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Abstract Alzheimer’s disease is a progressive neurodegenerative disorder which is 
characterized by Amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). These 
characterized features cause mitochondrial dysfunction, oxidative stress, synaptic 
dysfunction, cognitive deficits, neuroinflammation, and ultimately lead to 
neurodegeneration. Although the current AD treatments are successful, they are 
limited due to their only symptomatic treatment. In the past few decades, much 
research has been focussing on targeting Aβ and NFTs which are hypothesized to 
prevent neurodegeneration. These strategies failed clinically, thus shifting the focus 
onto newer targets. In the present book chapter, we will emphasis on the current 
therapeutic targets, focussing on mitochondrial dysfunction, synaptic dysfunction, 
and neuroinflammation. 
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Aβ Amyloid β 
BuChE Butyrylcholinesterase 
CREB Cyclic AMP response element-binding protein 
D2 Dopamine (D2) receptor 
GABA Gamma-aminobutyric acid 
HD Huntington’s disease 
IMM Inner mitochondrial membrane 
LTP Long-term potentiation 
MAO-B Monoamine oxidase B 
MS Multiple sclerosis 
mtDNA Mitochondria contain their own DNA 
NAD Nicotinamide adenine dinucleotide 
NFT Neurofibrillary tangles 
NMDA N-methyl-D-aspartate 
PD Parkinson’s disease 
PDE Phosphodiesterase 
PGC-1α Peroxisome proliferator-activated receptor γ coactivator-1α 
PPARα Peroxisome proliferator-activated receptor alpha 
PS1 Presenilin-1 
RCC Respiratory chain complexes 
ROS Reactive oxygen species 
SP Senile plaques 
VPA Valproic acid 

1 Introduction 

One of the most prevalent neurodegenerative diseases, Alzheimer’s disease (AD), is 
primarily characterized by amyloid (Aβ) plaques and neurofibrillary tangles (NFTs), 
which lead to dementia. Globally, about 47 million people live with dementia. By 
2050, it is anticipated that this figure would surpass 131 million (Chaudhary et al. 
2018). The “amyloid cascade hypothesis” states that the amyloid precursor protein 
(APP) is processed by aβ and γ-secretase to produce Aβ40 and Aβ42 peptides, which 
go on to form oligomers and aggregates and deposit Aβ plaques. Additionally, tau 
protein hyperphosphorylation results in NFT production. The hallmarks of AD, 
including synaptic failure, vascular damage, increased oxidative stress, neuronal 
and axonal injury, microglia-regulated neuroinflammation, and mitochondrial dys-
function, are facilitated by intraneuronal NFTs and extra-neuronal senile plaques 
(SP) comprised of Aβ peptides. 

To date, cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and 
N-methyl-D-aspartate (NMDA) receptor inhibitors (memantine) have been used to 
treat AD. None of these medications are curative or disease-modifying; instead, they 
merely temporarily or symptomatically relieve some AD patients. There is a



continuous quest for innovative therapeutic targets because these medications are 
only marginally effective, unable to stop cognitive deterioration, and also have 
numerous undesirable side effects. 
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The key pathological hallmarks of AD, extracellular Aβ deposition, and the 
emergence of intracellular NFTs have been the subject of growing investigation in 
recent years. Aβ-peptides were once thought to be one of the most promising AD 
treatment candidates. Unfortunately, despite promising clinical results so far, many 
clinical investigations based on the Aβ cascade theory were unsuccessful (Doody 
et al. 2014, p. 3; Salloway et al. 2014). Clinical trials targeting NFTs, which are 
known to impede axonal transport and cause synaptic dysfunction, have not been 
able to enhance cognition (Mohandas et al. n.d.; Pedersen and Sigurdsson 2015). 
The clinical failure of numerous Aβ- and NFT-based treatments gave rise to the idea 
that AD is a multifactorial illness. While other treatment targets still need to be 
researched, these regions nonetheless promise the development of AD therapeutics 
(Calvo-Flores Guzmán et al. 2018). 

