . . . }.

Now we write
⋃∞

n=1 An as an infinite
array, as shown in the adjoining figure.

We choose to write this array diagonal-wise. Thus,
⋃∞

n=1 An = {a1,1, a2,1, a1,2,
a3,1, a2,2, a1,3, . . . }. Hence, ⋃∞

n=1 An is countable. �
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Remarks 7.9 In the proof of Theorem 7.8, it can be shown that ai, j occurs as the
f (i, j)th term of the sequence enumerating

⋃∞
n=1 An, where

f (i, j) :=
i+ j−1∑

k=1

k − (i − 1) for all i, j ∈ N.

Further, one can enumerate the union
⋃∞

n=1 An in various other ways. Two such
methods have been demonstrated in the following figures.

Example 7.10 The set of rational numbers is countable.

Proof Note that Q = ⋃∞
n=1{mn : m ∈ Z}. Also, the set {mn : m ∈ Z} is countable, for

each n ∈ N. Applying Theorem 7.8, Q is countable. �

Proposition 7.11 If A and B are countable, then so is their Cartesian product
A × B.

Proof Since A and B are countable, these can be written as sequences, say A =
{an : n ∈ N} and B = {bn : n ∈ N}. Imitating the proof of Theorem 7.8, we write

A × B = {(am, bn) : m, n ∈ N}
= {(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3), . . . }.

Applying Corollary 7.6(b), we conclude that A × B is a countable set. �

Corollary 7.12 The finite Cartesian product of countable sets is countable.

Proof Weprove the result by induction on the number of sets. By Proposition 7.11, it
is already true for two sets. Assume it for n sets. Let A1, . . . , An+1 be countable sets.
Note that the map (a1, . . . , an+1) −→ (

(a1, . . . , an), an+1
)
is a bijection from A1 ×

· · · × An+1 onto (A1 × · · · × An) × An+1.The induction hypothesis and Proposition
7.11 concludes the result. �

However, a countable Cartesian product of finite sets may not be countable.

Theorem 7.13 (Cantor) The Cartesian product
∏∞

n=1{0, 1} is uncountable.
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Proof Let P := ∏∞
n=1{0, 1} be the set of sequences {xn} such that each xn = 0 or

1. Suppose that P is uncountable. Therefore, we can write P = {an : n ∈ N}. Note
that each an is a sequence with terms either 0 or 1. Write an := {an,m}m∈N for all n.

Construct a sequence x = {xn} such that

xn :=
{
1 if an,n = 0
0 if an,n = 1.

Then x is a sequence with terms either 0 or 1, while x �= an for any n. Hence, we
obtain x ∈ P \ {an : n ∈ N} = ∅, which is absurd. �
Example 7.14 R is uncountable.

Proof Let E denote the set of all those reals in [0, 1] whose decimal expansions
consist of only digits 0 and 1. Then E is in a one-to-one correspondence with the
set

∏∞
n=1{0, 1}. Applying Theorem 7.13, E is uncountable. The result follows, as R

contains E . �
An Alternative Proof Since R ⊃ [0, 1], it is enough to prove that [0, 1] is uncount-
able. Suppose not. Then there exists a sequence {an} such that {an : n ∈ N} = [0, 1].
Write

[0, 1] =
[

0,
1

3

] ⋃ [
1

3
,
2

3

] ⋃[
2

3
, 1

]

.

Let I1 be one of the above three closed intervals, on the right-hand side above, such
that a1 /∈ I1. Then we further partition I1 into three closed intervals of length 1/9
and let I2 be one of those intervals such that a2 /∈ I2.

Inducting this way, we obtain a nested decreasing sequence of closed intervals
{In} such that

an /∈ In, In ⊃ In+1 and l(In) = 1

3n
for all n ∈ N.

Applying Nested Interval Property (1.23), we have
⋂∞

n=1 In = {x} for some x ∈
[0, 1]. Therefore, x = ak, for some k ∈ N. Then ak = x ∈ Ik, a contradiction. �

We already know that Q is countable. Hence, the set of irrational numbers is
uncountable. In factmuch ‘larger supersets’ of the set rational numbers, are countable.
The set of algebraic numbers as defined in Definition 6.52, is also countable.

Examples 7.15 (a) For every n ∈ N, there are only countably many polynomials
with integral coefficients and degree n.

(b) The set of algebraic numbers is countable.
(c) The set of transcendental numbers is uncountable.

Proof (a) For every n ∈ N, let Pn be the set of polynomials of degree n with inte-
gral coefficients. Let p(x) := a0 + a1x + · · · + anxn; an �= 0, be any polyno-
mial from Pn. Then there are countably many choices for each ai . Since finite
Cartesian product of countable sets is countable, we obtain (a).
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(b) Let A be the set of algebraic numbers. For each n ∈ N, write

An := {a ∈ A : pn(a) = 0 for some pn ∈ Pn}.

Then A = ⋃∞
n=1 An. By (a), the set Pn is countable. Since each polynomial of

degree n has at most n distinct roots, the set An is a countable union of finite
sets. Therefore, each An is countable. Hence, A = ⋃∞

n=1 An is countable.
(c) Since R is uncountable, so is its superset C. Further (a) implies that the set of

transcendental numbers C \ A is uncountable. �

Notes and Remarks 7.16 In Exercise 7.23, we shall present a ‘direct proof’ of the
uncountability of the set of transcendental numbers, as given in [1]. However, that
‘direct proof’ uses quite a ‘tricky’ idea that π is transcendental. Another proof for
the uncountability of this set can be found in [2]. A popular proof for the countability
of the set of algebraic numbers will be outlined in Exercise 7.21.

The first proof of Example 7.14 is the traditional one. We shall also provide its
alternative proofs in Theorem 8.26 and in Corollary C.2. However, it must be noted
that all these proofs depend upon some equivalent form of the completeness property
of R. For a thorough discussion on diverse proofs of the uncountability of R, we
refer the reader to [3].

Remarkably, there are bijections among the intervals (0, 1), (0, 1] and [0, 1].
These can be established in multiple ways (see Exercises 7.14-7.17). Two explicit
formulas for this purpose appeared recently in [4]. We shall provide one of these in
Exercise 7.22.

Every countably infinite set has an uncountable family of subsets, the intersection
of any two of which is finite (see Exercise 7.24 or [5]).

Since there are four types of nitrogen bases of DNA, by Theorem 7.13, there are
uncountably many DNA sequences!

Open Question 7.17 Is there any bijective polynomial from Q × Q onto Q?

In particular, it is a celebrated open problem whether the polynomial x7 + 3y7 satis-
fies this requirement or not. A few partial results in this direction, through algebraic
geometry, are documented in [6].

Exercise 7.1 Is countable intersection of countable sets always countable?

Exercise 7.2 Prove that every infinite set contains a countably infinite proper subset.

Exercise 7.3 Prove that every countable union of countably infinite sets is countably
infinite.

Exercise 7.4 Which of the following subsets of R
2 is/are countable:

{
(a, b) : a ≤ b

}
,
{
(a, b) : a + b ∈ Q

}
,
{
(a, b) : ab ∈ Q

}
,
{
(a, b) : a, b ∈ Q

}
?

Exercise 7.5 Prove that every finite Cartesian product of countably infinite sets is
countably infinite.
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Exercise 7.6 Let {An} be a sequence of finite sets, each having at least two points.
Which of the following sets is/are countable

⋃∞
n=1 An,

∏∞
n=1 An,

⋃∞
n=1

∏n
k=1 Ak?

Exercise 7.7 Prove that a set is infinite if and only if it is in one-to-one correspon-
dence with a proper subset of itself.

Exercise 7.8 In R, prove that every unbounded set is infinite. Is the converse true?

Exercise 7.9 Prove that the collection of polynomials over Q is countable.

Exercise 7.10 Prove that every unbounded subset of ametric space contains a count-
ably infinite subset.

Exercise 7.11 Prove that any collection of disjoint open intervals is countable.

Exercise 7.12 Let E be any nonempty set. Prove that the set of sequences with terms
from E, is either a singleton set or an uncountable set.

Exercise 7.13 Let A be any nonempty set. Show that there exists a bijection between
the family of functions f : A −→ {0, 1} and the power set of A.

Exercise 7.14 Let {xn} be any sequence of distinct terms in (0, 1). Prove that the
map f : (0, 1) −→ [0, 1] defined as under is a bijection:

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = x1
1 if x = x2
xn−2 if x = xn and n > 2
x if x ∈ (0, 1) \ {xn : n ∈ N}.

Deduce that if A ⊂ [0, 1] is countable, then there exists a bijection from [0, 1] onto
[0, 1] \ A.

Exercise 7.15 Establish a bijection between the following pairs of sets:

(a) R and (0,∞),

(b) R and (100,∞),

(c) N and {
√
3
n : n ∈ N},

(d) N and {0, 1} × Z.

Exercise 7.16 Obtain a bijection between

(a) (0, 1) and (0,∞).

(b) R and (0,∞).

(c) R and (0, 1).

Exercise 7.17 Let a, b, c, d ∈ R be such that a < b and c < d. Establish a bijection
between

(a) [0, 1] and [a, b],
(b) [a, b] and [c, d],
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(c) (0, 1) and (1,∞),

(d) (0, 1) and (−∞,∞),

(e) any two bounded intervals, having at least two points,
(f) any two intervals, having at least two points.

Conclude that all non-degenerate intervals are uncountable.

Exercise 7.18 Prove or disprove:

(a) The set Q
100000 is countable.

(b) There is a surjective map from Q
101000 onto (0, 10−1000).

Exercise 7.19 If x ∈ (0,∞) and
∑∞

k=0
xk
10k is the (unique) infinite decimal expansion

of x, write

f (x) :=
( ∞∑

k=0

x3k
10k

,

∞∑

k=0

x3k+1

10k
,

∞∑

k=0

x3k+2

10k

)

.

This defines a function f : (0,∞) −→ (0,∞)3. Is f a bijection?

Exercise 7.20 Let E5 be the set of those reals in (0, 1) whose infinite decimal rep-
resentations contain the digit 5. Prove that E5 � (0, 1).

Exercise 7.21 Let n ∈ N and A(n) denote all the set of roots of all polynomials
a0 + a1x + · · · + akxk with integral coefficients such that k + |a0| + · · · + |ak | = n.

Prove that A(n) is countable. Deduce that the set of algebraic numbers is countable.

Exercise 7.22 (Witkowski, 2020 [4]) If x �−→ �x defines the least integer next to
x, prove that

f (x) := 1

�x−1 + 1

�x−1 − 1
− x,

defines a bijection from (0, 1) onto (0, 1].
Exercise 7.23 (Jaime, 2014 [1]) Let A be the set of algebraic numbers and f :
(0,+∞) −→ C \ A be defined as

f (x) :=
{

π + x ;π − x ∈ A,

π − x ;π + x ∈ A.

Prove that f is well-defined and injective. Conclude that the set of transcendental
numbers is uncountable.

Exercise 7.24 (Buddenhagen, 1971 [5]) Prove the following:

(a) Let S be the collection of sequences of rational numbers, convergent to some
irrational number. Show that S is an uncountable family of subsets of Q such
that A ∩ B is finite, for all A, B ∈ S.
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(b) For each θ ∈ [0,π), let Sθ be a strip in R
2 with width > 1, inclined at an angle

θ with the positive direction of x-axis and Tθ := Sθ ∩ Z
2. Prove that � := {Tθ :

θ ∈ [0,π)} is an uncountable family of subsets of Z
2 such that A ∩ B is finite,

for all A, B ∈ �.

(c) Let X be any countably infinite set. Prove that there exists an uncountable family
� of subsets of X such that A ∩ B is finite, for all A, B ∈ �.

7.2 Some Applications to Topology

In this section,we present some results about the basic topology, as applications of the
notion of countable sets. It mainly comprises some consequences about connected
subsets of R, which use countability of the set of rational numbers.

Theorem 7.18 Let O be an open subset of R
n for some n ∈ N. Then O can have at

most countably many connected components.

Proof Let� be the set of connected components of O.By Theorem 6.32 and Propo-
sition 6.33, � contains disjoint open subsets of R

n. Define

X := {(x1, . . . , xn) : x1, . . . , xn ∈ Q}.

Then X is a countable subset ofR
n.Also, note that X intersects with every nonempty

open subset of R
n . For every A ∈ �, fix an element xA ∈ A ∩ X.

Therefore, the function f : � −→ X defined as f (A) := xA is injective. Thus,
f is a bijection between � and f (�). Since X is countable, so is its subset f (�).

Hence, � is countable. �

Corollary 7.19 Every open subset of reals is a countable union of disjoint open
intervals.

Proof Let O be an open subset of reals. By Theorem 7.18, O is a countable union of
its connected components, say O :=⊍∞

n=1On. Applying Theorem 6.19 and Propo-
sition 6.33, each On is an open interval. Hence the result. �

Next, we show that every connected metric space with at least two elements is
uncountable.

Theorem 7.20 Let (X, d) be a connected metric space with |X | > 1. Then X is
uncountable.

Proof Let a, b ∈ X such that a �= b. Define a function f : X −→ R as follows:

f (x) := d(x, a)

d(x, a) + d(x, b)
for all x ∈ X.
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Then f is continuous on X, as x �−→ d(x, a) and x �−→ d(x, b) are continuousmaps
on X and a �= b. Since f (a) = 0 and f (b) = 1, by Intermediate Value Theorem
(6.12), we conclude that [0, 1] ⊂ f (X). Hence, X is uncountable. �

Corollary 7.21 Every countable metric space is totally disconnected.

Proposition 7.22 No continuous real function switches rationals with irrationals.
In other words, there exists no continuous function f : R −→ R such that

f (Q) ⊂ R \ Q and f (R \ Q) ⊂ Q. (7.1)

Proof Suppose that there exists a continuous function f : R −→ R such that (7.1)
holds true. Then f (R) = f (Q) ∪ f (R \ Q) ⊂ f (Q) ∪ Q, which is a countable set.
Since f is continuous, by Theorem 6.20, f (R) is connected. By Theorem 6.19, f (R)

is an interval. Since it is countable, f (R) is a singleton. Hence, f is a constant.
Therefore, there exists a constant c ∈ R such that f (x) = c for all x ∈ R. If c ∈

Q, then f (Q) = {c} �⊂ R \ Q. On the other hand, if c ∈ R \ Q, then f (R \ Q) =
{c} �⊂ Q. Therefore, we have a contradiction. Hence the result. �

Theorem 7.23 Let S be any countable subset of R
2. Then the subspace R

2 \ S of
R

2 is path connected. In particular, the set R
2 \ Q

2 is path connected.

Proof Let E := R
2 \ S and A, B ∈ E . We shall show a circular arc joining A and

B, inside E .

Let C be any point on the perpendic-
ular bisector of segment AB except for
the midpoint of AB. Then there exists a
unique circle passing through A,C and
B.

Since there are uncountably many
such points C, there are uncountably
many circles through A and B.

Since S is countable, it intersects with only countably many such circles through
A and B. Hence, there are uncountably many circles in E, passing through both A
and B. �

Remarks 7.24 The open interval (0, 1) is not a countable union of pairwise disjoint
closed subsets of R. Readers interested in the proof are referred to [7, p. 51].

Another application of the notion of countability is that in the definition of compact
metric spaces, we need not consider open covers consisting of arbitrary large number
of sets. The open covers with only countably many sets are sufficient.

Definitions 7.25 Ametric space X is said to be countably compact if every countable
open cover of X has a finite subcover.
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It is immediate that every compact metric space is countably compact. We shall
establish the converse too. The following result can be established, analogous to
Theorem 5.18. So we omit its proof.

Proposition 7.26 A metric space X is countably compact if and only if every count-
able collection of closed subsets of X with the finite intersection property has a
nonempty intersection.

Theorem 7.27 A metric space X is countably compact if and only if X is compact.

Proof The converse follows from definitions. Assume that X is countably compact.
Applying Theorem 5.27, it is enough to prove that every infinite subset of X has a
limit point in X. Let A be an infinite subset of X. Choose a sequence {an} of distinct
terms from A. Write

An := {ak : k ≥ n} for all n ∈ N.

Then for m < n, we have An ∩ Am = An �= ∅. Hence, the collection {An : n ∈ N}
has finite intersection property. Applying Proposition 7.26, we obtain

⋂∞
n=1 An �= ∅.

Pick any a ∈ ⋂∞
n=1 An.We claim that a ∈ A′.Let O be a neighborhood of a.Then

O ∩ An �= ∅ for all n ∈ N. Therefore, O ∩ An is an infinite set. Hence, a ∈ A′ and
the result follows. �

In Exercise 7.31, we shall also establish that for a metric space to be complete, it is
enough that its countable closed subspaces are complete.

Exercise 7.25 Is Q a union of countably many monotone sequences?

Exercise 7.26 Does every line segment in C contain an algebraic number?

Exercise 7.27 Let X be a connected metric space with at least two elements. What
is the cardinality of X?

Exercise 7.28 Let F be a closed subset of R and f : F −→ R be a continuous
function. Prove that there exists a continuous function g : R −→ R such that g(x) =
f (x) for all x ∈ F. Is the same true if F is not closed in R?

Exercise 7.29 Let X denote the set of sequences with terms 0 or 1, and Y denote
the set of sequences from X which are eventually zero. Is Y a countable set?

Exercise 7.30 Which of the following sets are countable:

(a) the set of finite subsets of natural numbers?
(b) the set of sequences from N, which are in some arithmetic progression?
(c) the set of strictly increasing sequences of natural numbers?

Exercise 7.31 Prove that a metric space X is complete if and only if every countable
closed subset of X is a complete subspace.
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Exercise 7.32 Does there exist a sequence having uncountably many subsequences,
each convergent to a different limit?

Exercise 7.33 Does there exist a subset E of R having uncountably many isolated
points?

Exercise 7.34 Does there exist an uncountable subset of reals having only countably
many limit points?

Exercise 7.35 Let S be the collection of step functions on [a, b], which assume
values only in Q and are discontinuous only on Q. Prove that S is countable.

Exercise 7.36 Prove or disprove: There exists a sequence of real numbers that has
a monotone rearrangement.

Exercise 7.37 Let E be a countable subset of R having no limit point in R. Prove
that E can be written as a sequence {xn} such that |xn| ≤ |xn+1| for all n ∈ N.

Exercise 7.38 Does there exist a subset of C with

(a) countably many connected components?
(b) uncountably many connected components?

Exercise 7.39 Does there exist an uncountable complete subspace of R \ Q?

Exercise 7.40 Does there exist a complete metric on the set R \ Q?

Exercise 7.41 Does there exist a continuum having only countably infinite number
of cut points?

Exercise 7.42 Does there exist a continuum having only countably infinite number
of non-cut points?

Exercise 7.43 Let n ∈ N and S ⊂ R
n be countable. Prove that the space R

n \ S is
connected.

Exercise 7.44 Let ∅ �= X ⊂ R and O be an open subset of the subspace X. Prove
that O is a countable union of clopen subsets of X.

Exercise 7.45 Prove that every interval can be written as a countable union of com-
pact intervals.

Exercise 7.46 Does there exist a function f : R −→ R continuous at every rational
and discontinuous at uncountably many irrationals?
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7.3 The Set of Discontinuities

In this section, we establish that the set of points of discontinuities of a monotone
real function is at most countable. We also show that the same set, for any function
between metric spaces, is at most a countable union of closed sets.

7.3.1 The Case of Monotone Functions

First, we establish that monotone real functions can have only jump discontinu-
ities. Let us recall the notions of monotone functions and one-sided limits. For this
subsection, let I denote an open interval, d ∈ I and f : I −→ R. Then

(a) f is said to be

(i) monotonically increasing if f (x) ≤ f (y) for all x, y ∈ I with x < y,
(ii) monotonically decreasing if ‘- f ’ is monotonically increasing and
(iii) monotone if f is eithermonotonically increasing ormonotonically decreas-

ing.

(b) f is said to have a

(i) left-handed limit at d if there exists l ∈ R such that for every ε > 0 there
exists some δ > 0 such that

| f (x) − l| < ε for all x ∈ (d − δ, d).

In this case, l is called the left-handed limit of f at d, and is denoted by
limx→d− f (x) and f (d−). The right-handed limit limx→d+ f (x) or f (d+).

is defined analogously.
(ii) jump discontinuity at d if both f (d−) and f (d+) exist but are not equal.

Lemma 7.28 Let f : I −→ R be a monotonically increasing function and d ∈ I.
Then both f (d−) and f (d+) exist with

f (d−) = sup{ f (x) : x < d, x ∈ I } and f (d+) = inf{ f (x) : x > d, x ∈ I }.

Proof Let E := { f (x) : x < d, x ∈ I }. Since d ∈ I, there are a, b ∈ I such that
a < d < b. Then f (a) ∈ E . Since f is monotonically increasing, E is a nonempty
set bounded above by f (b). Hence, E has a supremum, say s.

To prove that s = f (d−), let ε > 0 be given. Since s = sup E, there exists
some y ∈ I with y < d such that s − ε < f (y). The monotonicity of f implies
s − ε < f (y) ≤ f (x) ≤ s for all d > x > y. So | f (x) − s| < ε for all x ∈ (y, d).

Hence, we obtain limx→d− f (x) = s. The second assertion is similar. �

Now we prove that monotone real functions can have only jump discontinuities.
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Theorem 7.29 Let f : I −→ R be a monotone function, discontinuous at d ∈ I.
Then d is a jump discontinuities of f.

Proof Suppose f is monotonically increasing. By Lemma 7.28, both f (d−) and
f (d+) exist. Consequently, f (d−) �= f (d+) and therefore, d is a jump discontinuity
of f.

If f is monotonically decreasing, then− f is monotonically increasing. As above,
− f and thence f can have only jump discontinuities. Hence the result. �

Theorem 7.30 The set of discontinuities of any monotone function f : I −→ R is
at most countable.

Proof First suppose that f is monotonically increasing. Being monotone, f can
have only jump discontinuities. Let D f be the set of discontinuities of f. For every
d ∈ D f , let Jd := (

f (d−), f (d+)
)
. We claim that

Jd1 ∩ Jd2 = ∅ for all d1 �= d2. (7.2)

To see this, let d1, d2 ∈ D f such that d1 < d2. Then there are reals a, b such that
d1 < a < b < d2. Since f is monotonically increasing, we obtain

f (d+
1 ) = inf{ f (x) : x > d1} = inf{ f (x) : d1 < x < a} ≤ f (a).

Similarly, f (d−
2 ) ≥ f (b).Hence, f (d+

1 ) ≤ f (a) ≤ f (b) ≤ f (d−
2 ).This establishes

(7.2). For every d ∈ D f , pick any rd ∈ Jd ∩ Q. Define φ : D f −→ Q as follows:

φ(d) := rd for all d ∈ D f .

Note that (7.2) ensures that φ is an injective map. Hence, D f is countable. In case
f is monotonically decreasing, − f is monotonically increasing. Therefore, D− f ,

the set of discontinuities of − f, is countable. The result follows from the fact that
D− f = D f . �

An alternative proof of Theorem 7.30 will be provided in Exercise 7.52.

Theorem 7.31 Let −∞ ≤ a < b ≤ +∞ and A be a countable subset of (a, b).
Then there exists a monotonically increasing function f : (a, b) −→ R which is
discontinuous precisely on A.

Proof If A is a finite set, then take f as a suitable step function. Assume that A is
countably infinite and write A := {dn : n ∈ N}. Define f : (a, b) −→ R as follows:

f (x) :=
∑

dn≤x

1

2n
for all x ∈ (a, b).
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Note that f is a monotonically increasing function, as for a < x < y < b, we have

f (y) − f (x) =
∑

x<dn≤y

1

2n
≥ 0 which implies f (y) ≥ f (x).

We claim that f is discontinuous only on A. Let n ∈ N and x < dn. As earlier

f (dn) − f (x) =
∑

x<dk≤dn

1

2k
≥ 1

2n
> 0.

Thus, f is discontinuous at each dn ∈ A.Now pick any x ∈ (a, b) \ A. To prove that
f is continuous at x, let ε > 0 be given. Pick any n ∈ N such that 1

2n < ε.
Let δ > 0 be such that (x − δ, x + δ) ⊂ (a, b) and (x − δ, x + δ) contains none

of the points d1, d2, . . . , dn . Then for any y ∈ (x − δ, x + δ), we see that

| f (y) − f (x)| =
∑

x<dk≤y or y<dk≤x

1

2k
≤

∑

k>n

1

2k
= 1

2n
< ε.

This ensures that f is continuous at each x ∈ (a, b) \ A. Hence the result. �

Corollary 7.32 There exists a strictly increasing function f : R −→ R such that f
is continuous on R \ Q and discontinuous on Q.

Proof The function obtained by Theorem 7.31 for (a, b) = R and A = Q is strictly
increasing, as between any two reals there exists a rational number. �

Remarks 7.33 (a) In Corollary 8.39(b), we will show that there exists noR −→ R

function that is continuous on Q and discontinuous on R \ Q.

(b) For characterizations of monotone functions, see Exercise 7.62 and [10].

7.3.2 The General Case

Let X and Y be metric spaces, f : X −→ Y be a function and

D f := {x ∈ X : f is discontinuous at x}.

We shall show that D f is at most a countable union of closed subsets of X. Con-
sequently, the set of continuities of f is at most a countable intersection of open
subsets of X. There is a special terminology for such sets, which is given below.

Definitions 7.34 A subset E of a metric space is said to be

(a) an Fσ-set, if E is a countable union of closed sets.
(b) a Gδ-set, if E is a countable intersection of open sets.
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Examples 7.35 (a) {0} = ⋂∞
n=1

( − 1/n, 1/n
)
is a Gδ-set.

(b) N = ⋃∞
n=1{n} is an Fσ-set.

(c) Any countable subset of any metric space is an Fσ-set.
(d) The complement of any Fσ-set is a Gδ-set and vice versa.

To move ahead we need the notion of oscillation of a function f at a point x ∈ X,

defined as
ω( f ; x) := inf{diam( f (B(x; δ))) : δ > 0}.

It is easy to see that ω( f ; x) = limδ→0 diam
(
f (B(x; δ))

)
.

Proposition 7.36 Let x ∈ X. Then f is continuous at x if and only if ω( f ; x) = 0.

Proof Let ε > 0 be given. If f is continuous at x, f (B(x; δ)) ⊂ B( f (x); ε/2) for
some δ > 0.Then for any y, z ∈ B(x; δ),wehaved( f (y), f (z)) ≤ d( f (y), f (x)) +
d( f (x), f (z)) < ε. Hence, diam( f (B(x; δ))) ≤ ε. Since ε > 0 is arbitrary, we
obtain ω( f ; x) = 0.

Conversely, if ω( f ; x) = 0, there exists some η > 0 such that diam( f (B(x; η)))

< ε. Hence, d( f (y), f (x)) ≤ diam( f (B(x; η))) < ε for all y ∈ B(x; η). Thus, f
is continuous at x . �

Theorem 7.37 Let X and Y be metric spaces, f : X −→ Y and D f is the set of
discontinuities of f. Then D f is an Fσ-set in X.

Proof Applying Proposition 7.36, we note that

D f = {x ∈ X : ω( f ; x) > 0} =
∞⋃

n=1

{

x ∈ X : ω( f ; x) ≥ 1

n

}

.

Hence, it is enough to prove that, for every r > 0, the set {x ∈ X : ω( f ; x) ≥ r} is
closed or equivalently Er := {x ∈ X : ω( f ; x) < r} is an open subset of R.

Pick any r > 0 and x ∈ Er . Then diam( f (B(x; δ))) < r for some δ > 0. Since
B(x; δ) is an open set, for every y ∈ B(x; δ), there exists some η > 0 such that
B(y; η) ⊂ B(x; δ). Therefore, diam(B(y; η)) ≤ diam(B(x; δ)) < r. This implies
that y ∈ Er . Consequently, B(x; δ) ⊂ Er and hence the result. �

The converse of the above theorem is also true for the real case.

Theorem 7.38 Let F be an Fσ subset of R. Then there exists a bounded function
f : R −→ R such that D f = F.

Proof If F is a closed set, then it can be shown that for f := χR\F + χFo∩Q, we
have D f = F.

In general, let {En} be a sequence of closed sets such that
⋃∞

n=1 En = F. Write
F0 = ∅ and Fn := ⋃

k≤n Ek for all n ∈ N. Then each Fn is closed,
⋃∞

n=0 Fn =
F and Fn ⊂ Fn+1 for all n ∈ N. Without loss of generality, suppose that Fn �=
Fn+1 for all n ≥ 0.
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Let fn := χR\Fn + χFo
n ∩Q for all n ∈ N. Then each fn is discontinuous only on

Fn. Let {an} be a sequence of positive reals such that an >
∑

k>n ak for all n ∈ N.

For example, an := 2−n(n+1) is one such sequence.
By Theorem 1.62, the series

∑∞
n=1 an fn(x) converges uniformly on R. Write

f (x) := ∑∞
n=1 an fn(x) for all x ∈ R. By Theorem 3.33, f is continuous on R \ F.

Let x ∈ F = ⋃∞
n=1 Fn =⊍∞

n=1(Fn − Fn−1). Then x ∈ Fn − Fn−1 for some
unique n ∈ N. Note that

ω( f ; x) = lim
δ→0

sup{| f (t) − f (s)| : t, s ∈ (x − δ, x + δ)}

= lim
δ→0

sup

{ ∑

k≥n

ak fk(t) −
∑

k≥n

ak fk(s) : t, s ∈ (x − δ, x + δ)

}

.

If x ∈ Fo
n , there exist sequences {xk} ⊂ Fo

n ∩ Q and {yk} ⊂ Fo
n \ Q both conver-

gent to x . Therefore, fn(xk) = 1 and fn(yk) = 0 for all k ∈ N. In case x ∈ Fn \ Fo
n ,

there exist sequences {xk} ⊂ R \ Fn and {yk} ⊂ Fn \ Fo
n both convergent to x .Again

fn(xk) = 1 and fn(yk) = 0 for all k ∈ N.

Let δ > 0 be given. Then there are x0, y0 ∈ (x − δ, x + δ) such that fn(x0) =
1 and fn(y0) = 0. Thus, ω( f ; (x − δ, x + δ)) ≥ an − ∑

k>n ak . Therefore, ω( f ; x)
≥ an − ∑

k>n ak > 0. Consequently, f is discontinuous at x . Hence the result. �

It is natural to question that which subsets ofR are Fσ orGδ? In Corollary 8.39(a),
we shall see that the set of rational numbers Q, is not a Gδ. Hence, there exists no
R −→ R function, which is continuous precisely on Q.

However, by the following proposition, every closed subset of a metric space is a
Gδ-set and therefore, every open subset of a metric space is an Fσ-set.

Theorem 7.39 (Mazurkiewicz) Let F be a closed subset of a metric space (X, d).

Then F is a Gδ-set.

Proof For each n ∈ N, let On := ⋃
x∈F B

(
x; 1

n

)
. Since open balls open, each On is

open in X. Hence, it is sufficient to prove that F := ⋂∞
n=1 On.

Clearly, for every n ∈ N, we have F ⊂ On. Therefore, F ⊂ ⋂∞
n=1 On. For the

opposite inclusion, let y ∈ ⋂∞
n=1 On. Then there exists a sequence {xn} ⊂ F such

that d(xn, y) < 1
n for all n ∈ N. Therefore, {xn} −→ y. Hence, y ∈ F = F, as F is

closed. �

Remarks 7.40 In Fσ, the letter F stands for ferme (which means closed) and σ
stands for summe (which means sum), while in Gσ, the letter G stands for geneit
(which means region) and δ stands for durchschnitt (which means intersection).Note
that we need not to separately define Fδ and Gσ sets, as any union (intersection) of
open (closed) sets is always open (closed).

Exercise 7.47 Let f, g : I −→ R be such that f is monotonically increasing and g
is strictly increasing on I. Prove that f + g is strictly increasing on I.
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Exercise 7.48 Prove that the map f : R −→ R defined as f (x) := sin x + x is
strictly increasing.

Exercise 7.49 If f is monotonically increasing on (a, b) and c ∈ (a, b), prove that

f (c+) − f (c−) = inf{ f (c + h) − f (c − k) : h, k > 0}.

Exercise 7.50 Let I be an interval and f, g : I −→ R be a given function.

(a) If f is monotone, prove that f is continuous if and only if f (I ) is an interval.
(b) If f is continuous, prove that f is injective if and only if f is strictly monotone.

Exercise 7.51 Let f : [a, b] −→ R be amonotonically increasing function and a =
x0 < · · · < xn = b. Prove that

∑n−1
i=1

(
f (x+

i ) − f (x−
i )

) ≤ f (b) − f (a).

Exercise 7.52 Let (a, b) be a bounded open interval and f : (a, b) −→ R be a
monotone function. Prove that for every m ∈ N, the set

{

d ∈ (a, b) : f (d+) − f (d−) >
1

m

}

is finite. Conclude that the set of discontinuities of f is a countable set.

Exercise 7.53 If f : R −→ R is monotonically increasing, prove that

ω( f ; c) = f (c+) − f (c−) for all c ∈ R.

Exercise 7.54 Does there exist a real function with uncountably many jump discon-
tinuities?

Exercise 7.55 Let f : [0, 1] −→ R be an injective function. Prove that the range of
f contains an irrational number.

Exercise 7.56 If f : R −→ R, prove that there exists a bounded function g : R −→
R such that both f and g have same set of discontinuities.

Exercise 7.57 If Y is a complete subspace of a metric space X, prove that Y is a Gδ

in X.

Exercise 7.58 Let f : [0, 1] −→ R and ε > 0 be given. Show that there exists n ∈ N

such that ω( f ; [xk−1, xk]) < ε for all 1 ≤ k ≤ n, where xk := k/n.

Exercise 7.59 For E ⊂ R, show that the set of continuity of χE is Eo ∪ (R \ E).

Exercise 7.60 Let F be a closed subset of R and f = χR\F + χFo∩Q. Prove that
D f = F.
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Exercise 7.61 Let X be a metric space with a dense set A such that Ao = ∅ and
F be a countable union of closed subsets of X. Prove that there exists a bounded
function f : X −→ R, which is discontinuous precisely on F. Further show that the
same is true, with the codomain of f as any given Banach space.

Exercise 7.62 Let I be any interval and f : I −→ R. Prove that the following are
equivalent:

(a) f is monotonically increasing on I .
(b) f is locally increasing at every point of I .
(c) For every x ∈ I, there exists some δx > 0 such that

f (y) ≤ f (x) ≤ f (z) whenever x − δx < y < x < z < x + δx .

Exercise 7.63 Let f be as in the proof of Theorem 7.31. Prove that f is right
continuous on R, that is f (x+) = f (x) for all x ∈ R.

Exercise 7.64 Let f : [−1, 1] −→ R be a differentiable function such that
f ′(0) > 0.

(a) Prove that there exists some δ > 0 such that f (x) < f (0) < f (y) for all − δ <

x < 0 < y < δ.
(b) If f ′ is continuous at 0, prove that f is strictly increasing in the interval

(−δ, δ) for some δ > 0.
(c) Show that f may not be strictly increasing in any neighborhood of 0.

Exercise 7.65 Let A, B be closed subsets of R and f : A −→ B be a strictly
increasing surjection. Prove that f is a continuous map.

7.4 Cardinality

As stated earlier, two given sets are said to have the same cardinality, if there exists
a bijection between them. Now we discuss a weaker notion.

Definitions 7.41 For any sets X and Y, we write

(a) X � Y if and only if X is in one-to-one correspondence with a subset of Y.

(b) X ≺ Y if and only if X � Y and X �� Y.

Note that X � Y if and only if there exists an injective map from X into Y if and
only if there exists a surjective map from Y onto X. Hence, X is countable if and
only if X � N.

Theorem 7.42 (Cantor-Schröder-Bernstein) If X � Y and Y � X, then X � Y.
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Proof Since X � Y and Y � X, there exist injective maps f : X −→ Y and g :
Y −→ X. First we partition both X and Y into three sets each.

Pick any x ∈ X. If it has no preimage under g, stop. Otherwise, let y1 ∈ Y be that
preimage. Then consider the preimage of y1 under the map f. If it doesn’t exist, stop.
Otherwise, let x2 be that preimage. Continuing this process, for every x ∈ X, either
this process terminates somewhere or goes on indefinitely.

Let EX and OX , respectively, denote subsets of X with only even and odd number
of successive preimages, respectively. The set EX also contains elements of X having
no preimage.

Let IX := X \ (EX ∪ OX ). Analogously, we obtain subsets EY , OY , and IY of
Y, having even, odd, and infinitely many successive preimages of their elements,
respectively. Define a map H : X −→ Y as follows:

H(x) :=
{

g−1(x) if x ∈ OX

f (x) if x ∈ X \ OX .

We leave it for the readers to show that H is a bijection between the pairs OX and
EY ; EX and OY ; and IX and IY . Hence H is a bijection between X and Y. �

Notations 7.43 Let X and Y be any two nonempty sets. Then

(a) the set of functions from X −→ Y, will be denoted by Y X and
(b) the set of subsets of X (the power set of X ) will be denoted by P(X).

Due to the following result, the power set P(X) is also denoted by 2X .

Proposition 7.44 If X is a nonempty set, then there exists a one-to-one correspon-
dence between P(X) and {0, 1}X .

Proof Consider a function f : P(X) −→ {0, 1}X given by f (A) := f A, where f A :
X −→ {0, 1} is defined as

f A(x) :=
{
1 if x ∈ A
0 if x /∈ A.

Note that f (A) = f (B) that is f A = fB implies x ∈ A if and only if x ∈ B, that is
A = B. Hence, f is injective. Clearly, f is surjective and hence a bijection. �

Example 7.45 P(N) � [0, 1].
Proof If S ⊂ N, define f (S) := ∑∞

n=1
sn
10n = (0.s1s2 . . . sn . . . )10, where

sn :=
{

1 ; n ∈ S,

2 ; n /∈ S.

This defines a function f : P(N) −→ [0, 1].Note that, for each S ⊂ N, f (S) is a real
inside [0, 1] with a unique decimal representation. We show that f is an injective
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map. Let S and T be subsets of N such that f (S) = f (T ). Then for all n ∈ N,

sn = tn, which implies n ∈ S if and only if n ∈ T . Hence, S = T .

ApplyingTheorem7.42, it is enough toprovide an injective functiong : [0, 1] −→
P(N). Let x ∈ [0, 1]. Write its binary representation, say, x = (0.x1x2 . . . xn . . . )2.

If x has two binary representations, then one of those must be finite and the other
must be infinite. In this case, consider only the finite binary representation of x .

Define g(x) := S,where S := {n ∈ N : xn = 1}. If x = (0.x1x2 . . . xn . . . )2, y =
(0.y1y2 . . . yn . . . )2 ∈ [0, 1] such that g(x) = g(y), then n ∈ g(x) if and only if n ∈
g(y),which implies xn = 1 if and only if yn = 1.Hence, x = y and thus g is injective.

Applying Theorem 7.42, we conclude that P(N) � [0, 1]. �
Theorem 7.46 (Cantor 1891) X ≺ P(X), for every set X.

Proof Define i : X −→ P(X) as i(x) := {x} for all x ∈ X. Then i is a bijection of
X with the collection of singleton subsets of X. Hence, X � P(X).

Suppose X � P(X). Then there exists a bijection f : X −→ P(X). Let Y :=
{a ∈ X : a /∈ f (a)}. Then Y ⊂ X. Since f is onto, there exists some x ∈ X such
that Y = f (x). Now x ∈ f (x) if and only if x ∈ Y if and only if x /∈ f (x), a con-
tradiction. Hence the result. �

The above result immediately implies that the collection of all sets, although
well-defined, cannot be regarded as a set. Because if X is the collection of all sets,
thenP(X) ⊂ X and henceP(X) � X ≺ P(X), a contradiction. This questioned the
foundations of the Naive Set Theory, which lead to the development of the Axiomatic
Set Theory.

The argument used in the proof of Theorem 7.46 leads to the following paradox,
known as Russell’s paradox or the barber paradox:

Suppose there exists a barber who shaves all those people who do not shave themselves.
Does this barber shave himself?

However, it is not a paradox since such a hypothetical barber cannot exist.

History Notes 7.47 It was the first congress of the German Mathematical Associ-
ation in 1891 during which Georg Cantor presented and proved Theorem 7.46 (see
[8, p. 77]).

The Cantor-Schröder-Bernstein theorem, also known as the equivalence theorem,
was first published by Georg Cantor in 1886, but without proof. In 1897, a 19-
year-old student Felix Bernstein proved this theorem in Cantor’s seminar. Almost
simultaneously, in 1897, Ernst Schröder independently discovered its proof. For the
history and other proofs of the Cantor-Schröder-Bernstein theorem, the reader is
referred to [9].

7.4.1 Cardinal Numbers

For any set X, applying Theorem 7.46, we obtain a strictly increasing sequence of
cardinalities, given by
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X ≺ P(X) ≺ P(P(X)) ≺ P(P(P(X))) ≺ . . . . (7.3)

If X is a finite set, we define its cardinal number (or cardinality), as follows

card(X) := number of elements in X.

Therefore, (7.3) leads to n < 2n < 22
n
< . . . . In case of infinite sets, defining cardi-

nality is quite tricky, and out of scope of this textbook. However, we write

card(N) := ℵ0 and card(R) = c.

Recall that for any set X, card(P(X)) = 2card(X). With these notations, we have

ℵ0 < c < 2c < 22
c
< . . .

At this point, it is important to give a brief introduction to the Axiom of Choice
and the Continuum Hypothesis. However, a more detailed presentation of this axiom
along with the standard Zermelo-Fraenkel Axioms will be provided in Appendix A.

Continuum Hypothesis 7.48 (Georg Cantor, 1878) No set has cardinality strictly
between ℵ0 and c.

Axiom of Choice 7.49 For every nonempty family of nonempty sets, there exists a
set containing one element from each set of the collection.

Let� := {Xα : α ∈ ∧} be any nonempty collection of nonempty sets. The Carte-
sian product

∏
α∈∧ Xα is defined to be the collection of functions f : ∧ −→⋃

α∈∧ Xα such that f (α) ∈ Xα for all α ∈ ∧. Each such f is known as a choice
function for {Xα : α ∈ ∧}.

Therefore, the Axiom of Choice holds if and only if the Cartesian product of any
nonempty collection � of nonempty sets is nonempty; that is, � admits a choice
function.

Proposition 7.50 If card(A) = c = card(B), then card(A ∪ B) = c.

Proof Let g1 : A −→ (0,+∞) and g2 : B −→ (−∞, 0) be bijections. Define g :
A ∪ B −→ R as

g(x) :=
{

g1(x) ; x ∈ A,

g2(x) ; x /∈ A.

Then g is an injection. Hence, card(A ∪ B) ≤ card(R) = c. Since A ⊂ A ∪ B, we
already have c = card(A) ≤ card(A ∪ B). Hence, card(A ∪ B) = c. �

Theorem 7.51 If card(F) = c, then card(
∏

n∈N F) = c.

Proof Since N is bijective to N × N, for any set A, we obtain



204 7 Cardinality

card
( ∏

n∈N
A
) = card

( ∏

n,m∈N
A
)
. (7.4)

Since card(F) = c, we have F � [0, 1]. By Proposition 7.44 and Example 7.45,

F � [0, 1] � P(N) � {0, 1}N.

Recall that {0, 1}N is the family of sequences with terms 0 and 1, that is {0, 1}N =∏
n∈N{0, 1}. Therefore, card(

∏
n∈N{0, 1}) = c. With A = {0, 1} in (7.4), we obtain

c = card
( ∏

n∈N
{0, 1}) = card

( ∏

n∈N

( ∏

m∈N
{0, 1}

))

= card
( ∏

n∈N
F

)
.

This proves the result. �

Theorem 7.52 If card(X) ≤ c and card(Y ) ≤ c, then card(X × Y ) ≤ c.

Proof Without loss of generality, assume that X = P(N) = Y. Define g, h : N −→
N by g(n) := 2n and h(n) := 2n − 1 for all n ∈ N. Define f : X × Y −→ P(N) as
f (A, B) := g(A)⊍ h(B). It can be shown that f is a bijection. �

Theorem 7.53 Let A be a nonempty set with card(A) ≤ c and {Fx : x ∈ A} be a
collection of sets such that card(Fx ) = c for all x ∈ A. Then card(

⋃
x∈A Fx ) = c.

Proof If a0 ∈ A, then Fa0 ⊂ ⋃
a∈A Fa and hence c = card(Fa0) ≤ card(

⋃
a∈A Fa).

To prove the opposite inequality, for each a ∈ A, consider a bijection fa :
R −→ Fa . Define f : R × A −→ ⋃

a∈A Fa as f (x, a) := fa(x). Now it is a rou-
tine exercise to show that f is a surjective map. Applying Theorem 7.52, we obtain
card(

⋃
a∈A Fa) ≤ card(R × A) ≤ c. �

7.4.2 Notes and Remarks

TheAxiomofChoice or its negation canbe assumed alongwith theZermelo-Fraenkel
Axioms or ZF-axioms, without any penalty. In other words, if ZF-axioms are con-
sistent, then so are ZF + AC (Godel 1938) and ZF + ¬AC (Cohen 1963). The
system ZF + AC is written as ZFC-axioms.

