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Abstract Alzheimer’s disease is a multifactorial neurodegenerative syndrome and 
has raised concern related to global health and economy. Numerous targets have 
been analyzed toward discovery and development of potential therapeutics. Some of 
the single-target-based Food and Drug Administration (FDA) approved drugs 
include donepezil, galantamine, rivastigmine, and memantine which can improve 
the patient condition but fail to completely cure the disease. Single-target therapeu-
tics have limitations to cure the disease due to complicated pathogenesis and 
complex network formed by the associated signaling pathways. Thus, the multi-
target-directed ligand (MTDL) approach has gained importance as the potential anti-
Alzheimer’s drugs having the advantages of synergistic effect with improved cog-
nition and regulating its progression. In the present chapter, multi-target-directed 
approaches are discussed with coverage of design strategies and promising com-
pounds reported in recent years. Some of the well-explored targets like acetylcholine 
esterase (AChE), ß-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), 
glycogen synthase kinase 3ß (GSK-3ß), monoamine oxidases (MAOs), metal ions in 
the brain, N-methyl-D-aspartate (NMDA) receptor, and phosphodiesterases (PDE)
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are described focusing on their contribution toward cognitive neurodegeneration 
leading to Alzheimer’s disease (AD).
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Abbreviations 

5-HT 5-Hydroxytryptamine 
AChE Acetylcholine esterase 
AChEI Acetylcholine esterase inhibitor 
AD Alzheimer’s disease 
APOE Apolipoprotein E 
BACE! ß-site amyloid precursor protein-cleaving enzyme 1 
BBB Blood–brain barrier 
BuChE Butyrylcholinesterase 
CB1 Cannabinoid-based 1 
ChAT Acetyltransferase 
FDA Food and drug administration 
GSK-3ß Glycogen synthase kinase 3ß 
JNK c-Jun N-terminal kinase 
MAO Monoamine oxidases 
MTDL Multi-target-directed ligand 
NFT Neurofibrillary tangles 
NMDAR N-methyl-D-aspartate receptor, 
NQO1 NAD(P)H quinone oxidoreductase 
PAMPA Parallel artificial membrane permeation assay 
PDE Phosphodiesterase 
ROCK Rho-associated protein kinase 
ROS Reactive oxygen species 
α-M α-Mangostin 

1 Introduction 

Alzheimer’s disease (AD) is a progressive, multifaceted, and multifactorial neuro-
degenerative disease (Yilmaz 2015). It has phylogenic nature and possesses cross-
talk among various signaling cascades. The complex pathophysiology of AD con-
sists of aggregation of pathological proteins, impaired neurotransmission, increased 
oxidative stress, and/or microglia-mediated neuroinflammation. Various AD 
hypotheses supported by experimental data have been proposed, and they play an 
important role in its pathogenesis (Fig. 1) (Hardy and Higgins 1992; Selkoe and



Hardy 2016; Iqbal and Grundke-Iqbal 1996; Iqbal et al. 2016; Perry et al. 1977, 
Bartus et al. 1982; Moreira et al. 2010; Swerdlow et al. 2010; Coyle and Puttfarcken 
1993; Zhu et al. 2004; McGeer et al. 1994; de la Monte 2009; Deng et al. 2009; 
Hoyer 2000; Iqbal and Grundke-Iqbal 2005; Gong et al. 2016; Khachaturian 1994; 
Guillot-Sestier et al. 2015; Masand et al. 2017; Gupta and Patil 2020). 
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Fig. 1 Various proposed hypotheses for Alzheimer’s disease 

Several hallmarks of AD involved in pathological progression are oxidative 
stress, neuroinflammation, synaptic dysfunction, deprivation of cholinergic function, 
amyloid plaques, and neurofibrillary tangles (NFTs) (Canter et al. 2016; Busche 
et al. 2019). Thus, it can be defined as a disorder regulated by enzymes/receptors like 
acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), N-methyl-D-aspartic 
acid (NMDA), ß-secretase 1 (BACE1), and muscarinic and signaling pathways 
(c-Jun N-terminal kinase (JNK)) (Martin et al. 2013). In addition to this, based on 
the review of clinical studies, some of the important targets are amyloid, tau, 
apolipoprotein E (APOE)/lipids and lipoprotein receptors, neurotransmitter recep-
tors, neurogenesis, inflammation, oxidative stress, cell death proteostasis/ 
proteinopathies, metabolism and bioenergetics, vasculature, growth factors and 
hormones, synaptic plasticity/neuroprotection, gut–brain axis, circadian rhythm, 
and epigenetic regulators which were of interest for clinical studies in 2022 
(Fig. 2) (Turgutalp et al. 2022; Cummings et al. 2022). Drugs acting as antagonists 
of these enzymes/pathways have limited success to control the symptoms and fail to 
stop or reverse the disease progression (Savelieff et al. 2019). 

The prevalence of AD is increasing, and > 50 million elderly are living with it 
(Li et al. 2022b). Research efforts have focused on the reported AD-related 
subpathogenesis without any success to put forward disease-modifying therapeutics. 
Unfortunately, no effective therapy for the prevention or treatment of AD is avail-
able. No disease-modifying drugs are available in the market, and very low clinical 
success is reported for this class of drugs. In addition to this, aspects related to the



onset and progression of this neurodegenerative disease are still unexplored. 
Researchers are focusing on newer therapeutic targets toward their efforts to identify 
definite and direct therapeutics. Despite the huge number of preclinical and clinical 
studies (> 4000), only a few drugs have been approved for clinical use and there is 
requirement for drugs to prevent, delay the onset of neurodegeneration, slow the 
disease progression, and improve the AD-associated symptoms (Cummings et al. 
2022). Earlier FDA approved only five drugs for the treatment of AD, which include 
tacrine, donepezil, galantamine, rivastigmine, and memantine with recent addition of 
Leqembi (lecanemab-irmb) through accelerated approval pathway (https://www.fda. 
gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-
disease-treatment). Tacrine has been discontinued due to its hepatotoxicity (Watkins 
et al. 1994). Among the various reported approaches, multi-target-directed ligands 
(MTDLs) have several advantages when compared to single-target or combination 
therapeutics, but none of the reported agents have entered the clinical phase of 
development. In this chapter, an overview of the MTDL approach for the develop-
ment of anti-AD therapeutics has been discussed along with its potential to address 
the associated limitations with various examples from the preclinical phase of 
development. 
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Fig. 2 Number of agents entered in the clinical phase of evaluation (during the year 2022) and their 
anti-AD mechanisms 