Currently, many targets including beta-site amyloid precursor protein cleaving 
enzyme 1 (BACE1), Gamma Secretase, Butyrylcholinesterase (BuChE), Phospho-
diesterase (PDE), Gamma-aminobutyric acid (GABA), Dopamine (D2) receptor, 
Nrf2, Acetylcholine (Ach) receptor, Amyloid precursor protein (APP), and Mono-
amine oxidase B (MAO-B) are being considered for anti-Alzheimer’s drug discov-
ery (Chaudhary et al. 2018). These targets are found in different regions of the brain 
like Hippocampus, astrocyte, glial cells, temporal, frontal lobe, cortex, Striatum, 
thalamus, cerebellum, and Basal forebrain Nucleus Basalis (NB). These parts of the 
brain correspond to various functions like synaptic plasticity, long-term potentiation 
(LTP), memory formation, oxidative stress, neuronal apoptosis, anti-inflammatory, 
cell survival, etc. Some of these targets are already having known inhibitors, while 
others are still being investigated for designing suitable ligands against them. 

Apart from these established targets, some novel therapeutic targets are emerging 
due to increasing need for the effective treatment of AD. Such targets include 
Purinergic receptor (P2X7R), PPAR-α, proteins associated with synaptic dysfunc-
tion, and mitochondrial dysfunction (Table 1). In this chapter, we focus on the above 
targets and their therapeutic efficacy in AD. 

Table 1 Alzheimer’s disease therapeutic targets 

Established targets Novel targets

• Beta-site amyloid precursor protein cleaving 
enzyme 1 (BACE1)

• Purinergic receptor (P2X7R)

• Butyrylcholinesterase (BuChE) • Proteins associated with synaptic dysfunction

• Phosphodiesterase (PDE) • Proteins and enzymes associated with mito-
chondrial dysfunction

• Gamma-aminobutyric acid (GABA) • Peroxisome proliferator-activated receptor 
alpha (PPAR-α)

• Dopamine (D2) receptor

• Acetylcholine (Ach) receptor

• Amyloid precursor protein (APP)

• Monoamine oxidase B (MAO-B)
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2 Novel Therapeutic Targets for Alzheimer’s Disease 

2.1 Purinergic Receptor (P2X7R) 

Purinergic receptors are well known for their therapeutic role in different diseases, 
including Multiple Sclerosis (MS), AD, Huntington’s disease (HD), cancer, rheu-
matoid arthritis, ischemia and inflammatory pain, and Parkinson’s disease (PD). 
P2X7 receptor (P2X7R) belongs to the class of Purinergic receptors (P2), which is 
highly expressed in immune cells, particularly in those engaged in the innate 
immune response such as macrophages, monocytes, and specifically microglia 
(Di Virgilio et al. 2018; Wei et al. 2018). 

P2X7R structure includes large extracellular domain (282 amino acids), short 
intracellular N-terminal domain (26 amino acids), an intracellular C-terminal domain 
(239 amino acids), and 2 short transmembrane domains (24 amino acids each) 
constituting a total of 595 amino acids (Jiang et al. 2013). Intracellular domain is 
important in regulation of Ca2+ influx and activation of ERK ½ pathway contributing 
to the permeation of channel. When compared to other subtypes of P2X receptor, 
P2X7R contains a large C-terminal domain which consists of many motifs and 
sub-domains related to multiple functions. These sub-domains include 
LPS-binding motif, Src homology 3 binding domain, death domain, and binding 
sites for various cytoskeletal proteins (Chen et al. 2021). 

Highest density of P2X7Rs is located at CNS microglia. ATP is the physiological 
agonist for P2X7R. Extracellular aggregation of Aβ peptides triggers glial cell 
activation and the release of ATP, therefore stimulating purinergic receptors, espe-
cially P2X7R (Illes et al. 2019). In support of this, upregulation of P2X7R has been 
found near Aβ plaques and microglia (Parvathenani et al. 2003; McLarnon et al. 
2006). Also, it is reported that activation of P2X7R enhances the migration of senile 
plaques through microglia (Martínez-Frailes et al. 2019). Activation of P2X7R 
converts the resting microglia to activated microglia, in which the latter generates 
pro-inflammatory cytokines including IL-1β, IL-6, IL-18, TNF-α, several types of 
reactive oxygen species (ROS), and chemokines such as CCL2 and CCL3 (Shieh 
et al. 2014; He et al. 2017). 