The validity of the Continuum Hypothesis was the first of Hilbert’s 23 problems
presented in the ICM, in 1900. In 1963, it was proved to be independent of the
ZFC-set theory.

In 1940, Godel proved that the Continuum Hypothesis cannot be disproved using
the ZFC-axioms. In 1963, Paul Cohen established that it cannot be proven using ZFC-
axioms. This concluded that the Continuum Hypothesis is undecidable in ZFC-set
theory. Due to this, Cohen was awarded the Fields Medal in 1966.
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A brief history of the life of George Cantor can be found in [11, p. 112-113] and
[12]. For the independence of the Continuum Hypothesis from ZFC, see [13–16].
More on cardinal numbers, and various natural models of set theory (along with the
Zermelo-Fraenkel set theory) can be found in [17].

From an infinite number of pairs of socks, the Axiom of Choice is necessary to select a set having
one from each pair. However, the same is not true if we have pairs of shoes instead of socks,

Bertrand Russell.

Exercise 7.66 Prove that P(N) � R.

Exercise 7.67 Prove that [0, 1] � {0, 1}N.

Exercise 7.68 Prove that the set of open subsets of R has cardinality c.

Exercise 7.69 Prove that the set of uncountable closed subsets of real numbers has
cardinality c.

Exercise 7.70 If X is the collection of all sequences fromR, then what is card(X)?

Exercise 7.71 Does there exist a set whose power set is countably infinite? Justify.

Exercise 7.72 Prove that every connected metric space with at least two points has
cardinality at least c.

Exercise 7.73 Let n ∈ N and S be any subset of R
n with card(S) < c. Prove that

the subspace R
2 \ S is path connected.

Exercise 7.74 Assuming that every sentence in English language is of finite length,
prove that there exists no longest sentence in English.

Exercise 7.75 Assuming that every sentence of English language is of finite length,
prove that there are only countably many sentences in the English language.

Exercise 7.76 Prove that card(�p) = c for all 1 ≤ p ≤ ∞.

Exercise 7.77 Let A be a set with card(A) = c and � be the collection of all
sequences from A. Prove that the card(�) = c.

Exercise 7.78 Does there exist A ⊂ R such that card(A) = c = card(A \ A)?

Exercise 7.79 Let A ⊂ [0, 1] such that the decimal expansion of every a ∈ A is
eventually constant. Prove that A is countable.

Exercise 7.80 Let A be the collection of all a ∈ [0, 1] which contain at least two
consecutive identical terms, in their decimal expansions. Prove that card(A) = c.

Exercise 7.81 Let A and B be any two sets with the same cardinality. What is the
cardinality of the set of bijections from A onto B?
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7.5 Hints and Solutions to Selected Exercises

7.3 Let {An : n ∈ N} be a countable collection of countably infinite sets. By Theo-
rem 7.8,

⋃∞
n=1 An is countable. Since this union has an infinite subset A1, it is

countably infinite.
7.7 Let E be an infinite set and x0 ∈ E . Pick a sequence {xn} of distinct terms from

E \ {x0}. Define f : E \ {x0} −→ E as follows:

f (x) :=
⎧
⎨

⎩

x0 if x = x1
xn−1 if x = xn and n > 1
x if x ∈ E \ {xn : n ∈ N}.

Then f is a bijection. The converse is trivial.
7.11 Between any two disjoint open intervals, there exists a rational number.
7.16 (a) Consider f : (0, 1) −→ (0,∞)defined as f (x) := x

x+1 , for all 0 < x < ∞.

(b) Consider g : R −→ (0,∞) defined as g(x) := 2x , for all x ∈ R.

(c) Consider the map g ◦ f −1.

7.17 Note that the maps f : [0, 1] −→ [a, b] defined as f (t) := a + t (b − a) and
g : [a, b] −→ [c, d] defined as g(t) := c + (t − a) d−c

b−a are bijections. Deal with
the end points in semi open intervals, as in Exercise 7.15. Hence, all bounded
closed intervals are uncountable.

Similarly, all bounded open intervals are bijective to (0, 1) and thus uncountable.

Since x −→ 1/x is a bijection from (0, 1) and (1,∞), every open bounded
interval is bijective to intervals of the form (a,∞). As earlier, we can conclude
that every bounded interval is bijective to one-sided unbounded intervals.

Since x −→ tan x is a bijection from (−π/2,π/2) to R, any two intervals are
bijective. Hence, all non-trivial intervals are uncountable.

7.22 Note that f maps [ 1
n+1 ,

1
n ) bijectively onto ( 1

n+1 ,
1
n ] and use the fact that

7.23 f is well-defined, because if there exists x ∈ (0,+∞) such that π − x ∈ A and
π + x ∈ A, then π = 1

2

(
(π − x) + (π + x)

) ∈ A, a contradiction.

Also, f is injective, as if f (x) = f (y), then x = | f (x) − π| = | f (y) − π| = y.
Therefore, (0,+∞) is bijective to a subset of C \ A.

7.24 (a) Apply Exercise 1.42 with S as the collection of sequences of rational num-
bers, convergent to some irrational number.

(b) For each θ ∈ [0,π), let Sθ be a strip in R
2 with width > 1, inclined at

an angle θ with the positive direction of x-axis and Tθ := Sθ ∩ Z
2. Then

� := {Tθ : θ ∈ [0,π) is the required collection.
(c) Take bijection with Q or Z

2 and then apply (a).
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7.28 Write R \ F = ⋃∞
n=1(an, bn), as a countable union of open intervals. On each

interval [an, bn], define g to be a linear function whose graph is the line segment
joining the points (an, f (an)) and (bn, f (bn)) in R

2.

If F is not closed, the result is false. For example, consider the function f (x) :=
1/x for all x ∈ (0, 1).

7.29 Yes. Note that Y = ⋃
k Yk, where

Yk := {{xn} ∈ Y : {xn} has exactly k zeros
}
for all k ∈ N.

Then each Yk is countable. Hence, so is
⋃

k Yk = Y.

7.30 (a) Countable. Because there are only countably many subsets of N with n
elements, for every n ∈ N.

(b) Countable. Because everyA.P. ofN is characterized by only two parameters:
the initial term and the common difference. Both of these come from a
countable set N.

(c) Uncountable. Because the given set is equipotent to the set of infinite subsets
of N, which is the complement of the set in (a), inside P(N).

7.31 The necessity follows from Theorem 4.3. For sufficiency, let {xn} be a Cauchy
sequence in X,which is not convergent in X. Then the set Y := {xn : n ∈ N} has
no limit point in X, otherwise a convergent subsequence will imply the conver-
gence of the given sequence. Since Y ′ = ∅, the set Y is closed and countable. By
hypothesis, Y is a complete subspace of X. Consequently, the Cauchy sequence
{xn} must be convergent, a contradiction.

7.32 Yes. Consider any sequence of all rational numbers.
7.33 No. Let E be any subset of reals. We prove that E \ E ′ is always countable.

For every x ∈ E \ E ′, choose an open interval Ix with rational end points such
that E ∩ Ix = {x}. Then for x �= y, we have Ix �= Iy . Since the collection of
intervals {Ix : x ∈ E \ E ′} is countable, the set E \ E ′ is countable.

7.34 No. Let E be any uncountable subset of reals.We prove that E ′ is an uncountable
set. By Exercise 7.33, the set E \ E ′ is countable. If E ′ is countable, the set E =
E ′ ∪ (E \ E ′) is countable. Therefore, E(⊂ E) is countable, a contradiction.

7.35 For each n ∈ N, let Sn be the subset of S consisting of only those step func-
tions, which take at most n values and have at most n discontinuities. Then
S = ⋃∞

n=1 Sn. SinceQ is countable, each Sn is countable. Hence, S is countable.
7.36 False. For example, take any enumeration of Q. Then between any two terms of

any such sequence, there exists another rational number.
7.38 (a) Yes. Consider the set

⋃∞
n=1 B(3n; 1).

(b) Yes. Consider the set of irrationals.
7.41 Let an := 2 − 3.2−n for all n ∈ N. Then {2} ⋃

(
⋃∞

i=1{z ∈ C : |z − ai | ≤ 2−i }
has countably infinitely many cut points.

7.42 Consider the comb Space, already presented in Example 6.38.
7.50 (a) Apply Intermediate Value Theorem (6.12) and Theorem 7.29.
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(b) Assume that f is not strictly monotone. Then there are x < y and z < w in
I such that f (x) < f (y) and f (z) > f (w). Hence, there are a < b < c in
I such that either f (b) > max{ f (a), f (c)} or f (b) < min{ f (a), f (c)}.
Suppose f (b) > max{ f (a), f (c)} Since f is injective, f (a) �= f (c). If
f (a) < f (c), by Intermediate Value Theorem (6.12), f (a) = f (d) for
some d ∈ (b, c). Otherwise, f (c) = f (d) for some d ∈ (a, b). This is a
contradiction, as f is injective. Similarly, f (b) < min{ f (a), f (c)} is also
impossible. The converse is immediate.

7.51 If yi ∈ (xi , xi+1) for all i = 0, . . . , n − 1, then f (x−
i ) ≤ f (yi ) and f (yi−1) ≤

f (x+
i ), and therefore, f (x+

i ) − f (x−
i ) ≤ f (yi ) − f (yi−1). Hence

n−1∑

i=1

(
f (x+

i ) − f (x−
i )

) ≤
n−1∑

i=1

(
f (yi ) − f (yi−1)

) ≤ f (yn−1) − f (y0) ≤ f (b) − f (a).

7.52 It is enough to prove the result for monotonically increasing functions f. Being
monotone, f has only jump discontinuities. Let D be the set of discontinuities
of f inside (a, b). Note that

D =
∞⋃

m=1

{

d ∈ (a, b) : f (d+) − f (d−) >
1

m

}

=
∞⋃

m=1

Dm , (say).

Therefore, it is enough to prove that each Dm is a finite set. Let m ∈ N and
x1, . . . , xn−1 ∈ Dm be such that a < x1 < · · · < xn−1 < b. Then we have

n−1∑

i=1

(
f (x+

i ) − f (x−
i )

)
>

n − 1

m
.

Along with Exercise 7.51, we obtain

n − 1

m
<

n−1∑

i=1

(
f (x+

i ) − f (x−
i )

) ≤ f (b) − f (a).

Thus, |Dm | ≤ m( f (b) − f (a)) < ∞, that is Dm is finite. Hence the result.
7.56 Take g(t) := tan−1 (

f (x)
)
for all x ∈ R.

7.57 Apply Theorems 4.2 and 7.39.
7.59 Write f := χE . If x ∈ Eo, then f is 1 in an open interval containing x and hence

continuous at x . In case x ∈ R \ E, then there exists δ > 0 such that (x − δ, x +
δ) ∩ E = ∅. Again f is the constant 0 on (x − δ, x + δ) and so continuous at x .

Conversely, let x ∈ R \ (
Eo ∪ (R \ E)

) = (Eo) ∩ E . Then there are sequences
{xn} ⊂ E and {yn} ⊂ R \ E such that both xn −→ x and yn −→ x . But 1 =
f (xn) −→ 1, while 0 = f (yn) −→ 0. Hence, f is discontinuous at x .
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7.60 Note that f is continuous on R \ F. Let x ∈ F. If x ∈ Fo, there exists δ > 0 such
that F ⊃ (x − δ, x + δ). Choose sequences {rn} ⊂ (x − δ, x + δ) ∩ Q and {sn} ⊂
(x − δ, x + δ) \ Q such that rn −→ x and sn −→ x . Then 1 ≡ f (rn) −→ 1, while
0 ≡ f (sn) −→ 0. Hence, f is not continuous at x .

In case x ∈ F \ Fo, we have (x − η, x + η) ∩ (R \ F) �= ∅ for all η > 0. Hence,
there exists a sequence {xn} ⊂ R \ F such that xn −→ x . Then 1 ≡ f (xn) −→ 1,
while f (x) = 0. Therefore, f is not continuous at x .

7.62 The implications (a) ⇒ (b) and (b) ⇒ (c) are trivial. For (c) ⇒ (a), let a, b ∈ I
such that a < b. Then for every x ∈ [a, b], pick any δx > 0 as per the condition
in (c) and write Ix := (x − δx , x + δx ).

Using compactness of [a, b], there are finitely many x1, . . . , xn ∈ I such that
[a, b] ⊂ ⋃n

i=1 Ixi . Without loss of generality, suppose a = x1 < · · · < xn = b. For
1 ≤ i ≤ n − 1, pick yi ∈ Ixi ∩ Ixi+1 .Hence f (a) ≤ f (y1) ≤ f (x2) ≤ f (y2) ≤ · · · ≤
f (b). This ensures (a).

7.64 Note that (a) and (b) follow by the definition of f ′(0). For (c), consider

f (x) =
{
x + 2x2 sin 1

x ; x ∈ [−1, 1] \ {0},
0 ; x = 0.

Then f is differentiable on [−1, 1] with f ′(0) = 1 and

f ′(x) = 1 + 4x sin
1

x
− 2 cos

1

x
for all x ∈ [−1, 1] \ {0}.

Then f is not increasing in any neighborhood of 0 as f ′( 1
2nπ ) = −1 for all n ∈ N.

7.65 Analogous to Lemma 7.28, one can prove that f (d−) = sup{ f (x) : x < d, x ∈ A},
whenever d is a left limit point of A.

If f (d−) �= f (d), then f (d−) < f (d), as f is strictly increasing. Since B is
closed, we obtain f (d−) ∈ B. Then there exists a ∈ A such that f (a) = f (d−) <

f (d). Hence, a < d. Since d is a left limit point of A, there exists a strictly
increasing sequence {xn} ⊂ (a, d) ∩ A, convergent to d. Thus, f (a) < f (x1) ≤
limn→∞ f (xn) = f (d−) = f (a), a contradiction.

Hence, f (d−) = f (d). Similarly, if f is a right limit point of A, then f (d+) =
f (d). This ensures that f : A −→ B is continuous.

7.66 By Exercise 7.17, R � [0, 1]. Further Example 7.45 implies that P(N) � R.

7.67 Define f : {0, 1}N −→ [0, 1] and g : [0, 1] −→ {0, 1}N, as follows:

For any {sn} ∈ {0, 1}N, define f ({sn}) := (0.s1s2 . . . sn . . . )10. Now pick any x ∈
[0, 1]. Write its binary representation, say, x = (0.x1x2 . . . xn . . . )2. In case x has
two binary representations, then one of those must be finite and the other must
be infinite. In this case, write only the finite binary representation of x . Define
g(x) := {xn}.
Now show that both f and g are injective and apply Theorem 7.42.
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7.68 Let � be the collection of open subsets of R and ∧ := {(r, s) : r, s ∈ Q}. Then ∧
is countable, say ∧ = {In : n ∈ N}.
Since every O ∈ � is a union of intervals from ∧, one can choose S ⊂ N

such that
⋃

n∈S In = O. Define f (O) := S. This defines a map f : � −→ P(N).

It can be shown that f is injective. Hence, card(�) ≤ card(P(N)) = c. Also,
g : R −→ � defined as g(x) := (x,+∞) is injective, which implies that c =
card(R) ≤ card(�). Now apply Theorem 7.42.

7.69 Let � denote the collection of uncountable closed subsets of R. Since [a,+∞] ⊂
� for all reals a ∈ R, we obtain card(�) ≥ card(R) = c.

Since there exists a one-to-one correspondence between closed sets and open
sets given by set complements, by Exercise 7.68, the family of all closed sets has
cardinality c. Hence, card(�) ≤ c. Finally Theorem 7.42 concludes the result.

7.70 card(X) = card(R) = c.
7.71 No. Assume that the answer is affirmative. Let X be a set such that P(X) is

countable. If |X | < ∞, say |X | = n for some n ∈ N, then P(X) = 2n, which is not
true. So X must be infinite. Then it will contain a countably infinite subset, say
Y ⊂ X. Then P(X) ⊃ P(Y ) and by Example 7.45, we have P(Y ) is uncountable,
a contradiction. Hence there exists no set whose power set is countably infinite.

7.72 Imitate the proof of Theorem 7.20.
7.73 Imitate the proof of Theorem 7.23.
7.74 Let S be any sentence. Then the following sentence is larger than S :

The sentence <include S here > is not largest.

7.75 Let ∧ denote the collection of English Alphabet, along with all punctuation
marks including space (between words). Note that | ∧ | < ∞ and a sentence in
English is a finite (meaningful and grammatically correct) ordered set of terms
from ∧. For a sentence S, define its length l(S) to be the number of elements of
∧ in S, including their multiplicity. Let � be the set of sentences in English and

�k := {S ∈ � : n(S) = k} for all k ∈ N.

Then |�k | ≤ k|∧| < ∞ for all k ∈ N. Hence, � := ⋃∞
n=1 �n is countable.

7.76 Apply Theorem 7.51.
7.77 Apply Theorem 7.53.
7.78 Yes. Take A := ([0, 1] ∩ Q

) ∪ ([1, 2] \ Q
)
.

7.80 For any n ∈ N,we define An to be the collection of a ∈ [0, 1] such that the decimal
expansion of a contains n consecutive identical terms, starting at the nth decimal
place. Then card(An) = c for all n ∈ N.The result follows, as A2 ⊂ ⋃∞

n=1 An ⊂ R.
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Chapter 8
Denseness

Uncountable spaces are often difficult to handle, as one can’t ‘list up’ all the elements.
The situation is much better when a metric space contains a countable dense subset,
as that can approximate all its elements and thus is a good representative of the space
itself (e.g. Q in R). Such spaces are known as separable spaces. In this chapter, we
discuss some notions emanating from denseness such as separability, perfect sets,
Baire category, and equicontinuity.

We start with a section on separable spaces, which also presents some standard
Polish spaces, along with the relationship of separability with different types of
bases such as the topological bases and the Schauder bases. Then we introduce
perfect sets and discuss the Cantor-Bendixon theorem. It is followed by the Baire
Category Theorem, along with a variety of applications. We wind up this chapter
with equicontinuity and related results on the compactness of C[a, b].

8.1 Separability

Recall that a subset E of a metric space X is said to be dense if E = X.

Definition 8.1 A metric space X is said to be separable if it has a countable dense
subset.

Further, a nonempty subset E of X will be called a separable set if it is a separable
subspace of X. That is, if and only if there exists a countable set A ⊂ E such that
E ⊂ A.

Examples 8.2 (a) Every countable metric space is separable.
(b) Q,R, all real open intervals are all separable subspaces of R.

(c) For each n ∈ N, the Euclidean space Rn is separable. It can be shown that the
countable set {(r1, . . . , rn) : ri ∈ Q, 1 ≤ i ≤ n} is dense in Rn.

Theorem 8.3 Every totally bounded metric space is separable.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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https://doi.org/10.1007/978-981-99-2738-8_8

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2738-8_8&domain=pdf
https://doi.org/10.1007/978-981-99-2738-8_8


214 8 Denseness

Proof Let X be a totally bounded metric space. For every n ∈ N, choose a finite
subset An of X such that X ⊂ ⋃

y∈An
B(y; 1/n). Write A := ⋃∞

n=1 An. Then A is a

countable set. Now it is enough to show that A is dense in X, that is A = X.

Let ε > 0 be given. Pick any n ∈ N such that 1/n < ε. If x ∈ X, there exists some
y ∈ An such that x ∈ B(y; 1/n) which implies that y ∈ B(x; ε) ∩ A. Hence x ∈ A
and the result follows. �

Corollary 8.4 Compact metric spaces are separable.

Proof Apply Proposition 5.3 and Theorem 8.3. �

Theorem 8.5 Every separable metric space has cardinality at most c.

Proof Let X be any separable metric space and A be any countable dense subset of
X. Then every element of X is the limit of a sequence from A.

Hence, the cardinality of X is at most the cardinality of the collection of sequences
from A. Since A is countable, we obtain card(X) ≤ c. �

Separable complete metric spaces are also known as Polish spaces. In Theorem
10.18, we show that every Polish space is either countable or has cardinality c.

In this section, we discuss a few common examples of Polish spaces. Already each
Rn is a Polish space. Another important Polish space is C[a, b]. The separability of
this space can be ensured by Theorem B.1. However, we provide a direct proof.
Without loss of generality, we assume that a = 0 and b = 1. First we discuss a
particular subclass of C[0, 1]. It will also be required in establishing the existence of
a ‘large’ class of continuous but nowhere differentiable functions (see Lemma B.9
and Theorem B.10).

Definition 8.6 A function f : [0, 1] −→ R is said to be

(a) linear on a subinterval [a, b] of [0, 1] if the graph of f on [a, b] is a straight
line, that is,

f (t) := b − t

b − a
f (a) + t − a

b − a
f (b) for all t ∈ [a, b].

(b) piecewise linear if there exists a partition 0 = x0 < x1 < · · · < xn = 1 of [0, 1]
such that f is linear on each subinterval [xi−1, xi ].

Theorem 8.7 C[0, 1] is separable.
Proof Let P denote the collection of all piecewise linear continuous functions on
[0, 1],which are differentiable on [0, 1] \ Q and assume rational values at their points
of non-differentiability. Then P is countable. We claim that P is dense in C[0, 1].

Let f ∈ C[0, 1] and ε > 0 be given. Since [0, 1] is compact, f is uniformly
continuous on [0, 1]. Therefore, there exists some δ > 0 such that

| f (x) − f (y)| <
ε

6
for all x, y ∈ [0, 1] such that |x − y| < δ.
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Let N ∈ N such that 1/N < δ and xi := i/N for all i = 0, . . . , N . Let p ∈ P be
such that p is linear on [xi−1, xi ] and p(xi ) ∈ ( f (xi ) − ε

6 , f (xi ) + ε
6 ) ∩ Q for all i =

0, . . . , N . It is enough to prove that p ∈ B( f ; ε).
Let x ∈ [0, 1] be arbitrary. Then there exists i such that x ∈ [xi−1, xi ]. Note that

|p(x) − p(xi )| ≤ |p(xi−1) − p(xi )| ≤ | f (xi−1) − f (xi )| + 2ε

6
<

ε

6
+ ε

3
= ε

2
.

Therefore, we obtain

|p(x) − f (x)| ≤ |p(x) − p(xi )| + |p(xi ) − f (xi )| + | f (xi ) − f (x)|
<

ε

2
+ ε

6
+ ε

6
= 5ε

6
.

Hence, ‖p − f ‖∞ ≤ 5ε
6 < ε and thus p ∈ B( f ; ε). This proves the result. �

Next, we discuss the connection between separability and bases. There are mainly
two kinds of bases, closely related to separability. Countable topological bases of
metric spaces and Schauder bases of normed spaces. We discuss these one by one.

Definition 8.8 Let X be a metric space. A collection � of open subsets of X is said
to be a topological basis for X if for every open set G of X and for every x ∈ G,

there exists some O ∈ � such that x ∈ O ⊂ G.

Equivalently, a collection � of open subsets of X is said to be a topological
base for X if for every x ∈ X and r > 0, there exists some Ox,r ∈ � such that
x ∈ Ox,r ⊂ B(x; r). Elements of a basis are known as basic open sets.

Examples 8.9 (a) The set of open intervals is a topological base for R.

(b) The set of open rectangles forms a topological base for R2.

(c) The set {(a, b) : a, b ∈ Q} is a topological base for R.

(d) Let X be a metric space. Then {B(x; 1/n) : x ∈ X, n ∈ N} is a base for X.

Several properties of topologies can be reduced to statements about a base gen-
erating that topology (e.g. see Exercise 8.15). Often it is also convenient to consider
a much smaller basis, instead of all open sets. In this context, countable basis serve
better, if they exist. The existence of such a basis is equivalent to separability of the
space.

Theorem 8.10 A metric space has a countable topological basis if and only if it is
separable.

Proof Let X be ametric spacewith a countable topological basis {Un : n ∈ N}.With-
out loss of generality, suppose that eachUn is nonempty. Choose un ∈ Un for all n ∈
N. It is enough to show that U := {un : n ∈ N} is dense in X. Let O be any
nonempty open subset of X. Then it contains someUm and hence um . Consequently,
O ∩U 	= ∅. Hence, U = X.
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Conversely, let X be a separable metric space and A be a countable dense subset
of X. Consider the collection of balls

B := {B(x; r) : x ∈ A, r ∈ Q ∩ (0,∞)}.

Then B is a countable set. So it is enough to prove that B is a basis for X.

Let O be an open neighborhood of y. Then O ∩ A 	= ∅, as A = X. Pick any
x ∈ O ∩ A. Since O is open, there exists some ε > 0 such that B(x; ε) ⊂ O. If
r ∈ (0, ε) ∩ Q, then B(x; r) ⊂ O. Hence, B is a topological basis for X and the
result follows. �

Every subspace of a separable metric space is separable (also see Example D.9).

Corollary 8.11 If X is separable and ∅ 	= Y ⊂ X, then Y is also separable.

Proof Applying Theorem 8.10, let {Bn : n ∈ N} be a countable basis of X. Then
{Bn ∩ Y : Bn ∩ Y 	= ∅, n ∈ N} is a countable basis of Y. Again by Theorem 8.10, Y
is separable. �

Let us now discuss the Schauder basis of a normed space and its relationship with
separability. Such bases were first described by the Polish mathematician Juliusz
Schauder, in 1927.

Definition 8.12 Let X be a normed space. A sequence {xn} from X is said to be a
Schauder basis of X, if for every x ∈ X there exists a unique sequence of scalars
{kn} such that

x =
∞∑

n=1

knxn .

In other words, a sequence {xn} is called a Schauder basis of X if every element of
X can be written as a unique countable linear combination of {xn}.
Remark 8.13 It is pertinent to note that the order of xn’s in the above series is
important, as it may not converge unconditionally. Therefore, we use a sequence, in
defining Schauder basis, not a countable set.

Examples 8.14 For n ∈ N, let en be the sequence with all terms zero but 1, as the
nth term. Then {en} is a Schauder basis for the space �p for all p ∈ [1,∞).

Theorem 8.15 If a normed space X has a Schauder basis, then X is separable.

Proof We prove the result when the scalar field is R. The case of complex scalars is
similar. Let {xn} be a Schauder basis of X.By replacing xn with

xn
‖xn‖ , if necessary, we

can assume that ‖xn‖ = 1 for all n ∈ N. Write A := {∑∞
n=1 rnxn : rn ∈ Q}. SinceQ

is countable, so is the set A. Therefore, it is enough to prove that A is dense in X.

Let x ∈ X and ε > 0 be given. Choose a sequence of scalars {kn} such that x =∑∞
n=1 knxn. For each n ∈ N, choose rn ∈ Q such that |kn − rn| < ε

2n . Then for y :=∑∞
n=1 rnxn ∈ A, we obtain
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‖y − x‖ = ∥
∥

∞∑

n=1

(kn − rn)xn
∥
∥ ≤

∞∑

n=1

|kn − rn|‖xn‖ <

∞∑

n=1

ε

2n
= ε.

Therefore, x ∈ A. Hence the result. �

Corollary 8.16 For each 1 ≤ p < ∞, the sequence space �p is separable.

Proof Apply Example 8.14 and Theorem 8.15. �

Theorem 8.17 The sequence space �∞ is not separable.

Proof Let E denote the collection of all sequences with terms 0 or 1 only. Then E
is uncountable and

‖s − s ′‖∞ = 1 for all s, s ′ ∈ E such that s 	= s ′.

If �∞ is separable, then it will have a countable dense subset, say A := {xn : n ∈ N}.
Then E ⊂ �∞ = ⋃∞

n=1 B(xn; ε) for all ε > 0. In particular, E ⊂ ⋃∞
n=1 B(xn; 1/4).

Since E is uncountable, there exist k ∈ N and s, s ′ ∈ E with s 	= s ′ such that
s, s ′ ∈ B(xn; 1/4). Therefore,

1 = ‖s − s ′‖∞ ≤ ‖s − xn‖∞ + ‖xn − s ′‖∞ <
1

4
+ 1

4
<

1

2
,

which is impossible. Hence the result. �

Corollary 8.18 The sequence space �∞ does not have any Schauder basis.

Proof Apply Theorems 8.15 and 8.17. �

For the sake of completion, we present the notion of an algebraic basis of a linear
space, often termed as a Hamel basis.

Definition 8.19 Let X be a linear space over a field F. A subset B of X is known as
an algebraic basis of X, if every x ∈ X has a unique representation x = ∑n

i=1 ki xi ,
up to rearrangements, for some finite sets {k1, . . . , kn} ⊂ F and {x1, . . . , xn} ⊂ B.

Examples 8.20 (a) Let X be a normed space having a countable algebraic basis
{bn}. Then {bn} is also a Schauder basis of X.

(b) For every 1 ≤ p < ∞, the sequence {en} is a Schauder basis for the space �p,

but not an algebraic basis of �p.

Remark 8.21 If the context is clear, the term ‘basis’ is used instead of ‘algebraic
basis’ or ‘topological basis’. For example, if a metric space is not a linear space,
there is no harm in simply using the term ‘basis’. A natural question: Do all linear
spaces have an algebraic basis? Indeed yes, the Axiom of Choice is equivalent to
the statement ‘every linear space has a basis’ (see [1]).
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History Notes 8.22 It had been an open question for a long time that whether every
separable Banach space has a Schauder basis. In 1973, it was settled in the negative
by Enflo [2] who found a closed subspace of c0 having no Schauder basis.

Exercise 8.1 Let E ⊂ X. Prove that E is dense in X if and only if every nonempty
open set in X intersects with E .

Exercise 8.2 Let E ⊂ Y ⊂ X. If E is dense in X, prove that E is dense in Y. Is the
converse true?

Exercise 8.3 Let Z ⊂ Y ⊂ X such that Y is dense in X and Z is dense in the
subspace Y. Does it imply that Z is dense in X?

Exercise 8.4 If E is a separable subset of X, then prove that so is E .

Exercise 8.5 Is the converse of Theorem 8.3 true?

Exercise 8.6 Prove that every countable union of separable sets is separable.

Exercise 8.7 Obtain a proper subset of Q which is dense in itself. Do all countable
metric spaces have proper dense subsets?

Exercise 8.8 Prove that the set of real algebraic numbers as well as the set of real
transcendental numbers are dense subsets of reals.

Exercise 8.9 Give an explicit example of a countable dense subset of the subspace
of transcendental numbers.

Exercise 8.10 Is every collection of disjoint open subsets of a separable space is
countable?

Exercise 8.11 Does there exist any separable uncountable discrete metric spaces?

Exercise 8.12 Prove that the following are bases for a metric space X :
(a) the collection of all open subsets of X.

(b) the collection of all open balls in X.

(c) the collection of all open balls with rational radii.

Exercise 8.13 Prove that the following are bases for the usual metric on R :
(a) the collection of all open intervals with rational end points.
(b) the collection of all open intervals with rational end points and length ≤ 1.

Exercise 8.14 Let X be a metric space with a topological basis �. Prove that {x} ∈
�, for every isolated point x of X.

Exercise 8.15 Let � be a topological base for a metric space X, x ∈ X and {xn} be
a sequence in X. Prove that sequence {xn} −→ x if and only if for every B ∈ � such
that x ∈ B there exists some N ∈ N such that xn ∈ B for all n > N .
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Exercise 8.16 Prove that a collection � of open subsets of X is a base if and only
if every open set in X is a union of a sub-collection of �.

Exercise 8.17 Prove that a metric space X is separable if and only if every open
cover of X has a countable subcover.

Exercise 8.18 If A is dense in a metric space X, prove that
⋃

a∈A B(a; r) =
X for all r > 0.

Exercise 8.19 Prove that open subsets of separable metric spaces are countable
unions of (a) open balls (b) closed balls.

Exercise 8.20 Let O1 and O2 be dense subsets of a metric space X such that O1 is
open. Prove that O1 ∩ O2 is also dense in X. Further, show that the result is not true
if both O1 as well as O2 are not open.

Exercise 8.21 Let X be a metric space. Prove that the number of its dense subsets
is either infinite or 2n, for some n ∈ N.

Exercise 8.22 Prove that a metric space having infinitely many dense subsets,
always has at least c-many dense subsets.

Exercise 8.23 Let O be an open subset of a separable metric space. Prove that O
can have at most countably many connected components.

Exercise 8.24 Let X denote the linear space of bounded real valued functions on
[0, 1]. Show that the normed space (X, ‖.‖∞) is not separable.

Exercise 8.25 Prove that the set { f ∈ C[0, 1] : f (0) 	= 0} is dense in C[0, 1].
Exercise 8.26 Let A := {an : n ∈ N} be a dense subset of a metric space X, r > 0
and {rn} be a sequence of positive reals. Prove or disprove:
(a)

⋃∞
n=1 B(an; r) = X.

(b)
⋃∞

n=1 B(an; rn) = X.

(c)
⋂∞

n=1

⋃∞
n=1 B

(
an; 1

n

) = A.

Exercise 8.27 Prove that there exists a bijection between R and the space C[0, 1].
Exercise 8.28 Does there exist any compact or totally bounded metric space with
cardinality strictly greater than c?

Exercise 8.29 Let X be a metric space having a dense subset A with card(A) = c.
Prove that card(X) = c.

Exercise 8.30 For each 1 ≤ p < ∞, prove that c00 is dense in �p, but not a closed
subset of �p.
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Exercise 8.31 Blumberg’s famous theorem asserts that any R −→ R function is
continuous when restricted on some dense subset S of R. Find S for the function

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x is a nonnegative rational,
1 if x is a negative rational,
2 if x is a positive irrational,
3 if x is a negative irrational.

Exercise 8.32 (a) Let a < b be real numbers. Is it possible to write [a, b] as a
disjoint union of two uncountable dense subsets of [a, b]?

(b) Is it possible to write any uncountable subset E of real numbers as a disjoint
union of two uncountable dense subsets of E?

Exercise 8.33 Let 1 ≤ p < ∞ and for each n, let en denote the sequence with all
terms zero but 1, as the nth term.

(a) Prove that {en} forms a basis for c00.
(b) Does {en} form a basis for �p?
(c) Prove that {en} forms a Schauder basis for �p.

Exercise 8.34 Without using Theorem 8.15, prove that the sequence space �p is
separable, for every 1 ≤ p < ∞.

Exercise 8.35 Let X be a normed linear space and {un : n ∈ N} be a count-
ably infinite linearly independent subset of X such that ‖un‖ = 1 for all n ∈ N. Is{ ∑∞

n=1
uin
i2n

: 1n < 2n < · · · < in < . . .
}
linearly independent?

Exercise 8.36 Let X be a normed linear space and B := {un} be a countable subset
of X. Prove that B is a Schauder basis of X if and only if span(B) = X. (Here
span(B) denotes the subspace of X spanned by B.)

Exercise 8.37 Prove that {m + n
√
2 : m, n ∈ Z} is dense in R. In general, if a ∈ N

is not a perfect square, prove that {m + n
√
a : m, n ∈ Z} = R.

The next exercise is exclusive to readers familiar with groups. Others may skip.

Exercise 8.38 Show that subgroups of the additive group (R,+) are either cyclic or
dense inR,but can’t be both.Conclude that the additive group {m + n

√
2 : m, n ∈ Z}

is not cyclic.

8.2 Perfect Sets

Definition 8.23 A subset E of a metric space X is said to be perfect if E ′ = E .

Thus, perfect sets are closed sets with no isolated points. Further, X is called a perfect
space or dense in itself if X is a perfect subset of itself or equivalently, if X has no
isolated point.
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Examples 8.24 (a) The empty set, the set of reals, and all closed intervals having
at least two points are all perfect sets.

(b) If I is a nonempty bounded open interval, then I is not a perfect subset of R.

(c) Q is a perfect metric space, while not a perfect subset of R.

Example 8.25 If X is a connected metric space with |X | > 1, then X is perfect.

Proof Assume that X is not perfect. Then X has an isolated point, say x . Therefore,
{x} is a non-trivial clopen subset of X. Hence, X is not connected. �

Now we provide sufficient conditions, under which perfect sets are either empty
or uncountable.

Theorem 8.26 Every complete perfect metric space is uncountable. Consequently,
every non-degenerated interval is an uncountable set.

Proof Suppose that there exists a countable complete perfect metric space X. Since
every point of X is its limit point, it is an infinite set. So X can be written as a
sequence of distinct terms, say {xn : n ∈ N}.

Let B1 := B(x1; 1). If n ∈ N and a ball Bn is already chosen, choose a ball Bn+1,

with a suitable radius and center such that

xn /∈ Bn+1, Bn+1 ⊂ Bn and diam(Bn+1) ≤ 1

2n
. (8.1)

Let y ∈ Bn ⊂ X ′. Since y is a limit point of X and Bn is a neighborhood of y, the
set Bn is infinite. Thus, we can choose z ∈ Bn such that z 	= xn. Let

r := min

{
1

2n+2
,
d(z, xn)

2

}

.

Then B(z; r) ∩ Bn is a neighborhood of z. Consequently, there exists some s > 0
such that B(z; s) ⊂ B(z; r) ∩ Bn. Let Bn+1 := B(z; s/2). Then Bn+1 satisfies the
requirements of (8.1).

Therefore, by induction, we obtain a sequence {Bn} of balls in X, satisfying the
conditions of (8.1). Consequently, {Bn} is a nested decreasing sequence of nonempty
closed subsets of X with diam(Bn) −→ 0.

Since X is complete, by Cantor Intersection Property (4.15),
⋂∞

n=1 Bn = {x} for
some x ∈ X. Then x = xi for some i ∈ N. Hence, xi ∈ Bi+1, a contradiction. �

It must be noted that the completeness of a metric space is not necessary for its
nonempty perfect subsets to be uncountable. We now provide a weaker condition.

Recall that a neighborhood of a point x in a metric space X, is defined to be a
subset of X containing an open ball centered at x .

Corollary 8.27 Let X be a metric space and P be any perfect subset of X. If there
exists some p ∈ P such that p has a complete neighborhood, then P is uncountable.
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Proof Let U be a complete neighborhood of p. Then there exists ε > 0 such that
B(p; ε) ⊂ U.Write B := B(x; ε/2). Then B ⊂ U.Also, note that P ∩ B has no iso-
lated point, otherwise P is not perfect. Therefore, P ∩ B is a perfect subset of B and
hence of the complete subspace U. Applying Theorem 8.26, P ∩ B is uncountable
and hence so is its superset P. �

InCorollary 8.27, the hypothesis that ‘some p1 ∈ P has a complete neighborhood’
is redundant!

Example 8.28 Every nonempty perfect subset of the metric space R \ Q, under
usual metric, is uncountable.

Proof Let P0 be a nonempty perfect subset ofR \ Q. Then P0 has no isolated points.
Considering P0 as a subset of R, its closure in reals, say P := P0 is a perfect subset
ofR.Hence, P is uncountable. Since P \ P0 is a subset ofQ, it is at most countable.
Hence, P0 = P \ (P \ P0) is be uncountable. �

Remarks 8.29 (a) The completeness of the metric space is not redundant in The-
orem 8.26. For example, Q under usual metric is countable and perfect. In fact,
there is ‘no other’ countable perfect metric space (see Theorem 9.22).

(b) In [3], the uncountability of reals as well as of perfect sets has been proved
through an infinite game. We shall discuss the same in Sect. C.1.

(c) In Corollaries 8.36 and 10.17, we provide alternative proofs to Theorem 8.26.
(d) Two extensions of Example 8.28 will be presented in Examples 10.19.

It is interesting to note that every closed subset of a separable metric space can be
written as a disjoint union of a countable set and a perfect set. This result has various
applications in measure theory, particularly related to the notorious Bernstein sets.

Definition 8.30 Let S be a subset of a metric space X. A point x ∈ X is said to be
a condensation point of S, if every neighborhood of x contains uncountably many
points of S.

The set of condensation points of S will be denoted by Su . Also, note that the set
S \ Su contains all isolated points of S in X.

Theorem 8.31 (Cantor-Bendixson) Let F be a closed subset of a separable metric
space X. Then Fu is perfect and F \ Fu is countable. Consequently, F is a union of
a perfect set and a countable set.

Proof Applying Theorem 8.10, let {Un} be a countable basis for X. Let

M := {n ∈ N : F ∩Un is countable}
and A :=

⋃

n∈M
Un = {x ∈ X : x ∈ Un for some n ∈ M}.

Weclaim that Fu = Ac.Thiswill imply that F \ Fu = F ∩ Fc
u = F ∩ A is countable.
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Toprove it, pick any x ∈ Ac.Let ε > 0begiven.Then x ∈ Un ⊂ B(x; ε) for some
n. Since x /∈ A, the set F ∩Un is uncountable. Therefore, F ∩ B(x; ε) is uncount-
able. Hence, x ∈ Fu .

On the other hand, let x ∈ Fu . If x ∈ A, we have x ∈ Un such that F ∩Un is
countable. Let η > 0 such thatUn ⊃ B(x; η).Then F ∩ B(x; η) is countable. Hence,
x /∈ Fu, a contradiction. Therefore, x ∈ Ac. This establishes our claim that Fu = Ac.

Since A is a union of open subsets of X, it is open. Therefore, Fu = Ac is a closed
set. To show that Fu is perfect, pick any x ∈ Fu . Let O be a neighborhood of x . Then
F ∩ O is uncountable. We need to prove that Fu ∩ (O \ {x}) 	= ∅.

If Fu ∩ (O \ {x}) = ∅, we have O \ {x} ⊂ Fc
u = A. This proves that O ⊂ A ∪

{x}. Therefore, F ∩ O ⊂ (F ∩ A) ∪ {x}. Since F ∩ A is countable, so is F ∩ O, a
contradiction.

Since F is closed, Fu ⊂ F ′ ⊂ F. Hence, F = Fu ∪ (F \ Fu) is the required
decomposition. �

Remark 8.32 In the above discussion, we intentionally avoided the Cantor set,
which is one of the most important perfect sets. It has so many marvelous properties
that it deserves a special treatment. For that purpose, we have devoted a complete
chapter at the end of this book, to the Cantor set only.

Exercise 8.39 In R2, which of the following sets are prefect:

closed balls, closed rectangular regions, finite union of closed balls,
open balls, open squares, arbitrary countable unions of closed balls?

Exercise 8.40 Prove that curves, surfaces, and solids in R3 are perfect sets.

Exercise 8.41 Characterize perfect subsets of discrete metric spaces.

Exercise 8.42 Do all nonempty open subsets of a perfect metric spaces form perfect
subspaces?

Exercise 8.43 Does there exist any nonempty perfect subset of R containing only
rationals?

Exercise 8.44 Does there exist a compact metric space having a countably infinite
perfect subset?

Exercise 8.45 Prove that every finite union of perfect subspaces, of a metric space,
is perfect. Is the same true for finite intersections or infinite unions?

Exercise 8.46 Let P be a perfect subset of reals and I be an open interval such that
I ∩ P 	= ∅. Prove that I ∩ P is an uncountable set.

Exercise 8.47 If E ⊂ R has no isolated points, prove that E is a perfect set.

Exercise 8.48 If k ∈ N and O ⊂ Rk is open, prove that O is a perfect set.

Exercise 8.49 Let X be a perfect space with a countable dense set A.
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(a) Does there exist a convergent sequence {an} in X such that {an : n ∈ N} = A?
(b) Does there exist a Cauchy sequence {an} in X such that {an : n ∈ N} = A?

Exercise 8.50 Let X := Q × N, d2 be the usual metric on X and

ρ(x, y) := d2(x, y)

1 + d2(x, y)
for all x, y ∈ X.

Prove that (X, ρ) is a countable perfect metric space.

Exercise 8.51 Without using Theorem 8.26, show that the following set is not per-
fect:

{
1

n1
+ 2

n2
+ · · · + k

nk
: k, n1, . . . , nk ∈ N such that n1 < n2 < · · · < nk

}

.

Exercise 8.52 Does there exist a metric space X having an uncountable perfect set
P such that no p ∈ P has a complete neighborhood inside X?

Exercise 8.53 Let (X, d) be a complete metric space and Y be a subspace of X such
that the set X \ Y is countable. Prove that every nonempty perfect subset of (Y, d)

is uncountable.

Exercise 8.54 Let O be an nonempty open subset of a totally disconnected per-
fect compact metric space X and n ∈ N. Show that there are disjoint open subsets
O1, . . . , On of X such that⊍n

i=1On = O.

Exercise 8.55 Let a ∈ [0, 1] be an irrational number and (0.a1 . . . an . . . )2 denote
its infinite binary representation. Let

E := {(0.b1 . . . bn . . . )2 : b2n := an for all n ∈ N}.

Prove that E is a perfect set containing only irrationals.

Exercise 8.56 Let (X, ρr ) denote the ultrametric space of Example 2.5. Prove that

(a) (X, ρr ) is perfect.
(b) (X, ρr ) is compact; and hence separable.
(c) For every x ∈ X, the set Sx := {ρr (x, y) : y ∈ X} has no limit point in (0,+∞).

(d) For every x ∈ X, the above set Sx is countable and has a unique limit point 0.

Exercise 8.57 Let X be a normed linear space. Prove the following:

(a) X is perfect.
(b) If E is a closed and convex subset of X, then E is perfect.
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8.3 Baire Category Theorem

Note that in general the assertion A ∩ B = A ∩ B is not valid. However, if both A
and B are dense and open in a metric space X, then it can be shown that A ∩ B is also
dense in X. The same is trivial for arbitrary finite intersections. The Baire Category
Theorem generalizes it to countable intersections.