2 Single-Target, Multi-Target, and Combination 
Therapeutics 

For AD drug development, the most promising strategies are combination therapeu-
tics, MTDL therapeutics, and drug repurposing (Barthélemy et al. 2020). Among 
them, the drug repurposing approach consumes less time and requires less

http://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment
http://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment
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Table 1 Details of anti-AD combination therapeutics in phase III of clinical studies

Clinical trial ID AD target Ref.

investment, while a few combination therapeutics have been selected for phase III 
clinical studies (Fig. 3 and Table 1). In case of multi-target approach, drug combi-
nations are used to prepare a single formula. There are some challenges associated 
with combination therapeutics such as drug–drug interactions due to the release or 
blockage of certain enzymes involved in metabolism. It alters drug concentrations 
leading to absence/reduced efficacy or toxic effects. In case of elderly patients taking 
several drugs, it increases the chances of drug–drug interactions. 
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Fig. 3 Chemical structures of compounds used for anti-AD combination therapeutics (a, Cromolyn 
sodium; b, Ibuprofen; c, Deuterated (d6)-dextromethorphan; d, Quinidine; e, Dextromethorphan; 
f, Bupropion) 

Details of 
combination 

NCT02547818 ALZT-OP1 
(cromolyn and 
ibuprofen) 

Amyloid and 
inflammation 

Panza et al. (2016), Hori et al. 
(2015), Brazier et al. (2017), 
Pasqualetti et al. (2009), Weggen 
et al. (2001), Zhang et al. (2018) 

NCT02442765, 
NCT02442778, 
NCT02446132 

AVP-786 (deuterated 
(d6)-
dextromethorphan 
and quinidine) 

Agitation Garay and Grossberg (2017), 
Wilkinson et al. (2019) 

NCT03226522 AXS-05 (bupropion 
and 
dextromethorphan) 

Agitation O’Gorman et al. (2019), Ahmed 
et al. (2019), Stahl (2019) 

In the last decade, multi-target or multifunctional drugs have gained importance 
as potential therapeutics for various diseases having complex and multifactor path-
ophysiology and drug resistance cases (Talevi et al. 2012; Koeberle and Werz 2014;



Talevi 2015). In case of complex disorders or diseases having resistance issues like 
AD, cancer, malaria, mycobacterium tuberculosis, and diabetes, simultaneous mod-
ulation of multiple targets can help to heal or reduce the disease condition (de Freitas 
et al. 2018; Makhoba et al. 2020; Benek et al. 2020). MTDLs are based on the use of 
one active ingredient (Zhou et al. 2019). In AD, MTDLs are helpful as they can focus 
on more than one subpathologies simultaneously and to establish a better approach. 
The current single-target anti-AD therapeutics have limitations like low efficacy and 
inability to control associated symptoms. Due to the diverse pathogenesis, the 
single-target anti-AD drugs have limitations and there is requirement of understand-
ing the multifunctional or multi-target strategies for the development of potential 
drugs. 
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3 Multi-Target-Directed Strategies 

The causative factor behind AD is characterized as a disease caused by the systemic 
breakdown of physiological networks of the brain (Hopkins 2008; Barabási et al. 
2011). The complex pathophysiology observed with AD and lack of success with 
single-target strategies has emphasized the need for “one drug/ligand, multiple 
targets” as a better approach. Murphy et al. (2004) have emphasized on rational 
designing of multi-target directed ligands which can modulate multiple targets of 
interest related to the pathological condition. These are developed with the objec-
tives to improve efficacy and/or safety and thus may provide wider application in 
clinical practice. Some of their merits compared to combination therapy include 
retention of all advantages of combination therapy with some additional benefits like 
absence of/less drug–drug interactions, reduced risk of adverse effects due to 
reduced polypharmacy, simplified dosage regimen causing better patient compli-
ance, and requirement of less number of clinical trials (Proschak et al. 2019; 
Bolognesi 2013; Woodcock et al. 2011; Center for Drug Evaluation and Research 
2013; Ibrahim and Gabr 2019). In addition to this, single-target agents demonstrate 
short and temporary effects and multiple target agents have chances of higher 
success rate (Rossi et al. 2021). 

Among the well-reported anti-AD MTDLs, cholinesterase inhibitors present an 
interesting category. In addition to cholinesterase inhibition, the other biological 
properties targeting the factors involved in the intertwined pathogenesis are impor-
tant to design and develop MTDLs. AChE inhibition along with antioxidant prop-
erties is an interesting strategy (Cruz et al. 2017). 

In the past decade, studies focusing on the design and synthesis of multifunctional 
ligands targeting different AD pathways have been reported (Cabrera-Pardo et al. 
2020; Bhatia et al. 2021). Hybridization of pharmacophores is another interesting 
approach where each of them is retained its nature for interaction with specific 
targets and thus can produce multiple pharmacological activities. It has the advan-
tage to overcome the administration of multiple drugs and thus provides patient-
friendly dosage regimen. Numerous hybrid analogs using bioactive pharmacophore 
moieties have been found useful (Uddin et al. 2021).
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Fig. 4 Chemical structures of approved anti-AD AChEIs (Tacrine, Rivastigmine, Memantine, 
Donepezil, and Galantamine) 

3.1 AChEI-Based MTDLs 

Among Alzheimer patients, varying levels of acetylcholine, acetyltransferase 
(ChAT), and acetylcholinesterase (AChE) have been observed and has served as 
vital target in the development of first-generation anti-AD drugs. Few drugs acting 
through this mechanism have been approved (Fig. 5). Critical involvement of BChE 
in amyloid β aggregation makes it an important anti-AD drug target (Greig et al. 
2002; Lane et al. 2006), but its inhibitors are associated with inevitable side effects. 
In a recent manuscript, Mishra et al. (2019) have reviewed various anticholinesterase 
hybrids of tacrine, donepezil, rivastigmine, resveratrol, galanthamine, huperzine, 
ferulic acid, indole, curcumin, lipoic acid, acridine, coumarin, ciproxifan, chalcone, 
etc., having anti-AD properties (Fig. 4). Some of the important categories studied 
under anti-AD MTDL category targeting AChE along with other related targets are 
described here. 