The surface of microglia is expressed with collection of pattern recognition 
receptors (toll like receptors-TLRs) that stereotypically detect pathogen-associated 
molecules (such as lipopolysaccharide; LPS) or danger-associated molecular pat-
terns (DAMPS) (such as ATP). There are two signals involved in the production of 
IL-1β. One is through TLRs which recognize DAMPs, Aβ, LPS, etc. and activate 
NFkB pathway, thus translation of pro-IL-1β to IL-1β. P2X7R activation is the other 
signal. However, activation of this receptor induces assembly and activation of 
NLRP3 inflammasome (which is composed of NLRP3-nucleotide binding, 
leucine-rich repeat, pyrin domain containing 3, ASC-apoptosis-associated speck-
like protein-containing caspase recruiting domain, and pro-caspase-1). Then, 
NLRP3 inflammasome converts pro-caspase-1 to caspase-1, which thereby cleaves 
the biologically inactive pro-interleukin-1β to interleukin-1β (IL-1β) (Fig. 1)



(Muñoz-Planillo et al. 2013). Upon LPS priming, P2X7Rs also enhance inflamma-
tory cytokine response sequentially by IL-1β, IL-6, and tumour necrosis factor-α 
(TNF-α) (Young and Górecki 2018; Bhattacharya and Jones 2018). The critical role 
of P2X7Rs in the secretion of IL-1β makes it an attractive therapeutic target. 
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Fig. 1 P2X7R in microglia [generation of interleukin-1β (IL-1β)]: pathogen-associated molecular 
protein (PAMPs), danger-associated molecular protein (DAMPs), Toll-like receptor 4 (TLR4), 
NIMA-related kinases (NEK7), nucleotide-binding leucine-rich repeat pyrin domain containing 
3 (NLRP3), and apoptosis-associated speck-like protein (ASC) 

It is reported that IL-1β is involved in the formation of Aβ plaques, 
hyperphosphorylation of tau, and synaptic plasticity impairment (Smith et al. 
2012). Besides this activation of NLRP3, inflammasome promotes deposition of 
tau protein in a mouse model of Frontotemporal dementia (FTD) (Lemprière 2020). 
Some studies confirmed that P2X7R upregulation in activated microglia was parallel 
with AD progression by using two different mouse models of AD (APP/PS1 mice 
and J20 mice) (Lee et al. 2011; Martínez-Frailes et al. 2019). A recent study reported 
that PS2-deficient mice are most sensitive to Aβ-induced neuroinflammation due to 
the upregulation of P2X7R in both glial and neuronal cells in a transcription factor 
Sp1 (SP1)-dependent manner (Qin et al. 2017). Different studies using both in vitro 
and in vivo approaches postulated that P2X7R might be one of the factors control-
ling APP processing (Delarasse et al. 2011; León-Otegui et al. 2011; Diaz-
Hernandez et al. 2012; Darmellah et al. 2012). Furthermore, role for P2X7R in the 
phagocytosis of Aβ peptides was also reported to contribute to Aβ clearance. 
Another study reported that P2X7R might also down-regulate pathological 
microglial activation in AD (Martin et al. 2019).
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Further, pharmacological blockade or knocking out the P2X7R in different AD 
mouse models has shown neuroprotective effects by reducing neuroinflammation 
(Ryu and McLarnon 2008; Chen et al. 2018; Martin et al. 2019). Initial studies 
demonstrated that in vivo pharmacological inhibition of P2X7R by Brilliant Blue G 
(BBG) attenuated inflammatory response and diminished leakiness of BBB in 
Aβ1–42-induced AD model (Ryu and McLarnon 2008). In accordance, later study 
revealed that in vivo inhibition of P2X7R by BBG prevented the spatial memory 
impairment and cognitive deficits in AD mouse model (Chen et al. 2014). The 
reversal of the Aβ1–42-induced morphological and cognitive effects by BBG proved 
the involvement of P2X7Rs. In another study, administration of oxidized ATP 
(o-ATP), a P2X7R antagonist, attenuated microglial activation and neuronal damage 
in LPS-induced AD model (Choi et al. 2007). Moreover, APP/PS1/P2X7R-deficient 
mice exhibited smaller cognitive deficit and better synaptic plasticity than APP/PS1 
mice (Martin et al. 2019). Another study demonstrated that P2X7R plays a critical 
role in Aβ peptide-mediated release of chemokines, particularly CCL3, which is 
associated with pathogenic CD8+ T cell recruitment. This study highlights a novel 
detrimental function of P2X7R in chemokine release and supports the notion that 
P2X7R may be a promising therapeutic target for AD (Martin et al. 2019). 