Theorem 8.33 (Baire, 1899) In any completemetric space X, countable intersection
of dense open sets is dense in X.

Proof Let {On} be a sequence of dense open subsets of X. Let x0 ∈ X and B0 be a
ball containing x0. It is enough to prove that B0 ∩ (

⋂∞
n=1 On) is a nonempty set.

Since O1 is dense in X,we have B0 ∩ O1 	= ∅. Since B0 ∩ O1 is open, there exists
a ball B1 ⊂ B0 ∩ O1. By considering a smaller ball, if necessary, one can assume
that diam(B1) < 1 and B1 ⊂ B0 ∩ O1.

Since O2 is dense in X, B1 ∩ O2 	= ∅. Thus, there exists an open ball B2 ⊂
B1 ∩ O2 ⊂ B0 ∩ O1 ∩ O2. As earlier, by considering a smaller ball, if necessary,
one can further assume that

diam(B2) <
1

2
and B2 ⊂ B0 ∩ O1 ∩ O2.

Inducting like this, we choose a sequence {Bn} of open balls in X such that

Bn ⊂ B0 ∩ ( n⋂

k=1

Ok
)
and diam(Bn) <

1

n
for all n ∈ N.

Hence,
⋂∞

n=1 Bn ⊂ B0 ∩ (
⋂∞

n=1 On). Since X is complete, applying Cantor Inter-
section Property (4.15),

⋂∞
n=1 Bn is nonempty. Hence, B0 ∩ (

⋂∞
n=1 On) 	= ∅ and the

result follows. �

Note that the setQ ∩ [0, 1] is not dense in R but is dense in the subspace [0, 1] of
reals. So this set is ‘somewhere dense’. Motivated by this, we define nowhere dense
sets as follows.

Definition 8.34 Asubset E of ametric space X is called nowhere dense if
(
E

)o = ∅.

It can be shown that E nowhere dense if and only if X \ E is dense in X.

Corollary 8.35 No complete metric space is a countable union of its nowhere dense
subsets.

Proof Let X be a metric space such that there exists a sequence {En} of nowhere
dense subsets of X with

⋃∞
n=1 En = X. Since

(
En

)o = ∅, for each n ∈ N, it follows
that

(
En

)c
is dense in X. From X = ⋃∞

n=1 En, we conclude that
⋂∞

n=1

(
En

)c = ∅, a
contradiction to Theorem 8.33. �
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Corollary 8.36 If X is a complete perfect metric space, then X is uncountable.
Consequently, R is uncountable.

Proof Assume that X is countable and write X = {xn : n ∈ N}. Since X has no
isolated points, every singleton subset of X is nowhere dense. Therefore, X =⋃∞

n=1{xn} is a countable union of its nowhere dense subsets, a contradiction to
Corollary 8.35. �

We shall generalize Corollary 8.36 in Theorem 8.38, and draw some interesting
consequences. That requires the following elementary result, which we present here
for the sake of completion.

Lemma 8.37 Let O be an open dense subset of a perfect metric space X and x ∈ O.

Then O \ {x} is also an open dense subset of X.

Proof It is immediate that O \ {x} is an open subset of X. To see that it is dense in
X, pick any y ∈ X. By hypothesis, y is not an isolated point of X. Since O is an
open set containing y, we conclude that y is a limit point of O.

Consequently, one can choose a sequence {yn} of distinct terms from O such that
yn −→ y. By omitting at most one term from {yn}, we obtain another sequence of
distinct terms from O \ {x}, convergent to y. Therefore, y ∈ (O \ {x})′ ⊂ O \ {x}.
Since y ∈ X was arbitrary, we conclude that X ⊂ O \ {x}. Hence the result. �

Theorem 8.38 Let {On} be a sequence of dense open subsets of a perfect complete
metric space. Then

⋂∞
n=1 On is uncountable.

Proof Suppose that
⋂∞

n=1 On is countable. Write
⋂∞

n=1 On = {xn : n ∈ N}. By
Lemma 8.37, each Un := On \ {xn} is a dense open subset of X. Now Theorem
8.33, ensures that

⋂∞
n=1Un = ∅ is a dense subset of X, a contradiction. �

Next, we show that Q is not a Gδ. Consequently, R \ Q is not an Fσ-set.

Corollaries 8.39 (a) The set of rational numbers Q is not a Gδ.

(b) There exists no R −→ R function, continuous precisely on Q.

(c) There exists no sequence { fn} of continuous R −→ R functions, pointwise con-
vergent to the Dirichlet function χQ.

Proof (a) Suppose there exists a countable collection {On} of open subsets of R
such that Q = ⋂∞

n=1 On. Since each On contains Q, each On is dense in R. By
Theorem 8.38, Q is uncountable, a contradiction.

(b) Apply Theorem 7.37 along with (a).
(c) Suppose { fn} is one such sequence. Then On := {x ∈ R : fn(x) > 1/2} is open,

for every n ∈ N. Therefore, each Gn := ⋃
k≥n On is open. Note that

∞⋂

n=1

Gn =
∞⋂

n=1

⋃

k≥n

Ok =
{

x ∈ R : fn(x) >
1

2
, for infinitely many n ∈ N

}

= Q.

Hence, Q is a Gδ, a contradiction to (a). �
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Definition 8.40 A subset E of metric space is said to be of first category if it can
be written as a countable union of nowhere dense sets. Sets which are not of first
category are called sets of second category.

Therefore, the Baire Category Theorem (8.33) can be restated as

No complete metric space is of the first category.

A set of first category is also called a meager set or a thin set and a set of second
category is also called a non-meager set or a thick set. The complement of a meager
subset of a metric space is known as a co-meager set or a residual set.

Remark 8.41 The Baire Category Theorem (8.33) was first proved by a French
mathematicianRené-Louis Baire in his 1899 doctoral thesis. The sets of first category
relative to a given set and the corresponding version of the category theorem can be
found in [4, Chap. 5].

Our last application of the category theorem requires the notions of negligible
sets and the length function for intervals. The length of an interval I is defined as

l(I ) :=
{

b − a ; if I is bounded with end points a ≤ b,
∞ ; if I is unbounded.

Definition 8.42 A subset E of real numbers is said to be a negligible set if

inf

{ ∞∑

n=1

l(In) : {In} is a sequence of open intervals with E ⊂
∞⋃

n=1

In

}

= 0.

That is, E is negligible if for every ε > 0 there exists a sequence {In} of intervals
such that

E ⊂
∞⋃

n=1

In and
∞∑

n=1

l(In) < ε.

It is immediate that every subset of a negligible set is negligible. Negligible sets are
also known as null sets or sets with Lebesgue outer measure zero.

Example 8.43 Every countable subset of R is negligible.

Proof Let E := {x1, . . . , xn, . . . } ⊂ R be countable. Let ε > 0 be given. Then

E ⊂
⋃

n

(

xn − ε

2n+1 , xn + ε

2n+1

)

and
∑

n

l

((

xn − ε

2n+1 , xn + ε

2n+1

))

=
∑

n

ε

2n
≤ ε.

Since ε > 0 is arbitrary, E is negligible. �

In Proposition 10.5, we shall show that the converse of Example 8.43 is not true.
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Theorem 8.44 R contains a negligible subset of second category. Consequently, R
is a disjoint union of a negligible set and a set of first category.

Proof Let {rn} be an enumeration of rational numbers and

Um :=
∞⋃

n=1

(rn − 2−n−m, rn + 2−n−m) for all m ∈ N.

Then each Um is dense in R and its complement Uc
m := R \Um is nowhere dense.

Consequently, A := ⋃∞
n=1U

c
m is a set of first category. SinceR is of second category,

B := R \ A = ⋂∞
n=1Un is of the second category.

Let ε > 0 be given. Pick any k ∈ N such that 2−k+2 < ε. Since B ⊂ Uk, so B is
contained in the union of intervals {(rm − 2−k−m, rm + 2−k−m) : m ∈ N}. The sum
of lengths of these intervals is at most 2−k+1, which is less than ε. Hence, B is
negligible. �

At this point, we can’t resist stating the differentiation theorem for monotone real
functions, although it is not much important from topological point of view.

Theorem 8.45 (Lebesgue-Young) If f : R −→ R is amonotone function, then there
exists a negligible set E such that f is differentiable on R \ E.

On the other hand, for every negligible set E ⊂ R, there exists a monotone func-
tion f : R −→ R such that E is the set of points of non-differentiability of f (see
[5, p. 114, Exercise 10]).

Further, every Lipschitz continuous R −→ R function is a difference of two
monotone functions, and hence differentiable almost everywhere.We omit the proofs
of these results, as the tools required for these are out of scope for this textbook. Inter-
ested reader can find the proof from any standard textbook on measure theory (e.g.
see [5, Chap. 6]). For a historical background of Theorem 8.45, we refer [6, p. 212].

Geometric and elementary proofs of Theorem 8.45 can be found in [7, 8], respec-
tively. In the 29th volume of Real Analysis Exchange, three consecutive articles
appeared on the differentiation theorem (see [9–11]).

Exercise 8.58 If X is a metric space, prove that finite intersection of dense open
subsets of X is dense in X.

Exercise 8.59 Let X be a metric space. Prove that

(a) every subset of a nowhere dense set is nowhere dense.
(b) every finite union of nowhere dense sets is nowhere dense.
(c) every finite set is nowhere dense, provided X has no isolated points.

Exercise 8.60 Let A be a nowhere dense subset of a metric space X and B ⊂ A.

Prove that B is nowhere dense.

Exercise 8.61 Prove that a subset E of a metric space X is nowhere dense if and
only if X \ E contains a dense open subset.
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Exercise 8.62 Is there any closed subset of R \ Q that is not nowhere dense?

Exercise 8.63 Let E ⊂ R. If E is nowhere dense, prove that E is totally discon-
nected. Show that the converse is false. Is that true, assuming E is closed?

Exercise 8.64 Write a direct proof to show that R is of second category.

Exercise 8.65 Prove that every closed proper subspace of a normed space is nowhere
dense.

Exercise 8.66 Let X be a metric space and E ⊂ X. Prove that E is nowhere dense
if and only if X \ E is dense in X.

Exercise 8.67 Let X be a metric space. Prove that

(a) every subset of a meager set is meager.
(b) every countable union of meager sets is meager.
(c) every countable set is meager, provided X has no isolated points.

Exercise 8.68 Let X be a complete metric space. Prove that the following are equiv-
alent:

(a) X is of second category.
(b) Every countable intersection of dense open sets is dense in X.

(c) Every nonempty open subset of X is of second category.
(d) Every countable intersection of dense open subsets of X is nonempty.

Exercise 8.69 Let X be a complete metric space. Prove that every open ball as well
as every closed ball (with positive radius) is a non-meager set in X.

Exercise 8.70 Does the conclusion of Baire Category Theorem (8.33) hold for some
non-complete metric space?

Exercise 8.71 Let X be a complete metric space. Is every intersection of dense open
subsets of X nonempty?

Exercise 8.72 If R = ⋃∞
n=1 Fn, where each Fn is closed, prove that some Fn con-

tains a non-degenerate interval.

Exercise 8.73 Let E be a non-empty closed subset of a complete metric space X
and {En} be a sequence of subsets of X such that E ⊂ ⋃∞

n=1 En. Prove the following:

(a) If each En is closed, then there exists some N ∈ N and an open set O such that
∅ 	= E ∩ O ⊂ EN .

(b) If each En is an Fσ-set, then there exists some N ∈ N and an open set O such
that ∅ 	= E ∩ O ⊂ EN .

(c) There exists some N ∈ N and an open set O such that EN is dense in E ∩ O.

Exercise 8.74 Does there exist E ⊂ R such that E is neither a Gδ nor an Fσ?
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Exercise 8.75 Generalize Corollaries 8.39(a) and 8.39(b) for complete perfect met-
ric spaces.

Exercise 8.76 Prove that the set of rational numbers as well as the set of algebraic
numbers are both negligible sets.

Exercise 8.77 Prove that every countable union of negligible sets is also negligible.

Exercise 8.78 If I is any non-degenerated interval, prove that I is not negligible.

Exercise 8.79 Does there exist any nonempty perfect subset of reals consisting of
only irrational numbers?

Exercise 8.80 Prove that every subset ofR is a disjoint union of a negligible set and
a set of first category.

8.4 Equicontinuity

This section presents the Arzelá-Ascoli Theorem, which characterizes compact sub-
sets of C(X), where X is a compact metric space. Before delving into this result, let
us establish some notions and definitions.

Definitions 8.46 Let S be any set. A sequence { fn} of S −→ R functions is called

(a) pointwise bounded, if the sequence { fn(x)} is bounded for each x ∈ S.

(b) uniformly bounded, if there exists some M > 0 such that

| fn(x)| < M, for every x ∈ S and for every n ∈ N.

Definition 8.47 AfamilyF of real valued functions defined on ametric space (X, d)

is said to be equicontinuous on X if for every ε > 0 there exists δ > 0 such that

| f (y) − f (x)| < ε for all x, y ∈ X satisfying d(x, y) < δ and for all f ∈ F .

It is immediate that every function in an equicontinuous family on X is uniformly
continuous on X.

Theorem 8.48 Let { fn} be a sequence of continuous real valued functions on a com-
pact metric space (X, d). If { fn} converges uniformly on X, then { fn} is equicontin-
uous on X.
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Proof Let ε > 0 be given. Since { fn} converges uniformly on X, byCauchy criterion
for uniform convergence, there exists N ∈ N such that

| fn2(x) − fn1(x)| < ε for all x ∈ X and for all n2 > n1 ≥ N .

Since fN is continuous on X,which is a compact space, it is uniformly continuous on
X.Let δ > 0 be such that | fN (x) − fN (y)| < ε for all x, y ∈ X satisfying d(x, y) <

δ. Therefore for all n ≥ N and for all x, y ∈ X satisfying d(x, y) < δ, we have

| fn(x) − fn(y)| ≤ | fn(x) − fN (x)| + | fN (x) − fN (y)| + | fN (y) − fn(y)| < ε + ε + ε = 3ε.

Since ε > 0 is arbitrary, the result follows. �

Lemma 8.49 Let X be a countable set and { fn} be a pointwise bounded sequence
of real valued functions on X. Then { fn} has a subsequence that converges pointwise
on X.

Proof Write X = {xn : n ∈ N}. By hypothesis, the sequence { fn(x1)}n is bounded
and hence has a convergent subsequence, say { f1k (x1)}k .

Again by hypothesis, { fn(x2)}n is bounded. So its subsequence { f1k (x2)}k is also
bounded. Consequently, it has a convergent subsequence, say { f2k (x2)}k .

Inducting like this, for all n ∈ N \ {1}, we have a subsequence { fnk }k of { fn}n
such that { fnk (xn)}k is convergent and that { fnk }k is a subsequence of { f(n−1)k }k, for
all n > 1.

If X is finite, then X = {x1, . . . , xm} for some m ∈ N. In this case, the sequence
{ fmk (xn)}k is convergent, for every n ∈ N. If X is infinite, then { fkk (xn)}k≥n is a
subsequence of the convergent sequence { fnk (xn)}k≥1 for all n. Hence, { fkk (xn)}k is
convergent, for all n ∈ N. �

Theorem 8.50 (Ascoli-Arzelá) Let (X, d) be a totally bounded metric space and
{ fn} be a sequence of pointwise bounded and equicontinuous real valued functions
on X. Then

(a) { fn} is uniformly bounded on X and
(b) { fn} contains a subsequence, uniformly convergent on X.

Proof Let ε > 0 be given. Since { fn} is equicontinuous on X, there exists some
δ > 0 such that for every n ∈ N, we have

| fn(y) − fn(x)| < ε for all x, y ∈ X satisfying d(x, y) < δ. (8.2)

Since X is totally bounded, X = ⋃m
i=1 B(xi ; δ) for finitely many x1, . . . , xm ∈ X.

Also, by Theorem 8.3, X is separable. By appending a countable set to {x1, . . . , xm},
we can assume that {xk : k ∈ N} is a countable dense subset of X.

(a) Since for each k ∈ {1, . . . ,m}, the sequence { fn(xk)}n∈N is bounded, one can fix
Mk > 0 such that | fn(xk)| < Mk for eachn ∈ N.WriteM := max{M1, . . . , Mm}.
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If x ∈ X, then x ∈ B(xi ; δ), for some i ≤ m and therefore

| fn(x)| ≤ | fn(x) − fn(xi )| + | fn(xi )| < ε + M for all n ∈ N.

This proves that { fn} is uniformly bounded by ε + M, on X.

(b) ByLemma8.49, { fn} has a subsequence { fnk }, pointwise convergent on {xn : n ∈
N}.Write gk := fnk , to simplify the notation. Since {gk} is pointwise convergent
on {x1, . . . , xm}, there exists N ∈ N such that for every k2 > k1 > N , we have

|gk2(xi ) − gk1(xi )| < ε, for each i = 1, . . . ,m. (8.3)

Pick any x ∈ X. Then x ∈ B(xi ; δ), for some i ≤ m. Then (8.2) and (8.3) imply
that for all k2 > k1 > N , we have

|gk2(x) − gk1(x)| ≤ |gk2(x) − gk2(xi )|+|gk2(xi ) − gk1(xi )|
+ |gk1(xi ) − gk1(x)| < 3ε.

Therefore, {gk} is uniformly Cauchy, and hence uniformly convergent on X. �
Lemma 8.51 Let (X, d) be a compact metric space andF be a totally bounded sub-
set of C(X). Then the collection of functions F is uniformly bounded and equicon-
tinuous on X.

Proof Being totally bounded, F is a bounded subset of C(X) and hence uniformly
bounded. To prove the equicontinuity of F , let ε > 0 be given.

SinceF is totally bounded, there exist f1, . . . , fn ∈ F such thatF ⊂ ⋃n
i=1 B( fi ;

ε/3). Since X is a compact space, the finite collection { f1, . . . , fn} is equicontinuous.
Then there exist δ > 0 such that for every i = 1, . . . ,m and for all x, y ∈ X such
that d(x, y) < δ, we have | fi (x) − fi (y)| < ε

3 .

Pick any f ∈ F . Then there exists i such that ‖ f − fi‖∞ < ε/3. Let x, y ∈ X
such that d(x, y) < δ. Then we obtain

| f (x) − f (y)| ≤ | f (x) − fi (x)| + | fi (x) − fi (y)| + | fi (y) − f (y)|
<

ε

3
+ 2‖ f − fi‖∞ < ε.

Hence, F is equicontinuous on X. �
Theorem 8.52 Let X be a compact metric space andF ⊂ C(X).ThenF is compact
if and only if F is closed, bounded, and equicontinuous.

Proof If F is compact, it is closed, bounded and totally bounded. Applying Lemma
8.51, F is equicontinuous on X.

Conversely, assume that F is closed, bounded and equicontinuous. Since C(X)

is complete, its closed subspace F is also complete (see Theorem 4.3). To prove
compactness, it is enough to show that F is totally bounded, that is every sequence
in F has a Cauchy subsequence. That follows by Theorem 8.50. �
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Remarks 8.53 The Ascoli-Arzelá Theorem is an important tool in Analysis. It is
used in the standard proofs of the Peano Existence Theorem and Riemann Map-
ping Theorem. Another application of this theorem to the Isoperimetric Theorem is
provided in [12, p. 30].

In most textbooks, Theorem 8.50 is presented with an additional hypothesis that
X is compact (see [13, Theorem 7.25, p. 158]). However, the above proof ensures
that X is not required to be complete. Moreover, the results of this section hold for
functions taking values in finite-dimensional normed spaces.

Exercise 8.81 Let F be a set of real valued functions on a metric space X.

(a) If F is a finite collection of uniformly continuous functions on X, prove that F
is equicontinuous on X.

(b) Prove that F is equicontinuous on X if and only if F \ F is equicontinuous on
X for every finite set F ⊂ F .

Exercise 8.82 Let F be a family of Lipschitz continuous real valued functions on
[0, 1] with Lipschitz constant 1. Prove that F is equicontinuous.

Exercise 8.83 Let F be a bounded subset of C[0, 1] such that every f ∈ F is dif-
ferentiable and | f ′| < 1 for all f ∈ F . Prove that F is equicontinuous.

Exercise 8.84 Let { fn} be a sequence of real valued differentiable functions on
[0, 1] such that | f ′

n| < 1 for all n ∈ N. Prove that { fn} has a uniformly convergent
subsequence.

Exercise 8.85 Let X be a compact metric space and f : X × X −→ R be any con-
tinuous function. Define fy(x) := F(x, y) for all x, y ∈ X. Prove that { fy : y ∈ X}
is a family of equicontinuous functions on X.

Exercise 8.86 Give an example of a countably infinite collection of real valued
equicontinuous functions on [0, 1].
Exercise 8.87 Does there exist any uncountable family of real valued equicontinu-
ous functions on [0, 1]?
Exercise 8.88 LetF be the set of continuous functions f : (0,∞) −→ R such that
f (2x) = f (x) for all x > 0. Which of the following statements is/are true?

(a) Every f ∈ F is bounded.
(b) Every f ∈ F is uniformly continuous.
(c) Every f ∈ F is differentiable.
(d) Every uniformly bounded sequence of functions from F has a uniformly con-

vergent subsequence.

Exercise 8.89 Let X be a compact metric space and { fn} be a convergent sequence
in C(X). Prove that { fn} is uniformly bounded and equicontinuous.
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Exercise 8.90 Prove that every uniformly convergent sequence of bounded func-
tions is uniformly bounded.

Exercise 8.91 Let { fn} be a sequence of uniformly continuous functions on a metric
space X. If { fn} converges uniformly on X, prove that { fn} is equicontinuous on X.

Exercise 8.92 Let fn(x) := sin nx for all x ∈ [0, 2π], n ∈ N.Prove that { fn} is uni-
formly bounded on [0, 2π], and not even pointwise convergent for any x ∈ [0, 2π].
In fact no subsequence of { fn} is uniformly convergent on [0, 2π].
Exercise 8.93 Let fn(x) := x2

x2+(1−nx)2 for all x ∈ [0, 1], n ∈ N. Prove that { fn} is
uniformly bounded on [0, 1], but not uniformly convergent. Also, prove that no
subsequence of { fn} is uniformly convergent on [0, 1]. Conclude that { fn} is not
equicontinuous on [0, 1].

8.5 Hints and Solutions to Selected Exercises

8.2 The converse is false. For example, take X := R under usualmetric, E := (0, 1),
and Y := [0, 1].

8.5 No, for example take X := R or a countably infinite discrete metric space.
8.7 Note that Q \ {0} is dense in Q. Further countably infinite discrete spaces have

no proper dense subsets.
8.9 {r + π : r ∈ Q}. To see this, note that for any transcendental numbers a < b,

there exists a rational number r such that a − π < r < b − π. Hence, a < r +
π < b.

8.17 Apply Theorem 8.10.
8.20 Let O be a nonempty open subset of X. Since O1 is open and dense in X, O ∩ O1

is a nonempty and open subset of X. Since O2 is dense in X, O ∩ O1 ∩ O2 	= ∅.

Hence, O1 ∩ O2 is dense in X. The result is false if both O1 and O2 are not open.
For example, take X := R, O1 := Q and O2 := R \ Q.

8.21 Suppose X has only finitely many dense subsets. Then X will have only finitely
many limit points x1, . . . , xn . Note that E is dense in X if and only if X \ E ⊂
{x1, . . . , xn}.

8.23 Imitate Theorem 7.18.
8.24 For every c ∈ [0, 1], let pc ∈ X be defined as pc := χ[0,c]. Let F be any dense

subset of C[0, 1]. Then there exists some fc ∈ F such that ‖pc − fc‖∞ < 1/2.
Write Bc := B(pc; 1/2) for all c ∈ [0, 1].
Let c, d ∈ [0, 1] such that c 	= d be arbitrary. Then ‖pc − pd‖∞ = 1, which
implies Bc ∩ Bd = ∅ and hence fc 	= fd . Therefore, F is uncountable.

8.25 Let f ∈ C[0, 1]. Then fn := f + 1
n is a sequence in the given set, uniformly

convergent to f on [0, 1].
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8.26 (a) True, as A is dense in X.

(b) False. Take X := R, A := Q and rn := 2−n for all n ∈ N.

(c) True, by (a).
8.27 Since for every a ∈ [0, 1], the constant map x �−→ a on [0, 1] is continuous, we

have card(C[0, 1]) ≥ card([0, 1]) = c. The fact that card(C[0, 1]) ≤ c holds
by Theorems 8.5 and 8.7.

8.28 No. Apply Theorems 8.3 and 8.5.
8.29 Note that card(X) is same as the cardinality of the set of convergent sequences

from A, which is ≤ the cardinality of the set of sequences from A, that is c
(see Exercise 7.77). Hence, card(X) ≤ c. On the other hand, c = card(A) ≤
card(X), as A ⊂ X.

8.30 The sequence (1, . . . , 1/n, 0, 0, . . . ) ∈ c00 converges to (1, . . . , 1/n, . . . ) ∈
�p \ c00. Hence, c00 is not closed in �p. Now let x = {xn} ∈ �p be arbitrary
and yk ∈ �p be the restriction of {xn} till k terms, followed by all zeros. Then
each yk ∈ c00 and yk −→ x, in �p. Hence, c00 is dense in �p.

8.32 (a) Yes. Let Q1 denote the set of rational numbers p/q inside [a, b] such that
p, q are co-prime integers and q is an even natural number. Write Q2 :=
[a, b] ∩ (Q \ Q1). Note that both Q1 and Q2 are disjoint sets of rational
numbers, dense in [a, b]. Fix any c ∈ [a, b) and let

E1 := ([a, c] ∪ Q1) \ Q2 and E2 := ((c, b] ∪ Q2) \ Q1.

Then E1 and E2 are the required sets.
(b) Yes. Let E0 denote the set of isolated points of E . Then E \ E0 = E ′. Since

R is separable and E is uncountable, we conclude that E ′ 	= ∅.

Let {In : n ∈ N} be the sequence of intervals with rational end points such
that for all n ∈ N, In ∩ E ′ 	= ∅ and hence the set In ∩ E is infinite. Applying
induction, we choose two sequences {xn} and {yn} from E, as follows:

Let x1, y1 ∈ I1 ∩ E such that x1 	= y1.Let n ∈ N and assume that x1, . . . , xn
and y1, . . . , yn have been chosen. Choose xn+1, yn+1 ∈ In+1 ∩ E \ {xi , yi :
i = 1, . . . , n} such that xn+1 	= yn+1. This completes the induction step.

Let Q1 := {xn : n ∈ N} and Q2 := {yn : n ∈ N}. Note that both Q1 and Q2

are disjoint sets, dense in E . Fix any c ∈ E such that both E ∩ (−∞, c) and
E \ (−∞, c) are uncountable.

E1 := ((E ∩ (−∞, c)) ∪ Q1) \ Q2 and E2 := ((E \ (−∞, c)) ∪ Q2) \ Q1.

Then E1 and E2 are the required sets.

8.33 (b) No. Let x denote the sequence with n− 2
p as its nth-term. Then x is not a finite

linear combination of elements from the set {en : n ∈ N}. Also, compare it with
Theorem 9.55.
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8.34 If 1 ≤ p < ∞, let A be the family of sequences (r1, r2, . . . , rn, 0, 0, . . . ),where
r1, . . . rn are all rational numbers and n is any natural number. Then A is count-
able. So it is enough to show that A is dense in �p.

Let x = {xk}be any sequence in�p and ε ∈ (0, 1).Thenwehave
∑∞

n=N+1 |xn|p <
ε
2 for some N ∈ N. For every n ∈ {1, . . . , N } there exists rn ∈ Q such that
|xn − rn|p < ε

2N . Note that r := (r1, . . . , rN , 0, 0, . . . ) ∈ A. By Minkowsky’s

inequality, we have ‖r − x‖p
p < ε

2 + ∑N
n=1

ε
2N = ε.Hence, ‖r − x‖p < εp < ε.

8.35 No. For example,
∑∞

n=1
un
n2 ,

∑∞
n=1

u2n
(2n)2

and
∑∞

n=1
u2n−1

(2n−1)2 are linearly dependent.
8.36 Suppose that B is a Schauder basis of X and pick any x ∈ X. Choose a

unique sequence of scalars {kn} such that x = ∑∞
n=1 knun and write xn :=∑n

i=1 kiui for all n ∈ N. Then {xn} is a sequence in span(B) and xn −→ x .
Hence, x ∈ span(B).

Conversely, suppose span(B) = X and let x ∈ X. Then there exists a sequence
{bn} ⊂ span(B) such that bn −→ x . Write a1 := 1 and an := bn − bn−1 for all
n > 1. Then

∑∞
n=1 an = x . Since each bn ∈ span(B), we have an ∈ span(B)

for all n ∈ N.

8.37 Let S := {m + n
√
2 : m, n ∈ Z}.Note thatm + n

√
2 = m ′ + n′√2 ⇐⇒ m =

m ′ and n = n′. For m ∈ Z, let tm := m
√
2 − [m√

2], where [x] denotes the
greatest integer less than or equal to x .Note that tm = tm ′ ⇐⇒ m = m ′.Hence,
T := {tm : m ∈ Z} is an infinite subset of [0, 1] ∩ S.

Let a and b be any reals such that a < b and ε ∈ (0, b − a). Pick any n ∈ N such
that 1/n < ε and write xi := i/n for all i = 0, 1, . . . , n. Since T is an infinite
subset of [0, 1], there exists some i ∈ {0, 1, . . . , n} such that [xi−1, xi ] contains
twodifferent tm, tm ′ ∈ T .Hence, t := |tm − tm ′ | ≤ 1/n < ε.Thus, 0 < t < ε and
t ∈ T ⊂ S.

Since a ∈ R ⊂⊍m∈Z[(m − 1)t,mt),we have a ∈ [(m − 1)t,mt), for a unique
m ∈ Z. We claim that mt < b. If not, then b − a ≤ mt − (m − 1)t = t < ε, a
contradiction. Therefore, there exists nt ∈ S such that nt ∈ (a, b). The general-
ization is analogous.

8.38 The conclusion follows from Exercise 8.37. To prove the main part, let G be any
subgroup of (R,+). Define a := inf{|x | : x ∈ G \ {0}}.
In case a > 0, we claim that G = {ma : m ∈ Z}. To establish this, let g ∈
G. Then ka ≤ |g| < (k + 1)a for some k ∈ Z. Therefore,

∣
∣|g| − ka

∣
∣ = |g| −

ka < a and |g| − ka ∈ G. Hence, by the definition of a, we have |g| − ak =
0 which implies g = ±ka.Consequently,G ⊂ {ma : m ∈ Z}.Theopposite inclu-
sion is obvious.

Now suppose that a = 0. Let x ∈ R and ε > 0 be given. Since a = 0, there
exists some y ∈ (0, ε) ∩ G. Then ky ≤ x < (k + 1)y for some k ∈ Z.Note that
ky ∈ G and 0 ≤ x − ky < (k + 1)y − ky = y < ε. Hence, x ∈ G.

8.44 No, as compact metric spaces are complete.
8.45 Apply (A ∪ B)′ = A′ ∪ B ′ for the first part. For the second part, note that

{1} = [0, 1] ∩ [1, 2] is not perfect. The result is false for infinite unions, e.g.⋃∞
n=1[1/n, 1] is not even closed.
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8.46 Apply Corollary 8.27.
8.47 By hypothesis, we have E ⊂ E ′. Since E ′ is closed, we have (E ′)′ ⊂ E ′. Hence

(E)′ = (E ∪ E ′)′ = E ′ ∪ E
′′ = E ′ = E ′ ∪ E = E .

8.48 Apply Exercise 8.47.
8.49 The answer is negative for both questions. Below we refute (a) only.

Assume that an −→ a in X and a1 	= a. Then B(a; d(a, a1)/2) contains all
but finitely many terms of {an}. Hence, B(a1; d(a, a1)/2) contains only finitely
terms of {an}. Consequently, a1 is an isolated point of X, a contradiction.

8.51 Let E denote the given set, as in Exercise 3.54, we obtain E = [0, 1] = E ′. Since
E is countable and E ′ is uncountable, we have E 	= E ′.

8.52 Yes. Let X := R \ Q under usual metric and P := (0, 1) \ Q.

8.54 Using induction, it is enough to prove the result for n = 2. Since O 	= ∅, it can’t
be a single point, as X is perfect. Let x, y ∈ O such that x 	= y. Let d be the
distance between x and y. By Theorem 6.54, there exists some clopen set A
such that x ∈ A ⊂ B(x; d). Then O1 := O ∩ A and O2 := O \ A satisfy our
requirement.

8.56 We prove the results for r > 0. The case of r = 0 is similar.

(a) Let a = {an} ∈ X be arbitrary. Write xn = {xn(m)}m; where

xn(m) :=
{

am ;m 	= n,

1 − am ;m = n.

Then {xn} is a sequence from the set X \ {a}, convergent to a. Hence, a is
a limit point of X.

(b) Wewill prove that (X, ρr ) is sequentially compact. Let {xn} be any sequence
in X. Write xn = {xn(m)}m for all n.

Let a1 ∈ {0, 1} such that a1 repeats infinitely many times in the sequence
{xn(1)}n. Assume that a1, . . . , an have been chosen. Let an+1 ∈ {0, 1} such
that an+1 repeats infinitelymany times in the set {xk(n + 1) : k ∈ N, xk(i) =
ai , i = 1, . . . , n}.
Therefore, by induction we have chosen a sequence a := {an} ∈ X. For each
k ∈ N, let nk = min{m : xm(k) = ak}. It can be shown that xnk −→ a in X.

By Corollary 8.4, X is separable.
(c) Suppose that s ∈ (0,∞) is a limit point of Sx . One can choose a sequence

{sn}, from Sx \ {s}, convergent to s.Also, each sn = ρr (yn, x) for some yn ∈
X. By (b), X is compact. So there exists y0 ∈ X and a subsequence {ynk } of
{yn} such that ynk −→ y0. Therefore,

ρr (y0, x) = lim
k→∞ ρr (ynk , x) = lim

k→∞ snk = s.



238 8 Denseness

Since s > 0 and ρr (ynk , y0) −→ 0, for all sufficiently large k we obtain

s = ρr (y0, x) ≤ max{ρr (y0, ynk ), ρr (ynk , x)} ≤ snk
and snk = ρr (ynk , x) ≤ max{ρr (ynk , y0), ρr (y0, x)} ≤ s.

So snk = s, a contradiction to our choice of the sequence {sn}. Hence, S′
x ∩

(0,∞) 	= ∅.

(d) By (a), and (c), S′
x = {0}. Assume that Sx is uncountable. Since Sx =⋃∞

n=1(Sx ∩ [1/n, n]), there exists k ∈ N such that Sx ∩ [1/k, k] is uncount-
able and hence is an infinite subset of [1/k, k]. Thus, Sx has a limit point in
[1/k, k] ⊂ (0,∞), a contradiction to (c).

8.57 (a) Apply Example 8.25 along with the fact that every normed linear space is
path connected and hence connected.

(b) Use (a) and that every nonempty convex set is path connected and hence
connected.

8.63 Q is not nowhere dense, but totally disconnected.
8.64 Suppose not. ThenR = ⋃∞

n=1 An, for a sequence {An} of nowhere dense subsets
of R. In this proof, all the intervals are non-degenerate ones.

Let I1 be any closed interval disjoint from A1.Then A2 is not dense in I1.So there
exists a closed subinterval I2 of I1, disjoint from A2.Continuing like this, choose
a nested decreasing sequence {In} of closed intervals such that In ∩ An = ∅.

By Nested Interval Property (1.23), there exists some x ∈ ⋂∞
n=1 In. Since

x ∈ R = ⋃∞
n=1 An, we obtain x ∈ Ak for some k. Hence, x ∈ Ik ∩ Ak, a con-

tradiction.
8.66 We need to prove that

(
E

)o = ∅ if and only if
(
E

)c = X.

Assume that
(
E

)c
is not dense in X. Let x ∈ X \ (E)c. Then there exists some

ε > 0 such that B(x; ε) ∩ (
E

)c = ∅. Therefore, B(x; ε) ⊂ E . Hence, x ∈ (
E

)o

which implies
(
E

)o 	= ∅.

Conversely, suppose
(
E

)o 	= ∅. Let x ∈ (
E

)o
. Then there exists ε > 0 such that

B(x; ε) ⊂ E . Hence, B(x; ε) ∩ (
E

)c = ∅ which implies that
(
E

)c
is not dense

in the space X.

8.68 The result is a repeated use of Exercise 8.66.

(a) ⇒ (b) Assume that there are dense open subsetsUn of X such that
⋂∞

n=1Un is not
dense in X. Then there exists a nonempty open subset U of X such that⋂∞

n=0Un = ∅,whereU0 = U.A contradiction can be obtained by imitating
the proof of Theorem 8.33.

(b) ⇒ (c) Let O be a nonempty open subset of X such that O = ⋃∞
n=1 En,where each

En is nowhere dense. Since En is nowhere-dense, each
(
En

)c
is dense in X.

Since O ⊂ ⋃∞
n=1 En, we have O ∩ ( ⋂∞

n=1

(
En

)c) = ∅. Hence a countable
intersection of dense open sets is not dense in X.
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(c) ⇒ (d) Assume that there are dense open subsets Un of X such that
⋂∞

n=1Un = ∅.

Hence, U1 = ⋃
n>1(Un)

c is of the first category. and each Uc
n is nowhere

dense.
(d) ⇒ (a) Suppose that X = ⋃∞

n=1(Un)
c,where eachUc

n is nowhere dense. Therefore,⋂∞
n=1Un = ∅ and each Un is dense in X.

8.70 Yes. The interval (0, 1) is also of second category, by Exercise 8.68.
8.71 No. For example, take X := R and Ox := R \ {x} for all x ∈ X.

8.73 (a) Since E ⊂ ⋃∞
n=1 En, we have E = ⋃∞

n=1(E ∩ En). Applying Baire Cate-
gory Theorem (8.33), there exists some N ∈ N such that (E ∩ EN )o 	= ∅.

So there exists a non-empty open set O such that O ⊂ E ∩ EN . Hence,
∅ 	= E ∩ O ⊂ EN .

(b) Follows from (a) and the definition of an Fσ set.
(c) Since E ⊂ ⋃∞

n=1 En, we have E = ⋃∞
n=1(E ∩ En). Applying Baire Cate-

gory Theorem (8.33), there exists some N ∈ N and a non-empty open set O
such that O ⊂ (E ∩ EN ). Hence, O ∩ E ⊂ EN . So EN is dense in E ∩ O.

8.74 Yes. Consider E := [(−∞, 0) \ Q] ∪ [Q ∩ [0,+∞)]. Apply Corollary 8.39(a).
8.78 Let a < b be any two points from I. If I is negligible, then so is [a, b]. Hence,

there exists a sequence {In} of open intervals such that [a, b] ⊂ ⋃∞
n=1 In and∑∞

n=1 l(In) < (b − a)/2.

Since [a, b] is compact, [a, b] ⊂ ⋃N
k=1 Ik, for some N ∈ N. For each k, write

Ik := (ak, bk). Without loss of generality, we can assume that

a1 < a ≤ a2 < b1 < a3 < b2 < · · · < aN < bN−1 ≤ b < bN .

Therefore, we obtain the following contradiction

b − a < bN − a1 =
N∑

i=1

(bi − ai ) −
N−1∑

i=1

(bi − ai+1)

<

N∑

i=1

(bi − ai ) ≤
∞∑

n=1

l(In) ≤ b − a

2
.

8.79 Yes. If {rn} is an enumeration of Q, then R \ ⋃∞
n=1(rn − 2−n−1, rn + 2−n−1) is

a closed subset of R with infinite measure. Hence, it is a complete subspace R.

Applying Theorem 8.31, we obtain the required set perfect set.
8.86 Apply Theorem 8.48.
8.87 Yes.Define fa(x) := ax for all x ∈ [0, 1], a ∈ (0, 1).LetF := { fa : a ∈ (0, 1)}.

It can be shown that F is an uncountable equicontinuous subset of C[0, 1].
8.88 The given condition ensures that f is completely characterized by its values on

the interval [1, 2). Note that (0,∞) =⊍∞
m=−∞[2m, 2m+1).

(a) True. Being continuous on [1, 2], we conclude that f is bounded on this
interval and hence on (0,∞).
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(b) False. For a counter example, take f (x) := sin
(
(x + 1)π

)
for all x ∈ [1, 2)

and extend it for all positive reals, using the given condition.
(c) False. Consider the example, as in (b).
(d) False. Let n ∈ N and fn be defined as the piecewise linear function on [1, 2],

whose graph is given by joining the points

(1, 0), (1 + 2−n, 0), (1 + 3.2−n−1, 1), (1 + 2−n+1, 0) and (2, 0).

Now extend fn to (0,∞) using the given condition. It can be shown that { fn}
is a uniformly bounded sequence fromF which has no uniformly convergent
subsequence.

8.89 Apply Lemma 8.51 and use the fact that convergence sequences are Cauchy and
hence form a totally bounded set.

8.90 Let { fn} be a sequence of bounded functions uniformly convergent to f on a
metric space X. For ε = 1, there exists m ∈ N such that

| fn(x) − f (x)| < 1 for all n ≥ m and for all x ∈ X.

Since fm is bounded, let Mm := sup{| fm(x)| : x ∈ E}. Then for all x ∈ X,

| f (x)| ≤ | f (x) − fm(x)| + | fm(x)| < 1 + Mm .

Hence, for all x ∈ X, we have

| fn(x)| ≤ | fn(x) − f (x)| + | f (x)| < 2 + Mm for all n ≥ m.

Write M := max{M1, . . . , Mm, 2 + Mm}, where Mi := sup{| fi (x)| : x ∈ E},
for each i = 1, . . .m. Then | fn| < M on X for all n ∈ N.

8.91 Analogous to the proof of Theorem 8.48.
8.93 The uniform bound is 1, pointwise limit is 0 and fn(1/n) = 1 ensures that no

subsequence of { fn} converges uniformly on [0, 1]. Now apply Theorem 8.50
to conclude the result.
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Chapter 9
Homeomorphisms

Homeomorphisms are essentially topological isomorphisms. In other words, home-
omorphic spaces are same from the topological viewpoint. In Sect. 4.4, we have
already discussed isometries, as a particular class of homeomorphisms.

A general discussion on homeomorphisms begins in Sect. 9.16. Until that we
strive on some of its particular cases given by topologically, uniformly, and Lips-
chitz equivalent metrics. The third section of this chapter provides several extension
theorems, including the results by Tietze, Kuratowski, and Lavrentiev. Finally, we
present the case of normed spaces, particularly the equivalence of all norms on finite-
dimensional spaces.

9.1 Equivalent Metrics

In this section, we address the question that if two different metrics are defined on
the same space, under what conditions they generate the same class of open sets?

Definition 9.1 Two metrics ρ1 and ρ2 on a space X are said to be equivalent (or
topologically equivalent) if they generate the same class of open subsets of X.

We adopt the notation Bd(x; r) for balls in (X, d), instead of B(x; r), whenever we
shall be dealing with multiple metrics on the same space.

Examples 9.2 (a) As presented in Exercise 3.12, open balls in any of the metric
spaces (R2, d1), (R2, d2) and (R2, d∞) are open sets in the remaining twometric
spaces. Therefore, all these metric spaces have the same the class of open sets.
Hence, d1, d2 and d∞ are equivalent metrics on R

2.

(b) In R
n, the discrete metric dc induces a bigger collection of open sets than any

of d1, d2 or d∞. Hence, dc is not equivalent to any of these metrics on R
n.

Definition 9.3 A metric ρ1 on a space X is said to be topologically stronger than
another metric ρ2 on X, if every open set in (X, ρ2) is open in (X, ρ1). In this case,
we also say that ρ2 is topologically weaker than ρ1.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Example 9.4 The discrete metric on any space X is topologically stronger than any
other metric on X.

Now we present some characterizations of topologically stronger metrics. These
lead to characterizations of topologically equivalent metrics. A few other such char-
acterizations will be provided in Exercise 9.9.

Theorem 9.5 Let ρ1 and ρ2 be metrics on X. Then the following are equivalent:

(a) Every open subset of (X, ρ2) is open in (X, ρ1).
(b) Every open ball of (X, ρ2) contains an open ball of (X, ρ1) with same center.
(c) Every convergent sequence in (X, ρ1) is convergent in (X, ρ2).

Proof ((a) ⇒ (b)) Let x ∈ X and r > 0 be arbitrary. Since Bρ2(x; r) is open in
(X, ρ2), it is open in (X, ρ1). Therefore, x is its interior point in (X, ρ1). Hence,
there exists some r ′ > 0 such that Bρ1(x; r ′) ⊂ Bρ2(x; r).

((b) ⇒ (c)) Consider a sequence {xn} such that xn −→ x in (X, ρ1). To prove
that xn −→ x in (X, ρ2), pick any ε > 0.By (b), let ε0 > 0 be such that Bρ1(x; ε0) ⊂
Bρ2(x; ε). Since xn −→ x in (X, ρ1), there exists some N ∈ N such that xn ∈
Bρ1(x; ε0) ⊂ Bρ2(x; ε) for all n ≥ N . Hence, xn −→ x in (X, ρ2).