3.1.1 Dual AChEIs Acting on ACh Hydrolysis Sites (Catalytic 
and Peripheral Anionic Sites) 

AChE and BChE active sites are surrounded by numerous subsites which can be 
differentiated based on the residues. These structural features govern their potency 
and selectivity toward both enzymes (Dias and Viegas 2014). Studies have explained



the role of peripheral catalytic site for reducing the cognitive deficit and lowering 
AChE-induced Aß aggregation. It leads to disease-modifying effect and thus helps to 
overcome cognitive deficit (Hosea et al. 1996; Mallender et al. 2000; Radic et al. 
1991; De Ferrari et al. 2001; Inestrosa et al. 1996; Small et al. 1999; Bartolini et al. 
2003; Hoyer et al. 2008). 
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Fig. 5 Chemical structures of AChE and BACE1 inhibitory MTDLs 

3.1.2 AChE and BACE1 Inhibitors 

For the last 2½ decades, amyloid hypothesis is the conventional approach for 
Alzheimer’s research. The full-length amyloid precursor protein is split into frag-
ments by ß-secretase 1 (BACE1) and initiates Aβ formation and deposition (Dias 
and Viegas 2014). Aβ deposition has been correlated with tau protein, inflammation, 
oxidative stress, etc., and thus specifies its role in anti-Alzheimer’s MTDL discov-
ery. In addition to rational approaches (discussed in the later part of this chapter), 
computational methods like ligand-based screening and scaffold hopping were 
performed to identify a few dual inhibitors (Fig. 5) from a dataset of approximately 
three million compounds andwere further validated using in vitro (AChE IC50= 4–7-
μM and BACE-1 IC50 = 50–65 μM) and in vivo analysis (Stern et al. 2022).
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3.1.3 AChEIs and Antioxidant 

Oxidative stress is an important contributor for initiating Aß aggregation, tau protein 
hyperphosphorylation, acute inflammation, and neuronal apoptosis in Alzheimer’s 
disease. Simultaneously inhibiting ROS formation has a conducive role (Dias and 
Viegas 2014; Nesi et al. 2017; Pohanka 2018). The extract of Carpolobia lutea has 
shown concentration-dependent dual activity and has promising potential as MTDLs 
for the management of neurodegenerative disorders (Nwidu et al. 2017). The well-
reported AChEIs, i.e., donepezil and rivastigmine, have shown reduced antioxidant 
properties when evaluated for fluoride-induced oxidative stress models (Ferreira-
Vieira et al. 2016; Goschorska et al. 2018). Thus, MTDLs from this category can be 
considered as potential Alzheimer’s therapy. 

3.1.4 AChEIs and Voltage-Dependent Ca 2+ Channel Blockers 

In Alzheimer’s pathogenesis, Ca2+ influx stimulates γ-secretase pathway through 
lowered Aß production and tau hyperphosphorylation. Raised Ca2+ levels cause 
mitochondrial disruption and activate apoptotic cascade followed by cell death (Tan 
et al. 2012; Dias and Viegas 2014). Blockage of Ca2+ channels shows their mech-
anism by protecting against Aß oligomer (Wareski et al. 2009). Specifically, the L 
subtype of Ca2+ channel blockers are verapamil, diltiazem, isradipine, and 
nimodipine found to have contributing effect, and hence, it is a good strategy to 
prevent neuronal cell death (Mattson and Chan 2001; Qin et al. 2009). 

3.1.5 AChEIs and Glutaminergic Receptor Inhibitors 

Altered cerebral glucose and glutamate concentrations cause Aß plaque deposition, 
and > 40% of neuronal synapses are glutaminergic. Earlier studies have described 
the effect of impaired glucose metabolism on glutamate receptor-mediated signaling 
pathways which cause impaired cognition among Alzheimer’s patients (Hoyer 
2004). A broad range of inhibitors of glutaminergic receptors (NMDA, AMPA, 
mGluR5, mGluR2/3, EAAT2) have shown promising preclinical and/or clinical 
results in improving cognitive functions (Bukke et al. 2020). AChE inhibitor bis 
(7)-tacrine has shown NMDA inhibitory role (Li et al. 2005). It can slow AD 
pathogenesis and improve associated cognition. Thus it is a promising approach 
for the development of anti-AD MTDLs. 

3.1.6 AChEIs and CB1 Receptor Antagonists 

Certain cannabinoids have exhibited neuroprotection against Aß leading to memory 
improvement. Additionally, the role in tau hyperphosphorylation, oxidative stress, 
and inflammation has been reported (Aso and Ferrer 2014). CB1 receptor



antagonists (increase ACh level in cortical and hippocampal neurons) have also been 
reported (Huang et al. 2011; Lange et al. 2010). Cannabinoid-based anti-
Alzheimer’s agents offer advantages like broader coverage of properties by selecting 
suitable combinations, and during the early phase of dementia, it has the potential to 
control the progression of neurodegeneration (Aso and Ferrer 2014). 
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3.1.7 AChEIs and NMDA Receptor Inhibitors 

AChEIs have the potential to recover cognition and can act as disease-modifying 
agents, while NMDAR antagonists can contrast neurodegeneration (Rosini et al. 
2015) (Glynn-Servedio and Ranola 2017). A combination formulation of donepezil 
and memantine has been put forward for clinical evaluation (http://www. 
adamaspharma.com). Herein, we focused on some multi-targeted ligands having 
symptomatic relief by blocking AChE and neuroprotection by NMDAR antagonism. 
During design, AChE and/or NMDAR inhibitory fragments were integrated into a 
single molecule. Some of the compounds considered for designing MTDLs under 
this category are carvedilol and tacrine, galantamine, and memantine for Carbacrine 
and Memagal, respectively (Rosini et al. 2015). 