Another pathological feature of AD is impaired phagocytosis ability. A genome-
wide association study revealed various genes associated with phagocytosis function 
of microglia such as TREM2 and CD33 (Efthymiou and Goate 2017). Further, it is 
reported that reduced phagocytic capacity results in increased amyloid deposition in 
AD mouse model (Parhizkar et al. 2019). It is believed that P2X7R shows scavenger 
activity. A study reported that high level of P2X7R mediates phagocytosis of 
apoptotic lymphocytes in HEK-293 cells were tranfected with P2X7R and macro-
phages to acquire the ability to phagocytose apoptoticlymphocytes (Gu et al. 2011). 
This study explains that involvement of P2X7R in its un-activated state acts as 
scavenger receptor. Further, experiments on microglia have shown that P2X7R 
activation attenuated their phagocytic capacity (Janks et al. 2018; Martínez-Frailes 
et al. 2019). 

ROS is another effector of microglia by P2X7R activation. Several pieces of 
evidence point to the fact that P2X7R may be the primary receptor involved in the 
generation of ROS (Ex: H2O2) by activating microglial cells (Nuttle and Dubyak 
1994). In vitro studies revealed that fibrillar Aβ1–42 causes ROS production gener-
ated via P2X7R activation induced by ATP released from rat microglial cells in an 
autocrine manner (Kim et al. 2007; Liu et al. 2020). Hence, P2X7R upregulation in 
microglial cells may result in excessive ROS production induced by Aβ which 
contributes to the synaptic toxicity associated with the early stages of AD (Lee 
et al. 2011). In vivo administration of selective P2X7R antagonist A438073 avoided 
ROS production and oxidative DNA damage induced by P2X7R activation in spinal 
cord dorsal horn neurons (Munoz et al. 2017). Furthermore, P2X7Rs drive prolifer-
ation and activation of microglia, upregulating their surface expression of immuno-
modulatory proteins and becoming efficient in producing a variety of cytokines, 
chemokines, and ROS (Monif et al. 2009, 2010). All these studies suggest that BBB 
permeable compounds and selective P2X7R antagonists might be considered as



good therapeutic drugs to treat chronic neuroinflammation associated with AD. 
Therefore, P2X7R antagonists may become general anti-neuroinflammation and 
anti-neurodegeneration remedies, also improving late-onset AD. 
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2.2 Proteins Associated with Synaptic Dysfunction 

Synaptic plasticity events are crucial for synaptic functions including learning and 
memory processes, where short-term alterations in synaptic strength are converted to 
long-lasting memories. Apart from the presynaptic terminal and the postsynaptic 
compartment, synapse also includes astrocytes and the extracellular matrix creating a 
tetrapartite synapse. Synaptic transmission strength is based on changes in neuronal 
activity where long-term potentiation (LTP) and long-term depression (LTD) repre-
sent the functions of learning and memory. Synaptic transmission majorly relies on 
multiple cellular mechanisms which include biosynthesis of neurotransmitters (NTs) 
from amino acids and delivery of synthesized NTs to synaptic sites. This requires 
proper formation of synaptic vesicles, intact microtubule tracts, and timely removal 
of NTs from synaptic cleft after neurotransmission (Pelucchi et al. 2022). 

N-methyl-D-aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methyl-4-
364 isoxa-zolepropionic acid (AMPA) receptors together regulate excitatory synap-
tic transmission and plasticity in brain, thus playing critical role in learning and 
memory. Altered internalization of AMPA receptors affects synaptic plasticity 
inducing synaptic dysfunction and loss of dendritic spines. Aβ-induced 
excitotoxicity in postsynaptic neurons associated with more Ca2+ influx leads to 
increased ROS production, tau hyperphosphorylation, and lipid peroxidation, alto-
gether contributing to synaptic dysfunction. Moreover, Aβ-induced tau 
hyperphosphorylation destabilizes microtubules which alter axonal trafficking of 
mitochondria and translocation of tau to dendritic spines. This further contributes to 
NMDA receptor destabilization and excitotoxicity and has a detrimental effect on 
synaptic function (Tönnies and Trushina 2017). 