((c) ⇒ (a)) Let O be an open subset of (X, ρ2). Then F := X \ O is closed in
(X, ρ2). Let x be a limit point of F in (X, ρ1). Choose a sequence {xn} from F such
that xn −→ x in (X, ρ1). By (c), xn −→ x in (X, ρ2). Since F is closed in (X, ρ2),
we have x ∈ F. Therefore, F = X \ O is closed in (X, ρ1). Hence, O is open in
(X, ρ1). �

Remark 9.6 Since equivalent metrics admit the same class of open sets, they admit
same convergent sequences. However, they do not always admit same Cauchy
sequences or bounded sets. The completeness property is also not shared by equiv-
alent metrics, in general.

Example 9.7 Let X := (0, 1]. Then

d(x, y) :=
∣
∣
∣
∣

1

x
− 1

y

∣
∣
∣
∣
for all x, y ∈ X

defines a metric on X, equivalent to the usual metric on X. The sequence { 1n } is
Cauchy under the usual metric but is neither Cauchy nor bounded in (X, d). Further
X is complete under d, but not under the usual metric.

Proof Let ρ denote the usual metric on X. It is trivial to see that d is a metric on X
and { 1n } is a Cauchy sequence under the usual metric but neither Cauchy nor bounded
in (X, d). To prove the equivalence of the metrics, pick any x > 0 and r ∈ (

0, 1
x

)

.

Then

Bd(x; r) =
{

y ∈ X :
∣
∣
∣
∣

1

y
− 1

x

∣
∣
∣
∣
< r

}

=
(

x

1 + xr
,

x

1 − xr

)

.

Hence, for every x > 0 and r ∈ (

0, 1
x

)

, it can be shown that
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Bρ

(

x; x2r

1 + xr

)

⊂ Bd(x; r) ⊂ Bρ

(

x; x2r

1 − xr

)

.

By Theorem 9.5, we conclude that both d and ρ are topologically stronger than each
other and hence equivalent. Further, it is clear that X is not complete under the usual
metric, as { 1n } is Cauchy in (X, ρ) but not convergent. Next, we show that (X, d) is
complete.

Let {xn} be a Cauchy sequence in (X, d). Then { 1
xn

} is Cauchy under the usual

metric and hence convergent to some real number, say y ∈ R. If y < 1, then 1
xm

<

1 for some m ∈ N, that is xm > 1. This is impossible, as each xn ∈ (0, 1]. Hence,
y ≥ 1 which implies 1

y ∈ (0, 1] = X. Consequently, xn −→ 1
y in (X, d). �

Uniform continuity is also not preserved by equivalent metrics, in general.

Example 9.8 Let X := (−π/2,π/2) and for every x, y ∈ X, define

ρ1(x, y) := |x − y| and ρ2(x, y) := | tan x − tan y|.

Let f (x) := tan x for all x ∈ X. Then f : (X, ρ2) −→ R is a uniformly continuous
function.

If f : (X, ρ1) −→ R is uniformly continuous, then Theorem5.42 implies that f is
a bounded function, a contradiction. Therefore, f : (X, ρ1) −→ R is not uniformly
continuous.

Definition 9.9 Let ρ1 and ρ2 on X and f : (X, ρ1) −→ (X, ρ2) denote the identity
map. Then ρ1 and ρ2 are said to be

(a) uniformly equivalent if both f and f −1 are uniformly continuous.
(b) Lipschitz equivalent if both f and f −1 are Lipschitz continuous.

Note that f −1 : (X, ρ2) −→ (X, ρ1) is also an identity map. Further ρ1 and ρ2 are
Lipschitz equivalent if and only if there are positive constants α and β such that

αρ2(x, y) ≤ ρ1(x, y) ≤ βρ2(x, y) for all x, y ∈ X.

Since Lipschitz continuity implies uniform continuity, which in turn implies con-
tinuity, it follows that Lipschitz equivalent metrics are uniformly equivalent, and
uniformly equivalent metrics are equivalent.

Therefore, Lipschitz equivalentmetrics share all the properties of uniformly equiv-
alent metrics, and uniformly equivalent metrics share all the properties of topolog-
ically equivalent metrics. However there are some additional properties in both of
these cases.

Theorem 9.10 Uniformly equivalent metrics share the same classes of Cauchy
sequences, totally bounded sets, and complete subspaces.
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Proof Let ρ1 and ρ2 be two uniformly equivalent metrics on a space X. By Theorem
5.42, it follows that ρ1 and ρ2 share the same class of Cauchy sequences and totally
bounded sets.

Let Y be a complete subspace of (X, ρ1). To see that (Y, ρ2) is complete, let {xn}
be a Cauchy sequence in (Y, ρ2). By Theorem 5.42, {xn} is also a Cauchy sequence
in (Y, ρ1), which is complete. Let x ∈ Y be such that xn −→ x in (Y, ρ1). Since ρ1
and ρ2 are equivalent, by Theorem 9.5, xn −→ x in (Y, ρ2). Hence the result. �

Uniformly equivalent metrics may have different classes of bounded sets (see
Theorem 9.15).

Theorem 9.11 Lipschitz equivalentmetrics share the sameclass of bounded subsets.

Proof Let ρ1 and ρ2 be Lipschitz equivalentmetrics on a space X and E be a bounded
subset of (X, ρ1). Let M > 0 such that ρ2(x, y) ≤ Mρ1(x, y) for all x, y ∈ X.

Let D := sup{ρ1(x, y) : x, y ∈ E}. Since E is bounded in (X, ρ1), we have D <

∞. Also, ρ2(x, y) ≤ MD for all x, y ∈ E . Consequently, E is bounded in (X, ρ2).
Similarly, every bounded subset of (X, ρ1) is bounded in (X, ρ2). �

Example 9.12 In R
2, the metrics d1, d2 and d∞ are Lipschitz equivalent. Hence,

these metrics admit the same class of open sets.

Proof Let x = (x1, x2), y = (y1, y2) ∈ R
2. Then we have

d1(x, y) ≤ 2d∞(x, y) and d∞(x, y) ≤ d1(x, y).

Abit of squaring and algebraicmanipulations imply that d2(x, y) ≤ d1(x, y).Apply-
ing Cauchy-Schwarz inequality, we conclude that

d1(x, y) = |x1 − y1|.1 + |x2 − y2|.1 ≤
√

(x1 − y1)2 + (x2 − y2)2
√

12 + 12 = √
2d2(x, y).

Consequently,

d2(x, y) ≤ d1(x, y) ≤ 2d∞(x, y)

and d∞(x, y) ≤ d1(x, y) ≤ √
2d2(x, y).

Hence, d1, d2 and d∞ are Lipschitz equivalent. �

Proposition 9.13 Let (X, d) be any metric space, f : X −→ X be a bijection and

ρ(x, y) := d( f (x), f (y)) for all x, y ∈ X.

Then ρ is a metric on X. Further the metrics d and ρ are

(a) equivalent on X if and only if both f and f −1 are continuous.
(b) uniformly equivalent if and only if both f and f −1 are uniformly continuous.
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(c) Lipschitz equivalent if and only if both f and f −1 are Lipschitz continuous.

Proof Since f : X −→ X is a bijection, ρ is a metric on X. Further note that
the continuity, uniform continuity or the Lipschitz continuity of the identity maps
(X, ρ) −→ (X, d) and (X, d) −→ (X, ρ) are equivalent to the continuity, uniform
continuity or the Lipschitz continuity of f −1 and f, respectively. �

There are topologically equivalent metrics that are not uniformly equivalent.

Example 9.14 Let d be the usualmetric onR andρ(x, y) := |x3 − y3| for all x, y ∈
R. Then d and ρ are equivalent, but not uniformly.

Proof Note that x −→ x3 is a continuous bijection with continuous inverse. How-
ever, it is not uniformly continuous. So, the result follows by Proposition 9.13.

To see that x −→ x3 is not uniformly continuous, let ε = 3. Suppose there exists
some δ > 0 such that |x3 − y3| < 3 for all |x − y| < δ.Letn ∈ N such that 1/n < δ.
Then (n + 1/n) − n < δ but (n + 1/n)3 − n3 > 3, a contradiction. �

Our next proposition produces an abundance of examples of uniformly equivalent
metrics, which are not Lipschitz equivalent. For example, let X = R and d be the
usual metric in the next proposition. A similar result is provided in Exercise 9.13.

Theorem 9.15 Let d be a metric on X and

ρ(x, y) := d(x, y)

1 + d(x, y)
for all x, y ∈ X.

Then

(a) ρ is a metric on X.

(b) ρ is uniformly equivalent to d.

(c) If d is unbounded, then ρ and d are not Lipschitz equivalent.

Proof The function ρ clearly is positive definite and symmetric. To prove the triangle
inequality, after usual simplifications we conclude that ρ(x, y) ≤ ρ(x, z) + ρ(z, y)
if and only if

d(x, y) ≤ d(x, z) + d(z, y) + 2d(x, z)d(z, y) + d(x, y)d(x, z)d(z, y).

This holds by the triangle inequality for d. Since ρ ≤ d, the identity map (X, d) −→
(X, ρ) is uniformly continuous. To see that the identity map (X, ρ) −→ (X, d) is
uniformly continuous, let ε > 0. Then for x, y ∈ X such that ρ(x, y) < ε

1+ε
, we

obtain d(x, y) < ε. This proves (b).
To prove (c), note that ρ ≤ d and ρ ≤ 1. If there exists some M > 0 such that

d ≤ Mρ, then d is bounded by M, a contradiction if d is given to be unbounded.
Hence the result. �
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In Exercises 10.39-10.42, we shall discuss two uniformly equivalent metrics on
countable product of metric spaces, which are not Lipschitz equivalent. Also, see
Exercise 9.14.

Exercise 9.1 Let (X, d) be a metric space. Is
√
d a metric equivalent to d?

Exercise 9.2 Prove that every metric on a finite set is equivalent to the discrete
metric.

Exercise 9.3 Let {xk} be a sequence in Rn and x ∈ R
n be such that

xk = (xk[1], . . . , xk[n]) and x = (x[1], . . . , x[n]).

Prove that the following are equivalent:

(a) xk −→ x, in (Rn, d∞),

(b) xk −→ x, in (Rn, d1) and
(c) xk[i] −→ x[i] for all 1 ≤ i ≤ n.

Exercise 9.4 Let (X, d) be a metric space. Prove that the following are equivalent.

(a) X is equivalent to a discrete metric space.
(b) Every convergent sequence in X is eventually constant.
(c) Every subspace of X is a complete metric space.

Exercise 9.5 Generalize Example 9.12 for Rn, for all n ∈ N.

Exercise 9.6 If X is a metric space, prove that the topological, uniform, and Lips-
chitz equivalences are equivalence relations on the family of metrics on X.

Exercise 9.7 Let f : (X, dX ) −→ (Y, dY ) be continuous. Does there exist a metric
ρ on X, equivalent to dX , such that f : (X, ρ) −→ (Y, dY ) is Lipschitz continuous?

Exercise 9.8 Prove or disprove:

(a) (0, 1) with usual topology admits a complete metric.
(b) [0, 1] with usual topology admits a metric that is not complete.

Exercise 9.9 Let ρ, ρ1 and ρ2 be metrics on a space X. Prove that the following are
equivalent:

(a) Every open subset of (X, ρ2) is open in (X, ρ1).
(b) Every closed subset of (X, ρ2) is closed in (X, ρ1).
(c) Every open ball of (X, ρ2) contains an open ball of (X, ρ1) with same center.
(d) The identity map (X, ρ1) −→ (X, ρ2) is continuous.
(e) Every convergent sequence in (X, ρ1) is convergent in (X, ρ2).
(f) If f : (X, ρ2) −→ (Y, ρ) is continuous, then so is f : (X, ρ1) −→ (Y, ρ).

(g) If f : (Y, ρ) −→ (X, ρ1) is continuous, then so is f : (Y, ρ) −→ (X, ρ2).

Deduce characterizations of equivalent metrics, implied by of the above statements.
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Exercise 9.10 Let ρ1 and ρ2 be two topologically equivalent metrics on a space X.

Prove that the spaces (X, ρ1) and (X, ρ2) admit the same classes of open sets, closed
sets, dense sets, compact sets, connected sets, convergent sequences and their limits,
continuous functions with domain X, and continuous functions with X as codomain.

Exercise 9.11 If d and ρ are metrics on X such that d is topologically stronger than
ρ. If (X, d) is compact, then d and ρ are equivalent.

Exercise 9.12 Let ρ1 and ρ2 be uniformly equivalent metrics on X. Prove that the
spaces (X, ρ1) and (X, ρ2) admit the same

(a) uniformly continuous functions with domain X,

(b) uniformly continuous functions with X as codomain.

Exercise 9.13 If d is ametric on X and η(x, y) := min{1, d(x, y)} for all x, y ∈ X,

prove that

(a) η is a metric on X,

(b) η is a uniformly equivalent to d, and
(c) η and d are not Lipschitz equivalent, provided d is unbounded.

Exercise 9.14 Let d denote the usual metric on R and

ρ(x, y) := d

(
x

1 + |x | ,
y

1 + |y|
)

for all x, y ∈ R.

Prove that ρ is a metric on R, equivalent to d but not uniformly equivalent to d.

Exercise 9.15 Let (X, d) be a metric space, η and ρ be the metrics on X, as defined
in Exercise 9.13 and Theorem 9.15, respectively. Write explicit formulas, in terms
of center and radii, to show that

(a) every ball of (X, η) contains a ball of (X, d) with same center and vice versa.
(b) every ball of (X, ρ) contains a ball of (X, d) with same center and vice versa.

Exercise 9.16 Let (X, d) be a metric space, y /∈ X and Y := X ∪ {y}. Define

ρ(a, b) :=
⎧

⎨

⎩

min{1, d(a, b)} ; a, b ∈ X,

0 ; a = b = y,
1 ; otherwise.

Prove that ρ is a metric on Y and is equivalent to d, on X.

Exercise 9.17 Let d and d ′ be Lipschitz equivalent metrics on a space X. Prove that
(X, d) is complete if and only if (X, d ′) is complete. Conclude that (Rn, d1) and
(Rn, d∞) are also complete metric spaces.

Exercise 9.18 Let ρ1 and ρ2 be two Lipschitz equivalent metrics on a space X. Prove
that the spaces (X, ρ1) and (X, ρ2) admit the same class of
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(a) Lipschitz continuous functions with domain X.

(b) Lipschitz continuous functions with X as codomain.

Exercise 9.19 Let (X, d) be any complete metric space and r > 0. Prove that there
exists a complete metric ρ on X, equivalent to d and bounded by r.

Exercise 9.20 Let A and B be subsets of a metric space (X, d) such that

inf{d(a, b) : a ∈ A, b ∈ B} > 0.

If ρ is a metric on X equivalent to d, then is inf{ρ(a, b) : a ∈ A, b ∈ B} > 0?

Exercise 9.21 Does there exist an incomplete space having an equivalent complete
metric?

Exercise 9.22 Does there exist a metric d on R such that (R, d) is incomplete?

Exercise 9.23 Prove that two metrics admit same class of Cauchy sequences if and
only if they admit same class of totally bounded sets.

Exercise 9.24 If a, b ∈ R
∗ = [−∞,+∞] such that either of a and b is finite, define

ρ1(a, b) := min{1, |a − b|} and ρ2(a, b) := |a − b|
1 + |a − b| .

If a, b ∈ {−∞,+∞}, let ρ1(a, b) := ρ2(a, b) = 0 if a = b; and 1 if a = b. For
i = 1, 2, prove that

(a) ρi is a metric on R∗ and equivalent to the usual metric on the induced space R.

(b) the singletons {−∞} and {+∞} are open as well as closed in (R∗, ρi ).
(c) The collectionof open subsets of (R∗, ρi ) is givenby

{

O ∪ A : A ⊂ {−∞,+∞},
O is open in R

}

.

(d) (R∗, ρi ) is neither compact nor connected.
(e) If {xn} converges to either−∞ or+∞ in (R∗, ρi ), then it is eventually constant.
(f) (R∗, ρi ) is complete.
(g) (R∗, ρi ) is separable.
(h) (R∗, ρi ) is not totally bounded.

Exercise 9.25 Let ρ1 and ρ2 be metric on X and α,α1,α2 ∈ (0,+∞) such that for
all x, y ∈ X satisfying ρ2(x, y) < α, we have

α1ρ1(x, y) < ρ2(x, y) < α2ρ1(x, y).

Prove that ρ1 and ρ2 are uniformly equivalent and share the same collection of
bounded sets.
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Exercise 9.26 Let x, y be arbitrary reals with infinite decimal expansions x =
x0.x1 . . . xn . . . and y = y0.y1 . . . yn . . . . Define

d(x, y) :=
{

10−m ;m := min{k : xk = yk}, x = y,
0 ; x = y.

Is d a metric on R? Is it Lipschitz or uniformly equivalent to the usual metric on R?

Exercise 9.27 Let (X, ρr ) be the ultrametric space of Example 2.5 and 0 ≤ r <

s < 1 be arbitrary. Prove that ρr and ρs are uniformly equivalent, but not Lipschitz
equivalent.

Exercise 9.28 If two metrics on a space have same class of compact sets, are they
equivalent?

Exercise 9.29 If two metrics d and d ′ on a space X have same class of Cauchy
sequences and complete subspaces, are they equivalent?

Exercise 9.30 If a metric space is an open subset of its completion, prove that it has
an equivalent complete metric.

9.2 Homeomorphisms

Definition 9.16 Let X and Y be metric spaces. Then X,Y are said to be homeo-
morphic if there exists a continuous bijection f : X −→ Y such that f −1 is also
continuous. In this case, f is known as a homeomorphism from X onto Y.

Functions which carry open sets onto open sets are also known as open maps. There-
fore, a homeomorphism is a bijection which is continuous as well as open.

Examples 9.17 (a) If a < b and c < d are reals, then the linear mapping x �−→
c + (x − a) d−c

b−a is a homeomorphism from [a, b] onto [c, d].
(b) The unit interval [0, 1] is not homeomorphic to R. To see this, suppose f :

[0, 1] −→ R is a homeomorphism. Then f is a continuous surjective function.
By Theorem 5.31, R = f ([0, 1]) is compact, a contradiction.

(c) If d1 and d2 are topologically equivalent metrics on a space X, then (X, d1) and
(X, d2) are homeomorphic, with the identity map as a homeomorphism.

(d) By Theorem 5.34, every continuous bijection from a compact metric space onto
a metric space is a homeomorphism.

Example 9.18 Every isometry is a homeomorphism, while the converse is not true.
For For example, themapping x �−→ 2x from [0, 1] onto [0, 2] is a homeomorphism,
but not an isometry.

Proposition 9.19 (StereographicProjection)Let n ∈ Nand Sn := {x ∈ R
n+1 : ‖x‖2

= 1} be the unit sphere in R
n+1. Let N := (0, . . . , 0, 1) and S := Sn \ {N }. Then

the spaces S and R
n are homeomorphic.
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Proof Let f : S −→ R
n be defined as

f (x) :=
(

x1
1 − xn+1

, . . . ,
xn

1 − xn+1

)

for all x = (x1, . . . , xn+1) ∈ S.

Note that f is a bijection and its inverse g : Rn −→ S is given by

g(y) :=
(

2y1
‖y‖22 + 1

, . . . ,
2yn

‖y‖22 + 1
,
‖y‖22 − 1

‖y‖22 + 1

)

for all y = (y1, . . . , yn) ∈ R
n.

It can be shown that both f and g are continuous maps. Hence the result. �

Remark 9.20 For n = 2, the above homeomorphism has the following geometric
interpretation for the one-to-one correspondence between R

2 and S (in R3).

Let P be any point on S and P ′ be the
point of intersection of the line passing
through N and P with the plane R2.

Similarly, given any point Q′ on the
plane R2, let Q be the point of intersec-
tion of the line passing through N and Q′
with S.

We leave it for the reader to verify that
f (P) := P ′ and g(Q′) := Q.

For n > 2, analogous geometric interpretation of the stereographic projection
may be given.

Proposition 9.21 Any bijection between two metric spaces, which also induces a
bijection between their bases, is a homeomorphism.

Proof Let X,Y be metric spaces with basis BX and BY , respectively. Suppose that
f : X −→ Y is a bijection which induces a bijection from BX onto BY .

Let x ∈ X be arbitrary, and V ∈ BY be an open neighborhood of f (x). Then
x ∈ f −1(BY ) ∈ BX , and hence f −1(BY ) is an open neighborhood of x . Thus, f is
continuous at x, and hence f is continuous. Similarly, f −1 is also continuous. �

Our next result provides a topological characterization of the space Q of rational
numbers.

Theorem 9.22 (Sierpiński, 1920) Any two countable perfect metric spaces are
homeomorphic.

Proof (Dashiell, [5]) Let (X, dX ) and (Y, dY ) be countable perfect metric spaces.
Enumerate X and Y as sequences of distinct terms, say X = {xn : n ∈ N} and Y =
{yn : n ∈ N}. Let
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D := {dX (xn, xm) : n = m} ∪ {dY (yn, ym) : n = m}.

Then D is a countable subset of positive reals. Let S be an arbitrary nonempty open
subset of X. Define x(S) := xk, where k = min{i : xi ∈ S}. For r > 0, write

B(S; r) := BX
(

x(S); r) and G(S; r) := S \ B(S; r).

We claim that there exists an arbitrary small r > 0 such that B(S; r) and G(S; r)
split S into two nonempty disjoint open sets.

To see this, write x := x(S). Since x is not isolated, there exists x ′ ∈ S such
that x ′ = x . Pick any r ∈ (0, dX (x, x ′)) \ D such that B(x; r) ⊂ S. Then x ′ ∈ S \
B(x; r) = G(S; r). Since r /∈ D, we have G(S; r) = {s ∈ S : dX (s, x) > r} which
is open and nonempty. This proves our claim.

Analogously we treat nonempty open subsets of Y, and write y(S) in place of
x(S).

Wewill use such a splitting to generate sequences of partitions of X and Y indexed
by WG . Here WG is the set of words consisting of letters B and G whose first
letter is always G; that is WG := {G,GG,GB,GGG,GGB,GBG,GBB, . . . }.
For t ∈ WG, its length |t | is the number of letters in t, and t is called blue (respectively,
green) if its last letter is B (respectively, G); t B and tG extend t by letters B and G,

respectively.
Let UG := X and VG := Y. Suppose that open sets Ut and Vt are defined for all

t ∈ WG with |t | = n, for some n ∈ N. Note that there are 2n−1 words t ∈ WG with
|t | = n. By our previous claim, one can choose a single rn+1 ∈ (

0, 1
n+1

)

to split Ut

and Vt for all such t. For all t ∈ WG with |t | = n, define

UtB := B(Ut ; rn+1) and UtG := G(Ut ; rn+1)

VtB := B(Vt ; rn+1) and VtG := G(Vt ; rn+1).

Note that if x ∈ X is equal to x(Ut ) for some green t, then it becomes the center of the
balls Us, for all s ∈ {t B, t BB, t BBB, . . . }; and these form a decreasing sequence
of balls with center x and radii −→ 0. Also, each x ∈ X is equal to xUt for some
green t.Hence, each x ∈ X is equal to x(Ut ) for a unique green t. It also ensures that
{Ut : t ∈ WG} is a base for open subsets of X. Similar results hold for {Vt : t ∈ WG}.

Next, we claim that the desired homeomorphism f : X −→ Y is given by

f (x(Ut )) := y(Vt ) for all green t ∈ WG .

From our previous observation, it is immediate that f is a bijection from X onto Y.

Applying Proposition 9.21, it is enough to show that f (Ut ) = Vt for every t ∈ WG .

To see this, let y ∈ Vt . Then y = y(Vtt ′), for some t t ′ ∈ WG . Hence, y = y(Vtt ′) =
f (x(Utt ′)) ⊂ f (Ut ).Therefore, Vt ⊂ f (Ut ). Similarly, f (Ut ) ⊂ Vt .This proves the
result. �
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Corollary 9.23 Every countable metric space is homeomorphic to a subspace of
the space of rational numbers.

Proof Let X be a countable metric space. If X ′ = ∅, then X ′ is a perfect countable
metric space, and hence homeomorphic to Q ∩ (0, 1/2). Also, the set of isolated
points of X, that is X \ X ′, is homeomorphic to a subset of N. Consequently, X =
X ′ ∪ (X \ X ′) is homeomorphic to a subspace of (Q ∩ (0, 1/2)) ∪ N, and hence to
a subspace of Q. �

History Notes 9.24 The Sierpiński’s theorem (9.22) was published by Wacław
Sierpiński in 1920 in the first volume of Fundamenta Mathematicae (see [1]). Since
then various proofs of this result appeared in the literature, e.g. [2, p. 370], [3, p. 318]
and [4]. However, there had been no complete self-contained metric space proof of
this theorem, which can be given in a course in real analysis until 2021. For more
details, the reader is referred to [5].

Definition 9.25 A property P of metric spaces is said to be a topological property
if it is invariant under homeomorphisms. That is, if a space X has property P, then
every space homeomorphic to X also possesses the property P.

None of completeness, boundedness, or total boundedness is a topological prop-
erty.

Examples 9.26 The mapping x −→ tan πx
2 is a homeomorphism from (−1, 1) onto

R. Therefore, (−1, 1) is homeomorphic to R.

(a) Note that (−1, 1) is bounded and totally bounded, whileR is not even bounded.
Therefore, neither boundedness nor total boundedness is a topological property.

(b) Further (−1, 1) is incomplete, whileR is complete. Hence, completeness is also
not a topological property.

Whether two given topological spaces are homeomorphic, is a fundamental prob-
lem in topology. To establish that spaces are not homeomorphic, it is enough to find
a topological property which is not shared by them.

Examples 9.27 Compactness is a topological property, since continuous image of
every compact set is compact (see Theorem 5.31). Similarly, by Theorems 6.9 and
6.20, path connectedness and connectedness are also topological properties. Hence,

(a) R is not homeomorphic to [0, 1], since [0, 1] is compact while R is not.
(b) (0, 1) is not homeomorphic to R \ {0}, as (0, 1) is connected while R \ {0} is

not connected.

Next, we show that real normed spaces which are isometric as metric spaces
(via an isometry fixing the origin) are actually isometric as normed spaces. It is an
important result which lead to the development of Lipschitz geometry.

Theorem 9.28 (Mazur-Ulam, 1932) Let X and Y be normed spaces over R and
T : X −→ Y be a surjective isometry such that T (0) = 0. Then T is linear.
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Proof (Nica, [6]) Since T is continuous, it is enough to show that

T

(
x + y

2

)

= T (x) + T (y)

2
for all x, y ∈ X.

Fix x, y ∈ X. For every surjective isometry F : X −→ Y with F(0) = 0, define its
defect as

de f (F) :=
∥
∥
∥
∥
F

(
x + y

2

)

− F(x) + F(y)

2

∥
∥
∥
∥
.

Since F is an isometry, it follows that

de f (F) ≤
∥
∥
∥
∥
F

(
x + y

2

)

− F(x)

∥
∥
∥
∥

+
∥
∥
∥
∥
F

(
x + y

2

)

− F(y)

∥
∥
∥
∥

=
∥
∥
∥
∥

x − y

2

∥
∥
∥
∥
. (9.1)

For each z ∈ X, define S(z) := T (x) + T (y) − z and T1(z) := (T−1 ◦ S ◦ T )(z).
Then S and T1 are surjective isometries from X onto Y, fixing origin. Further, it
can be shown that T1(x) = y, T1(y) = x, and de f (T1) = 2de f (T ). If de f (T ) = 0,
iterating like this, we obtain a surjective isometry T : X −→ Y for which de f (T )

exceeds ‖ x−y
2

∥
∥, a contradiction to (9.1). So de f (T ) = 0, and hence the result. �

Definition 9.29 Two metric spaces X and Y are said to be

(a) uniformly equivalent if there exists a uniformly continuous bijection f : X −→
Y such that f −1 is also uniformly continuous.

(b) Lipschitz equivalent or lipeomorphic if there exists a Lipschitz continuous bijec-
tion f : X −→ Y such that f −1 is also Lipschitz continuous. In this case, f is
said to be a lipeomorphism from X onto Y.

Homeomorphic spaces are also known as topologically equivalent spaces. The
relationship among these three types of equivalences and the properties preserved
by them can be discussed analogous to the case of equivalent metrics of the previous
section.

Notes and Remarks 9.30 We conclude this section with a few important results
about homeomorphisms. We are omitting their proofs as they are beyond the scope
of this textbook.

(a) If m = n, then R
n and R

m are not homeomorphic. The result is trivial if either
of m or n is 1 but the general case is not so quick. For details we refer [7].

(b) Recall that compact and connected metric spaces are known as continuum. A
point of a connected metric space whose complement is disconnected is termed
as a cut point. The following results can be found in [8]:

(i) If X is a continuum, then X has exactly two non-cut points if and only if
it is homeomorphic to [0, 1].

(ii) Let X be a continuum such that X \ {a, b} is not connected, for all distinct
a, b ∈ X. Then X is homeomorphic to the circle {(x, y) : x2 + y2 = 1}.
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(c) Every ultrametric space can be embedded isometrically in a real Hilbert space
(see [9]).

(d) Normed linear spaces X and Y are said to be linearly homeomorphic (isometric)
if there exists a linear homeomorphism (isometry) from X onto Y. Every sep-
arable infinite-dimensional Hilbert space is linearly isometric to the sequence
space �2 (see [10, p. 397, Theorem 22.9]).
Any two separable infinite-dimensionalBanach spaces are (topologically) home-
omorphic (see [11]). If a separable Banach space X embeds isometrically into
another Banach space Y, then X embeds linearly isometrically into Y (see [12,
p. 131, Corollary 3.3]). Further, it remains an open problem that whether any
two (infinite-dimensional) lipeomorphic separable Banach spaces are linearly
homeomorphic? A thorough survey in this direction can be found in [13].

Exercise 9.31 Let S := {0} ∪ {1/n : n ∈ N \ {1}} and f : N −→ S be defined as

f (1) := 0 and f (n) := 1

n
for all n ∈ N \ {1}.

Prove that f is continuous, but not a homeomorphism.

Exercise 9.32 Let X and Y be metric spaces and f : X −→ Y be a bijective func-
tion. Prove the following assertions:

(a) f maps open sets onto open sets ⇐⇒ xn −→ x, whenever f (xn) −→ f (x).
(b) f is a homeomorphism ⇐⇒ both f and f −1 preserve convergent sequences.

Exercise 9.33 Prove that the mapping x �−→ x/(1 + |x |) from R onto (−1, 1) is a
homeomorphism, but not an isometry.

Exercise 9.34 Prove that separability is a topological property.

Exercise 9.35 Prove that cut points are preserved under homeomorphisms.

Exercise 9.36 Prove that a metric space X is not totally bounded if and only if X
has an infinite subspace, homeomorphic to a discrete metric space.

Exercise 9.37 Is any of the following intervals homeomorphic to R :
(a) (−1, 1), (b) (0,+∞), (c) [0, 1), (d) [0,+∞)?

Exercise 9.38 For the proof of Proposition 9.19, show that f is bijectivewith inverse
g and that both f and g are continuous functions.

Exercise 9.39 Prove that {z ∈ C \ {1} : |z| = 1} is homeomorphic to R.

Exercise 9.40 Prove that every open interval is homeomorphic to R.

Exercise 9.41 Prove that any two open balls in R
n are homeomorphic.

Exercise 9.42 Let n ∈ N. Prove thatR is homeomorphic toRn if and only if n = 1.
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Exercise 9.43 Prove that circles and ellipses in R2 are homeomorphic.

Exercise 9.44 Is (0, 1) homeomorphic to {(t, t2) ∈ R
2 : t ∈ R}?

Exercise 9.45 Let f : X −→ Y be a continuous function. Define

G f := {(x, f (x)) : x ∈ X}.

Does there exist a homeomorphism between X and the subspace G f of X × Y ?

Exercise 9.46 Let f : X −→ Y be a homeomorphism and A ⊂ X. Does it imply
that A and f (A) are also homeomorphic?

Exercise 9.47 Let X and Y be metric spaces and f : X −→ Y be a bijection. Prove
that f is a homeomorphism if and only if f (E) = f (E) for every E ⊂ X.

Exercise 9.48 Prove that every homeomorphism maps connected components onto
connected components.

Exercise 9.49 Let C denote the collection of subspaces of R2, given by the graphs
of the capital letters {A, B,C, D, E, H, P, X} of the English alphabet. Prove that
no two elements of C are homeomorphic.

Exercise 9.50 Classify all English alphabets into equivalence classes, given by the
homeomorphism relation on their shape as capital letters in R2.

Exercise 9.51 Let f : C −→ Cbe ahomeomorphismwhichmaps {z ∈ C : |z| = 1}
onto x-axis. Prove that f maps {z ∈ C : |z| < 1} onto the upper half plane {x + iy :
y > 0} if and only if the imaginary part of f (0) is positive.

Exercise 9.52 (Pythagorean Triplets via Stereographic Projection) Consider the
stereographic projection of the real line over the unit circle in R

2. Show that under
this transformation, the point m/n ∈ Q corresponds to

(
2mn

n2 + m2
,
n2 − m2

n2 + m2

)

,

which leads to the Euclid’s formula for Pythagorean triples.

Exercise 9.53 Let f : R2 −→ R
2 be an isometry which fixes three non-collinear

points. Prove that f (x) = x for all x ∈ R
2.

Exercise 9.54 Let f, g : Rn −→ R
n be two isometries which agree on n + 1 non-

collinear points. Prove that f ≡ g on R
n.

Exercise 9.55 Let C be an arbitrary circle in R3 and L be any line disjoint from C.

The surface obtained by revolving C around L is known as a torus in R
3. In R

3,

prove that no sphere is homeomorphic to any torus.
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Exercise 9.56 Ifd(a, b) := | tan−1 a − tan−1 b| for all a, b ∈ [−∞,+∞],prove that
(a) d is a metric on [−∞,+∞].
(b) d is equivalent to the usual metric on the induced space R.

(c) ([−∞,+∞], d) is homeomorphic to [−π/2,+π/2].
(d) ([−∞,+∞], d) is compact.

Exercise 9.57 Let Xn be the union of n unit segments inRn, emanating from origin.
Prove that Xn is homeomorphic to Xm ⇐⇒ m = n or (m, n) ∈ {(1, 2), (2, 1)}.
Exercise 9.58 Let X1 and Y1 be metric spaces, homeomorphic to X2 and Y2, respec-
tively. Let fx and fy be homeomorphisms from X1 onto X2 and from Y1 onto Y2,
respectively. Let g : X1 −→ Y1 be a uniformly continuous function. Is it necessary
that fy ◦ (

g ◦ ( f −1
x )

) : X2 −→ Y2 is uniformly continuous?

Exercise 9.59 Up to homeomorphisms, characterize metric spaces having a unique
dense subset.

Exercise 9.60 Does there exist any metric d on Q, such that (Q, d) is
(a) complete, (b) compact, or (c) connected? Justify your answers.

Exercise 9.61 Let X be any countably infinite set. Does there exist any metric d on
X, such that the metric space (X, d) is (a) perfect, (b) perfect as well as complete?

Exercise 9.62 Does there exist a metric space X, not homeomorphic to a discrete
space, such that every open ball in X is a closed subset of X?

Exercise 9.63 Let X be the vector space of all sequences {xn} of complex numbers
such that

∑∞
n=1 2

n|xn| < ∞. Define ‖{xn}‖ := ∑∞
n=1 2

n|xn| for all {xn} ∈ X. Is X a
complete normed space? What is the dimension of X?

Exercise 9.64 Let X and Y be normed spaces over R and f : X −→ Y be a con-
tinuous map. Prove that the following are equivalent:

(a) f
(
a+b
2

) = f (a)

2 + f (b)
2 for all a, b ∈ X.

(b) f (ta + (1 − t)b) = t f (a) + (1 − t) f (b) for all a, b ∈ X and t ∈ [0, 1].
(c) f (ta + (1 − t)b) = t f (a) + (1 − t) f (b) for all a, b ∈ X and t ∈ R.

(d) The mapping x �−→ f (x) − f (0) is linear.

Exercise 9.65 Let O be a nonempty open subset of a complete metric space (X, d).

Prove that O is homeomorphic to a complete metric space.

Exercise 9.66 Prove Baire Category Theorem (8.33) for nonempty open subsets of
complete metric spaces.



9.3 Extension Theorems for Continuous Functions 259

9.3 Extension Theorems for Continuous Functions

Consider the question of extending a continuous function from a subset of metric
space to the whole space continuously. One such extension theorem has already
been presented in Corollary 5.39. A natural question is to ask whether continuous
extensions always exist? The answer is in the negative, in general.

Example 9.31 The function x �−→ 1
x is continuous on (0, 1) but cannot be extended

to [0, 1] as a continuous function (see Corollary 5.32(b)).

In some particular situations, it is possible.We shall discuss some results in this direc-
tion. First we present the Tietze Extension Theorem, which requires the Urysohn’s
Lemma.

Lemma 9.32 (Urysohn’s lemma, 1925) Let F1 and F2 be disjoint nonempty closed
subsets of a metric space X. Then there exists a continuous function f : X −→ [0, 1]
such that

f |F1 ≡ 0 and f |F2 ≡ 1.

Proof Consider a function f : X −→ [0, 1] defined as

f (x) := dist (x; F1)

dist (x; F1) + dist (x; F2)
for all x ∈ X.

We leave it for the reader to show that f satisfies all our requirements �

Remark 9.33 In fact the above function f is Lipschitz continuous, and there are
several other functions with these properties (see Exercises 9.68-9.69).

Theorem 9.34 (Tietze Extension Theorem, 1915) Let F be a closed subset of metric
space X and g : F −→ C be a continuous function. Then there exists a continuous
function f : X −→ C such that f |F ≡ g. Moreover if |g| ≤ 1 on F, then f can be
chosen so that | f | ≤ 1 on X.

Proof Let g(F) denote the range of g. If g(F) ⊂ [1, 2], then one can show that the
function f defined as under has the desired properties.

f (x) :=
{

g(x) ; x ∈ F,

inf{g(a)d(x, a) : a ∈ F}/dist (x; F) ; x ∈ X \ F.

Consider the case when g(F) ⊂ [−1, 1]. Since the interval [−1, 1] is homeomor-
phic to [1, 2], there exists a continuous function f : X −→ [−1, 1] satisfying our
requirement.

Suppose g(F) ⊂ R. Let h : R −→ (−1, 1) be a homeomorphism and write g1 :=
h ◦ g. Since g1 : F −→ (−1, 1) ⊂ [−1, 1] is a continuous function, there exists a
continuous function f1 : X −→ [−1, 1] such that f1|F ≡ g1. Let F1 := {x ∈ X :
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| f1(x)| = 1}. If F1 = ∅, then f := h−1 ◦ f1 is the required function. Otherwise, we
proceed as follows:

Applying Lemma 9.32, consider a continuous function p : X −→ [0, 1] such that
p|F1 ≡ 0 and p|F ≡ 1. Let P := p × f1. Then P : X −→ (−1, 1) is a continuous
function and P|F = g1. Write f := h−1 ◦ P. Then f : X −→ R is a continuous
function such that f |F = g, as required.

Finally, let g : F −→ C. Then its real and imaginary parts, respectively denoted
by Re(g) and Im(g), are continuous functions from F to R. Applying previous
calculations, there are continuous functions H1, H2 : X −→ R such that H1|F =
Re(g) and H2|F = Im(g). Then f := H1 + i H2 satisfies our requirements.

Suppose that |g| ≤ 1. Let G be a homeomorphism from {z ∈ C : |z| ≤ 1} onto
{x + iy ∈ C : −1 ≤ x, y ≤ 1}. Since Re(G ◦ g) and Im(G ◦ g) are continuous
functions from F into [−1, 1], there are continuous functions h1 and h2 from X
onto [−1, 1] such that h1|F = Re(G ◦ g) and h2|F = Im(G ◦ g). It can be shown
that f := G−1 ◦ (h1 + ih2) : X −→ C satisfies our requirements. �

Corollary 9.35 (Beer, [14]) Let (X, d) be a metric space. Then the following are
equivalent:

(a) X is complete.
(b) Every continuous map from X onto another metric space Y maps Cauchy

sequences onto Cauchy sequences.
(c) Every continuousmap from X onto anothermetric space Y maps totally bounded

sets sequences onto totally bounded sets.

Proof We prove the result by showing that (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b): This holds as every Cauchy sequence in X is convergent.
(b) ⇒ (c): Let Y be a metric space, f : X −→ Y be continuous, and let A be a totally

bounded subset of X. To prove that f (A) is totally bounded, let {yn} be a
Cauchy sequence in f (A). Then there exists a sequence {xn} ⊂ A such that
yn = f (xn) for all n ∈ N. Since A is totally bounded, {xn} has a Cauchy subse-
quence,. Without loss of generality, suppose that {xn} itself is Cauchy. By (b),
{ f (xn)} is Cauchy.

(c) ⇒ (a): Suppose there exists a Cauchy sequence {xn} in X which does not converge in X.

Without loss of generality, suppose that all terms of {xn} are distinct. By Tietze
Extension Theorem (9.34), there exists a continuous function f : X −→ R such
that f (xn) = n for all n ∈ N. So { f (xn) : n ∈ N} is not totally bounded, while
the set {xn : n ∈ N} is totally bounded. �

In general, homeomorphic extensions are not possible even in some of the simplest
cases.

Examples 9.36 (a) Let f : {0, 1} −→ {0, 1} be defined as f (1) := 0 and f (0) :=
1. Then there exists no homeomorphic extension of f from [−1, 1] onto itself.

(b) Let f : {−1, 0, 1} −→ {−1, 0, 1} be defined as f (−1) := 0, f (0) := −1 and
f (1) := 1. Then there exists no homeomorphic extension of f from R onto
itself.
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Proof (a) Suppose there exists such a homeomorphic extension of f. Since 0 is a
cut point of [−1, 1] and cut points are preserved under homeomorphisms, we
obtain f (0) = 1 as a cut point of [−1, 1], a contradiction.

(b) Suppose g is a homeomorphic extension of f. By Intermediate Value Theorem
(6.12), g([0, 1]) contains the interval [−1, 1]. Hence, g(−1) = 0 ∈ [−1, 1] ⊂
g([0, 1]), which implies that −1 ∈ [0, 1], a contradiction. �
However, homeomorphisms between compact subsets of R extend to self-homeo

morphisms on R
2.

Theorem 9.37 If f : A −→ B is a homeomorphism between compact subsets A
and B of R, then it has a homeomorphic extension g : R2 −→ R

2, identifying R as
the subspace R × {0} of the plane R2.

Proof Identifying R with I := (−1, 1), we assume that A, B ⊂ (−1, 1). Note that
it is enough to obtain a homeomorphic extension of f from I 2 onto itself.

Let K be a compact set, containing both A and B, inside I. For t ∈ K , let Ht :
I −→ I be the (unique) homeomorphism which maps linearly [−1, t] onto [−1, 0]
and [t, 1] onto [0, 1].

Define φ : B −→ K by φ(x) := f −1(x) By Tietze Extension Theorem (9.34),
there exists a continuous extension η : I −→ K of φ. Define h1 : I 2 −→ I 2 as

h1(x, y) := (Hη(y)(x), y) for all x, y ∈ I.

It can be proved that h1 is a homeomorphism. Further for a ∈ A, we have

h1(a, f (a)) = (Hη( f (a))(a), f (a)) = (Ha(a), f (a)) = (0, f (a)).

If G := {(a, f (a)) : a ∈ A} ⊂ I 2, then h1(G) = {0} × B. Define h2 : I 2 −→ I 2 as

h2(x, y) := (x, Hη(y)(x)) for all x, y ∈ I.

As above, h2 is a homeomorphism and h2(a, f (a)) = (a, 0) for all
a ∈ A. Let ξ : I 2 −→ I 2 be the homeomorphism given by (x, y) �−→ (y, x) and
g := ξ ◦ h1 ◦ h−1

2 . It can be shown that g is a self-homeomorphism on I 2 with

g(a, 0) = (ξ ◦ h1 ◦ h−1
2 )(a, 0) = ξ(h1(h

−1
2 (a, 0)))

= ξ(h1(a, f (a))) = ξ(0, f (a)) = ( f (a), a).

This completes the proof. �
Remark 9.38 The above result is taken from [15, p. 260]. In [15, Chap. 6], three
methods to construct new homeomorphisms from the old are presented. For more
on homeomorphic extensions, we refer [16, Sects. 6.9 and 6.11], and [17]. The latter
paper provides conditions under which homeomorphisms between compact subsets
of spaces X and Y extend to a homeomorphisms between X and Y. This paper ends
with the following open question:
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Open Question 9.39 Is there an integer n > 1 such that every homeomorphism
between compact subsets of Rn is extendible to a self-homeomorphism of Rn?

Next, we extend the notion of oscillations, already discussed in Sect. 7.3.2, to
functions on an arbitrary subset of a given space. Let X and Y be metric spaces,
A ⊂ X and f : A −→ Y be a given function. The oscillation of a function f at an
element x ∈ X is defined as

ω( f ; x) := inf{diam( f (B(x; δ) ∩ A)) : δ > 0}.