3.1.8 AChEIs and Serotonin Transporter (SERT) Inhibitors 

Limitations associated with AD therapeutics can be addressed by the use of 
multi-targeted approach involving AChE and SERT, where the later can resolve 
the dose-dependent side effects of AChEIs. Literature reports highlight the preclin-
ical evaluation of dual inhibitors against these potential targets as anti-AD therapeu-
tics (Kogen et al. 2002; Toda et al. 2003, 2010; Rodriguez-Lavado et al. 2020). Few 
drugs have exhibited potent activity such as (S)-A, (R)-B (Lyketsos et al. 2000; 
Kogen et al. 2002), and RS-1259 (Fig. 6) (Abe et al. 2003, Toda et al. 2010). 
RS-1259 has shown simultaneous inhibition of AChE and SERT in the brain 
using in vivo models after oral administration and using in vitro models. 
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Fig. 6 Chemical structures of AChE and SERT inhibitory MTDLs

http://www.adamaspharma.com
http://www.adamaspharma.com


Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery 295

3.2 Phosphodiesterase (PDE) Inhibition-Based MTDLs 

AChE inhibitors have demonstrated limited efficacy and development of tolerance 
after prolonged use, and it encouraged to use them in combination with other drugs. 
When compared with other reported targets, phosphodiesterases (PDEs) are emerg-
ing as promising targets for developing inhibitors to contrast neurodegeneration 
(Ribaudo et al. 2020; Sheng et al. 2022). In particular, selective small molecules 
targeting PDE4, PDE5, and PDE9 isoforms are being studied to explore alternative 
strategies against AD in light of their brain localization and of their role, to different 
extents, in cognitive processes (Zuccarello et al. 2020). Recently, many strategies 
have been tried to design and synthesize dual inhibitors of PDE subtypes and AChE 
to combat the multifactorial aspect of AD. 

3.2.1 Tadalafil Analogs 

In an attempt to synthesize first-generation dual-target inhibitors of AChE and 
PDE5, using drug repositioning and redeveloping strategy, Ni et al. synthesized a 
series of tadalafil derivatives (19 compounds). Inhibition of these tadalafil deriva-
tives against AChE and BuChE was determined by the modified Ellman’s method. 
The compounds exhibited good AChE activity (IC50 < 1 μM) and moderate BuChE 
activity. Following an IMAP-FP (immobilized metal ion affinity-based fluorescence 
polarization) assay, the most potent AChE inhibitors were found to show good or 
moderate PDE5 inhibitory activity (IC50 values of 0.050–3.231 μM). One of the 
essential features of a successful anti-AD drug is good BBB permeation. A parallel 
artificial membrane permeation assay (PAMPA) was employed, and the compounds 
exhibited good BBB permeability. In vivo studies on the mouse model showed an 
effect comparable to that of donepezil. These compounds proved to be potential 
selective dual-target AChE/PDE5 inhibitors and will be an excellent lead compound 
for further research. Figure 7 shows the structure of the active compound (Ni et al. 
2018). 

Fig. 7 Representative 
structure of tadalafil 
derivatives
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X 

Fig. 8 Rational design of PDE9A and AChE dual inhibitors 

3.2.2 Donepezil and Pyrazolo[3,4-d]Pyrimidinone (Pharmacophore 
of PDE) 

In another work performed by Hu et al., dual inhibition of PDE and AChE was 
achieved by combining the pharmacophore of donepezil and pyrazolo[3,4-d] 
pyrimidinone (pharmacophore of PDE) using different linkages. A series of dual-
target AChE/PDE9A inhibitor compounds Fig. 8 were designed, synthesized, and 
evaluated as anti-Alzheimer’s disease (AD) agents. Among these targets, two 
compounds exhibited excellent and balanced dual-target AChE/PDE9A inhibitory 
activities (AChE: IC50 = 0.048 μM; PDE9A: IC50 = 0.530 μM and AChE: 
IC50 = 0.223 μM; PDE9A: IC50 = 0.285 μM). Moreover, these two compounds 
also possess good BBB penetrability and low neurotoxicity. It was found that they 
could ameliorate learning deficits induced by scopolamine and improve cognitive 
and spatial memory in Aβ25–35-induced cognitive deficit mice in the Morris water-
maze test. This work produced promising candidates that possess potential inhibition 
of PDE/AChE (Hu et al. 2019). 

3.3 Monoamine Oxidase-Based MTDLs 

The oxidative damage is promoted by the increased monoamine oxidase B 
(MAO-B) level which generates free radicals (Riederer et al. 2004; Tripathi et al. 
2013). Selective MAO inhibitors have been demonstrated for metal chelation or 
AChE inhibition, and therefore, targeting MAO is an important approach to improve 
cognition- and control-associated symptoms. 

Recently Oh et al. (2021) have reported AChE and MAO-B dual inhibitory 
potential of some ellagic acid analogs which were derived from Castanopsis



cuspidata var. sieboldii. In vitro and docking studies have identified 4′-O-(α-L-
rhamnopyranosyl)-3,3′,4-tri-O-methylellagic acid as a potential analog supported 
with lesser toxicity (Fig. 9). 
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Fig. 9 Chemical structure 
of 4′-O-(α-L-
rhamnopyranosyl)-3,3′,4-
tri-O-methylellagic acid. 
(AChE: IC50 = 10.1 μM; 
binding energy = -
8.5 kcal/mol; MAO-B: 
IC50 = 7.27 μM) 

3.4 Metal Chelation-Based MTDLs 

The metal hypothesis of Alzheimer’s defines the role of metal ions (Fe2+ , Zn2+ , 
Cu2+ , Al2+ ) in cognitive loss and neurodegeneration. It is required to maintain their 
homeostasis for normal neuronal functioning (Salvador et al. 2010; Bush 2013; 
Sastre et al. 2015). Higher concentrations of certain bivalent metal ions like Zn2+ , 
Fe2+ , and Cu2+ are associated with amyloid plaque formation, and Al2+ leads to the 
degradation of some neurotransmitters (ex. MAO) and generation of reactive oxygen 
species (ROS) (Lovell et al. 1998; Zatta et al. 1999, 2009; Dias and Viegas 2014). 
Thus, studies are warranted focusing on chelating agents as novel AD therapeutics 
by incorporating functional moieties which can target other AD pathways (Sharma 
et al. 2018). Thus metal chelators with AChE/MAO/BACE-1 inhibition and/or 
antioxidant properties are an important MTDL approach. This category of MTDLs 
can be subclassified as Aß-aggregation-based, AChE-based, MAO-based, and 
BACE-1-based metal chelating agents. Studies supporting the beneficiary effect of 
AChE and metal chelators in the treatment of Alzheimer’s disease have been well-
reported. Compounds interacting with Aß and capable to chelate Zn2+ and Cu2+ ions 
have shown bifunctional properties in Alzheimer’s models (Figure) (Choi et al. 
2014; Braymer et al. 2010; Jones et al. 2012). Some of the well-documented 
MTDLs based on inhibition of Aß aggregation are N-(pyridin-2-ylmethyl)aniline, 
N1,N1-dimethyl-N4-(pyridin-2-ylmethyl)benzene-1,4-diamine, pyridine-triazole 
derivatives, and quinoline–triazole. 