Synaptic dysfunction is one of the common pathogenic traits in many neurolog-
ical disorders. In AD, the degeneration of synapses can be detected at the early 
pathological progressions before achieving complete neuronal degeneration, 
supporting the hypothesis that synaptic failure is a major determinant of AD. Most 
of the Aβ plaques generate and form oligomers at the synaptic region. All the 
elements constituting the tetrapartite synapse are altered in AD and can synergisti-
cally contribute to synaptic dysfunction (Marsh and Alifragis 2018). Moreover, the 
two main hallmarks of AD, i.e. Aβ and NFT’s, collectively cause synaptic deficits. 
Deciphering the mechanisms underlying synaptic dysfunction is relevant for the 
development of the next-generation therapeutic strategies, aimed at modifying the 
progression of AD. 

The targets of Aβ at synapse have been identified as dendritic or axonal compart-
ments (overexpression of APP) and plasticity in nearby neurons, ultimately leading 
to reduction in spine density (Marcello et al. 2012). It has been hypothesized that Aβ



peptides enhance neurotransmitter (NT) release. Several reports suggested that key 
proteins which regulate the interaction of synaptic vesicles (SVs) with the presyn-
aptic membrane or the availability of SVs to participate in NT release are affected by 
Aβ peptides (Yang et al. 2015; Russell et al. 2012). Proteins involved in SV docking 
and fusion that regulate NT release are Syntaxin 1a (Stx1a), Synaptophysin (Syp1), 
dynamin, and Synapsin1 (Snp1) (Kelly et al. 2005; Liu et al. 2019) (Fig. 2). 
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The prolonged phosphorylation of Snp1 would enhance neurotransmission by 
increasing the availability of SVs that would dock to the active zone. Furthermore, 
disruption of the Syp1/VAMP2 complex (VAMP2 known as Synaptobrevin 2) on 
these vesicles would increase the accessibility of VAMP2 to the other SNARE 
(soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, 
promoting the SNARE complexes formation and enhancing the probability of NT 
release (Marsh and Alifragis 2018) (Fig. 2). Moreover, an Aβ-mediated increase of 
Ca2+ levels inside the pre-synapse would also enhance SV fusion and the release of 
glutamate. This aberrant release of glutamate would initially activate NMDARs, but 
eventually induce excitotoxicity. In the long term, the extensive use of SVs com-
bined with endocytic defects and recovery due to the inactivation of dynamin and 
sustained phosphorylation of Snp1 would gradually deplete these vesicles from the 
synapse, thereby reducing synaptic activity. However, depletion of SV reserve pools 
after prolonged exposure to Aβ in neuronal cultures has been reported (Parodi et al. 
2010; Kelly et al. 2005). Further, Park et al. showed that exposure of neurons to Aβ 
reduces the activity-dependent lateral dispersion of SVs, providing significant evi-
dence that Aβ reduces SV mobility (Park et al. 2017). 

The sustained phosphorylation of Snp1 might be the underlying cause for the 
inhibition of inter-synaptic vesicular movements, thereby disrupting the Syp1/ 
VAMP2 complex by Aβ which could be one of the contributing factors for this 
inhibition. Collectively, these effects would have a substantial impact on the gradual 
progression of synaptic dysfunction and ultimately cause synaptic deficit, which is a 
key hallmark of AD pathology. 

Another major hallmark in AD is tau which is involved in synaptic dysfunction. 
Pathological modifications of tau protein alter its binding affinity and lead to aberrant 
aggregation and migration to different brain regions, which eventually lead to 
tauopathy in AD (Chen et al. 2019). Hyperphosphorylation of tau leads to its 
detachment with microtubules and further impairs axonal transport. Some studies 
revealed that uptake of extracellular localized tau by neurons triggered tau accumu-
lation in axons and dysregulated the axonal transport of membrane organelles 
(Swanson et al. 2017; Wu et al. 2013). Some studies reported that abnormal tau 
binds to synaptic vesicles by synaptogyrin-3, thus disrupting presynaptic functions 
(McInnes et al. 2018; Zhou et al. 2017). Further, it is observed that accumulation of 
tau in presynaptic vesicles induces significant increase in NT release by intracellular 
calcium release, leading to synaptic depression (Moreno et al. 2016). Further, tau 
infiltration in dendrites results in reduced clustering of AMPA and NMDA receptors, 
which leads to compromised synaptic transmission and memory deficits (Hoover 
et al. 2010).
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It is well established that primary kinase involved in the tau phosphorylation 
includes glycogen synthase kinase (GSK-3) and cyclin-dependent protein kinase 
5 (Cdk-5). Multiple studies demonstrated the benefits of inhibiting GSK-3 which 
majorly includes reversing synaptic dysfunction. A study demonstrated that selective 
GSK-3 inhibitor AR-A014418 prevented LTP impairment and tau 
hyperphosphorylation induced by Aβ in wild-type mice (Shipton et al. 2011). 
Another study reported that GSK-3 inhibitors (lithium and kenpaullone) rescued 
LTP by upregulating mTOR pathway in AD mice model (Ma et al. 2010). Later, a 
study revealed that specific GSK-3 inhibitor CT-99021 has prevented Aβ-induced 
LTP in hippocampal cultures (Jo et al. 2011). Besides GSK-3, inhibition of Cdk-5 
with roscovitine or butyrolactone prevented the Aβ-mediated block of LTP induc-
tion (Wang et al. 2004). All the above studies suggest that abnormal tau phosphor-
ylation is an important factor in synaptic dysfunction. 