Theorem 9.40 (Kuratowski) Let X and Y be metric spaces such that Y is complete.
Let A ⊂ X and f : A −→ Y be continuous. Then there exists a Gδ-set G with
A ⊂ G ⊂ A and a continuous extension g : G −→ Y of f.

Proof Let G := A ∩ {x ∈ X : ω( f ; x) = 0}. By Theorems 7.37 and 7.39, and
Proposition 7.36, G is a Gδ-subset of X with A ⊂ G ⊂ A. Let x ∈ G and choose a
sequence {xn} from A, convergent to x . Then

lim
n→∞ diam({ f (xm) : m ≥ n}) = 0.

Therefore, { f (xn)} is a Cauchy sequence in Y and hence convergent in Y. Define
g(x) := limn→∞ f (xn). We leave it for the reader to show that g is independent of
the choice of sequence {xn} and extends f.

To show that g is continuous on G, let x ∈ G and δ > 0. Then the definition of g
implies that g(B(x; δ)) ⊂ f (B(x; δ)). So, diam(g(B(x; δ))) ≤ diam( f (B(x; δ)))
= diam

(

f (B(x; δ))
)

, which implies that 0 ≤ ω(g; x) ≤ ω( f ; x) = 0, as f is con-
tinuous at x . Hence, ω(g; x) = 0 and therefore, g is continuous at x . �

Theorem 9.41 (Lavrentiev)Let X and Y be completemetric spaces, A ⊂ X, B ⊂ Y
and f : A −→ B be a homeomorphism. Then f can be extended to a homeo-
morphism h : G −→ H, where both G, H are Gδ-sets satisfying A ⊂ G ⊂ A and
B ⊂ H ⊂ B.

Proof By Theorem 9.40, obtain Gδ-sets G1, H1 satisfying A ⊂ G1 ⊂ A, and B ⊂
H1 ⊂ B and continuous extensions f1 : G1 −→ Y and g1 : H1 −→ X of f and f −1,

respectively. Let

G := {x ∈ G1 : (g1 ◦ f1)(x) = x} and H := {y ∈ H1 : ( f1 ◦ g1)(y) = y}.

Then A ⊂ G ⊂ G1 and B ⊂ H ⊂ H1. Define h : G −→ H as h := f1|G . Then h is
a homeomorphism. Therefore, it is enough to show that G and H are Gδ-sets.

Let p : G1 −→ X × Y denote the continuous mapping x �−→ (x, f1(x)). Then
G = p−1(S), where S := {(x, y) : x = g1(y)}. Since g1 is continuous, S is a closed
subset of X × H1. By Theorem 7.39, S is a Gδ in X × Y. Since G = p−1(S) and p
is continuous, G is a Gδ in X. Similarly, H is also a Gδ in Y. Hence the result. �
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Corollary 9.42 Let (X, d) be a complete metric space and Y ⊂ X such that (Y, d ′)
is complete, for some metric d ′ on Y equivalent to d. Then Y is a Gδ-subset of (X, d).

Proof Let f : Y −→ Y be the identitymap. Since it is continuous, by Theorem 9.40,
there exists a Gδ-set G with Y ⊂ G ⊂ Y and a continuous extension g : G −→ Y of
f. Then Y is dense in G. Thus, g is also an identity map on G which implies G ⊂ Y.

Consequently, Y = G. Hence the result. �
Next, we generalize Corollary 5.39. For a variant, see Exercise 4.19.

Theorem 9.43 Let X,Y be metric spaces such that Y is complete. Let A be a dense
subset of X and f : A −→ Y be a uniformly continuous map. Then there exists a
unique uniformly continuous function F : X −→ Y such that F |A = f.

Proof Uniqueness: Let f1 and f2 be continuous extensions of f to X. Pick any
x ∈ X = A. Then there exists a sequence {xn} ⊂ A such that xn −→ x . Since f1, f2
are continuous at x,

f1(x) = lim
n→∞ f1(xn) = lim

n→∞ f (xn) = lim
n→∞ f2(xn) = f2(x).

Existence: Let x ∈ X = A. Choose a sequence {an} in A such that an −→ x .
Being convergent, {an} is Cauchy and hence { f (an)} is a Cauchy sequence in the
complete metric space Y. Define F(x) := limn→∞ f (an). We claim that F : X −→
Y is the required extension. Let dX and dY denote themetrics on X andY, respectively.

To see that F is well-defined, let {an} and {bn} be sequences from A, convergent
to some x . Since dX (an, bn) ≤ dX (an, x) + dX (x, bn), we obtain dX (an, bn) −→ 0.
As f is uniformly continuous on A, dY ( f (an), f (bn)) −→ 0. Hence, both { f (an)}
and { f (bn)} converge to the same limit.

It is immediate that F(a) = f (a) for all a ∈ A. To prove that F is uniformly
continuous on X, let ε > 0 be given. Then there exists some δ > 0 such that

dY ( f (a), f (b)) <
ε

3
for all a, b ∈ A with dX (a, b) < δ.

Let x, y ∈ X such that dX (x, y) < δ
3 . The definition of F ensures a, b ∈ A such that

dX (x, a) <
δ

3
, dX (y, b) <

δ

3
, dY (F(x), f (a)) <

ε

3
and dY (F(y), f (b)) <

ε

3
.

Then

dX (a, b) ≤ dX (a, x) + dX (x, y) + dX (y, b) <
δ

3
+ δ

3
+ δ

3
= δ.

Therefore, dY ( f (a), f (b)) < ε
3 and consequently, we obtain

dY (F(x), F(y)) ≤ dY (F(x), f (a)) + dY ( f (a), f (b)) + dY ( f (b), F(y))

<
ε

3
+ ε

3
+ ε

3
= ε.
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This establishes that F is uniformly continuous. Hence the result. �

Note that every complete subspace of a metric space is its closed subset and hence
a Gδ (see Theorems 4.2 and 7.39). The converse is not true, as (0, 1) is a Gδ but not
a complete subspace of R. However, the following result can be treated as a weaker
converse.

Theorem 9.44 (Alexandroff) Let (X, d) be a complete metric space and Y be a
nonempty Gδ-subset of X. Then there exists a metric d ′ on Y such that

(a) d ′ and d are topologically equivalent on Y.

(b) (Y, d ′) is a complete metric space.

Proof Since Y is a Gδ in X, we have Y = ⋂∞
n=1 On, for a sequence {On} of open

subsets of X. Let Fn := X \ On for all n ∈ N. For each x, y ∈ Y, define

d ′(x, y) := d(x, y) +
∞

∑

n=0

min

{
1

2n+1
,

∣
∣
∣
∣

1

d(x, Fn)
− 1

d(y, Fn)

∣
∣
∣
∣

}

,

here d(t, Fn) := min{d(t, s) : s ∈ Fn}. It can be shown that d ′ is a metric on Y. We
claim that d ′ is the required candidate.

Let {yk} be aCauchy sequence in (Y, d ′).Then it is alsoCauchy sequence in (Y, d).

Since (X, d) is complete there exists some y ∈ X such that yk −→ y in (X, d). Fix
n ∈ N.Note that

{
1

d(yk ,Fn)

}

k is aCauchy sequence of reals and hence convergent. Con-
sequently, {d(yk, Fn)}k is convergent in R \ {0}. Since {d(yk, Fn)}k −→ d(y, Fn),

as k −→ ∞, we conclude that d(y, Fn) > 0. Hence, y ∈ X \ Fn = On. Therefore,
y ∈ ⋂∞

n=1 On = Y. Clearly, yk −→ y in (Y, d ′).
This shows that (Y, d ′) is a complete metric space. We leave it for the readers to

show that d and d ′ are equivalent on X, which establishes the result. �

Remarks 9.45 A separable metric space X is called countably dense homogeneous
(CDH) if for any two countably dense subsets A and B of X, there exists a homeo-
morphism f : X −→ X such that f (A) = B and f (B) = A.

Finite-dimensional Euclidean spaces Rn are CDH (see [18, p. 46]). Very little is
known about CDH spaces. A collection of open problems in this direction can be
found in [19].

History Notes 9.46 A special case of Tietze Extension Theorem (9.34) was first
proved by L. E. J. Brouwer and Henri Lebesgue, where X is a finite-dimensional
real vector space. It was extended to metric spaces by Heinrich Tietze and then to
normal topological spaces by Paul Urysohn.

Exercise 9.67 Is the hypothesis that ‘F is a closed set’, redundant in the Tietze
Extension Theorem (9.34)?

Exercise 9.68 Let F1, F2 and (X, d) be as in Urysohn’s lemma (9.32), and f be the
continuous function presented in the proof of this lemma. Prove the following:
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(a) Let δ > 0 and S := {(a, b) ∈ R
2 : a ≥ 0, b ≥ 0, a + b ≥ δ}. Then the map g :

S −→ R defined as g(a, b) := a
a+b is Lipschitz continuous on S with Lipschitz

constant 1/δ.
(b) The maps x �−→ dist (x, Fi ); i = 1, 2, are Lipschitz continuous with Lipschitz

constant 1.
(c) If δ := dist (F1, F2), then δ > 0 and f is Lipschitz continuous with Lipschitz

constant 1/δ.

Exercise 9.69 Let F1, F2 and (X, d) be as in Urysohn’s lemma (9.32). For every
x ∈ X, we define

h1(x) := min

{

1,
dist (x, F1)

dist (F1, F2)

}

and h2(x) := max

{

0, 1 − dist (x, F1)

dist (F1, F2)

}

.

Prove that both h1 and h2 are Lipschitz continuous on X with Lipschitz constant
1/dist (F1, F2); and satisfy the requirements of the Urysohn’s lemma (9.32).

Exercise 9.70 Define f : {−1, 0, 1} −→ {−1, 0, 1} as

f (−1) := 0, f (0) := 1 and f (1) := −1.

Does there exists a homeomorphic extension of f from [−1, 1] onto itself?

Exercise 9.71 Does there exist any homeomorphism f : (0, 4) −→ (0, 4) such that
f (1) = 2, f (2) = 1 and f (3) = 3?

Exercise 9.72 Let a < c < d < b be reals. Does there exist a homeomorphism f :
(a, b) −→ (a, b) which swaps c and d, that is, f (c) = d and f (d) = c?

Exercise 9.73 Let I be an interval and a < b < c < d be reals inside I. Does there
exist a homeomorphism f : I −→ I which swaps a with b; and c with d?

Exercise 9.74 Let A and B be finite subsets of reals with same number of elements.
Prove that there exists a homeomorphism f : R −→ R such that f (A) = B.

Exercise 9.75 Let n ∈ N and α,β ∈ R
n. Give an example of a homeomorphism

from R
n onto itself, which swaps α and β.

Exercise 9.76 Prove that the function h1, as in the proof of Theorem 9.37 is a
homeomorphism.

Exercise 9.77 Complete all routine verifications in the proof of Tietze Extension
Theorem.

Exercise 9.78 In the proof of Theorem 9.44, show that the metrics d and d ′ are
equivalent on X.

Exercise 9.79 In the proof of Theorem 9.40, show that the function g is independent
of the choice of the sequence {xn} and extends f.
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Exercise 9.80 Let X be a metric space, A ⊂ X and f : A −→ R be a uniformly
continuous function. Prove that there exists a continuous function F : X −→ Y such
that F |A = f.

Exercise 9.81 Let X,Y be metric spaces, A be a dense subset of X, Ỹ be the com-
pletion of Y and f : A −→ Y be a uniformly continuous map. Then there exists a
unique uniformly continuous function F : X −→ Ỹ such that F |A = f.

Exercise 9.82 Can the uniform continuity in Theorem 9.43 be replaced with conti-
nuity?

Exercise 9.83 Let X be a metric space and C0(X) denote the set of f ∈ C(X) such
that for every ε > 0 there exists a compact set K ⊂ X such that | f (x)| < ε for all x ∈
X \ K .

(a) Prove that C0(X) is a Banach space under uniform norm.
(b) If X is compact and there exists x0 ∈ X such that X0 := X \ {x0} is not compact,

prove that every f ∈ C0(X0) can be extended to a function in C(X).

Exercise 9.84 Let X and Y be complete metric spaces. Prove that homeomorphisms
between dense subsets of X and Y can be extended to a homeomorphism between
Gδ subsets of X and Y, containing the given dense subsets.

Exercise 9.85 Let F be a closed subset of metric space X and g : F −→ R be
a bounded continuous function. Prove that there exists a continuous function f :
X −→ R such that

f |F ≡ g, inf f (X) = inf g(F) and sup f (X) = sup g(F).

9.4 Finite-Dimensional Normed Linear Spaces

In this section, we shall conclude that all norms on a finite-dimensional linear space
are equivalent. Further, on such spaces, every closed and bounded set is compact.

Theorem 9.47 Let X be a linear space with two norms ‖.‖1 and ‖.‖2. Let ρi be the
metric induced by ‖.‖i ; i = 1, 2. Then the following are equivalent.

(a) ρ1 and ρ2 are topologically equivalent
(b) ρ1 and ρ2 are uniformly equivalent, and
(c) ρ1 and ρ2 are Lipschitz equivalent.

Proof The implications (c) ⇒ (b) ⇒ (a) are immediate from the definitions. To
prove (a) ⇒ (c), assume thatρ1 andρ2 are topologically equivalent. Then the identity
maps (X, ρ1) −→ (X, ρ2) and (X, ρ2) −→ (X, ρ1) are both continuous. Since the
identity map on a normed space is linear, by Theorem 5.50, both of the above maps
are Lipschitz continuous. �



9.4 Finite-Dimensional Normed Linear Spaces 267

Hence, for a vector space X, two norms ‖.‖ and ‖.‖′ on X are said to be equivalent
if there exist positive constants α and β such that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖ for all x ∈ X.

Lemma 9.48 Let X be a finite-dimensional linear space with basis {b1, . . . , bm}.
For x = k1b1 + · · · + kmbm ∈ X, define

‖x‖∞ := max{|k1|, . . . , |km |}.

Then ‖.‖∞ is a norm on X and S := {x ∈ X : ‖x‖∞ = 1} is a compact subset of
(X, ‖.‖∞).

Proof It can be shown that ‖.‖∞ defines a norm on X. Since every normed space is
a metric space, by Theorem 5.27, it is enough to prove that every sequence in S has
a subsequence, convergent in S.

Let {xn} be any sequence in S. Write xn := ∑m
i=1 kn,i bi for all n ∈ N. Then for

every i ∈ {1, . . . ,m}, the sequence {kn,i }n is a bounded sequence of scalars, as

|kn,i | ≤ ‖xn‖∞ = 1 for all n ∈ N.

Applying theBolzano-Weierstrass Property of the scalar field and the diagonal proce-
dure finitely many times, as in Theorem 2.27, we conclude that {xn} has a convergent
subsequence, say {xn j } −→ x in (X, ‖.‖∞). The continuity of the map x �−→ ‖x‖∞
implies that ‖x‖∞ = lim j→∞ ‖xn j ‖∞ = 1, that is, x ∈ S. Hence, S is compact in
(X, ‖.‖∞). �

Theorem 9.49 On any finite-dimensional linear space, all norms are equivalent

Proof Let X be a finite-dimensional linear space, {b1, . . . , bm} and ‖.‖∞ be as in
Lemma 9.48, and ‖.‖ be any norm on X. Then for x = ∑m

i=1 kibi ∈ X, we have

‖x‖ ≤
m

∑

i=1

|ki |‖bi‖ ≤ ‖x‖∞
m

∑

i=1

‖bi‖ = β‖x‖∞, (say). (9.2)

By Lemma 9.48, S := {x ∈ X : ‖x‖∞ = 1} is a compact subset of (X, ‖.‖∞). For
x ∈ X, define T (x) := ‖x‖. From (9.2), it follows that T : (X, ‖.‖∞) −→ (X, ‖.‖)
is a continuous function which maps the compact set S into (0,∞). By Theorem
5.33, there exists α > 0 such that ‖x‖ ≥ α for all x ∈ S. If x = 0, then x

‖x‖∞ ∈ S
and thus ∥

∥
∥
∥

x

‖x‖∞

∥
∥
∥
∥

≥ α which implies ‖x‖ ≥ α‖x‖∞.

Hence, ‖.‖ and ‖.‖∞ are equivalent norms on X. Since the equivalence of norms on
a linear space X is an equivalence relation, the result follows. �



268 9 Homeomorphisms

Recall that given normed spaces X and Y are called linearly homeomorphic if
there exists a linear homeomorphism f : X −→ Y.

Theorem 9.50 If (X, ‖.‖) is a finite-dimensional normed linear space, then X is
linearly homeomorphic toKm for some m ∈ N. Consequently, X is a Banach space.

Proof Let {b1, . . . , bm} and ‖.‖∞ be as in Lemma 9.48. Define f : X −→ K
m as

f (x) := (k1, . . . , km) for all x =
m

∑

i=1

kibi ∈ X.

It is immediate that f is a linear bijection with ‖ f (x)‖∞ = ‖x‖∞ for all x ∈ X.

By Theorem 5.50, we conclude that f : (X, ‖.‖∞) −→ (Km, ‖.‖∞) is a homeomor-
phism. By Theorem 9.49, (X, ‖.‖) is linearly homeomorphic to the complete normed
space (Km, ‖.‖∞). Applying Theorem 9.10, it follows that X is a Banach space. �

Corollary 9.51 Every finite-dimensional subspace of a normed linear space is its
closed subspace.

Proof Apply Theorems 9.50 and 4.2. �

Next, we provide a generalization of the Heine-Borel Theorem (5.14).

Theorem 9.52 Let (X, ‖.‖) be a finite-dimensional normed linear space and E ⊂
X. Then E is compact if and only if E is closed and bounded in X.

Proof The necessity is immediate by Theorem 5.8 and Corollary 5.4. For the con-
verse, let E be a closed and bounded subset of X. Applying Theorem 9.50, X is
Banach, there exists n ∈ N and a linear homemorphism f : (X, ‖.‖) −→ (Kn, ‖.‖2).

Being a closed subset of a complete space X, E is complete. By Theorem 5.50,
f is Lipschitz continuous. Therefore f (E) is a complete and bounded subset of the
finite-dimensional space (Kn, ‖.‖2) and hence compact. Finally, the continuity of
f −1 ensures that E = f −1( f (E)) is compact in X. �

Note that Theorem 9.52 is not true in arbitrary normed linear spaces.

Example 9.53 Let X = c00 under ‖.‖2 norm and {en} be as in Example 4.43. Let
E := {en : n ∈ N}. Then E is a closed and bounded (X, ‖.‖2), but not compact.

Proof The set E is bounded, as for all m, n ∈ N such that m = n, we have

‖en − em‖2 = √
2. (9.3)

To see that E is closed, let x be a limit point of E in X. Then there exists a sequence
{xn} ⊂ E such that xn −→ x in X. Hence, {xn} is Cauchy. By (9.3), we conclude
that {xn} is eventually constant. Therefore, x ∈ E and hence E is closed. The above
arguments also conclude that {en} has no subsequence, convergent in X. Hence, E
is not sequentially compact. Applying Theorem 5.27, we conclude that E is not
compact. �
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Theorem 9.54 If all norms on a linear space X are equivalent, then X is finite-
dimensional.

Proof Assume that X is an infinite-dimensional space on which all norms are equiv-
alent. Let ‖.‖ be any norm on X. Choose a sequence {un} of linearly indepen-
dent elements of X such that ‖un‖ = 1 for all n. Let B be a basis of X containing
{un : n ∈ N}.

Let Y denote the subspace of X, spanned by {un : n ∈ N}. For every y =
∑∞

n=1 knun ∈ Y, define φ(y) := ∑∞
n=1 nkn. Note that all but finitely many terms

of the sequence {kn} are zero. Extend φ linearly to X by setting φ(b) = 0 for all b ∈
B \ {un : n ∈ N}. Define

‖x‖0 := ‖x‖ + |φ(x)| for all x ∈ X.

It can be shown that ‖.‖0 is a norm on X. By hypothesis, there exist some α > 0
such that ‖x‖0 ≤ α‖x‖ for all x ∈ X. Therefore,

√
n =

∣
∣
∣
∣
φ

(
un√
n

)∣
∣
∣
∣
≤

∥
∥
∥
∥

un√
n

∥
∥
∥
∥
0

≤ α

∥
∥
∥
∥

un√
n

∥
∥
∥
∥

= α√
n

−→ 0,

as n −→ ∞, which is absurd. Hence the result �

Theorem 9.55 If X is an infinite-dimensional Banach space, then X does not have
a countable basis.

Proof If possible, let {un} be a countable basis of X. Since X is infinite-dimensional,
this basis is countably infinite. For each n ∈ N, let Yn be the subspace of X spanned
by {u1, . . . , un}. By Corollary 9.51, each Yn is a closed subspace of X. Applying
Theorem 3.35, each Yn is nowhere dense. Since {un} is a basis of X, we have X =
⋃∞

n=1 Yn, a contradiction to the Baire Category Theorem (8.33). �

Remark 9.56 It is well known that any two algebraic bases of a linear space are in
one-to-one correspondence, which allows us to define the dimension of a linear space
as the cardinality of its basis. In 1945, itwas proved that if X is an infinite-dimensional
Banach space, then its dimension is at least c. In 1973, a short proof (without the
continuum hypothesis) proving that the dimension of any infinite-dimensional sep-
arable Banach space is c, appeared in AMS monthly. For details, see [20] and [21,
Theorem I-1, p. 158].

All non-trivial (non-zero) normed linear spaces are unbounded and hence non-
compact. Therefore, it is natural to lookout for normed spaces satisfying someweaker
property.

Definition 9.57 A metric space X is said to be locally compact if every x ∈ X has
a compact neighborhood.

Examples 9.58 The spaces (0, 1) and R are locally compact, while Q is not.
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Theorem 9.59 A normed linear space X is locally compact if and only if its closed
unit ball B[0; 1] is compact.
Proof The converse is immediate from B[x; 1] = x + B[0; 1]. Assume that X is
locally compact and consider a compact neighborhood V of 0. Pick any r > 0 such
that B(0; r) ⊂ V . Applying Theorem 3.38, B[0; r ] = B(0; r) is a closed subset of
V = V . Therefore, B[0; r ] is compact. Hence, so is the closed unit ball B[0; 1] =
1
r B[0; r ]. Hence the result. �

The next result is popularly known as the Riesz’s lemma. It can be easily proved
for finite-dimensional Euclidean spaces. We here present the general case.

Lemma 9.60 (F. Riesz, 1918) Let Y be a closed proper subspace of a normed linear
space X and 0 < r < 1. Then there exists xr ∈ X with ‖xr‖ = 1 such that

‖xr − y‖ > r for all y ∈ Y.

Proof Since Y = X, there exists some x ∈ X \ Y. Let d := inf{‖x − y‖ : y ∈ Y }.
Since Y is closed, d > 0. Let yr ∈ Y be such that ‖x − yr‖ < d

r . Set

xr := x − yr
‖x − yr‖ .

We show that xr is the required candidate. Clearly, ‖xr‖ = 1. Pick any y ∈ Y. Since
Y is a subspace, we have yr + ‖x − yr‖y ∈ Y. Hence,

‖xr − y‖ = ‖x − (yr + ‖x − yr‖)y‖
‖x − yr‖ >

d

d/r
= r.

This proves the lemma. �

Theorem 9.61 Let (X, ‖.‖) be a normed linear space. Then X is locally compact if
and only if X is finite-dimensional.

Proof The converse following from the fact that X is linearly homeomorphic toKn,

for some n; and that Kn is locally compact. To prove the necessity, write S := {x ∈
X : ‖x‖ = 1}, and assume that X is locally compact.

By Theorem 9.59, B[0; 1] is compact, and hence so is its closed subset S. There-
fore, S ⊂ ⋃n

i=1 B(xi ; 1/2), for some finitely many x1, . . . , xn ∈ X. Let Y be the
subspace of X spanned by x1, . . . , xn . By Corollary 9.51, Y is closed.

If X is infinite-dimensional, then Y = X. Applying Lemma 9.60 with r = 1/2,
there exists some x ∈ X such that ‖x‖ = 1 and ‖x − xi‖ ≥ 1/2 for all i = 1, . . . , n.

Therefore, we obtain x ∈ S \ ⋃n
i=1 B(xi ; 1/2), a contradiction. Hence the result. �

Applying Theorems 5.10, 9.49, 9.54, 9.52, 9.59, and 9.61, we conclude the fol-
lowing:

Corollary 9.62 If X is a normed space, then the following are equivalent:
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(a) X is finite-dimensional,
(b) X is locally compact,
(c) all norms on X are equivalent,
(d) the unit sphere {x ∈ X : ‖x‖ = 1} is compact,
(e) the closed unit ball {x ∈ X : ‖x‖ ≤ 1} is compact, and
(f) every closed and bounded subset of X is compact.

Remark 9.63 Several characterizations of finite-dimensional Banach spaces in
terms of Lipschitz functions can be found in [22].

Exercise 9.86 Show that the map x �−→ ‖x‖∞, as in Lemma 9.48 is a norm on X.

Exercise 9.87 In the proof of Theorem 9.55, why
⋃∞

n=1 Yn = X?

Exercise 9.88 Let Y and Z be linear subspaces of a normed linear space X such
that Y is closed and Z is finite dimensional. Prove that Y + Z is a closed subspace
of X.

Exercise 9.89 Let X be any infinite-dimensional normed linear space, x ∈ X and
r ≥ 0. Prove that the set {y ∈ X : ‖y − x‖ ≤ r} is compact if and only if r = 0.

Exercise 9.90 Let X be the vector space of all polynomials over reals. Does there
exist a norm on X which makes it a Banach space?

Exercise 9.91 Let Y be a finite-dimensional subspace of a normed linear space X.

Prove that Y is closed in X.

Exercise 9.92 Does there exist an infinite-dimensional normed linear space X such
that every subspace of X is complete?

Exercise 9.93 Prove that equivalent metrics admit the same class of locally compact
subsets.

Exercise 9.94 Let X be a normed linear space. Prove that the Riesz lemma with
r = 1 holds if and only if for every closed proper subspace Y of X, there are x ∈ X
and y ∈ Y such that ‖x − y‖ = dist (x; Y ).

Exercise 9.95 Let Y be a proper subspace of a finite-dimensional normed linear
space X. Prove that there exists some x ∈ X such that ‖x‖ = 1 and dist (x; Y ) = 1.

Exercise 9.96 Let X := { f ∈ C[0, 1] : f (0) = 0} equipped with the supremum
norm and Y := { f ∈ X : ∫ 1

0 f = 0}. Show that Y is a proper closed subspace of
X but there exists no x ∈ X such that ‖x‖ = 1 and dist (x; Y ) = 1.
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9.5 Hints and Solutions to Selected Exercises

9.7 Yes. Take ρ(x, y) := dX (x, y) + dY ( f (x), f (y)) for all x, y ∈ X.

9.8 (a) True. By scaling and translating, it is enough to prove the result for the
interval X := (−π/2,π/2).Define d(x, y) := | tan x − tan y| for all x, y ∈
X. Then d is a metric on X. Let {xn} be a Cauchy sequence in (X, d). Then
{tan xn} is a Cauchy sequence of reals and hence convergent, say tan xn −→
y0. Since tan : X −→ R is surjective, y0 = tan x0 for some x0 ∈ X.Hence,
xn −→ x0 in (X, d).

(b) False. Suppose d is a metric on [0, 1] such that ([0, 1], d) has the usual
topology. Then it is compact and hence complete.

9.11 Let F be closed in (X, d). Then F is compact in (X, d). Since d is stronger than
ρ, F is also compact in (X, ρ). Hence, F be closed in (X, ρ).

9.13 Both (a) and (b) follow from the basic definitions, as in Theorem 9.15.For (c),
note that η ≤ d and η ≤ 1. If there exists M > 0 such that d ≤ Mη, then d must
be bounded by M. It is impossible, if d is unbounded. This proves (c).

9.14 Note that

ρ(x, y) = 0 ⇐⇒ x

1 + |x | = y

1 + |y| ⇐⇒ x + x |y| = y + y|x |

and x, y have same sign. Usual componendo dividendo gives definiteness of ρ.

Further,

|xn − x | −→ 0 ⇐⇒ xn
1 + |xn| −→ x

1 + |x | ⇐⇒ ρ(xn, x) −→ 0.

Hence, d and ρ are equivalent. Assume that the identity map (X, ρ) −→ (X, d)

is uniformly continuous. Then for ε = 1, there exists δ > 0 such that

∣
∣

x

1 + |x | − y

1 + |y|
∣
∣ < δ ⇒ |x − y| < 1.

Since n
1+n −→ 1, for x and y in a suitable tail of this sequence, the above relation

is not satisfied, a contradiction.
9.15 (a) Pick any x ∈ X and r > 0. Then for r ′ := min{r, 1/2},

Bd(x; r) ⊂ Bη(x; r) and Bη(x; r ′) ⊂ Bd(x; r).

To prove the second inclusion, let y ∈ Bη(x; r ′). Then η(y, x) < r ′ ≤ 1/2,
which implies that η(y, x) = d(y, x). Hence, d(y, x) < r ′ ≤ r.

(b) For any x ∈ X and r > 0, we have

Bd(x; r) ⊂ Bρ(x; r) and Bρ

(

x; r

r + 1

)

⊂ Bd(x; r).
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9.20 Yes. Let

δ := inf{d(a, b) : a ∈ A, b ∈ B},
A1 :={x ∈ X : d(x, a) < δ/3 for some a ∈ A}

and B1 :={x ∈ X : d(x, b) < δ/3 for some b ∈ B}.

Then A1 and B1 are disjoint closed subsets of (X, d). Since ρ is equivalent to d,

these disjoint sets are closed in (X, ρ) too. Hence,

inf{ρ(a, b) : a ∈ A, b ∈ B} ≥ inf{ρ(a, b) : a ∈ A1, b ∈ B1} > 0.

9.21 Yes. See Example 9.7.
9.24 (a) Apply Exercise 9.16 twice.

(b) Note that Bρi (−∞; 1/2) = {−∞} and Bρi (∞; 1/2) = {∞} for i ∈ {1, 2}.
(c) Use (b).
(d) (R∗, ρi ) is not compact as {(−n, n) : n ∈ N} ∪ {±∞} has no finite subcover.

It is not connected as it has non-trivial clopen sets {−∞} and {+∞}.
(e) Apply the definition of convergence with ε = 1/2.
(f) Let {xn} be a Cauchy sequence in (R∗, ρi ). If it is bounded, it is a sequence of

reals so convergent. Otherwise it is eventually constant and in {−∞,+∞}.
(g) Q ∪ {−∞,+∞} is a countable dense subset of the space.
(h) (R∗, ρi ) is not totally bounded, as the subspace R is not totally bounded.

9.25 The second assertion is immediate from the given inequality. Let ε > 0 be arbi-
trary and η := min{α, εα1}. Then ρ2(x, y) < η, we have ρ1(x, y) < ηα−1 ≤ ε.
Hence, the identity map (X, ρ2) −→ (X, ρ1) is uniformly continuous. Similarly,
the identity map (X, ρ1) −→ (X, ρ2) is uniformly continuous.

9.26 Yes, d is a metric on R. Since d is bounded, d is not Lipschitz equivalent to
the usual metric on R. By Exercise 9.25, d is uniformly equivalent to the usual
metric on R.

9.27 Let f : (X, ρr ) −→ (X, ρs) be the identity map, g := f −1, and ε > 0.

Case I: r, s ∈ (0, 1). Then there exists some k ∈ N such that sk < ε. If x, y ∈ X
such that ρr (x, y) < rk, then at least first k terms of x and y are identical, and
thus ρs(x, y) < sk < ε. Hence, f is uniformly continuous. Interchanging r and
s, we conclude that g = f −1 is also uniformly continuous. Hence, ρr and ρs are
uniformly equivalent.

Now assume that f is Lipschitz continuous, for some 0 < r < s < 1.Then there
exists some M > 0 such that ρs(x, y) ≤ Mρr (x, y) for all x, y ∈ X. Therefore,
sk ≤ Mrk, that is, ( sr )

k ≤ M for all k ∈ N. Passing limit k −→ ∞ we obtain
M = ∞, a contradiction. Hence, ρr and ρs are not Lipschitz equivalent.

Case II: r = 0, s ∈ (0, 1). Then there exists k ∈ N such that max{sk, 1/k} < ε.
If x, y ∈ X satisfy ρ0(x, y) < 1/k, then at least first k terms of x and y are
identical; and thus ρs(x, y) < sk < ε. Similarly, if x, y ∈ X satisfy ρs(x, y) <
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sk, then at least first k terms of x and y are identical; and so ρ0(x, y) < 1/k < ε.
Hence, ρ0 and ρs are uniformly equivalent.

Now assume that there exists some s ∈ (0, 1) and M > 0 such that ρ0(x, y) ≤
Mρs(x, y) for all x, y ∈ X.Therefore, 1/k ≤ Msk, that is, 1 ≤ Mksk for all k ∈
N. Passing limit k −→ ∞ we obtain 1 ≤ 0, a contradiction. Hence, ρ0 and ρs
are not Lipschitz equivalent.

9.28 Yes. Let d and d ′ be any two metrics on a space X with same compact sets. It
is enough to show that they have same convergent sequences. Let xn −→ x0 in
(X, d). Write A := {xn : n ∈ N ∪ {0}}. If A is a finite set, then this sequence is
eventually constant and thence convergent in (X, d ′) too.

Without loss of generality, suppose that xn = xm for all n = m. Note that A is
a compact subset of (X, d) and hence so in (X, d ′). Therefore, the infinite set
A has a limit point, say y, in (A, d ′). If y = xk for some k > 0, then A \ {y} is
compact in (X, d) but not in (X, d ′), a contradiction. Hence, y = x0.

If {xnk } is any subsequence of {xn}, then A0 := {xnk : k ∈ N} is an infinite sub-
set of the compact set A and hence has a limit point in (A, d ′). Applying
Lemma 4.21, there exists a subsequence of {xnk }, convergent to x0. Hence, by
Exercise 2.48, we conclude that xn −→ x0 in (X, d ′). Similarly, it can be shown
that every convergent sequence in (X, d ′) is also convergent in (X, d).

9.29 Yes. It is enough to show that they have same convergent sequences. Let xn −→
x0 in (X, d).Write A := {xn : n ∈ N ∪ {0}}. If A is a finite set, then this sequence
is eventually constant and thence convergent in (X, d ′) too.

Without loss of generality, suppose that xn = xm for all n = m. Note that A
is a complete subspace of (X, d) and hence (A, d ′) is also complete. Since
{xn} is also Cauchy in (X, d ′), there exists some y ∈ A such that xn −→ y,
in (A, d ′). If y = xk for some k > 0, then {xn+k} is Cauchy in d and d ′ but
{xn+k : n ∈ N} ∪ {x0} is complete in d but not in d ′. Consequently, xn −→ x0 in
(X, d ′).

9.30 Without loss of generality, let X be a complete metric space and O be any
nonempty subset of X. Write F := X \ O and for x, y ∈ O, we define

ρ(x, y) := d(x, y) +
∣
∣
∣
∣

1

dist (x; F)
− 1

dist (y; F)

∣
∣
∣
∣
,

where dist (x; F) := inf{d(x, t) : t ∈ F}. It is easy to see that ρ is a metric on
O and that has same convergent sequences as the metric d on O. Hence, ρ and
d are equivalent on O. We claim that (O, ρ) is a complete metric space.

Let {xn} be any Cauchy sequence in (X, ρ). Then {xn} is Cauchy in (X, d) and
{1/dist (xn; F)} is Cauchy in R. Consequently, there exist x0 ∈ X and r ∈ R

such that {xn} −→ x0 in (X, d) and {1/dist (xn; F)} −→ r in R.

Note that {xn} −→ x0 in (X, d) implies that {dist (xn; F)} −→ dist (x0; F). If
x0 /∈ O, then x ∈ F and hence {1/dist (xn; F)} is an unbounded sequence, a
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contradiction. Hence, x0 ∈ O. Therefore, every Cauchy sequence in (O, ρ) is
convergent in O.

9.31 {1} is an open subset of N, while f (1) = {0} is not an open subset of Y.

9.37 (a) Yes. The map x �−→ tan πx
2 is a homeomorphism from (−1, 1) onto R

(b) Yes. The map x �−→ ex is a homeomorphism from R onto (0,+∞).

(c) No. Because if f : [0, 1) −→ R is a homeomorphism, then f ((0, 1)) =
R \ { f (0)} would be connected, which is not true.

(d) No.Because if f : [0,+∞) −→ R is a homeomorphism, then f ((0,+∞)) =
R \ { f (0)} would be connected, which is not true.

9.47 Let f be a homeomorphism and E ⊂ X. Since f −1 is continuous, f (E) is a
closed subset of Y. Therefore, f (E) ⊃ f (E). The opposite inclusion holds by
Exercise 3.91.

Conversely, f is continuous by Exercise 3.91. Let F be a closed subset of
X. Then f (F) = f (F) which implies that f (F) is closed. Hence, f −1 is also
continuous.

9.50 The homeomorphic classes are

{A, R}, {B}, {C,G, I, J, L , M, N , S,U, V,W, Z},
{D, O}, {E, F, T,Y }, {H, K }, {P, Q}, {X}.

9.51 Apply Exercise 9.48.
9.53 Leta, b, c be three non-collinear points, fixed by f, and‖.‖denote the usual norm

on R
2. Then for x ∈ R

2, we have ‖ f (x) − a‖ = ‖ f (x) − f (a)‖ = ‖x − a‖,
which implies f (x).a = x .a. Similarly, f (x).b = x .b and f (x).c = x .c.Hence
( f (x) − x)(b − a) = 0 = ( f (x) − x)(c − a), that is, f (x) − x is orthogonal
to two linearly independent vectors b − a and c − a. Consequently, f (x) =
x for all x ∈ R

2. The generalization is analogous.
9.54 Apply Exercise 9.53 on g−1 ◦ f.
9.55 Removing the original circle from the torus is a connected space, while removing

any proper closed curve from any sphere will make it disconnected.
9.57 Note that X1 has two cut points and Xn has exactly n cut points, for each n > 1.

Use the fact that cut points are preserved under homeomorphisms.
9.58 No. See Example 9.8.
9.59 Answer: Spaces homeomorphic to discrete spaces. Clearly, every discrete space

X has a unique dense subset X. Conversely, let X be such a metric space and
x ∈ X. Then the set X \ {x} is not dense in X. Hence, {x} is open in X.

9.60 Let X := Q and Y := { 1n : n ∈ N} ∪ {0} and f : X −→ Y be any bijection.
Define d(x, y) := | f (x) − f (y)| for all x, y ∈ X. Then f is a homeomorphism
from (X, d) onto the subspace Y of R. Hence, (X, d) is compact and therefore,
complete. By Theorem 7.20, no metric d makes (X, d) connected.

9.61 Let Y := Q and f : X −→ Y be any bijection. Define d(x, y) := | f (x) −
f (y)| for all x, y ∈ X. Then f is a homeomorphism from (X, d) to the sub-
space Q of R. Hence, (X, d) is perfect. By Theorem 8.26, no metric d makes
(X, d) perfect and complete.
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9.63 Let f : X −→ �1 be defined as f ({xn}) := ∑∞
n=1 2

nxn. Then ‖ f (x)‖1 = ‖x‖
for all x ∈ X. Hence, f is an isometry between X and �1. Since isometries are
Lipschitz continuous, X is also complete and has dimension c.

9.65 Apply Exercise 9.30.
9.66 Apply Exercise 9.65.
9.68 We prove part (a) only. The other parts follow immediately. Note that for every

(a, b), (c, d) ∈ S, we have

|g(a, b)−g(c, d)| =
∣
∣
∣
∣

ad − bc

(a + b)(c + d)

∣
∣
∣
∣
=

∣
∣
∣
∣

(a − c)d − (b − d)c

(a + b)(c + d)

∣
∣
∣
∣

≤ |a − c|
a + b

× d

c + d
+ |b − d|

a + b
× c

c + d
≤ 1

δ

(|a − c| + |b − d|).

9.69 It is immediate that hi |F1 ≡ 0, hi |F2 ≡ 1 and 0 ≤ hi ≤ 1 on X.Define p : X −→
[0, 1] as p(x) := min

{

dist (F1, F2), dist (x, F1)
}

. Let x, y ∈ X. It is enough to
prove that

|p(x) − p(y)| ≤ d(x, y).

This inequality is immediate for the case p(x) = dist (F1, F2) = p(y). If p(x) =
dist (x, F1) and p(y) = dist (y, F1), then it follows from Exercise 9.68(b).
Nowassume that p(x) = dist (x, F1) < dist (F1, F2) and p(y) = dist (F1, F2).

Then

|p(x) − p(y)| = dist (F1, F2) − dist (x, F1) ≤ dist (y, F1) − dist (x, F1) ≤ d(x, y).

9.72 Yes. Consider

f (x) :=

⎧

⎪⎨

⎪⎩

b − b−d
c−a (x − a) ; a ≤ x ≤ c,

c + d − x ; c ≤ x ≤ d,

c − c−a
b−d (x − d) ; d ≤ x ≤ b.

9.75 Consider the map x �−→ α + β − x .
9.80 Apply Theorems 9.34 and 9.43.
9.81 Apply Theorem 9.43, as f : A −→ Ỹ .

9.82 No. For example, take A := (0, 1], X := [0, 1] and f (x) := 1
x for all 0 < x ≤ 1.

9.85 If g ≡ 0, the result is trivial. Suppose that g ≡ 0. Since g is bounded, there exists
some r ∈ R such that for g1 ≡ g − r, we have sup g1(F) = − inf g1(F) = M, (say).
Applying Tietze Extension Theorem (9.34), let f1 denote a continuous function
on X such that f1|F ≡ g1/M and | f1| ≤ 1 on X. Then f ≡ M f1 + r satisfies our
requirements.

9.90 No. Apply Corollary 9.55.
9.92 No. Let X be a infinite-dimensional normed linear space. Then X has a countably

infinite linearly independent subset, say Y. By Theorem 9.55, span(Y ) is not
complete.

9.95 Let x ∈ X \ Y. Since Y is complete, t := dist (x;Y ) > 0. Take z := x/t. It can be
verified that dist (z;Y ) = 1, and hence there exists a sequence {yn} ⊂ Y such that
‖yn − z‖ −→ 1. Therefore, {yn} is a bounded sequence in the finite-dimensional
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space Y. So it has a convergent subsequence, say {ynk } −→ y in Y. Then ‖y −
z‖ = limk→∞ ‖ynk − z‖ = 1. For a := y − z, we obtain ‖a‖ = 1 and dist (a;Y ) =
dist (y − z; Y ) = dist (z;Y ) = 1.
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Chapter 10
The Cantor Set

This chapter is a treatise on the Cantor set. It starts with a thorough discussion on
the basic properties of this set. Then we present a weaker version of Tychonoff’s
theorem, which leads to an infinite product representation of the Cantor set. In the
next section, we discuss a result of Alexandroff andHausdorff which states that every
complete perfect metric space contains a copy of the Cantor discontinuum.

We provide various characterizations of the Cantor space and their applications;
including the Brouwer’s theorem which states that every totally disconnected, com-
pact, and perfect metric space is homeomorphic to the Cantor set. We also present a
continuous real function that interpolates every bounded sequence of real numbers.
This chapter winds up with some miscellaneous topics such as the Cantor function,
homeomorphic permutations, and Cantor’s leaky tent.

10.1 Introduction

The Cantor set is defined inductively by removing middle third open intervals from
the unit interval [0, 1]. Consider the sequence of sets, of this inductive process:

C0 : = [0, 1],
C1 : = C0 \ (1/3, 2/3) = [0, 1/3] ∪ [2/3, 1],
C2 : = C1 \ (1/9, 2/9) ∪ (7/9, 8/9) = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

...
...

...
...

...
...

...
...

...
...

...
...

...

In general, for n ∈ N, the set Cn is a disjoint union of 2n closed intervals, each of
length 1/3n . The Cantor set, denoted by C, is defined as

C :=
∞⋂

n=1

Cn.

In terms of ternary expansions, the sequence of sets {Cn} can be expressed as

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. P. S. Kainth, A Comprehensive Textbook on Metric Spaces,
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C0 = [0, (0.2)3],
C1 = [0, (0.02)3] ∪ [(0.2)3, (0.2)3],
C2 = [0, (0.002)3] ∪ [(0.02)3, (0.02)3] ∪ [(0.2)3, (0.202)3] ∪ [(0.22)3, (0.2)3]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Let a ∈ C = ⋂∞
n=1 Cn and write a ternary representation of a, say

a =
∞∑

n=1

an
3n

= (0.a1a2 . . . )3; where each an ∈ {0, 1, 2}.

If a has the finite ternary expansion (0.1)3, then we also have a = (0.02)3. Note
that the open interval

(
(0.1)3, (0.2)3

)
is removed initially from C0, during the

construction of C. Therefore, we have a1 �= 1. Similarly, one can observe that
an �= 1 for all n ∈ N.