A synthetic rhodamine-B-based molecule (Rh-BT, Fig. 10) has exhibited Aß 
aggregates by capturing redox metal ions and confirms multifunctional nature 
(Pradhan et al. 2020). It has shown stability in serum along with BBB permeability 
suggesting its potential for Alzheimer’s treatment. Synthetic hybrid derivatives of 
tacrine with 8-hydroxyquinoline (MC-AChE1) and ferulic acid (MC-AChE 2) 
exhibited Cu2+ chelation and Aß reduction (Fernández-Bachiller et al. 2010; Xie 
et al. 2013; Fu et al. 2016). MC-AChE1 produces AChE and BuChE inhibition 
(at nano- and subnanomolar concentrations) and MC-AChE 2 inhibits AChE by



298 V. M. Patil et al.

O 

N 

O 

N N 

S 

N 

N N O 

OH 

O 

N 

HO 

R1 

R2 

R3 

R4 

Rh-BT                              1,10-phenanthroline     3-Schiff base-4-hydroxycoumarin 
derivatives 

N 

HN 

N 

HN 

OH 

7 

N 

HN 

O 

N 

N O 

H3CO COOCH3 

5 

NH 

N 

NH 

N 

O 

3 

3 

MC-AChE 1                                 MC-AChE 2                           MC-AChE 2      
IC50 = 5.5 ± 0.2 nM                IC50 = 61.7 ± 5.2 nM IC50 = 0.815 ± 0.09 nM  

N 

OH 

N 

N 

OH 

N 

N 

N 

NH 

N 
OCH3 

MC MAO 1                       MC MAO 2                                 MC MAO 3 

IC50 = 0.037 µM (MAO-A) IC50 > 200 µM (MAO-A)            IC50 = 0.21 mM (MAO-A)  
IC50 = 0.057 µM (MAO-B)   IC50 > 50 µM (MAO-B)             IC50 = 5.37 mM (MAO-B)  

OH O 

N 
H 

CH2CH2OH 

NH 

O 

HOH2CH2C 

Cl 

N 
H 

O 

N 
H 

Br 

O 

HN 
NH2 

2 
5 

O NH 

O 

H 
N 

Br 

HN 

N 
N 
H 

NH 

N 

O 

O 

MC AO                                   MC BACE 1                             MC BACE 2 
IC50 = 27.65 ± 2.46 Mmol/L IC50 = 2.2 mM ± 0.05    

Fig. 10 Metal chelator-based anti-AD MTDLs (blue color indicates binding sites for metal 
chelation)



binding at the mod-gorge site. The bis(7)-tacrine (MC-AChE 3) interacts with 
anionic and catalytic sites to regulate AChE-induced Aß aggregation and shows 
Cu2+ chelation (Bolognesi et al. 2007). A novel chelator of Fe2+ , Cu2+ , and Zn2+ was 
designed using pharmacophoric features of rivastigmine and donepezil, and MC 
MAO 2 has exhibited APP regulation and lowered oxidative stress (Zhang et al. 
2013). Indanone metal (Fe2+ , Cu2+ , and Zn2+ ) chelating derivative having piperidine 
moiety through ethylene linkage has blocked AChE at micromolar concentration and 
14 times more potency as compared to donepezil (Meng et al. 2012). Similarly, 
metal chelating 1,10-phenanthroline has been evaluated for its inhibitory effect 
against AChE, i.e., aryl acylamidase and esterase activity (Chitra et al. 2013). 
Molecular docking and dynamics simulation have confirmed hydrogen and hydro-
phobic interactions with Phe295 and residues of the peripheral binding site, respec-
tively, which supports experimental results with inhibition at micromolar 
concentration.
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Among the category of MAO-based metal chelating agents, 8-hydroxyquinoline 
and propargyl nuclei hybrids (MC MAO 1, MC MAO 2, and MC MAO 3) were 
derived based on MAO inhibitory anti-Parkinson drugs (rasagiline and selegiline) 
(Fig. 10). Among them, the latter is most potent with MAO-B IC50 of 0.21 μM 
supported by docking interactions and can produce antioxidant and chelation prop-
erties for Fe2+ , Cu2+ , and Zn2+ (Youdim et al. 2005; Xie et al. 2022). During the 
evaluation of metal chelation properties of MAO-B inhibitors, 3,5-diaryl-4,5-
dihydroisoxazoles have failed to bind with Fe2+ and Fe3+ (Meleddu et al. 2017). 

3-Schiff base-4-hydroxycoumarin derivatives have reported significant potential 
as anti-AD agents during in vitro studies (Wang et al. 2015). The most potent 
compound is suggested to act by MAO (A and B) and self- and copper-induced 
Aß aggregation inhibition, antioxidant, and biometal chelation effects. The anti-AD 
properties at the micromolar level suggest it as a promising lead molecule. 

A prochelator has been proposed showing Cu2+ chelating properties on interac-
tion with BACE-1 (Folk and Franz 2010). It has the ability to inhibit Aß aggregation 
by sequestering the metal ion from Aß. Among this category, some reported BACE-
1 inhibitors have been modified to derive metal (Fe3+ and Cu2+ ) chelating agents like 
1,3-diphenylurea analogs (MC BACE1) (Huang and Mucke 2012) and 
iminochromene carboxamides with aminomethylene triazole analogs (MC BACE2) 
(Iraji et al. 2017) supported by docking interactions at the active site of the enzyme. 