Valproic acid (VPA) has been recognized which could be used to abrogate some 
of the early presynaptic defects (Marsh et al. 2017). VPA is a short-branched chain 
fatty acid, most commonly used to treat epilepsy and bipolar disorder. Studies on 
pre-clinical models suggest that VPA plays key roles such as affecting long-term 
potentiation (LTP) which could be therapeutic potential to combat AD (Zhang et al. 
2003; Leng et al. 2008; Qing et al. 2008). Moreover, it has also been shown that it 
prevents Aβ-induced reduction in SV recycling and that it can induce clustering of 
Snp1 in developing neurons (Williams and Bate 2016; Hall et al. 2002). Although 
many evidences highlight the significance of Aβ peptides and tau 
hyperphosphorylation in the deregulation of NT release and dysfunction of SV 
dynamics, this area as new therapeutic target has been largely overlooked. Targeting 
these defects of synaptic function could serve as a target for crucial early intervention 
and diagnosis of AD. 

2.3 Targeting Mitochondrial Dysfunction 

Mitochondria are defined as the powerhouse of the cell because every cell in the 
human body relies on the energy provided by these organelles to sustain its vital 
functions. Mitochondrial energy production (process of oxidative phosphorylation) 
takes place at the inner mitochondrial membrane (IMM) through the activity of 
respiratory chain complexes (RCC), generating an inner membrane potential 
(mtΔΨ) that is used by the ATP-synthase enzyme complex to synthesize ATP 
(Cenini and Voos 2019). This process depends on the supply of reducing equivalents 
by the end-oxidation of nutrients via the Krebs cycle or β-oxidation in the mito-
chondrial matrix compartment (Stock et al. 2000). Mitochondria contain their own 
DNA (mtDNA) located in the matrix that encodes mainly 13 protein subunits of the 
RCC. Hence, the maintenance of an entire and functional mitochondrial proteome 
requires a fine-tuned and well-coordinated sequence of many reactions and a close 
integration of organellar and cellular biogenesis processes (Pfanner et al. 2019). A 
master regulator of mitochondrial biogenesis is Peroxisome proliferator-activated



receptor γ coactivator-1α (PGC-1α) that activates a series of transcriptional factors 
(Scarpulla 2011). 
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Fig. 3 Mitochondrial dysfunction and its associated pathologies 

The enzymatic activity of the mitochondrial RCC results in a leakage of electrons 
from the RCC, contributing significantly to the formation of ROS (Shariff et al. 
2004) (Fig. 3). Therefore, ROS are considered a typical by-product of bioenergetic 
pathways (Quinlan et al. 2013). However, under normal physiological conditions, 
ROS production is well balanced by the presence of adequate antioxidant systems, 
and the damage to the diverse cellular constituents is contained. However, during 
ageing, as well as during several pathological conditions such as neurodegenerative 
diseases, this equilibrium becomes unbalanced. Increased ROS concentrations result 
in molecular damage at the site where they are produced or, through diffusion, in 
surrounding areas, leading to the generation of oxidative stress condition. The 
hippocampus region, cortex, and more generally the brain are particularly vulnerable 
to oxidative stress because of their high consumption of oxygen. 