We also leave it to the readers to show that each real number with a ternary
expansion of the form (0.a1a2 . . . )3; an ∈ {0, 2} belongs to the Cantor set. Hence

C = {
(0.a1a2 . . . )3 : an ∈ {0, 2}} =

{ ∞∑

k=1

ak
3k

: ak ∈ {0, 2}, k ∈ N

}
. (10.1)

In this chapter, all the expansions of reals will be their ternary expansions, C and
Cn will denote the sets defined above. We first establish that the Cantor set is perfect,
uncountable, and negligible.

Theorem 10.1 The Cantor set is a perfect set.

Proof Being an intersection of closed sets Cn, it is immediate that C is closed.
Let a ∈ C and ε > 0 be given. Then there exists k ∈ N such that 2/3k < ε. Write
a = (0.a1a2 . . . )3, where each an ∈ {0, 2}. Let b := (0.b1b2 . . . )3, where

bn :=
{
an if n �= k
2 − ak if n = k.

Then b ∈ C and 0 < |b − a| = 2
3k < ε. Consequently, a is a limit point of C. �

Since nonempty perfect subsets ofR are uncountable (Theorem 8.26), the Cantor
set is uncountable. Another proof for this fact will be presented in Proposition 10.34.
Two alternate proofs are provided as under.

Theorem 10.2 The Cantor set is uncountable.
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Proof Let X be the set of sequences with terms from {0, 2}. By (10.1), we have

C := {
(0.a1a2 . . . )3 : an ∈ {0, 2}}.

Define f : C −→ X as f
(
(0.a1a2 . . . )3

) := {an}, where each an ∈ {0, 2}. Then f
is a bijection. By Theorem 7.13, X is uncountable. Hence, C is also uncountable. �

As a consequence of the above theorem, we conclude that the Cantor set contains
uncountably many irrationals and uncountably many transcendental numbers.

Remark 10.3 It is well known that for any α such that 0 < |α| < 1, the numbers∑∞
n=0 α2n and

∑∞
n=0 αn! are transcendental. Hence, the reals given by

∞∑

n=0

2

32n
and

∞∑

n=0

2

3n!

are transcendental numbers, which belong to the Cantor set.

It is immediate that the Cantor set contains infinitely many rational numbers,
especially the endpoints of the middle third intervals that are removed during its
construction.

In [1], Mahler poses eight open problems, including the following one:

Open Question 10.4 Does the Cantor set contain any irrational algebraic number?

Now we show that the converse of Example 8.43 is not true.

Proposition 10.5 The Cantor set is an uncountable negligible set.

Proof The uncountability of C is already proved in Theorem 10.2. As per our nota-
tions,C ⊂ Cn andCn is a union of 2n intervals, each having length 1/3n . Since n ∈ N

is arbitrary, by Definition 8.42, C is a negligible set. �

The sum or difference of two nowhere dense subsets of reals can be a set of
positive measure. These can even be the whole space.

Theorem 10.6 C + C = [0, 2], that is {a + b : a, b ∈ C} = [0, 2].
Proof It is immediate that C + C ⊂ [0, 2]. For the opposite inclusion, pick any
x ∈ [0, 2] and write x

2 in its ternary expansion, say
∑∞

n=1
xn
3n . For each n ∈ N, define

a pair (yn, zn) as follows:

(yn, zn) :=
⎧
⎨

⎩

(0, 0) ; xn = 0,
(2, 0) ; xn = 1,
(2, 2) ; xn = 2.

Define y := ∑∞
n=1

yn
3n and z := ∑∞

n=1
zn
3n .Then y, z ∈ C and yn + zn = 2xn for all n ∈

N. Therefore, y + z = 2 × x
2 = x . Hence, x ∈ C + C and the result follows. �
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Corollary 10.7 C − C = [−1, 1], that is {a − b : a, b ∈ C} = [−1, 1].
Proof As usual, the inclusionC − C ⊂ [−1, 1] is trivial. For the opposite inclusion,
let x ∈ [−1, 1]. By Theorem 10.6, x + 1 = y + z for some y, z ∈ C. Then x = y −
(1 − z) ∈ C − C Hence the result. �

The Cantor set C is totally disconnected. Hence, it is also known as the Cantor
discontinuum. In Theorem 10.28, we shall establish that, up to homeomorphisms, C
is the only metric space that is compact, perfect and totally disconnected.

Let us wind up this section, with the notion of end points of the Cantor set, which
will be used throughout this chapter.

Definition 10.8 A real number x is said to be an end point of the Cantor set if
there exists n ∈ N and an interval I ⊂ Cn with l(I ) = 3−n such that x is an end point
of I.

In other words, an end point of C is an end point of some connected component of
some Cn. All other points of C are known as the internal points of C.

History Notes 10.9 It seems that the Cantor set is inspired by ancient Egyptian
architecture.

As per [2, p. 17], ‘Napoleon’s Expedition
brought this picture to Europe in their
report, Description de L’Egypte. Notice
the startling resemblance to the Cantor
set diagram. Did George Cantor see the
Egyptian columns before he conceived
the set? We don’t know, but it is a possi-
bility because Cantor’s cousin was a stu-
dent of Egyptology.’

A brief history of the Cantor set can be found in [3]. For more on Theorem 10.6,
see [4].

Exercise 10.1 Prove that a ∈ C if and only if a can be expressed as a ternary expan-
sion of the form

a = (0.a1a2 . . . an . . . )3 =
∞∑

k=1

ak
3k

; an ∈ {0, 2}.

Exercise 10.2 Prove Theorem 10.1, without using ternary expansions.

Exercise 10.3 Give an explicit example of an irrational number in the Cantor set.
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Exercise 10.4 As a subset of R, prove that the Cantor set has no interior point and
it is nowhere dense.

Exercise 10.5 Prove that 1/4 ∈ C. Obtain three points in C, which are not its end
points.

Exercise 10.6 For each n ∈ N, let Ln denote the set of left end points of the largest
possible closed intervals of Cn, or equivalently the set of left end points of the
connected components of Cn. Prove the following:

(a) Each l ∈ Ln has a finite ternary expansion, which is zero after the first n-digits.
(b)

⋃∞
n=1 Ln ⊂ C.

(c)
⋃∞

n=1 Ln = C.

Exercise 10.7 Does there exist a subspace of C, homeomorphic to Q?

Exercise 10.8 Let Ln denote the subset of C, as in Exercise 10.6. Is
⋃∞

n=1 Ln a
complete subspace of R?

Exercise 10.9 Let I denote the countable collection of closed intervals, inductively
obtained while removing middle thirds in the construction of the Cantor setC. Let�
denote the collection of nested decreasing sequences {In} of distinct intervals from
I. Prove that

C =
{ ⋂

I∈M
I : M ∈ �

}
=

⋃

M∈�

⋂

I∈M
I.

Exercise 10.10 Is the Cantor set C totally disconnected?

Exercise 10.11 Prove that the family of connected components of the Cantor set is
uncountable.

Exercise 10.12 Prove that the Cantor set is compact, hence conclude that it is totally
bounded and separable.

Exercise 10.13 Show that the Cantor set is separable by constructing a countable
dense subset of it.

Exercise 10.14 (Fat Cantor Set) Let 0 < α < 1. Analogous to the Cantor set, con-
struct the fat Cantor setCα by successively removing 2n middle open intervals each of
length α/3n at nth inductive step. Prove thatCα is a nonempty perfect non-negligible
set with an empty interior.

Exercise 10.15 (Smith-Volterra-Cantor set) Analogous to the Cantor set, consider
a set V obtained by removing the middle 8

10
th
open interval of the available closed

intervals at each stage, starting with [0, 1]. Prove that A is the set of reals in [0, 1]
having decimal expansion consisting only digits 0 and 9. Is V also negligible?
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Exercise 10.16 Analogous to the Cantor set, construct a set A ⊂ [0, 1] by induc-
tively removing the second and fourth open intervals, after partitioning all the
available intervals into five equal parts. E.g. at the first stage, we have [0, 1/5] ∪
[2/5, 3/5] ∪ [4/5, 1] and so on. Which properties of A are analogous to the Cantor
set?

Exercise 10.17 Does there exist a sequence of continuous functions on [0, 1], point-
wise convergent to a function discontinuous at uncountably many points?

Exercise 10.18 Let A be a subset of R such that A is not negligible. Is it necessary
that A contains an interval?

Exercise 10.19 Prove that the Cantor set is a Gδ-set as well as an Fσ-set.

Exercise 10.20 Does there exist a nonempty countable set A such that C \ A is a
perfect set.

Exercise 10.21 Let C denote the Cantor set and ε > 0 be given. Does there exist a
sequence {rn} of rationals in [0, 1] such that C \ ⋃∞

n=1

(
rn − ε

2n , rn + ε
2n

) = ∅?
Exercise 10.22 Let C denote the Cantor set and f : R −→ R be defined as

f (x) :=
{

1 ; x ∈ C,

0 ; x ∈ R \ C.

Prove that f is discontinuous at every point of C.

Exercise 10.23 Is [0, 1] \ C dense in [0, 1]?
Exercise 10.24 Does there exist any uncountable closed subset of the Cantor set
consisting of only irrationals numbers?

Exercise 10.25 Let P be a perfect subset of reals and I be an open interval such
that I ∩ P �= ∅. Does it imply that I ∩ P is a perfect set?

Exercise 10.26 Let f : C −→ C be a homeomorphism. Prove that there existsm ∈
N such that for x, y ∈ C with x − y < 3−m, both f (x) and f (y) have the same digit
at the first place of their infinite ternary expansions.

Exercise 10.27 Let A be any countably infinite subset of the Cantor set. Prove that
C \ A is non-compact. Also, do the same if 0 < card(A) < c.

Exercise 10.28 Prove that there exists x ∈ R such that C + x ⊂ R \ Q.

Exercise 10.29 Let A be any dense subset ofC and {Ln} be the sequence of sets as in
Exercise 10.6. Prove that there exists a dense subset A0 of A and a homeomorphism
f : A0 −→ ⋃∞

n=1 Ln.

Exercise 10.30 Anumber is chosen at random from theCantor set. If all possibilities
are equally likely, what is the probability that it is a rational number?
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10.2 An Infinite Product Representation

In this section, we shall establish that the Cantor set is homeomorphic to a countable
infinite product of discrete metric spaces. First we present a metric on such a product
of metric spaces, which makes the product compact if and only if each component
is compact.

Let {(Xn, dn)} be a sequence of metric spaces. Without loss of generality, sup-
pose that each dn ≤ 1, otherwise replace the corresponding dn with the equivalent
metric dn/(1 + dn) (see Theorem 9.15). Let X := ∏∞

n=1 Xn, that is, the collection of
sequences {xn} such that xn ∈ Xn for all n ∈ N. For every x = {xn}, y = {yn} ∈ X,

define

d(x, y) := sup

{
dn(xn, yn)

n
: n ∈ N

}
.

It can be shown that d is a metric on X, which we leave as an exercise for the
reader. This metric, referred to as the product metric,will be considered as the default
metric on the product space

∏∞
n=1 Xn. The topology of (X, d) will be known as the

product topology on
∏∞

n=1 Xn.

Let B(·, ·) and Bn(·, ·) denote open balls in X and Xn, respectively. Note that for
every x = {xn} ∈ X and r > 0, we have

B(x; r) = {y ∈ X : d(y, x) < r}

⊂
∞∏

n=1

{yn ∈ Xn : dn(xn, yn) < nr} =
∞∏

n=1

Bn(xn; nr).

Let k ∈ N such that 1/k < r. Then

B(x; r) ⊂
k−1∏

n=1

Bn(xn; nr) ×
∞∏

n=k

Xn ⊂
k−1∏

n=1

Bn(xn; kr) ×
∞∏

n=k

Xn.

This motivates us to consider the following type of sets:

Pm(x; r) :=
m−1∏

n=1

Bn(xn; r) ×
∞∏

n=m

Xn, where m ∈ N, x ∈ X and r > 0.

Let
β := {Pm(x; r) : m ∈ N, x ∈ X, r > 0}.

Throughout this section, the notations (X, d), (Xn, dn), Bn(·, ·), B(·, ·), Pm(·, ·) and
β will be reserved for the notions, discussed above.

Proposition 10.10 β is a topological basis for the metric space (X, d).

Proof We need to establish the following:
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(a) For every x ∈ X and r > 0 there exists some P ∈ β such that x ∈ P ⊂ B(x; r).
(b) Every P ∈ β is an open subset of (X, d).

If x ∈ X and r > 0, then mr > 1, for some m ∈ N. Hence, Pm(x; r) ⊂ B(x; r).
This proves (a).

For (b), consider any Pk(y; s) ∈ β, where y ∈ X, k ∈ N and s > 0. Let z ∈
Pk(y; s). Then dn(zn, yn) < s for all n < k. Let

δ := min

{
s − dn(zn, yn)

n
: n < k

}
.

We claim that B(z; δ) = ∏∞
n=1 Bn(zn; nδ) ⊂ Pk(y; s). To see this, let w = {wn} ∈

B(z; δ). Then for all n < k, we have

dn(wn, zn) < nδ ≤ s − dn(zn, yn) which implies dn(wn, yn) < s.

Consequently, w ∈ Pk(y; s). This proves our claim and hence (b). �

Theorem 10.11 Let x ∈ X and {x (k)}k be a sequence in X. Write

x = {xn}n and x (k) = {x (k)
n }n for all k ∈ N.

Then limk→∞ x (k) = x, in X if and only if limk→∞ x (k)
n = xn, in Xn for all n ∈ N.

Proof The necessity follows from the inequality dn ≤ nd for all n ∈ N. For the con-
verse, assume that limk→∞ x (k)

n = xn in Xn for all n ∈ N. Let r > 0 be given. Then
mr > 1, for some m ∈ N. As in Proposition 10.10, we obtain Pm(x; r) ⊂ B(x; r).
Since limk→∞ x (k)

n = xn in Xn for all n ≤ m, there exists N1 ∈ N such that x (k)
n ∈

Bn(xn; r) for all k ≥ N1 and for all n ≤ m. Thus x (k) ∈ Pm(x; r) ⊂ B(x; r) for all
n ≥ N1. Hence, limk→∞ x (k) = x in X. �

For every n ∈ N, the projection map πn : (X, d) −→ (Xn, dn) is defined as

πn(x) := xn for all x = {xn} ∈ X.

Then eachπn is Lipschitz continuous, as dn(xn, yn) ≤ nd(x, y) for all x = {xn}, y =
{yn} ∈ X.

Theorem 10.12 (Tychonoff)
∏∞

n=1 Xn is compact if and only if each Xn is compact.

Proof If
∏∞

n=1 Xn is compact, by Theorem 5.31, each Xn = πn(X) is compact.
Conversely, assume that each Xn is compact. By Theorem 5.27, it is enough to show
that every sequence in the metric space (X, d) has a convergent subsequence.

Let {x (k)}k be a sequence in X. Write x (k) := {x (k)
n }n for all k ∈ N. Since {x (k)

1 }k
is a sequence in the compact metric space X1, it has a convergent subsequence,
say {x (1i )

1 }i . Now {x (1i )
2 }i is a sequence in the compact space X2 and hence has a

convergent subsequence, say {x (2i )
2 }i .
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Inducting this way, for all n ∈ N \ {1}, we obtain a sequence {ni }i of N such that
{ni }i is a subsequence of {(n − 1)i }i and {x (ni )

n }i is convergent in Xn.

Then for all n ∈ N, {ii }i is a subsequence of {ni }i and thus {x (ii )
n }i is convergent

in Xn. Applying Theorem 10.11, we conclude that {x (ii )}i is convergent in X. Hence
the result. �
Theorem 10.13 Let Xn := {0, 1} be the discrete space, for every n ∈ N. Then the
Cantor set is homeomorphic to the product space

∏∞
n=1 Xn.

Proof Write X := ∏∞
n=1 Xn. Consider a function f : X −→ C defined as

f ({xn}) :=
∞∑

n=1

2xn
3n

for all {xn} ∈ X.

We claim that f is a homeomorphism. It is a routine exercise to prove that f is a
bijection, which we leave to the reader. By Theorem 10.12, X is a compact metric
space. Applying Theorem 5.34, it is enough to show that f is a continuous function.

Let x = {xn} ∈ X and ε > 0 be given.We shall find an open subsetO of X contain-
ing x such that | f (y) − f (x)| < ε for all y ∈ O. Let N ∈ N such that

∑
n>N

2
3n < ε

and
O := {x1} × {x2} × · · · × {xN } ×

∏

n>N

Xn.

Due to the discrete topology on each Xn, the set O is open in
∏∞

n=1 Xn. If y ∈ O,

then y = (x1, . . . , xN , yN+1, yN+2, . . . ) for some yN+k ∈ XN+k for all k ≥ 1. Note
that

| f (y) − f (x)| =
∣∣∣∣
∑

n>N

2
yn − xn

3n

∣∣∣∣ ≤
∑

n>N

2

3n
< ε.

Therefore, f is continuous at x . Hence the result. �
Finally, we establish [0, 1]N as a universal compact metric space.

Theorem 10.14 Every compactmetric space embedshomeomorphically into [0, 1]N.

Proof If (X, d) is a compact metric space, then it is separable. Let S = {sn : n ∈
N} be any countable dense subset of X. By replacing d with an equivalent metric
d/(1 + d), if required, without loss of generality, we assume that 0 ≤ d ≤ 1. Define
f : X −→ [0, 1]N as

f (x) := {d(x, sn)} for all x ∈ X.

We claim that f : X −→ f (X) is the required homeomorphism. Since x �−→
d(x, sn) is a continuous map from X into [0, 1] for all n, analogous to Theorem
10.11, it can be shown that f : X −→ [0, 1]N is a continuous map.

Suppose f (x) = f (y) for some x, y ∈ X. Then d(x, s) = d(y, s) for all s ∈ S.

Since x ∈ X = S, there exists a sequence {xn} ⊂ S such that xn −→ x . Therefore,
d(y, xn) = d(x, xn) −→ 0 which implies y = x . Hence, f is injective.
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If F is any closed subset of X, then F is compact, and hence so is f (F) in f (X).

Therefore, f (F) is a closed subset of f (X).This establishes that f −1 : f (X) −→ X
is a continuous map. Hence the result. �

Remarks 10.15 It is pertinent to mention that Theorem 10.12 is a particular case
of one of the most non-trivial results in topology (see [5, p. 232]). For more on the
product metric, the reader is referred to [6, Chapter 6].

Exercise 10.31 Prove that the function f in the proof of Theorem 10.13 is a
bijection.

Exercise 10.32 Prove that the function f in the proof of Theorem 10.14 is
continuous.

Exercise 10.33 Prove that every totally bounded space embeds homeomorphically
into [0, 1]N.

Exercise 10.34 Let X be a discrete metric space. Prove that X is countable if and
only if X is homeomorphic to a subspace of [0, 1]N.

Exercise 10.35 Prove that [0, 1]N is a continuous image of the Cantor set {0, 1}N.

Exercise 10.36 Let {x (k)}k be a sequence in X and x (k) = {x (k)
n }n for all k ∈ N.

Prove that {x (k)}k is Cauchy in X ⇐⇒ {x (k)
n }k is Cauchy in Xn for all n ∈ N.

Exercise 10.37 Let {(Xn, dn) : n ∈ N} be any countable collection of metric spaces.
Define X := ∏∞

n=1 Xn. For any x = {xn}, y = {yn} ∈ X, define

d(x, y) :=
∞∑

n=1

1

2n
.

dn(xn, yn)

1 + dn(xn, yn)
.

Prove that (X, d) is compact if and only if each (Xn, dn) is a compact.

Exercise 10.38 As per the notations of this section, prove that

(a)
∏∞

n=1 Xn is complete if and only if each Xn is a complete metric space.
(b)

∏∞
n=1 Xn is totally bounded if and only if each Xn is totally bounded.

Exercise 10.39 As per the notations of this section, define

ρ(x, y) :=
∞∑

n=1

dn(xn, yn)

2n
for all x = {xn}, y = {yn} ∈ X.

Prove that ρ defines a metric on X, β is also a base for ρ and that ρ and d are
equivalent.



10.3 Embedding Cantor Set Inside Metric Spaces 289

Exercise 10.40 Let ρ be as in Exercise 10.39. Without using the fact that ρ and d
are equivalent, prove the following:

(a) (X, ρ) is complete if and only if each (Xn, dn) is a complete metric space.
(b) (X, ρ) s totally bounded if and only if each (Xn, dn) is totally bounded.
(c) (X, ρ) s compact if and only if each (Xn, dn) is compact.

Exercise 10.41 Let ρ be as in Exercise 10.39. Prove that there exists some M < ∞
such that

ρ(x, y) ≤ Md(x, y) for all x, y ∈ X.

Also, show that the metrics ρ and d are not Lipschitz equivalent.

Exercise 10.42 Are themetrics ρ and d, as in Exercise 10.39, uniformly equivalent?

Exercise 10.43 Prove that
∏∞

n=1 Xn is path connected if and only if each Xn is path
connected.

Exercise 10.44 Let {Xn} be a sequence of connected spaces, X = ∏∞
i=1 Xn and

a = {an}n∈N be a fixed point of X. Given any n ∈ N, let Yn := {{xn} ∈ X : xk =
ak for all k > n}. Prove that
(a) For everyn ∈ N, the spaceYn is homeomorphic to

∏n
i=1 Xi and hence connected.

(b) Y = ⋃∞
n=1 Yn is connected.

(c) Y is a dense subset of X.

(d) X is connected.

Exercise 10.45 Prove that
∏∞

n=1 Xn is connected if and only if each Xn is connected.

Exercise 10.46 Show that each projectionmapπn is uniformly continuous andmaps
open sets onto open sets.

Exercise 10.47 Prove that
∏∞

n=1 An is dense in
∏∞

n=1 Xn if and only if An is dense
in Xn for all n ∈ N.

Exercise 10.48 If X := ∏∞
n=1[0, 1], and d(x, y) := ∑∞

n=1
1
2n |xn − yn| for all x =

{xn}, y = {yn} ∈ X, does there exist any countably infinite nonempty perfect subset
of (X, d)?

Exercise 10.49 Prove that the Cartesian product of any finite collection of Cantor
sets is also homeomorphic to the Cantor set.

10.3 Embedding Cantor Set Inside Metric Spaces

In this section, we discuss a classical result of Alexandroff and Hausdorff that every
complete perfect metric space contains a copy of the Cantor discontinuum.
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Theorem 10.16 Every perfect complete metric space contains a subspace that is
homeomorphic to the Cantor set.

Proof Let X be a perfect complete metric space. Applying induction, we shall con-
struct a copy of the Cantor set inside X. Pick any two points x0, x1 ∈ X and write
r := d(x0, x1). Let

K1 := I0⊍ I1, where Ii := B

(
xi ; r

4

)
for all i = 0, 1.

Then for each i ∈ {0, 1}, pick two different points xi,0, xi,1 ∈ Ii . This is possible, as
X is perfect and Ii is a neighborhood of xi , so Ii contains infinitely many points of
X. Applying triangle inequality, we obtain d(xi,0, xi,1) < r

2 , for i = 0, 1. Define

Ji1,i2 := B

(
xi1,i2;

d(xi1,0, xi1,1)

4

)
and Ii1,i2 := K1

⋂
Ji1,i2 for every i1, i2 ∈ {0, 1}.

Write K2 := I0,0⊍ I0,1⊍ I1,0⊍ I1,1. Again by triangle inequality, diam(Ii1,i2) <
r
4 for every i1, i2 ∈ {0, 1}. Let

Kn :=⊍i1,...,in∈{0,1} Ii1,...,in

has been constructed such that diam(Ii1,...,in ) ≤ r
2n , for every i1, . . . , in ∈ {0, 1}. For

each tuple t = (i1, . . . , in) ∈ {0, 1}n, pick two different points xi1,...,in ,0 and xi1,...,in ,1
from Ii1,...,in . Define

Ji1,...,in+1 :=B

(
xi1,...,in+1;

d(xi1,...,in ,0, xi1,...,in ,1)

4

)

Ii1,...,in+1 :=Kn

⋂
Ji1,...,in+1 for every i1, . . . , in+1 ∈ {0, 1}

and Kn+1 :=⊍i1,...,in+1∈{0,1} Ii1,...,in+1

Again by the triangle inequality, diam(Ii1,...,in+1) < r
2n+1 for every i1, . . . , in+1 ∈

{0, 1}. This completes the induction process, and finally, we define K := ⋂∞
n=1 Kn.

Let C denote the standard Cantor set inside [0, 1]. Define f : K −→ C as

f

( ⋂

i1,...,in ,...

Ii1,...,in ,...

)
=

∞∑

n=1

2in
3n

.

It can be proven that f is a homeomorphism from K onto C. �

Corollaries 10.17 (a) Every nonempty perfect subset of R has cardinality c.
(b) Every uncountable closed subset of R has cardinality c.
(c) Every perfect complete metric space is uncountable.
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Proof (a) Apply Theorem 10.16.
(b) Apply (a), along with Theorem 8.31.
(c) Apply Theorem 10.16, along with Theorem 10.2. �

Since every closed subset of R is either countable or has cardinality c, such subsets
of reals satisfy the continuum hypothesis. The same holds in complete separable
metric spaces.

Theorem 10.18 Let E be a closed subset of a complete separable metric space X.

Then E is either countable or has cardinality c.

Proof Assume that E is uncountable. Let E0 denote the set of isolated points of
E . Since X is separable, E0 is countable. Hence, E \ E0 is a complete and perfect
metric space. Applying Theorem 10.16, E \ E0 contains a subspace homeomorphic
to the Cantor set. Hence, card(E) ≥ card(E \ E0) ≥ c. From Theorem 8.5, we
have card(E) ≤ c. Hence, card(E) = c. �

Now we present a generalization to Example 8.28.

Examples 10.19 (a) Every nonempty perfect subset of the space R \ Q, under
usual metric, has cardinality c.

(b) Let X be a complete metric space and Y be a subspace of X such that card(X \
Y ) < c. Then every nonempty perfect subset of Y has cardinality c.

Proof (a) Consider any nonempty perfect subset P0 of R \ Q. Then P0 has no
isolated points. Therefore the closure of P0 in reals, say P is a perfect subset of
R. Hence, card(P) = c. Since P \ P0 is a subset of Q, it is at most countable,
which implies that card(P0) = c.

(b) Note that Theorem 10.16 ensures that every perfect subset of X contains a home-
omorphic copy of C and hence has cardinality at least c. The result follows by
imitating the arguments in part (a). �

Remarks 10.20 Anatural question is thatwhether there exists a perfectmetric space
X with card(X) > c? The answer is in the affirmative. In fact, for any cardinal
number α, there exists a perfect metric space with cardinality > α (see [7]).

Let � denote the collection of cardinal numbers α such that there exists a perfect
metric spacewith cardinalityα.Then, by [7],� contains each of the cardinal numbers
c, 2c, 22

c
, . . . . It is also easy to see that � contains all α such that ℵ0 ≤ α ≤ c.

The question remains open whether � contains any other cardinal number, apart
from these.

We also refer to [8] for Classical Descriptive Set Theory by Kechris, which con-
tains a more detailed treatment to Polish spaces.

Exercise 10.50 Is there any perfect complete metric space with cardinality < c?

Exercise 10.51 Is there any complete separable metric space with cardinality < c?

Exercise 10.52 Show that no hypothesis of Theorem 10.18 is redundant.
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Exercise 10.53 If f is the mapping as defined in the proof of Theorem 10.16, prove
that f : K −→ C is a homeomorphism.

Exercise 10.54 Prove that every uncountable separable complete metric space con-
tains a subspace homeomorphic to the Cantor set.

Exercise 10.55 Prove that every complete metric space without isolated points con-
tains a perfect set, homeomorphic to the Cantor set.

Exercise 10.56 Let E ⊂ R be homeomorphic to the Cantor set. Prove that E is
perfect, bounded, and nowhere dense.

Exercise 10.57 Let X be a complete separablemetric space. Prove that the collection
of closed subsets of X satisfies the continuum hypothesis. That is, show that every
closed subset of X is either countable or has cardinality c.

Exercise 10.58 Let X be an uncountable complete separable metric space, and X0

be its set of isolated points. If X0 is countable, prove that X contains a homeomorphic
copy of the Cantor set.

Exercise 10.59 Let A ⊂ R be any uncountable set. Prove that there exists a perfect
metric space having cardinality same as A.

10.4 Characterizations in Terms of the Cantor Set

This section is devoted to some topological notions which can be characterized in
terms of the Cantor set. First consider the case of total boundedness and compactness.

10.4.1 Cantor Set and Compact Metric Spaces

Theorem 10.21 A metric space X is totally bounded if and only if there exists a
uniformly continuous bijection from a subset of the Cantor set onto X.

Proof The converse is easy. LetC0 be a subset of the Cantor setC and f : C0 −→ X
be a uniformly continuous bijection. Being a compact set, C is totally bounded and
thus so is its subset C0. By Theorem 5.42, X is totally bounded.

To prove the necessity, for each m ∈ N, let Bm be a finite collection of open balls
with radius 1

m such that X = ⋃
B∈Bm

B. Then the collection of all such open balls,
i.e.

⋃
m∈N Bm, is countable. We write

⋃

m∈N
Bm = {Un : n ∈ N}.
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Without loss of generality, assume that the balls in Bm precede the balls in Bm+1 in
this enumeration. Then diam(Un) −→ 0, as n −→ ∞. For every x ∈ X, define

h(x) :=
∞∑

n=1

αn(x)

3n
, where αn(x) :=

{
2 ; x ∈ Un,

0 ; x /∈ Un.

Then h(x) ∈ C for all x ∈ C.Also, note that every x ∈ X belongs to infinitely many
Un. So αn(x) = 2, for infinitely many n ∈ N.

We claim that h : X −→ C is injective. Pick any x, y ∈ X such that x �= y. Pick
any N1 ∈ N such that 2

N1
< d(x, y). Let N2 := |B1| + · · · + |BN1 |, here |A| denotes

the number elements in the set A. Let n > N2 such that x ∈ Un. Then αn(x) = 2 and
diam(Un) < 2

N1
< d(x, y). Therefore, αn(y) = 0. Consequently, h(x) �= h(y).

This proves that h : X −→ C is an injective function. Write C0 := h(X) and
f := h−1. Then f : C0 −→ X is a bijection. Now we prove that it is uniformly
continuous.

Let ε > 0 be given. Then there exists N3 ∈ N such that 2
N3

< ε and write N4 :=
|B1| + · · · + |BN3 |. Then for all n > N4, diam(Un) ≤ 2

N3
< ε. Pick any a, b ∈ C0

such that |a − b| < 3−N4 . Write x := f (a) and y := f (b). Then a = h(x) and b =
h(y).

Since |a − b| < 3−N4 , we have αn(x) = αn(y) for all n ≤ N4. That is, for all
n ≤ N4, x ∈ Un if and only if y ∈ Un. Pick q ≤ N4 such that x ∈ Uq ∈ BN3 . Then
y ∈ Uq and hence

d
(
f (a), f (b)

) = d(x, y) ≤ diam(Uq) ≤ 2

N3
< ε.

Consequently, f : C0 −→ X is uniformly continuous. Hence the result. �
Now we prove that compact metric spaces are precisely the continuous images of

the Cantor set. It is also known as the universal surjectivity of the Cantor Set.

Theorem 10.22 (Alexandroff-Hausdorff) A metric space X is compact if and only
if there exists a surjective continuous map from the Cantor set onto X.

Proof Let C denote the Cantor set. The converse is an immediate consequence of
Theorem 5.31, as the Cantor is compact.

To prove the necessity, apply Theorem 10.21 to obtain subset C0 ⊂ C and a
uniformly continuous bijection f : C0 −→ X. Since X is complete, by Theorem
9.43, f has a unique uniformly continuous surjective extension f1 : C0 −→ X.Now,
extend f1 to C using Tietze Extension Theorem (9.34). �
Corollary 10.23 For every positive integer n, there exists a continuous surjective
function from [0, 1] onto [0, 1]n .
Proof ByTheorem10.22, there exists a surjective continuousmap f from theCantor
setC onto [0, 1]n .ApplyTietzeExtensionTheorem (9.34) to extend f as a continuous
function from [0, 1] onto [0, 1]n. Hence the result. �
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Since continuousmaps on [0, 1] are known as curves, themaps given byCorollary
10.23 are known as space filling curves. Such maps were first discovered by Peano
in 1890, and are hence known as Peano curves.

Our next application of Theorem 10.22 provides a ‘universal continuous function’
that interpolates every bounded sequence. First consider the following result.

Theorem 10.24 There is a continuous map f : R −→ [−1, 1] such that for every
doubly infinite sequence {xm}+∞

m=−∞ ∈ [−1, 1]Z, there exists some t ∈ R satisfying

f (t + m) = xm for all m ∈ Z.

Proof As in Sect. 10.2, the countable product [−1, 1]Z is a compact metric space.
Applying Alexandroff-Hausdorff Theorem (10.22), Consider a continuous surjec-
tivemapφ0 : C −→ [−1, 1]Z.Defineφ(t) := φ0(2t) for all t ∈ C

2 := {x : 2x ∈ C}.
Then the mapping φ : C

2 −→ [−1, 1]Z is also continuous and surjective.
For every m ∈ Z, the component map t �−→ (φ(t))m is the composition of the

projection map πm with φ, and hence continuous. Note that (C2 + m) ∩ (C2 + n) = ∅
for all integers m �= n. Let A := ⋃

m∈Z(C2 + m) and define

f0(t + m) := (φ(t))m for all t ∈ C

2
,m ∈ Z.

Then f0 : A −→ [−1, 1] is continuous on A.Let f : R −→ [−1, 1] denote a contin-
uous extension of f0 by Tietze Extension Theorem (9.34). If {xm}+∞

m=−∞ ∈ [−1, 1]Z,

then there exists some t0 ∈ C
2 such that φ(t0) = {xm}+∞

m=−∞.Hence, xm = (φ(t0))m =
f (t0 + m) for all m ∈ Z. �

Corollary 10.25 If {Mm}m∈Z is a doubly infinite sequence of positive reals, then
there exists a continuous function f : R −→ R such that for every {xm}+∞

m=−∞ ∈
[−Mm, Mm]Z, there exists some t ∈ R satisfying

f (t + m) = xm for all m ∈ Z.

Proof Replace the product [−1, 1]Z with [−Mm, Mm]Z in Theorem 10.24. �

Corollary 10.26 There exists a continuous function f : R −→ R such that for every
bounded sequence {xn} of real numbers, there exists some t ∈ R satisfying

f (t + n) = xn for all n ∈ N.

Proof Let f : R −→ R be the map given by Corollary 10.25 with Mm = m for all
m ∈ Z. Let {xn}n∈N be a bounded sequence of real numbers. Then there exists N ∈ N

such that |xn| < N for all n ∈ N. Then there exists s ∈ R such that

f (s + m) =
{

0 ;m ≤ N ,

xm−N ;m > N .



10.4 Characterizations in Terms of the Cantor Set 295

Then for t := s + N , we obtain f (t + n) = f (s + N + n) = xn for all n ∈ N. �

Various other applications of Alexandroff-Hausdorff Theorem (10.22) can be
found in [9, 10]. We now state the Hahn–Mazurkiewicz theorem. Readers interested
in the proof are referred to [11, p. 221-222, Theorem 31.5].

Theorem 10.27 (Hahn–Mazurkiewicz) A space X is a continuous image of [0, 1]
if and only if X is compact, connected and locally connected.

10.4.2 Cantor Set and Totally Disconnected Metric Spaces

Theorem 10.28 (Brouwer, 1910) Every totally disconnected compact perfect met-
ric space is homeomorphic to the Cantor set.

As an immediate consequence, we conclude that any two totally disconnected
perfect compact metric spaces are homeomorphic. Before we prove the result in
general, we present a simple proof for subspaces of R. An eager reader may skip it
and move onto the most general case.
Proof of Theorem 10.28 for RealsLet P be any compact perfect totally disconnected
subset ofR.Since P is compact, it is bounded and closed.Writem := inf P andM :=
sup P. We outline the construction of a strictly increasing function f : [0, 1] −→
[m, M] with f (C) = P.

Since P is closed, by Theorem 7.19, [m, M] \ P is a countable union of disjoint
open intervals. Since P is has no isolated points, no two intervals in this collection
have common end points.

Let I0 be an interval, from this collection, having maximal length. Note that there
are at most finitely many such intervals with (same) maximal length. Define f to be
a strictly increasing linear map on I0 with image (1/3, 2/3).

Let I1 and I2 be intervals with maximal length on the left and right of I0, respec-
tively.Define f as strictly increasing and linear on these such that f (I1) = (1/9, 2/9)
and f (I2) = (7/9, 8/9).

Inducting like this, we obtain a strictly increasing function f : [m, M] \ P −→
[0, 1] \ C. Extend f to [m, M], as a continuous function. Then f : P −→ C is the
required homeomorphism.

To see this, let p0, p1, p2, . . . denote the left end points of the open inter-
vals I0, I1, I2, . . . Due to the continuity of f, we have f (p0) = 1

3 , f (p1) = 1
9 and

f (p2) = 7
9 and so on. Since the set of points { 13 , 1

9 ,
7
9 , . . . } is dense in C, the set

{p0, p1, p2, . . . } is dense in P. Hence, f can be extended to P, using its values
on {p0, p1, p2, . . . }. It can be shown that xn −→ x if and only if f (xn) −→ f (x).
Consequently, f : P −→ C is a homeomorphism. Hence the result. �
General Proof of Theorem 10.28 Let X be a totally disconnected, perfect, compact
metric space. Then X is separable and hence has a countable basis, say {Un}, see
Corollary 8.4 and Theorem 8.10. For every n ∈ N, let
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Jn := {m ∈ N : Um ⊂ Un}.

Pick any n ∈ N and m ∈ Jn. Applying Corollary 6.55, choose some clopen set An,m

such thatUm ⊂ An,m ⊂ Un. Then B := {An,m : m, n ∈ N} is a countable basis of X,

consisting of only clopen sets. Write B = {Wn : n ∈ N}.
Now we shall construct nonempty clopen subsets Ci1,...,in , n ∈ N, ik ∈ {0, 1}, of

X satisfying the following conditions:

(a) X = C0⊍ C1,

(b) Ci1,...,in = Ci1,...,in ,0⊍ Ci1,...,in ,1 for all n ∈ N and ik ∈ {0, 1},
(c) each Wn is the union of some of the sets Ci1,...,in ; ik ∈ {0, 1}.

For n = 1, if W1 is a proper subset of X, take C0 := W1. Otherwise, take any
other proper clopen subset of X asC0. LetC1 := X \ C0. Let n ∈ N and assume that
the sets Ci1,...,im ; ik ∈ {0, 1} have been defined for every m ≤ n.

If Wn+1 ∩ Ci1,...,in is a proper subset of Ci1,...,in , we define Ci1,...,in ,0 := Wn+1 ∩
Ci1,...,in .Otherwise, take any other proper clopen subset ofCi1,...,in asCi1,...,in ,0.Define

Ci1,...,in ,1 := Ci1,...,in \ Ci1,...,in ,0.

Note that for every I = {in} ∈ {0, 1}N, the sets Ci1,...,in form a nested decreasing
sequence of nonempty closed subsets of X and hence have a non-trivial intersec-
tion (see Theorem 5.18). Let xI be a point in this intersection. We claim that this
intersection contains no other point.

If possible, let x ∈ ⋂∞
n=1 Ci1,...,in \ {xI }.SinceB is a basis, there exists some n ∈ N

such that xI ∈ Wn but x /∈ Wn. Since Ci1,...,in ⊂ Wn, we have x /∈ Ci1,...,in . Hence,
our claim is established.

Similarly, for every x ∈ X, there exists a unique I = {in} ∈ {0, 1}N such that
x = xI . Hence, the function f : {0, 1}N −→ X defined as f (I ) := xI is a bijection.
We shall show that f is a homeomorphism. By our construction, we have

f −1(Ci1,...,in ) = {{ jk} : jl = il for all 1 ≤ l ≤ n}.

Note that the sets {Ci1,...,in : i j ∈ {0, 1}, n ∈ N} form a basis for the topology on X.

Also, the collection of sets of the form {{ jk} : jl is fixed, for all 1 ≤ l ≤ n} form a
basis for the topology on {0, 1}N. Hence, f is a bijection between these bases of X
and Y. Applying Proposition 9.21, we conclude that f is a homeomorphism. The
result follows by Theorem 10.13. �

Corollary 10.29 Every totally disconnected compactmetric space is homeomorphic
to a subspace of the Cantor set.

Proof Let X be a totally disconnected compact metric space and X0 be its set of
isolated points. Since X is compact, by Theorem 5.27, X0 cannot be infinite. Hence,
there exists a finite set X0 such that X \ X0 is perfect.

Since X0 is a discrete subspace of X, it is homeomorphic to a finite subspace
of C ∩ [2/3, 1]. If X �= X0, by Theorem 10.28, X \ X0 is homeomorphic to C and
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hence to C ∩ [0, 1/3]. Hence, X = (X \ X0) ∪ X0 is homeomorphic to a subspace
of the Cantor space. �

For alternative proofs of Theorem 10.28, the reader is referred to [8, Theorem
7.8] and [11, p. 216, Theorem 30.3].

10.4.3 Open Subsets of the Cantor Set

Based upon [12], we now present another characterization of the Cantor set.

Lemma 10.30 Let O be a nonempty open subset of the Cantor set C. Then there are
countably many disjoint nonempty clopen subsets {On} of C such that ⊍nOn = O.

Proof Let U be an open subset of R such that U ∩ C = O. Applying Corollary
7.19, there are countably many disjoint open intervals {In : n = 1, 2, . . . } such that
⊍n In = U. Then for every n = 1, 2, . . . , we have C \ In = C ∩ (⊍m �=n Im), which
is open in C. Hence, each In ∩ C is clopen in C. Consequently, O = U ∩ C =
⊍n(In ∩ C). �

Theorem 10.31 Let O be a nonempty open subset of the Cantor set C. Then O is
either homeomorphic to C or homeomorphic to C \ {0}.
Proof By Lemma 10.30, there exists a countable collection {On : n = 1, 2, . . . } of
disjoint non-empty clopen subsets of C such that ⊍nOn = O. If this collection is
finite, then O is closed in C. Since O is open and C is perfect, O has no isolated
point. Hence, O is a compact perfect totally disconnected non-empty subset of reals.
Applying Theorem 10.28, we conclude that O is homeomorphic to C.

Now consider the case when the collection {On : n = 1, 2, . . . } is infinite. Note
that C \ {0} is an open subset of C, which is not closed. Applying Lemma 10.30,
there exists a countably infinite union of disjoint non-empty clopen subsets {Vn} of
C such that⊍∞

n=1Vn = C \ {0}. As above, each Vn as well as each On is a compact
perfect totally disconnected subspace of reals. Again by Theorem 10.28, Vn and
On are homeomorphic, for all n ∈ N. Hence, O =⊍∞

n=1On is homeomorphic to
C \ {0} =⊍∞

n=1Vn. �

Definition 10.32 A metric space X is said to have property C if

(a) X has a nonempty compact open subset and a non-compact open subset.
(b) Any two nonempty compact open subsets of X are homeomorphic.
(c) Any two non-compact open subsets of X are homeomorphic.

Note that C is a topological property, that is it is preserved by homeomorphisms.

Theorem 10.33 Let X be a compact metric space. Then X satisfies property C if
and only if X is homeomorphic to C.
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Proof The converse follows from Theorem 10.31 and the fact that the property C is
a topological property. Assume that X satisfies property C. By Theorem 10.28, it is
enough to show that X is a perfect and totally disconnected metric space.

Assume that X is not perfect. Then X has an isolated point, say x . By (b) above,
{x} is homeomorphic to X. Then X does not satisfy (a), a contradiction.

We first show that X is disconnected. Let x, y ∈ X such that x �= y and let d be
the distance between x and y. ThenU := B(x; d/3)⊍ B(y; d/3) is a disconnected
open subset of X. If U is homeomorphic to X, then X is disconnected. Otherwise,
U is not compact. Since X is perfect, X \ {x} is non-compact, for every x ∈ X. By
(c), U is homeomorphic to X \ {x}, for every x ∈ X. Hence, for every x ∈ X, the
subspace X \ {x} is disconnected. By Theorem 6.29, X is disconnected.

Finally, let x ∈ X be arbitrary and Cx be the connected component of x, in X. By
Theorem 6.49, Cx is also the quasi-component of x . Consequently, Cx closed in X
and hence compact. If Cx is open in X, then by (b), Cx is homeomorphic to X and
hence X is connected, a contradiction. Therefore, X \ Cx is not a closed subset of X
and hence non-compact. Consequently, X \ Cx is homeomorphic to X \ {x}.

Let� be the collection of all clopen subsets of X, containing x . Then
⋂

O∈� O =
Cx and thus X \ Cx = ⋃

O∈�(X \ O). Hence, for each y ∈ X \ Cx , there exists
a clopen neighborhood U of x such that y /∈ U. Then (X \ Cx ) \U is a clopen
neighborhood of y.

Since X \ Cx and X \ {x} are homeomorphic, every z ∈ X \ {x}, has a clopen
neighborhood in X \ {x}. Thus, X is totally disconnected. Hence the result. �

Exercise 10.60 Let {Xn} be a sequence of finite metric spaces with |Xn| > 1 for all
n ∈ N. Prove that

∏∞
n=1 Xn is homeomorphic to the Cantor set.