3.5 BACE1 Inhibitor-Based MTDLs 

In AD, BACE-1 and GSK-3ß are the important targets involved in the formation of 
senile plaques and NFTs. Studies suggest that dual inhibition of these targets will 
show conducive action (Prati et al. 2018). Few series of BACE-1 and GSK-3ß dual 
inhibitors have exhibited potent inhibition along with neuroprotective and good 
pharmacokinetic properties in relation to oral bioavailability and BBB penetration 
(Di Martino et al. 2016; Rampa et al. 2017). The fragment-based approach has been



implemented to design and derive dual inhibitors having cyclic amide and guanidine 
moieties. The most promising compound (Fig. 11a) has shown potent dual inhibition 
without neurotoxic properties (Rampa et al. 2017). Similarly, curcumin-based inhib-
itors (Fig. 11b) have exhibited balanced dual inhibition along with neuroprotective 
properties induced through NAD(P)H quinone oxidoreductase 1 (NQO1) 
(Di Martino et al. 2016). It has the potential for further evaluation due to BBB 
permeation. 
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Fig. 11 Details of some BACE-1 and GSK-3ß dual inhibitors 

A natural dual inhibitor notopterol (Fig. 11) has shown a potential to ameliorate 
AD-associated cognitive deficit in animal models by dual inhibition of BACE-1 and 
GSK-3ß at micromolar concentration, i.e., IC50 of 26.01 μM and 1.0 μM, respec-
tively. The binding profile was further established using docking and dynamics 
studies showing protein stability in the binding complex (Jiang et al. 2020). 
Recently, Bajad et al. (2022) utilized both structure and ligand-based approaches 
such as virtual screening, homology modeling, docking and dynamics studies, 
drug-likeness screening, and assessment of pharmacokinetic and toxicity properties. 
It proposed two potential dual inhibitors, i.e., ZINC22551247 and ZINC668197980 
(Bajad et al. 2022). 

Based on the requirement of agents having multiple effects to comply with the 
complex pathogenicity of AD, MTDLs targeting toxicity of ROS, serotonergic 
receptors (5-HT4 and 5-HT6 receptors), neuroinflammation, etc., are under evalua-
tion (Lanthier et al. 2019; Benek et al. 2020). Simultaneous targeting of several 
subpathologies will contribute to derive a better approach to obtain effective anti-AD 
agents.
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4 Rational Design of MTDLs 

For the design of MTDLs, it is important to have information about pharmacophores 
having affinity for diverse disease targets. Such pharmacophores are linked/fused/ 
merged to get a single molecule. In case of linked MTDLs, the linker group may be 
cleavable or non-cleavable and their large size causes reduced bioavailability. The 
pharmacophores are partially overlapping each other in fused MTDLs, while the 
merged ligands have higher overlapping resulting in simple molecules with low 
molecular weight (Zhou et al. 2019). Some examples of anti-AD MTDLs like 
memoquin, xanthone-flavonoid derivatives, etc., are discussed here. 

AChE has been reported to trigger Aß aggregation, and its peripheral anionic site 
facilitates fibril formation by interaction with Aß. Thus, for effective inhibition of Aß 
aggregation, blockage of AChE peripheral anionic site can be considered as an 
effective strategy (Li et al. 2018). 

The first rationally designed compound from this category is memoquin. It is a 
1,4-benzoquinone–polyamine hybrid of AChE and muscarinic inhibitor 
polyamineamide caproctamine with potent antioxidant and neuroprotective 
1,4-benzoquinone (Cavalli et al. 2007; Prati et al. 2014). Memoquin is formed by 
replacing the inner polymethylene chain with benzoquinone nucleus. The structural 
details are presented in Fig. 12 (Bolognesi et al. 2009). The hydrophobic and planar
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pi-system contributes toward protein–protein interactions in the Aß fibrillogenesis. It 
has demonstrated the potential to explore AChE and self-induced Aß aggregation 
based on the potential observed for ferulic acid–memoquin hybrids (Fig. 12) 
(Bolognesi et al. 2009; Pan et al. 2016; Ortiz et al. 2019). Multi-targeted profile 
for memoquin is established through in vitro studies which include inhibition of 
AChE and Aß aggregation induced by it, BACE-1, and free radical generation. 
Studies also support its oral bioavailability, BBB permeability, and safety profile. It 
confirms tolerance on prolog administration and its ability to restore cholinergic 
deficit, reduced expression, and accumulation of Aß and decreased tau protein 
phosphorylation (Cavalli et al. 2007; Bolognesi et al. 2009). As a next step to 
these findings, the mitochondria targeting antioxidant, alpha-lipoic acid, has been 
used to prepare memoquin hybrid analogs with an aim to prolong the onset/prevent/ 
cure Alzheimer’s disease (Bolognesi et al. 2009). Lipocrine, i.e., prepared by 
conjugating 9-amino-6-Cl-1,2,3,4-tetrahydroacridine with alpha-lipoic acid, has 
exhibited anti-AChE and antioxidant properties. The newly reported memoquin– 
lipocrine MTDLs (Fig. 12) has superior potential to prevent and cure AD through 
multiple antioxidant mechanisms. It involves reduced ROS production and mecha-
nisms mediated through NQO1. These analogs have shown lesser inhibitory prop-
erties against AChE and BChE. Studies also confirm the requirement of lipoyl 
fragment at position 2 of the benzoquinone for receptor interactions.
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The next important MTDLs from the AChE inhibitory category (reversible and 
non-competitive inhibitor) are based on tacrine and donepezil. Such analogs have 
demonstrated the ability to lessen the neurodegeneration associated with cholinergic 
damage and participate in other AD-related mechanisms (Fig. 13). The dual binding 
at AChE peripheral and catalytic sites has been implemented for the tacrine, and 
donepezil-based AChEIs have additional anti-AD properties against Aß aggregation, 
MAO, and oxidative stress. MTDLs based on this important scaffold are presented in 
Figs. 13 and 14 (Zagorska and Jaromin 2020). 

In the development of AChE and BACE-1 MTDLs, pharmacophores of inhibitors 
from both categories are linked to design novel analogs. In this direction, the 
evaluation of hybrid analogs of donepezil (AChEI) with isophthalamide (Zhu et al. 
2009) and 2,4-disubstituted pyrimidine (Mohamed et al. 2011, 2012) led to the 
identification of dual inhibitors with blockage of Aß1–40 production. In other studies, 
AChEI tacrine scaffold was fused with BACE-1 inhibitory flavonoid fragment of 
4-oxo-4H-chromene (Fernández-Bachiller et al. 2012), huperzine A (Camps et al. 
2000; Pérez-Areales et al. 2019), and benzofuran (Zha et al. 2016) to get some potent 
dual inhibitors of AChE and BACE-1, while few of them have exhibited interesting 
antioxidant activity. Tacrine and donepezil scaffolds are subjected to various struc-
tural modifications for AChEIs along with other AD targets to develop potential 
therapeutics (Ismaili et al. 2017). The potent compounds from such series are 
presented in Fig. 15. 