Neurons are strictly dependent on the presence of mitochondria, in particular at 
the synapses where these organelles produce ATP and buffer Ca2+ ion concentration, 
which are fundamental processes for the implementation of neurotransmission and 
generation of membrane potential along the axon (Li et al. 2004; Verstreken et al. 
2005). This justifies the presence of high amount of mitochondria at the synaptic 
area, higher than any other part of the neurons. Linked to that, an efficient transport 
of neuronal mitochondria at the synaptic terminals is fundamental for their correct 
function. 

Mitochondrial dysfunction is one of the factors that may actively contribute to 
AD onset and progression. In 2004, a new hypothesis called mitochondrial cascade 
hypothesis (apart from Amyloid cascade hypothesis) was proposed to explain the 
onset of sporadic AD, which explains that the mitochondrial dysfunction is the 
primary process to trigger a cascade of events that lead to sporadic late-onset AD 
(Swerdlow and Khan 2004) (Fig. 3). 

The analysis of the samples from different AD experimental models and AD 
patients showed a strong link between the oxidative stress and mitochondrial



dysfunction. In the transgenic mice over-expressing human APP (Tg mAPP mice), 
an early and progressive accumulation of Aβ peptide in synaptic mitochondria led to 
a mitochondrial synaptic dysfunction such as damaged mitochondrial respiratory 
activity, oxidative stress, and impaired mitochondrial axonal transport (Du et al. 
2010). In another study, it is reported that the compromised mitochondria bioener-
getics together with elevated oxidative stress levels are early phenomena appearing 
before the development of observable Aβ plaques in 3xTg-AD mice (Hauptmann 
et al. 2009; Yao et al. 2009). The mitochondrial dynamics such as fusion and fission 
processes were found unbalanced in AD, potentially leading to compromised distri-
bution and morphology of mitochondria in the neurons (Hirai et al. 2001) and 
fragmented mitochondria brains from AD patients (Wang et al. 2008a, 2009). 
Furthermore, the level of proteins regulating the mitochondrial biogenesis such as 
PGC-1α, NRF1 and 2, and TFAM was significantly reduced in hippocampus and 
cellular models overexpressing APP Swedish mutation (Qin et al. 2009; Sheng and 
Cai 2012). In the AD mouse model of mutant human transgenes of APP and 
Presenilin-1 (PS1), the mitochondrial biogenesis markers were found declined in 
the hippocampus region (Song et al. 2018). 

30 M. S. Varshini et al.

The two major and typical histopathological markers of AD, Aβ peptide and tau, 
harmfully accumulate in mitochondria (Eckert et al. 2010). Aβ peptide and abnormal 
tau negatively affect axonal transport and consequently the transport of mitochondria 
along the axon from the neuronal soma to synapses. Several AD models such as 
transgenic models (APP overexpression) or Aβ-induced AD are characterized by 
mitochondrial fragmentation and abnormal mitochondrial distribution along the 
neurons due to alteration of mitochondrial fusion and fission proteins levels (Wang 
et al. 2008b; Zhao et al. 2010; Calkins and Reddy 2011). All these results lead to two 
critical remarks: (a) Altered balance between fusion and fission that interferes with 
mitochondrial transport contributes actively to AD pathogenesis and 
(b) Mitochondrial dynamics impairment could be a new therapeutic target in AD. 

Mitochondria could be targeted through two ways: (a) by pharmacologic 
approaches acting on mitochondria directly or (b) by action on the lifestyle that 
indirectly hits this organelle. Pharmacological approaches include Antioxidants, 
Phenylpropanoids, Mitophagy stimulators, and some miscellaneous compounds 
such as Oxaloacetate, Nicotinamide adenine dinucleotide (NAD), Pioglitazone, 
Dimebon (Table 2). Second approach, i.e. Action on Life style, includes calorie 
restriction, diet, and exercises. 

2.4 Peroxisome Proliferator-Activated Receptor Alpha 
(PPARα) 

The first PPAR currently known as PPAR-α was discovered in 1990 (Issemann and 
Green 1990). PPAR-α regulates oxidative stress, energy homeostasis, 
andbmitochondrial fatty acids metabolism including fatty acids β oxidation pathway 
and is the only receptor belonging to PPAR family which influences excitatory
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glutamatergic neurotransmission and also cholinergic/dopaminergic signaling in the 
brain. Additionally, PPAR-α is engaged in metabolism of APP in the brain, and 
directly or indirectly through Aβ, it may also influence tau protein phosphorylation 
(Fig. 4) (Wójtowicz et al. 2020). PPAR-γ, PPAR-α, and their coactivator PGC-1α 
play an important role in cell differentiation and mitochondria biogenesis in 
neurodegeneration and neuroinflammation (Austin and St-Pierre 2012; Scarpulla 
2011).
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Fig. 4 PPAR-α and its associated pathologies in Alzheimer’s disease 