Exercise 10.61 Prove that the Cartesian product of countably many Cantor sets is
homeomorphic to the Cantor set.

Exercise 10.62 In Theorem 10.24, can you replace the bound 1 on doubly infinite
sequences {xm}+∞

m=−∞ with any other fixed positive real?

Exercise 10.63 Does there exist a continuous function f : R −→ R such that

(a) for every doubly infinite constant sequence {xm}+∞
m=−∞ of reals, there exists t ∈ R

satisfying f (t + m) = xm for all m ∈ Z?
(b) for every doubly infinite sequence {xm}+∞

m=−∞ of reals, there exists some t ∈ R

satisfying f (t + m) = xm for all m ∈ Z?

Exercise 10.64 Let E be a subspace of R which is closed, bounded, and nowhere
dense. Prove that E is homeomorphic to a subspace the Cantor set.

Exercise 10.65 Let E be a subspace of R. Prove that E is homeomorphic to the
Cantor set if and only if E is bounded, perfect, and nowhere dense.

Exercise 10.66 Let X be a non-compactmetric space. Prove that X satisfies property
C if and only if X is homeomorphic to C \ {0}.
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Exercise 10.67 Let X be a locally compact metric space. Prove that X is totally
disconnected if and only if it has a basis of topology consisting of compact open sets.

Exercise 10.68 Let A and B be any countably infinite subsets of the Cantor set.
Prove that C \ A and C \ B are homeomorphic. Also, do the same if both A and B
are nonempty sets with cardinality strictly less than c.

10.5 Miscellaneous

In this section, we present three major themes associated with the Cantor set, say C.

The first one is the Cantor function, which is an important tool in measure theory.
The second one provides homeomorphisms C −→ C which do not map a specific
countable set onto any end point of C. The third one is one of the trickiest examples
of a connected space, which becomes totally disconnected after the removal of a
particular point.

10.5.1 The Cantor Function

TheCantor function is a function [0, 1] −→ [0, 1], denoted by fc, defined as follows:
Pick any a ∈ [0, 1]. If a ∈ C,we write a = (0.a1a2 . . . an . . . )3,where each an ∈

{0, 2}. Define

fc
(
(0.a1a2 . . . an . . . )3

) :=
(
0.
a1
2

a2
2

. . .
an
2

. . .

)

2

.

In other words, we define

fc

( ∞∑

k=1

ak
3k

)
:=

( ∞∑

k=1

ak/2

2k

)
for every ak ∈ {0, 2}.

It is then extended to [0, 1] as a suitable constant, on every connected component of
[0, 1] \ C. Note that these components are precisely the open intervals, inductively
removed from [0, 1], in the process of constructing the Cantor set.

If a ∈ [0, 1] \ C, we write its infinite ternary expansion a = ∑∞
k=1

ak
3k , where

ak ∈ {0, 1, 2}. Let n ∈ N be the least number such that an = 1. Then we define

fc(a) :=
n−1∑

k=1

ak/2

2k
+ 1

2n
.
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Proposition 10.34 The Cantor function fc is a surjective map from C onto [0, 1].
Consequently, C is uncountable.

Proof Let a ∈ [0, 1]. Write a = (0.a1a2 . . . an . . . )2, in its binary representation.
Then

a = fc
(
(0.(2a1)(2a2) . . . (2an) . . . )3

)
.

Hence, fc : C −→ [0, 1] is surjective. Therefore, [0, 1] is in bijection with a subset
of C. Hence, C is uncountable. �

Proposition 10.35 The Cantor function is uniformly continuous on [0, 1].
Proof Since continuous functions on closed bounded intervals are uniformly con-
tinuous, it is enough to prove that fc is continuous on [0, 1].

Pick any a ∈ [0, 1]. If a ∈ [0, 1] \ C, then fc is constant in a neighborhood of
a and hence continuous at a. If a ∈ C, then we can write a = (0.a1a2 . . . an . . . )3,

where each ak ∈ {0, 2}. Let ε > 0 be given. Then there exists some n ∈ N such
that 2−n < ε and δ = 3−n .

Letb ∈ [0, 1]be such that |b − a| < 3−n andwriteb := (0.b1b2 . . . bn . . . ), where
each bk ∈ {0, 1, 2}. Since |b − a| < 3−n, the first n-digits in the ternary repre-
sentations of a and b must be same. Therefore, by the definition of fc, we have
| fc(b) − fc(a)| < 2−n < ε. Hence the result. �

Remarks 10.36 Readers interested in the differentiability of the Cantor function,
are referred to [13–16]. It is also known that if p > 3 is any prime, then the Cantor
set contains only finitely many fractions of the form a/pk; k ≥ 1 (see [17]).

History Notes 10.37 The Cantor function has been introduced by George Cantor in
1884, as a counter example to an extension of the fundamental theorem of calculus
claimed by Harnack. A thorough survey of the properties of the Cantor function is
provided in [18].

10.5.2 Homeomorphic Permutations of the Cantor Set

Let X be a metric space. By a homeomorphic permutation of X, we shall refer
to a self homeomorphism f : X −→ X. As always, C will denote the Cantor set
and for c ∈ C, the representation c = 0.c1 . . . cn . . . will always refer to the ternary
expansion of c consisting of 0 and 2 only.

Fix any a = 0.a1 . . . an · · · ∈ C. For all x = 0.x1 . . . xn · · · ∈ C, define ga(x) :=
0.y1 . . . yn . . . , where

yn :=
{

xn ; an = 0,
2 − xn ; an = 2.

This defines a function ga : C −→ C. In particular, if a = 0.2, then ga translates
C ∩ [0, 0.02] onto C ∩ [0.2, 0.2] and vice versa. Similarly, with a = 0.02, the per-
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mutation ga translates C ∩ [0, 0.002] onto C ∩ [0.02, 0.02], and C ∩ [0.2, 0.202]
onto C ∩ [0.22, 0.2], and vice versa.

Theorem 10.38 The function ga is a homeomorphic permutation of the Cantor set.

Proof It is immediate that ga : C −→ C is a bijection with self inverse, that is
g−1
a = ga . Therefore, it is enough to establish that ga is a continuous map.
Pick any x0 = 0.x0,1 . . . x0,n · · · ∈ C. Let {xk} be a sequence in C convergent

to x0. Write xk = 0.xk,1 . . . xk,n . . . for all k ∈ N. For every n ∈ N, |xk,n − x0,n| ≤
3n|xk − x0| −→ 0, as k −→ ∞. Hence, xk,n −→ x0,n for all n ∈ N.

Consequently, ga(xk) −→ ga(x0), as k −→ ∞. Therefore, ga is continuous at x0.
Since x0 ∈ C is arbitrary, ga is a continuous on C. Hence the result. �

In the following, let E denote the collection of end points of C. It can be proven
that a point c = 0.c1 . . . cn · · · ∈ E if and only if the sequence {cn} is eventually
constant.

More precisely, c is a left end point of C, (i.e. the set of left end point some
connected component of some Cn) if and only if {cn} is eventually 0. Analogously,
c is a right end point of C if and only if {cn} is eventually 2.

Theorem 10.39 Let X be a countable subset ofC.Then there exists a homeomorphic
permutation f : C −→ C such that f (X) contains no end point of C.

Proof Since N × N is countable, there exists a bijection K : N × N −→ N. Write
X := {x (1), . . . , x (n), . . . }. Let x (n)(k) denote the digit at kth place of the ternary
expansion of x (n) consisting of 0 and 2 only. Define a subset A of N as follows:

A :=
{
K (m, 2n − 1) : x (m)(2n − 1) = 0

}⋃ {
K (m, 2n) : x (m)(2n) = 2

}
.

Then A is a countable set. Consider a ∈ C such that a = 0.a1 . . . an . . . , where

an :=
{

2 ; n ∈ A,

0 ; n ∈ N \ A.

Let f := ga, where ga is as in Theorem 10.38. We show that f satisfies our require-
ments.

Applying Theorem 10.38, f is a homeomorphic permutation on C. Pick any m ∈
N and write y(m) = f (x (m)). Then y(m)(K (m, 2n)) = 0 and y(m)(K (m, 2n − 1)) =
2 for all n ∈ N. Since K is injective, we conclude that y(m)( j) = 0 for infinitely
many j and 2 for infinitely many j. Therefore, y(m) is not an end point of C. �

The above result is taken from [19, p. 317], where it is used in the proof of
Serpiński’s Theorem (9.22).
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10.5.3 Cantor’s Leaky Tent

Let p denote the point (1/2, 1/2) in R
2. Join p, via a line segment, to every point

of the Cantor set C. Remove points with irrational ordinate, on the lines joining p
to the end points of C and remove points with rational ordinate, on the lines joining
p to the internal points (non-end points) of C. The remaining set is known as the
Cantor’s leaky tent.

Formally, for every c ∈ C, let Lc denote the line segment joining p and c. Define

Xc :=
{ {(x, y) ∈ Lc : y ∈ Q} ; if c is an end point of C,

{(x, y) ∈ Lc : y ∈ R \ Q} ; if c is an internal point of C.

The Cantor’s leaky tent is defined as T := ⋃
c∈C Xc, as the induced subspace of R2.

We claim that T is connected, while T \ {p} is totally disconnected.

Theorem 10.40 The subspace T \ {p} is totally disconnected.
Proof Write T0 := T \ {p}. Note that every point of T0 lies on unique Lc. Define
f : T0 −→ C as f (x, y) := c, if (x, y) ∈ Lc. It can be shown that f is continuous.
Let A be any connected subset of T0. Then so will be f (A). Since f (A) is a subset

of the totally disconnected setC, it must be a singleton. Hence, A ⊂ Lc for some c ∈
C. Since each Lc is totally disconnected, A is also a singleton. Hence, T0 is totally
disconnected. �

Theorem 10.41 The Cantor’s leaky tent T is a connected metric space.

Proof Assume that T := A⊍ B for some disjoint clopen subsets A and B of T .

Without loss of generality, suppose that p ∈ A. We shall establish that B = ∅.

Let c ∈ C be arbitrary. For (x1, y1), (x2, y2) ∈ Lc,define (x1, y1) < (x2, y2) if and
only if y1 < y2. Under the analogous notions of supremum of a nonempty subset of
Lc, we define

lc :=
{

sup B ∩ Lc ; B ∩ Lc �= ∅,

c ; B ∩ Lc = ∅.

Observe that the above supremums will certainly exist in the complete metric space
R

2. We claim that exactly one of the following cases holds: (a) lc = c (b) lc /∈ T .

To see this, assume that lc �= c. If lc ∈ A, then A contains a ball around lc and thus
an ‘interval’ of the subspace Lc, a contradiction to the definition of lc. In case lc ∈ B,
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again B contains an ‘interval’ of the subspace Lc centered around lc, a contradiction.
Hence, lc /∈ T .

Let {rk} be an enumeration of rational numbers in (0, 1/2]. For every k ∈ N, we
define

Hk := {
(x, rk) : (x, rk) = lc for some c ∈ C \ E

}
.

Then each Hk is a bounded subset of the horizontal line y = rk . Hence, Hk is a
compact subset of R2. By our previous observation, each Hk ∩ T = ∅.

Pick any k ∈ N such that Hk �= ∅.Then for each z ∈ Hk, there exists a unique c ∈
C such that Hk ∩ Lc = {z}. Define Pk : Hk −→ C as Pk(z) := c, as the projection
map from p onto C. It can be shown that each Pk is a continuous map. Therefore,
Fk := Pk(Hk) is compact and hence a closed subset of C.

Being a subset ofC, each Fk is nowhere dense. Then F := ⋃∞
k=1 Fk is a set of first

category and hence so is the set E ∪ F. Applying Baire Category Theorem (8.33),
S := C \ E ∪ F is dense in C.

If possible, let z ∈ B. Then B ⊃ B(z; δ) for some δ > 0. Since S is dense in C,

the ball B(z; δ) contains a portion of Lc for some c ∈ S = C \ E ∪ F. From the
definition of S, we obtain lc = c and Lc \ {c} ⊂ A, a contradiction. Hence, B = ∅.

This concludes that T is connected. �

Other popular terms for the Cantor’s leaky tent are Cantor teepee and Knaster-
Kuratowski fan, named after Polish mathematicians Bronislaw Knaster and Kaz-
imierz Kuratowski.

Remarks 10.42 Let
∑∞

n=1 xn be an absolutely convergent series of real numbers
such that |xn| >

∑
i>n |xi | for all n ∈ N. Then its set of subsums {∑∞

n=1 εnxn : εn ∈
{0, 1}, n ∈ N} is homeomorphic to the Cantor set.

In fact, the set of subsums of an absolutely convergent series is either a finite set,
a finite union of compact intervals, homeomorphic to the Cantor set, or a Cantorval
(a particular kind of Cantor type set due to Guthrie-Nymann). We omit the proofs of
these results. Interested readers are referred to [20, 21].

Exercise 10.69 Obtain C0 ⊂ C such that the Cantor function fc : C0 −→ [0, 1] is
a bijection.

Exercise 10.70 Is the Cantor function differentiable at 1/3?

Exercise 10.71 Prove that the Cantor function is not Lipschitz continuous.

Exercise 10.72 Show that the Cantor function is monotonically increasing.

Exercise 10.73 Let C and fc, respectively, denote the Cantor set and the Cantor set
function. Prove that [0, 1] \ Q ⊂ fc(C).

Exercise 10.74 Prove that the Cantor function is the unique monotone real val-
ued function f on [0, 1] satisfying f (0) = 0, f

(
x
3

) = f (x)
2 and f (1 − x) = 1 −

f (x) for all x ∈ [0, 1].
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Exercise 10.75 Establish the continuity of the Cantor function by considering a
suitable uniformly convergent sequence of piecewise linear continuous functions on
the interval [0, 1].
Exercise 10.76 Prove that the Cantor function is not differentiable at 1/3; and is
differentiable outside a negligible subset of [0, 1].
Exercise 10.77 Is the Cantor’s leaky tent compact, complete or perfect?

Exercise 10.78 Does there exist any proper non-degenerate compact connected sub-
space of the Cantor’s leaky tent?

Exercise 10.79 Show that f, in the proof of Theorem 10.40, is a continuous map.

Exercise 10.80 Prove that each Pk, in the proof of Theorem 10.41, is a continuous
map.

Exercise 10.81 In theCantor’s leaky tent T of the last subsection, show that Xc \ {p}
is a quasi-component of T \ {p} for every c ∈ C.Conclude that T \ {p} is not totally
separated, but totally disconnected.

Exercise 10.82 If f : C −→ C is a homeomorphism, can you conclude f ≡ fa
for some a ∈ C?

10.6 Hints and Solutions to Selected Exercises

10.3 The number (0.020022000222000022220000022222 . . . )3 can’t be rational, as
this ternary representation doesn’t repeat anywhere.

10.7 Note that the countable subset set
⋃∞

n=1 Ln of C, as in Exercise 10.6, has no
isolated points. Applying Theorem 9.22,

⋃∞
n=1 Ln is homeomorphic to Q.

10.8 No, since
{ ∑n

k=1
2

322k
}
n
(⊂ ⋃∞

n=1 Ln) converges to 1
4 ∈ C \ ⋃∞

n=1 Ln.

10.13 Use Exercise 10.6.
10.17 Yes. For each n ∈ N, define fn : [0, 1] −→ R as

fn(x) = max{0, 1 − n × dist (x;C)} for all x ∈ [0, 1].

Then |dist (x;C) − dist (y;C)| = |x − y| for all x, y ∈ [0, 1]. So the map
x �−→ dist (x;C) is continuous. Hence, each fn is continuous on [0, 1]. Note
that

lim
n→∞ fn(x) :=

{
1 ; x ∈ C,

0 ; x ∈ [0, 1] \ C.

Hence, the sequence of functions { fn} is continuous on [0, 1] and pointwise
convergent to χC , which is discontinuous on the uncountable set C.
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10.19 Apply Theorem 7.39 and the fact that C is a closed subset of R..
10.20 No. Suppose that such a set A exists and let a ∈ A. Then for every ε > 0,

the set (a − ε, a + ε) ∩ C \ {a} is uncountable. Therefore, a is a limit point of
C \ (A \ {a}).

10.21 Yes. In fact, for every ε > 0, the Cantor set is contained in finitelymany intervals,
each having length at most ε.

10.22 Applying Exercise 7.59, the required set is R \ C.

10.23 Yes, as every end point of C is a limit point of [0, 1] \ C.

10.25 No. E.g., let C be the Cantor set in [0, 1], P := C ∪ (C + 2) and I := (0, 2).
10.26 Since f is uniformly continuous, there exists δ > 0 such that | f (x) − f (y)| <

1
3 for all |x − y| ≤ δ. Letm ∈ N such that 3−m < δ. The result holds as | f (x) −
f (y)| < 1

3 for all |x − y| ≤ 1
3m .

10.27 Let a ∈ A. Then a ∈ C = C ′. So every neighborhood of a contains c-many
points of C and thus it contains c-many points of C \ A. Hence, we obtain
a ∈ (C \ A)′ \ (C \ A). Consequently, C \ A is not closed.

10.28 Suppose not. Then (C + x) ∩ Q �= ∅ for all x ∈ R. Therefore, R = ⋃
q∈Q(q −

C). Since C is nowhere dense, so are q − C for all q ∈ Q. This contradicts
Corollary 8.35.

10.29 Write B := ⋃∞
n=1 Ln. Since A is a subset of R, it is a separable space. Thus,

there exists a countable dense subset A0 of the space A. By Exercise 8.3, A0 is
dense in C. Since C has no isolated point, A0 is a perfect metric space. Note
that B is also a countably infinite perfect metric space. By Theorem 9.22, we
conclude that A0 is homeomorphic to B.

10.33 Apply Theorem 10.14 to the completion of the space.
10.34 Assume that X is countable, say X = {xn : n ∈ N}. Define f : X −→ [0, 1]N

as f (xn) := (1, 2, . . . , n, 0, . . . ) for all n ∈ N. Then f is injective, continuous,
and open.

Conversely, assume that X is homeomorphic to a subspace of [0, 1]N. Since
[0, 1]N is compact, it is separable and hence so is X.Being discrete and separable,
X is countable.

10.35 Define f0 : {0, 1}N −→ [0, 1] and f : {0, 1}N −→ [0, 1]N as

f0({xi }) :=
∞∑

n=1

xi
2n

and f ({xi }) := { f0({xi })} for all {xi } ∈ {0, 1}N.

Then f0 and f are surjective continuous functions.
10.42 Yes. Let ε > 0 be given. Then there exists some m ∈ N such that 1/m < ε. Let

δ := 1
m2m . Pick any x = {xn}, y = {yn} ∈ X such that ρ(x, y) < δ. If n > m,we

have dn(xn, yn)/n ≤ 1 < 1/m < ε. If n ≤ m, then we obtain

dn(xn, yn)

2n
<

1

m2m
which implies

dn(xn, yn)

n
<

1

nm2m−n
<

1

m
< ε.

Consequently, d(x, y) < ε. Hence, ρ and d uniformly equivalent.
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10.43 Write X := ∏∞
n=1 Xn. The necessity follows from the continuity of projection

maps and Theorem 6.9. Towards the converse, assume that each Xn is path
connected. Let x = {xn}, y = {yn} ∈ X be arbitrary. For each n ∈ N, choose a
continuousmap fn : [0, 1] −→ Xn such that fn(0) = xn and fn(1) = yn.Define
f : [0, 1] −→ X such that

f (a) := { fn(an)}n for all a = {an} ∈ X.

It can be shown that f is a path in X from x to y.
10.48 No. Use Theorem 8.26.
10.51 Yes. Consider N with usual topology of R.

10.54 Apply Theorems 10.16 and 8.31.
10.55 Apply Theorem 10.16.
10.59 Try X := A ∪ Q under usual metric.
10.63 (a) No. For example, if f is such a function, then for every real r, there

there exists tr ∈ R satisfying f (tr + m) = r for all m ∈ Z. Therefore, R ⊂
f ([0, 1]), which is impossible as f continuous and hence bounded on the
compact interval [0, 1].

(b) No. Follows from (a).
10.64 Being closed and bounded, E is compact. Being nowhere dense, E is totally

disconnected. Now apply Corollary 10.29.
10.67 Proceed as in Theorem 6.54.
10.68 Apply Exercise 10.27 and Theorem 10.33.
10.70 No. As for xn := 1

3 − 1
3n , we have fc(xn) := 1

2 − 1
2n . Hence

fc(xn) − fc(1/3)

xn − 1/3
= 3n

2n
−→ ∞.

10.73 Use the fact that f ([0, 1] \ C) ⊂ Q.

10.82 No. For example, let I1, I2, I3 and I4 be the four consecutive compact intervals
of length 3−2 such thatC ⊂ ⋃4

i=1 Ii and x < y for all x ∈ Ii , y ∈ I j with i < j.
Let g be a suitable shift operator which maps I1 onto I4. Then g : I1 −→ I4 is a
homeomorphism. Define f : C −→ C as

f (x) :=
⎧
⎨

⎩

g(x) ; x ∈ I1,
g−1(x) ; x ∈ I4,
x ; x ∈ I2 ∪ I3.

It can be shown that f is a homeomorphism. Also, the first ternary digits of f (0)
and 0 are different, while the same for f (1/3) and 1/3 are the same. Hence,
f �≡ fa for all a ∈ C.
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Appendix A
Axiomatic Set Theory

This appendix provides a glimpse into the axiomatic set theory. We start with an
introduction to the formal language of set theory and a standard set of Zermelo-
Fraenkel axioms. Thenwe use these axioms to deduce the set of non-negative integers
and the well-ordering principle. After that, we discuss the axiom of choice and
observe some proofs which intrinsically assume it. Most of the times, the choice
axiom can be bypassed by a minor change in the proof. Sometimes a completely
different proof is required to avoid this axiom. We discuss both of these situations.

A.1 The Language of Set Theory

In Naive Set Theory, a set is defined as a well-defined collection of distinct objects.
This leads to some paradoxes. For example if X is the collection of all sets, then X is
well-defined andP(X) ⊂ X.Alongwith Theorem7.46 this leads to X ≺ P(X) � X,

a contradiction.
To sort out this kind of paradoxes and for a further rigorous foundation of mathe-

matics, the Axiomatic Set Theory came into the picture. This includes a formal Lan-
guage of Set Theory followed by Zermelo-Fraenkel Axioms. These axioms require
a ‘Language of Set Theory,’ comprising of the following:

(a) Names: for sets as well for the members of sets
(b) Symbols: ∈ (membership), = (equality) and ¬ (negation)
(c) Logical connectives: ∨ (or), ∧ (and)
(d) Quantifier symbols: ∀ (for all) and ∃ (there exist)
(e) Brackets (, ).

Some authors leave the notion of a set undefined for a while. For example, as
per [1], ‘...as any mathematical theory begins with undefined concepts. Therefore,
the notion of a set and the notion of ∈ (is an element of) are better left undefined.’
However, the notion of sets will be intrinsically present in the Zermelo-Fraenkel

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
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Axioms, given in the next section. Any expression using either of (a)-(e), is called a
formula of the Language of Set Theory (LAST).

Exercise A.1 If f and g are formulas of LAST, prove that so are f ∨ g and f ∧ g.

Exercise A.2 Express union of two sets A and B as a formula of LAST.

A.2 Zermelo-Fraenkel Axioms

There are various equivalent versions of the Zermelo-Fraenkel axioms or ZF-axioms.
Here we present the one given in [2].

(ZF1) Null Set Axiom: There exists a set ∅, having no element.
(ZF2) Power Set Axiom: If X is a set, then there exists a set P(X) consisting of all and

only subsets of X.

(ZF3) Axiom of Infinity:There exists a set X such that∅ ∈ X and {x} ∈ X for all x ∈ X.

(ZF4) Axiom of Extensionality: If two sets have same elements, then they are equal.
(ZF5) Axiom of Union: If X is a set, there exists a set ∪X, consisting of all elements

of all elements of X.

(ZF6) Axiom of Subset Selection: Let X be a set and φ(x) be a formula of LAST. Then
there exists a set consisting of only those x ∈ X such that φ(x) holds true.

(ZF7) Axiom of Replacement: Let φ(x, y) be any formula of LAST such that for every
a there exists a unique b such that φ(a, b) holds true. Let X be a set. Then there
exists a set Y consisting of only those b such that φ(a, b) is true for some a ∈ X.

(ZF8) Axiom of Foundation: ∈ is a well-founded relation, that is, if X is a nonempty
set, then there exists some x ∈ X such that x ∩ X = ∅.

Remarks A.1 (a) The above eight axioms are not all independent. For example,
ZF3 and ZF6 together imply ZF1. To see this, let X be the infinite set given by
ZF3. Then its subset {x ∈ X : x = x} is empty.

(b) The following axiom (Axiom of Pairing) is often stated in ZF-axioms:

If x and y are two sets, then there exists a set having elements x and y.

It holds by ZF7, as by ZF1 and ZF2, {∅, {∅}} is a set.
(c) The Axiom of Foundation, also known as the Axiom of Regularity, ensures that

no set can be a member of itself. Without this axiom, there is a set X containing
all sets. Then P(X) ⊂ X and we have the contradiction X ≺ X, as discussed in
the beginning of this appendix. The Axiom of Foundation avoids these types of
paradoxes, such as the Burali-Forti Paradox and the Russel’s Paradox.

Exercise A.3 Express the intersection of a given family of sets in terms of ZF-
axioms. Conclude that there is no need for a separate axiom of intersection in ZF.
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A.3 The Set of Non-Negative Integers

‘God made the natural numbers; all else is the work of man,’ Kronecker.
In 1889, Peano presented a set of axioms for the set of natural numbers, known

as Peano axioms. Here we deduce these numbers from the ZF-axioms. In Z F, using
Z F1, Z F2, Z F3, Z F6, and Z F7,we consider an infinite set Z≥0, defined as under

Z≥0 := {∅, {∅}, {∅, {∅}}, . . . } = {0, 1, 2, . . . } (say),

where 0 denotes ∅, 1 denotes {0}, …, n denotes {0, 1, . . . , n − 1}, in general. For
every k ∈ Z≥0, we define k + 1 := {0, 1, . . . , k}.

Note that for every n, m ∈ Z≥0, either n ⊂ m or m ⊂ n. We shall write n ≤ m if
n ⊂ m and m ≤ n otherwise. Further if n ≤ m but n = m,we write n < m.Nowwe
establish that the set Z≥0 is well ordered under the relation < .

Theorem A.2 Every nonempty subset of Z≥0 contains its smallest element.

Proof Let S be any nonempty subset of Z≥0. Consider the set

E := {x : x ∈ s for all s ∈ S} =
⋂

s∈S

s,

here this intersection is ensured by the axioms of union and subset selection. By
definitions of E andZ≥0,we obtain E ⊂ Z≥0 and E ⊂ s for every s ∈ S. Therefore,
E ≤ s for every s ∈ S. Hence, E is a lower bound of S. Next, we claim that E is the
smallest element of S.

First we show that E ∈ Z≥0. If not, then there will exist some k1, k2 ∈ E and
k3 ∈ Z≥0 such that k1 < k3 < k2. This will ensure some s0 ∈ S such that k3 /∈ s0,
while k1, k2 ∈ s0. This is not possible, as s0 ∈ Z≥0. Hence, E ∈ Z≥0.

If E /∈ S, then E + 1 ≤ s for all s ∈ S.So E + 1 ⊂ s for all s ∈ S.Thedefinition
of E implies that E + 1 ⊂ E, a contradiction. Hence the result. �

It must be emphasized here that the above theorem is a basis for the principle of
mathematical induction, which is in fact equivalent to this.

Theorem A.3 Let P(n) be a statement for every n ∈ Z≥0 such that P(0) is true and
P(n + 1) is true whenever P(n) is true. Then P(n) is true, for all n ∈ Z≥0.

Proof Let E := {n ∈ Z≥0 : P(n) is not true}. If possible, suppose E = ∅.Applying
Theorem A.2, let m be the smallest element of E . Since P(0) is true, 0 /∈ E . There-
fore, m > 0. So there exists some k ∈ Z≥0 such that k + 1 = m. Since P(m) is not
true, by hypothesis, P(k) is also not true. Thus, k ∈ E, contradicting the choice of
m. Hence, E = ∅. �

Write m + 2 := (m + 1) + 1 and define

m + (n + 1) := (m + n) + 1 for all m, n ∈ Z≥0.
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This defines a binary operation+ on Z≥0. For m, n ∈ Z≥0, define m × n inductively
by adding m to itself n times. Hence, we obtain the usual binary operations + and
× on {1, 2, . . . }.

The inverses of these binary operations lead to the negative and the rational num-
bers. Further we obtain reals, as on page 105. For further details, we refer [3, 4].

Exercise A.4 Prove that the principle of mathematical induction implies that every
nonempty subset of Z≥0 contains a smallest element.

A.4 Axiom of Choice

The Axiom of Choice, also known as the Choice Axiom, has already been presented
in Sect. 7.4.1. It has various equivalent forms, some of which are equivalent in a
highly non-trivial manner. The following is a popular version of this axiom:

For every nonempty family � of nonempty sets, there exists a set C ⊂ ⋃
A∈� A

such that C contains at least one element from each A ∈ �.

Restricting � to countably infinite collections defines the Axiom of Countable
Choice.

The Zermelo-Fraenkel Axioms along with the Axiom of Choice are known as
ZFC-axioms. Unless otherwise specified, we always work within the framework of
ZFC-axioms.

Several proofs of this textbook use Choice Axiom, without explicitly mentioning
it. It is a good exercise to locate those proofs. Such proofs are known as ZFC-proofs.
The proofs using ZF-axioms but independent of the choice axiom are called ZF-
proofs or choice-free proofs.

Most of the times, the ZFC-proofs can be modified to ZF-proofs, with a minor
change. But there are caseswhen drastically different ZF-proofs are required. In some
cases, the use of Axiom of Choice cannot be avoided. In this section, we present the
first two cases.

First we discuss some examples, where the Axiom of Choice can be avoided, with
a little change in the ZFC-proof. Few other cases will be presented in the exercises.

Example A.4 In the alternative proof of Theorem 5.37, the Choice Axiom is used
to choose δx for each x ∈ X. However, the same proof can be made choice free by
taking δx := 1

nx
, where

nx := min

{
n ∈ N : f

(
BX

(
x; 1

n

))
⊂ BY

(
f (x); ε

2

)}
.

Since in ZF, every subset of N has its least element, the above choice of δx is inde-
pendent of the Axiom of Choice.
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Example A.5 The proof of Theorem 5.28 uses the Axiom of Choice while choosing
open set Ox for every x ∈ X. However, the following little modification makes it
choice free.

ZF-Proof of Theorem 5.28 Let X be a compact metric space. If possible, let E be
an infinite subset of X with E ′ = ∅. Then for every x ∈ X, there exists an open set
Ox containing x such that Ox contains at most one point of E, namely x . Let

� := {O : O is an open set such that O ∩ E is at most a singleton}.

Note that � is an open cover of X. Since X is compact, there exists O1, . . . , On ∈ �

such that X ⊂ ⋃n
i=1 Oi . So E = E ∩ X ⊂ ⋃n

i=1(E ∩ Oi ), which is set having at
most n elements. This is a contradiction, as E is an infinite set. �

We now present a case, where the Axiom of Choice can be avoided, but with a
completely different proof. Note that the converse part of the proof of Corollary 1.47
uses the Axiom of Choice while choosing a suitable sequence {xn}. So that proof is
invalid in ZF. Here we provide a related result.

Theorem A.6 In Z F, a function f : R −→ R is continuous, if f (xn) −→ f (x)

whenever xn −→ x .

Proof Let {rn : n ∈ N} be an enumeration of Q. For every x ∈ R, let fx := f |Q∪{x}
be the restriction of f to the set Q ∪ {x}. First we claim that fx is continuous at x,

for every x ∈ R.

Suppose some fx is not continuous at x . Then there exists ε > 0 such that for
all n ∈ N, there exists yn ∈ [x − 1

n , x + 1
n ] ∩ Q such that | fx (yn) − fx (x)| ≥ ε. For

each n ∈ N, let yn := rkn , where

kn := min

{
m : | fx (rm) − fx (x)| ≥ ε and rm ∈

[
x − 1

n
, x + 1

n

]
∩ Q

}
.

Since every subset of N has the smallest element, the above choice of yn is indepen-
dent of the Choice Axiom. Note that yn −→ x, while f (yn) −→ f (x), a contradic-
tion. This proves our claim.

Fix any x ∈ R and η > 0. Then there exists δ > 0 such that | f (y) − f (x)| <
η
2 ,

for every y ∈ (x − δ, x + δ) ∩ Q. Let z ∈ (x − δ, x + δ). Since fz is continuous at
z, | f (z) − f (w)| <

η
2 for some w ∈ (x − δ, x + δ) ∩ Q. Hence, | f (x) − f (z)| ≤

| f (x) − f (w)| + | f (w) − f (z)| < η. Therefore, f is continuous at x . Hence the
result. �

The proofs dependent upon Axiom of Choice establish only the existence of the
required object and are non-constructive. However, a choice-free proof is not always
non-constructive.

Theorem A.7 There are irrationals a and b such that ab is a rational number.
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Proof Let x = √
2

√
2
. If x is a rational number, take a := √

2 and b := √
2. Other-

wise, take a := √
2

√
2
and b := √

2, as (
√
2

√
2
)
√
2 = √

2
2 = 2 ∈ Q. �

The above proof does not explicitly provides a and b, so it is not a constructive proof.
Constructive Proof of Theorem A.7 Take a = √

2 and b := log2 9. Then ab = 3 ∈
Q.Clearly a is an irrational. Suppose log2 9 = m/n, for some positive integers m, n.

Then 9n = 2m . This is impossible, as the former is odd and the latter is even. �

Notes and Remarks A.8 (a) In ZF, the following pointwise analogue of Theorem
A.6 does not hold (see [5, p. 74, Theorem 4.54]).

A function f : R −→ R is continuous at x, if f (xn) −→ f (x), whenever
xn −→ x .

(b) It is known that thefive axioms; axiomsof extensionality, replacement, power set,
union, and choice are consistent. Further, each of the axioms of extensionality,
replacement, and power set is independent of the remaining four axioms (see [6,
7]). A thorough treatise on the Axiom of Choice is available in [5].

(c) In ZF, the cardinalities of any two sets are comparable if and only if the Axiom
of Choice holds (see [5, p. 52, Theorem 4.20]).

(d) The Axiom of Choice leads to several paradoxes. The Banach-Tarski Paradox is
on outstanding one, which defies the common intuition. It is often loosely stated
that in R

3 we can break a ball into a finite number of pieces, and with these
pieces, build two balls having the same size as the initial ball. Interested readers
are referred to [8–10].

(e) Recently, in a paper entitled ‘A paradox arising from the elimination of a para-
dox,’ Taylor and Wagon presented the division paradox. It states that in Z F
without the Choice Axiom, the set of real numbers can be written into disjoint
classes, so that there are more classes than real numbers (see [11]).

Exercise A.5 Prove that the Axiom of Choice implies that for every nonempty fam-
ily � of nonempty disjoint sets, there exists a set C ⊂ ⋃

A∈� A such that C contains
exactly one element of each set A ∈ �. Is it still true if the sets in � are not disjoint?

Exercise A.6 In ZF, prove that the Axiom of Choice holds if and only if for every
nonempty family of nonempty sets �, the Cartesian product

∏
E∈� E is nonempty.

Exercise A.7 Is the proof of Theorem 5.13 (as on p. 126) dependent upon Axiom
of Choice? If yes, can you provide a proof which does not depend upon it?

Exercise A.8 Let n be a positive integer. In ZF, prove that every bounded infinite
subset of Rn has a limit point in Rn.
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A.5 Hints and Solutions to Selected Exercises

A.5 The result holds, as sets in � are disjoint. Further, this hypothesis is neces-
sary. Otherwise, for� := {{1, 2}, {2, 3}, {3, 1}}, there exists no setC ⊂ {1, 2} ∪
{2, 3} ∪ {3, 1} = {1, 2, 3} such that C ∩ A is a singleton, for every A ∈ �.

A.7 Yes. The choice of j0 at each step of induction, in Theorem 5.13, is not made by
any fixed rule. So, the sequence {In} is chosen using the Axiom of Choice. For a
choice-free proof, define a suitable order on k-cells, and at nth step, choose the
‘smallest legal’ k-cell.

A.8 Apply Exercise A.7, along with the ZF-proof of Theorem 5.28.



Appendix B
More on Continuous Functions

In this appendix, we provide a further discussion on continuous functions. It starts
with the Weierstrass approximation theorem, which asserts the density of polynomi-
als on [a, b] in the space C[a, b] under supremum norm. Then we provide a standard
example of a continuous but nowhere differentiable function, along with the Banach-
Mazurkiewicz theorem; which states that ‘most’ continuous functions are nowhere
differentiable.

B.1 Weierstrass Approximation Theorem

At the age of 70, Karl Weierstrass (1815-1897) presented the following approxi-
mation theorem for continuous functions. We shall prove it in several steps. The
technical verifications have been worked out separately in three lemmas. Through-
out this section, let [a, b] denote an arbitrary closed and bounded interval.

Theorem B.1 (Weierstrass, 1885) If f : [a, b] −→ C is a continuous function, there
exists a sequence of polynomials {Pn}, uniformly convergent to f on [a, b]. Further,
if f is a real valued function, each Pn can be taken as a real polynomial.

Lemma B.2 If Theorem B.1 holds for

(a) all functions on interval [0, 1], then it holds for [a, b].
(b) all functions f on interval [0, 1] such that f (0) = 0 = f (1), then it holds for

any complex valued continuous function f on [a, b].
Proof (a) Let f : [a, b] −→ C be a continuous function. Note that

[a, b] = {a(1 − t) + bt : t ∈ [0, 1]} = {a + (b − a)t : t ∈ [0, 1]}.

Define a function g : [0, 1] −→ C as
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g(x) := f (a + (b − a)x) for all x ∈ [0, 1].

Then g is continuous with g(0) = f (a) and g(1) = f (b). By hypothesis, let
{Rn} be a sequence of polynomials, uniformly convergent to g on [0, 1]. Define

Pn(x) := Rn

(
x − a

b − a

)
for all x ∈ [a, b].

Then {Pn} is a sequence of polynomials, uniformly convergent to f on [a, b].
(b) By (a), without loss of generality, we assume that [a, b] = [0, 1]. Let f :

[0, 1] −→ C be a continuous function. Define g : [0, 1] −→ C as

g(x) := f (x) − f (0) − x
(

f (1) − f (0)
)
for all x ∈ [0, 1].

Then g is continuous and g(0) = 0 = g(1).By hypothesis, let {Sn} be a sequence
of polynomials, uniformly convergent to g on [0, 1]. Define

Pn(x) := Sn(x) + f (0) + x
(

f (1) − f (0)
)
for all x ∈ [0, 1].

Then each Pn(x) is a polynomial in x and Pn −→ f, uniformly on [0, 1]. �

Lemma B.3 Let n ∈ N \ {1} and x ∈ (0, 1). Then (1 − x2)n > 1 − nx2 and

∫ 1

−1
(1 − x2)ndx >

1√
n
.

Proof The second inequality follows from the first, as

∫ 1

−1
(1 − x2)ndx ≥ 2

∫ 1/
√

n

0
(1 − x2)ndx

≥ 2
∫ 1/

√
n

0
(1 − nx2)dx = 4

3
√

n
>

1√
n
.

The first inequality can be proven by induction on n. �

Lemma B.4 If δ ∈ (0, 1), then limn→∞
√

n(1 − δ2)n = 0.

Proof Fix δ ∈ (0, 1). Then, we obtain

lim
n→∞

√
n(1 − δ2)n = lim

n→∞

√
n

(1 − δ2)−n

= lim
n→∞

1

2
√

n(−n)(1 − δ2)−n−1
= lim

n→∞
−(1 − δ2)n+1

2n
3
2

= 0.

Note that above, we have made use of L’Hôpital’s Rule. �
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Proof of Theorem B.1 Applying Lemma B.2, without loss of generality, we assume
that a = 0, b = 1 and f (0) = 0 = f (1). Further, define f (x) := 0 for all x ∈ R \
[0, 1].

For each n ∈ N, let Qn(x) := cn(1 − x2)n, where cn is a constant such that∫ 1
−1 Qn(x)dx = 1. Then cn ∈ R and by Lemma B.3, cn ∈ (0,

√
n), for each n ∈ N.

Fix any δ ∈ (0, 1). Then

Qn(x) ≤ √
n(1 − δ2)n, for all δ ≤ |x | ≤ 1 and for all n ∈ N. (B.1)

Define Pn as follows:

Pn(x) :=
∫ 1

−1
f (x + t)Qn(t)dt for all x ∈ [0, 1].

Since f is zero outside [0, 1], by a change of variable, we have

Pn(x) =
∫ 1−x

−x
f (x + t)Qn(t)dt =

∫ 1

0
f (t)Qn(t − x)dt for all x ∈ [0, 1].

Since each Qn is a polynomial, the last integral above implies that, each Pn(x) is a
polynomial in x . If f is real valued, then so is each polynomial Pn.

Let ε > 0 be given. Since f is continuous on [0, 1], it is uniformly continuous on
[0, 1] and hence on R. Pick any δ ∈ (0, 1) such that

| f (s) − f (t)| <
ε

2
whenever |s − t | < δ.

Let M := sup{| f (x)| : x ∈ [0, 1]}. By Lemma B.4, let m ∈ N such that

√
n(1 − δ2)n <

ε

2(4M + 1)
for all n > m.

Since Qn ≥ 0 and
∫ 1
−1 Qn = 1. Applying (B.1), for all x ∈ [0, 1] and n > m, we

obtain

|Pn(x) − f (x)| =
∣∣∣∣
∫ 1

−1
f (x + t)Qn(t)dt − f (x)

∣∣∣∣ ≤
∫ 1

−1
| f (x + t) − f (x)|Qn(t)dt

≤ 2M
∫ −δ

−1
Qn(t)dt + ε

2

∫ δ

−δ

Qn(t)dt + 2M
∫ 1

δ

Qn(t)dt

≤ 4M
√

n(1 − δ2)n + ε

2
< ε.

Hence the result. �

Exercise B.1 For any a > 0, prove that there exists a sequence of real polynomials
{Pn}, uniformly convergent to |x | on [−a, a] such that Pn(0) = 0, for every n ∈ N.
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Exercise B.2 Let φ : [c, d] −→ [a, b] be a bijection and fn −→ f, uniformly on
[a, b]. Prove that fn ◦ φ −→ f ◦ φ, uniformly on [c, d].
Exercise B.3 Is it possible to generalize Theorem B.1 for continuous functions
f : R −→ C?

Exercise B.4 Using Theorem B.1, prove that C[0, 1] is separable.

B.2 A Continuous but Nowhere Differentiable Function

Theorem B.5 There exists a real valued function which is continuous on R, but
differentiable nowhere.

Proof Definea function f0 : R −→ Rwithperiod2 such that f0(x) := |x | for all x ∈
[−1, 1]. Then f0 is continuous on R such that f0(x + 2) = f0(x) and | f0(x)| ≤
1 for all x ∈ R. Also

| f0(y) − f0(x)| ≤ |y − x | for all x, y ∈ R. (B.2)

Note that f0 is a ‘sawtooth’ function on R, which is linear on the intervals [k, k +
1] for every k ∈ Z. For each n ∈ N, let

fn(x) :=
(
3

4

)n

f0(4
n x) for all for all x ∈ R.

Let f : R −→ R be defined as f (x) := ∑∞
n=0 fn(x) for all x ∈ R. By Weier-

strass M-test, the series for f is uniformly convergent on R. Since each fn is con-
tinuous, f is a continuous function. Now we prove that f is not differentiable at any
x ∈ R. Fix any x ∈ R and m ∈ N.

Let δm = ± 4−m

2 ,where the sign is chosen such that no integer lies strictly between
4m x and 4m(x + δm). This is possible, as 4m |δm | = 1

2 . Let

yn := fn(x + δm) − fn(x)

δm
.

If n > m, then 4n(x + δm) − 4n x = 4nδm = ± 4n−m

2 is an even integer, and hence
yn = 0. If n < m, then (B.2) implies

|yn| =
∣∣∣∣

fn(x + δm) − fn(x)

δm

∣∣∣∣ = 3n

∣∣∣∣
f0(4n(x + δm)) − f0(4n x)

4nδm

∣∣∣∣ ≤ 3n.

Forn = m,wehave4m(x + δm) − 4m x = 4mδm = ± 1
2 .Sinceno integer lies between

4m x and 4m(x + δm), the images of both of 4m x and 4m(x + δm) under f0, lie on
single a straight line with slope ±1. Therefore,
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|ym | =
∣∣∣∣

fm(x + δm) − fm(x)

δm

∣∣∣∣ = 3m

∣∣∣∣
f0(4m(x + δm)) − f0(4m x)

4mδm

∣∣∣∣ = 3m .

Hence, by triangle inequality, we obtain

∣∣∣∣
f (x + δm) − f (x)

δm

∣∣∣∣ =
∣∣∣∣

∞∑

n=0

fn(x + δm) − fn(x)

δm

∣∣∣∣

=
∣∣∣∣

m∑

n=0

yn

∣∣∣∣ ≥ 3m −
m−1∑

n=0

3n = 1

2
(3m + 1).