The potential role of Rho-associated protein kinase (ROCK) for Alzheimer’s 
treatment has been reported (Aguilar et al. 2017), and it helped to design 
PT109 (Fig. 16), i.e., based on lipoic acid and fasudil. Fasudil scaffold possess 
well-reported anti-AD contributing properties like blockage of ROCK and kinases,
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and anti-inflammatory, antioxidant, and morphological alterations in neural stem cell 
line (Chen et al. 2017, 2020). It is a multifunctional ligand with broad-spectrum anti-
Alzheimer’s properties like reduced levels of p-Tau, p-JNK, etc., which have been 
demonstrated by in vivo and in vitro methods (Fig. 16).
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5 Natural or Nature-Inspired Compounds 

Studies have reported a large number of anti-AD natural substances such as 
huperzine (Serrano et al. 2016), rhein (Li et al. 2019), chelerythrine (Marasco 
et al. 2021), chalcone (Thapa et al. 2021), curcumin (Mukherjee et al. 2021), 
berberine (Akbar et al. 2021), resveratrol derivatives (Akbar et al. 2021), and 
coumarin (Li et al. 2022a). The vast pool of diverse phytoconstituents and their 
anti-AD potential warrants further studies (Noori et al. 2021). Recently, reported 
anti-AD drugs include sodium oligomannate; i.e., GV-971 is an oligosaccharide



from marine sources (Wang 2017; Xiao et al. 2021). It highlights a novel strategy for 
AD management through gut dysbiosis-promoted neuroinflammation (Wang et al. 
2019). 
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Apart from the synthetic strategy used to design the dual-target inhibitors for AD, 
there are several instances where natural compounds that are inspired from nature are 
tested for their cholinesterase and PDE inhibition and many of them have shown 
promising results. Table 2 summarizes the studies on multi-target natural synthetic 
derivatives, and some reported phytoconstituents are presented in Fig. 17. 

Five natural fungal secondary metabolites and one plant metabolite (compounds 
a to f, Fig. 18) have been selected for anti-AD evaluation based on their structural 
characteristics like heterocyclic nucleus, molecular weight, and presence of hydroxyl 
groups. They are evaluated for AChE, BChE, Aß peptide aggregation, and antiox-
idant properties (Piemontese et al. 2018). The study also aims to provide a possible 
solution for limitations observed with AChEIs. Additionally, heavy metal (copper 
(II) and zinc (II)) sequestering properties contribute toward the prevention of ROS 
production and prevent the formation of amyloid plaques. Aß peptide aggregation 
properties (at 100 μM) display the role of heterocyclic condensed ring system for 
disruption of ß-sheet conformation as per documented literature (Hiremathad et al. 
2016). The study identified the following MTDLs as potential scaffolds for the 
development of new anti-AD drugs:

• Antioxidant and interaction with copper (II): tenuazonic acid (A), mycophenolic 
acid (C).

• AChE and Aβ1–40 aggregation inhibitor: epi-Radicinol (B).
• AChE and BChE inhibitor: fungerin (F). 

Alpha (α)-terpinyl acetate (Fig. 18g), an active phytoconstituent, has shown 
Alzheimer’s disease-modifying activity (Chowdhury and Kumar 2020). It is 
obtained from Elettaria cardamomum L. Maton and exhibited significant interaction 
with multiple targets. It has demonstrated anticholinesterase, anti-aggregation, and 
neuroprotective properties and can mitigate symptoms along with disease-modifying 
activity. 

Recently, a review on several anti-AD mechanisms of α-mangostin (α-M, 
Fig. 18h) which is purified from mangosteen supports its use as a promising 
molecule for multifactor treatment of Alzheimer’s disease (Yang et al. 2021). The 
safety profile for over 100 years and diverse activity profile (against AChE, BuChE, 
Aß aggregation, inflammation, metal chelation, and ROS scavenger) has been well-
documented through experimental results and clinical trials. MTDL derived from an 
inexpensive food waste, i.e., cashew nutshell liquid, has been combined with AChE/ 
BChE tacrine nucleus, and it has been achieved by applying sustainable strategies 
(Fig. 19). The overall sustainability was maintained by adopting principles of green 
chemistry during synthesis of compounds. The screening was performed based on 
AChE/BChE selectivity and toxicity observed for hepatic, neuronal, and microglial 
cells (Rossi et al. 2021). Compound 5 has demonstrated high potency. Its crystal 
structure in complex with human BChE has been analyzed showing multiple 
interactions of the two aromatic nuclei at the active site gorge of human BChE.
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(continued)
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Table 2 Multi-target natural and nature-inspired compounds 

Source/phyto-
constituents 

Xanthines Coffea arabica and 
C. canephora/caffeine 

Non-competitive 
AChE inhibitor 
(Ki = 175 μM) 

Neuroprotective 
and anti-
inflammatory 
effects 

Pohanka 
(2015) 

Interfere with 
intracellular cAMP 
and cGMP levels 
by acting as a 
weak, nonspecific 
reversible PDE 
inhibitor 
(IC50 = 500– 
1000 μM) 

Synthetic 
derivatives of 
xanthines 

Propentofylline Inhibits AChE 
(IC50 = 6.40 μM) 

Improve cogni-
tion and dementia 
severity in mild-
to-moderate AD 

Mohamed 
et al. 
(2013) 

Pyrazolopyrimidinones Inhibits PDE9 in 
the nM range (IC50 

values <200 nM) 

Singh et al. 
(2017) 

3-Isobutyl-1-methyl-
xanthine (IBMX) 

Nonselective 
inhibitor targeting 
PDE9 and other 
isoforms in the μM 
range 
(IC50 = 230 μM 
for PDE9) 

Singh et al. 
(2017) 

Tacrine– 
pyrazolopyridine 
hybrid derivatives 

The compounds 
demonstrated 
inhibitory activity 
on cholinesterases 
(IC50 = 0.125– 
0.412 μM for 
AChE and 
IC50 = 0.245– 
1.283 μM for 
BuChE) and even 
better activity on 
the PDE 
(IC50 = 0.041– 
1.307 μM) 

Target AChE, 
BuChE, another 
enzyme involved 
in sustaining cho-
linergic tone, and 
PDE4D 

Pan et al. 
(2019) 

Camel artemisia 
(Peganum 
nigellastrum) Indoline-
2,3-dione and 
quinazoline derivatives 

Inhibited AChE 
with IC50 values 
between 44 and 
298 nM, and PDE5 
with IC50 values 
between 17 and 
746 nM 

Zhou et al. 
(2017)
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Table 2 (continued)