Roy et al. determined the distribution of PPAR-α in different regions of hippo-
campus and observed that PPAR-α protein was localized in CA1, CA2, and CA3 and 
in dentate gyrus (DG) of mice brain (Roy et al. 2013). It was found that PPAR-α 
controls calcium influx and the expression of several genes encoding hippocampal 
proteins involved in the regulation of synaptic plasticity. PPAR-α is also engaged in 
expression of NMDA receptor subunit NR2A and NR2B genes, AMPA receptor 
[2-amino-3(3-hydroxy-5-methyl-isoxasol-4-yl) propanoic acid] associated subunit 
GluR1, and also AMPA-receptor associated activity-related cytoskeleton proteins 
(Sakimura et al. 1995; Lee et al. 2003; Tzingounis and Nicoll 2006). All these 
mentioned genes are related to synaptic plasticity and are regulated by PPAR-α via 
cyclic AMP response element-binding protein (CREB). Further, many studies dem-
onstrated that PPAR-α and its ligands are involved in regulation of glutamatergic 
and cholinergic-mediated dopaminergic transmission in the brain (Huang et al. 
2017b; Zakrocka et al. 2017; Melis et al. 2010, 2013). However, further studies 
are necessary to understand the role of PPAR-α in glutamatergic and other signaling 
pathways in physiological conditions and in AD. The above functions indicate that 
PPAR-α could be promising target for therapy of AD. Further, the mechanism of its 
action in the brain should be characterized in depth to enable successful application. 

Activation of PPAR-α receptor with specific receptor agonist enhanced transcrip-
tion of GluA1 subunits of the AMPA receptor which further leads to an AMPA 
response and better synaptic plasticity (Schmitt et al. 2005). In another study, it is 
reported that under basal physiological conditions, PPAR-α is involved in the



degradation of APP by activation of β and α secretases leading to liberation of 
non-amyloidogenic peptide (p3) and soluble sAPPα with possible neuroprotective 
effect (Corbett et al. 2015). Further, Zhang et al. demonstrated that PPAR-α agonist 
(GW7647) regulates Aβ generation by inhibition of BACE-1 activity (Zhang et al. 
2015). The above studies suggest that alteration of PPAR-α signaling may lead to 
activation of APP metabolism and Aβ liberation/accumulation through 
amyloidogenic pathway in AD. 
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The studies of Vallee and Lecarpentier on AD described that PPAR agonists 
diminish learning and memory deficit in AD patients (Vallée and Lecarpentier 
2016). Anti-amyloidogenic action of PPAR-α agonists (fibrates) was observed in 
clinic in longitudinal treatment of patients (Blasko et al. 2008). PPAR-α receptor 
stimulation induces synthesis of allopregnanolone in astrocytes (this hormone 
thought to be involved in neuroprotective mechanism) (Raso et al. 2011). Thera-
peutic effects of PPAR-α on neuronal death and microvascular impairment were 
described by Moran and Ma (2015). Gemfibrozil is a PPAR-α agonist that was 
undergoing Phase II Clinical trial for AD which downregulates the BACE1 expres-
sion (Clinical trial identifier: NCT02045056) (NeurologyLive n.d.). The above 
evidences and clinical studies suggest the therapeutic potential of targeting PPAR-α. 

3 Conclusion 

Nowadays, AD has been considered a multifactorial disease due to its numerous 
pathological cascades and their unclear mechanisms. Due to these reasons, therapy 
of AD remains a difficult challenge for discovery of novel treatments. Till now, only 
few Food and drug administration (FDA)-approved treatments are available. Yet, 
they are only symptomatic treatments and there is a further need to identify and 
explore new therapeutic targets that focus on main pathological hallmarks of the 
disease. In this chapter, we have discussed about the novel targets in the therapy of 
AD. These targets majorly focus on neuroinflammation, synaptic dysfunction, 
mitochondrial dysfunction, Aβ plaques, and tau hyperphosphorylation which are 
the crucial pathological events in AD. 
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