Therefore, f is not differentiable at x, otherwise we would have

| f ′(x)| = lim
δ→0

∣∣∣∣
f (x + δ) − f (x)

δ

∣∣∣∣ = lim
m→∞

∣∣∣∣
f (x + δm) − f (x)

δm

∣∣∣∣ = +∞,

which is absurd, as the derivative is defined to be a finite number. �

Remarks B.6 (a) Along with Theorem 8.45 we conclude that there exists a con-
tinuous R −→ R function that is not monotone on any open interval.

(b) A continuous function, differentiable only on rationals is provided in [12].

Exercise B.5 Let f be the function given by Theorem B.5 and g(x) := x2 f (x), for
all x ∈ R. Show that g is a continuous function, differentiable only at 0.

B.3 Most Continuous Functions are Nowhere Differentiable

The function presented in the proof of Theorem B.5 is far from being an isolated
example of such a continuous everywhere and nowhere differentiable function. In
the sense of Baire Category, ‘almost all’ functions in C[0, 1] nowhere differentiable.
In other words, it is ‘exceptional’ for a continuous function to have a derivative at
some point.

LetC[0, 1]be theBanach space of continuous real valued functions on [0, 1]under
uniform norm and N D[0, 1] be the collection of nowhere differentiable functions
from C[0, 1]. Write D[0, 1] := C[0, 1] \ N D[0, 1]. We shall prove that D[0, 1] is a
meager subset of C[0, 1]. For m, n ∈ N, define

Am,n :=
{

f ∈ C[0, 1] : there exists some x ∈ [0, 1] such that
∣∣∣∣

f (t) − f (x)

t − x

∣∣∣∣ ≤ m whenever 0 < |t − x | <
1

n

}
.
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Lemma B.7 D[0, 1] ⊂ ⋃∞
m=1

⋃∞
n=1 Am,n.

Proof Let f ∈ D[0, 1]. Then there exists some x ∈ [0, 1] such that f ′(x) exists.
Pick any m ∈ N such that | f ′(x)| < m. Then there exists some δ > 0 such that

∣∣∣∣
f (t) − f (x)

t − x

∣∣∣∣ ≤ m whenever 0 < |t − x | < δ.

Let n ∈ N such that 1/n < δ. Then f ∈ Am,n . Hence the result. �

Lemma B.8 Each Am,n is a closed subset of the Banach space C[0, 1].
Proof Let f be a limit point of Am,n in C[0, 1]. Then there exists a sequence { fk}
in Am,n convergent to f. Therefore, fk −→ f, uniformly on [0, 1]. For every k ∈ N,

fk ∈ Am,n implies that there exists xk ∈ [0, 1] such that
∣∣∣∣

fk(t) − fk(xk)

t − xk

∣∣∣∣ ≤ m whenever 0 < |t − xk | <
1

n
.

By Theorem 1.22, there exists a subsequence of {xk} convergent to some x ∈ [0, 1].
Without loss of generality, suppose that xk −→ x . Then for 0 < |x − t | < 1/n,

∣∣∣∣
f (t) − f (x)

t − x

∣∣∣∣ = lim
k→∞

∣∣∣∣
fk(t) − fk(xk)

t − xk

∣∣∣∣ ≤ m.

Therefore, f ∈ Am,n. Hence the result. �

Lemma B.9 Each Am,n is nowhere dense.

Proof Let P L[0, 1] denote the collection of piecewise linear functions on [0, 1] (see
Definition 8.6). Pick any m, n ∈ N. By Lemma B.8, it is enough to prove that Am,n

has no interior point. Let f ∈ Am,n and ε > 0 be given. It is enough to find some
g ∈ B( f ; ε) \ Am,n.

As in the proof of Theorem 8.7, there exists some p ∈ B( f ; ε/2) ∩ P L[0, 1].
Since p is piecewise linear, it is differentiable on [a, b] except possibly at a finite num-
ber of points. Therefore,there exists some M > 0 such that |p′(x)| < M for every x,

wherever this derivative exists. Pick any integer k > 2(M + m)/ε.
Let φk ∈ P L[0, 1] such that |φk | ≤ 1 and φ′

k(x) = ±k,whenever it exists. Define
g(x) := p(x) + ε

2φk(x) for all x ∈ [0, 1]. Then

‖ f − g‖ ≤ ‖ f − p‖ + ‖p − g‖ <
ε

2
+ ε

2
= ε.

To prove that g /∈ Am,n, let x ∈ [0, 1]. If p and φk are differentiable at x, then

|g′(x)| = |p′(x) ± ε

2
k| ≥ kε

2
− |p′(x)| > (M + m) − M = m.
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Thus, there exists some t ∈ [0, 1] such that 0 < |x − t | < 1
n and

∣∣ g(t)−g(x)

t−x

∣∣ > m.

Hence, g /∈ Am,n .

In general, we find l > n such that the restriction functions g|[x,x+1/ l] and
g|[x−1/ l,x] are linear. As above, the absolute value of the slopes of these two restriction
functions is greater than m. That is,

∣∣∣∣
g(t) − g(x)

t − x

∣∣∣∣ > m for all 0 < |x − t | <
1

l
<

1

n
.

Therefore, g /∈ Am,n. Hence the result. �

Theorem B.10 (Banach-Mazurkiewicz, 1931) D[0, 1] is a meager subset of the
space C[0, 1]. Consequently, N D[0, 1] is a non-meager set.

Proof By Lemma B.7, we have D[0, 1] ⊂ ⋃∞
m=1

⋃∞
n=1 Am,n . By Lemma B.9, each

Am,n is nowhere dense. Therefore, D[0, 1] is a meager set. By Baire Category The-
orem (8.33), C[0, 1] is a non-meager set. Hence, N D[0, 1] is non-meager. �

Notes and Remarks B.11 (a) A diverse range of particular examples of functions
which are continuous but nowhere differentiable, has been given by several
mathematicians starting from the Bolzano function (∼1830) to the recent Wen
function (2002). A thorough discussion of all such functions is provided in the
masters’ thesis [13].

(b) In the first volumeof StudiaMathematica in 1929,H. Steinhaus posed the follow-
ing question, ‘of what category is the set of continuous nowhere differentiable
functions in the space of all continuous functions...’. The answer was published
in the third volume of the same journal in 1931, simultaneously by Banach and
Mazurkiewicz, who established special versions of TheoremB.10 (see [14–16]).

(c) The space C[0, 1] is universal in the sense that every separable Banach space
is linearly isometric to a subspace of C[0, 1], known as the Banach-Mazur
Theorem (see [17, p. 18]). In [18], it has been shown that every separable Banach
space is linearly isometrically embeddable into N D[0, 1].Further, N D[0, 1] has
positive Wiener measure (see [19]).



Appendix C
Proofs Through Games

This appendix offers some proofs in terms of simple two-player games. First, we
establish the uncountability of reals and perfect sets through such an infinite two-
player game. Then we present the Banach-Mazur game to prove Baire Category
Theorem (8.33).

C.1 An Infinite Game and Uncountable Sets

To establish the uncountability of certain subsets of R, we consider a game of num-
bers. There are two players A and B, and the game is defined as follows:

A subset E of real numbers is fixed in the beginning. First A chooses a real
number a1. Then B chooses another real b1 > a1. Then A chooses a2 ∈ (a1, b1)
and B chooses b2 ∈ (a2, b1). Inducting this way, both A and B choose a number,
alternatively, strictly between the previously chosen two numbers. Therefore, we
obtain two sequences {an} and {bn} such that

an < an+1 < bn+1 < bn for all n ∈ N.

Since {an} is a monotonically increasing sequence of reals bounded above by b1, it
is convergent in R. Write a := limn→∞ an and declare that

A wins the game if a ∈ E, and B wins the game if a /∈ E .

One can easily see that if E is a finite set, then B has a winning strategy. In fact,
the same holds for all countable sets.

Theorem C.1 If E is countable, then B has a winning strategy.

Proof If E = ∅, then the result is obvious. Otherwise, enumerate E as a sequence,
say E = {xn : n ∈ N}. Consider the following strategy for B.
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For n ∈ N, B chooses xn, if it is a legalmove, that is if an < xn < bn−1.Otherwise,
B chooses any other number in (an, bn−1).

If a ∈ E, then a = xm for some m ∈ N. Hence, an < a = xm < bn for all n ∈ N.

In particular, am < a = xm < bm, a contradiction. Hence the result. �

Corollary C.2 R is uncountable.

Proof If E = R, then a ∈ E, no matter what B does. Hence, R is not countable. �

Next, we will establish the uncountability of non-empty perfect sets through our
game. Before that, let us discuss the notion of one-sided limit points.

Definition C.3 Let E ⊂ R. A real number x is called a right limit point of E, if

(x, x + ε) ∩ E = ∅ for all ε > 0.

The set of the right limit points of E will be denoted by E+.

Analogously, we define left limit points of E and denote that set by E−.

Lemma C.4 Let E ⊂ R. Then

(a) E ′ = E+ ∪ E− and
(b) inf E ∈ E+, if E is bounded below closed set.

Proof (a) This part is trivial from the definitions.
(b) Since E is bounded below and closed, inf E exists and inf E ∈ E = E ′ = E+ ∪

E−. The result holds as, by definition we have inf E /∈ E−. �

Theorem C.5 Let E be a perfect subset of reals, a ∈ E+ and ε > 0.Then the interval
(a, a + ε) contains an element of E+. Consequently, E+ ⊂ (E+)+.

Proof Repeatedly using a ∈ E+, we obtain numbers z, y, x ∈ E such that a < x <

y < z < a + ε. Since E ∩ (x, z) contains y, it is a nonempty subset of reals bounded
below by x .

If x ∈ E+, we are done. Suppose x /∈ E+ and let b := inf(E ∩ (x, z)). As in
Lemma C.4, b ∈ E+. Therefore b = x . So x < b < z < a + ε. Hence the result. �

Lemma C.6 Let E be a nonempty perfect subset of R which is bounded below. Then
E uncountable.

Proof Applying Lemma C.4, A first chooses any a1 ∈ E+. Using Theorem C.5, A
can choose a sequence {an} from E+. Therefore, a = supn an ∈ E ′ = E and A will
win. Hence, A has the winning strategy. By Theorem C.1, E is uncountable. �

Theorem C.7 If E is a nonempty perfect subset of reals, then E uncountable.
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Proof Without loss of generality, assume that E is bounded. Note that E = E ′ =
E− ∪ E+. If E+ = ∅, A picks any a1 ∈ E+ and proceed as in Lemma C.6. In case
E+ = ∅, then E− = E ′ = E = ∅. Write

E1 := −E := {−x : x ∈ E}.

Note that E+
1 = −(E−) = −E = ∅.Applying Lemma C.6 for E1,we conclude that

E1 = −E is uncountable. Hence, E is uncountable. �

The above infinite game is baseduponCantor’s original proof of the uncountability
of the reals, see [20]. It is taken from [21], where the following natural questions
have been raised.

Open Questions C.8 Do there exist uncountable subsets of R, for which

(a) B has a winning strategy or
(b) A does not have a winning strategy or
(c) neither A nor B has a winning strategy?

Exercise C.1 Let a < b be reals. Define an infinite game to prove that [a, b] is
uncountable. (Hint: Restrict the choice of an, bn to (a, b) in our game).

Exercise C.2 Show that the assumption that ‘E is bounded’, does not violate any
generality in the proof of Theorem C.7.

Exercise C.3 Give an example of an infinite game to extend Theorem C.7 to com-
plete metric spaces.

C.2 The Banach-Mazur Game

Two players A and B decide to play a game. A subset E ofR is fixed in the beginning.
First, A chooses a closed interval I1 of X. Then B chooses a closed subinterval I2 of
O1. Again A chooses a closed subinterval I3 of O2.

Inducting this way, both A and B choose a closed interval, alternatively, as a
subset of the previously chosen interval. Therefore, we obtain a nested decreasing
sequence {In} of closed intervals of R. Declare that

A wins the game if
(⋂∞

n=1 In
) ∩ E = ∅. Otherwise, B wins the game.

Theorem C.9 If E is of first category, then the player B has a winning strategy.

Proof Assume that E is of first category. Then E = ∪En for some nowhere dense
sets En. Then for every n, there exists an open interval disjoint from En.

Note that player B chooses the subsequence {I2n}, in this game. Suppose that B
chooses I2n to be a closed interval, disjoint from En. Then

⋂∞
n=1 In = ⋂∞

n=1 I2n will
contain no point of

⋃∞
n=1 En = E . Hence, this is a winning strategy for B. �
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Corollary C.10 R is not of first category.

Proof Suppose A chooses I1 to be a bounded closed interval. Then
⋂∞

n=1 In ∈ R,

no matter what B does. The result follows by Theorem C.9. �

The converse of Theorem C.9 also holds (see [22, p. 28, Theorem 6.1]).

Exercise C.4 (Choquet Game) Let X be a metric space. Two players A and B,

alternatively, choose a nested decreasing sequence {On} of nonempty open subsets
of X. Declare that

A wins the game if
⋂∞

n=1 On = ∅. Otherwise, B wins the game.

Prove that if X is of first category, then the player B has a winning strategy. Further
conclude the Baire Category Theorem (8.33) for complete metric spaces.



Appendix D
A Glimpse into General Topology

With this last appendix, we strive to provide a quick overview of general topological
spaces. After introducing basic notions, we show that various properties of metric
spaces are not shared by general topological spaces. This provides a few examples
of non-metrizable topological spaces. A collection of standard topological spaces is
provided in the exercises.

D.1 Introduction to Topological Spaces

As observed in the chapter on homeomorphisms, the notions like convergence, con-
tinuity, compactness, and connectedness are topological properties (see Sect. 9.2).
In particular, for a metric space (X, d), these are unaltered even if d is replaced with
some topologically equivalent metric. So these depend only upon the open subsets
of the metric space.

Recall that each of these notions can be defined purely in terms of open subsets
of the space (see Exercise 3.19, Theorem 3.28, Exercise 3.93, Definition 5.1, and
Definition 6.17). So why don’t we discuss convergence, continuity, compactness,
and connectedness for spaces when only open sets are given? But such open sets
should be ‘trustable’. That is, these should satisfy the requirements of Theorem 3.2.

Motivated by this, we define the notion of open sets in arbitrary spaces, which
leads to the notion of topological spaces. Throughout this appendix, X will denote a
nonempty set.

Definition D.1 A topology on X is a family T of subsets of X such that

(a) ∅, X ∈ T ,

(b) T is closed under arbitrary unions, and
(c) T is closed under finite intersections.
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IfT is a topology on X,we say that (X,T ) is a topological space. If the underlying
topology is evident, we simply write ‘X is a topological space’. The sets in T are
known as open sets of (X,T ); their complements are called closed sets.

Example D.2 The collection of usual open subsets of R
n, equipped with the

Euclidean metric, is a topology on Rn. It is commonly known as the usual topology,
standard topology or the Euclidean topology on R

n.

Examples D.3 Let X be any nonempty set.

(a) If X = {a, b, c} and T := {∅, {a}, {b, c}, X}, then T is a topology on X.

(b) If d is a metric on X, the family Td := {O : O is open in (X, d)} is a topology
on X. Therefore,every metric space is a topological space with same open sets.

(c) The collection T1 of all subsets of X is a topology on X. It is known as the
discrete topology on X, and is given by the discrete metric on X.

(d) The collectionT0 := {∅, X} is a topology on X, known as the indiscrete topology
on X. It is also known as the trivial topology.

(e) If T is a topology on X and ∅ = Y ⊂ X, then TY := {O ∩ Y : O ∈ T } is a
topology on Y. It is known as the subspace topology on Y and (Y,TY ) is called
a subspace of (X,T ).

(f) Apart from the discrete and indiscrete spaces, there are topological spaces
in which a set is open if and only closed. E.g. let X := {1, 2, 3} and T :=
{∅, {1}, {2, 3}, X}.

Several other examples of topological spaces will be presented in the exercises.

Definition D.4 Topologies induced bymetrics are calledmetrizable. In other words,
a topological space (X,T ) is said to be a metrizable space, if there exists a metric d
on X such that T = Td .

Examples D.5 Let X be any nonempty set.

(a) Every discrete topological space (X,T1) is metrizable. Note that T1 = Tdc ,

where dc denotes a discrete metric on X (see Example 2.3(b)).
(b) If |X | > 1, then the indiscrete topology T0 := {∅, X} on X is not metrizable.

To see this, assume that there exists a metric d on X which induces the topology
T0. Let a, b ∈ X such that a = b. If r := d(a, b)/2, then B(a; r) and B(b; r)

are disjoint nonempty open subsets of X. This is a contradiction, as T0 has only
one nonempty open set X.

Exercise D.1 (A-exclusive topology) If A ⊂ X, then prove thatEA := {X} ∪ {O ⊂
X : O ∩ A = ∅} is a topology on X. What is this topology when A = ∅ or A = X?

Exercise D.2 (A-inclusive topology) If A ⊂ X, then prove that IA := {∅} ∪ {B :
A ⊂ B ⊂ X} is a topology on X. What is this topology when A = ∅ or A = X?

Exercise D.3 (Co-finite topology) If X is a nonempty set, prove that the collection
of sets {A : X \ A is a finite set or A = ∅} is a topology on X.
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Exercise D.4 (Co-countable topology) If X is a nonempty set, prove that the col-
lection of sets {A : X \ A is a countable set or A = ∅} is a topology on X.

Exercise D.5 (a) If X is afinite set, prove that the co-finite topologyon X is discrete.
(b) If X is a countable set, prove that the co-countable topology on X is discrete.

Exercise D.6 (Fort’s space) Let X be any infinite set and ∞ be any fixed point of
X. Prove that the following collection defines a topology on X.

T := {G ⊂ X : ∞ /∈ G} ∪ {G : ∞ ∈ G and X \ G is a finite set}.

Exercise D.7 Let C denote a collection of subsets of X containing ∅ and X such
that C is closed under arbitrary intersections and under finite unions. Prove that there
exists a unique topology on X, in which C is the collection of all closed sets.

Exercise D.8 (a) Let X be an infinite set with co-finite topology. Prove that

(i) no two (nonempty) open subsets of X are disjoint,
(ii) the co-finite topology on X is not metrizable.

(b) Let X be an uncountable set with co-countable topology. Prove that

(i) no two (nonempty) open subsets of X are disjoint,
(ii) the co-countable topology on X is not metrizable.

Exercise D.9 (Lower limit topology) Prove that the collection {∅} ∪ {A : A is a
union of intervals of the form [a, b)} forms a topology on R.

Exercise D.10 (Left ray topology) Prove that {∅,R} ∪ {(−∞, a) : a ∈ R} is a
topology on R.

Exercise D.11 Is {∅,R} ∪ {[a,+∞) : a ∈ R} a topology on R?

Exercise D.12 Is {∅} ∪ {A ⊂ R : x ∈ A ⇐⇒ −x ∈ A} a topology on R?

Exercise D.13 Prove that the collections of sets {∅} ∪ {{n, n + 1, . . . } : n ∈ N} as
well as {∅,N} ∪ {{1, . . . , n} : n ∈ N} are topologies on N.

Exercise D.14 Let Ze and Zo denote the collections of all even and odd integers,
respectively. Prove that the collection {∅,Z,Ze,Zo} is a topology on Z.

Exercise D.15 Let T1 and T2 be two topologies on X.

(a) Is T1 ∪ T2 a topology on X?
(b) Prove that there exists a smallest topology on X which contains both T1 and T2.

Exercise D.16 If ∅ = E ⊂ R, what is the topology in R2, in which every line with
slope in E is an open set?

Exercise D.17 (Line with two ‘origins’) Consider two lines Li := {(x, i) : x ∈
R}; i = 1, 2. Let X = L1 ∪ L2 and identify (x, 1) with (x, 2), unless x = 0. Con-
sider a topology T on X, generated by the subspace topologies of L1 and L2. Show
that there are no disjoint open sets in T , separating the points (0, 1) with (0, 2).
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D.2 Analogies and Contrasts

This section examines the similarities and differences between metric spaces and
general topological spaces. The following are a few notions in the general setting.

Definition D.6 Let (X,T ) be a topological space.

(a) A sequence {xn} in X is said to be convergent to some x ∈ X if for every O ∈ T
such that x ∈ O, there exists some m ∈ N such that

xn ∈ O for all n ≥ m.

(b) A neighborhood of a point x ∈ X is defined to be a set Nx ⊂ X such that

x ∈ O ⊂ Nx for some O ∈ T .

Similarly, the notions of interior points, limit points, isolated points, adherent points,
continuity, continuity at a point, compactness, and connectedness can also be defined
in terms of open sets, in general topological spaces.

These topological properties can also be equivalently defined only in terms of
neighborhoods. Here we present a few of such definitions.

Definitions D.7 Let X, Y be topological spaces, E ⊂ X and x ∈ X.For every a ∈ X
(or a ∈ Y ), let Na denote the family of all neighborhoods of a in X (or in Y ).

(a) A sequence {xn} in X is said to be convergent to x ∈ X if for every O ∈ Nx ,

there exists some m ∈ N such that xn ∈ O for all n ≥ m.

(b) A function f : X −→ Y is said to be continuous at x ∈ X if f −1(O) ∈
Nx for all O ∈ N f (x). Further, f is called continuous on E, if f is continu-
ous at every x ∈ E .

(c) An element x ∈ X is said to be

(i) an interior point of E if O ⊂ E for some O ∈ Nx .

(ii) an isolated point of E if O ∩ E = {x} for some O ∈ Nx .

(iii) an adherent point of E if O ∩ E = ∅ for every O ∈ Nx .

(iv) a limit point of E if O ∩ E \ {x} = ∅ for every O ∈ Nx .

(v) a boundary point of E if O ∩ E = ∅ and O ∩ (X \ E) = ∅ for all O ∈
Nx .

(d) A set E ⊂ X is said to be

(i) perfect if E is closed in X and every point of E is its limit point.
(ii) connected if E is not a union of two nonempty disjoint sets, clopen in E .

(iii) compact if every open cover of E has a finite subcover; i.e. if � is a
collection open sets such that E ⊂ ⋃

O∈� O, then E ⊂ ⋃n
i=1 Oi , for some

finitely many O1, . . . , On ∈ �.
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The sets of interior points, limit points, adherent points, and boundary points of E
will be again denoted by Eo, E ′, E and∂E, respectively. These are known as interior,
derived set, closure and boundary of E, respectively.

The readermay verify that analogues of Theorems 3.5, 3.10, 3.19, 5.10, 5.18, 5.31,
5.33, 6.9, 6.20, 6.22, 6.28, 6.31, 6.32, 6.35, and 6.44 hold for arbitrary topological
spaces. However, the same is not true for several other properties of metric spaces.

Examples D.8 Let X := {0, 1} with the indiscrete topology. Then
(a) 0 is a limit point of X but no neighborhood of 0 contains infinitely many points

of X. Also, there exists no sequence of distinct elements in X convergent to 0.
(b) X is a finite set with limit points.
(c) Every sequence in X is convergent and has two limits 0 as well as 1.
(d) {0} is a compact subset of X, while it is not closed in X.

Therefore, in general topological spaces, compact sets need not be closed. Further,
closure of a compact setmay not be compact. In contrast toCorollary 8.11, a subspace
of a separable topological space may not be separable. Doesn’t it appear paradoxical
because separability is a measure of smallness of a set?

Example D.9 Let T := {S ⊂ R : 0 ∈ S} ∪ {∅}. Then
(a) (R,T ) is a topological space.
(b) The singleton set {0} is dense in (R,T ), and hence (R,T ) is separable.
(c) The subspace R \ {0} is not separable.
(d) The set {0} is compact, but not its closure.

Proof (a) Left to the reader.
(b) To prove that {0} = R, let x ∈ R and O be an open subset of R containing x .

Then O = ∅ and thus 0 ∈ O. Therefore, every neighborhood of x intersects {0}.
Hence, x ∈ {0}.

(c) The subspace R \ {0} is uncountable and has discrete topology. Therefore, it is
not separable.

(d) Being a singleton set, {0} is compact. Further {0} = R is not compact in (R,T ),

as {{0, x} : x ∈ R} is an open cover of R, having no finite subcover. �

Similarly, various characterizations of compactness, as in Theorem 5.27, are not
all equivalent in general topological spaces. It is a good exercise to look out for the
results on metric spaces, which hold (or do not hold) for general topological spaces.
That will also be an amusing way to revise this textbook.

There are topological spaces, known as uniform spaces, in which the notions like
Cauchy sequences, completeness, total boundedness, and uniform continuity can be
discussed. For such spaces, analogues of Theorems 5.26 and 5.37 hold true (see [23,
Chapter 9] or [24]). A characterization of complete uniform spaces can be found in
[25, Proposition 4.10].

The readers in search of an expository book on topology are referred to [26]. For
a smooth take off from metric spaces to topological spaces, we refer [27]. A vast
collection of counterexamples in topology can be found in [28].
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Exercise D.18 Establish analogues of Theorems 3.5, 3.10, 3.19, 5.10, 5.18, 5.31,
5.33, 6.9, 6.20, 6.22, 6.28, 6.31, 6.32, 6.35, and 6.44 for arbitrary topological spaces.

Exercise D.19 Do any of the Exercises 3.18, 3.31, 3.58 or 8.15 hold true for all
topological spaces?

Exercise D.20 Let X and Y be topological spaces and f : X −→ Y. Prove that f
is continuous, if either X is a discrete space or Y is an indiscrete space.

Exercise D.21 Let X be an indiscrete topological space with |X | > 1. Prove that
every subset of X is compact, perfect as well as connected.

Exercise D.22 Let X be anonempty set andTp := {S ⊂ X : p ∈ S} ∪ {∅} for all p ∈
X. Prove thatTp andTq are non-comparable homeomorphic topologies on X, for all
distinct p, q ∈ X. (Two topologies are called comparable if one of them is contained
in the other.)

Exercise D.23 Characterize the collections of compact, connected, and perfect sub-
sets in a discrete topological space.

Exercise D.24 Let X be a topological space. Prove the following:

(a) If X is indiscrete, then every sequence in X converge to every point of X.

(b) If X is discrete, then only eventually constant sequences converge in X.

(c) If X is co-countable, then only eventually constant sequences converge in X.

Exercise D.25 Let {xn} be a sequence in a co-finite space X. Prove the following:

(a) If no term of {xn} repeats infinitelymany times, then it converges to every x ∈ X.

(b) If exactly one term, say x ′, of {xn} repeats infinitely many times, then {xn} has
a unique limit x ′ in X.

(c) If there are two terms of {xn} which repeat infinitely many times, then {xn} is
not convergent in X.

Exercise D.26 Prove that every convergent sequence in topological space X has a
unique limit if and only if any two distinct points of X are contained in disjoint open
sets. (Such a topological space is called a Hausdorff space.)

Exercise D.27 Prove that every compact subset of a Hausdorff space is closed.

Exercise D.28 Let T be a topology on X and B ⊂ T . Prove that the following
statements are equivalent:

(a) Every open set in X is a union of members of B.

(b) For every set O ∈ T and x ∈ O, there is some B ∈ B such that x ∈ B ⊂ O.

(A collection B satisfying (a) or (b) is called a base or basis for T .)

Exercise D.29 Let X be any nonempty set and B be a collection of subsets of X.

Prove that B is a base for some topology on X if and only if
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(a) X is a union of members of B.

(b) For any B1, B2 ∈ B, the intersection B1 ∩ B2 is a union of members of B.

Further, show that
{⋃

B∈B0
B : B0 ⊂ B

}
is a topology on X. (It is known as the

topology generated by base B. If B0 = ∅, then
⋃

B∈B0
B is taken as the empty set.)

Exercise D.30 Let {(Xα,Tα) : α ∈ ∧} and
∏

α∈∧ Xα be as on page 203. Let B
denote the collection of sets of the form

∏
α∈∧ Uα such that there exists a finite

set {a1, . . . ,αn} ⊂ ∧ such that Uαi is open in Xαi for all i = 1, . . . , n, and Uα =
Xα for all α ∈ ∧ \ {a1, . . . ,αn}. Prove that B is a base for some topology on X.

(That topology is called the product topology on X ).

Exercise D.31 Let {(Xα,Tα) : α ∈ ∧} be a nonempty collection of topological
spaces and consider the product topology on X := ∏

α∈∧ Xα. Let x ∈ X and {xn}
be a sequence in X. Prove that xn −→ x in X if and only if xn(α) −→ x(α) in
Xα for all α ∈ ∧.

Exercise D.32 Prove that every topological space with a countable basis is separa-
ble. Is the converse true? (A space with a countable basis is called second countable.)

Exercise D.33 Let X = R, with the lower limit topology. Prove that X is separable
but not second countable. Conclude that X is not metrizable.

Exercise D.34 Let X be a Hausdorff space such that every x ∈ X has a compact
neighborhood. Prove that every nonempty perfect subset of X is uncountable.

Exercise D.35 (Brouwer) Prove that every totally disconnected, compact, perfect,
Hausdorff, and second countable topological space is homeomorphic to the Cantor
set.
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P(X), 201, 310
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d2, 42
d∞, 44
dc, 40
dist (A, B), 73, 165
dist (x; Y ), 55
f (d+), 194
f (d−), 194
k-cell, 126
m-base expansion, 20
m-base representation, 20
p-adic valuation on Q, 47
limx→c f (x), 75

A
Abel’s test, 19
Absolute continuity, 145
Absolutely convergence series, 15, 110
Accumulation points, 66
Adherent points, 69, 332
Alexandroff-Hausdorff theorem, 293
Algebra

of continuous functions, 24
of limits, 6, 23, 77

Algebraic numbers, 174
An infinite number game, 325
Arc, 155
Archimedean property, 2
Ascoli-Arzelá theorem, 231
Atsuji spaces, 139
Axiom

of choice, 203, 312
of extensionality, 310
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of infinity, 310
of null set, 310
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of regularity, 310
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of union, 310

Axiomatic set theory, 309
Axiom of Countable Choice, 312

B
Baire category theorem, 225, 328
Baire class one function, 29
Ball, 43
Banach contraction principle, 92
Banach fixed point theorem, 92
Banach-Cacciopoli principle, 92
Banach-Mazur game, 327

Banach-Mazurkiewicz theorem, 323
Banach space, 108
Barber paradox, 202
Basis

algebraic basis, 217
Hamel basis, 217
of a metric space, 215
of a separable space, 215
of Banach spaces, 269
Schauder basis, 216

Basis of a topology, 334
Binary expansion, 20
Binary representation, 20
Bolzano-Weierstrass

property, 130
theorem, 9, 50, 67, 99

Boundary, 69, 332, 333
Boundary of E , 69
Bounded above set, 2
Bounded monotone sequences, 9
Bounded set, 2
Bounded subsets of metric spaces, 44
Bounded variation, 144
Brouwer’s theorem, 295, 335

C
Cantor-Bendixson theorem, 222
Cantor discontinuum, 282
Cantor function, 299
Cantor intersection property, 95, 96, 99
Cantor set, 279

and compact sets, 293
and complete perfect spaces, 290
and its open subsets, 297
and ternary expansions, 280, 282
and totally bounded sets, 292
and totally disconnected sets, 295
end points, 282
fat Cantor set, 283
has measure zero, 281
homeomorphic permutations, 300
infinite product representation, 287
inside metric spaces, 289, 290
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is perfect, 280
is uncountable, 280
left end points, 301
right end points, 301
Smith-Volterra-Cantor set, 283
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Cantor-Schröder-Bernstein theorem, 200
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Cantorval, 303
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of separable metric spaces, 214, 291
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Cardinal number, 202, 203
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and choice function, 203
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of countable sets, 185
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Cauchy-Schwarz inequality, 41, 45, 53, 54
Cauchy sequences, 9, 48
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Characterizations

of Banach spaces, 110
of compact sets, 128, 132, 192, 293
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of countably compact sets, 192
of the Cantor set, 285, 292, 295–297, 300
of topologically stronger metrics, 244
of totally bounded sets, 98, 292

Choice axiom, 203, 312
Choice function, 203
Choice-free proofs, 312
Choquet game, 328
Clopen sets, 163
Closed balls, 44

in normed spaces, 83
Closed sets, 63, 330

inside perfect separable spaces, 222
relative to a set, 74

Closure of a set, 69, 333
Cluster points, 66
Co-countable space, 331
Co-finite space, 330
Comb space, 170
Co-meager set, 227
Compact sets, 123, 332

are bounded, 124
are closed, 125
are complete, 128
are totally bounded bounded, 124
in subspace topology, 124
inside Rn , 126

Comparable, 334
Complement of a set, 63
Complete metric spaces, 89
Completeness, 89

and Gδ-sets, 263
of �p-spaces, 108
of finite-dimensional spaces, 268
of R, 9
of Rn , 50

Completeness property of R, 1, 2
Complete subsets are closed, 90
Completion

of a metric space, 102, 103
uniqueness of completion, 104

Completion
of a normed space, 114

Complex numbers, 42
Composition of continuous functions, 24
Conditionally convergent series, 111
Conjugate exponents, 56
Connected components, 166

of open sets, 167
Connected open subsets

of R, 190
of Rn , 190

Connected sets, 160, 332
inside R, 160
inside locally connected spaces, 171
inside normed spaces, 172

Continuity, 22
and compactness, 134
and connectedness, 161
and uniform convergence, 77
at a point, 75, 332
of a function, 75, 332
of monotone functions, 194
of the Cantor function, 300

Continuous everywhere but nowhere
differentiable function, 320, 321

Continuous functions, 75
Continuum, 164, 255
Continuum hypothesis, 203
Contraction mapping theorem, 92
Contraction principle, 92
Convergence, 332

of a sequence, 5, 47, 332
of a series, 14, 109
pointwise, 26, 27
uniform, 26, 27

Convergence of a set, 133
Convergent sequences, 47, 332

in R
n , 49

are Cauchy, 9
in discrete spaces, 51

Convex sets, 171
Countability

of algebraic numbers, 186
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of rational numbers, 185
Countable

perfect spaces, 252
sets, 183
union of countable sets, 184

Countable cloud function, 23
Countably compact, 191
Countably dense homogeneous, 264
Countably infinite sets, 183
Curve, 155
Cut point, 164, 255

D
Decimal expansions, 19, 20

of rational numbers, 21
Decimal representation, 20
Deleted comb space, 170
Deleted neighborhood of a point, 24
Dense, 29
Dense in itself, 220
Dense sets, 102, 213

cyclic subgroups of (R,+), 220
Density of rational numbers, 3
Denumerable sets, 183
Derived set, 333
Diameter of a set, 95
Differentiation theorem

for monotone functions, 228
Dini’s theorem, 129
Dirichlet function, 23

modified Dirichlet function, 23
Dirichlet’s test, 18
Discontinuities

of monotone functions, 194, 195
of real functions, 194, 197

Discrete metric space, 40
Discrete topology, 330
Distance between

a point and a set, 55
two sets, 73

Distance of a point from a set, 68, 71
Divergence to ±∞, 6
Divergent, 6
Division paradox, 314
Dot product, 41

E
End points of the Cantor set, 282
Enumerable sets, 183
Equicontinuity, 230

and uniform convergence, 230, 231
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Equivalence of norms, 267
Equivalence theorem, 200
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metrics, 243
metrics on linear spaces, 266
norms, 267
sets, 183

Euclidean metric, 42
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Euclidean space, 41
Eventually, 6
Eventually constant sequence, 12
Extension theorems, 259

Kuratowski, 262
Lavrentiev, 262
Tietze, 259

Exterior of a set, 72
Extreme value theorem, 134

F
Fat Cantor set, 283
Finite intersection property, 128
Finite sets, 183
Finite-dimensional normed spaces, 267
Fixed point of a function, 92
Formula, 310
Fort’s space, 331

G
Generalized Heine-Borel theorem, 131, 268
Greatest integer function, 3, 21
Greatest lower bound, 2

property, 2

H
Hahn–Mazurkiewicz Theorem, 295
Hamel basis, 217
Hausdorff metric, 41, 73
Hausdorff space, 334
Heine-Borel theorem, 126, 268

generalization, 131
Hilbert space, 108
Hölder’s inequality, 57
Homeomorphic, 251
Homeomorphic permutation, 300
Homeomorphism, 251
Homogeneous, 52
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I
Indicator function, 22
Indiscrete space, 330
Induced metric, 40
Induction, 311
Inequalities, 56–58
Infimum, 2
Infinite broom, 164
Infinite product representation

of the Cantor set, 287
Infinite product spaces, 46
Infinite sets, 183
Inner product space, 53
Interior

of a normed subspace, 82
of a set, 63, 332, 333
point of a set, 63, 332

Intermediate value theorem, 158, 160, 165
Interval, 1, 155
Isolated points, 66, 332
Isometry, 102

J
Jensen’s inequality, 56
Jump discontinuity, 194
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Knaster-Kuratowski fan, 302, 303
Kuratowski intersection theorem, 101
Kuratowski’s theorem, 262

L
Language of set theory, 309
Lavrentiev’s extension theorem, 262
Least upper bound, 2
Least upper bound property, 2
Lebesgue number, 141
Lebesgue number lemma, 141
Lebesgue’s differentiation theorem, 228
Left end point

of the Cantor set, 301
Left-handed limit, 194
Left limit points, 326
Left ray topology, 331
Length of an interval, 227
Limit, 22

of a function, 75
of a function on R

m , 76
of a sequence, 5, 48
points, 66

Limit inferior, 13

Limit of a sequence, 5
Limit of a series, 14
Limit points, 332
Limit superior, 13
Linear function, 214
Linearly dependent, 42
Linearly homeomorphic, 256, 268
Linearly isometric, 256
Line segment, 171
Line with two origins, 331
Lipeomorphic spaces, 255
Lipeomorphism, 255
Lipschitz constant, 92, 142
Lipschitz continuity, 142

in normed spaces, 144
Lipschitz equivalent metrics, 245
Lipschitz equivalent spaces, 255
Locally compact spaces, 269
Locally connected sets, 170
Locally Lipschitz, 146
Locally path connected, 176
Locally path connected sets, 170
Lower bounds, 2
Lower limit, 13
Lower limit topology, 331
Lower semi-continuous, 81

M
Mazur-Ulam theorem, 254
Meager set, 227
Measure of non-compactness, 101
Measure of non-total boundedness, 101
Metric, 39

on Cartesian products, 46, 160, 285
Metric space, 40
Metrizable space, 330
Minkowski’s inequality, 42, 58
Modified Dirichlet function, 23
Monotone

convergent sequences, 8
function, 194
sequences, 8
subsequence theorem, 8

N
Negligible set, 227
Neighborhood, 48, 332

of a real number, 6
Nested decreasing sequence, 9, 95
Nested interval property, 9
Nested set property, 96
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Non-cut point, 164
Non-meager set, 227
Norm, 52

of a subspace, 84
Normed linear space, 52
Normed space, 52
Norms on finite-dimensional spaces, 267
Nowhere dense sets, 225
Nowhere differentiable but

continuous everywhere function, 320,
321

Null sets, 227

O
One-sided limit, 194
Open balls, 43

are open sets, 64
Open cover, 123
Open maps, 251
Open set, 63

basic open sets, 215
in topological spaces, 330
relative to a set, 73

Open sets, 330
Oscillation of a function

at a point, 197, 262
on an interval, 197, 262

P
Parallelogram law, 53
Path, 155
Path components, 166
Path connected components, 166
Path connectedness, 155

of R2 \ Q2, 191
Peano curves, 293
Perfect sets, 220, 332

inside R \ Q, 222, 291
Permutation, 111
Piecewise linear function, 214
Pointwise bounded

sequence of functions, 230
Pointwise convergence, 26, 27
Polarization identity, 54
Polish space, 214
Polygonal lines, 171
Polygonal path, 171
Popcorn function, 23
Positive definiteness, 39, 52
Positive semi-definiteness, 40, 41
Post office metric, 46
Power set, 201

Pre-compact sets, 100
Principle of mathematical induction, 311
Product metric, 285
Product space, 46, 160, 285

compactness, 286, 289
completeness, 288, 289
total boundedness, 288, 289

Product topology, 285, 335
Projection map, 286

continuity, 286
Property C, 297
Pseudo-metric, 40
Pythagorean triplets, 257

Q
Quasi-component, 173
Quotient norm, 84
Quotient space, 84

R
Radius of convergence, 82
Raindrop function, 23
Rearrangement of a series, 111
Relative open sets, 74
Residual set, 227
Riemann rearrangement theorem, 111
Riesz’s lemma, 270
Right end point

of the Cantor set, 301
Right half open topology, 331
Right-handed limit, 194
Right limit points, 326
Ruler function, 23
Russell’s paradox, 202

S
Schauder basis, 216

and separability, 216
Second countable, 335
Separability

of C, 213
of R, 213
of Rn , 213
of C[0, 1], 214
of �p-spaces, 217
of compact sets, 214
of sequence spaces, 217
of totally bounded sets, 213

Separable space, 213
Separated sets, 162
Separation of a metric space, 163
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Sequence, 5
upper and lower limits, 13

Sequence spaces, 55
sequence space �2, 53
sequence space �p , 217

Sequences and series of functions, 26
Sequential criterion

for adherent points, 69
for continuity, 22, 76, 313
for countable sets, 184
for limit points, 67
for limits, 22, 75

Sequentially compact sets, 130
Series, 14

absolute convergence, 15, 110
Cauchy condensation test, 19
comparison test, 15
conditionally convergent series, 17
convergence, 14, 109
geometric series, 14, 16
integral test, 16
Leibniz test, 17
limit test, 17
necessary condition for convergence, 14
of real numbers, 14
p-test, 17
partial sum, 14
ratio test, 17
root test, 17

Set of
continuities, 196
discontinuities, 196
non-negative integers, 311

Sets having same cardinality, 183
Sets of

first category, 227
measure zero, 227
second category, 227

Shrinking lemma, 92
Sierpiński’s theorem, 252
Smith-Volterra-Cantor set, 283
Space, 39

of all real numbers, 105
of continuous functions, 52, 108
of functions between two sets, 201
of polynomials, 55
of real numbers, 105

Space filling curves, 293, 294
Span of a set, 220
Squeeze rule, 7
Stereographic projection, 251

Pythagorean triplets, 257
Strict contraction, 92

Strong pointwise convergence, 78
Strong triangle inequality, 40
Strong uniform continuity, 142
Subcover, 123
Subsequence, 5
Subspace, 40, 52, 330
Subspace topology, 73, 330
Subsums, 303
Sum of a series, 14
Sup metric, 44
Supremum, 2
Supremum norm, 52, 108
Symmetry, 39–41

T
Tail of a sequence, 6
Taxi cab metric, 44
Ternary expansion/representation, 20
Thick set, 227
Thin set, 227
Thomae’s function, 23
Tietze extension theorem, 259
Topological basis

of a metric space, 215
of a separable space, 215

Topologically
equivalent metrics, 243
stronger/weaker metric, 243

Topologically equivalent spaces, 255
Topological property, 254, 329
Topological space, 330

A-exclusive/inclusive topology, 330
co-countable space, 331
co-finite space, 330
Fort’s space, 331
indiscrete space, 330
left ray topology, 331
lower limit topology, 331
metrizable, 330
open sets, 330

Topologist’s sine curve, 162, 170, 171
Topology, 63, 329

discrete/indiscrete, 330
generated by a collection of sets, 331
generated by basis, 335
of a metric space, 63
trivial, 330
usual topology, 330

Torus, 257
Totally bounded sets, 96
Totally disconnected sets, 174
Totally separated space, 175
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Transcendental numbers, 174
Triangle inequality, 39–42, 52

strong triangle inequality, 40
Trivial topology, 330
Tychonoff’s theorem, 286

U
UC spaces, 139
Ultrametric, 40, 43, 73, 92, 176, 224, 251
Unconditionally convergent series, 111
Uncountability

of R, 186, 221, 226, 326
of perfect sets, 221, 326
of the Cantor set, 280
through a game, 325

Uncountable sets, 183
Uniform continuity, 135

and Cauchy sequences, 138
and compactness, 135
and totally bounded sets, 138
strong uniform continuity, 142

Uniform convergence, 26, 27
a sufficient condition, 129
and equicontinuity, 230, 231
and limits, 78, 91
Cauchy criterion, 28
necessary and sufficient conditions, 27,
28

Weierstrass M-test, 28
Uniformly bounded

sequence of functions, 230
Uniformly equivalent metrics, 245
Uniformly equivalent spaces, 255
Uniform norm, 52, 108
Uniform spaces, 333

Uniqueness of
completion, 104
fixed point, 92
limit, 5, 48
uniformly continuous extension, 263

Universal compact metric space, 287
Universal continuous function, 294
Universal surjectivity of the Cantor Set, 293
Upper bound, 2
Upper limit, 13
Upper semi-continuous, 81
Urysohn’s lemma, 259
Usual metric, 40, 42, 43

V
Vector space, 52

W
Weakly locally connected space, 176
Weierstrass approximation theorem, 317
Weierstrass M-test, 28
Well-ordering principle, 3, 311

Y
Young’s inequality, 56

Z
Zermelo-Fraenkel axioms, 310
ZF-axioms, 310
ZFC-axioms, 312
ZFC-proofs, 312
ZF-proofs, 312
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