Source/phyto-
constituents 

Flavonoids 
and 
coumarins 

Rutin and its aglycone 
quercetin 

Efficiently reduce 
AChE activity in 
rat tissues (25 and 
50 mg/kg) also 
inhibit PDE5 

Adefegha 
et al. 
(2018) 

Polyphenolic 
acids 

Nigerian plantain 
(Musa sapientum) 
extracts 

Unripe peel aque-
ous extract showed 
inhibition of AChE 
(IC50 = 6.30 μg/ 
mL) and PDE5 
(IC50 = 3.10 μg/ 
mL) 

Oboh et al. 
(2017) 

Alligator pepper 
(Aframomum 
melegueta) 

Inhibit AChE more 
efficiently 
(IC50 = 5.42 μg/ 
mL) 

Adefegha 
et al. 
(2017) 

Bastered melegueta 
(Aframomum danielli) 

Show inhibition 
of PDE5 
(IC50 = 7.24 μg/ 
mL) 

African walnut 
(Tetracarpidium 
conophorum) 

Efficient in 
inhibiting AChE 
(IC50 = 0.87 μg/ 
mL) and PDE5 
(IC50 μg/mL) 

Ademiluyi 
et al. 
(2019) 

Aqueous extracts of 
pulverized almond 
(Terminalia catappa) 
leaf and stem bark 

Modulate the 
activity of AChE 
and PDE5 in the 
cardiac tissue of 
rats (100–200 mg/ 
kg) 

Dada et al. 
(2021) 

Leaves extract (aq.) of 
Ocimum gratissimum 

Inhibit AChE 
(IC50 = 43.19– 
44.67 μg/mL) and 
PDE5 
(IC50 = 44.23– 
53.99 μg/mL) 

Ojo et al. 
(2019) 

In silico approaches have been applied to search multi-target AD ligands based on 
reported information about chemical structures and their biological properties 
against crucial Alzheimer’s targets, namely cyclin-dependent kinase 5, ß-secretase, 
MAO-B, glycogen synthase kinase 3ß, and acetylcholinesterase (Ambure et al. 
2019). Linear discriminant analysis has been applied to derive five classification 
models and checked for their applicability domain using confidence estimation 
approach. Further, MTDLs were identified by screening natural database 
(InterBioScreen) using the derived validated in silico models. Drug-like properties
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Fig. 17 Chemical structures of phytoconstituents reported in the investigations as MTDLs 
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and molecular dynamic studies were performed for identified active ligands to 
analyze their potential as MTDLs against AD. The study outcomes are detailed in 
Table 3.
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Table 3 Details of natural MTDLs and their targets identified by screening InterBioScreen 
database 

AD targets Compound 

3 CDK5, GSK-3ß, AChE STOCK1N-31,193 
targets CDK5, BACE1, AChE STOCK1N-68,100 

CDK5, BACE1, 
GSK-3ß 

STOCK1N-83,050 

2 
targets 

BACE1, AChE STOCK1N-68,215, STOCK1N-69,729 

BACE1, GSK-3ß STOCK1N-03648, STOCK1N-04548 

CDK5, AChE STOCK1N-71,927, STOCK1N-76,042, STOCK1N-
76,267 

CDK5, BACE1 STOCK1N-55,801, STOCK1N-67,973, STOCK1N-
68,845 

CDK5, GSK-3ß STOCK1N-36,270, STOCK1N-36,506, STOCK1N-
38,926 

CDK5, MAOB STOCK1N-50,225 

MAOB, GSK-3ß STOCK1N-38,066, STOCK1N-38,837, STOCK1N-
39,155
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6 Conclusions 

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease, and a drug 
that targets a single protein would not provide a cure for this disease. Currently 
available drugs for AD are all palliative rather than curative. The lack of therapeutic 
effectiveness of the single-target drugs and multifactorial etiology of AD has led to 
the design of multi-target directed ligands for AD. 

Malfunctioning of cholinergic transmission and glycation, formation of amyloid 
deposits, and oxidative stress have been proposed to be involved in pathogenesis and 
progression of the disease (Lane et al. 2018). In this connection, drugs sustaining the 
cholinergic tone have been developed to contrast the progressive cognitive decline 
that characterizes AD. In particular, AChE inhibitors such as donepezil are used for 
the symptomatic treatment of dementia, even if only moderate efficacy is observed in 
AD patients. Owing to their limited efficacy and problems of the onset of tolerance 
after long-term use of AChE inhibitors, they are encouraged to be used in combina-
tion with other drugs. Various natural and synthetic compounds have been evaluated 
for their multi-targeted mechanism for AD. The complex pathogenesis of AD is not 
addressed by available single-target therapeutics and fails to provide complete cure. 
Recent evidence-based research has focused on the development of MTDLs as anti-
AD therapeutics to address the limitations and side effects associated with available 
therapeutics. MTDLs based on targeting different potential targets involved in 
Alzheimer’s pathogenesis from synthetic or natural sources have exhibited promis-
ing results. During clinical use, some of the major limitations like drug-induced 
hepatotoxicity can be addressed by structural modifications or synthesis of hybrid 
analogs using hepatoprotective agents. Studies confirm the potential of MTDLs as an 
ideal pharmacological tool for tackling diseases having complex pathology. Among 
the various reported pathologies, AChE inhibitor-based multi-targeting has received 
considerable attention along with other important targets like BACE-1, GSK-3ß, 
NMDA, and PDE. There is a need for further extension for preclinical and clinical 
evaluation. Some well-reported anti-Alzheimer’s agents like tacrine/donepezil/ 
memoquin have been modified to develop MTDLs to reduce toxicity and side effects 
and to improve cognition. The success of MTDLs has been evidenced by their 
neuroprotective, anti-inflammatory, antioxidant, and inhibition of different AD 
pathogenesis in in vivo and in vitro models. 

The Successful implication of MTDLs can eliminate the need to simultaneously 
administer multiple drugs with potentially different degrees of bioavailability, phar-
macokinetics, and metabolism. It will also provide patients a simplified therapeutic 
regimen. Limitations associated with multi-targeted approach are complex activity 
profile, unpredictable pharmacokinetics, lack of BBB permeability, adverse effects, 
etc. In view of the demand for safe and potent AD therapeutics, more efforts are 
required. In the near future, active immunotherapy against both amyloid pathology 
and tau pathology in a single bivalent AD vaccine is worth investigating.
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